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The scattering of polarized light incident from one dielectric medium on its two-dimensional
randomly rough interface with a second dielectric medium is studied. A reduced Rayleigh equation
for the scattering amplitudes is derived for the case where p- or s-polarized light is incident on
this interface, with no assumptions being made regarding the dielectric functions of the media.
Rigorous, purely numerical, nonperturbative solutions of this equation are obtained. They are used
to calculate the reflectivity and reflectance of the interface, the mean differential reflection coefficient,
and the full angular distribution of the intensity of the scattered light. These results are obtained
for both the case where the medium of incidence is the optically less dense medium, and in the case
where it is the optically more dense medium. Optical analogues of the Yoneda peaks observed in
the scattering of x-rays from metal surfaces are present in the results obtained in the latter case.
Brewster scattering angles for diffuse scattering are investigated, reminiscent of the Brewster angle
for flat-interface reflection, but strongly dependent on the angle of incidence. When the contribution
from the transmitted field is added to that from the scattered field it is found that the results of
these calculations satisfy unitarity with an error smaller than 107
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I. INTRODUCTION

In the great majority of the theoretical studies of the scattering of light from a two-dimensional randomly rough
surface of a dielectric medium, the medium of incidence has been vacuum. Recent reviews of such studies can be found
in Refs. [[land 2L As a result of this restriction, effects associated with total internal reflection, which requires that
the medium of incidence be optically more dense than the scattering medium, were not considered in these studies.
There have been exceptions to this general practice, however.

By the use of the stochastic functional approach [3], Kawanishi et al. [4] studied the coherent and incoherent
scattering of an electromagnetic wave from a two-dimensional randomly rough interface separating two different
dielectric media. The light could be incident on the interface from either medium. The theoretical approach used in
this work [4] is perturbative in nature, and applicable only to weakly rough interfaces. Nevertheless its use yielded
interesting results, including the presence of Yoneda peaks in the angular dependence of the intensity of the light
scattered back into the medium of incidence when the latter was the optically more dense medium. These are sharp,
asymmetric peaks occurring at the critical angle for total internal reflection for a fixed angle of incidence for both
p- and s-polarization of the incident light. These peaks were first observed experimentally in the scattering of x-
rays incident from air on a metal surface [5] and have subsequently been studied theoretically in the context of the
scattering of x-rays [6H8] and neutrons [7] from rough surfaces.

In Ref. 4, Kawanishi et al. also observed angles of zero scattering intensity, to first order in their approach, in the
distributions of the intensity of the incoherently scattered light, when the incident light was p-polarized. Due to their
resemblance to the Brewster angle in the reflectivity from a flat interface, they dubbed these angles the “Brewster
scattering angles”. These were observed, in both reflection and transmission, for light incident from either medium.

Both the Yoneda peaks and the Brewster scattering angles seem to have had their first appearance in optics in the
paper by Kawanishi et al. [4]. They have yet to be observed experimentally in this context. It should be mentioned
that in an earlier numerical investigation of light scattering from one-dimensional dielectric rough surfaces, Nieto-
Vesperinas and Sanchez-Gil [9] observed “sidelobes” in the angular intensity distributions. However, these authors
did not associate these features with the Yoneda peak phenomenon, even though we believe doing so would have been
correct.

In a subsequent paper Soubret et al. [I0] derived a reduced Rayleigh equation for the scattering amplitudes when
an electromagnetic wave is incident from one dielectric medium on its two-dimensional randomly rough interface with
a second dielectric medium. The solution of this equation was obtained in the form of expansions of the scattering
amplitudes in powers of the surface profile function through terms of third order. However, in obtaining the numerical
results presented in this paper [I0], the medium of incidence was assumed to be vacuum.

In this paper we present a study of this problem free from some of the restrictive assumptions and approximations
present in the earlier studies of scattering of polarized light from two-dimensional randomly rough dielectric surfaces.
We first derive a reduced Rayleigh equation for the scattering amplitudes when p- or s-polarized light is incident from
a dielectric medium whose dielectric constant is €1, on its two-dimensional randomly rough interface with a dielectric
medium whose dielectric constant is €5. The dielectric constant €1 can be smaller or larger than €. This equation is
then solved by a rigorous, purely numerical, nonperturbative approach. The scattering amplitudes obtained in this
way are then used to calculate the reflectivity and reflectance of the interface as functions of the angle of incidence,
and also the effect of surface roughness on the contribution to the mean differential reflection coefficient from the light
scattered incoherently (diffusely), and the full angular dependence of the intensity of the incoherently scattered light.
It is hoped that the presentation of these results will stimulate and motivate experimental studies of such scattering
systems.

II. THE SCATTERING SYSTEM

The system we study in this paper consists of a dielectric medium (medium 1), whose dielectric constant is 1, in
the region z3 > ((x)), and a dielectric medium (medium 2), whose dielectric constant is €2, in the region x3 < {(x)
[Fig. 1]. Here x| = (w1, 22,0) is an arbitrary vector in the plane 23 = 0, and we assume that both €; and e, are real
and positive. The surface profile function ((x) is assumed to be a single-valued function of x| that is differentiable
with respect to x; and zo, and constitutes a stationary, zero-mean, isotropic, Gaussian random process defined by

(Cee)Cx ) = W (Ix — x]), (1)

where W (x| ) is the normalized surface height autocorrelation function, with the property that W (0) = 1. The angle
brackets here and in all that follows denote an average over the ensemble of realizations of the surface profile function.



FIG. 1. A sketch of the scattering geometry assumed in this work. The figure also shows the coordinate system used, angles
of incidence(fo, ¢o) and scattering (6, ¢s), and the corresponding lateral wave vectors k| and qy, respectively.

The root-mean-square height of the surface is given by

5= (C(x)))2. (2)

The power spectrum of the surface roughness g(kj) is defined by
g(ky) = /dszuW(ffu) exp(—ikj - x)). (3)

For W(x) we assume the Gaussian function W(z) = exp (—xﬁ/aQ), where the characteristic length a is the

transverse correlation length of the surface roughness. The corresponding power spectrum is given by

_ ]
g(ky) = 7a? exp ( ) > . (4)

III. THE REDUCED RAYLEIGH EQUATION

The interface x3 = ((x) is illuminated from the region x3 > ((x|) (medium 1) by an electromagnetic wave of
frequency w. The total electric field in this region is the sum of an incoming incident field and an outgoing scattered
field,

d?q

(2m)?

while the electric field in the region x3 < ((x)) is an outgoing transmitted field,

E> (x|w) = Eo(ky) exp[iQo(ky) - x] + / Alqy) expliQu(qy) - ). (5)

E*(x|w) = / [;f)'z B(q)) exp[iQ; (qy) - X]. (6)

In writing these equations we have introduced the functions
Qo(kH) = k” — Ozl(k”)f(;g (78,)
Qi(qy) = q) +a1(g))%s (7b)
Q;E(QH) = q) £ aa(q))Xs, (7c)



where (i = 1,2)

ai(q)) = |:€i (%)2 — qﬂé Rea;(g)) > 0,Imay(gqy) > 0. (8)

Here kj = (k1, k2,0), and a caret over a vector indicates that it is a unit vector. A frequency dependence of the field
of the form exp(—iwt) has been assumed, but not indicated explicitly.

The boundary conditions satisfied by these fields at the interface x3 = ((x)) are the continuity of the tangential
components of the electric field:

n x Eo(k)) explik) - x) — iaq (k)¢ (x))] + / ((;7Tq)|2 n x A(qy)expliq) - x| + i (q))¢(x)]

d2
N / ﬁ n x B(qy) expliq) - x) —iaa(g))¢(x))]; )

the continuity of the tangential components of the magnetic field:

n x [1Qo(ky) x Eo(k))] explik) - x| — iaq (k))¢(x)))] +/ ((;Tq)lg n x [iQi(qy) x A(qy)]expliq - x| +iai(q))¢(x))]

_ / d%q n x [jQ;(qH) X B(q”)] exp[qu x| —daa(g))<(x))];

(2m)?
(10)
and the continuity of the normal component of the electric displacement:
: : d?q : :
ein - Eo (k) expliky - x| — o (k)¢ (x))] + €1 /ﬁ n - A(qy) expliqy - x +iaa(g))¢(x))]
(11)
B d?q B . .
= [ G (q)) expliqy - x) —iaz(g))C(x)]-
The vector n = n(x|) entering these equations is a vector normal to the surface x3 = ((x)) at each point of it,
directed into medium 1:
a¢(x))  9¢(x))
=|- - 1). 12
ntx)) = (250, - 20 1) (12)

Equation (|11 is redundant, but its inclusion simplifies the subsequent analysis. We now proceed to eliminate the
transmission amplitude B(q“) from this set of equations to obtain an equation that relates the scattering amplitude
A(qy) to the amplitude of the incident field Eo (k).

We begin by taking the vector cross product of Eq. @) with ngg(pH) exp[—iQ{(pH) {x) + %3¢(x)}]; we next

multiply Eq. |) by —ies exp[—iQ;' (pyp) - {x) +%3¢(x)) }]; and finally multiply Eq. by —Q;‘ (pH) exp[—iQ;' (pH) .
{x) + %3((x))}|, where p| = (p1,p2,0) is an arbitrary wave vector in the plane z3 = 0. When we add the three
equations obtained in this way, and integrate the sum over x| we obtain an equation that can be written in the form

£2Q3 (P)) ¥ [VE(P\HkH) X Eo(k\l)} +eaVe(p)lk)) x [Qo(k)) x Eo(k))] —1Q3 (p)) {VE(PH“(H) 'EO(kH)}

d2
"‘/(2:)'2 {EzQ;(pH) X {VA(PHMH) X A(Qu)} +e2Va(pylg)) x [Ql(qH) X A(qH)] - €1Q§'(p”) [VA(PHMH) 'A(ql\)”

d2
= 52/@:)”2 {QQF(PH) X [VB(PHMH) X B(qH)] + Vi(plq)) x {Qz_(qH) X B(qH)] - Qi (py) {VB(PMQH) B((l(:l;))] },

where

Vie(plk)) = /d%u n(x) exp {—i(Pu —ky) - x) — ez (py) + al(/fH)]C(Xu)} (14a)
Va(pylay) = /dzﬂﬂu n(x) exp {*i(pu —qp) -x) —iaz(p)) — al(qH)]C(Xn)} (14b)

VB(P\||01|\) = dszH n(x) exp {*i(PH - qH) x| —i[ea(py) + az(qH)]C(XH)} . (14c)



At this point it is convenient to introduce the representation

. d*Q .
expl=inC(xp)] = [ G5k 161Q) explicy - x)). (15)
On differentiating both sides of Eq. with respect to z;(j = 1,2) we obtain the result
0¢(xy) . /d2Q| Q; .
exp|—iv((x))] = —1 exp(1Qy - xy()- 16
oz, p[—iv¢(x))] @) o (v1Qy) exp(iQ) - x) (16)
Finally, to be able to evaluate the function I(v|Q)) we need the inverse of Eq. , namely
I(7|Q)) = /dQ&Eu exp(—iQy - x) exp[—iy((x))] Z C(") s (17)
n=0
where
¢O(Q)) = (2m)%5(Qy) (18a)
{MQy) = /dQIH C"(xp) exp(—iQ) - x)),  n>1 (18b)

On combining Egs. f with Egs. and we obtain the results

Vit = o) -] =
Vatwyla) = [Q5 o)) - Qulay)] N IR (190)
Vil ) = [ (o)) - Q)] L2 (190)
When the results given by Eq. are substituted into Eq. (13, the latter becomes
Q; (p)) x [Q?(pn) 'Eo(ku)} I(QZ(@;(;:fl)(l;I)_ =
N e L

Thus, the amplitude of the transmitted field B(q”) has been eliminated from the problem and we have obtained an
equation for the bcatterlng amplitude A(q”) alone.
To transform Eq. ( into a more useful form we first introduce three mutually perpendicular unit vectors:

0(py) = = [P + &eap)] = —— Qi (py) (21a)
a(py) = ﬁ [Bye2(py) — Xapy] (21b)
ax(p|) = X3 x Py (21c)

In terms of these vectors Eq. becomes:

I(a + a1 (k -k
([t oty e 200 ek

Ca (75 : I(aa(py) — aslap)lpy — ay)
+/ (27;])H2 {[ao(pu) ~A(qH)} ao(py) — A(QH)} 2 Z;“2(10\0 —2‘1(;)‘:') . (22)

We now write the vectors Eo(k)) and A(q) in the forms

Eo (k) = &%) (ky) Eop (k) + & (k) ) Eos (ky), (23a)



with
&) (k) = \/ailw ijen (k) + Rk (23b)
& (k) = ky x %s, (23¢)

and
A(q)) = &5 (q)Ap(q) + &% (q))As(qy), (24a)

with
& (q)) = w%w [~yeaay) + %] (24b)
&l (q)) = @ x Xs. (24c)

In these expressions Fo,(k|) and Eos(k)) are the amplitudes of the p-and s-polarized components of the incident
field with respect to the plane of incidence, defined by the vectors 12” and X3. Similarly, Ap(qH) and Ag (qH) are the
amplitudes of the p- and s-polarized components of the scattered field with respect to the plane of scattering defined
by the vectors q and X3.

Equation is a vector equation: it is a set of three coupled equations. However, there are only two unknowns,
namely A,(q;) and As(q)). Consequently, one of these equations is redundant. To obtain A,(q)) and As(qy) in
terms of Ey,(k)) and Ep,(k)) we proceed as follows. We take the scalar product of Eq. with each of the three
unit vectors given by Eq. in turn. The results are:

p)-[Eq. @J]: 0=0; (25a)
ai(p) - [Ea. 22)]:
_a . I(az(py) + aa(ky)lpy — k) [ d?g 4 . I(az(py) — calq))lpy —aqy)
o) o) =~ [ T e M) TR T e
4y (py) - [Ea- @2)] -
_a . I(az(py) +aa(ky)lpy — k) [ d?g 4 . I(az(py) — arlq)lpy —qy) .
o) Enle) = = o e A I s
Equations (25b)) and (25¢]) are the two equatlons we seek
With the use of Egs. (21)) and . 24), Egs. and can be rewritten in the form (o« =p, s, 8 =p,s)
Aalay) =D Rap(aylky) Eos (k))- (26)

B

On combining Egs. (25b) and (25¢) with Eq. we find that the scattering amplitudes {Rag(q”|k“)} are the
solutions of the equation

I(az(py) + ar(ky)|py — k)

(P|||Q\|) (qH\kn) =

/d2q|| Haz(py) — enlglpy —ay) M~ (pyfky),  (27)

(2m)2 az(p)) — a1(qy) az(p)) + a1 (k)
where
——pjay £ a2(p)) By - qraalap]  —5Laa(p)) By x ayls
+ _ | VEe2 Ve a
M (pylay) = < o= 20p) x G)ls ailq)) 2 by -4 ) (28)
and

Ryp(aylky) Rps(aylky) ) . (28b)

Rqyfk)) = <Rsp(q||k|) Ras(ay k)

Equation is the reduced Rayleigh equation for the scattering amplitudes.



IV. THE MEAN DIFFERENTIAL REFLECTION COEFFICIENT

From the knowledge of the scattering amplitudes the mean differential reflection coefficient, the reflectivity, and
the reflectance can be calculated. The differential reflection coefficient OR/0; is defined such that (OR/0€)dS2,
is the fraction of the total time-averaged flux incident on the interface that is scattered into the element of solid
angle d€2; about the scattering direction defined by the polar and azimuthal scattering angles (6, ¢s). To obtain the
mean differential reflection coefficient we first note that the magnitude of the total time-averaged flux incident on the
interface is given by

Py = —Re 8% /dzmu {Eé(kn) X [5Qo(k\|) X EO(kn)} }seXP {[-1Qg (k) +iQo (k)] - x}
= —Res%u /d2x|| {!Eo(k|\)|2Qo(ku) — [E5(ky) - Qo(k))] Eo(k\|)}3

2 5 2
= Re o— [ %z ar(ky) [Eo(k) )|

C2 2
= Sg—au(ky) |Eo (k)| (29)

In this result S is the area of the x;x2 plane covered by the randomly rough surface. The minus sign on the right-hand
side of the first equation compensates for the fact that the 3-component of the incident flux is negative, and we have
used the fact that a;(k)) is real, so that Qo(k; ) is real, and Eg(k)) - Qo(kj) = 0.

In a similar fashion we note that the total time-averaged scattered flux is given by

Py =Re —— /d2 ||/ < q“ i q“ {A*(QH) [5Q1(q”) X A(qm }3GXP {—i(QT(q”) = Qi(a))) 'X}

02 d’q

8w (2m)2

{‘A(q“)’ Qi(q)) — [ “(ay) - Ql(qu)] (Q|)}36XP[QIIHQ1(Q|)$3]

2 d? 2
:Re% (2:)“2 {al(Q|)‘A(q“)’ — \ﬁwq“{ NCTIE Ql(q”)] (m)}exp [—2Im a1 (g )xs]
c2 2 2
:Re% ((;:)HQ a1(q)) ‘A(qu)‘ exp [—2Im ai(q))xs]
62 2
— Re— ((;Tq)lg la1(qy) —a1(qH)] 2q|| 145 (a))|” exp [~2Im as (g )] (30)

The integral in the second term is purely imaginary. Thus we have

2

323w

sc —

[ ata]a@)| (31)
q<verg

The wave vectors k|| and q) can be expressed in terms of the polar and azimuthal angles of incidence (6o, ¢o) and
scattering (05, ¢s), respectively, by

k= \/a% sin O (cos ¢o, sin ¢y, 0) (32a)
q = \/a% sin 05 (cos ¢, sin ¢, 0). (32b)
From these results it follows that
WA 2
d2qH =€ (E) COS 95 dQS, (33)

where d€2; = sin 0 dfs d¢s. The total time-averaged scattered flux therefore becomes

3/2 2

Pe= 8 /dQ cos? 6, UA q ‘2+’As(q|)’2]. (34)




Similarly, the total time averaged incident flux, Eq. 7 becomes

Pinc = s‘/fc cos o || Eop ()| + [ Eosk)|*] (35)

0
Thus by definition, the differential reflection coefficient is given by
‘2

T (36)

OR 1 w \2 cos? b, Ap(q\|>‘2+)AS(qll)
a0, S (7>

q . 2

2me/ cosbo | Eop(ky)|” + |Eos (k)
From this result and Eq. we find that the contribution to the differential reflection coefficient when an incident
plane wave of polarization 3, the projection of whose wave vector on the mean scattering plane is k||, is reflected into
a plane wave of polarization «, the projection of whose wave vector on the mean scattering plane is q, is given by

Rog(q)lk))

oR, k 2 2
EICTILS; :lg ( w ) cos® 0 (37)

9 S ' \2nc ‘2

2we/  cosby

As we are dealing with scattering from a randomly rough interface, it is the average of this function over the ensemble of
realizations of the surface profile function that we need to calculate. This is the mean differential reflection coefficient,

which is defined by
aRaB(q\HkH) 1 w \2 cos? b 2
<893> =5 (5r0) cos fo <’Raﬂ<q||k|>‘ > (38)

If we write the scattering amplitude Rag(q)|k)) as the sum of its mean value and the fluctuation from this mean,

Ra(aylk)) = (Raplaylky)) + [Ras(aylky) = (Raplaylkp)] (39)

then each of these two terms contributes separately to the mean differential reflection coefficient,

(i) (St (o)

ORaplaylkp)\ 1 (L)QCOS?(%
00, Coh_ St \onc cos By

where

(Reslayhi)| (41)

and

(0 )59 (5r0) iy (et = (st} )]

o1 (22) = [([rastalin]” ) ~ |(Rostay )| ] (12)

The former contribution describes the coherent (specular) reflection of the incident field from a randomly rough
surface, while the latter contribution describes the incoherent (diffuse) component of the scattered light.

A. Reflectivity and Reflectance

Equation is the starting point for obtaining the reflectivity of the two-dimensional randomly rough interface. We
begin with the result that

(Rag(qlk))) = (2m)*6(q) — ky)dapRa (k). (43)

The presence of the delta function is due to the stationarity of the randomly rough surface; the Kronecker symbol
dap arises from the conservation of angular momentum in the scattering process; and the result that R, (k) depends
on k; only through its magnitude is due to the isotropy of the random roughness.



With the result given by Eq. 7 the expression for (ORag(qlk|)/0s)con given by Eq. (41]), becomes

ORuo(q) k) _ w\ 2 cos? 0 9
<6‘Qs>wh‘fl (3) ooty 1Rali)l” 8y =), (44)

where we have used the result

[(2m)%6(ay — k)] = (27)%6(0) (2m)0(t) — y) = S(2m)%8(ay — k) (45)

in obtaining this expression. We next use the relation

1
o(qy —ky) :75(%\ — k) 3(¢s — ¢o) (46)
together with the relations
kj = VEi=sinbo, g = VEi- sind,, (47)
to obtain
ORqa(q) k) w\ cos2d, 1 9 . ,
(o) = Vo (3) ey 1Rl i — sino) — o)
cos? O 2 6(0s — 60)0(¢s — ¢o)
~ cos2 6, |Ra(k”)| sin 0
2 0(0s — 60)d(ds — ¢o)
= . 4
[ R (Fy )| s (48)

The reflectivity, R (6o), for light of a polarization is defined by

z . T ORoa(q)lk)
Ra(f0) = /0 db, sin 6, [ _do, <8Q'”>h = [Ra(ky)|”. (49)

The function R, (k) is obtained from Eq. ([3), with the aid of the result that (27)6(0) = S, in the form

Ra(ky) = Ra (VEr=sindy ) = % (Rea(ky[k))) . (50)

In addition to the reflectivity that depends only on the co-polarized light reflected coherently by the rough
interface, it is also of interest to introduce the reflectance for S-polarized light defined as

‘%3(90) = Z %QB(QO)v (513,)

a=p,s

where

B (0) = /; d6, sin 0, /_ﬂ dobs <6R“§g'|k')>. (51b)

In short, the reflectance measures the fraction of the power flux incident on the rough surface that was reflected by
it, taking both specularly and diffusely reflected light into account: In view of Eq. , the reflectance is the sum
of a contribution from light that has been reflected coherently and a contribution from light that has been reflected
incoherently by the rough interface, Z3(00) = Z5(00)con +%3(80)incon, and both co- and cross-polarized reflected light
contribute. Since cross-polarized coherently reflected light is not allowed [see Eq. }, the coherent contribution to
the reflectance for S-polarized light equals the reflectivity for g-polarized light; %5(60)con = R(60). Equation
can therefore also be written in the form

'%3(00) = Rﬁ(eo) + Z E%()45(90)1n00h~ (52)

If the incident light is not purely p- or s-polarized, the reflectance and the reflectivity of the rough surface will have
to be calculated on the basis of weighted sums of the expressions in Egs. and , where the weights reflect the
fractions of the different polarizations contained within the incident light.
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V. NUMERICAL SOLUTION OF THE REDUCED RAYLEIGH EQUATION

The simulation results to be presented in this work were obtained by a nonperturbative numerical solution of the
reduced Rayleigh equation , which was carried out in the following manner; A realization of the surface profile
function was generated on a grid of N, x N, points within a square region of the x;x2-plane of edges L. This surface
profile enters Eq. through the function 7(v|Qy), given by Eq. (17). Utilizing the Taylor expansion detailed in
Eq. , the Fourier transform of (" (x)|) was calculated by use of the fast Fourier transform [2], and the Taylor series
was truncated at the finite order N7. In evaluating the q| integral in Eq. , the infinite limits of integration were
replaced by finite limits |q;| < Q/2, and the integration was carried out by a two-dimensional version of the extended
midpoint rule [I1} p. 135] applied to a circular subsection of a grid of N, x N, points in the ¢ ¢2-plane, whose size and
discretization was determined by the Nyquist sampling theorem [IT], p. 494] and the properties of the discrete Fourier
transform [2]. In momentum space, these limits lead to discretization intervals of Agq = 27/L along the orthogonal
axes of the ¢1¢o-plane, and upper limits on the magnitude of resolved wave vectors are given by Q = Ag|N,./2], where
|| denotes the floor function [11l p. 948]. The resulting linear system of equations was solved by LU factorization
and back substitution.

These calculations were performed simultaneously for incident light of both p- and s-polarization, and they were
performed for a large number N, of realizations of the surface profile function {(x);). The resulting scattering amplitude
Ras(qy k) and its squared modulus |Ras(qylkj)|? were obtained for each realization. An arithmetic average of the
N, results for these quantities yielded the mean values (Ras(q)k))) and (|Rap(q)lk))[*) that enter Eqs. (B0),
and for the reflectivity, reflectance and the mean differential reflection coefficient, respectively. A more detailed
description of the numerical method can be found in Ref. 2

VI. RESULTS AND DISCUSSIONS

The two-dimensional randomly rough dielectric interfaces we study in this work were defined by an isotropic
Gaussian height distribution of rms height 6 = A\/40, and an isotropic Gaussian correlation function of transverse
correlation length a = \/4 [Eq. } They covered a square region of the xjxo-plane of edge L = 25, giving an area
S = L? = 25\ x 25)\. The incident light was assumed to be a p- or s-polarized plane wave of wavelength ) in vacuum.
One of the two media in our configuration was assumed to be vacuum with a dielectric constant € = 1.0, and the other
medium was assumed to be a photoresist defined by the dielectric constant ¢ = 2.64. Since the dielectric constants
entering the calculations are independent of the wavelength, all lengths appearing in them can be scaled with respect
to A. The angles of incidence were (0, ¢), where the azimuthal angle of incidence was set to ¢g = 0°, without loss
of generality. We remark that this value of ¢y was chosen since it coincided with one of the two axes of the numerical
grid, but that it is, due to the isotropy of the roughness, an arbitrary choice in the sense that results for any other
value of ¢y can be obtained from the results presented through a trivial rotation. The surface profiles were generated
by the Fourier filtering method (see Refs. 12 and [I3) on a grid of N, x N, = 321 x 321 points. The values used for
N, and L correspond to Q = 6.4w/c, where Q is the limit in the I(v|Q)-integrals, Eq. (I7), and we used the first
Np = 18 terms of the Taylor expansion in the calculation of these integrals.

Investigating the energy conservation of our simulation results can be a useful test of their accuracy. In combining
simulation results from the current work with corresponding results obtained for the mean differential transmission
coefficient (0T,5/0€;) through the use of computationally similar methods [14, [15], we may add the total reflected
and transmitted power for any lossless system. When the reflectance is added to the transmittance for any of the
systems investigated in the current work, it is found that the results of these calculations satisfy unitarity [14], a
measure of energy conservation, with an error smaller than 10~%. This testifies to the accuracy of the approach used,
and it is also a good indicator of satisfactory discretization. It should be noted, however, that unitarity is a necessary,
but not sufficient, condition for the correctness of the presented results. In a separate investigation [16], unitarity was
found to be satisfied to a satisfactory degree for surfaces with a root mean square roughness up to about three times
larger than the roughness used in obtaining the results presented in this paper.

A. Normal incidence

In Fig. [2| we display the contribution to the in-plane (q | lA<H) incoherent components of the mean differential
reflection coefficient (DRC) as a function of the polar angle of scattering when the random surface is illuminated
from the vacuum side at normal incidence by p- and s-polarized light, Fig. a), and when it is illuminated from
the dielectric medium side, Fig. (b) Notice that the unit vectors q; = q/¢ and 1A<H = ky/kj are well defined
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FIG. 2. The contribution to the incoherent component of the mean differential reflection coefficient from the in-plane, co-
polarized scattering of p- and s-polarized light incident normally [fp = 0°] on (a) a random vacuum-dielectric interface [e; = 1.0,
€2 = 2.64] and (b) a dielectric-vacuum interface [e1 = 2.64, €2 = 1.0] as a function of the polar angle of scattering 6s. The
solid curves were obtained on the basis of numerically solving the reduced Rayleigh equations, Eq. , for an ensemble of
4500 surface realizations. The dashed curves are results from small amplitude perturbation theory, Eq. , included for
comparison.The specular direction of reflection is indicated by the vertical dash-dotted line at 85 = 0°, and in Fig. b), the
dotted lines at |0s| = 0. = sin™! Vez/e1 &~ 38.0° indicate the positions of the critical angle for total internal reflection (as
expected for a flat surface system). Results for cross-polarized scattering have not been indicated since they are generally
suppressed in the plane-of-incidence. The wavelength of the incident light in vacuum was A. The rough interface was assumed
to have a root-mean-square roughness of § = A/40, and it was characterized by an isotropic Gaussian power spectrum, Eq. ,
of transverse correlation length a = A/4. In the numerical calculations it was assumed that the surface covered an area L x L,
with L = 25\, and the surface was discretized on a grid of 321 x 321 points.

also for 6, = 0° and 6y = 0°, respectively, as follows from Egs. and . Only results for in-plane co-polarized
scattering are presented, since in-plane cross-polarized scattering is suppressed due to the absence of contribution from
single-scattering processes. An ensemble of 4500 realizations of the surface profile function was used to produce the
numerical results that this figure is based on. This ensemble size is more than adequate in terms of the interpretation
of the results and their features, but we note that a larger ensemble size would have reduced the jaggedness that can
be observed in all the (solid line) results presented in this work.

From Fig. a) it is observed that the curves corresponding to the two polarizations are featureless, and are nearly
identical. In contrast, the curves presented in Fig. b) are rather different for the two polarizations; they display both
peaks and dips in p — p scattering, and peaks in s — s scattering. The origins of these features can be understood
through small amplitude perturbation theory (SAPT). The contribution to the mean differential reflection coefficients
from light scattered incoherently can to the lowest nonzero order in the surface profile function {(x) be expressed as
(see the appendix for details):

aRpp(QMkH) o 52 9 (W2 cos? 0,
<a§25>incoh B ﬁsl(é@ B 61) (E) COS 90 g(‘qH N kHD

1 N 2 ok
TP ‘Ezann —e1a2(g))(qy 'kn)az(ku)‘ dp((lc||))|2 (53a)
ORp(qylk 52 5 5 (W4 cos? O a3 (k . . \2 ai(k
(F) = et (2) sty ) e () e (230
OR,s(q |k 52 w4 cos? o3 .o \2 of(k
<a(s(2lsl| ) >inwh = eiler—e1)? (;) “cos o Uy ~ k||>|dp((qq||>)|2 ([qn X knlz) |ds(§€|l))|2 (53¢)
ORss(q)lky) 6 5 (w6 cos? b, 1 Lo oi(k))
(Tt = mete e (5) Sagatiay kRt (50

where the functions do(g)) and do (k) for o = p, s are presented in Eq. (A.5) as df(q)) and d (k). The results of a
numerical evaluation of Eq. for normal incidence and in-plane scattering [q || 1A<H]7 are displayed as dashed curves
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FIG. 3. Same as Fig. [2| but for the root-mean-square roughness 6 = \/20.

in Fig. [2l By comparing the curves obtained from small amplitude perturbation theory to the results obtained from a
purely numerical solution of the reduced Rayleigh equation, Eq. , we conclude that SAPT for the considered level
of roughness, even to lowest non-zero order in the surface profile function as in Eq. , reproduces all the important
features found in the mean differential reflection coefficients fairly well, but with a discrepancy in the amplitudes.
This discrepancy decreases with decreasing surface roughness (results not shown). For example, similar comparisons
for surfaces with an rms-roughness of 6 = A/80, but with the same correlation length a = A\/4, show that the ability of
Eq. to reproduce the results based on the RRE is excellent for such weakly rough surfaces. However, for surfaces
of rms-roughness § = \/20 and the same correlation length, significant discrepancies are observed both in intensity
(or amplitude) and angular dependence between the curves obtained on the basis of SAPT and the corresponding
curves resulting from a numerical solution of the RRE [Fig. [3]. For instance, from Fig. b) it is observed that
the angular dependence of the s — s scattered intensity around the normal scattering direction is not correctly
reproduced by SAPT; in this angular interval the numerical simulation results are almost constant and therefore
essentially independent of 6. These results illustrate the importance and necessity to go beyond lowest order SAPT
or to do numerical simulations. We therefore stress the point that even if we in the following often turn to SAPT for
interpretation of the nonperturbative solutions to the RRE, any conclusion drawn on the basis of Eq. is correct
only to the lowest non-zero order in the surface profile function. .

Results similar to those presented in Figs. andbut for scattering out-of-plane [q-k|| = 0] are not presented, since,
for normal incidence, the results for co-polarized in-plane scattering are the same as the results for cross-polarized
out-of-plane scattering when the polarization of the scattered light is the same in the two cases. This symmetry is
expected for isotropic surfaces like the ones we are investigating when the lateral momentum of the incident light is
zero, supported by the observation that Eq. evaluated in-plane equals Eq. evaluated out-of-plane, and
correspondingly for Egs. and (53b), when k| = 0 and 6y = 0.

In order to simplify the subsequent discussion we here express d,(q) and d, (k) in terms of the polar angles of
incidence and scattering using the relations in Eq. :

dp(qy) = «/61(:;{52 cosfy + e1 [iz — sin? 95] } (54a)
1
ds(qy) = ,/51(':{ cosfs + EQ — sin? 93] } (54b)
1
w €2 .2 %
dp(ky) = ‘/61; ggcosby + €1 . —sin Bo (54c¢)
1
ds(k)) = ,/51(':{ cos Oy + E2 — sin? 90} } (54d)
1

We see from Eq. that when &5 is greater than e, both d,(g) and ds(g)) are real continuous functions of 6, in
the interval 0 < |0, < 7/2, and so therefore are |dp(q)|* and |d,(gy)*. Hence, no features are introduced into the
corresponding mean differential reflection coefficients by these functions. However, when ¢, is greater than &5, the
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1
function [(g2/£1) — sin®6,] ? present in d,(g) and ds(q|) vanishes when |0,| equals the critical angle . = sin™" /£ /e,
for total internal reflection for the corresponding flat-surface system, and becomes purely imaginary as || increases
beyond this angle. The functions |d,(gy)|* and |ds(g)|* therefore both have minima at || = .. In the case of
s — s in-plane scattering at normal incidence, the minima in the function |c1ls((]“)|2 for €1 > €4 lead to sharp peaks at

|0s| = 0. in <8Rss(q“ |k|\)/895>inc0h’ as displayed in Fig. b). These same peaks will then also be present for p — s

out-of-plane scattering at normal incidence. However, for p — p in-plane scattering, while there are still minima in the

function |dy(q))[?, we see from Eq. (B3a)) that (R, (qylk))/0%), ., to lowest order in the surface profile function,
vanishes when the function

. 2

Flaylky) = [e2qyby — eraa(ay) @ - kpaz(h)| (55)

vanishes. For normal incidence (k; = 0) and in-plane scattering (q; || lA<H), we see from this expression that
<8Rpp(q“|k”)/8(25>incoh will vanish when as(gy) = 0, which is when ¢y = /zow/c [see Eq. [7)]. This will be
the case for 65 < 90° only when £; > €5, and the expression for <8Rpp(q‘||k”)/8§25>incoh in Eq. will in this
case be zero for |0s] = 0., explaining the dips shown in Fig. b) for p — p scattering. We note in passing that the
out-of-plane distribution of <8Rps(q“ lky)/ 895>incoh also shows dips at the same polar angles, due to the factor az(q)
in Eq. , but these dips will be present regardless of the angle of incidence.

The peaks observed for 6, > 6, in Figs. 2 and [3| for £; > £, are optical analogues of the Yoneda peaks observed by
Y. Yoneda in the scattering of x-rays from a metal surface [5] and described as “quasi-anomalous scattering peaks”
in the two-dimensional work by Kawanishi et al. [4]. The Yoneda peaks were originally observed as sharp peaks
for incidence close to the grazing angle, as the difference in the dielectric constants of the two scattering media is
very small at x-ray frequencies. In the following, by Yoneda peaks we will mean well-defined maxima in the angular
distribution of the intensity of the scattered light at, or slightly above, the critical polar angle for total internal
reflection, when g1 > e5.

Although the mathematical origin of the Yoneda peaks is clear from Egs. and , namely, they are associated
with the minimum of the functions |d,, s(¢;)|* and |d,, s (k| )|?, a physical interpretation of them is still under discussion.
Thus, Warren and Clarke [I7] in a study of the reflection of x-rays from a polished surface (mirror), proposed that
these peaks arise when the incident beam at a grazing angle of incidence 0 that is greater then the grazing critical
angle for total internal reflection 6. is scattered through a small angle 8 by something just above the mirror surface.
The scattered field falls upon the mirror at a grazing angle «, and strong reflection occurs when a < .. This reflection
is cutoff sharply for o > 6. and less sharply for a < 6. by the rapidly decreasing intensity of small-angle scattering.
This produces an asymmetric peak in the intensity of the scattered field, whose maximum occurs at the critical angle.
It was suggested that the scatterer could be a projection on an irregular surface.

In a subsequent study of the grazing-angle reflection of x-rays from rough metal surfaces with the use of the
distorted-wave Born approximation [18], Vineyard [6] noted from an examination of the angular dependence of the
magnitude of the Fresnel coefficient for transmission through a planar vacuum-metal interface, that it produces a
transmitted field on the surface whose angular dependence has the form of an asymmetric peak. The peak maximum
occurs at the critical angle, and has a magnitude that is twice that of the incident electric field on the surface, leading
to enhanced diffuse scattering at this angle. This “Vineyard effect” was invoked by Sinha et al. [7] as the origin of
the Yoneda peaks. This result is mathematically similar to the explanation provided by Egs. and , but it is
not a physical explanation for these peaks.

Such an interpretation was offered by Kawanishi et al. [4], who suggested that the Yoneda peaks may be associated
with the presence of lateral waves [19] propagating along the interface in the optically less dense medium. This wave
satisfies the condition for refraction back into the optically more dense medium, and it therefore leaks energy at
every position along the interface, along rays whose scattering angle 65 equals . [20]. This radiation is restricted
to the range 6. < 05 < 7/2. This is an attractive explanation, but it needs to be explored more through additional
calculations.

We have also calculated the full angular intensity distributions of the reflected light. Figures [] and [f] present
such simulation results for the contribution to the mean differential reflection coefficient from the light that has been
scattered incoherently by the randomly rough interface. The angles of incidence were set to (6, ¢o) = (0°,0°); it
was cross-sectional cuts along the plane of incidence of these angular intensity distributions that resulted in the solid
curves presented in Fig. [2| The parameters assumed in producing the results of Figs. a) and {4} and Figs. b) and
[Hl are therefore identical.

Figures[d and [5 and all following full angular intensity distributions, are organized with a similar layout: They are
arranged in 3 x 3 subfigures where each row and column of the array correspond to the angular distribution of the
incoherent component of the mean differential reflection coefficient for a given state of polarization of the scattered
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FIG. 4. The incoherent component of the mean differential reflection coefficient, showing the full angular intensity distribution
as a function of the lateral wave vector of the light scattered by a rough interface between vacuum and a dielectric. The light
was incident on the surface from the vacuum, [e; = 1.0, e2 = 2.64]. The angles of incidence were (6o, o) = (0°,0°). The
position of the specular direction in reflection is indicated by white dots. The parameters assumed for the scattering geometry
and used in performing the numerical simulations had values that are identical to those assumed in obtaining the results of
Fig. a). The in-plane intensity variations in Figs. Ekb) and f) are the curves depicted in Fig. a). The star notation, e.g.
p — *, indicates that the polarization of the scattered light was not recorded, hence Fig. @(a) is the sum of Figs. @b) and E|(c),
and Fig. d) is the sum of Figs. @e) and El(f) Furthermore, for the subfigures in the third column the open circle in e.g. 0 — %
symbolizes that the incident light was unpolarized; these simulation results were obtained by taking the arithmetic average of
the other two subfigures in the same row. The roughness parameters assumed in obtaining these results were § = A/40 and
a=M\/4.

and incident light, respectively. The lower left 2 x 2 corner of such figures corresponds to the cases where S-polarized
incident light is reflected by the rough interface into a-polarized light, denoted 8 — « in the lower left corner of each
subfigure, where o = p, s and the same for 8. Moreover, the first row corresponds to results where the polarization of
the reflected light was not recorded (indicated by x); such results are obtained by adding the other two results from
the same column. The rightmost column presents results for which the incident light is unpolarized (indicated by an
open circle, o); these results are obtained by taking the arithmetic average of the other two results present in the
same row.

The lower left 2 x 2 corners of Figs. [4 and [5] display dipole-like patterns oriented along the plane of incidence for
co-polarization and perpendicular to it for cross-polarization. This is a consequence of the definition used for the
polarization vectors in our system. Moreover, Figs. [l{g)—(i) and [5[g)—(i) show that for unpolarized incident light at
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FIG. 5. The same as Fig. EI, but for light incident from the dielectric side onto the interface with vacuum, [e1 = 2.64; 2 = 1.0].
The in-plane intensity variations in Figs. b) and f) are the curves depicted in Fig. b). Notice the rapid changes in

intensity around the polar angle 6; = 6. = sin™! Ver/e2 lor q = \/eaw/c].

normal incidence, the scattering distributions are independent of the azimuthal angle of scattering ¢s. This rotational
symmetry is expected for isotropic surfaces like the ones we are investigating when the lateral momentum of the
unpolarized incident light is zero. However, for £; < €5 and when the incident light is linearly polarized but the
polarization of the reflected light is not recorded, Figs. [d{a) and (d), we observe a slight skew in the distributions.
This is similar to results presented in other, similar work [2] 21I], and is due to the subtle differences between the
distributions of p — p and s — s scattered light, as presented for in-plane scattering in Fig.

When £; > &5 the Yoneda peaks form a circle of equal intensity at the polar angle 65 = 6. [or ¢ = /E2w/c] in
Fig. i), where unpolarized incident light is scattered by the surface into s-polarized light. Similarly, a circular groove
of close-to-zero intensity [exactly zero according to SAPT, Eq. (53))] can be found at 6, = 6, in Fig. [5(h). The position
and circular symmetry of this groove can be understood through the previously mentioned factors of az(g)) and k|
present in Eq. for p — p polarization and the factor as(g)) present in Eq. for s — p polarization, since
a2(q)) becomes zero when g = /gz2w/c and k| is zero for normal incidence. It can be of interest to note that we also,
as a consequence, observe a ¢,-independent peak in Fig. h), at a polar scattering angle significantly larger than 6.:
the same peak as seen for p — p scattering in Fig. b). However, this peak is not as sharp as the peak found at 6,
in Fig. i), and according to our definition it is not a Yoneda peak.

Equations demonstrate that the angular intensity distributions we are investigating can, to lowest order in the
surface profile function, be explained through different factors in these equations with good approximation. As an
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aid in the interpretation of the results presented here and in the following, we notice that the power spectrum of the
surface, g(|q) — kj|) is common for all equations in Eq. . As such, the mean DRC in SAPT to lowest order is
essentially a distorted Gaussian on which critical angle effects are superposed.

B. Non-normal incidence
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FIG. 6. (a) Same as Fig. [J[a) but for angles of incidence (6o, o) = (66.9°,0°). (b) Same as Fig. [6{a) but for out-of-plane
scattering [¢ps = +90°]. Results for combinations of the polarizations of the incident and scattered light for which the scattered

intensity was everywhere negligible have been omitted. [Parameters: ¢1 = 1.0, g2 = 2.64; 6 = \/40, a = \/4].
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FIG. 7. Same as Fig. [f] but for root-mean-square roughness § = A\/20.

As a starting point for our discussion of results for non-normal incidence, we in Fig. @(a) present the angular
dependence of the light scattered incoherently for a grazing angle of incidence from vacuum: 6y = 66.9°. The
scattering distribution for s — s scattered light can be seen to have retained its general shape from Fig. an)7 but
for p — p scattering we now observe a new feature: a local minimum at 6 =~ 50°. In the case of small amplitude
perturbation theory, represented in Fig. |§|(a) by dashed curves, <8Rpp(q“ lk)/ am)imoh goes to zero at the position

of this minimum.
In order to explain this minimum for p — p scattering in Fig. @(a), we again turn to Eq. . For non-normal

incidence (k) # 0), the function F(q;lk|) in Eq. can only cause <8Rpp(q“|k||)/8§25>incoh to vanish when §; ~1A<H

is positive (forward scattering). Specifically, for in-plane forward scattering [q -1A<H = 1], <(‘3Rpp(q“ Iky)/ 8QS>incoh will
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vanish at a polar angle © g given by

5in2
©p(fo) = sin~* <\/( E2(e2 —e1sin” bo) ) (56)

2
€3 — e7)sin” Oy + 162

The scattering intensity (OR,,(q)|k|)/0%%s). will therefore, to lowest non-zero order in SAPT, have a zero when

incoh
1
1 < &2 and fp is in the interval sin™' [e2(e2 — €1)/(e3 + 261 —€3)]* < 0y < m/2. For 6y = 66.9°, as assumed in
producing Fig.d@(a), we therefore expect a local minimum in (OR,,(qy|k))/09s) at 0 = ©p(66.9°) = 51.7°,
which is in good agreement with the observed value.

The scattering angles defined by © g were first mentioned in the literature by Kawanishi et al. [4], where the angular
values of © g were explored through a stochastic functional approach for two-dimensional surfaces. They chose to call
the angles at which the first order contribution (according to their approach) to (9Ra,(q)lk)) /8QS>incoh vanishes
the Brewster scattering angles, as a generalization of the Brewster angle for a flat surface. In what follows, following
Kawanishi et al., we will call the polar angles of scattering in the plane of incidence at which p- and s-polarized light
is scattered diffusely (incoherently) into light of any polarization with zero, or nearly zero, intensity, the Brewster
scattering angles.

The Brewster angle 0p is defined by the zero in the reflectivity from a flat surface (coherent reflection in the
specular direction) for p-polarization at the angle of incidence given by 6y = 6 = tan='(y/e2/e1). For one set of
{€1,€2}, there is hence only one Brewster angle for incidence in a given medium. However, in contrast, we would like
to stress the fact that the Brewster scattering angles for p — p scattering are present for a wide range of angles of
incidence, given by Eq. for in-plane scattering. From Eq. it is also of interest to note that for light incident
at the Brewster angle (for the corresponding flat-surface system), 6y = 0, we find that ©5(6p) = 0p; the scattering
intensity for light scattered incoherently vanishes for a scattering angle equal to the Brewster angle. This attests to
the close relation between the Brewster angle for coherent reflection and the Brewster scattering angle © g for diffuse
reflection, and is consistent with the findings of Kawanishi et al. [4].

Figure @(b) presents simulation results for the same configuration as in Fig. |§|(au)7 but for light scattered out-of-plane
[q ~1A<H = 0]. The dot product § - 12” in Eq. indicates that, to lowest non-zero order in SAPT, we should not
expect any contribution to the mean DRC from s — s out-of-plane incoherently scattered light. However, this is not
the case for p — p scattered light, where, even for § -k = 0, a closer look at Eq. indicates that the out-of-plane
scattered intensity is zero only for 65 = 0 [¢) = 0]. This is precisely what we observe for (9R,,(qy|k))/0%)
Fig. [6[(b).

Figure |7] depicts results similar to those presented in Fig. |§| but for an increased surface rms-roughness of 6 = A/20
with the remaining parameters unchanged. As for normal incidence, it is found, not surprisingly, that small amplitude
perturbation theory is most accurate for the smallest surface roughness. However, the most interesting feature to
notice from Fig. a), as compared to Fig. @(a), is the angular position and amplitude of the local minimum of the
in-plane p — p intensity distribution. In the former figure [Fig. a)], the intensity at the position of the minimum
is non-zero and it is located at an angle that is smaller than the Brewster scattering angle ©5(0y) predicted by
Eq. . We speculate that this shift in the Brewster scattering angle is roughness induced in a way similar to how
the “normal” Brewster angle is shifted by the introduction of surface roughness.

incoh

incoh m

The results presented in Fig. [6] were in-plane and out-of-plane cuts from Fig. [§] which presents the full angular
distribution of the contributions to the mean DRC from incoherently scattered light for the angles of incidence
(6o, o) = (66.9°,0°). Here the white dots indicate the lateral wavevector of the specular reflection, k). Compared
to the results presented in Fig. 4] Fig. [§] displays many interesting features that are strongly dependent on both
incoming and outgoing polarization, and we are in Fig. [§] left with symmetry in the distributions only about the
plane of incidence. For p — p polarized reflection, Fig. b), we observe that a significant fraction of the incoherently
scattered light has shifted into the backscattering portion of the g-plane as the angle of incidence has increased.
The opposite is true for s — s polarized reflection, Fig. (f), where the majority of the incoherently scattered light
is scattered into the forward portion of the g-plane. This can be understood through small amplitude perturbation
theory: In Eq. , the function F(qH|k”) [Eq. ] constitutes the main difference between s — s and p — p
polarized scattering, and it is easy to see that this term will enhance the backward scattering and reduce the forward
scattering for p — p polarization. Additionally, the Brewster scattering angle, which for 8, = 66.9° was given by
Eq. and found to be at 8, = 51.7° for the parameters assumed, can now be seen to be part of a more general but
still localized minimum in both Fig. a) and Fig. h)7 i.e., for p — % and o — p scattering respectively. Figure b)
shows that the Brewster scattering angle for p — p polarized scattering can be found to be part of an interestingly
shaped minimum in the g-plane. The shape of this minimum can, however, be extracted in a straightforward manner

from Eq. .
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FIG. 8. Same as Fig. [d] but for the angles of incidence (6o, ¢0) = (66.9°,0°). [Parameters: &1 = 1.0, e2 = 2.64; § = /40,
a = \/4].

More interesting still is scattering in the inverse configuration, where light is incident from the dielectric side
of the rough interface [e1 = 2.64, e2 = 1.0]: solutions of the RRE for this configuration and angles of incidence
(6o, o) = (34.5°,0°), but for otherwise identical parameters as in Figs. |§| and |8] are presented in Fig. EI Analogous
with Fig. @ Fig. |§|(a) shows the incoherent component of the mean DRC for in-plane scattering, and Fig. El(b) shows
the corresponding curves for out-of-plane scattering.

In Fig. |§|(a)7 we now observe that the two dips in <8Rpp(q|||k“)/8Qs>incoh at |0s] = 0. observed in Fig. b) have
both turned into Yoneda peaks, albeit with different peak intensities, and that the sharp dip at the same angle for
forward scattering has turned into a less sharp local minimum at 6, ~ 27°. In order to understand these features,
we see from Eq. that, for e1 > &2, (IR (q)k))/0%), vanishes for 0, = ©p(0y) when 6y is in the interval

incoh

0 < 6y < sin™'\/e5/e;. This minimum in <8Rpp(q|||k“)/8Qs>incoh will shift its polar position towards 6, = 0° for
increasing 6, eventually “releasing” the Yoneda peaks in the forward scattering plane originating in the |d, (qH)|2
functions also for p — p scattering. In the backscattering plane, we observe through the function given in that
the negative sign of (g - 1A<H) will lead to a monotonic increase in the contribution from Eq. to Eq. as 6y
increases, eventually producing a Yoneda peak also for q - 1A<H < 0. The overall distribution of s — s incoherent
scattering in Fig. |§|(a) also show a strong forward shift in its scattering intensities, which, as we look to Eq. ,
can be attributed solely to the shifted power spectrum g(|q; — k).

Looking at Fig. El(b), we observe several features for out-of-plane scattering that warrant a comment. Overall, we
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FIG. 9. (a) Same as Fig. 2(b) but for angles of incidence (6o, $o) = (34.5°,0°). (b) Same as Fig. [Jfa) but for out-of-plane
scattering [¢s = £90°]. Results for combinations of the polarizations of the incident and scattered light for which the scattered
intensity was everywhere negligible have been omitted. [Parameters: e1 = 2.64, 2 = 1.0; 6 = A\/40, a = \/4].
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FIG. 10. Same as Fig. El but for root-mean-square roughness § = A/20.

observe that the scattering distributions are again symmetric about 6, = 0, as is expected for out-of-plane scattering
when the surface roughness is isotropic. Moreover, the distribution of <8RpS (qylky)/ BQS>incoh appears similar in shape

to the distribution of (OR,,(q \k”)/aQS>im0h in Fig. [2[(b). Their similarity can, to lowest non-zero order in SAPT,
be attributed to their shared factor of az(g)) in Eqgs. (53a)) and (53c), which in both cases vanishes for ¢ = \/gaw/c,
thereby suppressing the Yoneda peaks at this polar angle. There are no such suppressing factors present in Eq. (53b)),

and the distribution of (OR,,(q)k)) /8QS>incoh therefore displays Yoneda peaks at |#5| = .. Similar to what we
observed in Fig. |§|(b), we see that the distribution of (9R,,(q)k))/0¢%). has a local minimum at §; = 0; both

this minimum and the Yoneda peaks found at |0;| = 6. are readily underslg(;%}zi through the function in Eq. and
the factor |dq (g))|?, respectively.

We now turn to a scattering system for which the rms-roughness of the surface is increased to 6 = /20, i.e.,
twice of the roughness assumed in obtaining the results of Fig[0] Results for the in-plane and out-of-plane scattered
intensity distributions for different combinations of the polarizations of the incident and scattered light are presented
in Fig. Overall the results in Fig. are in qualitative agreement with those of Fig. [9] for the equivalent but less
rough scattering system. In general, the increase in surface roughness is again found to result in a poorer agreement
between the results obtained on the basis of SAPT and those obtained by a direct numerical solution of the RRE.
However, it is interesting to observe that for the case of in-plane as well as out-of-plane p — p scattering, SAPT seems
to give a fair representation of the simulated scattered intensity distributions for both levels of roughness considered
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in Figs. [0] and For other combinations of the polarizations of the incident and scattered light this is not the case.

102 <8R01/0Qg> incoh
0.00 0.80 1.60 2.40 3.20

151005 00 05 1.0 15 -1.0-05 0.0 0.5 1.0 Lb _-1.0 05 0.0 05 1.0 L5
a/(w/c) q/(w/c) q/(w/c)

FIG. 11. Same as Fig. [5| but for the angles of incidence (6o, ¢o) = (34.5°,0°). As can be seen from the position of the
white dot, this figure captures the scattering distribution when the polar angle of incidence 6y is close to the critical angle
0. = sin~! \/ea/e1 for a corresponding flat-interface system. [Parameters: e; = 2.64; €2 = 1.0; § = A/40, a = \/4].

The results presented in Fig. [9 were, as for Fig. [f] in-plane and out-of-plane cuts from Fig. [[1] which displays the
full angular distribution of the contribution to the mean DRC from the incoherently scattered light for the angles of
incidence (6o, ¢o) = (34.5°,0°). In contrast to what was observed in Fig. |8 all four of the lower left 2 x 2 subfigures in
Fig. [L1]now have significantly differing appearances. Similar to our observations in the case of incidence from vacuum,
we observe that the Brewster scattering angle described by Eq. can be seen to be part of a more general but
still localized minimum in both Fig. a) and Fig. h), for p — x and o — p scattering, respectively. Further, we
still, as in Fig. |5| observe Yoneda peaks for all azimuthal angles of scattering. The intensities of these peaks are now,
however, significantly stronger in the forward scattering plane, closer to the direction of specular reflection.

We now turn to Fig. which is identical to Fig. [11| but for the angles of incidence (g, ¢g) = (45.5°,0°). For these
angles of incidence, the light incident on a flat surface would exhibit total internal reflection. Incoherent scattering
is, as before, greatly enhanced for ¢ > \/gaw/c, the part of wavevector-space that is evanescent in the medium of
transmission. The intensity of the light scattered diffusely into this region is now comparable for s- and p-polarized
light, and we see Yoneda peaks in both forward and backward scattering, for a fairly wide range of azimuthal angles.
This can, as before, be understood to lowest non-zero order in SAPT through Egs. and (54)). The factors |dy, (k)2

and |d,(ky)|~2 will both have their maxima at 6y = sin™" (\/22/£;), maxima that coincide with the corresponding
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FIG. 12. Same as Fig. but for the angles of incidence (6o, ¢o) = (45.5°,0°). [Parameters: g1 = 2.64, e2 = 1.0; § = A/40,
a=\/4].

maxima for the previously mentioned factors |d,(gy)|~2 and |ds(g)|~2. The contribution from these factors will be
the same for all ¢, but common for all combinations of polarized scattering in Eq. is that the multiplicative

factor of the power spectrum will have its principal weight at |q — k|| = 0; explaining the asymmetry about ¢; = 0
and the consequent shift of scattering to the forward scattering portion of the g-plane.
While there is no Brewster scattering angle for the angle of incidence in Fig. we still observe a local minimum

in the backward scattering direction close to the critical angle for p-polarized incident light, Fig. a).

C. Reflectivity and reflectance

The reflectivities for the two configurations of media are presented in Fig. Both Figs. a) and b) show
only small deviations from the Fresnel reflection coefficients for a corresponding flat-surface system, the only notable
difference being in Fig. (b) where the surface roughness prevents total internal reflection for incoming light with
6y larger than 6, = sin™' \ea/e1 =~ 38.0°, the critical angle corresponding to the values of the dielectric constants
assumed in these simulations. The overall reflectivities for both systems are slightly smaller in all cases than the
corresponding Fresnel coefficients, which is expected for a rough surface system since some light is scattered diffusely
away from the specular direction. The rough-surface analogues of the Brewster angles for corresponding flat-interface
systems, called analogues because the reflectivity does not reach strict zero in the case of surface roughness, are clearly
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FIG. 13. (a) The reflectivities R« (o) of a two-dimensional randomly rough vacuum-dielectric interface [e1 = 1.0, g2 = 2.64] for
p- and s-polarized light as functions of the polar angle of incidence. (b) The same as in Fig. a), but for a dielectric-vacuum
interface [e1 = 2.64, e2 = 1.0]. The quantity R% (fy) indicates the Fresnel reflection coefficient (flat surface reflectivity). The
critical angle 0y = 0. = sin~! \/es /€1 for total internal reflection for an equivalent flat-interface system is indicated by a vertical
dashed line in Fig. b). Several simulations were run with small perturbations in the surface length L in order to obtain
reflectivity data with higher angular resolution. The roughness parameters assumed in obtaining these results were § = \/40

and a = \/4.
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FIG. 14.  The 6o-dependence of the contribution to the reflectance from p- and s-polarized incident light that has been

scattered incoherently from a two-dimensional randomly rough surface. This quantity is for S-polarized incident light defined
as Z3(00)incon = Zp(0o) — Ra(6o). (a) The reflectances for a vacuum-dielectric interface [e; = 1.0, 2 = 2.64] for p- and
s-polarized light as functions of the polar angle of incidence. (b) Same as Fig. a), but for a dielectric-vacuum interface
[e1 = 2.64, e2 = 1.0]. As in Fig. the critical angle for total internal reflection in a corresponding flat-interface system, 0., is
indicated by a vertical dashed line in Fig. b). Several simulations were run with small perturbations in the surface length
L in order to obtain reflectance data with higher angular resolution. The roughness parameters assumed in obtaining these
results were 6 = A\/40 and a = \/4.

seen for p-polarized light in both figures.

The differences between the presented results for the reflectivity and the corresponding Fresnel coefficients can be
better understood through Fig. [T4 which presents the contribution to the reflectance from the light that has been
reflected incoherently by the interface: %Z3(6p)incon [s€€ Eq. ] In both subfigures in Fig. We see that the amount
of diffusely scattered light in general decreases with an increasing angle of incidence, if we ignore the effects of total
internal reflection. This is consistent with the general notion that a rough surface is perceived as less rough for large
angles of incidence [14].

Figure a) shows that the incoherent part of the reflectance for the vacuum-dielectric configuration is a mono-
tonically decreasing function of 8y for both polarizations, as expected by inspection of Egs. and , for 1 < €.
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The functions |d, (k)| =2 and |ds(k)| 2, and the factor 1/cos(f) are all monotonically increasing functions of kj (or
6p), but they do not increase rapidly enough to compensate for the monotonously decreasing factor of af (k). A
closer inspection of the numerical results and a more careful evaluation of the different factors in Eq. have shown
that the more rapid initial decrease of %p(6¢)incon is due to the contribution from its cross-polarized term, while its
co-polarized term is responsible for the eventual less rapid decrease compared to %Zs(60)incoh-

The incoherent part of the reflectance for the dielectric-vacuum configuration is displayed in Fig. b). We can
find here the explanation for why the curve for p-polarization in Fig. b) showed a stronger peak for 6y just beyond
the critical angle 6. than the curve for s-polarization: less light is scattered incoherently for these angles when the
incident light is p-polarized than when it is s-polarized. We can also see that the contribution to the reflectance
from the light scattered incoherently increases more than two-fold at the critical angle relative to the contribution
at normal incidence. This behaviour can, again, be understood in terms of small amplitude perturbation theory to
lowest order in the surface profile function, Egs. and (54). The functions |d, (k)| =2 and |d,(k;)| =2 will both have
their maximum at the critical angle 6., but while %;(6p)incon Will get monotonously increasing contributions from
both its co- and cross-polarized components for 0 < 6y < ., for Z,(0o)incon the cross-polarized component will go to
zero due to the as(ky)-factor present in Eq. (53b). This dip in (9Rs,(q |kH)/8QS>inCOh is hence the main reason for
the differences in the incoherent component of the reflectance for this configuration of media.

VII. CONCLUSIONS

We have presented a derivation of the reduced Rayleigh equation (RRE) for the reflection amplitudes of light
scattered from a two-dimensional, randomly rough, surface. These equations enable a non-perturbative solution of
the scattering problem based on the Rayleigh hypothesis. As an example of its solution by purely numerical means,
the full angular distributions for both co- and cross-polarized incoherent components of the mean differential reflection
coeflicients were reported, for configurations of vacuum and an absorptionless dielectric with a Gaussian surface power
spectrum and correlation function.

It was shown that a configuration of reflection within the optically denser medium leads to Yoneda peaks in the
angular distributions of the diffusely scattered light, namely peaks at the critical angle for total internal reflection
in the denser medium. The behaviour and development of these peaks for a wide range of angles of incidence and
scattering were investigated, and the lack of such peaks for light scattered into p-polarization for polar angles of
incidence smaller than the critical angle were explained through small amplitude perturbation theory (SAPT).

Brewster scattering angles, angles where scattering into p-polarization is suppressed to strict zero in SAPT to lowest
non-zero order in the surface profile function, were found to explain many of the differences in scattering into s- and
p-polarization for the scattering systems investigated in the current work. These angles were first mentioned in the
literature by Kawanishi et al. in Ref. [4. Our results are in good agreement with their findings.

Small amplitude perturbation theory, to lowest non-zero order in the surface profile function, was overall shown to
reproduce our numerical results qualitatively to a fairly high degree of accuracy, both through analytical arguments
and a numerical implementation of that theory. This leads us to believe that the features presented in the results are
single-scattering effects.

The scattering of light from a transparent dielectric is well described by solutions obtained by means of small
amplitude perturbation theory, including the full angular distribution of the mean DRC for all combinations of the
polarizations of the incident and scattered light. The reduced Rayleigh equation is a powerful starting point for studies
of higher-order scattering features, such as enhanced backscattering, for example. The results presented here show
that for the degree of surface roughness and the values of the dielectric constants assumed in this work no higher-order
features are observed. Nevertheless, the RRE still gives more accurate numerical results for the mean DRC than does
SAPT to lowest nonzero order in the surface profile function when the surface roughness is increased.

As an investigation of the quality of the results, energy conservation (unitarity) was found to be satisfied within
10~ when the total scattered energy from both reflection and transmission was added together, for the roughness
parameters and configurations used in this paper. An investigation similar to the present one but for light transmitted
through the dielectric rough interface will be presented in a separate publication [15].
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Appendix: Expansion of R(q) k) in powers of the surface profile function

In this appendix we outline the derivation of Eq. . To this end, we begin with the expansion

o0

R(qylk)) =) %R‘") (aylky), (A1)

n=0

where the superscript n denotes the order of the corresponding term in powers of ((x)). When Egs. and (A.1]
are substituted into Eq. , the latter becomes

> - <TZ> /((;j)l? [—an(g)) + az(pp)] " C™ () — a)MT (pylay) R (q k)

m!
m=0n=0 - ( )n (A2)
—1 n—1 2(p _
=> - [ (k) + ()] (™ (py = X )M (pyK).
= n!
When we equate terms of zero order in ((x) on both sides of this equation, we obtain
1 1
M+ RO (p k) = —(2m)% (p — k) ————— M~ , A3
en (o)) + a2y (pylpy) R (py k) = —(27)%5 (p) — k) (o) + aa(o) (pylpy) (A.3)
which, if we solve for R (q; k) gives
dy (kp)
RO qilk R(g) qylk yEa 0
1()5)( i1kp) 1(70)( iky) :(27r)25 (qllfkll) » (k) e | (A.4)
Ry (qylk)) Rss' (qylk)) 0 s
d3 (ky)
where
d;,t(/ﬂu) = {-,‘Qal(k”) + Elag(k”) (A.5a)
d;t(k‘u) = 051(]4}”) + 042(]4;”). (A.5b)

Equation (A.4) essentially represents the Fresnel coefficients for specular reflection from a flat interface. For m = 1,
Eq. (A.2) can be simplified to

1
—ai(py) + az2(py)

+ (1) gy ), T ©
M (pylp) R (pylk)) + (%)QC (P — a)M ™ (pyla)) R™ (q k)

= —(W(p) = k)M (py|k)).

If we now use the result that the matrix M*(py|py) is diagonal and hence readily inverted, and that the matrix

R (qy|k)) is given by Eq. (A:4)), we can simplify Eq. (A6) into
R (qylky) = — (g2 — 1) (P (g — k)
S [y (k)M (ay k) + dif (k) M,

w | @ ads (k) g p p}
T e k)M (aylky) + d (k) Mg (ay )]

(A.6)

(arll)] G5y Mas(anlky) [ds (k) +df (k)] | (AD)
M (ay k) [d (ky) +dd (ky)] |-

P ¥ (q)dT (ky)

where the matrix elements {Mé‘ﬂ (qylky)} are given by Eq. (28a). This ultimately gives

R (k) = (25— £1) (D(ay — ky)

1 _ an - Kk VB w & "
| @ Cands () {E\/Zglkl e102(q)) <q” k“) aQ(k”)} dy (g))d3 (k) Cazgqu) {q“ 8 k“]?, 200 (ky) —
€1 w | A i 1 w ~ i
di(a))d; (k) © {q” . k”]g oz (k) af (apd (ky) & \ 4l 'k”)

In view of Eq. (A.1)) we find that through terms linear in the surface profile function
R(qyk|) = RO (qylk;) —i R (qylky) + O (¢*) . (A.9)
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The substitution of these results into Eq. and use of the result that (é(QH)f(Q”)*) = 56%9(|Qy) yields Eq. (53).
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