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R. M. Fitzgerald
Department of Physics, University of Texas, El Paso, TX 79968, U.S.A.

By means of a modal method we have calculated the angular dependence of the reflectivity and
the efficiencies of several other diffracted orders of a perfectly conducting lamellar reflection grating
illuminated by p-polarized light. These dependencies display the signatures of Rayleigh and Wood
anomalies, usually associated with diffraction from a metallic grating. The Wood anomalies here are
caused by the excitation of the surface electromagnetic waves supported by a periodically corrugated
perfectly conducting surface, whose dispersion curves in both the nonradiative and radiative regions
of the frequency-wavenumber plane are calculated.
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I. INTRODUCTION

In his measurements of the angular and wavelength dependencies of light diffracted from various metallic gratings,
R.W. Wood [1, 2] noted “anomalies” in the data he obtained when the wave vector of the incident beam was in the
plane perpendicular to their grooves, and its magnetic vector was parallel to the grooves, i.e. in p polarization. These
anomalies were of two types.

The first type of anomaly was a discontinuous change in the reflectivity as a function of the wavelength of the
incident light for a fixed angle of incidence at well-defined wavelengths. These wavelengths were independent of the
metal on which the grating was ruled, and were determined by the period of the grating. It was shown by Lord
Rayleigh [3, 4] that these anomalies occur at the wavelengths at which a diffracted order appears or disappears at a
grazing angle. For the nth diffracted order this occurs at the wavelength given by λn = d(±1− sin θ0)/n, where d is
the period of the grating, θ0 is the angle of incidence, and n is an integer. In the former case the power in that order
is removed from the zero order beam; in the latter case the power in that order is returned to the zero-order beam.

In subsequent investigations [5, 6] it was found that such anomalies also occur at the Rayleigh wavelengths when
the electric vector of the incident light is parallel to the grooves of the grating, i.e. in s polarization. However, in this
case they are weak and require deep grooves for their observation.

The second type of anomaly, now called a Wood anomaly, was diffuse, and extended in a wide range of wavelengths
from a Rayleigh anomaly towards longer wavelengths. These anomalies generally consisted of a maximum and
minimum intensity. When the plane of incidence was perpendicular to the grooves of the grating they occurred only
in p polarization, and the wavelengths at which they occurred changed when the metal on which the grating was
fabricated was changed. Wood had no explanation for these anomalies, nor did Lord Rayleigh. The explanation for
them was provided many years later by Fano [7], who showed that they are due to the excitation by the incident
light of the surface plasmon polaritons supported by a periodically corrugated vacuum-metal interface [8, 9]. If the
dielectric function of the metal is denoted by ε(ω), the wavenumber of the surface plasmon polariton, ksp(ω) = (ω/c)

[ε(ω)/(ε(ω) + 1)]
1
2 , is slightly larger than ω/c in the frequency range where ε(ω) is negative. The component of

the wave vector of the incident light parallel to the surface, k = (ω/c) sin θ0, is smaller than (ω/c). In order that
momentum be conserved in the interaction of the incident wave with the surface plasmon polariton the difference
between these two wave numbers has to be made up, which in the present case is done by a wave number of the
grating, 2πn/d, where n is an integer. The condition for the excitation of the surface plasmon polariton therefore
is k = ksp(ω) + (2π/d)n, or (1/λ) = (1/λsp(ω)) + n/d. Since surface plasmon polaritons propagating normal to the
grooves of a metallic grating exist only in p polarization, they cannot be excited by s-polarized light when its electric
vector is parallel to the grooves. Thus, Wood’s anomalies do not exist in s polarization. Since the wavelength of a
surface plasmon polariton is a function of the dielectric function of the metal, the scattering angles or wavelengths at
which these anomalies occur vary from metal to metal.

In the years following Fano’s work these grating anomalies were studied extensively by experimentalists and theo-
rists. A recent review of developments in this field is presented in the chapter by Maystre [10].

The great majority of the theoretical studies of grating anomalies were carried out for diffraction from metallic
gratings. However, there were exceptions to such studies. It had been believed that when the wavelength of the
incident field was in the visible and near-infrared regions of the electromagnetic spectrum, the grating could be
regarded as a perfect conductor, which led to rigorous calculations of the diffraction of light from perfectly conducting
gratings [11–15]. In a particularly detailed set of calculations [15], Rayleigh anomalies were observed to occur in the
wavelength dependence of the reflectivity and other diffraction efficiencies at the values predicted by Lord Rayleigh.
In addition, other features were observed in these dependencies. These were referred to as resonance anomalies,
and were attributed to resonances within the grooves of the grating [16]. These standing waves within the grating
grooves were taken into account in Ref. 16 by replacing the grating by a planar surface with a periodic surface
impedance (reactance). Such a structure can support leaky (complex) surface waves that produce features in the
angular or wavelength dependencies of the scattering efficiencies distinct from the Rayleigh anomalies. Unfortunately,
the dispersion curves of these leaky surface waves were not calculated in either Ref. 15 or Ref. 16. Therefore, it was
not possible to relate directly the existence of these waves to the Wood anomalies in the scattering efficiencies.

When results calculated on the basis of the assumption of a perfectly conducting grating were compared to exper-
imental data for the diffraction of p-polarized light from metallic gratings in the visible and near-infrared, serious
discrepancies were found [17, 18]. Interest in the diffraction of light from perfectly conducting gratings waned in the
wake of these results.

Nevertheless, in this paper we revisit the theory of the diffraction of p-polarized light from a perfectly conducting
grating. Our motivation for doing so is that the theoretical studies of the diffraction of p-polarized light from metallic
gratings following the work of Fano recognized the origin of the Wood anomalies as the surface plasmon polaritons
supported by the periodically corrugated metal surface. At the time the theoretical studies of the diffraction of p-
polarized light from perfectly conducting gratings were carried out, it was not known, as it is now, that a periodically



3

x1

h

a d

θ0 θs

x3

FIG. 1. A depiction of the grating considered in this work, the parameters that define it, and the geometry of the diffraction
of light from it.

corrugated perfectly conducting surface also supports surface electromagnetic waves [19, 20].
Perhaps for this reason the dispersion curves of the surface waves supported by such surfaces, even those predicted

with heuristic impedance boundary conditions, were not calculated. Now that the existence of p-polarized surface
electromagnetic waves on periodically corrugated perfectly conducting surfaces is known, it seemed of interest to
calculate their dispersion curves together with the angular dependencies of the diffraction efficiencies in the diffrac-
tion of p-polarized light from such gratings. The goal of these calculations is a demonstration that these surface
electromagnetic waves give rise to Wood anomalies in the same way that surface plasmon polaritons give rise to Wood
anomalies in the diffraction of p-polarized light from metallic gratings. It is such calculations that we carry out in this
paper. In doing so we will use a modal approach analogous to the one employed by Lopez-Rios et al. [21] to study
the reflectivity of a lamellar metallic grating (see also Refs. 22 and 23).

II. THE DIFFRACTED FIELD

The physical system we study in this work, a perfectly conducting lamellar grating, is depicted in Fig. 1. It is
illuminated from the vacuum by a p-polarized electromagnetic field of frequency ω, whose plane of incidence, and
hence of scattering, is the x1x3 plane. In p polarization it is convenient to work with the single nonzero component
of the magnetic field, H2(x1, x3; t) = H2(x1, x3|ω) exp(−iωt). Because of the periodicity of the surface profile, this
field amplitude H2(x1, x3|ω) must satisfy the Floquet-Bloch condition [24] H2(x1 + d, x3|ω) = exp(ikd)H2(x1, x3|ω),
where k = (ω/c) sin θ0 is the projection of the wave vector of the incident field on the plane x3 = 0, and d is the
period of the grating. The angle θ0 is the angle of incidence, measured counterclockwise from the positive x3-axis.
As a consequence the field at any point of space above the grating surface can be determined from the field in the
central cell located between x1 = −a/2 and x1 = a/2.

The magnetic field in the vacuum region x3 > 0 can be written

H>
2 (x1, x3|ω) = eikx1−iα0(k)x3 +

∞∑
n=−∞

Aneiknx1+iα0(kn)x3 , (1)

where kn = k + 2πn/d, and

α0(k) =

[(ω
c

)2
− k2

]1/2
. (2)

The manner in which the branch cut defining the square root in Eq. (2) is obtained, will be explained below.
The magnetic field within the central groove of the grating, defined by −a/2 < x1 < a/2, −h < x3 < 0, that
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satisfies the boundary conditions [25]

∂

∂x1
H<

2 (±a/2, x3|ω) = 0, − h < x3 < 0, (3a)

∂

∂x3
H<

2 (x1,−h|ω) = 0, − a/2 < x1 < a/2, (3b)

can be written

H<
2 (x1, x3|ω) =

∞∑
m=0

Bm cos
[mπ
a

(
x1 −

a

2

)]
cos [αm(ω)(x3 + h)] , (4)

where

αm(ω) =

[(ω
c

)2
−
(mπ
a

)2] 1
2

Reαm(ω) > 0, Imαm(ω) > 0. (5)

The amplitudes {An} and {Bn} are obtained from the remaining boundary conditions satisfied by the magnetic
field, namely [25]

∂

∂x3
H>

2 (x1, 0|ω) = 0, a/2 < |x1| < d/2 (6a)

∂

∂x3
H>

2 (x1, 0|ω) =
∂

∂x3
H<

2 (x1, 0|ω), − a/2 < x1 < a/2 (6b)

H>
2 (x1, 0|ω) = H<

2 (x1, 0|ω), − a/2 < x1 < a/2. (6c)

We first consider Eq. (6b) which, with Eqs. (1) and (4), becomes (for −a/2 < x1 < a/2)

−iα0(k)eikx1 +

∞∑
n=−∞

iα0(kn)Aneiknx1 = −
∞∑
m=0

αm(ω)Bm cos
[mπ
a

(
x1 −

a

2

)]
sin [αm(ω)h] . (7)

We next multiply this equation by exp(−ikjx1) and integrate the result with respect to x1 over the period d:

−iα0(k)

d
2∫

− d
2

dx1 ei(k−kj)x1 +

∞∑
n=−∞

iα0(kn)An

d
2∫

− d
2

dx1 ei(kn−kj)x1

= −
∞∑
m=0

αm(ω)Bm sin[αm(ω)h]

a
2∫

− a
2

dx1 e−ikjx1 cos
[mπ
a

(
x1 −

a

2

)]
. (8)

It should be kept in mind that according to Eq. (6a) the function represented by the coefficient of exp(−ikjx1) in the
integrand on the left-hand side of this equation vanishes for a/2 < |x1| < d/2.

Equation (8) can be rewritten as

−iα0(k)dδj0 + iα0(kj)dAj = −
∞∑
m=0

Sjmαm(ω)aBm sin[αm(ω)h], (9)

where

Sjm =
1

a

a
2∫

− a
2

dx1 e−ikjx1 cos
[mπ
a

(
x1 −

a

2

)]
.

=
exp(−imπ/2)

2
sinc

(
kja

2
− mπ

2

)
+

exp(imπ/2)

2
sinc

(
kja

2
+
mπ

2

)
, (10)

with sinc(x) = sin(x)/x.
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Thus, the first relation between the {An} and {Bm} becomes

Aj = δj0 + i
a

d

1

α0(kj)

∞∑
m=0

Sjmαm(ω) sin[αm(ω)h]Bm. (11)

A second relation between the {An} and {Bm} is obtained by starting with the boundary condition (6c). With the
use of Eqs. (1) and (4) it becomes

eikx1 +

∞∑
n=−∞

Aneiknx1 =

∞∑
m=0

Bm cos
[mπ
a

(
x1 −

a

2

)]
cos[αm(ω)h], −a

2
< x1 <

a

2
. (12)

We multiply this equation by cos[ jπa (x1− a
2 )] and integrate the result with respect to x1 over the interval (−a/2, a/2).

In this way we obtain the equation
a
2∫

− a
2

dx1 cos

[
jπ

a

(
x1 −

a

2

)]
eikx1 +

∞∑
n=−∞

An

a
2∫

− a
2

dx1 cos

[
jπ

a

(
x1 −

a

2

)]
eiknx1

=

∞∑
m=0

Bm cos[αm(ω)h]

a
2∫

− a
2

dx1 cos

[
jπ

a

(
x1 −

a

2

)]
cos
[mπ
a

(
x1 −

a

2

)]
. (13)

With the aid of Eq. (10) this equation becomes

aS∗0j + a

∞∑
n=−∞

AnS
∗
nj =

a

2εj
cos[αj(ω)h]Bj , (14)

where

εj =

{
1/2, j = 0

1, j ≥ 1
. (15)

It follows from Eq. (14) that

Bj =
2εj

cos[αj(ω)h]

[
S∗0j +

∞∑
n=−∞

AnS
∗
nj

]
. (16)

On combining Eqs. (11) and (16) we obtain the equation satisfied by the {An}:

Am = δm0 +Mm0(k, ω) +

∞∑
n=−∞

Mmn(k, ω)An, m = 0,±1,±2, . . . , (17)

where

Mmn(k, ω) = 2i
a

d

1

α0(km)

∞∑
r=0

εrSmrS
∗
nrαr(ω) tan[αr(ω)h]. (18)

The diffraction efficiency of the mth diffracted beam is given by

em =
α0(km)

α0(k)
|Am|2. (19)

The conservation of energy in the diffraction process is expressed by∑
m

′α0(km)

α0(k)
|Am|2 = 1, (20)

where the prime on the sum denotes that it extends over only the open channels, i.e. the ones for which α0(km) is
real. Finally, the reflectivity is given by

R = e0 = |A0|2. (21)
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III. THE DISPERSION RELATION FOR SURFACE ELECTROMAGNETIC WAVES

To obtain the dispersion relation for the surface electromagnetic waves supported by the perfectly conducting
lamellar grating depicted in Fig. 1, we need only to omit the incident field from the right hand side of Eq. (1). This
is equivalent to deleting the inhomogeneous terms from Eq. (17). In this way we obtain the homogeneous system of
equations

Am =

∞∑
n=−∞

Mmn(k, ω)An, m = 0,±1,±2, . . . (22)

The solvability condition for this system of equations,

det[Mmn(k, ω)− δmn] = 0, (23)

is the dispersion relation we seek.
The magnetic field of the surface wave is then given by the second term on the right hand side of Eq. (1),

H>
2 (x1, x3|ω) =

∞∑
n=−∞

Aneiknx1+iα0(kn)x3 . (24)

At the same time, to avoid working with a matrix that is singular when α0(km) vanishes, we rewrite Eq. (23) as

D(k, ω) = det[Nmn(k, ω) + ihα0(km)δmn] = 0, (25)

where

Nmn(k, ω) = 2
a

d

∞∑
r=0

εrSmrS
∗
nrαr(ω)h tan[αr(ω)h]. (26)

The solutions ω(k) of Eq. (25) are even functions of k, ω(−k) = ω(k). They are also periodic functions of k with
period 2π/d, ω(k+ 2π/d) = ω(k). Thus, in the reduced zone scheme we need to solve Eq. (25) only for values of k in
the interval 0 < k < π/d.

In the absence of the periodic corrugations of the perfectly conducting surface, the resulting planar surface does not
support a true surface wave, only a surface-skimming bulk wave, whose dispersion relation is ω = c|k|, the vacuum
light line. When the portions of this curve in the second, third, . . . , Brillouin zones are folded into the first Brillouin
zone −π/d < k < π/d, by translations to the left and right by multiples of 2π/d, the result is a zig-zag dispersion curve
with a second, third, . . . branch in addition to the lowest frequency branch. It is the modification of this dispersion
curve by the periodic corrugations of the surface that we seek here.

In the nonradiative region of the (k, ω) plane, defined by |k| > (ω/c), the matrix whose determinant appears in
Eq. (25) is real and symmetric, because of properties of the matrix element Sjm, and the fact that α0(km) is pure
imaginary with a positive imaginary part for all m. From Eq. (24) we see that this is required in order that Eq. (24)
describe a surface wave whose amplitude decays exponentially with increasing x3. The solutions of Eq. (25) in this
region are real and correspond to true surface waves.

For k and ω outside the non-radiative region, the matrix in Eq. (25) is no longer real and symmetric because some
α0(km) become complex with a positive real part, and thus represent components in the sum (24) that radiate into
the vacuum. As the surface wave radiates into the vacuum it must decrease in amplitude. To describe this conversion
of surface waves into bulk waves in the vacuum we will consider ω to be complex and k to be real. The imaginary
part of ω gives the inverse lifetime of the amplitude of the leaky surface wave.

In order to obtain solutions of Eq. (25) that possess these properties, we have to choose correctly the branch cut
that defines the square root in the definition of α0(kn). We begin by setting

ω(k) = ωR(k)− iωI(k), (27)

where ωR(k) and ωI(k) are real and positive functions of k. The positivity of ωI(k) is needed in order to have a wave
whose amplitude decays in time as it propagates. With Eqs. (2) and (27) we have

α2
0(kn) =

[
ω2
R − ω2

I

c2
−
(
k +

2πn

d

)2
]
− i

2ωRωI
c2

. (28)
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We see that α2
0(kn) must be in either the third or fourth quadrant. Thus, if we choose the branch cut along the

negative real axis, we would always obtain α0(kn) in the fourth quadrant, with a positive real part and a negative
imaginary part. This means that when α2

0(kn) is in the third quadrant, (ω2
R − ω2

I )/c2 < k2n i.e. in the nonradiative
region, the negative sign of the imaginary part of α0(kn) means that the nth term in Eq. (24) increases exponentially
into the vacuum with increasing x3. This is the opposite of the physical situation we must describe. However, if
we take the branch cut along the negative imaginary axis, when α2

0(kn) is in the third quadrant α0(kn) will be in
the second quadrant, with a negative real part and a positive imaginary part. In this case the nth term in Eq. (24)
decreases exponentially with increasing x3, as is required of a surface wave. Moreover, when α2

0(kn) is in the fourth
quadrant, (ω2

R − ω2
I )/c2 > k2n, i.e. in the radiative region, α0(kn) is also in the fourth quadrant, with a positive real

part and a negative imaginary part. The positive real part of α0(kn) corresponds to a wave that is radiating from
the surface into the vacuum, as we wish for a radiative or leaky surface wave. The negative imaginary part of α0(kn)
in this case corresponds to a wave whose amplitude increases exponentially with increasing x3. This exponential
increase of the amplitude of a leaky surface wave with increasing distance from the surface is physically correct. It has
been discussed in detail by Lim and Farnell [26], by Ingebrigtsen and Tonning [27], and by Glass and Maradudin [28]
in the context of leaky surface acoustic waves, and we refer the reader to these papers for an explanation of this
counterintuitive result.

Numerical details: We begin the numerical calculation of the dispersion curve by approximating the infinitely
dimensional equation system for {An} by a finite dimensional system. To this end, we assume |m| ≤M and |n| ≤M
(with M a positive integer) in Eq. (22), so that the dimension of the resulting linear system becomes M = 2M + 1.
The dispersion curve for surface electromagnetic waves that we are interested in is determined by the vanishing of
the determinant D(k, ω) defined in Eq. (25). However, this quantity, like any determinant, is a highly non-linear
and non-continuous function of its parameters. For instance, a slight variation of k and ω may result in orders
of magnitude changes in D(k, ω). Therefore, the function D(k, ω) is not well suited for being used in a numerical
minimization routine. It is well known that a matrix is singular, and hence its determinant vanishes, if and only if
one of its eigenvalues vanishes. Hence, we define the function

Λ(k, ω) = min {|λm(k, ω)|}Mm=−M , (29)

where λm denotes one of the eigenvalues of the M×M-matrix that has D(k, ω) as its determinant [see Eq. (25)].

Since D(k, ω) =
∏M
m=−M λm(k, ω), it follows that the condition D(k, ω) = 0 is equivalent to Λ(k, ω) = 0 which,

therefore, represents an alternative definition for the dispersion curve for surface waves. However, we have found the
latter definition to be better behaved numerically than the former, and the calculations presented in this work are
therefore based on this condition for the existence of surface waves.

To obtain the dispersion curve for surface waves, a mesh of N + 1 equally spaced points k` = `∆k, with ` =
0, 1, 2, . . . , N and ∆k = (π/d)/N , is created in the interval (0, π/d) of the k axis, where N is typically 100. For
each value k`, a numerical minimization of the function Λ(k`, ω) is performed with respect to the complex angular
frequency ω(k) = ωR(k)− iωI(k). To this end, we use the Nelder-Mead optimization algorithm [29–31] by considering
Λ a function of the two real variables ωR and ωI (ωR ≥ 0, ωI ≥ 0) but with k` treated as a known parameter. The
minimization starts by assuming a value k` on the zone boundary of the first Brillouin zone; for odd branches of
the dispersion relation we start at ` = 0 and step forward towards ` = N ; for even branches we do the opposite
and step downwards from ` = N towards ` = 0. For each value of k` an independent numerical minimization of
Λ(k`, ω) is performed to identify the complex angular frequency ω(k`). To make sure that the point indeed is on the
dispersion curve for surface waves we recorded both the smallest eigenvalue in modulus of the matrix of Eq. (25) [i.e.
Λ(k`, ω(k`))] and its reciprocal condition number. When the calculations were performed in double precision, typical
values for these quantities were found to be at least as small as 10−15 and 10−16, respectively. Only for a small
number of points on the dispersion curve did we find values for the reciprocal condition number that were larger than
these values; however, for all points on the dispersion curve the reciprocal condition number remained several orders
of magnitude smaller than one.

In order to follow a given branch of the dispersion curve, some care has to be taken when specifying the initial
value for ω used by the minimization routine. For instance, for the first (or fundamental) branch, corresponding to a
true surface wave, the minimization starts at k0 = 0 with the initial guess ωR(k0) = ωI(k0) = 0; as ` is increased, the
initial values used for ωR and ωI when performing the minimization at k` are ωR(k`−1) and ωI(k`−1), respectively.
This means that at step ` > 0, one assumes for the initial value of the frequency the value ω(k`−1) that was identified
at the previous step `−1. In this way the first branch of the dispersion relation is identified, and the approach seemed
to work well for all the parameters of the grating that we considered and tested.

We note that for the first branch, it is expected that the imaginary part of the angular frequency is zero, ωI = 0.
This we indeed also found in our numerical results, even if the approach used to obtain them made no a priori
assumption about a zero imaginary part.
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For the higher order branches, the initial values for ωR(k) and ωI(k) used by the minimization routine were found
to depend somewhat more on the parameters defining the grating. However, for the numerical results presented in
this work the initial values ωRd/(cπ) = n− 1 and ωI = 0 were used successfully for the first k-point of the nth branch
of the dispersion curve located on the left (odd branches) or right (even branches) zone boundary of the first Brillouin
zone. For the remaining k` values (` > 0) on a higher order branch, we again successfully used ωR(k`−1) as the initial
value for the frequency in the minimization. In this fashion, the second and third branches of the dispersion curve
were identified.

IV. RESULTS

To illustrate the preceding results we present results for the dependence of the reflectivity and several other diffrac-
tion efficiencies on the angle of incidence θ0 when several realizations of the perfectly conducting lamellar grating
depicted in Fig. 1 are illuminated by p-polarized light. To help in interpreting the results we note that the value of
θ0 at which the Rayleigh anomalies are expected to occur are obtained from the equation

sin θ
(m)
0 = ±1 +m

λ

d
, (30)

where m is an integer, λ is the wavelength of the incident light, and d is the period of the grating. We note that if a

value θ
(m)
0 is obtained for some integer value of m when the + sign appears on the right-hand side of this equation,

then the value θ
(−m)
0 = −θ(m)

0 is obtained for the same magnitude of m but with the opposite sign when the − sign
appears on the right-hand side.

The values of θ0 at which Wood anomalies are predicted to occur are obtained from the equation

ω

c
sin θ0 = ks(ω) + n

2π

d
, (31)

where ks(ω) is the wavenumber of the surface wave of frequency ω and n is an integer. It is convenient to rewrite
Eq. (31) as

sin θ0 =
λ

d

[
1

2

ks(ω)d

π
+ n

]
. (32)

The value of ks(ω) is confined to the interval 0 ≤ ks(ω) ≤ π/d.

The first examples we present to illustrate our results are for a grating defined by the values a/d = 0.40 and
h/d = 0.30. The dispersion curve for the surface electromagnetic waves on this grating, plotted in the reduced zone
scheme, is depicted in the left-hand panel of Fig. 2, where ωR(k) is plotted as a function of k. It consists of an infinite
number of branches, of which we present only the three with the lowest frequencies. We also present in the left-hand
panel the vacuum light line folded back into the first Brillouin zone. The right-hand panel presents plots of ωI(k) as
a function of k for each branch of the dispersion curves plotted in the left-hand panel. The magnitude of ωI(k) gives
an indication of the width of the Wood anomaly associated with the excitation of the surface wave of frequency ωR(k)
by incident light of that frequency; the larger ωI(k), the broader the anomaly.

We present the dependencies of the first several diffraction efficiencies of this grating on the angle of incidence θ0 in
Fig. 3. The wavelength of the incident light assumed in obtaining these results was λ/d = 0.7350 [ωd/cπ = 2.7212].
This corresponds to a point on the third branch of the dispersion curve plotted in Fig. 2 defined by ks(ω)d/π = 0.7551.
For these values of the grating and experimental parameters Eq. (30) predicts that Rayleigh anomalies should occur
at θ0 = ±15.37◦ and ±28.03◦, while Eq. (32) predicts that Wood anomalies should occur at θ0 = ±16.11◦ and
±27.22◦. The angular positions of the Rayleigh and Wood anomalies are indicated by dash-dotted and dashed lines,
respectively, in Fig. 3 and subsequent figures. In the results presented in Fig. 3 the Rayleigh and Wood anomalies
appear at the angles of incidence predicted for them by Eqs. (30) and (32), respectively. In the case of e0(θ0) the
Rayleigh anomaly at θ0 = ±15.37◦ is a weak dip, while the one at θ0 = ±28.03◦ is a vertical slope. Both the Wood
anomalies are peaks in this case. In the results presented for e−1(θ0), the Rayleigh anomalies are small sharp peaks,
while the Wood anomalies are now dips. In the results for e1(θ0) and e−2(θ0) no Wood anomalies are present, but
the Rayleigh anomalies manifest themselves through the disappearance of a diffracted order and the appearance of a
new one, respectively, as θ0 is increased.

In the numerical calculations that produced the results presented in Figs. 2 and 3, we assumed M = 10 since
increasing it further, did not result in any detectable changes in the results obtained, at least not for the grating
parameters assumed. In these calculations, the energy conservation condition, Eq. (20), was checked explicitly and,
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FIG. 2. The dispersion curves for the surface electromagnetic waves supported by a lamellar perfectly conducting grating defined
by a/d = 0.40 and h/d = 0.30. Both the real, ωR(k), and imaginary, −ωI(k), parts of the frequency [ω(k) = ωR(k) − iωI(k)]
of these waves are presented in the reduced zone scheme. The first branch of the dispersion (blue line) is located in the
nonradiative region of the (k, ω)-plane, and it corresponds to a true surface wave, the imaginary part of whose frequency
vanishes identically. The second and third branches of the dispersion curve (red and green lines, respectively) are both located
in the radiative region (|k| < ω/c); they correspond to leaky surface waves, whose frequencies have negative imaginary parts.
The dashed (black) lines denote the vacuum light line in the reduced zone scheme. The arrows correspond to the wavelength
λ/d = 0.7350 [ωd/cπ = 2.7212] that will be used to calculate diffraction efficiencies in Fig. 3. The numerical calculations were
done for M = 10, but increasing this value, did not affect the final result.

for all angles of incidence considered, found to deviate from unity by an amount no larger than 10−14 in magnitude
when the calculations were performed in double precision. Moreover, in all the subsequent calculation results presented
in this work we also assumed M = 10, and the same satisfactory fulfillment of the energy conservation condition was
found for them.

In Fig. 4 we present plots of ωR(k) and ωI(k) as functions of k for surface electromagnetic waves on a grating defined
by a/d = 0.45 and h/d = 0.20. The first several diffraction efficiencies of this grating are plotted as functions of θ0 in
Fig. 5. The wavelength of the incident light assumed in obtaining this figure was λ/d = 0.7518 [ωd/cπ = 2.660]. This
corresponds to a point on the third branch of the dispersion curve plotted in Fig. 4 defined by ks(ω)d/π = 0.7551.
For these values of the parameters Rayleigh anomalies are predicted by Eq. (30) to occur at θ0 = ±14.37◦ and
±30.23◦, while Wood anomalies are predicted by Eq. (32) to occur at ±16.49◦ and ±27.90◦. Again, the Rayleigh and
Wood anomalies are found to occur at the predicted angular positions. In the case of e0(θ0) the Rayleigh anomalies
have the form of vertical slopes at their predicted angular positions, while the Wood anomalies are peaks at their
predicted angular positions. The Rayleigh anomalies manifest themselves as sharp peaks in the case of e−1(θ0),
while the Wood anomalies are broad dips at θ0 = ±16.49◦ and ±27.90◦. In the case of e1(θ0) and e−2(θ0) no Wood
anomalies are predicted, and the Rayleigh anomalies correspond to the disappearance and appearance of diffracted
orders, respectively.

For our third example we consider a grating defined by a/d = 0.60 and h/d = 0.20. In Fig. 6 we present the
dependencies of ωR(k) and ωI(k) on k. We assume that this grating is illuminated by light whose wavelength is
λ/d = 0.8867 [ωd/cπ = 2.2554]. This corresponds to a point on the third branch of the dispersion curve plotted in
Fig. 6 defined by ks(ω)d/π = 0.4490. From Eqs. (30) and (32) we find that Rayleigh anomalies are predicted to occur
at θ0 = ±6.50◦ and ±50.67◦, while Wood anomalies are predicted to occur at θ0 = ±16.11◦ and ±27.22◦. We see
from Fig. 7 that these anomalies occur at the predicted angles of incidence.

For our final example we display the coalescence of two Wood anomalies as the grooves of a grating are made
shallower for a fixed value of the width of the grooves [Fig. 8]. The grating chosen for this study is defined by
a/d = 0.60 and four values of h/d namely 0.20, 0.19, 0.17, and 0.15. The calculation of the angular dependencies of
the diffraction efficiencies e0(θ0) and e−1(θ0) were carried for each grating for a value ks(ω)d/π = 0.7551. Consequently
the values of λ/d varied from grating to grating. For a value of h/d = 0.20, we see two Wood anomalies in e0(θ0)
at the predicted values θ0 = ±18.55◦ and ±31.63◦. They are broad, as is to be expected from the magnitude of the
imaginary part of the frequency on the third branch of the dispersion curve at the wavenumber ks(ω)d/π = 0.7551
presented in Fig. 6. The dips centered at these angles in e−1(θ0) are also broad, for the same reason. The Rayleigh
anomalies occurring at θ0 = 9.05◦ and 43.25◦ are dips in e0(θ0) and peaks in e−1(θ0). As the value of h/d is decreased
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FIG. 3. The diffraction efficiencies em(θ0), Eq. (19), as functions of the angle of incidence for a lamellar grating defined
by a/d = 0.40 and h/d = 0.30. The angular positions of the Rayleigh and Wood anomalies, determined by Eqs. (30) and
(32), respectively, are indicated by vertical dashed-dotted and dashed lines, respectively. Only diffracted orders m for which
em(θ0) 6= 0 in the range of θ0 considered are presented. The wavelength of the incident light assumed in obtaining these results
was λ/d = 0.7350. The point on the dispersion curve for this grating corresponding to this wavelength is indicated by arrows
in Fig. 2. The numerical calculations were done for M = 10.
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FIG. 4. The same as Fig. 2, but now for a grating defined by a/d = 0.45 and h/d = 0.20. The arrows correspond to a
wavelength λ/d = 0.7518 [ωd/cπ = 2.660], which will be used in calculating the diffraction efficiencies in Fig. 5.

the Wood and Rayleigh anomalies move closer together, until at h/d = 0.15 the Wood anomalies overlap sufficiently
to produce a single peak in e0(θ0) and a single dip in e−1(θ0). The Rayleigh anomalies do not come sufficiently close
to overlap for the values of the grating parameters assumed in preparing this figure. The forms of both the Wood and
Rayleigh anomalies remain unchanged as h/d is decreased.

CONCLUSIONS

We have shown that when a perfectly conducting lamellar grating is illuminated from vacuum by p-polarized light
whose plane of incidence is perpendicular to the grooves of the grating, the angular dependencies of the diffraction



11

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

  
  

  
  

  
  

  
  

  
  

 D
if

fr
ac

ti
o

n
 e

ff
ic

ie
n

cy
; 

 e
m

Rayleigh

Wood

10 20 30 40
θ

0
 [deg]

0

0.2

0.4

0.6

0.8

m =  0

m = -1

m =  1

m = -2

FIG. 5. The same as Fig. 3, but now for a grating defined by a/d = 0.45 and h/d = 0.20. The wavelength of the incident light
is λ/d = 0.7518 (indicated by the arrows in Fig. 4).
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FIG. 6. The same as Fig. 2, but now for a grating defined by a/d = 0.60 and h/d = 0.20. The arrows correspond to the
wavelength λ/d = 0.8867 [ωd/cπ = 2.2554], which will be used in calculating the diffraction efficiencies presented in Fig. 7.

efficiencies display Rayleigh and Wood anomalies. The former anomalies occur at the angles predicted by Rayleigh [4].
The positions of the Wood anomalies occur at the angles associated with the excitation of the surface electromagnetic
waves supported by the periodically corrugated surface, as predicted by Fano [7] in his study of these anomalies in
diffraction from a metallic grating.

By calculating the dispersion curves of the surface electromagnetic waves supported by the grating in both the
nonradiative and radiative regions of the frequency-wave number plane, we have been able to relate the angles of
incidence at which the Wood anomalies occur at a given wavelength of the incident light to the wavenumber of the
surface wave corresponding to that wavelength, something not done in earlier studies of diffraction from perfectly
conducting gratings.

In a sense our result extends the work of Fano in showing that it is the existence of a surface wave on a periodically
corrugated surface, of whatever nature, not only a surface plasmon polariton, as in the case considered by Fano, that
gives rise to the Wood anomalies. Thus, these anomalies can also be expected to occur in the diffraction of volume
waves from other types of periodically corrugated impenetrable surfaces that support surface waves. As an example
of this, because the periodically corrugated surface of an elastic medium in contact with vacuum, which plays the role
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of the impenetrable medium, supports surface acoustic waves of sagittal and shear horizontal polarizations [32], we
can expect the occurrence of Wood (and Rayleigh) anomalies in the angular dependencies of the reflectivity of bulk
acoustic waves of sagittal and shear horizontal polarizations incident on such a surface. This effect should be studied
theoretically and experimentally.
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[22] F. J. Garćıa-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, “Local-
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FIG. 7. The same as Fig. 3, but now for a grating defined by a/d = 0.60 and h/d = 0.20. The wavelength of the incident light
is λ/d = 0.8867 (indicated by the arrows in Fig. 6).
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