
Synchronization of pulse-coupled

oscillators1

Jørgen Kristoffersen

June 29, 2009

1TFY4900 Physics, Master thesis, Department of Physics,Norwegian University
of Science and Technology, NO-7491 Trondheim, Norway



Abstract

I have studied the synchronization of pulse-interacting oscillators, coupled
in a network. Undisturbed, an oscillator will fire a pulse at regular intervals.
When receiving a pulse, the time until the next firing is delayed according to
phase dependant activation potential which is strictly increasing and concave
down. Assuming that the oscillators have the same intrinsic firing frequency,
and that the total input to each is equal, there exists a synchronized state
where all oscillators fire at the same time. By introducing a perturbation
of this state, and constructing a linearized map for the perturbation, the
synchronized state is showed to be stable. Numerically, the perturbation is
shown to approach the synchronized state in different networks.



Oppsummering

Jeg har studert synkroniseringen av pulskoblede oscillatorer i nettverk. N̊ar
en oscillator st̊ar uforstyrret, sender den ut pulssignaler med jevne mellom-
rom. N̊ar oscillatoren mottar en puls, blir tiden til neste pulsavfyring forsin-
ket avhengig av et aktiveringspotensial som er strengt økende og konkavt
ned. Dersom man antar at oscillatorene har samme egenfrekvens, og at den
totale koblingsstyrken inn til hver av oscillatorene er den samme, eksisterer
det en synkronisert tilstand hvor alle oscillatorer sender ut pulser samtidig.
Ved å introdusere en pertubasjon av denne tilstanden, og konstruere en
lineær iterativ funksjonfor pertubasjonen, blir det vist at den synkroniserte
tilstanden er stabil. Pertubasjonen blir vist numerisk å g̊a mot den synchro-
niserte tilstanden i forskjellige nettverk.
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At the heart of the universe is a steady, insistent beat: the
sound of cycles in sync. It pervades nature at every scale from
the nucleus to the cosmos. Every night along the tidal rivers of
Malaysia, thousands of fireflies congregate in the mangroves and
flash in unison, without any leader or cue from the environmnent.
Trillions of electrons march in lockstep in a superconductor, en-
abling electricity to flow through it with zero resistance. In the
solar system, gravitational synchrony can eject huge boulders
out of the asteroid belt and toward earth; the cataclysmic im-
pact of one such meteor is thought to have killed the dinosaurs.
Even our bodies are symphonies of rhythm, kept alive by the
relentless, coordinated firing of thousands of pacemaker cells in
our hearts. In every case, these feats of synchrony occur spon-
taneously, almost as if nature has an eerie yearning of order.

Steven Strogatz in the preamable of Sync[20]
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Chapter 1

Introduction

How can thousands of fireflies along the tidal rivers of Malaysia flash in
perfect synchrony? For many years, the notion that thousands of insects
could be capable of coordinating their flashing and synchronize, was hard
to believe. Often discarded as tall tales or optical illusions. One observer,
Phillip Laurent, wrote in 1917

Some twenty years ago I saw, or thought I saw, a synchronal or
simultaneous flashing of fireflies (Lampyridse). I could hardly
believe my eyes, for such a thing to occur among insects is cer-
tainly contrary to all natural laws. However, I soon solved the
enigma. The apparent phenomenon was caused by the twitching
or sudden lowering and raising of my eyelids. The insects had
nothing whatsoever to do with it.[11]

Other explanations varied from synchrony by accident, fireflies having a
sense of rythm, sensitivity of changes in airpressure or a single pacemaker
fly setting the pace of the rest[5, 18].

1.1 Self-organizing oscillators

In 1961, the mathematician Norbert Wiener wrote in his second edition
of his book Cybernetics[24] about the alpha rhythm of the brain. The al-
pha rhythm is a 8− 12 Hz wave pattern commonly detected by electroen-
cephalography1. Wiener was theorising that the alpha rythm was the clock
of the brain, beating like a sentral drummer, coordinating the communica-
tion much like the clock in a computer. As one neuron alone hardly could
serve this purpose, being too imprecise to function as a clock, Wiener in-
stead proposed that the alpha rythm was the result of many cooperating
neurons.

1The recording of electrical activity along the scalp produced by the firing of neurons
within the brain.
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Figure 1.1: Wieners proposed signature for frequency pulling between oscil-
lators whose frequency is distributed in a bell shape. The solid line illustrates
the spectrum when the oscillators are not communicating, and the stipled
line illustrates a spectrum where the oscillators pull each others frequencies
into the middle, creating a hole on either side of the peak.

Wiener observed the fact that the alpha waves could be modified by
flicking light into the eyes about ten times every second, creating a strong
component in the spectrum with the same frequency as the flicking[23]. In
other words, an oscillator receiving impulses in a frequency close to its own
can be pulled towards the frequency of the external impulses. If each of the
neurons are oscillators having their own firing frequency in the area around
10 Hz, while pulling each others frequencies by sending their pulses to each
other, the frequencies - and phases - of the neurons are likely to pull together
into “one or more little clumps”[24] in the spectrum.

Wiener proposed a telltale signature for this process. Suppose that the
oscillators are distributed around a central frequency in a bell shaped spec-
trum. When the oscillators start communicating, the oscillators slow relative
to the rest will be stimulated to speed up, while the oscillators running fast
relative to the rest will be slowed down. As most oscillators already are in
the middle of the spectrum, the oscillators on either side will be drawn into
the middle. As the consesus in the middle grows stronger, more oscillators
on the flanks are drawn in. However, some oscillators are to far away from
the center to be influenced, creating shoulders on either side of the peak.
See figure 1.1.

With his theory of frequency pulling, Wiener suggested how many im-
precise oscillators could self-organize to make one precise, as if they where
possessed by a sentral governor. To validate his theory, Wiener proposed to
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study the synchronous flashing of fireflies or similar phenomena in nature
like the synchronous chirping of crickets. He contended that the synchronous
flashing of many Asian fireflies was too marked to be put down to human
optical illusion, and urged biologists to perform a precise study of fireflies,
looking for his signature spectrum.

In the last half of the 1960s, the biologist John Buck and his wife
Elisabeth systematically studied fireflies in Thailand. Releasing fireflies—
Pteroptyx malaccae—into a dark room, they watched how local groups of up
to a dozen flies gradually started to synchronize until they flashed in perfect
synchrony[4]. Subjecting fireflies to artifical flashing light, they found that
individual fireflies will shift their rythm in a predictable manner depending
on the phase difference between the firefly and the light. They suggested
a mechanism for synchronization were each individual firefly adjust their
rythm according signals received from their neighbours while at the same
time sending signals stimulating their neighbours

1.2 A mathematical modell for spontaneous order

Wiener never developed a mathematical theory for his hypothesis. But in
1965, the college student Art Winfree found a feasible approach to describe
the process mathematically[25]. In his modell, Winfree described each oscil-
lator with a sensitivity and an influence function. As their names imply, the
influence function describes the influence of an oscillator on the rest, while
the sensitivity function describes the oscillators sensitivity for signals from
other oscillators.

These functions depend on the phase of the oscillator. For a firefly, the
influence function would reflect the light the firefly emits, spiking for each
lightpulse, being zero in periods of darkness. The sensitivity of the firefly
might be a little more subtle, but one would expect it to reflect how the
firefly is influenced by signals around its own frequency. Perhaps by being
more sensitive close to its own firing, and less sensitive further away.

With a large number of non-linear functions describing the behavior of
the oscillators, Winfree did not develop explicit solutions. But by conducting
numeric experiments2, Winfree could observe how some combinations of
sensitivity and influence functions resulted in chaos while other combinations
resulted in synchronization no matter where the individual phases started
relative to each other.

Through numerical experiments Winfree also observed that, for the os-
cillators to synchronize, the frequencies needed to be fairly homogenous.
Winfree discovered that, as soon as the spread in frequency came benath a
certain threshold, the oscillators locked their frequencies to each other and
synchronized.[20].

2Using an IBM 7094[25].
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1.3 The Kuramoto model

In the 1970s, a Japanese physicist by the name Yoshiki Kuramoto was trying
to penetrate the hard shell of multiple coupled non-linear equations which
governed the problem of group synchronization. Following a strong intuition,
Kuramoto proposed an all-to-all sinusoidal coupling for the oscillators[10, 1,
20].

Faced with a set of infinite, non-linear, coupled equations, Kuramoto
deviced a macroscopic parameter which measured the phase coherence of
the oscillator population. With this parameter, Kuromoto was able to re-
place the all-to-all coupling with mean field quantities: the phase coherence
parameter, and the mean phase.

With the mean field approach, Kuramoto could not only see the same
threshold for synchronization that Winfree observed in his numerics, he
could derive a formula for it.

The Kuromoto modell opened up a new world of research on synchro-
nization, with applications ranging from biology to finance. A recent review,
[1], gives a good overview over many such applications.

1.4 Pulse coupled oscillators

In the Kuramoto modell, the interactions between the oscillators are smooth
and continous. However, in some cases of self-organization, the interactions
take the form of pulses. Some biological systems, like fireflies or neurons,
communicate by firing sudden impulses[4, 8].

The interaction in these cases take place in an instant compared to the
period of the oscillators. So how does the firefly incorporate these interac-
tions to adjust its own firing closer to the firing signals it receives? How can
the Pteroptyx malaccae synchronize with a precision in the order of 16 ms,
when the reaction time of a firefly is known to be in the order of 50 ms for
visual stimuli[4]?

In 1975, C.S. Peskin proposed a model for the self-synchronization of
the neurons in the sinustrial node, the pacemaker of the heart[16]. Peskin
modelled the pacemaker as a weakly interacting population of ”pacemaker“
neurons, each with a potential variable xi, governed by

ẋi = S0 − γxi. (1.1)

When the potential reached xi = 1, it fired and reset to xi = 0. The firing of
one neuron affects the potentials of all the other neurons by bringing them
up an amount ε.

Peskin conjectured that this system approaches a state where the neu-
rons fire synchronously, and that this remains true even when the oscillators
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are not quite identical. With his modell, Peskin was able to show the syn-
chronization of two identical oscillators with small coupling ε and dissipation
γ.

In 1990, Mirollo and Strogatz released a paper inspired by Peskins modell[14].
They introduced a more general phase dependant potential function,

x = f(φ), (1.2)

where f is a monotonically increasing and concave down function, and the
phase has a constant speed. When an oscillator reaches the firing threshold
x = 1, it fires and pulls the potential of the other oscillators up an amount
ε, as before, but now with an accompanying change in phase.

Starting with two oscillators, they developed a return map for the phase
of an oscillator, describing the phase of the oscillator as a function of the
phase in the subsequent period. Using the monotonically increasing and con-
cave down properties, they showed that two oscillators would synchronize.
Finally, using a technique of absorbing states, where already synchronized
oscillators act as one, they showed that the system of N identical oscillators
would synchronize for almost any initial conditions.

With this modell, Mirollo and Strogatz showed how a population of
oscillators could synchronize with simple pulse interactions.

1.5 Networks

The models presented above have all assumed all-to-all connections. In many
applications, however, there are limits as to how many other oscillators
an oscillator can see or influence. For fireflies, there might be leafs and
branches blocking the view. But this does not seem to stop the fireflies from
synchronizing through whole trees[5]. As long as a firefly can see one other
flie, and this fly can see other flies, the first firefly only needs to synchronize
with the firefly it sees, while this fly synchronize with the other fireflies.
They are all connected in a network.

A network, is in essence a number of entities connected to each other.
In mathematical litterature, the model of a network is called a graph. In
a graph, the connected entitites are vertices and the connections egdes. In
physical litterature the vertices are often called nodes, while the egdes are
called links. The terms network and graph are often used to describe the
same thing, and the difference between them is not always obvious. But
often, the term graph refers to a purely mathematical object, while network
refers to a real, naturally evolving system[17].3

A wide variety of systems are networks, and be abstracted as a graph.
Transport systems, social networks and the synchronizing fireflies are all

3Partial reuse of the corresponding section in [9].
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examples of networks. In transport systems, the egdes are roads, and the
vertices are roadjunctions. In social networks, the vertices are people, and
the connections between them are friendships or acquaintences. In our case
of the fireflies, each vertex is a fireflie, and if they see each others signals,
they are connected by an egde—a line of sight.

1.5.1 The adjacency matrix

To describe a network mathematically, the vertices are arranged in a matrix:
A network with N vertices is described by an N ×N adjacency matrix A,
where each entry aij represents the egde—if any—from vertex j to i. If
there is no egde from j to i, then aij = 0. If there is such a connection, then
aij 6= 0.

1.5.2 Direction

Notice that aij describes the egde from j to i. The egdes are in general
directed, reflecting that—for example—if firefly i sees firefly j, it does not
necessarily mean that j can see i. In the case that i sees j, but j does not see
i, aij 6= 0 and aji = 0. The convention here is that the column index labels
the sender, while the row index labels the receiver: i sees j and receives its
light signals.

In many cases, all connections in a network go both ways. If the firefly
can see in all directions from where it is sitting, then a clear line of sight
from i to j means they both see each other. In that case, the network is
undirected, and aij = aji. That is, the adjacency matrix of an undirected
network is symmetric.

1.5.3 Weight

So far, we have only been interested in whether there is a connection or not.
In the case where it only matters whether thereis a connection or not, the
convention is to use aij = 1 if there is a connection, and aij = 0 otherwise.
But in many cases, we are also interested in the strength, width or weight of
a connection. This weight might be the width of the road, or the strength of
a friendship. In that case, the non-zero elements of the adjacency matrix has
a value reflecting the weight of the connection, and the network is weighted.
Weighted networks are undirected if the weight is the same both ways.

1.5.4 Degree

A much used term in network theory, is the degree. The in-degree of a vertex
is the number of incoming egdes to the vertex. While the out-degree is the
number of outgoing egdes from the vertex.
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In the case of weighted networks, the degree can sometimes label the
total outgoing or incoming weight of a vertex[15]. In this report we will use
the term degree about the number of in- or outgoing egdes.

1.5.5 Connectivity

In the example where one firefly only saw one other fireflie, it could still
indirectly synchronize with the rest of the network because the firefly it
synchronized with, also synchronized with other fireflies it could see. In the
network of fireflies, there was a path between the first firefly and the rest of
the network, so it could indirectly reach any other fireflie.

However, mapping the connections between fireflies in a tree, one might
find that there are several separate groups which does not communicate with
each other. In that case, each group is a component of the total network in
the tree. A connected component, is a part of the network—a subnetwork—
where all vertices can reach each other. An undirected network consisting
of one component is said to be connected.

For the case of the directed network, connectivity has a little wider spec-
trum of possibilites: Imagine a directed network consisting of two connected
components, with only one directed link between them. If the network
had been undirected, it would have been connected. We call this network
weakly connected. The term weakly connected, applies to any directed net-
work where not every vertex can be reached from every vertex, but the
corrensponding undirected graph is connected.

A directed network where any vertex is reachable from any vertex is said
to be strongly connected. In terms of the adjacency matrix, A, the network
is strongly connected if for any i and j, there exists a natural number q such
that a(q)

ij 6= 0, where a(q)
ij is the (i, j) element of Aq. This means that the

adjacency matrix for a strongly connected network is irreducible[3].
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Chapter 2

A modell for pulse-coupled
oscillators

We will present a mathematical modell of pulse-coupled oscillators based
on the Mirollo-Strogatz[14] representation of each oscillator with a phase-
variable changed by a concave-down potential function. The model pre-
sented is found in papers [22, 21] by Timme, Wolf and Geisel.

Consider a system of N oscillators connected in a directed network. Each
oscillator interacts with its neighbours in the network by receiving pulses
along its incoming connections and sending pulses along outgoing connec-
tions. We will refer to oscillators having input to oscillator i as the presy-
naptic oscillators of i, Pre(i). Oscillators receiving output from oscillator i
will be refered to as the postsynaptic oscillators of i, Post(i)

The state of each oscillator i is described by a phase-like variable φi ∈
(−∞, 1]. As long as no pulses are received by oscillator i, its phase increases
uniformly in time,

dφi
dt

= 1. (2.1)

When the phase reaches a firing threshold, defined as φi(tfire) ≥ 1, the
phase is reset to zero, φi(t+fire) = 0, and a pulse is fired along the outgoing
connections of i, giving the oscillator an instrinsic period Tint = 1.

Due to a finite propagation speed of the pulse, the postsynaptic oscilla-
tors of i receives the pulse a time τ later. The pulse induces a phasechange
in the oscillators j ∈ Post(i),

φj((tfire + τ)+) = U−1(U(φj(tfire + τ)) + εji). (2.2)

Here, εji is the coupling strenght from i to j. The activation potential,
U(φ), encodes the effect of the pulse and its dependence on the current phase
φj(tfire + τ). The potential we will consider here, is a twice differentiable,
monotonically increasing and concave down function. That is,

U
′
(φ) > 0 and U

′′
(φ) < 0. (2.3)
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For simplicity, the function is also normalized,

U(0) = 0 and U(1) = 1. (2.4)

The coupling strength between any pair of oscillators i and j, εji, can be
both positive and negative. Because U is monotonically increasing, a posi-
tive coupling strength εji corrensponds to an excitatory coupling. Meaning
that a pulse from i to j will advance, or excite, the phase of j such that

φj((tfire + τ)+) > φj(tfire + τ). (2.5)

A negative coupling strength corrensponds to an inhibitory coupling,

φj((tfire + τ)+) < φj(tfire + τ). (2.6)

In this paper, we will look at inhibitorically coupled oscillators, so receiving
pulses delays the time to the next firing.

2.1 The synchronous state

Assuming that the coupling strengths in the network are normalized,∑
j∈Pre(i)

εij = ε for all i, (2.7)

there exists a synchonous state

φi(t) = φ0(t) for all i, (2.8)

where φ0 is a periodic function, φ0(t+ T ) = φ0(t).
With a sufficiently small delay, τ < 1, all oscillators will receive a pulse

from all their presynaptic neighbours a time τ after their last firing. As
∂tφi = 1, the phase is at this point φ0 = τ . Assuming inhibitory couplings,
ε < 0, the total input is guaranteed to be subthreshold, U(τ) + ε < 1. And
so, the phase right after the pulse is received is

α := φ0(τ+) = U−1(U(τ) + ε). (2.9)

After a time 1− α, all oscillators will fire again. In total, the period of this
synchronous state is

T = τ + 1− α. (2.10)
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2.2 A perturbation and its stroboscopic map

To determine the stability of the synchronous state, we introduce a pertur-
bation to the phases,

δ(0) := δ = (δ1, ..., δN )>, (2.11)

where
δi = φi(0)− φ0(0). (2.12)

We assume that the initial perturbations are small, in the sense that

max
i
δi −min

i
δi < τ. (2.13)

In other words, all oscillators will fire within a time window smaller than
the time it takes for a pulse to reach its postsynaptic oscillators.

Now, to determine how this perturbation evolves, a stroboscopic period-
T map of the perturbations will be constructed.

For each oscillator i, the perturbations of its presynaptic neighbours, δj
where j ∈ Pre(i), is labeled according to their size,

∆i,1 ≥ ∆i,2 ≥ ... ≥ ∆i,ki
, (2.14)

where ki = |Pre(i)| is the number of presynaptic oscillators—the incoming
degree–for i. The index, n ∈ {1, ..., ki}, will by this labeling count the order
in which signals arrive to oscillator i. So, if jn := jn(i) ∈ Pre(i) labels the
oscillator from which oscillator i receives its nth signal, then

∆i,n = δjn . (2.15)

The perturbation of i itself will be labeled

∆i,0 := δi. (2.16)

Using the phase shift function

h(φ, ε) = U−1(U(φ) + ε), (2.17)

the time evolution of an arbitary perturbation satisfying (2.13), starting
near φ0(0) = 0, is calculated according to the scheme in table 2.1.

Starting out with its initial perturbation ∆i,0, the time to threshold for
oscillator i is given in the last row of table 2.1,

T
(0)
i = τ −∆i,ki

+ 1− βi,ki
. (2.18)

The difference between this time and the period of the synchronized
state will offset the phase φi relative to φ0 in the next period, and so the
perturbation of i in the next period is given by

δi(T ) = T − T (0)
i = ∆i,ki

+ βi,ki
− α. (2.19)
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Table 2.1: Evolution of the phasevariable of oscillator i, φi, starting at time
t = 0 with φ0(0) = 0. The phase φi is found in the right column at different
times t, given in the left column. φi starts out with its initial pertubation
φi = φ0 + ∆i,0 = ∆i,0. After a time τ −∆i,1, i starts receiving pulse signals
from its presynaptic oscillators. The phase after the jth pulse is received is
labeled βi,j . The last time in the table is the time to threshold for oscillator
i, T (0)

i = τ − ∆i,ki
+ 1 − βi,ki

. The difference between this time and the
period of the synchronized state will be the perturbation of i in the next
period, δi(T ), as ∂tφi = 1 for all i.

t φi(t)
0 δi =: ∆i,0

τ −∆i,1 h(∆i,0 + τ −∆i,1, εij1) =: βi,1
τ −∆i,2 h(βi,1 + ∆i,1 −∆i,2, εij2) =: βi,2

...
...

τ −∆i,ki
h(βi,ki−1 + ∆i,ki−1 −∆i,ki

, εijki
) =: βi,ki

τ −∆i,ki
+ 1− βi,ki

fire: 1 7→ 0

Where, βi,ki
, is recursively related to δi(0) = ∆i,0 by

βi,m = h(βi,m−1 + ∆i,m−1 −∆i,m, εijm), (2.20)

with βi,0 := τ .

2.3 A first order approximation

To determine the local stability, we look at a first order approximation
of the map in equation (2.19). Expanding βi,ki

to the first order, with
∆i,n−1 −∆i,n � 1, it can be shown by induction that1[22]

βi,ki

.= α+
ki∑
n=1

pi,n−1(∆i,n−1 −∆i,n), (2.21)

where

pi,n :=
U ′(U−1(U(τ) +

∑n
m=1 εi,jm))

U ′(U−1(U(τ) + ε))
(2.22)

Inserting into equation (2.19), this yields

δ(T ) .= ∆i,ki
+

ki∑
n=1

pi,n−1(∆i,n−1 −∆i,n), (2.23)

1Using the notation x
.
= y meaning x = y +O((∆i,n−1 −∆i,n)2)
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which can be rewritten

δ(T ) .= pi,0∆i,0 +
ki∑
n=1

(pi,n − pi,n−1)∆i,n. (2.24)

Using ∆i,n = δjn(i) and ∆i,0 = δi, this results in the first order map

δ(T ) .= Aδ, (2.25)

where

Aij =


pi,n − pi,n−1 if j = jn ∈ Pre(i)
pi,0 if j = i
0 if j /∈ Pre(i) ∪ i

(2.26)

We will here term the matrix A as the transition matrix, as it transfers the
perturbation vector to the next period. The transition matrix is closely
related to the adjacency matrix of the underlying network, having (off-
diagonal) elements describing the effect of a pulse from j to i where the
adjacency matrix has the coupling strength εij

Notice that the matrix elements encoding the change in the phase of i
due to input from oscillators j ∈ Pre(i) will depend on the order in which
the pulses from oscillators j arrive to oscillator i. Since the order of arrival in
general is different for each iteration of the map (2.25), the stability analysis
using this first-order map is a multi-operator problem. That is, the matrix A
might change from one iteration to another if the order of the pulses change.

2.4 Stability analysis

Althought the transition matrix introduced above describes a determinis-
tic process, in many applications the transition matrix describes transition
probabilities between possible states of the system. For these processes, the
transition matrix is a stochastic matrix. A stochastic matrix, not to be
confused with a random matrix, is a matrix which consists of non-negative
real numbers and where the row or column sums are equal to one. A matrix
with row sums equal to one is a row stochastic matrix, often just referred
to as a stochastic matrix, see for example [3] or [13] for additional details.

2.4.1 Properties of the transition matrix

The row-sum of the transition matrix (2.26) is

N∑
j=1

Aij = pi,0 +
ki∑
n=1

(pi,n − pi,n−1) = pi,ki
. (2.27)
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Now, looking at equation (2.22), using the normalized coupling strength
(2.7),

pi,ki
=
U ′(U−1(U(τ) +

∑ki
m=1 εi,jm))

U ′(U−1(U(τ) + ε))
= 1. (2.28)

Because U is a strictly rising and concave down function (2.3),

U ′(U−1(x1)) > U ′(U−1(x2)) for all x1 < x2, (2.29)

and because all coupling strengths are inhibitory, εij ≤ 0,

pi,n−1 < pi,n. (2.30)

The strictly rising property furthermore ensures that pi,n > 0. Together
with pi,ki

= 1, this yields
0 < pi,n 6=0 ≤ 1. (2.31)

Looking at the equations (2.30) and (2.31), the nonzero off-diagonal
elements of the matrix (2.26) are positive and bounded above by one. The
diagonal elements

Aii = pi,0 =
U ′(τ)

U ′(U−1(U(τ) + ε))
, (2.32)

are equal for all i. And again, because U is monotonically rising and concave
down, they satisfy

0 < Aii < 1. (2.33)

In total, all transition matrices A are row stochastic matrices. By the
Perron-Frobenius theorem, there is therefore a maximum eigenvalue of one,
and all other eigenvalues are confined within the unit circle in the complex
plane. If furthermore the matrix is irreducible, this maximum eigenvalue is
simple[3]. So, for strongly connected networks, the maximum eigenvalue is
simple since the corrensponding adjacency matrix—and therefore the transi-
tion matrix—is irreducible[3]. It is easy to see that the maximum eigenvalue
corrensponds to a synchronized state where δ = c(1, 1, . . . , 1)>, since all rows
sum to one. The synchronized state is therefore a fixed state of the linear
stroboscopic map, and for strongly connected networks, it is the only fixed
state.

With all eigenvalues except the one corrensponding to the synchronized
state having an absolute value less than one, it should be easy to show
through eigendecomposition2 that the synchronized state is stable. The
transition matrices are however, not symmetric, and does not in general
satisfy the spectral theorem, which guarrantees that such a decomposition
can be done[2]. The stability of a perturbation is therefore determined
without the use of spectral decomposition.

2Diagonalizing the transfermatrix with a basis of eigenvectors.
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2.4.2 Stability for strongly connected networks

We start by assuming that the perturbation δ is not a synchronous state.
We can without loss of generality assume that all the components δi are non-
negative, because otherwise a phaseshift proportional to the synchronized
state θ = c(1, 1, . . . , 1)> can be added to eliminate any negativity. Starting
non-negative, the perturbation will stay non-negative for all times as the
transition matrix is a non-negative matrix.

We label the maximal component of the perturbation δM := maxi δi,
and the second largest δm := maxi{δi | δi < δM}. We also define the set of
maximal components

M := {j ∈ {1, . . . , N} | δj = δM} (2.34)

Using these definitions, we find[22]

δi(T ) =
N∑
j=1

Aijδi (2.35)

=
∑
j∈M

Aijδj +
∑
j /∈M

Aijδj (2.36)

≤
∑
j∈M

AijδM +
∑
j /∈M

Aijδm +
∑
j /∈M

AijδM −
∑
j /∈M

AijδM (2.37)

= δM

N∑
j=1

Aij − (δM − δm)
∑
j /∈M

Aij (2.38)

= δM − (δM − δm)
∑
j /∈M

Aij . (2.39)

Observe that the maximal component in the next period is going to be
smaller than the current if

∑
j /∈MAij > 0,

max
i
δi(T ) < δM . (2.40)

However, if there exist an oscillator k only receiving input from oscillators
with maximum components, and which itself has the maximum component,
then

δk(T ) = max
i
δi(T ) = δM . (2.41)

In the next period, if at least one of the presynaptic oscillators of k
no longer has the maximum component, then the condition is no longer
fullfilled, and the maximum component of the perturbation will decrease.
The only way the presynaptic oscillators of k, can keep the maximum value
is if all their presynaptic oscillators also have maximum components. It can
be shown[22], that the maximum component will decrease after a maximum
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of l periods if all oscillators j, connected to k with a sequence of l or less
connections, have components δj = δM .

In a strongly connected network, all oscillators are connected with a finite
sequence of directed connections, so the maximum component will eventually
decrease unless all oscillators have the same value, which corrensponds to a
synchronized state. Thus, in a strongly connected network, the synchronized
state is stable.

2.4.3 Using a leaky fire-and-integrate potential

We have so far used a general description of the potential function, only
assuming that the potential function is monotonically increasing, concave
down and normalized. We will now consider the leaky integrate-and-fire
function

U(φ) = UIF (φ) = I(1− e−φTIF ). (2.42)

with I > 1 and TIF = ln(I/(I − 1)) to satisfy the normalization. Using a
suitably chosen coupling strength,

εij =
ε

ki
, (2.43)

this function interestingly turns out to result in a single degenerate3 transi-
tion matrix with off-diagonal non-zero elements[21]

Aij =
1

Ie−τTIF − ε
ε

ki
. (2.44)

So, choosing the leaky fire-and-integrate function, instead of dealing with
multiple transition matrices, we now have a single transition matrix describ-
ing the evolution of a perturbation.

Using a similarity transform modelled after [19], the eigenvalues of this
transition matrix can be shown to be real if all links are two-way. The
matrix A is similar to

S = KAK−1, (2.45)

with Kij = δij
√
ki. Performing the multiplications, S has off-diagonal non-

zero elements
Sij =

1
Ie−τTIF − ε

ε√
kikj

. (2.46)

As can be seen, this matrix is symmetric provided that any linked oscillators
are linked both ways, that is Aij 6= 0 implies Aji 6= 0.4 In that case, the
transition matrix is similar to a symmetrix matrix, and its eigenvalues can
be guarranteed to be real.

3With respect to the pulseorder. I.e. only dependant of underlying network topology.
4Note that this does not imply that the network is undirected, because the coupling

strength might not be the same bort ways.
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Chapter 3

Numerical analysis

Using a perturbation with uniformly distributed components we will iterate
the map (2.25) on different networks. We will use the leaky fire-and-integrate
function (2.42) as the activation potential, and normalize the coupling ac-
cording to (2.43).

3.1 Zachary

A classic illustrative network is the Zachary network, shown in figure 3.1.
The network is a mapping of the communications in a 34 member karate-
club done by the sociologist Wayne Zachary in the 70s[27]. By just mapping
the communication in the club, Zachary could observe an evolving conflict
between the trainer and the administrator: In the communication map,
he saw how the club gradually divided into two distinct clusters centered
around the two.

In the context of pulse-coupled oscillators, one might think of the mem-
bers of the karate-club as fireflies: Exchanging the verbal communication
with flashing, and the two clusters with two losely separated firefly commu-
nities, much like the ones that settled in Buchs ceiling[4]. We assume that
all connections in this network are two-way, so any connection between two
fireflies mean they both see each others flashing.

Using coupling strengths (2.43), the amount any fireflie—being of a
species we here freely describe—will adjust its phase to respond to a flash
depends on how many other fireflies it can see. The total normalized cou-
pling strength ε =

∑
j εij is set to ε = −0.2 for all fireflies. The time delay

for a flash to affect the phase is set to τ = 0.05, or five percent of the fireflies
intrinsic period, Tint = 1. The time delay reflects the fireflies reaction time,
from it sees a flash until the phase is adjusted. For the activation potential,
we use the fire-and-integrate function (2.42), with I = 1.1.

The phases of the fireflies are shifted from a synchronized state φi = φ0

by a perturbation with components uniformly distributed between 0 and
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Figure 3.1: The Zachary network, a mapping of the communication in a 34
member karateclub done by the sociologist W.W. Zachary. A conflict in the
club divided it in two distinct clusters centered around the administrator
(node 34) and the trainer (node 1). The data for the network can be found
at [26]. The figure, found in [19], was provided by Simonsen.

17



0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3
x 10

−3

Iteration

σ

Figure 3.2: The evolution of standard deviation in the phases of pulse-
oscillators in the Zachary network, using the map (2.25). The phases are
originally shifted by a perturbation uniformly distributed between 0 and
0.01. The standard deviation asymptotically moves towards zero as the
oscillators synchronize.

0.01. Evolving the map (2.25), the standard deviation of the fireflies phases,

σ =
√

1
N

∑
i(δi − δ̄)2, is plotted in figure 3.2. As can be seen, the standard

deviation asymptotically moves towards zero, and the fireflies synchronize.
In figure 3.3, we have plotted the eigenvalues of the transition matrix

corrensponding to the initial perturbated state of the Zachary network. As
expected, the eigenvalues are real. We expect the second largest eigenvalue
to determine the speed of convergence towards the synchronous state, as it
corrensponds to the slowest decaying eigendirection.

In figure 3.4, we have plotted the difference between the largest and
smallest element of the perturbation. After some time, the slowest decay-
ing eigendirection seems to dominate, with the slope corrensponding to a
multiplier of 0.9778, close to the second largest eigenvalue λ2 = 0.9775

Taking a closer look at individual nodes, or fireflies, in the Zachary
network, the phase of node 3, 10 and 34 is plotted in figure 3.5. As can be
seen in figure 3.1, firefly 10 can only see firefly 3 and 34. The phase of fly
10 starts a distance away from the phases of 3 and 34. Instead of uniformly
converging towards the final synchronized state, node 10 first moves quickly
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Figure 3.3: Eigenvalues of the transition matrix in the Zachary network. All
eigenvalues are real, as expected for a network with two-way connections.
As can be seen, there is a maximum eigenvalue λ1 = 1. All other eigenvalues
are less than one, so their corrensponding eigendirections will decay with the
iterations of (2.25).
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Figure 3.4: The difference between the largest and smallest perturbation in
the Zachary network as the map (2.25) is iterated. After 40 iterations, the
slowest decaying eigendirection seems to dominate, with the slope corren-
sponding to a multiplier close to the second largest eigenvalue.
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Figure 3.5: Caption

to meet the phases of the only other fireflies it sees. But before 10 reach the
phases of 34 and 3 they have already adjusted their phase towards 10 and
the other fireflies they see, now a little ahead of 10. Finally as 34 and 3 are
drawn towards the consensus, they drag 10 with them.

Notice that, the longer the phase of 10 is ahead of the other fireflies, the
quicker the phase is adjusted towards them. This arises from the concavity
of the activiation potential, U(φ). The longer into its period the firefly
receives a pulse, the more the pulse delays the phase of the fireflie.

3.2 Erdös-Rènyi networks

We now turn our attention to Erdös-Rényi networks, which we will abbre-
viate as ER-networks. ER-networks are random networks where the prob-
ability for a connection from i to j is constant[6]. In figures 3.6, 3.7 and
3.8 we have plotted the eigenvalues of transition matrices of ER-networks
with different connection probabilities, using the integrate-and-fire potential
(2.42).

As can be seen, the eigenvalues of the generated ER-networks are not
purely real: As the connections in general are not two-way, the transition
matrices are not similar with a symmetric matrix, as was the case for the
Zachary network.

Comparing the eigenvalues at different connection probabilites, as the
connection probability go up, the spread of the non-trivial eigenvalues de-
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Figure 3.6: Eigenvalues of the transition matrix for a 128 node ER-network
with connection probability p = 0.1. The activation potential is the
integrate-and-fire function (2.42), with I = 1.1. The pulse delay is set
to τ = 0.05, and the total coupling strength is ε = −0.2.
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Figure 3.7: Eigenvalues of the transition matrix for a 128 node ER-network
with connection probability p = 0.2. The activation potential is the
integrate-and-fire function (2.42), with I = 1.1. The pulse delay is set
to τ = 0.05, and the total coupling strength is ε = −0.2.
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Figure 3.8: Eigenvalues of the transition matrix for a 128 node ER-network
with connection probability p = 0.3. The activation potential is the
integrate-and-fire function (2.42), with I = 1.1. The pulse delay is set
to τ = 0.05, and the total coupling strength is ε = −0.2.
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Figure 3.9: The evolution of the standard deviation of the perturbation in
Erdös-Rényi networks with different connection probabilities. The networks
has N = 128 nodes, coupling strengths εij = −0.2

ki
and pulse delay τ = 0.05.

crease, and the second largest eigenvalue is a little smaller. In figure 3.9
the speed of convergence is compared for the different probabilities. As one
would expect, more densily connected networks synchronize faster.

3.3 AS network

The last network we do analysis on is the autonomous systems network,
abbreviatied as the AS network. The network describe the routing tables of
6474 big hubs of the internet at a certain time[7, 12]. In figure, the 20 largest
eigenvalues are plotted. As the connections in this network is two-way, the
eigenvalues are real.

The slowest decaying eigendirection in the AS network has an eigenvalue
closer to 1 than any network we have looked at so far. In figure we have
compared the decline of the standard deviation of the AS network with
the Zachary network and an ER network with 128 noded and connection
probability p = 0.2.
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Figure 3.10: 20 largest eigenvalues of the transition matrix for the AS net-
work. The activation potential is the integrate-and-fire function (2.42), with
I = 1.1. The pulse delay is set to τ = 0.05, and the total coupling strength
is ε = −0.2.
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Chapter 4

Discussion and conclusions

We have studied synchronization of inhibitorically pulse-coupled oscillators
connected in a network. Assuming that all oscillators have the same in-
trinsic frequency, and monotonically increasing, concave down activation
potentials, the stability of the synchronized state is analysed. Analytically
we have seen that for strongly connected networks, the synchronized state is
a stable fixed state. We have seen numerically that even over large networks
with several thousand vertices, the phases approach the synchronized state.

Similary to the original Mirollo-Strogatz model[14] the concave down
property of the activation potential is a key for the synchronization. If the
activation potential would have been linear, then, looking at equations (2.22)
and (2.26), the transition matrix would have reduced to the identity matrix,
propagating any perturbation indefinitly.

Interestingly, the leaky fire-and-integrate function simplifies the problem,
resulting in a constant transition matrix instead of potentially many different
depending on the order in which the pulses arrive. This is the function
Peskin originally used[16] when he modeled the pacemaker neurons in the
heart.

In the analysis, two quite restrictive assumptions are made: (i) that the
oscillators have the same instrinsic frequency and that (ii) the total incom-
ing coupling strength is constant over all oscillators. For many oscillator
populations in nature, the assumption of identical frequencies is not real-
istic. But if the distribution of frequencies is narrow enoug compared to
the total period, this assumption might be a fair approximation[14]. Fur-
ther research should seek to explore the scenarios where there might be a
frequency distribution, and where the total incoming coupling strengths are
not constant.

However, the model provides some insights into how synchronization
can occur in a network of oscillators with simple pulse-interactions, without
any central organization, external input or extraordinary response time.
A century ago, the amazing displays of fireflies synchronizing was such a
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mystery, some people did not beleive their own eyes. This mystery is now
unraveling.
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Appendix A

Program listing

function A = make netw randdir (N, p , eps )
%make random d i r e c t e d network wi th f i x e d connect ion p r o p a b i l i t y p and
%f l a t normal ized t o t a l incoming coup l ing s t r en g t h eps . Output i s the adjacency matrix
%A of the network

A = zeros (N,N) ;
k=0;
for i =1:N

k=0;
for j =1:N

i f rand<=p && j˜=i
A( i , j ) = 1 ;
k=k+1;

end
end
for j =1:N

i f A( i , j )˜=0
A( i , j )=eps/k ;

end
end

end

end

function A = make transferm ( adjm , tau , de l ta , I i n )
%make transferm (adjm , tau , de l t a , I i n )
%make t r an s f e rma t r i x wi th input adjacency matrix o f network wi th
%coup l ing s t r en g t h eps and de lay tau . Based on pe r t u r ba t i on d e l t a and
%IF−model parameter I
global I T IF

I=I i n ;
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N = s ize ( adjm , 1 ) ;
i f s ize ( d e l t a )˜=[N, 1 ]

disp ( ’Wrong dimension : d e l t a ’ ) ;
return

end

adjm = double ( adjm ) ;
eps = sum( adjm ( 1 , : ) , 2 ) ;

% for i =2:N
% i f sum(adjm( i , : ) ,2 )˜= eps
% di sp ( ’ Coupling ( eps ) not normalized ’ ) ;
% re turn
% end
% end

T IF = log ( I /( I −1)) ;

p in = zeros ( 2 , 1 ) ;
A = zeros (N,N) ;

denomi = dU IF ( U IF inv ( U IF ( tau)+eps ) ) ;
A 0 = dU IF ( tau )/ denomi ;

for i =1:N
eps sum =0;
ne ig ind = find ( adjm ( i , : ) ) ;
ne i g ind = ne ig ind . ’ ;
s o r tv e c = [ ne ig ind d e l t a ( ne ig ind ) ] ;
s o r tv e c = sort rows ( sor tvec ,−2) ;
p in (1)=A 0 ;
for n=1: s ize ( s o r tv e c )

eps sum = eps sum+adjm ( i , s o r tv e c (n ) ) ;
p in (2 ) = dU IF ( U IF inv ( U IF ( tau)+eps sum ))/ denomi ;
A( i , s o r tv e c (n))= p in (2)− p in ( 1 ) ;
p in (1)= p in ( 2 ) ;

end
A( i , i )=A 0 ;

end

end

function U=dU IF ( phi )
global I T IF
U=I ∗T IF∗exp(−phi ∗T IF ) ;
end

function U = U IF inv ( y )
global I T IF
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U = −(1/T IF )∗ log(1−y/ I ) ;
end

function U = U IF ( phi )
global I T IF
U=I ∗(1−exp(−phi ∗T IF ) ) ;
end

function [ d e l t a s sigma ] = e v o l v e d e l t a ( adjm , tau , i n i t d e l t a , I i n , s t ep s )
%e v o l v e d e l t a (adjm , tau , i n i t d e l t a , I in , s t e p s )
%Evolve the pe r t u r ba t i on d e l t a in the o s c i l l a t o r network adjm ( so f a r ) us ing
%in t e g ra t e−and− f i r e f unc t i on s f o r p o t e n t i a l

d e l t a s=zeros ( s ize ( i n i t d e l t a , 1 ) , s t ep s ) ;
d e l t a s ( : , 1 )= i n i t d e l t a ;

for i =2: s t ep s
T = make transferm ( adjm , tau , d e l t a s ( : , i −1) , I i n ) ;
d e l t a s ( : , i )=T∗ d e l t a s ( : , i −1);

end

sigma = zeros ( s teps , 1 ) ;
for i =1: s t ep s

sigma ( i ) = std ( d e l t a s ( : , i ) ) ;
end

figure
plot ( sigma ) ;
xlabel ( ’ I t e r a t i o n ’ , ’ f o n t s i z e ’ , 1 4 ) ;
ylabel ( ’ \ sigma ’ , ’ f o n t s i z e ’ , 1 4 ) ;
end
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