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The transmission of polarized light through a two-dimensional randomly rough interface between
two dielectric media has been much less studied, by any approach, than the scattering of light from
such an interface. We have derived a reduced Rayleigh equation for the transmission amplitudes
when p- or s-polarized light is incident on this type of interface, and have obtained rigorous, purely
numerical, nonperturbative solutions of it. The solutions are used to calculate the transmissivity of
the interface, the mean differential transmission coefficient, and the full angular distribution of the
intensity of the transmitted light. These results are obtained for both the case where the medium
of incidence is the optically more dense medium and in the case where it is the optically less dense
medium. When the contribution from the scattered field is added to that from the transmitted field,
it is found that the results of these calculations satisfy unitarity with an error smaller than 10−4.



2

I. INTRODUCTION

In the theoretical and experimental studies of the interaction of an electromagnetic wave with a two-dimensional
randomly rough dielectric surface, the great majority of them have been devoted to the scattering problem [1–3],
and little attention has been paid to studies of the transmission of light through such surfaces. Greffet [4] obtained a
reduced Rayleigh equation for the transmission amplitudes in the case where light incident from vacuum is transmitted
through a two-dimensional randomly rough interface into a dielectric medium, and obtained a recursion relation for
the successive terms in the expansions of the amplitudes in powers of the surface profile function. Kawanishi et al. [5]
by the use of the stochastic functional approach studied the case where a two-dimensional randomly rough interface
between two dielectric media is illuminated by p- and s-polarized light from either medium. Properties of the light
transmitted through, as well as scattered from, the interface were examined. The theoretical approach is perturbative
in nature and can be applied only to weakly rough surfaces. Nevertheless, Kawanishi et al. obtained several interesting
properties of the transmitted light that are associated with the phenomenon of total internal reflection when the
medium of transmission was the optically denser medium. These include the appearance of Yoneda peaks in the
dependence of the intensity of the transmitted light as a function of the angles of transmission for a fixed value of
the angle of incidence. These are sharp asymmetric peaks at the angles of transmission related to the critical angle
for total internal reflection, when the medium of transmission is the optically more dense medium. Although well
known in the scattering of x-rays from a metal surface [6, 7], the paper by Kawanishi et al. apparently marks their
first appearance in optics, where they have yet to be observed. Soubret et al. [8] also obtained a reduced Rayleigh
equation for the transmission amplitudes in the case where light incident from one dielectric medium is transmitted
into a second dielectric medium through a two-dimensional randomly rough interface. However, no solutions of this
equation were obtained by them.

In this paper we present a theoretical study of the transmission of light through a two-dimensional randomly rough
interface between two dielectric media that is free from the limitations and approximations present in the earlier
studies of this problem. We obtain a reduced Rayleigh equation for the transmission amplitudes in the case where
light incident from a dielectric medium whose dielectric constant is ε1 is transmitted through a two-dimensional
randomly rough interface into a dielectric medium whose dielectric constant is ε2. The dielectric constant ε1 can be
larger or smaller than the dielectric constant ε2. Thus, effects associated with total internal reflection are included
in the solutions of this equation. Instead of solving the reduced Rayleigh equation as an expansion in powers of the
surface profile function, in this work we obtain a rigorous, purely numerical, nonperturbative solution of it. This
approach enables us to calculate the transmittance of the system studied, the in-plane co- and cross-polarized, and
the out-of-plane co- and cross-polarized scattering contributions to the mean differential transmission coefficient, and
the angular dependence of the total scattered intensity, all in a nonperturbative fashion.

II. THE SCATTERING SYSTEM

The system we study in this paper consists of a dielectric medium (medium 1), whose dielectric constant is ε1, in
the region x3 > ζ(x‖), and a dielectric medium (medium 2), whose dielectric constant is ε2, in the region x3 < ζ(x‖)
[Fig. 1]. Here x‖ = (x1, x2, 0) is an arbitrary vector in the plane x3 = 0, and we assume that both ε1 and ε2 are real,
positive, and independent of frequency.

The surface profile function ζ(x‖) is assumed to be a single-valued function of x‖ that is differentiable with respect
to x1 and x2, and constitutes a stationary, zero-mean, isotropic, Gaussian random process defined by

〈ζ(x‖)ζ(x ′‖)〉 = δ2W (|x‖ − x′‖|). (1)

The angle brackets here and in all that follows denote an average over the ensemble of realizations of the surface
profile function. The root-mean-square height of the surface is given by

δ = 〈ζ2(x‖)〉
1
2 . (2)

The power spectrum of the surface roughness g(k‖) is defined by

g(k‖) =

∫
d2x‖ W (x‖) exp(−ik‖ · x‖). (3)

We will assume for the normalized surface height autocorrelation function W (x‖) the Gaussian function

W (x‖) = exp

(
−
x2‖
a2

)
. (4)
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The characteristic length a is the transverse correlation length of the surface roughness. The corresponding power
spectrum is given by

g(k‖) = πa2 exp

(
−
k2‖a

2

4

)
. (5)
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FIG. 1. A sketch of the scattering geometry assumed in this work. The figure also shows the coordinate system used, angles
of incidence(θ0, φ0) and transmission (θt, φt), and the corresponding lateral wavevectors k‖ and q‖, respectively.

III. THE REDUCED RAYLEIGH EQUATION

The interface x3 = ζ(x‖) is illuminated from the region x3 > ζ(x‖) (medium 1) by an electromagnetic wave of
frequency ω. The total electric field in this region is the sum of an incoming incident field and an outgoing scattered
field,

E>(x|ω) = E0(k‖) exp[iQ0(k‖) · x] +

∫
d2q‖
(2π)2

A(q‖) exp[iQ1(q‖) · x], (6)

while the electric field in the region x3 < ζ(x‖) is an outgoing transmitted field,

E<(x|ω) =

∫
d2q‖
(2π)2

B(q‖) exp[iQ2(q‖) · x]. (7)

In writing these equations we have introduced the functions

Q0(k‖) = k‖ − α1(k‖)x̂3 (8a)

Q1(q‖) = q‖ + α1(q‖)x̂3 (8b)

Q2(q‖) = q‖ − α2(q‖)x̂3, (8c)

where (i = 1, 2)

αi(q‖) =


√
εi
(
ω
c

)2 − q2‖, q‖ ≤
√
εi ω/c

i
√
q2‖ − εi

(
ω
c

)2
, q‖ >

√
εi ω/c

. (9)
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Here k‖ = (k1, k2, 0), k‖ =
∣∣k‖∣∣, and a caret over a vector indicates that it is a unit vector. A time dependence of the

field of the form exp(−iωt) has been assumed, but not indicated explicitly.
The boundary conditions satisfied by these fields at the interface x3 = ζ(x‖) are the continuity of the tangential

components of the electric field:

n×E0(k‖) exp[ik‖ · x‖ − iα1(k‖)ζ(x‖)] +

∫
d2q‖
(2π)2

n×A(q‖) exp[iq‖ · x‖ + iα1(q‖)ζ(x‖)]

=

∫
d2q‖
(2π)2

n×B(q‖) exp[iq‖ · x‖ − iα2(q‖)ζ(x‖)]; (10)

the continuity of the tangential components of the magnetic field:

n× [iQ0(k‖)×E0(k‖)] exp[ik‖ · x‖ − iα1(k‖)ζ(x‖)] +

∫
d2q‖
(2π)2

n× [iQ1(q‖)×A(q‖)] exp[iq‖ · x‖ + iα1(q‖)ζ(x‖)]

=

∫
d2q‖
(2π)2

n× [iQ2(q‖)×B(q‖)] exp[iq‖ · x‖ − iα2(q‖)ζ(x‖)];

(11)

and the continuity of the normal component of the electric displacement:

ε1n ·E0(k‖) exp[ik‖ · x‖ − iα1(k‖)ζ(x‖)] + ε1

∫
d2q‖
(2π)2

n ·A(q‖) exp[iq‖ · x‖ + iα1(q‖)ζ(x‖)]

= ε2

∫
d2q‖
(2π)2

n ·B(q‖) exp[iq‖ · x‖ − iα2(q‖)ζ(x‖)].

(12)

The vector n ≡ n(x‖) entering these equations is a vector normal to the surface x3 = ζ(x‖) at each point of it,
directed into medium 1:

n(x‖) = x̂3 −∇‖ζ(x‖) = (−ζ1(x‖),−ζ2(x‖), 1), (13a)

with ∇‖ = (∂/∂x1, ∂/∂x2, 0), and

ζα(x‖) =
∂

∂xα
ζ(x‖), α = 1, 2. (13b)

Strictly speaking the continuity of the tangential components of the electric and magnetic fields across the interface,
Eqs. (10) and (11), are sufficient (and necessary) boundary conditions on electromagnetic fields [9]. Hence, the
continuity of the normal components of the electric displacement [Eq. (12)] and the magnetic induction are redundant.
However, the inclusion of Eq. (12) enables us to eliminate the scattering amplitude A(q‖) from consideration, and thus

to obtain an equation that relates the transmission amplitude B(q‖) to the amplitude of the incident field E0(k‖).
This we do in the following manner.

We take the vector cross product of Eq. (10) with ε1Q0(p‖) exp[ip‖ · x‖ + iα1(p‖)ζ(x‖)]; then multiply Eq. (11) by

−iε1 exp[−ip‖ · x‖ +iα1(p‖)ζ(x‖)]; and finally multiply Eq. (12) by −Q0(p‖) exp[−ip‖ · x‖ + iα1(p‖)ζ(x‖)], where p‖
is an arbitrary wave vector in the plane x3 = 0. When we add the three equations obtained in this way, and integrate
the sum over x‖ we obtain an equation that can be written in the form

ε1

{
Q0(p‖)×

[
VE(p‖|k‖)×E0(k‖)

]
+ VE(p‖|k‖)×

[
Q0(k‖)×E0(k‖)

]
−Q0(p‖)

[
VE(p‖|k‖) ·E0(k‖)

]}
+ ε1

∫
d2q‖
(2π)2

{
Q0(p‖)×

[
VA(p‖|q‖)×A(q‖)

]
+ VA(p‖|q‖)×

[
Q1(q‖)×A(q‖)

]
−Q0(p‖)

[
VA(p‖|q‖) ·A(q‖)

]}
=

∫
d2q‖
(2π)2

{
ε1Q0(p‖)×

[
VB(p‖|q‖)×B(q‖)

]
+ ε1VB(p‖|q‖)×

[
Q2(q‖)×B(q‖)

]
− ε2Q0(p‖)

[
VB(p‖|q‖) ·B(q‖)

]}
,

(14)

where

VE(p‖|k‖) = V
(
−α1(p‖) + α1(k‖)|p‖ − k‖

)
(15a)

VA(p‖|q‖) = V
(
−α1(p‖)− α1(q‖)|p‖ − q‖

)
(15b)

VB(p‖|q‖) = V
(
−α1(p‖) + α2(q‖)|p‖ − q‖

)
, (15c)
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with

V(γ|Q‖) =

∫
d2x‖ n(x‖) exp

(
−iQ‖ · x‖

)
exp

[
−iγζ(x‖)

]
. (16a)

It is shown in Appendix A that

V(γ|Q‖) =
I(γ|Q‖)

γ

(
Q‖ + γx̂3

)
− (2π)

2
δ
(
Q‖
) Q‖
γ
, (16b)

where

I(γ|Q‖) =

∫
d2x‖ exp

(
−iQ‖ · x‖

)
exp

[
−iγζ(x‖)

]
. (17)

When the results given by Eqs. (15) and (16) are substituted into Eq. (14), the latter becomes

(2π)2δ(p‖ − k‖)2ε1
k‖ · (p‖ − k‖)

−α1(p‖) + α1(k‖)
E0(k‖)

=(ε1 − ε2)

∫
d2q‖
(2π)2

I(−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

{
−ε1

(ω
c

)2
B(q‖) +

[
Q0(p‖) ·B(q‖)

]
Q0(p‖)

}
. (18)

In obtaining this result we have used the result that the singular term of VB(p‖|q‖) does not contribute, since p‖ = q‖
leaves −α1(p‖) + α2(q‖) nonzero. If we note that

−α1(p‖) + α1(k‖) =
k‖ · (p‖ − k‖)

α1(k‖)
+O

(
(p‖ − k‖)

2
)
, (19)

the left-hand side of Eq. (18) becomes (2π)2δ(p‖−k‖)2ε1α1(k‖)E0(k‖). Thus we have an equation for the transmission

amplitude B(q‖) alone:∫
d2q‖
(2π)2

I(−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

{
−ε1

(ω
c

)2
B(q‖) +

[
Q0(p‖) ·B(q‖)

]
Q0(p‖)

}
= (2π)2δ(p‖ − k‖)

2ε1α1(k‖)

ε1 − ε2
E0(k‖). (20)

We now write the vectors E0(k‖) and B(q‖) in the forms

E0(k‖) = ê(i)p (k‖)E0p(k‖) + ê(i)s (k‖)E0s(k‖), (21a)

where

ê(i)p (k‖) =
c√
ε1ω

[
k̂‖α1(k‖) + x̂3k‖

]
(21b)

ê(i)s (k‖) = x̂3 × k̂‖, (21c)

and

B(q‖) = ê(t)p (q‖)Bp(q‖) + ê(t)s (q‖)Bs(q‖), (22a)

where

ê(t)p (q‖) =
c√
ε2ω

[
q̂‖α2(q‖) + x̂3q‖

]
(22b)

ê(t)s (q‖) = x̂3 × q̂‖. (22c)

In these expressions E0p(k‖) and E0s(k‖) are the amplitudes of the p and s polarized components of the incident

field with respect to the plane of incidence, defined by the vectors k̂‖ and x̂3. Similarly, Bp(q‖) and Bs(q‖) are the
amplitudes of the p and s polarized components of the transmitted field with respect to the plane of transmission
defined by the vectors q̂‖ and x̂3.
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Our goal is to express Bp(q‖) and Bs(q‖) in terms of E0p(k‖) and E0s(k‖). To this end we introduce three mutually
perpendicular unit vectors:

â0(p‖) =
c√
ε1ω

[
p̂‖ − x̂3α1(p‖)

]
(23a)

â1(p‖) =
c√
ε1ω

[
p̂‖α1(p‖) + x̂3p‖

]
(23b)

â2(p‖) = x̂3 × p̂‖. (23c)

We now take the scalar product of Eq. (20) with each of these three unit vectors in turn, after E0(k‖) and B(q‖)
have been replaced by the right-hand sides of Eq. (21a) and (22a), respectively. The results are:

â0(p‖) · Eq. (20) : 0 = 0; (24a)

â1(p‖) · Eq. (20) :∫
d2q‖
(2π)2

I(−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

{
−
√
ε1
ε2

[
α1(p‖) p̂‖ · q̂‖ α2(q‖) + p‖q‖

]
Bp(q‖)

+
√
ε1
ω

c
α1(p‖)

[
p̂‖ × q̂‖

]
3
Bs(q‖)

}
= (2π)2δ(p‖ − k‖)

2ε1α1(k‖)

ε1 − ε2
E0p(k‖); (24b)

â2(p‖) · Eq. (20) :∫
d2q‖
(2π)2

I(−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

{
− ε1√

ε2

ω

c

[
p̂‖ × q̂‖

]
3
α2(q‖)Bp(q‖)− ε1

ω2

c2
p̂‖ · q̂‖Bs(q‖)

}
= (2π)2δ(p‖ − k‖)

2ε1α1(k‖)

ε1 − ε2
E0s(k‖). (24c)

These equations represent linear relations between Bp,s(q‖) and E0p,s(k‖) which we write in the form (α = p, s, β =

p, s)

Bα(q‖) =
∑
β

Tαβ(q‖|k‖)E0β(k‖). (25)

On combining Eqs. (24) and (25) we find that the transmission amplitudes {Tαβ(q‖|k‖)} are the solutions of the
equation ∫

d2q‖
(2π)2

I(−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)
M(p‖|q‖)T(q‖|k‖) = (2π)2δ(p‖ − k‖)

2α1(k‖)

ε2 − ε1
I2, (26)

where

M(p‖|q‖) =

(
1√
ε1ε2

[α1(p‖) p̂‖ · q̂‖ α2(q‖) + p‖q‖] − 1√
ε1
ω
c α1(p‖) [p̂‖ × q̂‖]3

1√
ε2
ω
c [p̂‖ × q̂‖]3 α2(q‖)

ω2

c2 p̂‖ · q̂‖

)
(27a)

T(q‖|k‖) =

(
Tpp(q‖|k‖) Tps(q‖|k‖)
Tsp(q‖|k‖) Tss(q‖|k‖)

)
, (27b)

and

I2 =

(
1 0
0 1

)
. (27c)

Equation (26) is the reduced Rayleigh equation for the transmission amplitudes.

IV. THE MEAN DIFFERENTIAL TRANSMISSION COEFFICIENT

The differential transmission coefficient ∂T/∂Ωt is defined such that (∂T/∂Ωt)dΩt is the fraction of the total time-
averaged flux incident on the interface that is transmitted into the element of solid angle dΩt about the direction of
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transmission (θt, φt). To obtain the mean differential transmission coefficient we first note that the magnitude of the
total time-averaged flux incident on the interface is given by

Pinc = −Re
c

8π

∫
d2x‖

{
E∗0(k‖)×

[ c
ω
Q0(k‖)×E0(k‖)

]}
3

exp
{

[−iQ∗0(k‖) + iQ0(k‖)] · x
}

= −Re
c2

8πω

∫
d2x‖

{∣∣E0(k‖)
∣∣2 Q0(k‖)−

[
E∗0(k‖) ·Q0(k‖)

]
E0(k‖)

}
3

= Re
c2

8πω

∫
d2x‖ α1(k‖)

∣∣E0(k‖)
∣∣2

= S
c2

8πω
α1(k‖)

∣∣E0(k‖)
∣∣2 . (28)

In this result S is the area of the x1x2 plane covered by the randomly rough surface. The minus sign on the right-hand
side of the first equation compensates for the fact that the 3-component of the incident flux is negative, and we have
used the fact that α1(k‖) is real, so that Q0(k‖) is real, and E∗0(k‖) ·Q0(k‖) = 0.

In a similar fashion we note that the total time-averaged transmitted flux is given by

Ptrans =− Re
c

8π

∫
d2x‖

∫
d2q‖
(2π)2

∫ d2q′‖
(2π)2

{
B∗(q‖)×

[ c
ω
Q2(q′‖)×B(q′‖)

]}
3

× exp
{
−i(q‖ − q′‖) · x‖ − i

[
α2(q′‖)− α∗2(q‖)

]
x3

}
=− Re

c2

8πω

∫
d2q‖
(2π)2

{
B∗(q‖)×

[
Q2(q‖)×B(q‖)

]}
3

exp
[
2Imα2(q‖)x3

]
=− Re

c2

8πω

∫
d2q‖
(2π)2

{∣∣∣B(q‖)
∣∣∣2 Q2(q‖)−

[
B∗(q‖) ·Q2(q‖)

]
B(q‖)

}
3

exp[2Imα2(q‖)x3]

= Re
c2

32π3ω

∫
d2q‖

∣∣∣B(q‖)
∣∣∣2 α2(q‖) exp[2Imα2(q‖)x3]

− Re
ic4

16π2ε2ω3

∫
d2q‖ Imα2(q‖)q

2
‖

∣∣∣Bp(q‖)∣∣∣2 exp[2Imα2(q‖)x3]. (29)

The integral in the second term is pure imaginary. Thus we have

Ptrans =
c2

32π3ω

∫
q‖<
√
ε2
ω
c

d2q‖ α2(q‖)
∣∣∣B(q‖)

∣∣∣2 . (30)

The vectors k‖ and q‖ can be expressed in terms of the polar and azimuthal angles of incidence (θ0, φ0) and

transmission (θt, φt), respectively, by

k‖ =
√
ε1
ω

c
sin θ0(cosφ0, sinφ0, 0) (31a)

q‖ =
√
ε2
ω

c
sin θt(cosφt, sinφt, 0). (31b)

From these results it follows that

d2q‖ = ε2

(ω
c

)2
cos θt dΩt, (32)

where dΩt = sin θt dθt dφt. The total time-averaged transmitted flux becomes

Ptrans =
ε
3/2
2 ω2

32π3c

∫
dΩt cos2 θt

[∣∣∣Bp(q‖)∣∣∣2 +
∣∣∣Bs(q‖)∣∣∣2] . (33)

Similarly, the total time averaged incident flux, Eq. (28), becomes

Pinc = S

√
ε1c

8π
cos θ0

[∣∣E0p(k‖)
∣∣2 +

∣∣E0s(k‖)
∣∣2] . (34)
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Thus by definition, the differential transmission coefficient is given by

∂T

∂Ωt
=

1

S

ε
3/2
2

ε
1/2
1

( ω

2πc

)2 cos2 θt
cos θ0

∣∣∣Bp(q‖)∣∣∣2 +
∣∣∣Bs(q‖)∣∣∣2∣∣E0p(k‖)

∣∣2 +
∣∣E0s(k‖)

∣∣2 . (35)

When we combine this result with Eq. (25) we find that the contribution to the differential transmission coefficient
when an incident plane wave of polarization β, the projection of whose wave vector on the mean scattering plane is
k‖, is transmitted into a plane wave of polarization α, the projection of whose wave vector on the mean scattering
plane is q‖, is given by

∂Tαβ(q‖|k‖)
∂Ωt

=
1

S

ε
3/2
2

ε
1/2
1

( ω

2πc

)2 cos2 θt
cos θ0

∣∣∣Tαβ(q‖|k‖)
∣∣∣2 . (36)

Since we are considering the transmission of light through a randomly rough interface, it is the average of this
function over the ensemble of realizations of the surface profile function that we need to calculate. This is the mean
differential transmission coefficient, which is defined by〈

∂Tαβ(q‖|k‖)
∂Ωt

〉
=

1

S

ε
3/2
2

ε
1/2
1

( ω

2πc

)2 cos2 θt
cos θ0

〈∣∣∣Tαβ(q‖|k‖)
∣∣∣2〉 . (37)

If we write the transmission amplitude Tαβ(q‖|k‖) as the sum of its mean value and the fluctuation from this mean,

Tαβ(q‖|k‖) =
〈
Tαβ(q‖|k‖)

〉
+
[
Tαβ(q‖|k‖)−

〈
Tαβ(q‖|k‖)

〉]
, (38)

then each of these two terms contributes separately to the mean differential transmission coefficient,〈
∂Tαβ(q‖|k‖)

∂Ωt

〉
=

〈
∂Tαβ(q‖|k‖)

∂Ωt

〉
coh

+

〈
∂Tαβ(q‖|k‖)

∂Ωt

〉
incoh

, (39)

where 〈
∂Tαβ(q‖|k‖)

∂Ωt

〉
coh

=
1

S

ε
3/2
2

ε
1/2
1

( ω

2πc

)2 cos2 θt
cos θ0

∣∣∣〈Tαβ(q‖|k‖)〉
∣∣∣2 (40)

and 〈
∂Tαβ(q‖|k‖)

∂Ωt

〉
incoh

=
1

S

ε
3/2
2

ε
1/2
1

( ω

2πc

)2 cos2 θt
cos θ0

[〈∣∣∣Tαβ(q‖|k‖)− 〈Tαβ(q‖|k‖)〉
∣∣∣2〉]

=
1

S

ε
3/2
2

ε
1/2
1

( ω

2πc

)2 cos2 θt
cos θ0

[〈∣∣∣Tαβ(q‖|k‖)
∣∣∣2〉− ∣∣∣〈Tαβ(q‖|k‖)

〉∣∣∣2] . (41)

The first contribution describes the refraction of the incident field, while the second contribution describes the diffuse
transmission.

V. TRANSMISSIVITY AND TRANSMITTANCE

To obtain the transmissivity of the two-dimensional randomly rough interface we start with the result that

〈Tαβ(q‖|k‖)〉 = (2π)2δ(q‖ − k‖)δαβTα(k‖). (42)

The presence of the delta function is due to the stationarity of the randomly rough surface; the Kronecker symbol δαβ
arises from the conservation of angular momentum in the transmission process; and the result that Tα(k‖) depends
on k‖ only through its magnitude is due to the isotropy of the random roughness.

With the result given by Eq. (42), the expression for 〈∂Tαβ(q‖|k‖)/∂Ωt〉coh given by Eq. (40), becomes〈
∂Tαα(q‖|k‖)

∂Ωt

〉
coh

=
ε
3/2
2

ε
1/2
1

(ω
c

)2 cos2 θt
cos θ0

∣∣Tα(k‖)
∣∣2 δ(q‖ − k‖), (43)
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where we have used the result

[(2π)2δ(q‖ − k‖)]
2 = (2π)2δ(0) (2π)2δ(q‖ − k‖) = S(2π)2δ(q‖ − k‖) (44)

in obtaining this expression. We next use the result

δ(q‖ − k‖) =
1

k‖
δ(q‖ − k‖) δ(φt − φ0) =

1√
ε1ε2

( c
ω

)2 δ(θt −Θt) δ(φt − φ0)

sin θ0 cos Θt
(45)

to obtain 〈
∂Tαα(q‖|k‖)

∂Ωt

〉
coh

=
ε2
ε1

cos Θt

sin θ0 cos θ0

∣∣Tα(k‖)
∣∣2 δ(θt −Θt) δ(φt − φ0), (46)

where the the polar angle for the specular direction of transmission has been denoted

Θt ≡ arcsin

(√
ε1
ε2

sin θ0

)
. (47)

The transmissivity, Tα(θ0), for light of α polarization is defined by

Tα(θ0) =

∫ π
2

0

dθt sin θt

∫ π

−π
dφt

〈
Tαα(q‖|k‖)

∂Ωt

〉
coh

=
ε2
ε1

cos Θt sin Θt

sin θ0 cos θ0

∣∣Tα(k‖)
∣∣2 ∫ π

2

0

dθt δ(θt −Θt)

=


√
ε2
ε1

cos Θt

cos θ0

∣∣Tα(k‖)
∣∣2 , 0 <

√
ε1/ε2 sin θ0 < 1

0, otherwise
. (48)

In writing this expression we have used the result that sin Θt =
√
ε1/ε2 sin θ0, and, that sin θ0 is a monotonically

increasing function of θ0 for 0◦ < θ0 < 90◦, and so therefore is sin Θt. We see from Eq. (48) that when ε1 > ε2
the transmissivity is nonzero for angles of incidence satisfying 0 < θ0 < arcsin(

√
ε2/ε1), and vanishes for angles of

incidence satisfying arcsin(
√
ε2/ε1) < θ0 < π/2. This result is a consequence for transmission of the existence of a

critical angle for total internal reflection, namely θ?0 = arcsin(
√
ε2/ε1). In the case where ε1 < ε2, the transmissivity

is nonzero in the entire range of angles of incidence, 0 < θ0 < π/2. NOTE: We seem to have several critical
angles: Fix this.

The function Tα(k‖) is obtained from Eq. (42), with the aid of the result that (2π)2δ(0) = S, in the form

Tα(k‖) = Tα

(√
ε1
ω

c
sin θ0

)
=

1

S

〈
Tαα(k‖|k‖)

〉
. (49)

In addition to the transmissivity (48) that only depends on the co-polarized light transmitted coherently by the
rough interface, it is also of interest to introduce the transmittance for light of β polarization defined as

Tβ(θ0) =
∑
α=p,s

Tαβ(θ0), (50a)

where

Tαβ(θ0) =

∫ π
2

0

dθt sin θt

∫ π

−π
dφt

〈
Tαβ(q‖|k‖)

∂Ωt

〉
. (50b)

The transmittance measures the fraction of the power flux incident on the rough surface that was transmitted through
it. In light of Eq. (39), the transmittance obtains contributions from light that has been transmitted coherently as
well as incoherently through the rough interface, Tβ(θ0) = Tβ(θ0)coh + Tβ(θ0)incoh, and both co- and cross-polarized
transmitted light contribute to it. Moreover, with Eq. (48), and since cross-polarized coherently transmitted light is not
allowed [see Eq. (42)], the coherent contribution to transmittance for light of β polarization equals the transmissivity
for light of β polarization; Tβ(θ0)coh = Tβ(θ0). Therefore, Eq. (50a) can be written in the form

Tβ(θ0) = Tβ(θ0) +
∑
α=p,s

Tαβ(θ0)incoh. (51)

It remains to remark that in cases where the incident light is not purely p- or s-polarized, the transmittance and
transmissivity of the optical system will have to be calculated on the basis of weighted sums of the expressions in
Eqs. (48) and (50) where the weights reflect the fraction of p and s polarization associated with the incident light.
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VI. RESULTS AND DISCUSSIONS

Calculations were carried out for two-dimensional randomly rough dielectric surfaces defined by an isotropic Gaus-
sian height distribution of rms height δ = λ/20 and an isotropic Gaussian correlation function of lateral correlation
length a = λ/4. The incident light consisted of a p- or s-polarized plane wave of wavelength λ (in vacuum) and well-
defined angles of incidence (θ0, φ0). At this wavelength the dielectric constant of the dielectric medium was assumed
to be ε = 2.6869; other than a potential dependence of ε on λ, no explicit wavelength dependence was assumed in
the simulations. The azimuthal angle of incidence was φ0 = 0◦ in all simulation results presented in this work; this
choice for φ0 is somewhat arbitrary, since, due to the isotropy of the roughness, another choice of φ0 can be obtained
from the results presented here by a trivial rotation. Moreover, the surfaces covered a square region of the x1x2 plane
of edge L, giving an area S = L2 = 25λ× 25λ. Realizations of the surface profile function were generated [11, 12] in
this region on a grid of Nx ×Nx = 321 × 321 points. With these spatial parameters, the corresponding momentum
space parameters used in the simulations were ∆q = 2π/L for the discretization intervals in momentum space, and
the largest momentum value that can be resolved is given by Q = ∆qbNx/2c where b·c denotes the floor function [10].
In the simulations, we used Q = 6.4ω/c, and for the expansions of the integrands of the I(γ|Q‖)-integrals, we used
the first N = 20 terms.

The reduced Rayleigh equation (26) was solved by the method described in detail in Ref. 2 so only a summary of
this method will be presented here. A realization of the surface profile function was generated on a grid of Nx ×Nx
points within a square region of the x1x2 plane of edge L. In evaluating the q‖ integral in Eq. (26), the infinite limits
of integration were replaced by finite limits |q‖| < Q/2, and the integration was carried out by a two-dimensional
version of the extended midpoint rule [10, p. 161] applied to a grid in the q1q2 plane which is determined by the
Nyquist sampling theorem [10, p. 605] and the properties of the discrete Fourier transform [2]. The function I(γ|q‖)
was evaluated by expanding the integrand in Eq. (17) in powers of ζ(x‖) and calculating the Fourier transform
of ζn(x‖) by the fast Fourier transform [2]. The resulting matrix equations were solved by LU factorization and
backsubstituting.

These calculations were carried out for a large number Np of realizations of the surface profile function ζ(x‖) for
an incident field of p or s polarization. For each realization the transmission amplitude Tαβ(q‖|k‖) and its squared

modulus |Tαβ(q‖|k‖)|2 were obtained. An arithmetic average of the Np results for these quantities yielded the mean

values 〈Tαβ(q‖k‖)〉 and 〈|Tαβ(q‖|k‖)|2〉 entering Eq. (41) for the mean differential transmission coefficient, and related

quantities. [see Eqs. (49) and (51)]

A. Normal incidence

In Fig. 2 we display the mean differential transmission coefficient in the plane of incidence as a function of the
polar angle of transmission when the random surface is illuminated from the vacuum at normal incidence by p- and
s-polarized light, Fig. 2(a), and when it is illuminated from the dielectric medium Fig. 2(b). Only results for in-
plane [q‖ ‖ k‖] co-polarized transmission are presented because in-plane cross-polarized transmission is suppressed
due to the absence of contribution from single-scattering processes. An ensemble of 7500 realizations of the surface
profile function was used to produce the averaged results presented in each of these figures. From Fig. 2(a) it is
observed that the curves display both maxima and minima in the p → p transmission spectrum, and peaks in the
s→ s transmission spectrum. In contrast, the curves presented in Fig. 2(b) are featureless, and are nearly identical.

The presence of these features, and other in subsequent figures, can be understood if we calculate the contribution
to the mean differential transmission coefficient from the light transmitted incoherently through the random interface
as an expansion in powers of the surface profile function. This calculation, outlined in Appendix B, yields the result
that to lowest nonzero order in ζ(x‖) we have

〈
∂Tpp(q‖|k‖)

∂Ωt

〉
incoh

=
δ2

π2
(ε2 − ε1)2ε

1/2
1 ε

5/2
2

(ω
c

)2 cos2 θt
cos θ0

g(|q‖ − k‖|)

× 1

|dp(q‖)|2
∣∣∣α1(q‖)(q̂‖ · k̂‖)α2(k‖) + q‖k‖

∣∣∣2 α2
1(k‖)

|dp(k‖)|2
(52a)
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FIG. 2. The contribution to the incoherent component of the mean differential transmission coefficient from the in-plane,
co-polarized transmission of p- and s-polarized light incident normally [θ0 = 0◦] on the random vacuum-dielectric interface as
a function of the angle of transmission θt. (a) The medium of incidence is vacuum [ε1 = 1; ε2 = 2.6869]; (b) The medium of
incidence is the dielectric [ε1 = 2.6869; ε2 = 1]. Results for (in-plane) cross-polarized transmission have not been indicated
since they are generally suppressed in the plane-of-incidence. The results presented as solid lines were obtained on the basis
of numerically solving the reduced Rayleigh equation (26) for an ensemble of 7500 surface realizations. The dashed curves
represent the result of the small amplitude perturbation theory (52) assuming polarization as indicated for the solid lines of
the same color. The specular direction of transmission is indicated by the vertical dash-dotted line at θt = 0◦, and in Fig. 2(a),

the vertical dotted lines at θt = ±θ?t indicate the position of the critical angle where θ?t = arcsin(
√
ε1/ε2) ≈ 37.5◦ for the

parameters assumed. The wavelength of the incident light in vacuum was λ. The rough interface was assumed to have a
root-mean-square roughness of δ = λ/20, and it was characterized by an isotropic Gaussian power spectrum (3) of transverse
correlation length a = λ/4. In the numerical calculations it was assumed that the surface covered an area L×L, with L = 25λ,
and the surface was discretized on a grid of 321× 321 points. Add comment regarding the meaning of θt < 0!

〈
∂Tps(q‖|k‖)

∂Ωt

〉
incoh

=
δ2

π2
(ε2 − ε1)2

ε
5/2
2

ε
1/2
1

(ω
c

)4 cos2 θt
cos θ0

g(|q‖ − k‖|)
∣∣α1(q‖)

∣∣2
|dp(q‖)|2

([
q̂‖ × k̂‖

]
3

)2 α2
1(k‖)

|ds(k‖)|2
(52b)

〈
∂Tsp(q‖|k‖)

∂Ωt

〉
incoh

=
δ2

π2
(ε2 − ε1)2

ε
1/2
2

ε
1/2
1

(ω
c

)4 cos2 θt
cos θ0

g(|q‖ − k‖|)
1

|ds(q‖)|2
([

q̂‖ × k̂‖
]
3

)2 α2
1(k‖)

∣∣α2(k‖)
∣∣2

|dp(k‖)|2
(52c)

〈
∂Tss(q‖|k‖)

∂Ωt

〉
incoh

=
δ2

π2
(ε2 − ε1)2

ε
3/2
2

ε
1/2
1

(ω
c

)6 cos2 θt
cos θ0

g(|q‖ − k‖|)
1

|ds(q‖)|2
(q̂‖ · k̂‖)2

α2
1(k‖)

|ds(k‖)|2
, (52d)

where the functions dα(q‖) and dα(k‖) for α = p, s are presented in Eq. (B11). Moreover, with the aid of q‖ =√
ε2(ω/c) sin θt the former of these functions can be written in the form

dp(q‖) =
√
ε2
ω

c

{
ε2

[(
ε1 − ε2
ε2

)
+ cos2 θt

] 1
2

+ ε1 cos θt

}
(53a)

ds(q‖) =
√
ε2
ω

c

{[(
ε1 − ε2
ε2

)
+ cos2 θt

] 1
2

+ cos θt

}
, (53b)

and from k‖ =
√
ε1(ω/c) sin θ0 the latter can be expresses as

dp(k‖) =
√
ε1
ω

c

{
ε1

[(
ε2 − ε1
ε1

)
+ cos2 θ0

] 1
2

+ ε2 cos θ0

}
(53c)

ds(k‖) =
√
ε1
ω

c

{[(
ε2 − ε1
ε1

)
+ cos2 θ0

] 1
2

+ cos θ0

}
. (53d)

In applying Eq. (52) to the in-plane transmission whose results are depicted in Figs. 2(a) and 2(b) we set q̂‖ ‖ k̂‖ [13].
We see from Eqs. (53a) and (53b) that when ε1 is greater than ε2, both dp(q‖) and ds(q‖) are real continuous mono-

tonically decreasing functions of θt, and so therefore are |dp(q‖)|2 and |ds(q‖)|2. This leads to smooth dependencies of
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FIG. 3. The incoherent components of the mean differential transmission coefficients for in-plane, co-polarized transmission
through a rough dielectric surface as functions of the polar angle of transmission, θt, as calculated by (a) perturbation theory,
Eq. (52), and (b) the reduced Rayleigh equation (26). The media of incidence and transmission were vacuum and a dielectric,
respectively [ε1 = 1; ε2 = 2.6869]. The polar angle of the incident light was θ0 = 20◦, which corresponds to a specular direction

of transmission defined by the polar angle θt ≈ 12.2◦. The critical angle is still at |θt| = θc = arcsin(
√
ε1/ε2). The values of

other parameters are identical to those assumed in obtaining the results of Fig. 2.

the mean differential transmission coefficients on the angle of transmission [Fig. 2(b)]. However, when εa is less than
ε2, the first term in the expressions for dp(q‖) and ds(q‖) vanishes for a polar angle of transmission θt = θ?t defined by

cos θ?t = [(ε2 − ε1)/ε2]
1
2 , or, equivalently, when sin θ?t =

√
ε1/ε2, and becomes pure imaginary as θt increases beyond

the angle

θ?t = arcsin

√
ε1
ε2
. (54)

The functions |dp(q‖)|−2 and |ds(q‖)|−2 therefore display asymmetric peaks at the polar angle of transmission θt = θ?t .
These are the optical analogues of the Yoneda peaks observed in the scattering of x-rays from a metal surface [6, 7].
The results of a numerical evaluation of Eqs. (52a) and (52d) are depicted as dashed lines in Fig. 2. From this
figure it is observed that the single-scattering perturbation theory reproduces fairly well the overall shape of the mean
differential transmission coefficients for in-plane co-polarized transmission, at least for the level of roughness assumed
in producing these results. However, there seems to be some minor difference in amplitude between the simulations
results and the curves produced from perturbation theory, in particular when ε1 < ε2.

There is a second feature of Eq. (52a) that deserves a comment. The function α1(q‖)α2(k‖) + q‖k‖ that appears in
the numerator on the right-hand side of this equation can, when q‖ ‖ k‖, be written explicitly in the form (CHECK!)

α1(q‖)α2(k‖) + q‖k‖ =
√
ε1ε2

(ω
c

)2{[ε1
ε2
− sin2 θt

] 1
2
[
ε2
ε1
− sin2 θ0

] 1
2

+ sin θt sin θ0

}
. (55)

Considered as a function of θt for a fixed value of θ0, we see that when ε1 > ε2 this function is structureless,
and its squared modulus introduces no feature into

〈
∂Tpp(q‖|k‖)/∂Ωt

〉
incoh

. However, when ε1 < ε2 the factor

[ε1/ε2 − sin2 θt]
1/2 is real and decreases with increasing θt in the interval 0 < θt < θ?t ; it vanishes at θt = θ?t ; and

is pure imaginary and increases in magnitude with increasing θt in the interval θ?t < θt < π/2. Consequently the
squared modulus of the expression given by Eq. (55) possesses an asymmetric minimum at θt = θ?t , and so therefore
does

〈
∂Tpp(q‖|k‖)/∂Ωt

〉
incoh

. This feature is readily observed in Fig. 2(a).
Because the Yoneda peaks and the minimum are present in the expressions for the mean differential transmission

coefficient obtained in the lowest order in the surface profile function, the second, they are single-scattering phenomena,
not multiple-scattering effects. This is confirmed by the qualitative similarity between the plots in Figs. 3(a) and
3(b). It should also be noted that the polar angle of transmission where the Yoneda phenomenon can be observed
is determined only by the ratio of the dielectric constants of the two media; it does not, for instance, depend on the
angles of incidence [see Figs. 2 and 3].
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FIG. 4. The incoherent component of the mean differential transmission coefficient, showing the full angular intensity distribu-
tion as a function of the lateral wavevector of the light transmitted from a dielectric medium into vacuum separated by a rough
interface. The angles of incidence were (θ0, φ0) = (0◦, 45◦). The position of the specular direction in transmission is indicated by
white dots. The parameters assumed for the scattering geometry and used in performing the numerical simulations had values
that are identical to those assumed in obtaining the results of Fig. 2(a). The in-plane intensity variations in Figs. 4(b) and
4(f) are the curves depicted in Fig. 2(a). The star notation, e.g. p→ ?, indicates that the polarization of the transmitted light
was not recorded. Furthermore, in e.g Fig. 4(g), the open circle in ◦ → ? symbolizes that the incident light was unpolarized;
this simulation result was obtained by adding half of the results from Figs. 4(a) and 4(d).

We now turn to the angular intensity distributions of the transmitted light. In Figs. 4 and 5 we present simulation
results for the contribution to the mean differential transmission coefficient from the light that has been transmitted
incoherently through the randomly rough interface, that display the full angular distribution of this contribution.
These two figures were obtained under the assumption that the angles of incidence were (θ0, φ0) = (0◦, 45◦); it was
cuts along the plane of incidence of these angular intensity distributions that resulted in the curves presented in
Fig. 2. Therefore, the parameters assumed in producing the results of Figs. 2(a) and 4 are identical, and so are the
parameters assumed in obtaining Figs. 2(b) and 5.

All angular intensity distributions that we present in this work, including those in Figs. 4 and 5, are organized
in the same fashion. They are arranged in 3 × 3 subfigures where each row and column of the array correspond
to the angular distribution of the incoherent component of the mean differential transmission coefficient for a given
state of polarization of the transmitted and incident light, respectively. The lower left 2 × 2 corner of such figures
corresponds to the cases where β-polarized incident light is transmitted by the rough interface into α-polarized light,
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FIG. 5. The same as Fig. 4, but for light incident from the vacuum side onto the dielectric. Notice the rapid changes in
intensity around the polar angle θt = θc = arcsin(

√
ε1/ε2). The in-plane intensity variations in Figs. 5(b) and 5(f) are the

curves depicted in Fig. 2(b).

denoted β → α in the lower left corner of each subfigure, where α = p, s and the same for β. Moreover, the first
row corresponds to results where the polarization of the transmitted light was not recorded (indicated by ?); such
results are obtained by adding the other two results from the same column. The last column of the angular intensity
distribution figures corresponds to the situation when the incident light is unpolarized (indicated by an open circle, ◦);
these results are obtained by adding half of the other two results present in the same row. For instance, the subfigure
in the upper right corner, labeled ◦ → ?, refers to unpolarized light (the open circle) transmitted by the surface into
light for which we do not record the polarization (the star). It should be stressed that even if the polarization of the
transmitted light is not recorded, it does not mean that the transmitted light is unpolarized; in general this is not the
case as can be seen by, for instance, inspecting Fig. 5.

When both the incident and transmitted light are linearly polarized, the lower left 2 × 2 corners of Figs. 4 and
5 show that the angular distributions of the incoherent component of the mean differential transmission coefficients
take on dipole-like patterns oriented along the plane-of-incidence for co-polarization and perpendicular to it for cross-
polarization. We note that such patterns are a consequence of our definition used for the polarization vectors, and
that similar patterns have recently been observed in reflection [2, 14]. It was already concluded based on Fig. 2 that
the in-plane, co-polarized transmission is rather different for p and s polarization when the medium of incidence is
vacuum, and rather similar when the medium of incidence is the dielectric. Not surprisingly, a similar conclusion can
be drawn by inspecting the co-polarized angular intensity distributions depicted in the β → β subfigures of Figs. 4
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and 5 [β = p, s]. For normal incidence, the angular intensity distributions for cross- and co-polarized transmission are
intimately related to each other, but only if they share the same polarization state of the transmitted light; in fact,
the former distributions are 45◦ rotations of the latter. For instance for scattering into s-polarized light, this can be
understood if we note from Eqs. (52c), (52d) and (27) [see also Eq. (B13) of Appendix B] that to the lowest nonzero
order in ζ(x‖) we have〈

∂Tsp(q‖|k‖)
∂Ωt

〉
incoh

=
δ2

π2
(ε2 − ε1)2ε

1/2
1 ε

5/2
2

(ω
c

)2 cos2 θt
cos θ0

g(|q‖ − k‖|)
∣∣Msp(q‖|k‖)

∣∣2 α2
1(k‖)

|ds(q‖)|2|dp(k‖)|2
(56a)〈

∂Tss(q‖|k‖)
∂Ωt

〉
incoh

=
δ2

π2
(ε2 − ε1)2

ε
3/2
2

ε
1/2
1

(ω
c

)2 cos2 θt
cos θ0

g(|q‖ − k‖|)
∣∣Mss(q‖|k‖)

∣∣2 α2
1(k‖)

|ds(q‖)|2|ds(k‖)|2
, (56b)

where the matrix elementsMsp(q‖|k‖) andMss(q‖|k‖) are presented in Eq. (27). For normal incidence, dp(0)/
√
ε1ε2 =

ds(0) and Msp(q‖|0) out-of-plane equals Mss(q‖|0) in-plane. This means that 〈∂Tsp(q‖|0)/∂Ωt〉incoh will equal
〈∂Tss(q′‖|0)/∂Ωt〉incoh if q‖, after a rotation by an angle of 45◦, equals q′‖. A similar argument can be used to relate the

angular distribution of 〈∂Tps(q‖|0)/∂Ωt〉incoh after a 45◦ rotation of the angular distribution of 〈∂Tpp(q‖|0)/∂Ωt〉incoh.
This symmetry property of the angular intensity distributions at normal incidence is readily observed in Figs. 4 and 5.
Hence, we conclude that the regions of high intensity observed in the cross-polarized angular intensity distribution in
Fig. 5(c) around the out-of-plane direction are also Yoneda peaks; their origin is due to the peaking factor |ds(q‖)|−2
vs. transmitted wave-number, just like we found for the in-plane peaks in the co-polarized transmitted light.

When ε1 < ε2, Yoneda peaks may actually be observed for a wide range of azimuthal angles of transmission. For
instance, at normal incidence, and when unpolarized incident light is transmitted through the surface into s-polarized
light, the Yoneda peaks occur around θt = θc [or q‖ =

√
ε1ω/c] independent of the value of the azimuthal angle of

transmission φt, and they will have constant height [Fig. 5(i)]. Similarly, when unpolarized light is transmitted into p-
polarized light for the same scattering system, one observes from Fig. 5(h) that a circular grove exist at q‖ =

√
ε1ω/c.

For normal incidence [k‖ = 0], the amplitudes of 〈∂Tpp(q‖|k‖)/∂Ωt〉incoh and 〈∂Tps(q‖|k‖)/∂Ωt〉incoh at the position
of the groove will be zero according to (52a) and (52b). This is due to the factor α1(q‖), since it vanishes when
q‖ =

√
ε1ω/c.

It should be observed from Figs. 4(g)–(i) and 5(g)–(i), that at normal incidence, and due to the isotropy of the
surface, unpolarized incident light will be transmitted by the surface into rotationally symmetric intensity distributions
independent of whether the transmitted light is p- or s-polarized. When unpolarized light is incident from the dielectric,
there are only minor differences in the intensity distributions of the p- and s-polarized transmitted light [Figs. 4(h)–
(i)]. However, when the light is incident from vacuum, Figs. 5(h)–(i) show pronounced differences in their intensity
distributions.

B. Non-normal incidence

We now address the situation when θ0 6= 0◦, and we start our discussion by assuming that the light is incident
from the dielectric onto the rough interface. Figures 6 and 7 present the full angular distributions of the transmitted
intensities for angles of incidence (θ0, φ0) = (20◦, 45◦) and (θ0, φ0) = (64◦, 45◦), respectively. The main feature we
observe from these figures is that as the polar angle of incidence is increased from zero, the incident light is transmitted
more-and-more into the forward transmission plane. The distributions in Figs. 6 and 7 are rather smooth with few,
if any, surprising characteristics. It should be noted that the polar angle of incidence θ0 = 64◦ is larger than the
critical angle for total internal reflection, θc = arcsin(

√
ε2/ε1) ≈ 38.0◦, so, for the equivalent planar system, no light

should have been transmitted at all; the nonzero intensity distributions observed in Fig. 7 are therefore all roughness
induced.

It is now assumed that the light is incident from vacuum. In Figs. 8 and 9 the mean differential transmission
coefficients for light that has been transmitted incoherently by the surface are presented for angles of incidence
(θ0, φ0) = (20◦, 45◦) and (θ0, φ0) = (64◦, 45◦), respectively. The observation made for the dielectric-vacuum system
that an increase in θ0 will result in the majority of the light being transmitted into the forward transmission plane, is
also true for the vacuum-dielectric system. However, Figs. 8 and 9 show several characteristic features, of which the
Yoneda peaks located at q‖ =

√
ε1ω/c are the most prominent.

In the case of θ0 = 20◦, Fig. 8 shows that the Yoneda peaks are still prominent, but their amplitudes are no longer
independent of the azimuthal angle of transmission, as was found for normal incidence. For s → s transmission,
Fig. 8(f), it is found that the Yoneda peak amplitudes are higher in the forward transmission plane than in the backward
plane, and the former peaks have a higher amplitude than they had for normal incidence. Moreover, the Yoneda
peaks visible in cross-polarized p → s transmission, Fig. 8(c), that for normal incidence were located symmetrically
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FIG. 6. Same as Fig. 4, but for the angles of incidence (θ0, φ0) = (20◦, 45◦).

out-of-plane, are now moving into the forward transmission plane. The amplitude of 〈∂Tpα(q‖|k‖)/∂Ωt〉incoh when
q‖ =

√
ε1ω/c, which was essentially zero for normal incidence, does no longer vanish everywhere as can be seen in

the second row of subfigures in Fig. 8. We still observe a local minimum in the transmitted intensity into p-polarized
light at the position of the Yoneda peaks and this intensity is, in the plane of incidence, substantially lower than the
corresponding intensity for transmission into s-polarized light.

However, when the polar angle of incidence is increased to θ0 = 64◦, Fig. 9 shows that p-polarized transmitted
light gives a significant, maybe even dominant, contribution to in-plane transmitted intensity at the position of the
Yoneda peak in the forward transmission plane [φt = φ0]. This is in sharp contrast to what was found when θ0 = 0◦

and θ0 = 20◦, where s-polarized transmitted light gave the most significant contribution to the in-plane transmitted
intensity at the position of the Yoneda peaks. To explain this behavior, we will again be assisted by Eq. (52a), from
which it follows that at the position of the Yoneda peaks〈

∂Tpp(q‖|k‖)
∂Ωt

〉
incoh

∣∣∣∣
q‖=
√
ε1ω/c

∝
k2‖∣∣dp(k‖)∣∣2 , (57)

where we used α1(
√
ε1ω/c) = 0 in obtaining this result. For normal incidence, Eq. (57) predicts that the p → p

transmission should go to zero, consistent with what we have seen. However, as the polar angle of incidence is
increased, the function on the right-hand-side of Eq. (57) will grow quickly, particularly as one approaches grazing
incidence. This has the consequence that 〈∂Tpp(q‖|k‖)/∂Ωt〉incoh, for increasing polar angle of incidence, will go from
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FIG. 7. Same as Fig. 4, but for the angles of incidence (θ0, φ0) = (64◦, 45◦). Note that for a corresponding flat interface system,
there would have been zero transmission, since the incident field will experience total internal reflection due to θ0 > θc ≈ 38.0◦.
For this reason there is no white dot indicating the specular direction of transmission in this case. For this rough interface
system, the light that is transmitted is induced by the surface roughness.

dipping to peaking at the position of the Yoneda peaks, q‖ =
√
ε1ω/c. This will not happen for the s→ p transmitted

light since to lowest order in the surface profile function its intensity is proportional to α1(q‖), which will always be
zero at the position of the Yoneda peaks [see Eq. (52c)].

To illustrate this behavior, we study the co-polarized transmitted intensity at the position of the Yoneda peak in
the forward transmission plane, (θt, φt) = (θc, φ0), by defining the quantity

Yα(θ0) ≡
〈
∂Tαα(q‖|k‖)

∂Ωt

〉
incoh

∣∣∣∣
q‖=
√
ε1
ω
c k̂‖

. (58)

Figure 10 presents simulation results for Yα(θ0) as a function of polar angle of incidence for the transmission through
the vacuum-dielectric system. This figure shows, as is consistent with the above discussion, that Yp(θ0) increases
more rapidly than Ys(θ0) for moderate angles of incidence; moreover, for an angle of incidence of about 62◦ and
above, we find that Yp(θ0) ≥ Ys(θ0) for the dielectric constants assumed in the current work. Part of the reason that
Yp(θ0 = 0◦) is not quite zero, is that the simulation results assumes a polar angle of transmission that is slightly larger
than the critical angle. Another reason for the nonzero Yp(θ0 = 0◦) is multiple scattering effects which were included
consistently in the non-perturbative simulation technique used to obtain the results of Fig. 10.
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FIG. 8. Same as Fig. 5, but for the angles of incidence (θ0, φ0) = (20◦, 45◦).

It should to be mentioned that the results presented in Figs. 4–9 are similar in many respects to those obtained in
other recent numerical studies of related scattering geometries, in both reflection and transmission. A non-exhaustive
selection of these includes light scattering in reflection from potentially strongly rough perfectly conduction sur-
faces [15, 16]; penetrable rough surfaces of, in principle any degree of roughness [12, 16, 17]; and weakly rough
surfaces that are part of a simple surface or film geometry [2, 18, 19].

C. Transmissivity and transmittance

Apply the substitution θc → θ′c in Fig. 11 and 12 and make sure it is used consistently throughout this section (but
NOt in previous sections); Btw is this angle defined in these figure captions.

Turning now to the transmissivity (48) of the randomly rough interface, we present in Fig. 11(a) the transmissivity
as a function of the polar angle of incidence θ0 when the interface is illuminated from the dielectric by p- and s-
polarized light. The transmissivity when the interface is illuminated from vacuum is presented in Fig. 11(b). The
vanishing of the transmissivity for incident light of both polarizations for angles of incidence greater than the critical
angle for total internal reflection, θ′c = arcsin(

√
ε2/ε1) which evaluates to θ′c = 38.0◦ for the assumed values of the

dielectric constants, is clearly seen in Fig. 11(a). In contrast, in Fig. 11(b), the transmissivity for incident light of
both polarizations is nonzero for all values of θ0, and tends to zero at a grazing angle of incidence θ0 ≈ 90◦. The
transmissivity is larger for p-polarized light than it is for s-polarized light, irrespective of the medium of incidence.
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FIG. 9. Same as Fig. 5, but for the angles of incidence (θ0, φ0) = (64◦, 45◦).

This is consistent with the result that the reflectivity of a dielectric surface is larger for s-polarized light than for
p-polarized light [? ]. Even if the transmissivity curves presented in Fig. 11 closely resemble the functional form
of the transmissivity obtained for equivalent flat interface systems (the Fresnel transmission coefficients), we remark
that there are differences, as quantified by the dashed lines in Fig. 11. For instance, from Fig. 11 one observes that
Tp(θ0) < 1 for all angles of incidence, while for the equivalent flat interface systems the transmissivity will be unity
at the Brewster angle [] located around the maxima of Tp(θ0) in Fig. 11. (Find suitable references.)

We now focus on the contribution to the transmittance from the light that has been transmitted incoherently through
the surface; in Eq. (51), this is the last term denoted Tβ(θ0)incoh for incident light of β polarization. Figure 12(a)
presents the transmittance Tβ(θ0)incoh as a function of the polar angle of incidence when the incident medium is
the dielectric, and it is found that this quantity displays interesting features. For instance, in s polarization, a
sharp maximum is observed for an angle of incidence a little less than 40◦, and for this angle of incidence, the
contribution to the transmittance from the light being transmitted incoherently is about twice the value at normal
incidence. This behavior one can understand in terms of Eq. (52d). As a function of incidence (or k‖), the expression

for 〈∂Tss(q‖|k‖)/∂Ωt〉incoh in this equation will have a maximum when |ds(k‖)|−2 is peaking. This happens when
k‖ =

√
ε2ω/c, or when θ0 = θ′c. The expression for the s → p transmission will also go through a maximum at the

same critical angle [see Eq. (52b)], and so will therefore also Ts(θ0)incoh. This explains the functional dependence
of Ts(θ0)incoh on the angle of incidence. From Fig. 12(a) it is also observed that the two curves behave differently
around θ0 = θ′c. While the transmittance Ts(θ0)incoh is monotonously increasing in the interval 0◦ < θ0 < θ′c and
monotonously decreasing in the interval θ′c < θ0 < 90◦, this is not the case for the transmittance of p-polarized
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FIG. 10. Simulation results for the in-plane, co-polarized contribution to the transmission close to the Yoneda peak in the
forward transmission plane as measured by the function Yα(θ0) defined in Eq. (58). The simulation results are reported for
θt = 38.8◦ and φt = φ0 = 45◦ where the former angle is slightly larger, due to the computational grid used, than the polar
angle θt = θc = 38.0◦ where Yoneda peaks are expected.
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FIG. 11. (a) The transmissivities Tα(θ0) of a two-dimensional randomly rough dielectric-vacuum interface (ε1 = 2.6869,
ε2 = 1) for p- and s-polarized light as functions of the polar angle of incidence. (b) The same as in 11(a), but for a vacuum-
dielectric interface (ε1 = 1, ε2 = 2.6869). The quantity ∆Tα(θ0) = T Fα (θ0)−Tα(θ0) signifies the difference between the Fresnel
transmission coefficient (flat surface transmissivity), T Fα (θ0), and the transmissivity for the equivalent rough interface scattering
system. Ten times ∆Tp(θ0) and ∆Ts(θ0) are presented as dashed lines, and for most angles of incidence, these differences are
positive. The critical angle θ0 = θ′c for total internal reflection for the planar dielectric-vacuum system is indicated by the
vertical dashed line; with the values assumed for the dielectric constants θ′c ≈ 38.0◦. The roughness parameters assumed in
obtaining these results are the same as in Fig. 2. Several simulations were run with small perturbations in the surface length
L in order to obtain transmissivity data with higher angular resolution.

incident light. Similar to the case of s-polarized incident light, the rapid dependence on the angle of incidence of
Tp(θ0)incoh around θ0 = θ′c is due to the factor |dp(k‖)|−2 present in Eqs. (52a) and Eq. (52c). However, unlike in the
case of s-polarized incident light, the cross-polarized transmission, 〈∂Tsp(q‖|k‖)/∂Ωt〉incoh, Eq. (52c), will go to zero
at the critical angle θ0 = θ′c due to the factor α2(k‖) that is present in the expression for it. Therefore, for p-polarized
incident light, the transmittance will have a contribution from co-polarized transmission which peaks at the critical
angle of incidence, and a contribution from cross-polarization that has a dip down to zero at the critical angle, and
it is the sum of the two that results in the functional form observed in Fig. 12(a).

The transmittance from vacuum into the dielectric is depicted in Fig. 12(b). In this situation for which ε1 < ε2, the
functions |dp(k‖)|−2 and |ds(k‖)|−2 are both monotonously increasing functions of k‖ (or θ0), and the transmittances
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FIG. 12. The θ0-dependence of the contribution to the transmittance from p- and s-polarized incident light that has been
transmitted incoherently through a two-dimensional randomly rough surface. This quantity is for β-polarized incident light
defined by the last term of Eq. (51), i.e. Tβ(θ0)incoh = Tβ(θ0) − Tβ(θ0). The scattering systems assumed in obtaining these
results were; (a) dielectric-vacuum (ε1 = 2.6869, ε2 = 1); and (b) vacuum-dielectric (ε1 = 1, ε2 = 2.6869). The critical angle
θ′c for total internal reflection for the flat dielectric-vacuum system is indicated by the vertical dashed line. The roughness
parameters assumed were the same as in Fig. 2. Several simulations were run with small perturbations in the surface length L
in order to obtain transmittance data with higher angular resolution (indicated by the solid dots).

Tβ(θ0)incoh (β = p, s) are hence slowly varying functions of the angles of incidence consistent with what is observed
in Fig. 12(b).

D. Accuracy of the simulations

Investigating the energy conservation of our simulation results can be a useful test of their accuracy. In combining
simulation results from the current work with corresponding results obtained for the mean differential reflection
coefficient 〈∂Rαβ/∂Ωs〉 through the use of the computationally similar methods from [2], we may add the total
reflected and transmitted power for any lossless system. When the reflectance is added to the transmittance for any
of the systems investigated in the current work, it is found that the results of these calculations satisfy unitarity with
an error smaller than 10−4. This testifies to the accuracy of the approach used, and it is also a good indicator for
satisfactory discretization. It should be noted, however, that unitarity is a necessary, but not sufficient, condition for
the correctness of the presented results. Through a preliminary investigation, unitarity seemed to be satisfied to a
satisfactory degree for surfaces with a root mean square roughness up to about four times larger than the roughness
used in obtaining the results presented in this paper.

VII. CONCLUSIONS

Needs to be polished We have presented a derivation of the reduced Rayleigh equations for the transmission
amplitudes of light scattered from a two-dimensional, randomly rough, surface. These equations represent a non-
perturbative, purely numerical solution of the scattering problem based on the Rayleigh hypothesis. As an example
of their implementation in software, the full angular distribution for both co- and cross-polarized incoherent compo-
nents of the mean differential transmission coefficients (MDTC) were reported, for configurations of vacuum and an
absorptionless dielectric with a Gaussian surface power spectrum. It was shown that a configuration of transmission
into a denser medium leads to Yoneda peaks: a peak in the incoherent MDTC at the critical angle for total internal
reflection in the denser medium. Small amplitude perturbation theory, to lowest order in the surface profile function,
was shown to reproduce our results qualitatively to a high degree of accuracy, both through analytical arguments
and a numerical implementation of said theory. This lead us to believe that the features presented in the results are
single-scattering effects.

As an investigation of the quality of the results, unitarity in energy conservation was found to be satisfied within
10−4 when the total scattered energy from both reflection and transmission was added together, for the roughness
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parameters and configurations used in this paper.
Calculations of the transmission of light through two-dimensional randomly rough surfaces are challenging, and

hence such they are still often carried out by means of perturbative and approximate methods. Our approach,
through the reduced Rayleigh equations, represents a step towards more accurate but still computationally viable
solutions of the problem.

VIII. TODO

• Comment on similarities and differences with our discussion vs the one by Kawanishi.

• We use two different θc even if they have the same value; should we define θc and θ′c instead in order to not
make any confusion (or maybe θ?t and θ?0 showing that it is in different media)?

• Give more of the pert. theory expressions. Should these maybe go into the theory section? Check references to
equation B2 and similar.

• Define dα(k‖) in terms of the polar angle on incidence and base the discussion partly on this.

• Question: Should we use Yoneda peaks in the title?

• Read the manuscript carefully with the intention of spotting duplication of statements and missing information.

• Update the conclusions and abstract.

Appendix A: Evaluation of V(γ|Q‖)

In this appendix we outline the calculation of the vector V(γ|Q‖) defined by Eq. (16a). From Eqs. (16a) and (17)
it follows immediately that

V3(γ|Q‖) = I(γ|Q‖). (A1)

The remaining two components of V(γ|Q‖) can be obtained by expanding exp
(
−iγζ(x‖)

)
in powers of the surface

profile function and integrating the resulting series term-by-term (α = 1, 2)

Vα(γ|Q‖) = −
∫

d2x‖ exp
(
−iQ‖ · x‖

)
exp

[
−iγζ(x‖)

]
ζα(x‖)

= −
∫

d2x‖ exp
(
−iQ‖ · x‖

)
ζα(x‖)

∞∑
n=0

(−iγ)
n

n!
ζn(x‖)

= −
∞∑
n=0

(−iγ)
n

(n+ 1)!

∫
d2x‖ exp

(
−iQ‖ · x‖

) ∂ζn+1(x‖)

∂xα

= − i

γ

∞∑
m=1

(−iγ)
m

m!

∫
d2x‖ exp

(
−iQ‖ · x‖

) ∂ζm(x‖)

∂xα
. (A2)

Introducing the Fourier representation of the mth power of the surface profile function,

ζm(x‖) =

∫
d2P‖

(2π)
2 ζ̂

(m)(P‖) exp
(
iP‖ · x‖

)
, m ≥ 1, (A3)

into Eq. (A2), and evaluating the two integrals after changing their order, results in

Vα(γ|Q‖) =
Qα
γ

∞∑
m=1

(−iγ)
m

m!
ζ̂(m)(Q‖)

=
Qα
γ

[ ∞∑
m=0

(−iγ)
m

m!
ζ̂(m)(Q‖)− (2π)2δ(Q‖)

]

=
I(γ|Q‖)

γ
Qα − (2π)

2
δ
(
Q‖
) Qα
γ
. (A4)
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In the last step we have used the result that

I(γ|Q‖) =

∞∑
n=0

(−iγ)
n

n!
ζ̂(n)(Q‖) (A5)

and ζ̂(0)(Q‖) = (2π)2δ
(
Q‖
)
. Equation (A5) follows readily from Eq. (17) by expanding the latter in powers of the

surface profile function and integrating the resulting series term-by-term.
By combining Eqs. (A1) and (A4) we arrive at the final result

V(γ|Q‖) =
I(γ|Q‖)

γ

(
Q‖ + γx̂3

)
− (2π)

2
δ
(
Q‖
) Q‖
γ
. (A6)

We note that the last term of Eq. (A6), due to the presence of the factor δ
(
Q‖
)
Q‖, will contribute only if Q‖ = 0

implies that also γ must be zero; in all other cases this term will vanish. For this reason, we will refer to the second
term of Eq. (A6) as the singular contribution to V(γ|Q‖).

Technically, V(γ|Q‖) is a distribution [20]; for instance, for the special case ζ(x‖) = 0 it follows from Eq. (16)

that V(γ|Q‖) = (2π)2δ
(
Q‖
)
x̂3 (which is independent of γ). As is true for any distribution, it cannot appear alone

in a mathematical expression and should therefore not be evaluated for a single argument as if it were an ordinary
function; instead a distribution can only be evaluated after being multiplied by some (test) function. This has the
consequence that the singular term of V(γ|Q‖) may not necessarily lead to a “real” singularity when evaluating the
distribution. We will indeed see that this is what happens in our case.

Appendix B: Expansion of T (q‖|k‖) in powers of the surface profile function

In this Appendix we outline the derivation of Eq. (52). We begin with the expansions

I(γ|Q‖) =

∞∑
n=0

(−iγ)
n

n!
ζ̂(n)(Q‖), (B1)

where

ζ̂(n)(Q‖) =

∫
d2x‖ e−iQ‖·x‖ζn(x‖) (B2a)

ζ̂(0)(Q‖) = (2π)
2
δ
(
Q‖
)
, (B2b)

and

T(q‖|k‖) = 2α1(k‖)
∞∑
n=0

(−i)
n

n!
t(n)(q‖|k‖). (B3)

In this latter equation the superscript n denotes the order of the corresponding term in powers of ζ(x‖). When
Eqs. (B1) and (B3) are substituted into Eq. (26), the latter becomes

∞∑
m=0

m∑
n=0

(−i)
m

m!

(
m

n

)∫
d2q‖
(2π)2

[
−α1(p‖) + α2(q‖)

]n−1
ζ̂(n)(p‖ − q‖)M(p‖|q‖) t(m−n)(q‖|k‖)

= (2π)2δ
(
p‖ − k‖

) 1

ε2 − ε1
I2.

(B4)

When we equate terms of zero order in ζ(x‖) on both sides of this equation we obtain

1

−α1(p‖) + α2(p‖)
M(p‖|p‖) t(0)(p‖|k‖) = (2π)2δ

(
p‖ − k‖

) 1

ε2 − ε1
I2. (B5)

With the aid of the relation

1

−α1(p‖) + α2(p‖)
=
α1(p‖) + α2(p‖)

(ω/c)2 (ε2 − ε1)
, (B6)
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Eq. (B5) can be rewritten in the from( 1√
ε1ε2

[
ε2α1(p‖) + ε1α2(p‖)

]
0

0 α1(p‖) + α2(p‖)

)(
t
(0)
pp (p‖|k‖) t

(0)
ps (p‖|k‖)

t
(0)
sp (p‖|k‖) t

(0)
ss (p‖|k‖)

)
= (2π)2δ

(
p‖ − k‖

)
I2, (B7)

from which we obtain(
t
(0)
pp (q‖|k‖) t

(0)
ps (q‖|k‖)

t
(0)
sp (q‖|k‖) t

(0)
ss (q‖|k‖)

)
= (2π)2δ

(
q‖ − k‖

)( √
ε1ε2

ε2α1(k‖)+ε1α2(k‖)
0

0 1
α1(k‖)+α2(k‖)

)
. (B8)

For m ≥ 1, Eq. (B4) can be written as

1

−α1(p‖) + α2(p‖)
M(p‖|p‖)t(m)(p‖|k‖) +

∫
d2q‖
(2π)2

[
−α1(p‖) + α2(q‖)

]m−1
ζ̂(m)(p‖ − q‖)M(p‖|q‖) t(0)(q‖|k‖)

+

m−1∑
n=1

(
m

n

)∫
d2q‖
(2π)2

[
−α1(p‖) + α2(q‖)

]n−1
ζ̂(n)(p‖ − q‖)M(p‖|q‖) t(m−n)(q‖|k‖) = 0.

(B9)

If we use the result that the matrix M(p‖|p‖) is diagonal and hence easily inverted, and that the matrix t(0)(q‖|k‖)
is given by Eq. (B8), we can simplify Eq. (B9) into

t(m)(p‖|k‖) =− (ε2 − ε1)
[
−α1(p‖) + α2(k‖)

]m−1
ζ̂(m)(p‖ − k‖)

(√
ε1ε2

dp(p‖)
0

0 1
ds(p‖)

)√ε1ε2Mpp(p‖|k‖)

dp(k‖)

Mps(p‖|k‖)

ds(k‖)√
ε1ε2Msp(p‖|k‖)

dp(k‖)

Mss(p‖|k‖)

ds(k‖)


− (ε2 − ε1)

m−1∑
n=1

(
m

n

)∫
d2q‖
(2π)2

[
−α1(p‖) + α2(q‖)

]n−1
ζ̂(n)(p‖ − q‖)

×

√ε1ε2Mpp(p‖|q‖)

dp(p‖)

√
ε1ε2Mps(p‖|q‖)

dp(p‖)
Msp(p‖|q‖)

ds(p‖)

Mss(p‖|q‖)

ds(p‖)

 t(m−n)(q‖|k‖),

(B10)

where

dp(p‖) = ε2α1(p‖) + ε1α2(p‖) (B11a)

ds(p‖) = α1(p‖) + α2(p‖). (B11b)

Equation (B10) allows t(m)(p‖|k‖) to be obtained recursively in terms of t(m−1)(p‖|k‖), . . . , t(1)(p‖|k‖).
When m = 1, we obtain from Eq. (B10) the result

t(1)(q‖|k‖) =− (ε2 − ε1) ζ̂(1)(q‖ − k‖)

 ε1ε2Mpp(q‖|k‖)

dp(q‖)dp(k‖)

√
ε1ε2Mps(q‖|k‖)

dp(q‖)ds(k‖)√
ε1ε2Msp(q‖|k‖)

ds(q‖)dp(k‖)

Mss(q‖|k‖)

ds(q‖)ds(k‖)

 . (B12)

The matrix elements
{
Mαβ(q‖|k‖)

}
are given by Eq. (27a).

In view of Eq. (B3) we find that through terms linear in the surface profile function

T(q‖|k‖) =(2π)2δ
(
q‖ − k‖

)(√ε1ε2
dp(k‖)

0

0 1
ds(k‖)

)
2α1(k‖)

+ i(ε2 − ε1)ζ̂(1)(q‖ − k‖)

 ε1ε2Mpp(q‖|k‖)

dp(q‖) dp(k‖)

√
ε1ε2Mps(q‖|k‖)

dp(q‖) ds(k‖)√
ε1ε2Msp(q‖|k‖)

ds(q‖) dp(k‖)

Mss(q‖|k‖)

ds(q‖) ds(k‖)

 2α1(k‖) +O
(
ζ2
)
.

(B13)

The substitution of these results into Eq. (41) and using 〈ζ̂(Q‖)ζ̂(Q‖)∗〉 = Sδ2g(|Q‖|) yields Eq. (52).
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