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Summary

We work with the two Randall-Sundrum models from 1999. The models
are five-dimensional, that is they have one additional spatial dimension.
We study the Casimir effect on two parallel physical plates in our ordinary
spacetime, from a scalar field living in the extra dimension. The calculations
cover different boundary conditions on the plates and are carried out both
at zero and finite temperatures. We show that the correction to the ordinary
Casimir force is small, and discuss in detail some of the key problems yet to
be resolved in higher dimensional Casimir theory.

Sammendrag (Norsk)

Vi arbeider med de to Randall-Sundrum modellene fra 1999. Modellene er
femdimensjonale, de har alts̊a en ekstra romlig dimensjon. Vi ser p̊a Casimir
effekt p̊a to parallelle plater i v̊art fysiske rom fra et skalart felt som lever i
den ekstra dimensjonen. Utregningene dekker forskjellige grensebetingelser
p̊a platene og er gjort b̊ade for null og endelig temperatur. Vi viser at
forskjellen fra vanlig Casimir kraft er liten. I tillegg diskuteres noen av de
uløste problemene i forbindelse med Casimir effekt i teorier med flere romlige
dimensjoner.
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Chapter 1

Introduction

For many years physicists have tried to unify the four fundamental forces of
nature, electromagnetic, strong and weak nuclear forces and gravity, into one
theory. Today three of four forces are incorporated in the standard model
(SM) of physics, only gravity is left out. One of the fundamental problems
when trying to unite gravity with the other forces is the hierarchy problem.
It can be formulated as why gravity is so much weaker than the other forces.
Gravitational interactions are suppressed by a very high energy scale, the
Planck scale of size MPl = 2 × 1018GeV, while the other three interactions
are governed by the TeV scale. As early as in the 1920s, Kaluza and Klein
attempted to unify electromagnetism and gravity by introducing an extra
spatial dimension. In a flat 4+n dimensional theory, our four-dimensional
Planck scale will be generated from a more fundamental 4+n-dimensional
scale of gravity M by

MPl = Mn+1Vn,

where Vn is the volume of the compactified dimensions. The n extra di-
mensions need to be large in order to produce the observed Planck scale.
Unfortunately this model introduces a new hierarchy between the compact-

ification scale V
−1/n
N and the weak scale.

In 1999 Lisa Randall and Raman Sundrum published an article [1] where
they proposed a model (RS) in which we live on a (3+1)-dimensional sub-
space, called a 3-brane, in a (4+1)-dimensional spacetime, referred to as the
bulk. In addition to our visible 3-brane there exists an additional hidden
3-brane. All SM fields are confined to the branes, only gravity can propagate
in the bulk. The extra dimension is a circle S1, with radius rc, represented
by a coordinate φ with range −π ≤ φ ≤ π. They also imposed Z2 symmetry
which means that (xµ, φ) and (xµ,−φ) refers to the same point in spacetime.
The hidden and visible branes are located at φ = 0 and φ = π respectively.
Henceforth this model will be referred to as RSI. Shortly after their first
article they proposed a new model (RSII) where the hidden brane is sent to
infinity, effectively removing it from the setup [28].
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2 CHAPTER 1. INTRODUCTION

The major difference between the RS and other higher dimensional mod-
els is a warp-factor e−2krc|φ| in the metric

ds2 = e−2krc|φ|ηµνdxµdxν − r2cdφ
2.

Here, ηµν = diag(1,−1,−1,−1) is the Minkowski metric of flat spacetime,
and k is a constant of order MPl. As we will see the warp-factor helps solving
the hierarchy problem without introducing additional hierarchies.

While in the original setup the SM fields were confined to the visible
brane, the possibilities of having other fields in bulk were soon explored.
Starting with a scalar field [2, 3, 4, 5], introduced to stabilize the inter-
brane distance. The following years various people studied the properties of
fermion [6, 7] and gauge fields [8, 9, 7] in the bulk. Even models with the
entire SM in bulk have proven interesting as long as the Higgs field stays on
the visible brane [10]. The search for experiments that can verify or disprove
the RS models or other higher dimensional theories has started. Observable
effects from SM matter and gauge fields living in the bulk may be discovered
at the LHC [11, 12]1. Tests of Newton’s gravitational law at short distances
(sub-millimeter) may reveal aberrations [13, 14, 15]. Here we will explore
the corrections to the Casimir effect in RSI and RSII.

The Casimir effect was predicted by H. B. Casimir in 1948 and even a
book has been written on the subject [16]. Casimir predicted an attractive
force between two perfectly conducting plates. The force is only observable
at small distances, and has been experimentally verified with an accuracy of
1%, at distances down to 100nm [17]. Casimir effect in higher dimensional
theories has gained a lot of interest recently (see e.g. [18] and the references
therein), and also in RS [19, 20, 21, 22, 23, 24, 25]. While in the Casimir
effect experiments there is the electromagnetic field that is measured, we will
concentrate on a scalar field. The reason being that there are disagreements
on how to address the polarizations of the photon in higher dimensional
theories. An example is Ref.[26] and Ref.[27], where the extra dimension is
a torus (M4 × S1) and the spacetime is flat, a far simpler model than RS.

The thesis is organized as follows: First we give a general introduction
to the RS models with focus on scalar fields in the bulk. We follow up with
some basic Casimir theory. A thorough study of the free energy of a bulk
scalar field is in order before starting with the main purpose of this work; the
Casimir effect from a bulk scalar on two parallel plates on the visible brane.
Before proceeding to finite temperature we study zero temperature. At the
end we compare our results with previous work and discuss the controversies
yet to be solved.

Throughout this thesis we will use zeta regularization as [19, 20, 23,
24, 25]. The authors of these articles have made some approximations to be

1The Large Hadron Collider (LHC) will hopefully be up and about in September 2009,
only a few months from today. http://lhc.web.cern.ch/lhc/
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able to use Epstein-Hurwitz zeta functions. Since we will use the Abel-Plana
formula we do not need to make these approximations and our results are
more precise. We will consider different boundary conditions (BC) on the
physical plates in contrast to earlier work, which have only studied Dirichlet
BC. To the authors knowledge all the finite temperature results presented
herein are new.
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Chapter 2

The Randall-Sundrum
models

The original articles on the Randall-Sundrum models RSI and RSII was
published in 1999 [1, 28]. Since then, a lot of articles have been written on
the subject. We will present the results from some of these articles and try
to give a general introduction to the models.

2.1 The setup, the metric and the action

We stick to the RSI model for most of the time. Results for RSII can be
obtained from RSI by letting rc → ∞. In Figure 2.1 we have illustrated the
setup with the visible and the hidden brane. The metric for RSI is

visiblehidden

branebrane

Figure 2.1: Illustration of the RSI branes.

ds2 = e−2krc|φ|ηµνdxµdxν − r2cdφ
2, (2.1.1)

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric. The parame-
ter k is of the Planck scale order. The most important difference from
other higher dimensional models is the warp-factor in the metric e−2krcφ

which exponentially depends on φ. Arabic letters (N ,M) are used to denote
five-dimensional coordinates (e.g. GNM is the five-dimensional metric) and

5



6 CHAPTER 2. THE RANDALL-SUNDRUM MODELS

Greek letters (µ,ν) refers to a four-dimensional subspace. The metric on the
hidden and visible brane are

gvis
µν ≡ Gµν(xµ, φ = π)

ghid
µν ≡ Gµν(xµ, φ = 0).

(2.1.2)

The action of this model is

S = Sgravity + Svis + Shid

Sgravity =

∫

d4x

∫ π

−π
dφ

√
−G

(
−Λ + 2M3R

)

Svis =

∫

d4x
√−gvis (Lvis − Vvis)

Shid =

∫

d4x
√−ghid (Lhid − Vhid) .

(2.1.3)

Here, Λ and R are the five-dimensional cosmological constant and Ricci
scalar. In the Lagrangian density of the 3-branes a constant ’vacuum en-
ergy’ (Vvis and Vhid) is separated from the rest of the Lagrangian (Lvis and
Lhid). According to Randall and Sundrum the ’vacuum energy’ acts as a
gravitational source even in the absence of particle excitations and the rest
of the Lagrangian is unimportant. We need

Vvis = −Vvis = 24M3k (2.1.4)

and
Λ = −24M3k2 (2.1.5)

in order to solve Einstein’s equations for the action.

2.2 Solving the hierarchy problem

In this section we show that the relation between the fundamental scale M
and the Planck scale for flat 4+n dimensional theory

MPl = Mn+1Vn (2.2.1)

does not hold in the RS and we find the new relation between MPl and M .
We start with the curvature term of the four-dimensional effective action
Seff from Eq.(2.1.3),

Seff ⊃
∫

d4x

∫ π

−π
dφ2M3rce

−2krc|φ|√−ḡR̄. (2.2.2)

Here, ḡ and R̄ are the determinant and action of ḡµν . For the branes ghid
µν =

ḡµν and gvis
µν = e−2krcπḡµν . From this we see that the Planck scale is given

by

M2
Pl = M3rc

∫ π

−π
dφe−2krx|φ| =

M3

k

(

1 − e−2krcπ
)

. (2.2.3)
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In the limit of large krc the Planck mass depends only weakly on rc, but
it has a great impact on physical masses as we will see next. In RSII we
let rc → ∞ leaving M2

Pl = M3

k . To see how RS solve the hierarchy problem
we inspect the properties of the Higgs field. The action of the fundamental
Higgs field H on the visible brane with one mass parameter v0 is given by

∫

d4x
√−gvis

(

gµν
visDµH

†DνH − λ
(
|H|2 − v2

0

)2
)

. (2.2.4)

DµH is the covariant derivative of the Higgs field 1. Substituting gvis
µν =

e−2krcπḡµν into the action yields

∫

d4x
√−ḡe−4krcπ

(

ḡµνe2krcπDµH
†DνH − λ

(
|H|2 − v2

0

)2
)

. (2.2.5)

Performing renormalization by the substitution H → ekrcπH the action is

∫

d4x
√−ḡ

(

ḡµνDµH
†DνH − λ

(

|H|2 − v2
0e

−2krcπ
)2
)

. (2.2.6)

Compared with the physical action we see that v ≡ v0e
−krcπ. In other words,

a mass parameter m0 on the visible brane will correspond to a physical mass
m = m0e

−krcπ. If m0 is of the order of the Planck scale m0 ∼ 1019GeV and
krc ∼ 12 we find m ∼ 1TeV and the hierarchy problem is solved.

2.3 The Newtonian gravitational potential

In this section we quote some results concerning the Newtonian gravitational
potential in RSI and RSII, to show how this differs from the traditional grav-
itational potential. The derivation is a transcript from [14] and is based on
reduction of the five-dimensional Lagrangian of the graviton to four dimen-
sions. This section not essential to the main part of this thesis but is included
to demonstrate how we extract the four-dimensional physics form a higher
dimensional theory. We start by rewriting the metric Eq.(2.1.1),

ds2 = e−2k|y|ηµνdxµdxν − dy2 =

(
1

1 + k|z|

)2
(
ηµνdxµdxν − dz2

)
, (2.3.1)

where we have changed coordinate from φ to

|z| =
ekrc|φ| − 1

k
, (2.3.2)

1Explicit expressions for the covariant derivative of the Higgs field can be found in e.g.
[29]
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which is easier to work with and frequently occur in the literature. In con-
nection with RSII it is common to use y = rcφ instead of φ. By introducing
A(z) = 1

1+k|z| we can write the perturbed metric as

gMN = A2(z)(ηMN + hMN ) (2.3.3)

with ηMN = diag(1,−1,−1,−1,−1). Our starting point is the five-dimensional
action Eq.(2.1.3), ignoring Lvis and Lhid,

S =

∫

d4xdy
√
−G

(
−Λ + 2M3R

)

+ 24M3k

∫

d4xdy(
√−gvisδ(z − zr) −

√−ghidδ(z)),

(2.3.4)

where zr is the z-coordinate on the visible brane. Instead of making a copy
of the entire calculation in [14] we list some of the main steps in finding the
four-dimensional gravitons.

1. Decomposition of the five-dimensional graviton hMN into

hMN =

(
hµν Vµ

Vν T

)

. (2.3.5)

2. Choosing a convenient gauge: Vµ = 0 and T independent of z.

3. Redefining the five-dimensional graviton hµν as

hµν → hµν + f(y)ηµνT + g(y)∂µ∂νT, (2.3.6)

where

f(y) = k|y| + f0, f0 =
kyr

e2kyr − 1

g(y) =
1

4k2

[

f0

(

e2k|y| − 1
)2

+ e2k|y| (1 − 2k|y|) − 1

]

+ g0

(2.3.7)

and g0 = g(0) can be chosen freely.

4. Since we find the term

∫

d4x
1

2

(
3
2M

3ky2
r

e2kyr − 1

)

T,αT
,α (2.3.8)

in the action we can identify the physical radion ϕ as

ϕ =

√

3
2M

3ky2
r

e2kyr − 1
T. (2.3.9)

We will return to the radion later in this chapter.
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5. Expanding hµν in the eigenstates Φm(y),

hµν(x, y) = 2M− 3
2

∑

m

hm
µνΦm(y). (2.3.10)

The eigenstates Φm(y) must satisfy the equation of motion, i.e.

Φ′′
m(y) +

4A′

A
Φ′

m(y) +
m2

A2
Φ(y) = 0 (2.3.11)

and normalization
∫ yr

−yr

A2(y)Ψm(y)Ψm′(y)dy = δmm′

∫ yr

−yr

A2(y)Ψ′
m(y)Ψ′

m′(y)dy = m2δmm′ .

(2.3.12)

After these steps the four-dimensional action is given by

S =

∫

d4x

[
∑

m

(

− 1

2
hm

,αh
,α

m +
1

2
hm

αβ,νh
αβ,ν
m + hαν

m ,αh
m
,ν

− hαν
m ,αh

β
m ν,β − 1

2
m2(hm

αβh
αβ
m − h2

m)

)

+
1

2
ϕ,µϕ

,µ

]

.

(2.3.13)

The notation
∑

m means that we sum over all relevant modes with mass
m. This action consists of a massless graviton, a tower of massive gravitons
with massm and a massless scalar field (the radion). The energy-momentum
tensor for a source at y = y′ is given by

TMN(x, y) = δM
µ δN

ν T
µν(x)δ(y − y′) (2.3.14)

and thus the action for the interaction with matter can be written as

Sint = −
∫

d4xdyM− 3
2hMNT

MN = −
∫

d4x
1

2
A2(y′)T µν(x)hµν(x, y′)

(2.3.15)
with

hµµ(x, y′) =M− 3
2

∑

m

hm
µν(x)Φm(y′)

+

√

e2kyr − 1
3
2M

3ky2
r

(
f(y′)ηµν + g(y′)∂µ∂ν

)
φ(x).

(2.3.16)

The four-dimensional energy-momentum tensor is conserved (∂µT
µν = 0),

hence the term with g(y′) disappears after partial integration. The La-
grangian density for the interaction with matter is then

Lint = −M− 3
2A(y′)

[∑

m

hm
µν(x)Φm(y′)T µν

+

√

e2kyr − 1
3
2M

3ky2
r

f(y′)ηµνϕ(x)T
]

.

(2.3.17)
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We can now find the Fourier-transform of the gravitational potential between
one mass m1 on the brane, and another mass m2 at the point (x, y),

V (k, p) =
h0

µν

+
∑

m>0 hm
µν

+
φ

=
m1m2

M3e2ky

[

Φ0(0)Φ0(p)

2k2 +
2

3

∑

m>0

Φm(0)Φm(p)

k
2 +m2

+
e2kyr − 1

6ky2
r

f(0)f(p)

k
2

]

.

(2.3.18)

Afterwards we find the gravitational potential from the Fourier-transform

V (r, y) =

∫
d3k

(2π)3
1

yr

∑

p

V (k, p)eik·reipy

= − m1m2

8πM3re2ky

[

Φ0(0)Φ0(y) +
4

3

∑

m>0

Φm(0)Φm(y)e−mr

+
1

3

(
ky

yr
+

ke−2kyr

1 − e−2kyr

)]

.

(2.3.19)

Again, the notation
∑

p mean that we sum over all relevant values of p.
While k is continuous, p is not since y is periodic, not infinite. Now, in
order to find Φ0 and Φm we need to solve Eq.(2.3.11). After inserting A(y)
the equation reads

Ψ′′
m(y) − 4kΨ′

m(y) +m2e−2kyΨm(y) = 0. (2.3.20)

An equation of the form

y′′(x) + ay′(x) + be2kxy(x) + cy(x) = 0 (2.3.21)

has the solution

y(x) = e−
1
2
ax

(

C1Jν

(√
b

k
ekx

)

+ C2Yν

(√
b

k
ekx

))

, (2.3.22)

with ν =
√
a2 − 4c/(2k). Jν and Yν are the Bessel functions of first and

second kind. This solution can be found by either rewriting the equation
to the Bessel equation or by using a program like Maple. From Eq.(2.3.22)
and Eq.(2.3.20) we find

Ψm(y) =
e2ky

Nm

(

AmJ2

(m

k
eky
)

+BmY2

(m

k
eky
))

(2.3.23)
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and

Ψ0(y) =

√

k

1 − e−2kyr
(2.3.24)

(solving Eq.(2.3.20) when m = 0 is rather trivial). We are interested in the
potential between two points on the brane at y = 0

V (r) = − m1m2

8πM3r

[

k
(
1 + 1

3e
−2kyr

)

1 − e−2kyr
+

4

3

∑

m>0

Φm(0)2e−mr

]

. (2.3.25)

We can include the effect of the radion in the Planck mass and change
Eq.(2.2.3) to

M2
Pl =

M3

k

1 − e−2krcπ

1 + 1
3e

−2krcπ
. (2.3.26)

This leaves the potential

V (r) = −Gm1m2

r

[

1 +
4

3k

1 − e−2krcπ

1 + 1
3e

−2krcπ

∑

m>0

Φm(0)2e−mr

]

, (2.3.27)

where G = (8πM2
P l)

−1 is the gravitational constant. In the RSII model
(rc → ∞) we have [14, 5, 15]

Ψ2
m(0) =

2k

πmzr

1

J2
1 (m/k) + Y 2

1 (m/k)
(2.3.28)

and the leading terms in the potential are [15]

VRSII(r) =
Gm1m2

r

[

1 +
8

3π2

∫ ∞

0

dm e−mr

J2
1 (m/k) + Y 2

1 (m/k)

]

− Gm1m2

r
− Gm1m2

r

{
4

3πkr kr � 1
2

3k2r2 kr � 1.

(2.3.29)

At small distances it should be possible to detect aberrations from the gravi-
tational law. Recent experiments have tested the gravitational force down to
0.218mm [13]. More accurate measurements in the future will be interesting
for testing the RS models.

2.4 Scalar fields in bulk

Shortly after the publication of [1] and [28] people started to investigate the
possibility of having other fields than the gravitational field in bulk. Gold-
berger and Wise studied a non-gravitational bulk scalar [2]. They performed
a Kaluza-Klein reduction of a (five-dimensional) bulk scalar field with mass
of order MPl to find how such a field would appear to a four-dimensional
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(3+1 dimensions) observer. A first guess would be that the field would ap-
pear as a tower of scalar fields with masses of the same size as the field itself
∼MPl. As we go through the arguments of Goldberger and Wise we see that
contrary to the initial guess, the masses of the modes are suppressed with
the factor e−krcπ and are in fact of order TeV. Below we only go through
the basic formalism, skipping all the calculations which are the same as in
Section 4.2.2. The mathematics involved is not the focus of this section and
want to study the behavior of scalar bulk fields without being distracted by
mathematical formalism.

As always we start with action of the bulk scalar field in question

SΦ =
1

2

∫

d4x

∫ π

−π
dφ

√
G
(
GAB∂AΦ∂BΦ −m2Φ2

)
. (2.4.1)

A Kaluza-Klein reduction from a higher to a lower dimensional space starts
by decomposition of the scalar field. Here we choose

Ψ(x, φ) =
∑

N

XN (x)ψN (φ) (2.4.2)

with normalization

1

rc

∫ π

−π
dφe−2krc|φ|ψN (φ)ψN ′ = δNN ′ . (2.4.3)

This decomposition is the same as in Section 4.2.2 and as we will see there
the essential equation in this problem is

− 1

r2c
e2krc|φ|

(

− d

dφ
e−4krc|φ|dψN (φ)

dφ

)

+ e−2krc|φ|m2 = M2
NψN (φ). (2.4.4)

By solving this equation we find ψN , and using boundary conditions for the
bulk field on the brane we can find all allowed values of MN , the masses of
the Kaluza-Klein modes ψN . After integrating out the φ dependence using
the normalization condition for ψN the action is

S =
∑

N

1

2

∫

d4x
(
ηµν∂µXN (x)∂νXN (x) −M2

NXN (x)2
)
. (2.4.5)

From this we conclude that for a four-dimensional observer the bulk scalar
field with mass m appears as an infinite ’tower’ of scalars XN (x) with mass
MN , not m. To find the values of M2

N we need to solve the equation for ψN

and impose the correct boundary conditions to the bulk field. This will be
done in Section 4.2.2, but here we give the result in advance

ψN (φ) =
e2krc|φ|

CN

(

Jν

(
MN

k
ekrc|φ|

)

+ bν(MN )Yν

(
MN

k
ekrc|φ|

))

, (2.4.6)
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with ν =
√

4 +m2. The Kaluza-Klein masses are

MN = kπe−kπrc

(

N +
1

2
ν − 3

4

)

, N = 1, 2, . . . (2.4.7)

when we assume e−kπrc � 1. In the Randall-Sundrum scenario k is assumed
to be of the same order as the Planck mass. Thus the lightest masses
(N = 1, 2, . . .) are characterized by the TeV scale, not the Planck scale.
According to Goldberger and Wise this can be explained by looking at how
modes (ψN ) behave. Close to the TeV brane (at φ = π) the ψN ’s are large.
Hence it is more likely to find the Kaluza-Klein excitations near that brane
and it is reasonable that the modes behave similarly as scalar fields confined
to it. Since the masses on the TeV brane are characterized by the TeV scale
it is not surprising that the Kaluza-Klein modes of a bulk scalar field are
characterized by that same scale.

In Ref.[2] the self-interactions of the bulk scalar are also treated. To
a four-dimensional observer this will appear as the coupling between the
Kaluza-Klein modes. By concentrating on the light modes, Goldberger and
Wise were able to show that the couplings are suppressed by the TeV scale
instead of the Planck scale. All in all an exited Kaluza-Klein mode of the
bulk scalar field behaves much in the same way as a scalar field confined
to the TeV brane with mass MN . By performing a similar calculation for
vector fields in the bulk one can show that the same thing happens. They
mimic vector fields confined to the visible brane. Hence, bulk fields can
be standard model matter fields with excitations corresponding to standard
model particles.

2.5 Stabilization of the radion

One of the first problems of the Randall-Sundrum scenario was how to sta-
bilize the interbrane distance rc. Naturally there must be some sort of dy-
namics that govern the behavior of rc. In this section we will go through the
articles by Goldberger and Wise and their attempt to stabilize the model.

2.5.1 The radion field

In the original article by Randall and Sundrum [1] the fluctuations around
the background geometry are given by

ds2 = e−2kT (x) (ηµν + hµν) dxµdxν − T (x)2dφ2, (2.5.1)

where h is the fluctuations about Minkowski space and represents the four-
dimensional physical graviton as in Section 2.3. The reduction of the five-
dimensional theory to four-dimensions in order to find the corrections to
Newton’s gravitational potential was given in Section 2.3. Our current focus
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is the modulus field, or radion T (x), found there. This is a massless scalar
field and the vacuum expectation value of the radion is the compactification
radius of the RSI model rc. For now we ignore hµν and write the metric as

ds2 = e−2kT (x)gµν(x)dxµdxν − T (x)2dφ2. (2.5.2)

We want to demonstrate how the radion occurs naturally in the reduction
of the five-dimensional Einstein-Hilbert action,

S =

∫

d4x

∫ π

−π
dφ

√
G(−Λ + 2M3R), (2.5.3)

to four dimensions as shown in [4]. In the action above, R is the five-
dimensional Ricci scalar and Λ = −24M3k2. Inserting from Eq.(2.5.2) we
can write this action as

S = 2M3

∫

d4x

∫ π

−π
dφ

√−ge−2k|φ|T (x)
(

6k|φ|∂µT∂
µT

− 2k2|φ|2T∂µ∂
µT + TR(4)

)

.

(2.5.4)

To get the effective four-dimensional theory we integrate out φ

S =
2M3

k

∫

d4x
√−g

(

1 − e−2kπT (x)
)

R(4)

+
12M3

k

∫

d4√−g∂µ

(

e−kπT (x)
)

∂µ
(

e−kπT (x)
)

.

(2.5.5)

We can identify the physical radion as ϕ(x) = fe−kπT (x) with f =
√

24M3/k.
The five-dimenisonal Einstein-Hilbert action reduces to

S =
2M3

k

∫

d4x
√−gR(4) +

1

2

∫

d4x
√−g

(

∂µϕ∂
µϕ− 2

f2
R(4)ϕ2

)

. (2.5.6)

If we include the action on the respective branes as in Section 2.1 we con-
clude that this is the four-dimensional Einstein-Hilbert action plus a four-
dimensional massless scalar field ϕ coupled to gravity with ζ = 2/f2. How-
ever, the action above gives no potential for the radion and thus no way of
stabilizing it, and no way to get the right vacuum expectation value rc. For
this reason Goldberger and Wise tried to insert a massive scalar in the bulk
with interaction terms on each brane.

2.5.2 Inserting a massive scalar in the bulk

To try to stabilize the interbrane distance in the Randall-Sundrum model
Goldberger and Wise put a massive scalar in the bulk, with interaction terms
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on the two branes [3, 4]. The action for the scalar field Φ in the bulk with
mass m is

Sbulk =
1

2

∫

d4x

∫ π

−π
dφ

√
G
(
GAB∂AΦ∂BΦ −m2Φ

)
(2.5.7)

and the interaction terms chosen was

Shid = −
∫

d4x
√−ghidλhid(Φ2 − v2

hid)
2 (2.5.8)

and

Svis = −
∫

d4x
√−gvisλvis(Φ

2 − v2
vis)

2. (2.5.9)

The details on how they found the potential for rc is not important in this
setting. In brief they solved the equations of motion (Lagrangian equations)
for Φ, put the solution back into the action and did the integration over φ.
The result was a four-dimensional potential for rc, capable of stabilizing the
system

V (ϕ) =
k3

144M6
ϕ4 (vvis − vhid(ϕ/f)ε)2 . (2.5.10)

Two assumptions were made to retrieve this potential

• ε = m2/4k2 � 1 (terms of order ε have been neglected)

• The parameters λvis and λhid are large.

Ignoring terms proportional to ε we easily see that the potential has a min-
imum for

krc = k 〈T 〉 =

(
4k2

πm2

)

ln

(
vvis

vhid

)

. (2.5.11)

To solve the hierarchy problem we need krc ≈ 12. This can be obtained in
a number of ways without fine-tuning the parameters. The example used
in [3] is vvis/vhid = 1.5 and m/k = 0.2 which gives the wanted value of krc.
The minimum in Eq.(2.5.11) also holds to the leading term in 1/λvis/hid.



16 CHAPTER 2. THE RANDALL-SUNDRUM MODELS



Chapter 3

The Casimir effect

In 1948 Casimir published his famous article where he predicted an attractive
force between two perfectly conducting plates. This force is today known
as the Casimir force. The subject has been studied widely since, and whole
books have been devoted to the phenomenon [16].

3.1 Electromagnetic fields

Casimir’s original article considered the electromagnetic field between two
perfectly conducting plates separated by a distance a. The effect arises
because the field has to be zero on the plates. Even though the plates are
chargeless with nothing but vacuum between them, they still attract due to
vacuum fluctuations in the electromagnetic field. The expectation values of
the electric field E and magnetic field B might be zero, but the expectation
values of the square of the two fields are not. This leads to a non-zero
expectation value of the zero-point energy equal to

E =
1

2

∫

d3r

(

ε0E
2(r) +

1

µ0
B2(r)

)

. (3.1.1)

The Casimir effect depends on the boundaries to which the field is confined.
For parallel plates and an electromagnetic field the zero-point energy and
the attractive forces depend on the distance between the plates. Casimir’s
result was that the energy per unit area between the plates is proportional
to 1/a3

E/V⊥ = − π2
~c

720a3

and the force per unit area P = −∂E
∂a is proportional to 1/a4

P/V⊥ = − π2
~c

240a4
. (3.1.2)

17
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Above we have introduced the area of the plates or alternatively the volume
of the transverse directions V⊥. There are different ways of calculating the
Casimir energy and force at zero temperature.

In quantum mechanics all physical observables have a corresponding op-
erator. The energy operator is the Heisenberg operator Ĥ. The eigenfunc-
tions of this operator satisfying the boundary conditions are often referred
to as the modes of the system. It is a common technique to sum over the
energy eigenvalues of each mode to find the Casimir energy. After second
quantization [30] one can show that the vector potential operator Â is

Â(r) =
∑

k,λ

√

~

2ε0V ck
ek,λ

(

âk,λe
ik·r + â†

k,λe
−ik·r

)

. (3.1.3)

Here k is the wave number of a photon, λ the polarizations and V a large
quantization volume. âk,λ and â†

k,λ are the annihilation and creation opera-

tors respectively. They satisfy the commutation relations
[

âk,λ, â
†
k′,λ′

]

=

δk,k′δλ,λ′ and
[
âk,λ, âk′,λ′

]
=
[

âk,λ, â
†
k′†,λ′

]

= 0. Using Ê = −∂Â

∂t and

B̂ = ∇× Â in Eq.(3.1.1) one can show that the energy of the system is

E =
∑

k,λ

(
1

2
+ nk,λ)~ωk,λ. (3.1.4)

Here, ωk,λ is the frequency corresponding to the mode with wave number
k and polarization λ and nk,λ is the eigenvalues of the number operator

n̂kλ = â†
k,λâk,λ, i.e. the number photons within the cavity with energy

~ωk,λ. Even without any photons in the cavity (nk,λ = 0 for all k and λ)
the system has a non-zero energy due to the constant 1

2 .
For the system of parallel plates the fields have to be zero on the plates.

This leads to quantized wave numbers of the modes orthogonal to the plates
say the x-direction. Hence, the energy eigenvalues

~ωk,λ = ~c

√

k2 +
n2π2

a2
, (3.1.5)

with k2
⊥ = k2

y + k2
z . The energy depends on a which leads to Casimir forces.

3.2 Massless scalar fields

Electromagnetic fields are not easy to work with because there are modes
both parallel and orthogonal to the plates in addition to different polar-
izations. Imposing boundary conditions can be tricky. It is easier, and also
instructive, to consider massless scalar fields instead of electromagnetic fields
in complicated calculations. In many situations the results only differ by a
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factor of 2 [16]. It can be shown that the zero-point energy density of a
massless scalar field between parallel plates is

E =

∫
d2k⊥
(2π)2

∞∑

n=1

√

k2
⊥ +

n2π2

a2
, (3.2.1)

Here we have assumed homogenous Dirichlet boundary conditions. In other
words; the field has to be zero on the plates. We have also used natural units
~ = c = kB = 1 which we continue to do throughout this paper. Casimir
forces of scalar fields in rectangular cavities are studied in detail by S.C.
Lim and L.P. Teo in [31]. The Casimir energy and force per unit area for a
massless scalar field is

E/V⊥ = − π2
~c

1440a3
(3.2.2)

P/V⊥ = − π2
~c

480a4
. (3.2.3)

The above energies and forces are all at zero temperature but it is pos-
sible to generalize to finite temperatures.

3.3 Regularization

The sum and integral in Eq.(3.2.1) is highly divergent. To get a finite result
we have to regularize the energy. The most intuitive way is to use cut-off-

regularization. We introduce an exponential factor exp

(

−α
√

k2
⊥ + n2π2

a2

)

to make the integral and sum converge and in the end we let α→ 0. Hence,
the final answer will not depend on α. There is also dimensional regular-
ization and zeta regularization [32, 33]. The article by Reuter and Dittrich
[34] gives an excellent introduction to all three regularization schemes. In
this paper we will use zeta regularization because it is practical when deal-
ing with an arbitrary number of succeeding sums. To but it briefly; zeta-
regularization consists of using the analytic continuation of Eq.(3.2.1) to the
complex plane

ζ(s) =

∫
d2k⊥
(2π)2

∞∑

n=1

(

k2
⊥ +

n2π2

a2

)−s

. (3.3.1)

We need the real part of s to be greater than one (Re(s) > 1) for the
expression to converge. In the end we set s = −1

2 and obtain the finite
answer. Understanding zeta regularization can be hard and we will not try
to give the full picture on this elegant way to remove infinities. Curious
readers may look up the books by E. Elizalde et al. [32, 33] for further
information on the subject.
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Chapter 4

The free energy of a bulk
scalar field

In order to find the Casimir effect of a bulk scalar field in RS we need the
free energy. In this chapter we find the free energy of such a field and other
relevant information which we will need later. The bulk scalar field in this
chapter is very general and we will choose use specific fields in later chapters.

The setup with the physical plates on the visible brane is illustrated in
Figure 4.1 with a interplate distance a. We calculate the free energy of the

visiblehidden

brane brane

plate at x = 0

plate at x = a

bulk

Figure 4.1: Illustration of how the physical plates are located at the visible
brane.

area indicated by the dotted lines.

4.1 The partition function of a scalar field

To find the partition function of a non-minimally coupled scalar field Φ with
mass m in the RSI we follow a Kaluza-Klein reduction approach like in [35].

21
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We start with the Lagrangian density for such a field,

L =
√
−G

(
1

2
∂AΦ∂AΦ − 1

2
(m2 + ζR+ chidδ(z) + cvisδ(z − zr))Φ

2

)

.

(4.1.1)
Here, R is the Ricci scalar and chid/vis are the boundary mass terms of the
field. The partition function is generally given by

Z =

∫

DΦeiS[Φ] =

∫

DΦ exp

(

i

∫

d4xdzL
)

. (4.1.2)

Inserting Eq.(4.1.1) and performing a partial integration leaves the partition
function

Z =

∫

DΦ exp

[

i

∫

d4xdz
1

2
Φ
(

− ∂AA(z)5∂AΦ

−A(z)5(m2 + ζR+ chidδ(z) + cvisδ(z − zr))Φ
)
]

.

(4.1.3)

Remember from Section 2.3 that |z| = ek|rcφ|−1
k and A(z) = 1

1+k|z| . Now we

analytically continue t to imaginary times τ = it. Hence, we let x̃i = xi,
i = 1, 2, 3, and x̃0 = ix0. After a partial integration the partition function
reads

Z =

∫

DΦ exp

[

−
∫

d4x̃dz
1

2
ΦA(z)3

(

η̃µν∂µ∂ν
︸ ︷︷ ︸

p̂2

A(z)−3(−∂zA(z)3∂z +A(z)5(m2 + ζR+ chidδ(z) + cvisδ(z − zr)))
︸ ︷︷ ︸

M̂2
z

Φ

)]

,

(4.1.4)

where η̃µν = −1δµν is the metric for the new coordinates x̃. To proceed we
assume it is possible to expand the scalar field in the eigenfunctions ψn(z)
and χ(xµ) of M̂2

z and p̂2 respectively,

Φ(x̃, z) =
∑

N,p

cN (p)χp(x̃)ψN (z). (4.1.5)

The eigenvalue equations for the operators are

M̂2
zψN (z) = M2

NψN (z), (4.1.6)

and

p̂2χp(x̃) = p2χp(x̃) (4.1.7)
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with normalization
∫ zr

−zr

dzψN (z)A(z)3ψN ′(z) = δNN ′ , (4.1.8)

and ∫

d4x̃χp(x̃)χp′(x̃) = δpp′ . (4.1.9)

The fields also have to satisfy the boundary conditions. After inserting the
expansions the partition function reads

Z =

∫
∏

N,p

dcN (p) exp

[

− 1

2

∑

N,N ′

∑

p,p′

δNN ′δpp′cN (p)cN ′(p′)(M2
N + p2)

]

=

∫
∏

N,p

dcN (p) exp

[

−
∑

N,p

cN (p)2
1

2
(M2

N + p2)

]

=




∏

N,p

√
2π



 exp

[
∑

MN

∑

p

ln(M2
n + p2)

]

.

(4.1.10)

Here we have made use of
∫ −∞

−∞
dxe−λx =

√
π

λ
= e−

1
2

ln(λ/π) (4.1.11)

with λ = 1
2(M2

N +p2). The notation
∑

N stands for the sum over all relevant
eigenvalues MN and similarly for

∑

p. In this case the relevant values are
all eigenvalues MN and p, with eigenfunctions that satisfies the boundary
conditions. The next step is to identify the eigenvalues MN and p that we
need to sum over.

4.2 Eigenfunctions and eigenvalues of M̂2
N and p̂2

In this section we find the eigenfunctions and eigenvalues of M̂2
N and p̂2

occuring in the partition function of a scalar field.

4.2.1 Eigenfunctions and eigenvalues of p̂2

We start with Eq.(4.1.7)

−(∂2
τ + ∂2

x + ∂2
y + ∂2

z )χp(x̃) = p2χp(x̃). (4.2.1)

Remember τ = it, imaginary time. In our three-dimensional physical space
we assume Robin boundary conditions on the walls, i.e.

(1 + β0∂x)χp(x̃)|x=0 = 0 (4.2.2)
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and
(1 − βa∂x)χp(x̃)|x=a = 0. (4.2.3)

Later we may specify Dirichlet (β = 0) or Neumann (β = ∞) BC if desired.
We observe that the eigenfunctions are of the form

χp(x̃) = Nei(εlτ+kyy+kzz) cos(kxx+ α) (4.2.4)

with eigenvalues
p2 = ε2l + k2

x + k2
y + k2

z . (4.2.5)

There are constraints on both εl and kx. For a boson field τ is periodic in β
thus εl is equal to the Matsubara frequencies

εl =
2π

β
l = 2πT, l ∈ Z. (4.2.6)

Here, T is the temperature. Inserting χp(x̃) into Eq.(4.2.2) we get the
constraints on α,

cosα =
β0kx

√

1 + β2
0k

2
x

or sinα =
1

√

1 + β2
0k

2
x

. (4.2.7)

There is however one boundary condition left. To satisfy Eq.(4.2.3) we need

Fx(kxa) = sin(kxR)(1 − k2
xβ1β2) − kx(β1 + β2) cos(kxa) = 0. (4.2.8)

At this point we do not need the function Fx, but we will return to it later
in connection with the Abel-Plana formula.

4.2.2 Eigenfunctions and eigenvalues of M̂2
N

Now, we turn to the more complicated eigenvalue problem Eq.(4.1.6),

A(z)−3
[

− ∂zA(z)3∂z +A(z)5(m2 + ζR

+ chidδ(z) + cvisδ(z − zr))
]

ψN (z) = M2
NψN (z).

(4.2.9)

The five-dimensional Ricci scalar for the Randall-Sundrum metric is

R = −20k2 + 16k(δ(z) − δ(z − zr)). (4.2.10)

We choose to solve the eigenequation for the bulk first to avoid the delta
functions on the branes. The Z2 symmetry allows us to only simplify by
solving only for positive values of y (or z), 0 < y < πrc (or 0 < z < zr).
Later we will take the branes into consideration. To solve the equation above
we change the coordinates back to y using

d

dz
= A(y)

d

dy
(4.2.11)
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and rewrite the eigenequation

−A(y)−2 d

dy

(

A(y)4
dψN (y)

dy

)

+A(y)2(m2 − 20ζk2)ψN (y) = M2
NψN (y)

4kψ′
N (y) − ψ′′

N (y) + (m2 − 20ζk2)ψN (y) = e2kyM2
NψN (y)

ψ′′
N (y) − 4kψ′

N (y) +
(

M2
Ne

2ky − (m2 − 20ζk2)
)

ψN (y) = 0.

(4.2.12)

We have already seen a similar expression in Section 2.3 and use Eq.(2.3.22)
to find the solution

ψN (y) =
e2ky

CN

(

Jν

(
MN

k
eky

)

+ bν(MN )Yν

(
MN

k
eky

))

, (4.2.13)

with ν =
√

4 + (m/k)2 − 20ζ . This is the same result as in [7], except we
include arbitrary coupling to curvature (ζ 6= 0) in our model. To account
for the delta functions induced by the Ricci scalar and mass boundary terms
we integrate Eq.(4.1.6) over both branes. This will give us the boundary
conditions for ψN . First we integrate over the hidden brane from −ε to ε
∫ ε

−ε

d

dy

(

e4k|y|dψN (y)

dy

)

dy −
∫ ε

−ε
e−4k|y|

[

m2 − 20ζk2 + (16ζk + chid)δ(0)

+ (−16ζk + cvis)δ(y − πrc)
]

dy =

∫ ε

−ε
e−2k|y|M2

Ndy.

(4.2.14)

In the limit ε→ 0 only two terms remain

e4k|y|dψN (y)

dy

∣
∣
∣
∣

ε

−ε

− (16ζ + chid)ψN (0) = 0

⇒ dψN (y)

dy

∣
∣
∣
∣
0+

− dψN (y)

dy

∣
∣
∣
∣
0−

= (16ζk + chid)ψN (0).

(4.2.15)

Similarly the integration over the visible brane yields

dψN (y)

dy

∣
∣
∣
∣
y+

r

− dψN (y)

dy

∣
∣
∣
∣
y−

r

= (−16ζk + cvis)ψN (yr). (4.2.16)

Apparently the derivative of ψN (y) can have a jump across the branes, even
though ψN (y) is continuous across them. To proceed further we have to
distinguish between even and odd scalar fields.

Even fields

Even fields have the symmetry

ψN (−y) = ψN (y) and consequently
dψN (−y)

dy
= −dψN (y)

dy
. (4.2.17)
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Inserting the derivative into Eq.(4.2.15) and Eq.(4.2.16) results in

dψN (y)

dy

∣
∣
∣
∣
0+

= (8kζ + cvis)ψN (0) (4.2.18)

and
dψN (y)

dy

∣
∣
∣
∣
y−

r

= −(−8kζ + chid)ψN (yr). (4.2.19)

Odd fields

Odd fields have the symmetry

ψN (−y) = −ψN (y) and consequently
dψN (−y)

dy
=

dψN (y)

dy
. (4.2.20)

Again, inserting this into Eq.(4.2.15) and Eq.(4.2.16) results in

(8kζ + chid)ψN (0) = (−8kζ + cvis)ψN (yr) = 0. (4.2.21)

Odd fields have no restrictions on ψ′
N (y) but have to be zero at the branes.

If (±8kζ + chid/vis) = 0 Equation (4.2.21) is fulfilled without restrictions on
ψN (y), but the field still have to be zero due to Eq.(4.2.20) at y = 0 and
y = rr = πrc.

To summarize:

• Even scalar fields must obey Robin boundary conditions on the brane
(ψ′

N (y)|brane + (const.) ψN (y)|brane = 0). If the field is minimally cou-
pled (ζ = 0) and we have no mass boundary term (cbrane = 0) the
boundary conditions reduce to Neumann BC (ψ′

N (y)|brane = 0).

• Odd scalar fields must obey Dirichlet boundary conditions at the
branes.

The odd and the even case can be treated simultaneously by writing the
boundary conditions as Robin conditions

(1 − βhid∂y)ψN (y)|y=0+ = 0 and (1 − βvis∂y)ψN (y)|y=y−
r

= 0, (4.2.22)

where β−1
hid = (8kζ+ chid/2) and β−1

vis = (8kζ− cvis/2). The limit βbrane → ∞
leaves Neumann BC and βbrane → 0 changes it to Dirichlet. The BC are the
same as found in [7]. We want to find a function FN who’s zeros give the
values of MN . Inserting Eq.(4.2.13) into Eq.(4.2.22) yields

bν(MN/k) = − j
hid
ν (MN/k)

yhid
ν (MN/k)

= − j
vis
ν (ekπrcMN/k)

yvis
ν (ekπrcMN/k)

. (4.2.23)
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Here we have introduced

jbrane
ν (z) = (2 − (kβbrane)

−1)Jν(z) + zJ ′
ν(z)

ybrane
ν (z) = (2 − (kβbrane)

−1)Yν(z) + zY ′
ν(z).

(4.2.24)

For the special case βbrane = 0 we can replace jbrane
ν (z) with Jν(z) and

similarly ybrane
ν (z) with Yν(z). The constraint on MN can be written as

FN (z) = 0, where z = ekπrcMN/k, d = e−kπrc and

FN (z) = jhid
ν (zd)yvis

ν (z) − jvis
ν (z)yhid

ν (zd). (4.2.25)

This is in accordance with [36] if we choose a minimally coupled field (ζ = 0)
and chid = −cvis = 2α/k.

Important remark on MN = 0

For fields with m2 − 20ζk2 6= 0 we have no solution to Eq.(4.2.12) with
MN = 0 that satisfy Robin BC on both branes. For an even field with
m2−20ζk2 6= 0 (e.g. a massless, minimally coupled field), with no boundary
mass term the situation is different.

ψ0 = constant is a solution to both Eq.(4.2.12) and the boundary condi-
tions which in that case are Neumann BC. We will later see that the MN = 0
mode have profound consequences for the Casimir force from a bulk scalar.
The massless mode is troublesome as we will discuss in Chapter 7 and the
reason for this is the localization properties of it. As a consequence we
will give a brief review of the localization properties of all the Kaluza-Klein
modes.

Localization of the modes

In Section 2.4 we looked at the massive bulk scalar field introduced by
Goldberger and Wise [2]. They argued that the modes (all massive) of the
bulk scalar was localized near the TeV brane and therefore it is natural to
expect mode masses of order TeV. Too see where a field is localized you have
to look at the wave function of the field to see if you can find some sort of
probability function.

Let us take a familiar example form quantum mechanics; the hydrogen
atom [30]. If you have an electron in the state 1s its wave function1 is
ψ1s = 1/

√

πa3
0e

−r/a0 , with a0 being the Bohr radius. The probability for
finding the electron in the volume element dV is ψ2

1sdV , but the probability
p(r) of finding the electron between r and r + dr is 4πr2ψ2

1sdr = p(r)dr.
The normalization of the wave function tells us

∫

allspace ψ
2
1s(r)d

3r = 1 and

after integrating out the angles we are left with
∫∞
0 4πr2ψ2

1s(r)dr = 1. You
can read p(r) out of the normalization.

1We are looking at the hydrogen atom in the Schrödinger picture.
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If we now turn our attention to the modes of a bulk scalar we have the
normalization

∫ πrc

−πrc

e−2k|y|ΨN (|y|)2dy = 2

∫ πrc

0
e−2kyΨN(y)2dy = 1. (4.2.26)

It is not only Ψ2
N that tells us something about where to look for the mode

excitations, but pN (y) = 2e−2kyΨ2
N (y). For the massive modes pN (y) is

much larger near the visible (TeV) than the hidden (Plank) brane and thus
the massive modes are localized near the visible brane. The massless mode
(MN = 0) has p0(r) ∝ e−2ky and is localized near the hidden brane at
y = 0. This applies to RSI. In RSII the situation is reversed. The massless
mode is localized near the visible brane at y = and the massive modes are
delocalized.

The questions addressed in recent papers [22, 37] are: Should the mass-
less mode contribute to the Casimir force between two physical plates on
the visible brane in the same manner as the massive modes? Or should the
massless mode in RSI be given less weight due to the fact that it is local-
ized on the hidden brane, far from the localization of the plates? We will
comment on this question in Section 7.4.

4.2.3 Approximations of the mode masses

We assume d � 1, but keep z 6� 1 to find explicit expression for all the
Kaluza-Klein masses. This implies that MN/k � 1 and ekπrcMN/k 6�
1. To find the zeros of FN (z) we investigate how jbrane

ν (z) and ybrane
ν (z)

in Eq.(4.2.24) behave for small arguments. The properties of the Bessel
functions Jν and Yν can be found in [38]

Jν(z) =

(
1
2z
)ν

Γ(ν + 1)
, z � 1

Yν(z) = −Γ(ν)

π

(
1

2
z

)−ν

, z � 1.

(4.2.27)

The derivatives of the Bessel functions are

J ′
ν(z) = −Jν+1(z) +

ν

z
Jν(z)

Y ′
ν(z) = −Yν+1(z) +

ν

z
Yν(z).

(4.2.28)

From this we can conclude that jbrane
ν (z) � ybrane

ν (z) when z � 1. In this
limit Eq.(4.2.25) reduces to

jvis
ν (ekπrcMN/k) = 0. (4.2.29)

We need all the zeros of this functions and have to remember that ekπrcMN/k
is not small. This situation can be split into two: Dirichlet and non-Dirichlet
BC.
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Dirichlet boundary conditions (βbrane = 0)

From Eq.(4.2.24) we see that when we to employ Dirichlet BC we need the
zeros of J2(z). For large values of z

Jν(z) ∼
√

2

πz
cos(z − 1

2
νπ − 1

4
π). (4.2.30)

Hence, the Bessel function of first kind share zeros with cos
(
z − 1

2νπ − 1
4π
)

when z is large. An example where ν = 2 is plotted in Figure 4.2. The
plot is of cos

(
z − 5

4π
)
/
√
z, J2(z) and 10−21FN (z) for d = 10−12. It is the

zeros that are important so the scaling factor in front of the functions are
irrelevant. We see that the first couple of zeros are slightly off but the others
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10−21FN (z)

Figure 4.2: Plot of cos
(
z − 5

4π
)
/
√
z, J2(z) and 10−21FN (z) with d = 10−12

to illustrate how the zeros of the functions coincide for large z.

match quite well. The zero of the cosine matching the Nth zero (zkβbrane=0
N

in Figurefig:errjandcos) of FM (z) is
(
N + 3

4

)
π. The error in the zeros can

be seen in Figure 4.3 and it approaches zero as N increases. Thus, the
approximation

MN = kπe−kπrc

(

N +
1

2
ν − 1

4

)

, N = 1, 2, . . . (4.2.31)

is fairly good for Dirichlet boundary conditions.
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Figure 4.3: Plot of the error for the N ’th zero of FM with d = 10−12 and
ν = 2 when we approximate the zeros with the zeros of cos

(
z − 5

4π
)

for
kβbrane = 0 and cos

(
z + 1

4π
)

for kβbrane = 103 and kβbrane = 0.1.

Non-Dirichlet boundary conditions (βbrane 6= 0)

Secondly we treat non-Dirichlet BC and Eq.(4.2.29) can be written as

jν(z) = (2 + ν − (kβ)−1)Jν(z) − zJν+1(z). (4.2.32)

At large arguments zJν+1 dominates and the function shares zeros with
cos
(
z − 1

2νπ − 3
4π
)
. Figure 4.4 shows F (z), Jν+1(z) and 10−23FM (z) for

ν = 2 and d = 10−12. If kβ > 1 the accordance between −j2(z) and
cos
(
z + 1π

4

)
is good, even for the first couple of zeros. For kβ = 0.1 the first

zeros are completely off and this is generally true for small values of kβ. As
pointed out in [7] the approximation

MN = kπe−kπrc

(

N +
1

2
ν − 3

4

)

, N = 1, 2, . . . (4.2.33)

is good for kβ > 1 and gets better for higher N as long as kβ > 0. We see
an example of the errors made in Figure 4.3 where ν = 2, d = 10−12 and
kβbrane = 0.1 or kβbrane = 103.

We are now finished with the eigenfunctions and eigenvalues of M̂2
N and

p̂2. It is time to find the free energy of the bulk scalar from the partition
function.
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Figure 4.4: Plot of cos
(
z + 1

4π
)
/
√
z, J3(z) and 10−24FN (z) for both

kβbrane = 103 and kβbrane = 0.1 and d = 10−12 to illustrate how the ze-
ros of the functions coincide for large z.

4.3 Free Energy

Ignoring the unimportant prefactor of Eq.(4.1.10) the free energy reads

F = − 1

β
lnZ =

1

2β

∑

MN

∑

p

ln
(
M2

N + p2
)
, (4.3.1)

with the sum running over the values of MN and p we found in Section 4.2.
Inserting the results give

F = − 1

β
lnZ =

1

2β
V⊥

∫
d2k

(2π)2

∞∑

l=−∞

∑

MN ,kx

∫

ln
(
M2

N + ε2l + k2
x + k2

⊥
)
.

(4.3.2)
where k⊥ = k2

y + k2
z and the sum over kx and MN are given by all the real

zeros of the functions

Fx(kx) = sin(kxR)(1 − k2
xβ1β2) − kx(β1 + β2) cos(kxR) (4.3.3)

and

FN (MN ) = jhid
ν (MN/k)y

vis
ν (ekπrcMN/k) − jvis

ν (ekπrcMN/k)y
hid
ν (MN/k)

(4.3.4)
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respectively. It is important not to mix up the free energy F with the
functions Fx and FN . The free energy density is highly divergent as it
stands and needs regularization. For a positive definite operator Ω with
eigenvalues λJ the zeta function ζ is defined as

ζ(Ω | s) =
∑

J

λ−s
J . (4.3.5)

This series will converge for large values of Re(s) and can be analytically
continued to the entire complex plane. It is possible to define the regularized
determinant of Ω as

detΩ = exp

{

− dζ(Ω | s)
ds

∣
∣
∣
∣
s=0

}

. (4.3.6)

The motivation for this is

exp

{

− dζ(Ω | s)
ds

∣
∣
∣
∣
s=0

}

= exp

{
∑

J

lnλJe
−s ln λJ

∣
∣
∣
∣
∣
s=0

}

= exp
{∑

lnλJ

}

. =
∏

J

λJ

(4.3.7)

In our case Ω = M̂2
N + p̂2 and λ = M2

N + k2
⊥ + k2

x + ε2l , and accordingly the
correct zeta function is

ζ(s) =

∞∑

l=−∞
V⊥

∫
d2k

(2π)2

∑

MN ,kx

(
M2

N + ε2l + k2
x + k2

⊥
)−s

. (4.3.8)

We follow the same steps as in [39] when regularizing. The free energy is
expressed with the zeta function as

F = − 1

2β

∂

∂s
µ2sζ(s), (4.3.9)

where µ is an arbitrary parameter with the dimension of mass.
Note: We need an additional factor −N

β log(β) in the free energy, with

N being the number of modes with k2
⊥ + k2

x +M2
n = 0 [31]. We only need

to take this into consideration when MN = 0.
We will calculate two different, but equivalent, expressions for the free

energy density. One where we do the integration over the transverse mode
and one where we leave all the integrations for later.

4.3.1 The classical expression for the free energy

We will find the classical expression for the free energy rewriting using that
the Mellin transform of b−zΓ(z) is e−bt, i.e.

b−zΓ(z) =

∫ ∞

0
tz−1e−btdt⇒ b−z =

1

Γ(z)

∫ ∞

0
tz−1e−btdt. (4.3.10)
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Inserting εl = 2πl/β we write

F =
1

2β

∂

∂s

µs

Γ(s)
V⊥

∫
d2k

(2π)2

∑

MN ,kx

∞∑

l=−∞

∫ ∞

0
dt ts−1e−t(ε2l +k2

x+k2
⊥+M2

N)

(4.3.11)
and apply the Poisson summation formula

∞∑

l=−∞
b(l) = 2π

∞∑

p=−∞
c(2πp) (4.3.12)

where c(α) is the Fourier-transform of b(l). With

b(l) = e
−t (2π)2

β2 l2
, (4.3.13)

we find

c(α) =
1

2π

∫ ∞

−∞
b(l)e−iαldl =

β

4π
√
πt
e
− β2α2

4t(2π)2 . (4.3.14)

After the transformations the free energy reads

F =
1

4
√
π
V⊥

∫
d2k

(2π)2

∑

MN ,kx

∞∑

p=−∞

∫ ∞

0
dt t−

1
2
−1e−

p2β2

4t
−t(k2

x+k2
⊥+M2

N).

(4.3.15)
We have used that for any function g(z)

d

dz

(
g(z)

Γ(z)

)∣
∣
∣
∣
z=−n

=
(−1)n

n!
g(−n), (4.3.16)

for n = 0 ± 1,±2 . . . Separating the p = 0 term from the rest we can use
Eq.(4.3.10) to get it on the form

1

2
V⊥

∫
d2k

(2π)2

∑

MN ,kx

√

k2
x + k2

⊥ +M2
N . (4.3.17)

This is the familiar expression for the (free) energy at T = 0 and is the
only term that survives the limit T → 0. Performing the integration and
summation on the remaining parts lead to

F = V⊥

∫
d2k

(2π)2

∑

MN ,kx

(
1

2

√

k2
x + k2

⊥ +M2
N +

1

β
ln
(

1 − e−β
√

k2
x+k2

⊥+M2
N

))

=
V⊥
β

∫
d2k

(2π)2

∑

MN ,kx

ln

(

2 sinh

(
β

2

√

k2
x + k2

⊥ +M2
N

))

.

(4.3.18)
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It is worth noting that for a boson with energy Ep contributes with

Zp =

∞∑

n=1

e−βEp(n+1/2) =
1

2 sinh(βEp/2)
, (4.3.19)

to the total partition function [36]. Summing over all energies yields the
classical expression corresponding to the one above. We could in principle
have started with with this expression, but since the next expression for the
free energy occurs more naturally from the method in this chapter we chose
otherwise.

4.3.2 A more usable expression for the free energy

In this section we will calculate the zeta function for the free energy and at
the same time do the integration over the transverse modes. At the starting
point the free energy reads

F = −V⊥
2β

∂

∂s
µ2s

∞∑

l=−∞

∑

MN ,kx

∫
d2k

(2π)2



M2
N + ε2l + k2

x
︸ ︷︷ ︸

A

+k2
⊥





−s

. (4.3.20)

We start by doing the integration over the transverse modes directly using
a generalized polar coordinate transformation

x1 = ky = r cos θ1

x2 = kz = r sin θ1 cos θ2

x3 = r sin θ1 sin θ2 cos θ3
...

xN⊥−1 = r sin θ1... sin θn−2 cos θn−1

xN⊥
= r sin θ1... sin θn−2 sin θn−1.

(4.3.21)

Here we introduce the variable N⊥ as the number of variables we integrate
over. In this case the N⊥ is the number of transverse modes (equal to two).
We also introduce

A = M2
N + ε2l + k2

x, (4.3.22)

since A does not depend on any of the variables we integrate over. This
may seem like much trouble for nothing since an ordinary two dimensional
coordinate transformation will do the trick. However this makes it easy to
obtain the zero temperature limits. To find E = F (T = 0) we let

∞∑

l=−∞
f(εl) → β

∫ ∞

−∞

dε

2π
f(ε). (4.3.23)
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By rewriting the free energy

F = −V⊥
2β

∂

∂s
µ2s

∞∑

l=−∞

∑

MN ,kx

∫
dN⊥k⊥
(2π)N⊥

(
A+ k2

⊥
)−s

, (4.3.24)

we find the finite temperature expressions by setting N⊥ = 2. To get the
zero temperature expressions:

1. change N⊥ = 2 to N⊥ = 3

2. remove the sum over l

3. set εl = 0

4. let V⊥ → V⊥β.

After the coordinate transformation and introduction of N⊥, we follow the
same steps as in [40] and integrate out the angles

F = − V⊥
2β(2π)N⊥

∂

∂s
µ2s

∞∑

l=−∞

∑

MN ,kx

2πN⊥/2

Γ(N⊥/2)

∫ ∞

0
dr rN⊥−1(A+ r2)−s.

(4.3.25)
The integral can be solved by performing the variable change x = r2/A and
recognizing the integral representation of the Beta function (see Eq.(6.2.1)
from [38])

B(q, v) =

∫ ∞

0

dt tv−1

(1 + t)v+q
, (4.3.26)

with v = N⊥/2 and q = s−N⊥/2. Using the following property of the Beta
function (see Eq.(6.2.2) from [38])

B(q, v) =
Γ(v)Γ(q)

Γ(v + q)
, (4.3.27)

we find

F = − V⊥
2β(2π)N⊥

∂

∂s
µ2s

π
N⊥
2 Γ

(

s− N⊥
2

)

Γ(s)

∞∑

l=−∞

∑

MN ,kx

A
N⊥
2

−s. (4.3.28)

In this approach we also need Eq.(4.3.16) to find the final expression for the
free energy,

F = − V⊥π
N⊥
2

2β(2π)N⊥
Γ

(

−N⊥
2

) ∞∑

l=−∞

∑

MN ,kx

(
M2

N + ε2l + k2
x

)N⊥
2 . (4.3.29)

The two approaches lead to different expressions for the free energy density.
The choice of the former or latter expression depends on what kind of reg-
ularization procedure one prefer to use later. In [36] the former expression
was used in connection with the argument principle. Since we want to work
with zeta functions here we chose the latter. Eq.(4.3.29) will be frequently
used in later chapters.
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Zero temperature

By using the procedure to obtain the zero temperature limit on Eq.(4.3.29)
we see that

E = −V⊥π
(N⊥+1)

2

2(2π)N⊥+1
Γ

(

−N⊥ + 1

2

)
∑

MN ,kx

(
M2

N + k2
x

)N⊥+1

2 . (4.3.30)

is an alternative expression for the zero point energy.



Chapter 5

Zero temperature

Before trying to handle finite temperature we calculate the Casimir energy
and force at zero temperature. This has been done [19, 24, 20] for Dirichlet
BC on the physical plates by applying the approximations of Section 4.2.3.
By using the Abel-Plana formula [41, 42], instead of Epstein-Hurwitz zeta
functions, there is no need to make these approximations, hence the results
from this chapter are more accurate than previous results.

When T = 0 (β = ∞) Eq.(4.3.18) reduces to the familiar expression

E =
V⊥
2

∫
d2k

(2π)2

∑

MN ,kx

√

k2
x + k2

⊥ +M2
N . (5.0.1)

We can divide the energy into two separate partsE = E(MN = 0)+E(MN >
0). With E(MN = 0) equal to the energy of the massless scalar in Minkowski
spacetime (E(MN = 0) = EMink) treated in Section 3.2. For massive scalar
fields there is no massless mode (MN = 0) and the final expression (from
the MN > 0 modes) bears no resemblance to EMink at all. If the bulk scalar
is massless we have a massless mode, and the total energy is equal to the
energy in Minkowski spacetime plus corrections arising from the MN > 0
modes.

Throughout this and the the following chapter we will assume no mass-
less mode. In Section 4.2.2 we concluded that only when the field is even,
minimally coupled and massless there exists a MN = 0 mode. If we want to
find the Casimir force and energy for such a field we simply to add the mass-
less mode term. We will therefore start by finding the energy and force of
Minkowski spacetime (or the MN = 0 mode) first, both in this chapter and
the finite temperature chapter. The physical implications of the massless
mode will be dicussed thoroughly in Section 7.4.

37
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5.1 The Abel-Plana formula

Considering that Eq.(5.0.1) is infinite as is stands we need to regularize it.
There are several options and one of these is the generalized Abel-Plana
formula [41, 42]

∞∑

n=1

πf(zn)

1 + sin(zn) cos(zn + 2α)/zn
= −π

2

f(0)

1 − β0/a− βa/a
︸ ︷︷ ︸

1

+

∫ ∞

0
dzf(z)

︸ ︷︷ ︸

2

+ i

∫ ∞

0
dz
f
(
eiπ/2z

)
− f

(
e−iπ/2z

)

(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1)e

2z − 1
︸ ︷︷ ︸

3

.

(5.1.1)

Here, zn denotes the n’th zero of the function f(z) in the right half-plane
of the complex plane. The zeros are arranged in ascending order zn < zn+1.
The β’s are those of Section 4.2.1 since this version of the Abel-Plana formula
is especially designed to be used in Casimir effect problems with Robin BC.

5.1.1 Limitations of the Abel-Plana formula

Before we proceed the limitations of Eq.(5.1.1) must be addressed. Eq.(5.1.1)
is not valid for all BC on the physical plates (i.e. all values of βj). The Abel-
Plana formula originates from the residue theorem. This version of the Abel-
Plana formula is especially suitable for Casimir problems with Robin BC and
a detailed derivation can be found in [41, 43]. The function Fx(z = akx)
given by Eq.(4.2.8) is central in the derivation since the sum over kx in the
energy is equal to the real zeros of F (z). One of the conditions for Eq.(5.1.1)
is that this function has no purely imaginary zeros (z = 0 is OK). To find
the limitations on the β’s we look at

F (iz) = i
(
(1 + β0aβaaz

2) sinh z − (β0a+ βaa)z cosh z
)
. (5.1.2)

For us it is important that this function has no zeros (except z = 0) for
Dirichlet-Dirichlet (β0 = βa = 0), Neumann-Neumann (β0 = βa = ∞) or
Dirichlet-Neumann (β0 = 0, βa = ∞ or β0 = ∞, βa = 0) BC. Generally we
have three different situations [43]

1. F(z) has no positive imaginary zeros for {β0a+ βaa ≥ 1, β0βa ≤ 0} ∪
{b0,a ≤ 0}

2. F(z) has one single positive imaginary zero for {0 < β0a + βaa <
1, β0βa ≤ 0} ∪ {β0a+ βaa ≥ 1, b0,a > 0} ∪ {β0a+ βaa < 0, β0βa < 0}

3. F(z) has two positive imaginary zeros for {β0a+ βaa < 1, β0,1 > 0}
To each positive real zero is a corresponding negative purely imaginary zero.
As long as we fulfill the condition of no imaginary zeros we need not to worry
about the extra contributions the imaginary zeros would give.
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5.1.2 Applying the Abel-Plana formula to the energy

We follow [42] closely in this section when using the Abel-Plana formula to
perform the summation over kx. From the equations of Section 4.2.1 we find
the relation

1 + sin(zn) cos(zn + 2α)/zn = 1 − β0/a

1 + (β0/azn)2
− βa/a

1 + (βa/azn)2
. (5.1.3)

Hence we must choose

f(z) =
1

π

√

(z/a)2 + k2
⊥ +M2

n



1 −
∑

j=0,a

βj/a

1 + (βj/az)2



 (5.1.4)

to match the expression in Eq.(5.0.1) and Eq.(5.1.1). It is practical to eval-
uate the three integrals in Eq.(5.1.1) separately:

1.

− V⊥
2

∫
d2k⊥
(2π)2

∑

MN

π

2

f(0)

1 − β0/a− βa/a

= − V⊥
4

∫
d2k⊥
(2π)2

∑

MN

√

k2
⊥ +M2

N .

(5.1.5)

This term does not depend on a and will not give a contribution to
the Casimir force between the plates in physical space.

2. We split the second integral into three parts

V⊥
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∫
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(2π)2
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∫ ∞
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∑
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∫ ∞

0
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√

k2
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N

1 + β2
j x

2
.

(5.1.6)

The notation
∑

j=0,a refers to one term for β0 and another for βa. We
recognize the first term as −E(a → ∞), the energy when the plates
are sent to infinity or the energy with no plates present. The terms
dependent on βj vanish when we assume Neumann or Robin boundary
conditions in any combination, and are in addition not dependent on
a.
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3. Since

f(ei
π
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and
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(5.1.8)
the integrand of the third integral is zero for (z/a)2 < k2 + M2

N .
Changing the variable to x = z/a we find

∆E =i
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(5.1.9)

We have introduced ∆E in the same way as in [42] and also copy the notation
by collecting the rest of the energy into two parts

Ej = − V⊥
8
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d2k⊥
(2π)2
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√
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⊥ +M2

N

− V⊥βj

π

∫
d2k⊥
(2π)2

∑

MN

∫ ∞

0
dx

√

k2
⊥ + x2 +M2

N

1 + β2
jx

2
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V⊥a
2

∫
d3k

(2π)3
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k2 +M2
N .

(5.1.10)

ENP is the energy when no plates are present, and Ej can be interpreted as
the vacuum energy along the transverse directions induced by the plate at
x0 = 0 and xa = a respectively. The energy can be written as

E = ENP +
∑

j=0,a

Ej + ∆E. (5.1.11)
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Before discussing the energy further we need to introduce the piston model.

5.2 The piston model

In recent literature the piston model has attained a great deal of attention
[44, 45, 46, 47, 48, 49, 50, 51]. We introduce the piston (Figure 5.1) with the
same notation as in Chapter 4.3 of [32]. Instead of only using the energy EI

X

η
1

1 X
 
− η 

R X-R

Figure 5.1: Illustration of the four cavities in the piston model.

of cavity I as the Casimir energy, we use

Episton = EI(a) + EII(X − a) − EIII(X/η) − EIV (X(1 − 1/η)). (5.2.1)

Initially the system is in an unstressed situation where the cavities have size
X/η and X(1 − 1/η). Then we shift the middle plate so that the lengths of
the two cavities are a and X − a; the system is now in a stressed situation.
The Casimir energy is the sum the energies of two cavities in the stressed
case (I and II) minus the energies of the cavities in the unstressed case (III
and IV). The constant η is ∼ 2, characterizing the unstressed situation. In
the end we let X → ∞ and effectively remove the rightmost plate from the
setup.

For the three different parts of the energy in Eq.(5.1.11) the introduction
of the piston model have different consequences. Ej does not depend on a,
hence the sum of Ej over the four cavities is zero. ENP is linear in a and will
also drop out since a+ (X − a)− (X/η) − (X(1 − 1/η)) = 0. Thus both Ej

and ENP vanish in the piston model. ∆E goes to zero when a→ ∞ and so
∆EII(X −a)−∆EIII(X/η)−∆EIV(X(1− 1/η)) = 0. All in all we conclude
that Episton = ∆E.

In the rest of this chapter we will work with the piston model. The
notation EBC

RSI/RSII refer to the energy per surface area (i.e. Episton/V⊥)
where the subscript refer to the specific model and the superscripts denotes
the boundary conditions. The phrase ’energy density’ may also be used for
this quantity. Similarly PBC

RSI/RSII is the force per unit area.
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5.3 Casimir energy and force in flat spacetime

As promised we find the Casimir energy and force in Minkowski spacetime
of a massless scalar field, equal to the MN = 0 mode of the bulk scalar
field in RS. Hence we remove the sum over MN in Eq.(5.1.9) and set MN =
0. In the previous section we concluded that in the piston model only
∆E is interesting. Before presenting the final answer we have a couple of
integrations left. A good start is to integrate out the angles of d2k⊥, and
we proceed by a series of variable changes

EMink = − 1

π

∫ ∞

0

k⊥dk⊥
2π

∫ ∞
√

k2
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N
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⊥
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(β0/a−1)(βa/a−1)
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︸ ︷︷ ︸
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0
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0
dy

k⊥y2

√

y2 + k2
⊥

g(
√

y2 + k2
⊥)

y=r sin θ
k⊥=r cos θ

= − 1

2π2

∫ π
2

0
dθ cos θ sin2 θ

︸ ︷︷ ︸

1/3

∫ ∞

0
dr r3g(r)

= − 1

6π2
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0
dr r3
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∑

j=0,a
βj

(βjx)2−1

(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1)e

2ax − 1
.

(5.3.1)

Let us tak a break to comment on the expression above. It is the energy
of the cavity between two parallel plates in the piston model with arbitrary
boundary conditions. It is valid for all values of β0 and βa that do not lead to
imaginary zeros of FN (z). Since this expression holds for Dirichlet-Dirichlet
(DD), Neumann-Neumann (NN) and Dirichlet-Neumann (DN) BC we will
stick to these three specific examples in the following sections.

5.3.1 Dirichlet-Dirichlet or Neumann-Neumann boundary con-
ditions

We assume either Dirichlet BC on both plates or Neumann BC on both
plates. The energy is the same so we treat them as one case

EDD,NN
Mink = − a

6π2

∫ ∞

0
dr

r3

e2ar − 1
. (5.3.2)
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To be able to solve the integral we expand the denominator in the exponen-
tial factor

1

e2ar − 1
=

e−2ar

1 − e−2ar

=e−2ar
(

1 + e−2ar + e−2(2ar) + . . .
)

=
∞∑

n=1

e−2nar
(5.3.3)

giving

EDD,NN
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∞∑

n=1

∫ ∞

0
dr r3e−2anr
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16π2a3
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1

n4
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ζR(4)=π4/90

= − π2

1440a3
.

(5.3.4)

This is the result already mentioned in Chapter 3. For the first time we
have introduced the Riemann zeta function

ζR(s) =

∞∑

n=1

1

ns
. (5.3.5)

The Casimir force of Minkowski spacetime is

PDD,NN
Mink = − π2

480a4
. (5.3.6)

These two expressions will be used later to compare the Casimir effect in
RSI and RSII with the Casimir effect in Minkowski spacetime.

5.3.2 Dirichlet-Neumann boundary conditions

Now we turn to Dirichlet boundary conditions on one plate and Neumann
boundary conditions on the other. The resulting energy density is

EDN
Mink =

a

6π2

∫ ∞

0
dr

r3

e2ar + 1
. (5.3.7)

The expansion of the denominator is somewhat different

1

e2ar + 1
=

e−2ar

1 + e−2ar

=e−2ar
(

1 − e−2ar + e−2(2ar) − . . .
)

= −
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(−1)ne−2nar.

(5.3.8)
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This leads to the energy

EDN
Mink = − a

6π2
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(−1)n
∫ ∞
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(5.3.9)

Here we have used that

∞∑

n=1

(−1)n
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= −

∞∑

n=1

1
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− 2
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i=1

1

(2n)s
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2s−1

)

ζR(s) (5.3.10)

is valid for all real s > 1. The corresponding Casimir force is

PDN
Mink =

7

8

π2

480a4
(5.3.11)

and predicts a slightly smaller and repulsive Casimir force. The Casimir
force for DD/NN BC is always attractive. The experimental verification of
repulsive Casimir forces as a result of different boundary conditions is recent
[52]. We are now armed with the Casimir energy and force in Minkowski
spacetime for DD or NN and DN BC and ready to handle RSI and RSII.

5.4 Casimir energy and force in RSI

The well known expressions for the Casimir energy and force in Minkowski
spacetime were derived more or less as an exersice before starting with RSI.
We mention, once again, that only ∆E is important in the piston model. In
this an the following chapter we pay no attention to the terms independent
of a and linear in a as they cancel in the piston model. We start with
Eq.(5.0.1) and perform variable changes similar to those in Eq.(5.3.1). Only
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the last step is different
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(5.4.1)

Now we look at specific boundary conditions for simplicity.

5.4.1 Dirichlet-Dirichlet or Neumann-Neumann boundary con-
ditions

The integral in Eq.(5.4.1) is simplified when assuming DD and NN boundary
conditions

EDD,NN
RSI = − a

6π2

∑

MN

∫ ∞

MN

dx
(x2 −M2

N )
3
2

e2ax − 1
. (5.4.2)

After expanding the denominator we find

EDD,NN
RSII = − a

6π2

∑

MN

∞∑

n=1

∫ ∞

MN

(x2 −M2
N )

3
2 e−2anx. (5.4.3)

The integral leads to modified Bessel functions of the second kind. We use
3.387(3) from [53],

∫ ∞

1
(x2 − 1)ν−1e−µxdx =

1√
π

(
2

µ

)ν− 1
2

Γ(ν)Kν− 1
2
(µ), (5.4.4)
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to find

EDD,NN
RSI = − 1

8π2a

∞∑

n=1

∑

MN

M2
N

n2
K2(2aMNn). (5.4.5)

This is in accordance with [42] through that paper does not consider the
Casimir effect rising from a bulk scalar in the RS model in particular. Still
we have not specified MN . The Casimir energy in RSI without approxima-
tions, and with d = 10−12 is shown in Figure 5.2 for both DD, NN and DN
boundary conditions.
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Casimir energy in RSI at zero temperature
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Figure 5.2: Plot of the Casimir energy in RSI with DD and NN and DN
boundary conditions with d = 10−12.

To find the Casimir force PDD,NN
RSI we differentiate the energy with respect

to the plate separation

PDD,NN
RSI = −∂E

DD,NN
RSI

∂a

= − 3

8π2a2

∞∑

n=1

∑

MN

M2
N

n2
K2 (2aMNn)

− 1

4π2a

∑

n=1

∑

MN

M3
N

n
K1 (2aMNn) .

(5.4.6)

We have used that the derivative of Kν(z) is

d

dz
Kν(z) = −ν

z
Kν −Kν−1. (5.4.7)
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Due to the nature of Kν(z), the force is weak for large values of ake−kπrc
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Figure 5.3: Plot of the Casimir force in RSI with DD and NN and DN
boundary conditions with d = 10−12.

and vanish as a → ∞. From Chapter 2 we have k ∼ MPl and kπrc ∼ 12 in
order to solve the hierarchy problem. Because of this kπe−kπrc given by the
TeV scale. Inserting the ~’s and the c’s we find kπe−kπrc/(~c) ∼ 1018m−1.
Thus the argument of the modified Bessel function is large at all values of
a that are of interest. When a approaches the size of an atom (∼ 10−10m)
the model with two separate, parallel plates is not appropriate. In [38] we
find the asymptotic expansion of Kν(z) for large arguments

Kν(z) =

√
π

2z
e−z

(

1 +
4ν2 − 1

8z
+

(4ν2 − 1)(4ν2 − 9)

2!(8z)2
+ . . .

)

. (5.4.8)

The function approaches zero rapidly with increasing argument. As Figure
5.3 shows, the Casimir force in RSI is small compared to Minkowski space-
time even at relatively small values of ake−kπr−c (extremely small distances
a).
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5.4.2 Dirichlet-Neumann boundary conditions

Now we turn to Dirichlet BC on one plate and Neumann BC on the other.
The resulting energy density is

EDN
RSI =

a

6π2

∑

MN

∫ ∞

MN

(x2 −M2
N )

3
2

e2ax + 1
. (5.4.9)

Using the same steps as with DD/NN we find that Casimir energy density
with DN BC is
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MN

(−1)n
M2

N

n2
K2(2aMNn) (5.4.10)

and accordingly the Casimir force is

PDD,NN
RSI = −∂E

DD,NN
RSI

∂a

= − 3

8π2a2

∞∑

n=1

∑

MN

(−1)n
M2

N

n2
K2 (2aMNn)

− 1

4π2a

∑

n=1

∑

MN

(−1)n
M3

N

n
K1 (2aMNn) .

(5.4.11)

The behavior of the Casimir energy and force in RSI compared to the cor-
responding expression without RS is plotted in Figures 5.2 and 5.3. What
characterizes the DN BC in comparison to DD/NN is the factor (−1)n. As
we will see this factor is present in every sum over n.

5.4.3 Approximations in RSI

Choosing the bulk scalar field to be even and minimally coupled with no
boundary mass term (Neumann BC on the branes) and choosing the ap-
proximation MN/k � 1, but ekπrcMN/k 6� 1 as in Section 4.2.3 we get

EDD,NN
piston = −k

2e−2kπrc

8a

∑

n=1

∑

N=1

(
N + 1

4

)2

n2
K2

(

2akπe−kπrc

(

N + ν − 1

4

)

n

)

,

(5.4.12)
and

PDD,NN
RSI = −∂E

DD,NN
RSI

∂a

= − 3k2e−2kπrc

8a2

∑

n=1

∑

N=1

(
N + 1

4

)2

n2
K2

(

2akπe−kπrc

(

N + ν − 1

4

)

n

)

− πk3e−3kπrc

4a

∑

n=1

∑

N=1

(
N + 1

4

)3

n
K1

(

2akπe−kπrc

(

N + ν − 1

4

)

n

)

.

(5.4.13)
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Here we observe that the energy is always negative and the plates always
attract each other.

This expression is equal to the second half of Eq.(2.17) in [19] and we
here comment on the differences. First let us summarize the assumptions
made in [19]:

1. There is Dirichlet-Dirichlet BC on the physical plates

2. The field obey Neumann boundary conditions on the branes

3. MN/k � 1

4. No boundary mass term and minimally coupled, massless scalar field
in bulk. This leads to ν = 2 (see Eq.(4.2.13)).

From Section 4.2.3 we find that the values of MN with these assumptions
are

MN = kπe−kπrc

(

N +
1

4

)

, N = 1, 2, . . . , (5.4.14)

i.e. equal to the values in [19]. All in all the mathematics here and in [19]
are the same. The physical setup is however different.

First of all [19] does not treat the piston model. The energy without
plates (a → ∞) is subtracted. This is equivalent to removing the first part
of Ej from Section 5.1.2. But they do not remove terms independent of
a. Since we only can measure energy differences in physics these are not
noticeable. The terms independent a are lost due to differentiation when
finding the Casimir force and can thus not be detected at all.

Secondly, the MN = 0 mode is included because this is a massless field in
bulk. As discussed in the beginning of this chapter the consequence of this
is an additional term equal to the energy in ordinary 3+1 spacetime EMink.
However the authors do not calculate the Casimir effect in the Randall-
Sundrum model for a massless scalar field in bulk, but an electromagnetic
field in bulk. This is sensible since it is the Casimir effect of the electromag-
netic field that is measured by experiments. In Chapter 7 we call attention
to the problems with using the results from scalar fields to draw conclusions
on the electromagnetic field.

5.5 Casimir energy and force in RSII

In the RSII model rc → ∞ and the Kaluza-Klein modes are continuous. As
pointed out in the beginning of this chapter we are dealing with a massive
field so the MN = 0 mode is excluded. We obtain RSII be replacing the
sum over MN with an integral

∑

MN

→
∫ ∞

0

dM

k
. (5.5.1)
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As in RSI the variable changes are similar to those in the Minkowski case

ERSII = − V⊥
π

∫ ∞

0

dM

k

∫ ∞

0

k⊥dk⊥
2π

∫ ∞
√

k2
⊥+M2

dx
√

x2 − k2
⊥ −M2

×
a+

∑

j=0,a
βj

(βjx)2−1

(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1)e

2ax − 1
︸ ︷︷ ︸

g(x)

y=
√

x2−k2
⊥−M2

= − V⊥
2π2

∫ ∞

0

dM

k

∫ ∞

0
dk⊥

∫ ∞

0
dy

k⊥y2

√

yk + k2
⊥ +M2

g(
√

yk + k2
⊥ +M2)

M=r sin θ sin φ
y=r sin θ cos φ

k⊥=r cos θ
= − V⊥

2π2k

∫ π
2

0
dθ cos θ sin3 θ

︸ ︷︷ ︸

1/4

∫ π
2

0
dφ cos2 φ

︸ ︷︷ ︸

π/4

∫ ∞

0
dr r4g(r)

= − V⊥
32πk

∫ ∞

0
dr r4

a+
∑

j=0,a
βj

(βjr)2−1

(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1)e

2ar − 1
.

(5.5.2)

As in previous sections we now study DD, NN and DN BC in particular.

5.5.1 Dirichlet-Dirichlet or Neumann-Neumann boundary con-
ditions

If we assume Dirichlet (or Neumann) BC on both plates the energy density
of RSII reduces to

EDD,NN
RSII = − a

32πk

∫ ∞

0
dr

r4

e2ax + 1
= − a

32πk

∞∑

n=1

∫ ∞

0
drr4e−2anx

= − a

32πk

24

(2a)5

∞∑

n=1

1

n5

︸ ︷︷ ︸

ζR(5)

= − 3ζR(5)

128πka4
= EDD,NN

Mink

135ζR(5)

4π3ka
.

(5.5.3)

Once again we have expanded the denominator in terms of e−2ax. The
Casimir energy is show in Figure 5.4. The Casimir force in Figure 5.5 is
easily obtained by differentiating the energy

PDD,NN
RSII = − 3ζR(5)

32πka5
= PDD,NN

Mink

45ζR(5)

π3ak
. (5.5.4)

We will discuss the differences between RSII and RSI in Chapter 7. We
emphasize the overall factor 1/(ak) when comparing to Minkowski which,
as we will se later, is typical for RSII.
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Figure 5.4: Plot of the energy in RSII with DD/NN and DN boundary
conditions.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.005

0.01

0.015

0.02

0.025

0.03

 

 

ak

Casimir force in RSII at zero temperature

PDD,NN
RSII /PDN

Mink

PDN
RSII/P

DN
Mink

Figure 5.5: Plot of the force in RSII with DD/NN and DN boundary con-
ditions.
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5.5.2 Dirichlet-Neumann boundary conditions

By assuming Dirichlet BC on one plate and Neumann on the other we find

EDN
RSII = − a

32πk

∞∑

n=1

(−1)n
∫ ∞

0
drr4e−2anx

= − a

32πk

24

(2a)5

∞∑

n=1

(−1)n
1

n5

︸ ︷︷ ︸

− 15
16

ζR(5)

=
15

16

3V⊥ζR(5)

128πka4
= EDN

Mink

2025ζR(5)

56π3ka
.

(5.5.5)

and

PDN
RSII =

15

16

3ζR(5)

32πka5
= PDN

Mink

675ζR(5)

16π3ka
. (5.5.6)

The plots of the Casimir energy and force are shown in Figures 5.4 and 5.5
respectively. It is interesting to notice that by assuming Dirichlet BC on one
brane and Neumann on the other we always seem to get repulsive forces.

This concludes our survey of the Casimir effect in RSI and RSII at zero
temperature. We are now ready to proceed to finite temperatures.



Chapter 6

Finite temperature

In this section we want to find the Casimir free energy F and force P at finite
temperature. We have an expression for the free energy but this expression
is divergent and we will regularize it using zeta regularization. As in Chapter
5 we first deduce the free energy and force at high and low temperature in
Minkowski spacetime, both to get familiar with the formalism and in order
to have something to compare the RS results to.

6.1 Casimir free energy and force in flat spacetime

The starting point is Eq.(4.3.29) with MN = 0

F = − V⊥πN⊥/2

2β(2π)N⊥
Γ

(

−N⊥
2

) ∞∑

l=−∞

∑

kx

(
k2

x + ε2l
)N⊥

2 , (6.1.1)

with εl = 2πl/β. We choose instead to look at

F (s) = − V⊥
8πβ

Γ(s)

∞∑

l=−∞

∑

kx

(
k2

x + ε2l
)−s

. (6.1.2)

For s = −N⊥/2 = −1 we regain the right expression for the free energy
density. F (s) is well-defined for large, positive Re(s) and we choose to
analytically continue the function to the whole complex plane. Applying
the Abel-Plana formula with

f(z) =
1

π

(
ε2l + (z/a)2

)−s



1 −
∑

j=0,a

βj/a

1 + (βjz/a)2



 , (6.1.3)

we first find the free energy and force with DD or NN BC and then with DN
BC. In Appendix B we calculate the Casimir free energy for for a massless
bulk scalar field in RSI. The calculations are similar to the zero temperature

53
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case and for this reason we do not go though them again. In Minkowski
spacetime the results for the free energy density can be retrieved by setting
MN = 0 and removing the sum over MN . We give the result from the
appendix and find the Casimir force. The method used later in this chapter
for RSI gives, of course, the same result for Minkowski spacetime.

6.1.1 Dirichlet-Dirichlet or Neumann-Neumann boundary con-
ditions

Eq.(B.10) gives us the Casimir free energy density with DD or NN BC

FDD,NN
Mink = − aπ

1
2

β(2π)2

∞∑

l=−∞

∑

n=1

(
ε2l
n2a2

) 3
4

K 3
2
(2na|εl|)

= − ζR(3)

16πa2β
− a

2β

(
2

aβ

) 3
2

∞∑

l,n=1

(
l

n

) 3
2

K 3
2

(
4πanl

β

)

.

(6.1.4)

Here we have inserted ε = 2πl/β. The first term is the l = 0 term of
the Matsubara frequencies and can be parted from the rest earlier in the
calculation or by looking at the properties of Kν(z) at small arguments.

High temperatures

By high temperature we mean aT � 1 since this is the only natural scale.
The expression above is suitable in this limit

FDD,NN
Mink = −T ζR(3)

16πa2

(

1 +
8π

ζR(3)
(2aT )

3
2

∞∑

l,n=1

(
l

n

) 3
2

K 3
2
(4πaTnl)

)

.

(6.1.5)

The first term −T ζR(3)
16πa2 will dominate at high aT since Kν(z) decreases with

temperature. The Casimir force is

PDD,NN
Mink = − T

ζR(3)

8πa3
+
T

2

(
2T

a

) 3
2

∞∑

l,n=1

(
l

n

) 3
2

K 3
2
(4πaTnl)

− 2πaT 2

(
2T

a

) 3
2

∞∑

l,n=1

l
5
2

n
1
2

K 5
2
(4πaTnl) .

(6.1.6)

This is also dominated by the first term at large aT .
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Low temperatures

The expression for high temperatures is not suitable for low temperatures.
We go back to

F (s) = − V⊥
β8π

Γ(s)

∞∑

l=−∞

∑

kx

(
k2

x + ε2l
)−s

=− V⊥
β8π

Γ(s)
∑

kx

(
k2

x

)−s

︸ ︷︷ ︸

Fl=0

− V⊥
β8π

Γ(s)

∞∑

l=1

∑

kx

(

k2
x +

(
2πl

β

)2
)−s

.

(6.1.7)

Note our choice to keep kx. The plan is to use the Abel-Plana formula
later to find the DN BC expressions at the same time as DD/NN. Using the
Mellin transform, Eq.(4.3.10), we write F (s) as

F (s) =Fl=0 −
V⊥
β4π

∞∑

l=1

∑

kx

∫ ∞

0
dt ts−1e

−t

(

k2
x+
(

2πl
β

)2
)

=Fl=0 −
V⊥
β4π

∞∑

l=1

∑

kx

∫ ∞

0
dt ts−1S2

(

t

(
2π

β

)2
)

e−tk2
x .

(6.1.8)

Here we have introduced the function

Sα(t) =
∞∑

m=1

e−mαt, (6.1.9)

and in Appendix C we show that

S2(t) = −1

2
+

1

2

√
π

t
+

√
π

t
S2

(
π2

t

)

. (6.1.10)

The first of the three terms coming from Eq.(6.1.10) cancels Fl=0 from
Eq.(6.1.7) leaving

F (s) =− V⊥

16π
3
2

Γ(s− 1/2)
∑

kx

k−2(s−1/2)
x

︸ ︷︷ ︸

F (T=0)

− V⊥

8π
5
2

∑

kx

∞∑

l=1

∫ ∞

0
dt t(s−1/2)−1e−tk2

x−β2l2

4t .

(6.1.11)
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The first term can be recognized as E = F (T = 0). To realize this see
Eq.(4.3.30) and remember to only include MN = 0. The resulting integral
is of the form

∫ ∞

0
dt tν−1e−β/t−γt = 2

(
β

γ

)ν/2

Kν

(

2
√

βγ
)

. (6.1.12)

For s = −1 we find

F = E − 1

4π
3
2

(
β

2

)− 3
2 ∑

kx

∞∑

l=1

(
l

kx

)− 3
2

K 3
2
(kxβl). (6.1.13)

We can use the Abel-Plana formula if we choose

f(z) =
1

π
(z/a)

3
2K 3

2
(βlz/a)



1 −
∑

j=0,a

βj/a

1 + (βjz/a)2



 . (6.1.14)

In Appendix B we show that the Abel-Plana formula with f(z) of the form

f(z) =
1

π
(z/a)νKν(Az/a)



1 −
∑

j=0,a

βj/a

1 + (βjz/a)2



 (6.1.15)

leads to

∆f

{
DD,NN

DN

}

=

∞∑

n=1

(−1){2n
n } a(2A)ν√

π

Γ
(
ν + 1

2

)

((2an)2 +A2)ν+1/2
. (6.1.16)

Hence in the low temperature limit we have

∆F = ∆E − 2aV⊥
π2

∞∑

n,l=1

1

((2an)2 + (βl)2)2
. (6.1.17)

The correction to the zero temperature energy should decay exponentially.
By once more using the Mellin transform, but this time choosing S2(t(2a)

2)
and Eq.(6.1.10) we can show that

∆F =∆E +
V⊥

π
3
2

∞∑

l=1

1

(βl)4
− V⊥

2π
3
2

∞∑

l=1

1

(βl)3

− 2V⊥

(2aβ)
3
2

∞∑

n,l=1

(n

l

) 3
2
K 3

2

(
βπln

a

)

.

(6.1.18)

In the piston model we throw away all terms independent and linear in a.
This way we are left with

FDD,NN
Mink = EDD,NN

Mink − 2T
3
2

(2a)
3
2

∞∑

n,l=1

(n

l

) 3
2
K 3

2

(
πln

aT

)

(6.1.19)
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and find

PDD,NN
Mink =PDD,NN

Mink (T = 0) − 3T
3
2

√
2a

5
2

∞∑

n,l=1

(n

l

) 3
2
K 3

2

(
πln

aT

)

− π
√

T/2

a
7
2

∞∑

n,l=1

n
5
2√
l
K 5

2

(
πln

aT

)

.

(6.1.20)

The Casimir energy and force is equal to the zero temperature expression
plus correction terms. The correction terms decay exponentially as T → 0.

6.1.2 Dirichlet-Neumann boundary conditions

Looking at Eq.(B.12) we find the Casimir free energy density with DN BC

FDN
Mink = − aπ

1
2

β(2π)2

∞∑

l=−∞

∑

n=1

(−1)n
(

ε2l
n2a2

) 3
4

K 3
2
(2na|εl|)

=
3ζR(3)

64πβa2
− a

2β

(
2

aβ

) 3
2

∞∑

n,l=1

(−1)n
(
l

n

) 3
2

K 3
2

(
4πanl

β

)

.

(6.1.21)

High temperature

The expression above is suitable for high temperatures

FDN
Mink = T

3ζR(3)

64πa2
− T

a

2

(
2T

a

) 3
2

∞∑

l=1

∑

n=1

(−1)n
(
l

n

)3
2

K 3
2
(4πaTnl) .

(6.1.22)

The first term T 3ζR(3)
64πa2 is linear in T and will dominate at high temperatures.

The Casimir force is

PDN
Mink = T

3ζR(3)

32πa3
+
T

2

(
2T

a

) 3
2

∞∑

l,n=1

(−1)n
(
l

n

) 3
2

K 3
2
(4πaTnl)

− 2πaT 2

(
2T

a

) 3
2

∞∑

l,n=1

(−1)n
l
5
2

n
1
2

K 5
2
(4πaTnl) .

(6.1.23)

As before this expression cannot be used in the low temperature limit.

Low temperature

Since we have already gone through the calculation at low temperatures for
DD or NN BC we claim that

FDN
Mink = EDN

Mink −
2T

3
2

(2a)
3
2

∞∑

n,l=1

(−1)n
(n

l

) 3
2
K 3

2

(
πln

aT

)

(6.1.24)
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and

PDN
Mink =PDN

Mink(T = 0) − 3T
3
2

√
2a

5
2

∞∑

n,l=1

(n

l

) 3
2
K 3

2

(
πln

aT

)

− π
√

T/2

a
7
2

∞∑

n,l=1

(−1)n
n

5
2√
l
K 5

2

(
πln

aT

)

.

(6.1.25)

Now the reader might object that we cannot choose S2(t(2a)
2) because of

the (−1)n in the sum over n. But for the sum over a real function g(n) we
have

∞∑

n=1

(−1)ng(n) = −
( ∞∑

n=1

g(n) − 2

∞∑

n=1

g(2n)

)

. (6.1.26)

Using this in the beginning we can treat the two sums separately using
S2(t(2a)

2) and S2(t(4a)
2). In the end we can rewrite the free energy to

Eq.(6.1.24) with the aid of Eq.(6.1.26).

The Casimir energy and force in Minkowski spacetime are known results.
We derived them in order to get an easy transition to the RSI and RSII
expressions as the formalism and techniques are very similar.

6.2 Casimir free energy and force in RSI

Instead of starting with Eq.(4.3.29)

F = − V⊥πN⊥/2

2β(2π)N⊥
Γ

(

−N⊥
2

) ∞∑

l=−∞

∑

MN

∑

kx

(
k2

x +M2
N + ε2l

)N⊥
2 . (6.2.1)

we choose to look at

F (s) = − V⊥πN⊥/2

2β(2π)N⊥
Γ(s)

∞∑

l=−∞

∑

MN

∑

kx

(
k2

x +M2
N + ε2l

)−s
, (6.2.2)

which reduces to the correct expression for the free energy at s = −N⊥/2.
This function is also well-defined for large, positive Re(s) and we analytically
continue the function to the whole complex plane as we always do with zeta
functions. It is time to set out to find the regularized expression for the
free energy density with DD or NN BC on the plates. In Appendix B we
make use of the Abel-Plana formula to obtain the same answer and also
find the free energy with DN BC. Different formulas yield the same result,
as it should. In the section about DN BC we present the result from the
appendix and motivate why it should be so.
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6.2.1 Dirichlet-Dirichlet or Neumann-Neumann boundary con-
ditions

We assume Dirichlet BC on both plates,

kx =
nπ

a
, n = 1, 2, . . . (6.2.3)

The only difference between the two types of conditions is that n = 0, 1, 2, . . .
for NN and n = 1, 2, . . . for DD. The extra term originating from n = 0
is not dependent on a and will for this reason give no contribution in the
piston model1. The procedure is the same as for low temperature Minkowski
spacetime. Using the Mellin transform, Eq.(4.3.10), we write

F (s) = − V⊥πN⊥/2

2β(2π)N⊥

∞∑

l=−∞

∑

MN

∞∑

n=1

∫ ∞

0
dtts−1 exp

(

−t
(
n2π2

a2
+M2

N + ε2l

))

= − V⊥πN⊥/2

2β(2π)N⊥

∞∑

l=−∞

∑

MN

∫ ∞

0
dtts−1S2

(

t
π2

a2

)

exp
(
−t
(
M2

N + ε2l
))
.

(6.2.4)

We will again use the properties of the function S2(t) only this time we have

chosen S2

(

t
(

π
a

)2
)

from the sum over n instead of S2

(

t
(

2π
β

)2
)

from the

sum over l. Inserting from Eq.(6.1.10) gives

F (s) =
V⊥πN⊥/2

4β(2π)N⊥

∞∑

l=−∞

∑

MN

Γ(s)
(
M2

N + ε2l
)−s

− V⊥aπ(N⊥−1)/2

4β(2π)N⊥

∞∑

l=−∞

∑

MN

Γ

(

s− 1

2

)
(
M2

N + ε2l
)−(s− 1

2)

− V⊥aπ(N⊥−1)/2

2β(2π)N⊥

∞∑

l=−∞

∑

MN

∞∑

n=1

∫ ∞

0
dt t(s− 1

2)−1

× exp

(

−t(M2
N + ε2l ) −

n2a2

t

)

.

(6.2.5)

Since the first term is independent of a and the second term is linear in a
they both vanish in the piston model (Section 5.2). The last term is the
only one left.

Fpiston(s) = − V⊥aπ(N⊥−1)/2

β(2π)N⊥

∞∑

l=−∞

∑

MN

∞∑

n=1

(
n2a2

M2
N + ε2l

) s−1/2
2

×Ks− 1
2

(

2na
√

M2
N + ε2l

)

.

(6.2.6)

1For a massless bulk scalar we get an additional factor N/β log β, where N is the
number of modes with k⊥ + kx + M2

N = 0 [31].
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This expression is finite for s = −N⊥/2 = −1. We use the same notation as
in Chapter 5 here. FBC

RSI/RSII is the free energy per surface area in the piston
model in RSI or RSII with boundary conditions indicated by the superscript.
Thus the energy reads

FDD,NN
RSI = − aπ1/2

β(2π)2

∞∑

l=−∞

∑

MN

∞∑

n=1

(
M2

N + ε2l
n2a2

) 3
4

K 3
2

(

2na
√

M2
N + ε2l

)

.

(6.2.7)
This expression is valid both for DD and NN BC.

Note: The zero temperature energy can be obtained from Eq. (6.2.6) by
following the procedure of Section 4.3.2 to remove the temperature depen-
dence

EDD,NN
RSI = − aπ

(2π)3

∑

MN

∞∑

n=1

(
M2

N

n2a2

)

K2 (2naMN ) . (6.2.8)

This is off course the same as in Chapter 5. The zero temperature limits
can also be found by letting

∑∞
l=−∞ → β

∫∞
−∞

dε
2π in Eq.(6.2.7) and using

Eq.(A.5) from Appendix A. The two alternatives for finding the T → 0 can
be used on all expression in this chapter and can be used as a check of the
finite temperature expression.

High temperature limit

Remember that εl = 2πT l. The expressions above (Eq.(6.2.7) and Eq.(6.2.9))
are suitable at temperatures 2πT � kπe−kπrc . This implies 2πTa � 1
since akπe−kπrc � 1 for all relevant distances a. The critical point 2πT =
kπe−kπrc corresponds to temperatures T ∼ 1015K which is immensely high.
The free energy density is plotted for d = 10−12 in Figure 6.1. The free en-
ergy decreases when aT increases, but increases with higher 2πTe−kπrc/k.
Due to the magnitude of kekπrc we will always have 2πTe−kπrc/k � 1 at
temperatures of interest. The finite temperature Casimir force in the RSI is

PDD,NN
RSI =

π1/2

β(2π)2

∞∑

l=−∞

∑

MN

∞∑

n=1

(
M2

N + (2πT l)2

n2a2

) 3
4

K 3
2

(

2na
√

M2
N + (2πT l)2

)

− 2π1/2

β(2π)2

∞∑

l=−∞

∑

MN

∞∑

n=1

(
M2

N + (2πT l)2
) 5

4

√
na

K 5
2

(

2na
√

M2
N + (2πT l)2

)

.

(6.2.9)

This is plotted in Figure 6.2. The force behaves in the same way as the
free energy. It decreases when aT increases, but increases with higher
2πTe−kπrc/k. To get a contribution detectable with experiments we need
aT not too high and 2πTe−kπrc/k not too low. Unfortunately the latter
is somewhat difficult since the temperature is the only parameter that an
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Figure 6.1: Plot of the ratio between Casimir free energy in Minkowski
spacetime and RSI with DD or NN boundary conditions, d = 10−12.
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Figure 6.2: Plot of the ratio between Casimir free energy in Minkowski
spacetime and RSI with DD or NN boundary conditions, d = 10−12.
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experimentalist can alter and temperatures as high as T ∼ 1015K are not
reachable in a laboratory.

Since the high temperature limit is too high to be of physical importance
we need to look at the low temperature limit.

Low temperature limit

It is interesting to see what happens when 2πT � kπe−kπrc but 2πTa � 1
or 2πTa� 1. Eq.(6.2.7) and Eq.(6.2.9) are not appropriate for this purpose.
We once again go back to F (s) from the beginning of the chapter.

F (s) = − V⊥πN⊥/2

2β(2π)N⊥
Γ(s)

∞∑

l=−∞

∑

MN

∑

kx

(

k2
x +M2

N +

(
2π

β

)2

l2

)−s

=− V⊥πN⊥/2

2β(2π)N⊥
Γ(s)

∑

MN

∑

kx

(
k2

x +M2
N

)−s

︸ ︷︷ ︸

Fl=0

− V⊥πN⊥/2

β(2π)N⊥
Γ(s)

∞∑

l=1

∑

MN

∑

kx

(

k2
x +M2

N +

(
2π

β

)2

l2

)−s

.

(6.2.10)

The l = 0 term is separated from the rest and the second term is to account
for both positive and negative values of l. Since the steps are completely
analogous to the low temperature Minkowski calculations we jump right to
the result

F =E − 1

4π
3
2

∑

MN

∑

kx

∞∑

l=1

(
2

βl

) 3
2 (
k2

x +M2
N

) 3
4

×K 3
2

(

βl
√

k2
x +M2

N

)

=E − T 3

2π

∑

MN

∑

kx

∞∑

l=1

1

l3

×
(

1 +
l

T

√

k2
x +M2

N

)

exp

(

− l

T

√

k2
x +M2

N

)

.

(6.2.11)

Here we have used that K 3
2
(z) =

√
π
2ze

−z(1+1/z). It might be enlightening

to see that this expression reduces to the free energy of the Minkowski space-
time when setting MN = 0. There are a lot of patterns in the expressions in
this thesis and it is easier to not be overwhelmed by the large expressions if
the reader is familiar with these patterns.

Until now we have not specified the boundary conditions on the plates in
the low temperature limit. We can numerically find the first values of MN .
Due to the vast difference in magnitude of MN and kx, MN is expected to
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dominate. And since both β (at low temperature) and MN are large, the
smallest values of MN will be enough to get a good approximation of the
numerical value due to the exponential factor. Note that this expression
approaches the zero point energy when T → 0 as it should.

To get an expression applicable to all BC we turn to the Abel-Plana
formula once more. As the function f(z) we choose

f(z) =
1

π

(

1 + βl
√

(z/a)2 +M2
N

)

exp

(

−βl
√

(z/a)2 +M2
N

)

×



1 −
∑

j=0,a

βj/a

1 + (βjz/a)2



 .

(6.2.12)

Because of
√

k2
x +M2

N in the argument of K 3
2

we are not able to choose f(z)

on the form Eq.(6.1.15) and accordingly we cannot use Eq.(6.1.16) derived
in Appendix B. We go through the whole calculation rapidly and emphasize
the differences. For ∆f we find

∆f =i

∫ ∞

0
dz
f
(
eiπ/2z

)
− f

(
e−iπ/2z

)

(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1)e

2z − 1

=
2

π

∫ ∞

MNa
dz

1 −∑j=0,a
βj/a

1−(βjz/a)2

(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1)e

2z − 1

[

sin

(

βl
√

(z/a)2 −M2
N

)

+ βl
√

(z/a)2 −M2
N cos

(

βl
√

(z/a)2 −M2
N

)]

.

(6.2.13)

We insert the values of βj for DD or NN BC and ∆f simplifies to

∆f =
2

π

∫ ∞

MNa

dz

e2z − 1

[

sin

(

βl
√

(z/a)2 −M2
N

)

− βl
√

(z/a)2 −M2
N cos

(

βl
√

(z/a)2 −M2
N

)]

.

(6.2.14)

After the variable change x = z/a and expanding the denominator we find

∆f =
2a

π

∞∑

n=1

∫ ∞

MN

dxe−2nax

[

sin

(

βl
√

x2 −M2
N

)

− βl
√

x2 −M2
N cos

(

βl
√

x2 −M2
N

)]

.

(6.2.15)

Because of the root this is a complicated integral. We solve it in in Appendix
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A with the result
∫ ∞

C
dx
(

sin
(

A
√

x2 − C2
)

−A
√

x2 − C2 cos
(

A
√

x2 − C2
))

e−Bx

=
C2A3

A2 +B2
K2

(

C
√

A2 +B2
)

.

(6.2.16)

In ∆f we identify A = βl, B = 2na and C = MN . Finally the free energy
density in the piston model with DD or NN BC can be presented,

FDD,NN
RSI =EDD,NN

RSI − a

π2

∑

MN

∞∑

l=1

∞∑

n=1

M2
N

(2na)2 + (βl)2

×K2

(

MN

√

(2na)2 + (βl)2
)

.

(6.2.17)

The Casimir force is found by taking minus the derivative with respect to a

PDD,NN
RSI = PDD,NN

RSI (T = 0)

− 1

π2

∑

MN

∞∑

l=1

∞∑

n=1

M2
N3(2na)2 − (βl)2

((2na)2 + (βl)2)2
K2

(

MN

√

(2na)2 + (βl)2
)

− 1

π2

∑

MN

∞∑

l=1

∞∑

n=1

MN (2na)2

((2na)2 + (βl)2)
3
2

K1

(

MN

√

(2na)2 + (βl)2
)

.

(6.2.18)

From this expression we can find the limits at � 1 and aT � 1. How-
ever there is not much point since both MNa � 1 and MN/T � 1. The
corrections will in both cases be negligible.

6.2.2 Dirichlet-Neumann boundary conditions

We now look at DN BC in the high and low temperature limit. The difference
from DD or NN BC is minimal. We will not plot the free energy and force
since the behaviour is very similar to DD or NN BC.

High temperature limit

An educated guess on the free energy of DN BC at high temperatures would
be

FDN
RSI = − aπ

1
2

β(2π)2

∞∑

l=−∞

∑

MN

∑

n=1

(−1)n
(
M2

N + ε2l
n2a2

)3
4

K 3
2

(

2na
√

M2
N + ε2l

)

.

(6.2.19)
The argument for such a guess is that the difference between the expression
for DD or NN and DN at zero temperature is a factor of (−1)n in the sum
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over n. Hence this expression gives the correct zero temperature limit. The
guess turns out to be correct and the derivation is given in Appendix B.
From the free energy we find the Casimir force at finite temperature

PDN
RSI =

π1/2

β(2π)2

∞∑

l=−∞

∑

MN

∞∑
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4

K 3
2
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2na
√

M2
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(
M2

N + ε2l
) 5

4

√
na

K 5
2

(

2na
√

M2
N + ε2l

)

.

(6.2.20)

Low temperature

To find the Casimir free energy and force at low temperatures with DD or
NN BC we used the Abel-Plana formula. As in Chapter 5 the only difference
between DD or NN and DN is the factor (−1)n. With ease we find the free
energy in the low temperature limit to be

FDN
RSI =EDN

RSI −
a

π2

∑

MN

∞∑

l=1

∞∑

n=1

(−1)n
M2

N

(2na)2 + (βl)2

×K2

(

MN

√

(2na)2 + (βl)2
)

,

(6.2.21)

and the Casimir force

PDN
RSI = PDD,NN

RSI (T = 0)

− 1
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∞∑
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∞∑

n=1

(−1)n
M2

N3(2na)2 − (βl)2

((2na)2 + (βl)2)2
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(2na)2 + (βl)2
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∞∑
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∞∑
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MN (2na)2

((2na)2 + (βl)2)
3
2

K1

(
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√

(2na)2 + (βl)2
)

.

(6.2.22)

6.3 Casimir free energy and force in RSII

In RSII the Kaluza-Klein modes are continuous and we must replace

∑

MN

→
∫ ∞

0

dM

k
(6.3.1)

as in Section 5.5.
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6.3.1 Dirichlet-Dirichlet or Neumann-Neumann boundary con-
ditions

Going from RSI to RSII we let M be continuous (Eq.(6.3.1)) in Eq.(6.2.7).
The integral over K 3

2
(z) is solved in Appendix A (Eq.(A.5)) and the result

is ∫ ∞

0
dz
(
z2 + x2

) 3
4 K 3

2

(

a
√

z2 + x2
)

=

√
π

2a
x2K2(ax). (6.3.2)

The integral makes it rather trivial to find the free energy in RSII

FDD,NN
RSII = − 1

8πakβ

∞∑

l=−∞

∞∑

n=1

ε2l
n2
K2 (2|εl|an)

= − π3

1440βka3
− π

akβ3

∞∑

l=1

∞∑

n=1

l2

n2
K2

(
4πaln

β

)

.

(6.3.3)

The first term is the l = 0 contribution. This can be found either by using
the limiting form of Kν(z) for small arguments or extracting l = 0 from the
sum all the way back in Eq.(4.3.29). The second term gets an additional
factor of 2 to account for both the positive and negative values of l.

High temperature limit

Eq.(6.3.3) is suitable to find the high temperature limit in RSII since the
argument of Kν(z) increases with temperature. The dominating term at
high temperatures correspond to Matsubara frequency l = 0 and is linear
in T. With high temperatures it is understood that aT � 1. This is a
different scale than we used in Section 6.2. Since the Kaluza-Klein modes
are continuous in RSII we do not get a scale from the light mode masses
(MN ) as we did in RSI. Hence the only scale left is to use the magnitude of
a. The free energy in RSII with DD or NN boundary conditions is shown in
Figure 6.3 as a function of aT and ak. We observe that the ratio between
the Minkowski and RSII does not change noticeably in the figure. This
is because aT > 100 and we can disregard the Bessel functions. In both
Minkowski spactime and RSII the free energy is dominated by a term linear
in T , thus their ratio is constant in T . In the ak-direction we observe the
1/(ak) behaviour. The Casimir force in the high temperature limit is

PDD,NN
RSII = − 3π3

1440βka4
− 3πT 3

a2k

∞∑

n,l=1

l2

n2
K2 (4πaT ln)

− 4π2T 4

ak

∞∑

n,l=1

l3

n
K1 (4πaT ln) .

(6.3.4)

and is plotted in Figure 6.4. The force ratio is also approximately constant
in aT and exhibit the 1/(ak) behaviour.
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Figure 6.3: Plot of the ratio between Casimir free energy in Minkowski
spacetime and RSII with DD or NN boundary conditions.
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Figure 6.4: Plot of the ratio between Casimir force in Minkowski spacetime
and RSII with DD or NN boundary conditions.

Low temperature limit

The lowest corrections to the zero temperature case can not be extracted
form Eq.(6.3.3) so we devote a new section to this. We start with Eq.(4.3.20)
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from Section 4.3.2

F = −V⊥
2β

∂

∂s
µ2s

∞∑

l=−∞

∑

kx

∫ ∞

0
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k

∫
d2k⊥
(2π)2
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(
2πl

β

)2

+ k2
x + k2

⊥

)−s

.

(6.3.5)
The integral over M runs from 0 to ∞ while the integrals over the k⊥’s run
from −∞ to ∞. By rewriting the integral over M we can use the same
steps as in Section 4.3.2 only using N⊥ = 3 since we integrate over the two
transverse directions plus M . To stress what we are doing we introduce new
variables k′1 = ky, k

′
2 = kz and k′3 = M

F = − V⊥
2β

2π

2k

∂
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
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2βk
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+ k2
x
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2

.

(6.3.6)

There is no need to go though the low temperature calculation one more
time. We start with the Mellin transform, Eq.(4.3.10), and use the property

in Eq.(6.1.10) of the function S2(t) with argument t
(

2π
β

)2
. On the way we

identify the zero point energy, and without assuming anything about the
boundary conditions we find

F = − 3ζR(5)

128πka4
− 1

2πkβ2

∞∑

l=1

∑

kx

k2
x

l2
K2 (kxβl) . (6.3.7)

Since the sum over kx is on the form of Eq.(6.1.15) we can use Eq.(6.1.16)
to find

∆F = − 3ζR(5)

128πka4
− 3a

2πk

∞∑

n,l=1

1

((2an)2 + (βl)2)
5
2

. (6.3.8)

This can also be realized by using the formula

∫ ∞

0
dz z2K2(az) =

3π

2a3
(6.3.9)

from Appendix A on Eq.(6.2.17). We will use the same trick as in the low
temperature Minkowski spacetime. Using the Mellin transformation and
S2((2a)

2t). Disregarding all terms independent and linear in a we are left
with

F = − 3ζR(5)

128πka4
− πT 2

2ka2
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n,l=1

(n

l

)2
K2

(
πnl

aT

)

. (6.3.10)
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This is the same that we would get by inserting kx = πn/a (n = 1, 2, . . .) in
Eq.(6.3.7). The Casimir force in the low temperature limit is

PDD,NN
RSII = − 3ζR(5)

32πka5
+
π2T

2ka4

∞∑

n,l=1

n3

l
K1

(
πnl

aT

)

. (6.3.11)

6.3.2 Dirichlet-Neumann boundary conditions

In this last section on finite temperature Casimir effect not much additional
calculation is needed. We will not plot the free energy and force since the
behaviour is very similar to DD or NN BC in RSII as well.

High temperature limit

We find the free energy of RSII with DN boundary conditions from Eq.(6.2.19).
After changing the sum over MN to an integral we make use of Eq. (A.5).

FDN
RSII =

7

64πβka3
− π

akβ3

∞∑

l=1
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n=1

(−1)n
l2

n2
K2

(
4πaln

β

)

. (6.3.12)

The Casimir force in this case is

PDN
RSII = − 21

64πβka4
− 3πT 3

a2k

∞∑

n,l=1

(−1)n
l2

n2
K2 (4πaT ln)

− 4π2T 4

ak

∞∑

nl=1

(−1)n
l3

n
K1 (4πaT ln) .

(6.3.13)

Low temperature limit

From the low temperature section of DD/NN BC in RSII we find

FDN
RSII =

15

16

3V⊥ζR(5)

128πka4
− πT 2

2ka2

∞∑

n,l=1

(−1)n
(n

l

)2
K2

(
πnl

aT

)

. (6.3.14)

The only difference form the DD/NN expression is the factor of (−1)n. The
factor can be accounted for by using Eq.(6.1.26). The Casimir force in RSII
in the low temperature limit is

PDN
RSII =

15

16

3ζR(5)

32πka5
+
π2T

2ka4

∞∑

n,l=1

(−1)n
n3

l
K1

(
πnl

aT

)

. (6.3.15)

This concludes our calculations.
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Chapter 7

Discussion

Up until now (June 09) only a handful of articles have been published on
the Casimir effect in Randall-Sundrum models, and all of them in Physical
Review D in 2007, 2008 and 2009. In addition, three articles have been
posted on the ArXiv in 2009, but have yet to be published in a journal[23,
24, 25]. In other words; this topic gained interest recently.

The first article published was written by Frank, Turan and Ziegler [19]
and the third by Frank, Saad and Turan [20]. From now on this group will
be referred to as Frank et. al. Their two articles cover the Casimir force
in both RSI/RSII and RSI-q/RSII-q. RSI-q and RSII-q being the general-
ization of the Randall-Sundrum models to q extra compactified dimensions
on the branes, the 3-branes in RSI/RSII are replaced by (3+q)-branes. In
this thesis we have not considered the RSI-q/RSII-q models at all. However
the generalization to (3+q)-branes is not complicated once we have agreed
on how find to the Casimir force in RSI/RSII. The second and fourth arti-
cles to be published were written by Linares, Morales-Técotl and Pedraza.
This group will be referred to as Linares et. al. Their focus was on the
RSII/RSII-q. While Frank et. al. used zeta functions to find the Casimir
force, Linares et. al. used the Green’s function formalism. Surprisingly the
two methods gave incompatible answers. In ordinary Minkowski spacetime,
all regularization techniques produce the same result.

In this thesis we choose to work with zeta functions, following Frank
et. al. The proofs of the Abel-Plana formula and the property of S2(t)
(Eq.(6.1.10)) are both based on the residue theorem from complex analysis
[54], so they have the same origin. The reason for choosing this approach is
that the author is more familiar with zeta than Green’s functions.

We will return to the differences between zeta and Green’s function after
a brief account and discussion of the the results obtained in the previous
chapters for RSI and RSII. A review of the localization of the modes are
in order, with special attention to the massless mode. We round off with a
section on comparison with experimental data.
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7.1 The RSI results

There are a few articles on the Casimir force on physical plates induced by
a bulk scalar in RSI. Most important is the 2007 article by Frank et. al.[19].
There also exist a couple of articles on the ArXiv1 written by Hongbo Cheng
[23, 24, 25]. We will only comment on Ref.[24] and Ref.[25] because all the
information of Ref.[23] is contained in Ref.[24]. All articles except Ref.[25]
assume zero temperature.

In Section 5.4.3 we made some comments on the differences and similar-
ities between the results given here and the article by Frank et. al. Let us
repeat them and discuss the results some more.

In the article the Casimir energy and force of a massless bulk scalar
field were investigated at zero temperature with Dirichlet BC. Since the
field was massless the MN = 0 mode was included. In order to make the
results comparable to experiments some changes were done. Most terms
were multiplied with a factor p to account for the polarizations of the photon,
and the modes polarized in the direction of the plates were subtracted. The
modes polarized in the direction of the plates are not dependent on the
distance between the physical plates a, and will give no contribution to the
Casimir force. They will also be removed in the piston model. How to go
from a scalar field to an electromagnetic field is not yet resolved and we will
return to this later on. The last difference was an overall factor of 2, but
since we cannot see how this factor occurs we have not included it.

In contrast to this thesis, where we have worked with the piston model,
Frank et. al. have confined themselves to subtracting the energy density
when no plates are present. Because of this, their energy density contains
some terms that, since they are independent of a, will give no contribution
to the Casimir force.

All these differences aside, the expressions are the same if we make
the approximations from Section 4.2.3 (MN/k � 1 and ekπrcMN/k 6� 1).
Frank et. al. have a different procedure for finding the energy density.
From Section 4.2.3 the masses of the Kaluza-Klein can be expressed as
MN = kπe−πkrc(N + 1/4), with N = 1, 2, . . .. This enables them to use
zeta functions of the Epstein-Hurwitz type [33]. As discussed in Section
4.2.3 the error in MN is substantial for the first mode masses and then be-
comes negligible. In the energy density (Eq.(5.4.5)) we sum over all values
of MN of a function proportional to Kν(2aMNn). For large values of z we
have Kν(z) =

√

π/(2z)e−z. We can conclude that the first couple of val-
ues of MN are the most important to the energy density, since the energy
density is exponentially decreasing in MN . In this thesis we have shown
that the approximation MN = kπe−πkrc(N + 1/4) is not necessary to find
the Casimir energy and force. We obtained the same result without using

1http://arxiv.org/
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this explicit expression for MN and Epstein-Hurwitz zeta functions. We use
merely the Abel-Plana formula. Hence, our answers are more accurate.

In the article by Hongbo Cheng [24] the same Casimir energy and force
is found. Although considering a massless scalar the MN = 0 mode is not
included. Cheng has not made an attempt to go from the scalar field to
the electromagnetic field and also uses the piston model. In that respect
his work is similar to ours. The approximation MN = kπe−πkrc(N + 1/4) is
used throughout the article together with Epstein-Hurwitz zeta functions,
following Frank et. al. Due to a small error in the calculation some of the
modified Bessel functions in Casimir force have an argument with an extra
factor

√
π. This again leads Cheng to the conclusion that the Casimir force

in RSI is repulsive at small distances. The results are in conflict with both
the results here and the results by Frank et. al. While Frank et. al. find

PRSI =PMink −
pκ2

4π2a2

( ∞∑

n=1

∞∑

N=0

(N + 1/4)2

n2
K2(2aκn(N + 1/4))

+ aκ

∞∑

n=1

∞∑

N=0

(N + 1/4)3

n
K3(2aκn(N + 1/4))

)

− pκ2

64π2a2

( ∞∑

n=1

1

n2
K2(aκn/2) + aκ

∞∑

n=1

1

n
K3(aκn/2)

)

,

with κ = πke−kπrc , Cheng find

PRSI = − κ2

2a2

( ∞∑

n=1

∞∑

N=0

(N + 1/4)2

n2
K2(2aκn(N + 1/4))

+ aκ

∞∑

n=1

∞∑

N=0

(N + 1/4)3

n
K3(2aκn(N + 1/4))

)

+
πκ2

32a2

( ∞∑

n=1

1

n2
K2(aκn/(2

√
π)) + aκ

∞∑

n=1

1

n
K3(aκn/(2

√
π))

)

.

Note that for Frank et. al. the N = 0 term exactly cancels the positive part
of the force, but for Cheng this is not so. This leads to repulsive Casimir
forces at small a. Why do we claim that Frank et. al. is right and Cheng is
wrong? In both articles they started with rewriting the sum over N from 1
to ∞, to 0 to ∞, in order to use the Epstein-Hurwitz zeta functions. To do
this they both added and subtracted a N = 0 term2. The two last Bessel
functions are the subtracted N = 0 term in both articles, and should cancel
the two N = 0 terms from the sum. This happens for Frank et. al., but not
for Cheng. The Casimir force of RSI at zero temperature is always attractive
when we are assuming Dirichlet boundary conditions on both plates.

2∑∞
N=0 f(N) =

∑∞
N=1 f(N) − f(N = 0), for any function f(N).
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At finite temperature there are two interesting limits; the high and low
temperature limit. With high temperature we mean high in comparison
to the non-zero Kaluza-Klein masses. This leads to 2πT � kπe−kπrc or
T � 1015K. As in Minkowski spacetime, the high temperature Casimir
force is linear in T . The values of MN are large in comparison to T and a
at any reasonable temperature and distance, and accordingly the Casimir
force due to a massive field in RSI is very small.

The low temperature limit is of more physical interest. For all practical
purposes T is much less than 1015K. As expected the Casimir force is that
of zero temperature plus corrections that vanish when T → 0. As usual
the corrections contains modified Bessel functions of the second kind, this
time with argument MN/T

√

(2naT )2 + l2. We wanted to study the low
temperature limit to see if it was possible to see some interesting temperature
dependence for aT � 1 or aT � 1. Since the low temperature limit is
based on MN � T , it is clear that if aT � 1 the argument of Kν would be
large (∼ MM |l|/T ). When aT � 1 the argument would still be large since
MNa� 1 for values of a greater than 10−18m (if we choose kπrc ∼ 12 and
k ∼MPl).

Remark: Ref. [25] was about the Casimir force in RSI at finite temper-
ature. But the author of this article found the internal energy3 and used
−∂U/∂a instead of −∂F/∂a to find the Casimir force. This is not the cor-
rect way to find the finite temperature Casimir force [16], and accordingly
the results obtained are not in agreement with ours.

7.2 The RSII results

As already mentioned there are two groups that have published articles
about the Casimir effect in RSII and with contradictory results. We will
devote a separate section to this subject and will only comment on the
articles using zeta functions here. From the article by Frank et. al. [19] we
have

PDD,NN
RSII = PMink,EM

(

1 +
45p

2π3

ζR(5)

ak

)

at zero temperature. The factor of 2 is because they use the force of an
electromagnetic field in Minkowski spacetime4. Here, p is the number of
polarizations of the photon. To get scalar field results we set p = 1 and find
an expression in exact agreement ours5. The second term in RSII Casimir
force is proportional to 1/a5, in contrast to the ordinary Casimir force which

3The internal energy U are related to the free energy (or Helmholtz free energy) by
U = ∂(βF )/∂β.

4In RSII they have dropped the factor of 2 that is supposed to account for the ’volume
of the orbifold’ in RSI

5In our results we do not have the first term from the MN = 0 mode since we study a
massive scalar field in bulk.
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goes as 1/a4. I is natural to ask how large the second term is compared to
the ordinary Casimir force at distances typically used in experiments. For
k ∼ MPl we find that the 45

π3
ζR(5)

ak is ∼ 10−27 for a = 1µm and ∼ 10−24 for
a = 1nm. For a massless scalar field the correction term is too small to be
observable.

In RSII there is only one natural high temperature limit, the same as
for Minkowski spacetime, namely aT � 1. We observe an interesting result.
The Minkowski case the free energy times a3 is a function of aT , FMinka

3 =
f(aT ) and the same applies for the force with a4, FMinka

4 = f(aT ). For
RSII we have FRSIIa

3 = 1
akf(aT ) and PRSIIa

4 = 1
akf(aT ). The overall factor

1/ak is typical for comparison between Minkowski and RSII. This factor too
small to be detectable with today’s experiments when k ∼MPl.

7.3 Zeta regularization versus Green’s functions

In this thesis we will not conclude about what is the right or wrong ap-
proach to this problem; zeta regularization versus Green’s functions. We
merely call attention to the curtail differences and interpret the models.
Only experiments can give the answer if it turns out that we are really liv-
ing in a Randall-Sundrum like brane-world. In this section we choose to
focus on the first article from Frank et. al.[19] because this only considers
RSI/RSII, not RSI-q/RSII-q, and the second article from from Linares et.
al.[22] because RSII can be obtained from RSII-q by setting q = 0.

Zeta regularization

Let us start with Frank et. al. since it is this method that is used in this
thesis. We are calculating the free energy density of the system, but what
does the system consist of? In Minkowski spacetime we are looking at the
free energy of a scalar field from the four cavities in the piston model. The
four cavities are all four-dimensional (in terms of spacetime dimensions),
but when looking at the RS model the four cavities are five-dimensional. A
four-dimensional observer observes the scalar bulk field as a tower of scalar
fields with mass MN , but we are not finding the Casimir force of a tower
of scalar fields in Minkowski spacetime. We are finding the Casimir effect
from a bulk scalar field, and accordingly the area of which we are calculating
the free energy also includes a slice of the bulk. The idea is illustrated in
Figure 7.1. We can see this from the Kaluza-Klein decompositions of the
bulk scalar fields (Section 2.4)

Ψ(x, φ) =
∑

N

XN (x)ψN (φ),
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Figure 7.1: Illustration of the Randall-Sundrum model with one compacti-
fied dimension. To the left the two branes of RSI and to the right the area
that we find the free energy of.

or (Section 4.1)

Φ(x̃, z) =
∑

N,p

cN (p)χp(x̃)ψN (z).

The x (or x̃) dependent part of the field (x being the directions parallel
to the branes) does not only apply for a brane, it spreads over the whole
space. By compactifying one of the directions we found the free energy of
a slice of the whole space as in Figure 7.1. Thus we must conclude that a
four-dimensional experimentalist, living on the visible brane, influences the
scalar field in the whole bulk by compactifying one of the dimensions on
his/her brane. Forcing the field to be zero (with DD BC) at x = 0 and
x = a at one brane causes to field to be zero at x = 0 and x = a both in the
bulk and on the other brane.

The Kaluza-Klein decomposition is an ansatz, but this ansatz gives a so-
lution to the equations of motion for the bulk scalar that satisfy the bound-
ary conditions. Hence it is a valid solution to the problem.

Green’s functions

We now turn to the Green’s function method. Let us first look at the
criticism raised by Linares et. al. in [22] of what they call the ’dimensional
regularization’ procedure used by the other groups (though Frank et. al.
used zeta functions). Their claim was that it was blind to the curvature
of the background. The argument was that that the Casimir force in an
Euclidean space with d spatial dimensions is

Pd = − d

ad+1
Γ

(
d+ 1

2

)

(4π)−(d+1)/2ζR(d+ 1)
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and if you add one four- and one five-dimensional massless scalar field you
find

P4 + P5 = P4

(

1 +
45ζR(5)

π4a

)

.

Comparison to the RSII force reveals that these two differ only by a factor
of π

k in the last term6. The prefactor is due to7

∫ ∞

0

dM

k
=
π

k

∫ ∞

−∞

dM

2π
.

With this in mind they made their claim that dimensional regularization
is blind to the curvature of the background. On the other hand, by using
Green’s functions you would automatically get the different modes weighed
by a factor of ψ(0)2, the mode wave function at the brane squared. For a
massless bulk scalar field the group found

PLinares
RSII =

2

3

(

PMink(M0 = 0) +

∫ ∞

0

dM

k
ψN (0)2PMink(MN )

)

,

where PMink(m) is the Casimir force of a scalar field with massm in Minkowski
spacetime. In contrast to the other group

PFrank
RSII =

(

PMink(M0 = 0) +

∫ ∞

0

dM

k
PMink(MN )

)

.

Where do the weighing-factor of ψN (0)2 and the factor 2
3 come from? The

Green’s function for the bulk scalar field is

GRSII = ψ0(y)ψ0(y
′)GMink(x, x

′; 0)+

∫ ∞

0
dMψM (y)ψM (y′)GMink(x, x

′;M),

where GMink(x, x
′;m) is the Green’s function for a scalar field in Minkowski

spacetime with mass m. The corresponding Casimir force per unit area is

PLinares
RSII =

1

V⊥

∫ V⊥

0
dx⊥

∫ ∞

−∞
dye−3k|y|

[〈
T in

zz

〉

RSII

∣
∣
x=a,y=0

−
〈
T out

zz

〉

RSII

∣
∣
x=a,y=0

]

with

〈

T in/out
zz

〉

RSII

∣
∣
∣
x=a,y=0

=
1

2i
∂x∂x′G

in/out
RSII (x, y;x′, y′)

∣
∣
∣
∣
x⊥→x′

⊥,x→x′=a,y→y′=0

.

6Going through the details in [22] you will find some some missing factors of 2 here
and there. The argumentation in the article is however right.

7Note that we used this trick when calculating the low temperature limit in RSII.
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It is important to notice is that the Green’s function is evaluated on the
brane at y = 0. Combining the equations above we find

PLinares
RSII =
∫ ∞

−∞
dye−3k|y|

︸ ︷︷ ︸

2/(3k)

[

ψ0(0)
2

︸ ︷︷ ︸

k

1

V⊥

∫ V⊥

0
dx⊥

1

2i
∂x∂x′G

in/out
Mink (x, x′; 0)

∣
∣
∣
∣
x⊥→x′

⊥,x→x′=a
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PMink(0)

+

∫ ∞

0
dMψM (0)2

∫ V⊥

0
dx⊥

1

2i
∂x∂x′G

in/out
Mink (x, x′;M)

∣
∣
∣
∣
x⊥→x′

⊥,x→x′=a
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PMink(M)

]

=
2

3

(

PMink(M0 = 0) +

∫ ∞

0

dM

k
ψN (0)2PMink(MN )

)

.

Note that this includes partly removing the y-dependence of the integrand
before integrating over y. The two groups use not only different regulariza-
tion techniques, but also a different system over which the Casimir force is
calculated. While Linares et. al. try to limit their system to the brane by
setting y = 0 in the Green’s function, Frank et. al. find the Casimir energy
and later force with the system containing a slice of the bulk, not only the
brane.

As far as we can see, this is the only difference in the physical pictures
of the two groups. You might think that Linares et. al. would get the same
as Frank et. al. by keeping the y-dependence in the Green’s function, but
they do not. If the factor e−3k|y| in the integrand had been e−2k|y| we could
have used the normalization condition

∫ ∞

−∞
dye−2k|y|ψN (y)2 = 1

to get the same Casimir force. The factor 3 is not only responsible for the
factor 2/3 in their energy, but for giving a different Casimir force than Frank
et. al. even when keeping y 6= 0 in the Green’s function.

7.4 The massless mode and its localization

As mentioned at the end of Section 4.2.2 the contribution from the massless
mode to the Casimir force is under debate. In RSI the massless mode is
localized near the hidden brane and in RSII near the visible brane. We
choose to work with massive scalar. When using zeta regularization the only
difference between the massive and the massless scalar is a term equal to the
free energy or force of a massless scalar in ordinary flat spacetime (EMink).
Both Linares et. al. and Antonino Flachi and Takahiro Tanaka[37] have
other theories on how the modes contribute with respect to their localization.
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In the previous section we explained how Linares et. al. let y = 0 in the
Green’s function to get the modes weighted by ψN (0)2 in RSII. Since the
massless mode in RSII is localized near the (only) brane at y = 0, the
influence from this mode was pretty large (2/3 of that of a massless scalar
confined to the brane). They also identified a quasilocalized mode for a
massive bulk field in RSII, also contributing to the Casimir force by ∼2/3
of that of a massless field confined to the brane.

Flachi and Tanaka also believe that the modes located near the physi-
cal plates should contribute the most. They argue that setting XN (x) (or
χp(x̃)) from the Kaluza-Klein expansion equal to 0 at the physical plates
(for Dirichlet BC) is the same as artificially expanding the physical plates
into the bulk. This will, in their opinion, overestimate of the actual Casimir
force. If they are right all the expressions in this thesis can be seen as an
upper limit to the Casimir force. Their solution to the overestimation is
to impose slightly different boundary conditions on the modes. Instead of
setting XN (0) = XN (a) = XN (X) for each mode they want to set the total
field to be zero. To achieve this they set XN (0) = XN (X) (N = 0, 1) and
X1(a) + εX0(a) = 0, to be the boundary conditions. Remember, in the
piston model there are two cavities with length a and X − a in the stressed
situation and two cavities with length X/η and (1−1/η)X in the unstressed
situation. In their work [37] only the massless and the first massive mode
were included, but it is possible to generalize to all the massive modes. The
constant ε is determined by the overlap of the wave functions of the mass-
less and the massive modes. It is small since the massless mode is localized
differently from the other modes. Their way of finding the Casimir force is
to expand the energy in ε and find the results order by order. Their result
contains only terms small in comparison to ordinary Casimir effect.

We are now finished with presenting and commenting on some of the
unsolved issues in connection to Casimir effect of a scalar field in the Randall-
Sundrum models. For closure we return to actual experiments.

7.5 Comparison with experimental data

Can the results from this thesis and other work on Casimir effect in the
Randall-Sundrum model be used to experimentally verify, disprove or limit
some constants of the Randall-Sundrum model? In several of the mentioned
articles on bulk scalar fields the results are compared to experiments. Is this
justified?

The experiments on Casimir effect are from the electromagnetic field.
Using ideal metals the electromagnetic field must obey electromagnetic BC.
A scalar field with Dirichlet BC is often used because of its simplicity. In
nature a scalar field describes spin 0 particles. The only known spin 0 par-
ticles in nature is the Higgs boson and the mesons. The mesons are so
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called pseudo scalars with parity -1 and the Higgs is scalar with parity +1.
How we in practice can confine the scalar fields to a cavity is not known, so
experimentalists have to work with the electromagnetic fields. Working the-
oretically with a scalar field does not include struggling with polarizations,
and the final answer differs, at most times, from the electromagnetic case
by a factor of 2 (due to the polarizations). Hence the behavior of the scalar
field mimics the behavior of an electromagnetic field in most cases.

How to transform from a scalar field to an electromagnetic field in ex-
tra dimensional models is not trivial when the extra dimensional space is
not Euclidean [55]. A good example of this is the contradictory results
of Poppenhaeger, Hossenfelder, Hofmann and Bleicher [26] and Edery and
Marachevsky [27]. Both studied the Casimir effect from an electromagnetic
field in the presence of an extra compactified dimension with the extra di-
mension being a circle (M4 × S1) with radius R. Poppenhaeger et. al used
polarization factors in the same way as both Frank et. al. and Linares et.
al.: The energy of a scalar field is multiplied with a factor p accounting
for the possible polarizations of the photon (p = 3 both for M4 × S1 and
RS) and subtracting a term due to the modes polarized in the direction of
the plates. The energy of the scalar field in the circle model is the sum
over an infinite tower of four dimensional massive scalar fields, with mass
πn/R (n = 0, 1, . . .). On the other hand Edery and Marachevsky start with
the (4+1)-dimensional Maxwell action and reduces it to a (3+1)-dimensional
action to extract physics from a four-dimensional view8. This yields a (3+1)-
dimensional Maxwell field, a scalar field (which gives no contribution to the
Casimir force) plus an infinite set of four-dimensional massive gauge fields
(Proca fields) with mass n/R (n = 0, 1, . . .).

This conflict is not yet resolved even though this problem includes a
far simpler metric than the Randall-Sundrum metric. It would not be a
wild guess to believe that following Edery and Marachevsky’s in reducing
the (4+1)-dimensional Maxwell action would lead to other answers than the
ones obtained by both Frank et. al. or Linares et. al.

A lot of key questions are still unanswered: What is the correct way to
go about when finding the Casimir effect for a scalar field in the Randall-
Sundrum model; Green’s functions or zeta regularization? Should the Kaluza-
Klein modes be weighted, to account for their localization in the extra di-
mension with respect to the physical plates on the visible brane? How do
we go from a scalar field to an electromagnetic field in a higher dimensional
spacetime? If these questions are sorted out we still have to wait for Casimir
experiments to become more accurate. The theoretical results so far suggest
that the extra dimensional effect is extremely small. Chances are that LHC
have provided evidence for the existence or exclusion of extra dimension

8Reducing the higher dimensional theory to a four-dimensional theory is the same as
we did in Section 4.1.
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theories long before that time [12, 11].
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Appendix A

Properties of Kν(z)

In this thesis we encounter the modified Bessel function of second kindKν(z)
a lot. This appendix includes the proof for some of the key tricks to essential
problems.

When taking the limit rc → ∞ of T → 0 needed to solve the integral

∫ ∞

0
dz
(
z2 + x2

) 3
4 K 3

2

(

a
√

z2 + x2
)

(A.1)

we will show that I1 is equal to K2(ax) times some constant and start by
the variable change u =

√

(z/x)2 + 1

x
5
2

∫ ∞

1

du u
5
2√

u2 − 1
K 3

2
(axu)

=

√
π

2a
x2

∫ ∞

1

du u2

√
u2 − 1

(

1 +
1

axu

)

e−axu.

(A.2)

Here we have used K 3
2
(z) =

√
π
2z e

−z(1 + 1/z) (10.2.17 from [38]). The

integral representation of K2(ax) is (9.6.22 from [38])

K2(ax) =
π

1
2

(
1
2ax

)2

Γ
(

5
2

)

∫ ∞

1
du e−axu(u2 − 1)

3
2 . (A.3)

It is not easy to recognize the integral above, but after several partial inte-
grations we find

K2(ax) =
π

1
2

(
1
2ax

)2

Γ
(

5
2

)
3

(ax)2

∫ ∞

1

du u2

√
u2 − 1

(

1 +
1

axu

)

e−axu. (A.4)

Thus the integral yields

∫ ∞

0
dz
(
z2 + x2

) 3
4 K 3

2

(

a
√

z2 + x2
)

=

√
π

2a
x2K2(ax). (A.5)
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The next integral is much simpler. We need
∫ ∞

0
dz z2K2(az). (A.6)

Using the substitution u = az we find

1

a3

∫ ∞

0
du u2K2(u) =

3π

2a3
u (K2(u)L1(u) +K1(u)L2(u))

∣
∣
∣
∣

∞

0

. (A.7)

Lν(z) is the modified Struve function. The properties of Lν(z) and Kν(z)
can be found in [38]. For small argument Kν(z) ≈ 1

2Γ(ν)(z/2)−ν and
Lν(z) ≈ (z/2)ν+11/(Γ(3/2)Γ(3/2+ν), thus u(K2(u)L1(u)+K1(u)L2(u)) →
0 when u → 0. At large argument Ln(z) ≈ In(z) (n integer), where Iν(z)
is the modified Bessel function of the first kind. Using that Iν(z)Kν+1(z) +
Iν+1(z)Kν(z) = 1/z we end at the result

∫ ∞

0
dz z2K2(az) =

3π

2a3
. (A.8)

Now we need to solve the integral
∫ ∞

C
dx
(

A
√

x2 − C2 cos
(

A
√

x2 − C2
)

− sin
(

A
√

x2 − C2
))

e−Bx. (A.9)

Since the integral is included in this appendix it is off cource related to
Kν(z). First we use the substitution u =

√
x2 − C2 and end up with

∫ ∞

0

du√
u2 + C2

(Au2 cos(Au) − u sin(Au))e−B
√

u2+C2

=

∫ ∞

0
du A

√

u2 + C2 cos(Au)e−B
√

u2+C2

−
∫ ∞

0
du A

1√
u2 + C2

cos(Au)e−B
√

u2+C2

−
∫ ∞

0

du√
u2 + C2

u sin(Au))e−B
√

u2+C2

=A
∂2

∂B2

∫ ∞

0
du

1√
u2 + C2

cos(Au)e−B
√

u2+C2

−A
∫ ∞

0
du

1√
u2 + C2

cos(Au)e−B
√

u2+C2

−
∫ ∞

0

du√
u2 + C2

u sin(Au))e−B
√

u2+C2
.

(A.10)

We have done some rewriting in order to use 3.961 (1)

∫ ∞

0

xdx
√

γ2 + x2
e−β

√
γ2+x2

sin(ax) =
aγ

√

a2 + β2
K1

(

γ
√

a2 + β2
)

(A.11)
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and (2) from [53]

∫ ∞

0

dx
√

γ2 + x2
e−β

√
γ2+x2

cos(ax) = K0

(

γ
√

a2 + β2
)

. (A.12)

This yields

∫ ∞

C
dx
(

A
√

x2 − C2 cos
(

A
√

x2 − C2
)

− sin
(

A
√

x2 − C2
))

e−Bx

=A
∂2

∂B2
K0

(

C
√

A2 +B2
)

− AM√
A2 +B2

K1

(

C
√

A2 +B2
)

−AM2K0

(

C
√

A2 +B2
)

.

(A.13)

Now we could waste time differentiating and simplifying by hand using the
connections between K0, K1 and K2 or we can let Maple do it for us. Either
way we find

∫ ∞

C
dx
(

A
√

x2 − C2 cos
(

A
√

x2 − C2
)

− sin
(

A
√

x2 − C2
))

e−Bx

= − M2A3

A2 +B2
K2

(

C
√

A2 +B2
)

.

(A.14)
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Appendix B

Applications of the
Abel-Plana formula

With the intention not to not overwhelm the reader with mathematics we
have gathered some of the calculations using the Abel-Plana formula in
this appendix. The calculations are not essential to the physical problem
and similar calculations are already included in the main part of the thesis.
There are however some small difficulties that is essential if you want to get
the full picture.

Free energy density in RSI using the Abel-Plana

formula

We wish to regularize the free energy density for a massless bulk scalar field

F = − V⊥
2β(2π)2

Γ(s)

∞∑

−∞

∑

MN

∑

kx

(
M2

N + ε2l + k2
x

)−s
(B.1)

for s = −1 using the Abel-Plana formula

∞∑

n=1

πf(zn)

1 + sin(zn) cos(zn + 2α)/zn
= −π

2

f(0)

1 − β0/a− βa/a
+

∫ ∞

0
dzf(z)

+ i

∫ ∞

0
dz
f
(
eiπ/2z

)
− f

(
e−iπ/2z

)

(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1)e

2z − 1
.

(B.2)

We have already concluded in Section 5.1.2 that only the last integral is
relevant in the piston model. The expression for the free energy density is
slightly different from the zero temperature energy. The integration over
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the transverse directions are already completed and we have (. . .)−s instead

of (. . .)
1
2 . By inspecting the formulas we see that

f(z) =
1

π

(
M2

N + ε2l + (z/a)2
)−s



1 −
∑

j=0,a

βj/a

1 + (βjz/a)2



 . (B.3)

For (z/a)2 ≤M2
N + ε2l

f
(

eiπ/2z
)

− f
(

e−iπ/2z
)

= 0, (B.4)

i.e. the integrand is zero, in contrast to for (z/a)2 > M2
N + ε2l , where

f
(

eiπ/2z
)

− f
(

e−iπ/2z
)

=

1

π

(
e−iπs − eiπs

)

︸ ︷︷ ︸

−2i sin(sπ)

(
(z/a)2 − (M2

N + ε2l )
)−s



1 −
∑

j=0,a

βj/a

1 − (βjz/a)2



 .
(B.5)

Hence the free energy for the piston model is

F = − V⊥
β(2π)2

Γ(s) sin(πs)

∞∑

l=−∞

∑

MN

×
∫ ∞

a
√

M2
N+ε2l

dz

(
(z/a)2 − (M2

N + ε2l )
)−s

(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1)e

2z − 1



1 −
∑

j=0,a

βj/a

1 − (βjz/a)2



 .

(B.6)

This expression is not valid for all values of β0 and βj . We consider the
two situations. Dirichlet-Dirichlet (DD) or Neumann-Neumann (NN) and
Dirichlet-Neumann (DN) boundary conditions.

DD or NN boundary conditions

We assume DD or NN boundary conditions and perform the substitution

x = a
√

M2
N + ε2l

FDD,NN
RSI = − a

β(2π)2
Γ(s) sin(πs)

∞∑

l=−∞

∑

MN

× (M2
N + ε2l )

−s+1

∫ ∞

1
dx

(
x2 − 1

)−s

e2a
√

M2
N+ε2l − 1

.

(B.7)
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We expand the denominator in terms of e−2a
√

M2
N+ε2l and use Eq.(5.4.4)

FDD,NN
RSI = − a

β(2π)2π
1
2

Γ(s) sin(πs)

∞∑

l=−∞

∑

MN

∑

n=1

×
(
M2

N + ε2l
n2a2

)−s+1

)−s+1/2
2

K−s+1/2

(

2na
√

M2
N + ε2l

)

.

(B.8)

In the limit s → −1 the sin(πs) is zero and Γ(s) is infinite. However the
product is finite due to a property of the Gamma function

Γ(x)Γ(1 − x) =
π

sin(xπ)
⇒ Γ(x) sin(xπ) =

π

Γ(1 − x)
. (B.9)

The free energy is

FDD,NN
RSI = − aπ

1
2

β(2π)2

∞∑

l=−∞

∑

MN

∑

n=1

(
M2

N + ε2l
n2a2

) 3
4

K 3
2

(

2na
√

M2
N + ε2l

)

.

(B.10)
This is off course the same that we found in Chapter 5 using zeta regulariza-
tion. Only the Abel-Plana formula allows us to find the free energy density
with other boundary conditions as well, such as Dirichlet-Neumann.

DN boundary conditions

Assuming Dirichlet boundary conditions on one plate and Neumann on the
other we find

FDN
RSI =

a

β(2π)2
Γ(s) sin(πs)

∞∑

l=−∞

∑

MN

× (M2
N + ε2l )

−s+1

∫ ∞

1
dx

(
x2 − 1

)−s

e2a
√

M2
N+ε2l + 1

.

(B.11)

The steps is identical to the calculation with DD or NN, only we get a
factor of (−1)n due to the positive sign in the denominator. The free energy
density with DN boundary conditions is

FDN
RSI =

aπ
1
2

β(2π)2

∞∑

l=−∞

∑

MN

∑

n=1

(−1)n
(
M2

N + ε2l
n2a2

) 3
4

K 3
2

(

2na
√

M2
N + ε2l

)

.

(B.12)

The Abel-Plana formula when f(z) contains Kν(z)

A few times in this thesis we run into expressions like
∑

kx

kν
xKν(Akx) (B.13)
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where the sum over kx runs over the zeros of Fx(kx) given by Eq.(4.2.8).
We want to apply the Abel-Plana formula, Eq.(5.1.1), to find an easier
expression for kx. For this reason we choose to find ∆f with

f(z) =
1

π
(z/a)νKν(Az/a)



1 −
∑

j=0,a

βj/a

1 + (βjz/a)2



 , (B.14)

since only ∆f is important in the piston model. Using the properties of the
Bessel functions (see e.g. [38]) we can show that

f
(

ei
π
2 z
)

− f
(

e−i π
2 z
)

= −i(z/a)νJν(Az/a)



1 −
∑

j=0,a

βj/a

1 − (βjz/a)2



 ,

(B.15)
where Jν(z) is the Bessel function of the first kind. Inserting this into
Eq.(5.1.1) we find

∆f =

∫ ∞

0
dz

(z/a)νJν(Az/a)
(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1)e

2z − 1



1 −
∑

j=0,a

βj/a

1 − (βjz/a)2



 . (B.16)

Assuming DD/NN or DN boundary conditions and expanding the denomi-
nator in terms of e−2z we can write

∆f

{
DD,NN

DN

}

=

∞∑

n=1

(−1){2n
n }
∫ ∞

0
dz(z/a)νJν(Az/a)e

−2zn. (B.17)

After the variable change t = Az/a and asking Maple to solve the integral

∫ ∞

0
dx xνJν(x)e−Kx =

Γ
(
ν + 1

2

)
2ν

√
π(K2 + 1)ν+1/2

(B.18)

we find

∆f

{
DD,NN

DN

}

=

∞∑

n=1

(−1){2n
n } a(2A)ν√

π

Γ
(
ν + 1

2

)

((2an)2 +A2)ν+1/2
. (B.19)
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Proof of formula for S2(t)

We start by defining

Ss
α(t) =

∞∑

m=1

1

ms+1

∞∑

a=0

(−1)a
mαa

Γ(a+ 1)
ta, (C.1)

which reduces to

Sα(t) ≡ S−1
α (t) =

∞∑

m=1

e−mαt, (C.2)

when s = −1. The Gamma function has single poles for z = −n, n = 1, 2, ...,
with residues Res

z=−n
= (−1)n

n! . With the aid of the properties of the Gamma

function (C.1) and the residue theorem [54] can be written as

Ss
α(t) =

∞∑

m=1

∮

C

da

2πi
t−am−αaΓ(a), (C.3)

where the closed loop C consists of the straight line Re(a) = a0 (Ca0) with
0 ≤ a0 ≤ 1 and the semicircle to the left (Csc) with infinite radius as in
figure C.1. The contribution of the semicircle is zero and by interchanging
the summation and the integration we obtain

Ss
α(t) =

∫

Ca0

da

2πi
t−aΓ(a)

∞∑

m=1

1

ms+1

=

∫

Ca0

da

2πi
t−aΓ(a)ζ(s+ 1 + αa). (C.4)
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a
0

1

a
0

1

Figure C.1: The closed loop C consisting of the straight line Re(a) = a0

with 0 ≤ a0 ≤ 1 and the semicircle to the left with infinite radius.

To close the loop again one has to take into account the contribution from
the semicircle.

Ss
α(t) =

∮

C

da

2πi
t−aΓ(a)ζ(s+ 1 + αa) −

∫

Csc

da

2πi
t−aΓ(a)ζ(s + 1 + αa)

=

∮

C

da

2πi
t−aΓ(a)ζ(s+ 1 + αa) − ∆s

α(t)

=
∞∑

a=0

ta
(−1)a

a!
ζ(s+ 1 − αa) +

1

α
Γ
(

− s

α

)

t−1/α − ∆s
α(t). (C.5)

To calculate the Epstein zeta function we only need S2(t)

S2(t) =

∞∑

a=0

ta
(−1)a

a!
ζ(−2a) +

1

2

√
π

t
− ∆−1

2

= −1

2
+

1

2

√
π

t
− ∆−1

2 . (C.6)

Here we have used that ζ(−2n) = 0, n = 1, 2, .., and ζ(0) = −1/2. The only
thing left is to calculate

∆−1
2 =

∫

Ca0

da

2πi
t−aΓ(a)ζ(2a). (C.7)

Using the reflection formula for the zeta function

Γ
(z

2

)

ζ(z) = πz−1/2Γ

(
1 − z

2

)

ζ(1 − z) (C.8)

with z = 2a and the relation

Γ
(z

2

)

ζ(z) =

∫ ∞

0
dx xz/2−1S2(t) (C.9)
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with ζ = 1 − 2a we get

∆−1
2 =

∫

Ca0

da

2πi
t−aπ2a−1/2Γ

(
1 − 2a

2

)

ζ(1 − 2a). (C.10)

The expression can be integrated directly by first using the substitution
u = xt

π2 and later v = R lnu.

∆−1
2 =

∫

Ca0

da

2πi
t−1/2π1/2

∫ ∞

0
du u−(a+1/2)S2

(
uπ2

t

)

=

√
π

t
lim

R→∞

∫ ∞

0
duS2

(
uπ2

t

)∫ R

−R

dy

2πi
u−(a0+1/2)e−(iy) ln(u)

= −
√
π

t
lim

R→∞

∫ ∞

0
duS2

(
uπ2

t

)
1

2πi
u−(a0+1/2) e

−iR ln u − eiR lnu

lnu

= −
√
π

t
lim

R→∞

∫ ∞

0
duS2

(
uπ2

t

)

u−(a0+1/2) sinR ln t

ln t

=

√
π

t
= lim

R→∞

∫ ∞

0
dvS2

(
π2

t
ev/R

)

e−(a0−1/2)v/R e
iv

v

= −
√
π

t
S2

(
π2

t

)

(C.11)

The final expression for S2(t) is

S2(t) = −1

2
+

1

2

√
π

t
+

√
π

t
S2

(
π2

t

)

, (C.12)

which was what we set out to prove.


