
Master’s thesis

Monte Carlo Simulation of Semiconductors –
Program Structure and Physical Phenomena

Monte Carlo Simulering av Halvledere –
Programstruktur og Fysiske Fenomen

Ole Christian Norum

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100

〈E
Γ
〉/

3 2
k
B
T

time (ps)

with “hPh”, n = 1 · 1019 cm−3

with “hPh”, n = 5 · 1018 cm−3

without “hPh”, n = 5 · 1018 cm−3

equilibrium

June 15th 2009

Preface

This master thesis constitute the 10th semester of the master degree study
in technical physics at the Department of Physics at the Norwegian Univer-
sity of Science and Technology (NTNU) and meets the requirements for the
subject TFY4900.

This work has been carried out in collaboration with the Norwegian De-
fence Research Establishment (FFI) under the supervision of Trond Brude-
voll (FFI), Asta Katrine Storebø (FFI) and Jon Andreas Støvneng (NTNU).

A huge thanks go to Trond Brudevoll and Asta K. Storebø for their support
and excellent guidance throughout the writing of this thesis. I would also
like to Øyvind Olsen, my collaborator. And last, but not least, thanks also
go to Jon Andreas Støvneng for his help and encouragement.

In order to obtain the latest available source code for the program, an e-mail
can be sent to ole.norum@gmail.com.

i

ii

Abstract

During a mere 18 months periode, a Monte Carlo program has been de-
veloped to include many features. Both a Poisson solver and hot phonon
effects have been implemented. The present Poisson solver has been added
only as a “proof of concept”. The solver can easily be replaced by more so-
phisticated solvers or they may be added alongside. The results produced
from this solver has proven that the framework is working properly and by
implementing a more advanced solver, the user is allowed to simulate e.g.
novel and complex transistor structures. An extensive study on the available
litterature on the hot phonon effect was carried out and the emphasis of this
thesis has been dedicated to the implementation of and the results from this
effect. After strong optical stimuli of e.g. a Nd:YAG laser on CdHgTe , the
results show a slow-down in the cooling of the carriers by up to 100 ps.

Sammendrag

I løpet av 18 måneder har et Monte Carlo-program med mange egenskaper
blitt utviklet. Både en Poissonløser og «hot phonon»-effekter har blitt imple-
mentert. Den nåværende Poissonløseren er kun lagt til some et «proof of con-
cept». Løseren kan med letthet byttes ut med mer sofistikerte løsere, eller de
kan legges til ved siden av. Resultatene som den nåværende løseren gir viser
at rammeverket for Poissonløserene fungerer ordentlig og ved å implementere
mer avanserte løsere kan brukeren for eksempel simulere nye og komplekse
transistorstrukterer. Et omfattende litteratursøk om «hot phonons» har blitt
gjennomført og hovedvekten av denne rapporten omhandler implementasjo-
nen av og resultatene fra denne effekten. Etter sterk optisk stimulans fra
for eksempel en Nd:YAG-laser på CdHgTe , viser resultatene at kjølingen
av ladningsbærerne kan ta opp til 100 ps lenger om man inkluderer «hot
phonon»-effekten.

iii

iv

Contents

1 Introduction 1

2 The Program 3

2.1 Program Structure . 3

2.1.1 Compilation and Parallelization 5

2.1.2 Executing the Program 5

2.1.3 Post-Processing . 8

3 Hot Phonons 9

3.1 The Hot Phonon Effect . 9

4 The Poisson Equation 15

4.1 Poisson solvers . 15

4.1.1 Discretization . 16

4.1.2 Solving . 18

5 Simulation Results 23

5.1 General Results . 24

5.1.1 Optical distribution 24

5.1.2 Gaussian distribution with an applied field 29

5.1.3 Carrier distribution . 31

5.2 Hot Phonon Results . 33

5.3 Poisson Results . 34

6 Conclusion and Further Work 39

v

A Materials 41

A.1 Material Parameters . 41

A.2 Band structures . 41

B Creating Results from the Program 45

B.1 Code to produce script input 45

B.2 Scripts to produce figures . 53

vi

Chapter 1

Introduction

This master’s thesis describes the development of a semi-classical Monte
Carlo program for simulation of two very important semiconductors, namely
CdHgTe and GaAs. Although CdHgTe and GaAs have the focus in this
program, any semiconductor with a similar bandstructure can be simulated
by editing the materialparameters and by further development, any solid
state material. GaAs is used in devices such as microwave integrated circuits,
solar cells, infrared light emitting diodes and laser diodes. CdHgTe on the
other hand is suitable for thermal imaging, night vision, imaging through
dense fog, and avalanche photodiodes. [1,2]

The present program has been created in only 1.5 years. Two summerjobs of
2 months each, two project works [3,4] of 4 months each with 50% workload,
and finally two master theses [5] (including the present one) of 5 months.
This sums up to 18 months. During a project assignment in the autumn
of 2008, [3] and the current master’s thesis, a lot of work has been invested
in eradicating errors and flaws, making the program faster, and of course
adding new features. This master’s thesis will describe two new features
added during this spring. In addition, it will also present the general program
structure and operation. The program at hand is a multi purpose program
containing a range of physical features.

The emphasis of this thesis has been on the simulation of hot phonon ef-
fects. [6–10] During the 1990’s this was necessary to understand the slow cool-
ing of the carrier plasma observed in pump-probe laser experiments. The
effects of the hot phonons seriously impede the cooling of the hot photoex-
cited carriers. The simulations of the hot phonon effects require simultaneous
evaluation of the electron and hole dynamics, and carrier-carrier interactions.
Some of the results presented in this thesis will also be published at this years
EDISON1 conference. [11] On this years conference, a large part of the papers

1The 16th international conference on Electron Dynamics In Semiconductors, Opto-

1

2

are on hot carriers, underscoring the relevance of the presented program.

Although the program currently focuses on the treatment of bulk for the se-
lected semiconductors, a framework for adding sophisticated Poisson solvers
has been created. By adding 2D, or even 3D solvers, the program can very
well simulate complex and novel devices. By surveying the abstracts sub-
mitted for this years EDISON conference the study of HEMTs is still very
interesting. Due to constraints and the priority of the hot phonon effect,
such a simulation has not yet been conducted.

There is a vast selection of programs available that includes a Poisson solver,
but almost none includes hot phonon effects. Hence, the construction of a
modern program is essential in understanding new physics in nanoscale de-
vices. In order to add physical phenomena numerically, a very deep under-
standing of the physical process is required.

In Chapter 2 the program structure and operation will be explained and pre-
sented in detail. Further, the hot phonon effect will be explained in Chap-
ter 3. In Chapter 4 the theory of the present Poisson solver is presented. The
results produced from the program will be presented in Chapter 5 and finally,
in Chapter 6, a discussion of the program and some concluding remarks will
be made. In the Appendix A, the material parameters are presented along
with the band structure of CdHgTe and GaAs. To the plots presented in
this thesis, a reader has been developed. This can be found in Appendix B
along with some plotting scripts written in MATLAB and gnuplot.

The title page plot is discussed in Section 5.2.

electronics and Nanostructures. Can be visited at www.edison16.net

Chapter 2

The Program

One of the main features is a Poisson solver, though crude, it is easily re-
placeable, hot phonon effects, the Pauli principle, a more realistic band struc-
ture for CdxHg1−xTe , and several scattering rates, including carrier-carrier,
carrier-plasmon and alloy scatterings.

In addition, the user interface has been hugely improved by implementing
a progress bar. This shows the user the estimated time left, as well as how
many percent of the execution that is complete. The estimated time left
is rather unstable at the beginning but quickly stabilizes to give accurate
estimates of the remaining time.

2.1 Program Structure

The program is written in Fortran 90/95. It operates in three different stages:

1. Initialization

2. Execution

3. Post-processing

It contains one main module and several subroutines. During stage 1 the
PROGRAM module operates as a user I/O interface and allows for user input to
be given. It then sends the information to the MCkernel subroutine, which
initiates the execution process. This subroutine acts as the maestro of the
program and executes every action in the right order. It loops through all
the timesteps and then loops through the entire ensemble at each timestep,
calling the flight, scatter and Poisson subroutines. When the last timestep
has been executed the program enters the final stage, post-processing, where
the program prints a lot of information to files. This structure is illustrated
in the somewhat simplified flowchart in Figure 2.1.

3

4 2.1. PROGRAM STRUCTURE

YES

YES

YES

NO

NO

NO

START

Read input
from user

Calculate
scattering

Move particles

particles?

to scatter
particles

Next

timestep

Solve

Poisson?

Update

particle

positions

timesteps?

Print results
to files

END

Sufficient

Scatter
Time

rates

Figure 2.1: A flowchart displaying the most significant steps in the program.

CHAPTER 2. THE PROGRAM 5

2.1.1 Compilation and Parallelization

In order to compile the program it is recommended to use Intels Fortran
compiler, ifort. This is an excellent compiler, and is free for use on Linux.
The recommended options is:
ifort MC2009.6.6.f90 -o mc -ipo -O3 -no-prec-div -static -xHost
-parallel

These options are selected to maximize speed throughout the entire program
and optimizes the performance of the executable file. -parallel does indeed
parallelize small parts of the code. The current Poisson solver is the largest
piece of code that allows to be parallelized. If the program is to be run
with a huge Poisson mesh with many carriers, it is recommended to use the
option -heap-arrays to store the arrays on the heap in lieu of on the stack.
It may result in some loss in efficiency, but is required in order to prevent
the program from crashing due to the large amount of information that has
to be stored.

It has been discovered that due to the random number generator [12,13] used
in the program, the program will not parallelize. The author suggests three
ways around this problem. One can could make the program run in parallel
by hand, i.e. divide the large DO-loops into a suitable number of pieces and
use a separate random number generator for each piece. This is not a very
flexible solution and would require an immense amount of work. Another
alternative may be to find a different random number generator that allows
to be parallelized. [13] This is a viable solution, given that such a random
number generator can be found. The last solution would be to implement
a framework which tells the compiler how to parallize the code. Examples
of such frameworks are OpenMP and MPI. OpenMP is integrated in Intels
compiler (can be invoked with compiler option -openmp), and several others,
and is the recommended framework if such a path is chosen.

To sum up the parallelization. The author would recommend finding a par-
allel random number generator, or if this cannot be achieved, implement
OpenMP.

2.1.2 Executing the Program

The program runs interactively and requires input parameters from the
screen. Every menu entry is quite self-explanatory. Two screenshots of the
program shows how the A screenshot of the execution of the program is
shown in Figures 2.2 and 2.3.

There are several features that may be turned on and off. The type of carriers
may be freely set to electrons, holes, or both. The number of carriers does not
have to be equal in the case of both electrons and holes. Next, carrier-carrier

6 2.1. PROGRAM STRUCTURE

Figure 2.2: The upper part of the menu of the program.

interactions may be turned on and off. The details of this routine is described
in Olsen’s thesis [5]. Furthermore, the time passed at each simulation step is
set. This should be somewhere in the interval 0.1–5 fs. The upper limit is set
by the largest scattering rate. If the timestep is any lower than this it will
inflict the physical results produced. If carrier-carrier scattering is selected
the timestep should be no more than 0.1 fs, depending on the ensemble
size. [5]

The next entry in the menu is whether or not a field should be applied.
There are three options available. No external field, a constant external field
for the entirety of the simulation, or a brief field which can be started and
stopped at any point during the simulation. The last option allows study of
the effect of an external field after the system has reached equilibrium, and
also to study the relaxation effects after the field is turned off.

The program prints ensemble information to files at 12 points in time during

CHAPTER 2. THE PROGRAM 7

Figure 2.3: The lower part of the menu of the program.

Figure 2.4: The message displayed when program has finished successfully.

the simulation. Once at the beginning and once at the end. During program
execution, the program prints information at 10 user specified points in times.
This allows closer study at critical points in the simulation, e.g. when an
external field is turned on or off, or during the relaxation from an optical
distribution. Examples of this is shown in Section 5.1.

The carriers may be distributed in two fashions, Gaussian and optically.
When selecting Gaussian, every carrier is placed in the Γ-valley with a Gaus-
sian distributed k-vector. If optical distribution is selected, the program ask
for a spesific k to give to a user specified percentage of the ensemble. Ex-

8 2.1. PROGRAM STRUCTURE

ample of the optical distribution is also shown in Section 5.1.

The program has been made interoperable with a program developed by
Halvorsen. [14] His program creates tabulated files containing empirical scat-
tering rates. The tabulated files are created with either 32 or 64 meshpoints
(16 and 32 counting from 0). The user may use any of these sets without
recompiling the program, and the current routine, tabulating the scattering
rates, scales according to the mesh used in Halvorsen. In the future, the
program is planned to be interoperable with ab initio programs as well.

Now several of the key features are asked to be turned on or off. The first
feature asked for is whether or not to include Pauli exclusion. This is sim-
ply an on/off-question. The next feature is whether or not to include hot
phonon effects. If selected, the program will ask for a sampling time. The
recommended value for this is 10 fs. The sampling time is discussed further
in Chapter 3.

Finally the user may choose to use the Poisson solver. Even though the
Poisson solver is parallel, it does provide a slow-down for large meshsizes
(≥ 512 meshpoints) and large ensemble sizes (≥ 10000 carriers). For this
reason, the Poisson solver may be run at every, every other, or every fifth
simulation step to decrease time spent.

2.1.3 Post-Processing

After execution of the program has finished, detailed information about each
carrier in the ensemble is printed to a file called info.lst. In this file the
number of scatterings of each type, the position and momentum, and how
long it has been in each valley is printed for each carrier in the ensemble. In
addition, several other datafiles are created. These contain information in
three different areas,

• General information about momentum, position, energy, and valley/band
distributions.

• Information about carrier mesh distribution, potential and induced
field.

• Information about hot phonon creation.

All but a few of the files are ready for plotting as is, but some require a
program of its own to be refined and plotable. This program is displayed
in its entirety in Appendix B.1 along with an explanation of its working.
Small scripts written in MATLAB and gnuplot for plotting is available in
Appendix B.2.

Chapter 3

Hot Phonons

The aggressive downscaling seen today, especially in the CPU industry, re-
quires a whole new perspective. As device designs approach the lower tens
of nanometes, heating becomes a huge problem.

Hot phonon effects are very important in terms of evaluating the cooling of
the system. When stimulating a semiconducter material optically, a large
density of hot photoexcited carriers will be produced. The hot carriers cool
themselves by emitting phonons, see Figure 3.1. After a strong laser pulse, a
lot of hot photoexcited carriers will start emitting hot phonons, thus altering
the phonon occupation number, Nq. This has a large effect on the polar
optical scattering rates, see Figure 3.2. As can be seen, the difference between
the absorption and emission rates nearly vanish at large carrier temperatures.
This impedes the cooling of the system.

3.1 The Hot Phonon Effect

The processes involved in the hot phonon effect is shown in Figures 3.3
and 3.4. In the first diagram, an electron loses some of its energy by emitting
a phonon, while in the second diagram, an optical phonon decays into two
acoustic phonons. Both of these processes can be reversed, i.e. absorption
of a phonon, and the creation of an optical phonon, respectively.

In the program the difference between emitted and absorbed phonons is
tracked and accounted for. When stimulated optically, a large number of
electrons will be excited at a certain k corresponding to the wavelength of
the laser. This can be set in the menu of the program. The hot electrons
cool themselves by emitting phonons. These phonons will have a certain
maximum q0. As can be seen from Figure 3.2 the emission rate is much
larger than the absorption rate, and hence represents a cooling effect on the
electrons as they deposit their energy to the lattice.

9

10 3.1. THE HOT PHONON EFFECT

τ ∼ 1 - 2 ps

High excitation

Heat Conduction

Hot Carriers

Acoustic Phonons

Optical Phonons

Low excitation

τ ∼ 1 ms - 1 s

to environment

Exciting Force

electrical)

(Optical or

Figure 3.1: A small diagram of characteristic times and energies for cooling of
CdHgTe .

But during laser excitation, phonons will accumulate and the carrier tem-
perature will rise, affecting the scattering rates, see Figure 3.2. As can be
seen, the difference between the scattering rates vanishes at sufficiently large
carrier temperatures. When this happens, the cooling of the electrons is far,
far smaller, since the electrons emit and equally often absorb phonons.

Hot optical phonons cool themselves by decaying into acoustic phonons, re-
leasing their energy to the lattice, see Figure 3.1. This is how the system
cool itself after optical stimuli.

The decay of optical phonons into acoustic phonons by anharmonic decay
process can be described by [6](

∂Nq

∂t

)
ph−ph

= −Nq −Nq(TL)
τph

(3.1)

where τph is the phonon lifetime, assumed equal for all q. Nq is the Bose-
Einstein non-equilibrium phonon occupation number and Nq(TL) is the pho-
non occupation number at the lattice temperature TL. Nq is given as

Nq =
1

e~ω0/kBT − 1
(3.2)

The lifetime of the optical phonons can be calculated from ab initio electronic
structure methods. According to Shah, [6,15] the liftime is of the order 1–2 ps.
This is sufficiently long to assume semi-equlibrium and hence, we may allow

CHAPTER 3. HOT PHONONS 11

Figure 3.2: The polar optical rates for emission and absorption at two carrier
temperatures, 300 K and 1000 K.

ourselves to set the right hand side of the above equation equal to zero. This
is crude, but simplifies the calculations quite drastically. In addition, the
phonons do not just decay and disappear from the system, they are also
created through emission from hot electrons. Hence, we require a generating
term as well. This gives us the following expression,

− Nq −Nq(TL)
τph

+
(

#net generated phonons
unit volume and time

)
= 0 (3.3)

The number of states in q-space is

V

(2π)3

∫ q0

0
d3q =

V

(2π)3

4πq3
0

3
(3.4)

This introduces a V -term in our expression, which is not desired in expres-
sions describing bulk materials. To get rid of the volume we can sacrifice the
superparticle to real carrier ratio. [16] This ratio is given as

Nratio =
ne
nsup

=
Ne

Nsup
=
neV

Nsup
(3.5)

12 3.1. THE HOT PHONON EFFECT

ωopt, qopt

kf

ki

Figure 3.3: The emission of a phonon. This is the generating process in Eq. (3.1).
The process may be reversed.

q1,ac

q2,ac

qopt

Figure 3.4: The decay of an optical phonon into two acoustic phonons. This is
the decay term introduced in Eq. (3.4). The process may also be
reversed.

with
n =

N

V
(3.6)

where n is the particle density and N is the number of particles in the volume
V .

Executing the sacrifice gives the final expression

Nq =
#net generated superphonons neV

Nsup

V
(2π)3

4πq3
0

3

τph
tsample

+Nq(TL) (3.7)

In the program an array called phgentot is reserved for counting the net

CHAPTER 3. HOT PHONONS 13

generated superphonons at each timestep. At each timestep another variable
called phgen is calculated by summing up every net created superphonon dur-
ing the last timesteps corresponding to a sampling time for the hot phonons.
By introducing this and rewriting the expression we end up with

Nq = phgen · ne
Nsup

6π2

q3
0

τph
tsample

+Nq(TL) (3.8)

Hence, we end up with a numerical expression for the non-equilibrium phonon
occupation number!

14 3.1. THE HOT PHONON EFFECT

Chapter 4

The Poisson Equation

The most important field equation that needs to be solved in particle sim-
ulations is the Poisson equation, (4.1). The Poisson equation describes the
variation of the potential φ due to the charge density ρ.

∇2φ = −ρ(r)
ε

(4.1)

where ε is the dielectric constant.

The program consists of a series of free flights that may end in a scattering
event. Since the accelerated particles are charged, electrical fields will be
induced, which will affect their behaviour during the free flight, especially in
non-equilibrium conditions. This may result in effects like dynamic screening
and may have a large effect on the results in several areas.

Because of the importance of the Poisson equation in particle simulations,
there has been a great interest in solving it numerically. The drawback of
solving the Poisson equation, especially in 3D, is that it easily becomes one
of the most computer intensive parts of a simulation program. Over the
years, several numerical schemes has been produced to solve this equation
in a more economic way. In a previous report [3] several schemes for solving
the Poisson equation was considered and reviewed.

In the next Section, the theory behind the present Poisson solver is presented.
For more information on charge assignment schemes the reader is referred to
the previous work of this author. [3]

4.1 Poisson solvers

There are several ways to attack this problem. Some popular choices in-
clude the Fourier Analysis/Cyclic Reduction algorithm (FACR) produced
by Hockney in 1965 [12,17,18] and the Fast Multipole Method (FMM) [19–21].

15

16 4.1. POISSON SOLVERS

However, in the current program, only a simple solver based on brute-force
matrix multiplications has been implemented. The solver is to be consid-
ered more as a “proof of concept” rather than a fully fledged solver. All the
framework has been designed to be very flexible with regards to the choice
of Poisson solvers. In theory, any solver may be implemented in place of the
existing one without any trouble. Some theory on the existing solver will be
presented shortly.

The following notation will be used;

∂2
xu(x, y) + ∂2

yu(x, y) = uxx + uyy = −f(x, y) (4.2)

where the source term f , the charge distribution, is considered known, and
∂x ≡ ∂

∂xu ≡ ux is a convenient short hand notation. In the this treatment
only two dimensions will be examined, although the methods easily extends
to three dimensions. However, for the purpose of explaining the methods,
concentrating on two dimensions is advantageous.

The Poisson problem falls into the category of boundary value problems,
meaning that one wants the solution of the problem, u(x, y), to satisfy the
equation within the area of interest, (x, y), and also to satisfy the boundary
conditions. Since all of the boundary conditions must be satisfied simultane-
ously, the solution of boundary value problems can be viewed as the solution
of large linear sets of equations.

4.1.1 Discretization

To solve the Poisson equation numerically, it needs to be discretized. There
are several ways to do this. In the program, finite difference has been chosen.
In particular a five point finite difference scheme is selected.

Let us consider the Poisson problem in a rectangular domain, Ω, with lengths
Lx and Ly, see Fig. 4.1.

The five points of interest is shown in Fig. 4.2. The first step is to rewrite
Eq. (4.2) in difference form. This is done by Taylor expansions [22] as follows,

u(x+ h, y) = u(x, y) + hxux(x, y) +
h2
x

2
uxx(x, y) +

h3
x

6
uxxx(x, y) + . . .

u(x− h, y) = u(x, y)− hxux(x, y) +
h2
x

2
uxx(x, y)− h3

x

6
uxxx(x, y) + . . .

(4.3)

where hx is the mesh size in the x-direction. Now, subtract u(x + hx, y) −
u(x− hx, y), neglect higher order terms and solve for ux. This leaves

ux(x, y) ' 1
2h

(u(x+ hx, y)− u(x− hx, y)) (4.4)

CHAPTER 4. THE POISSON EQUATION 17

Ω

(Lx, Ly)

y

x

Figure 4.1: The domain of interest for the two-dimensional Poisson problem.

The same can be done for the y-direction giving

uy(x, y) ' 1
2h

(u(x, y + hy)− u(x, y − hy)) (4.5)

where hy is the mesh size in the y-direction. Now, add the equations (4.3),
neglect higher order terms and solve for uxx. By the same procedure one
finds for both uxx and uyy

uxx(x, y) ' 1
h2
x

(u(x+ hx, y)− u(x− hx, y))

uyy(x, y) ' 1
h2
y

(u(x, y + hy)− u(x, y − hy))
(4.6)

It can be shown that the mixed terms uxy are not needed. [22]

hy

hy

hxhx

(x, y + hy)

(x, y − hy)

(x + hx, y)(x− hx, y) (x, y)

Figure 4.2: The five points of interest when differentiating the Poisson equation.

18 4.1. POISSON SOLVERS

Now, substitute Eq. (4.6) back into the Poisson equation (4.2), this gives us
the following difference equation

2u(x, y)− u(x+ hx, y)− u(x− hx, y)
h2
x

+

2u(x, y)− u(x, y + hy)− u(x, y − hy)
h2
y

= f(x, y)
(4.7)

hy

xmxix0
y0

yj

yn

hx

Figure 4.3: The finite difference grid.

The finite difference grid points (or nodes), as shown in Fig. 4.3, are given
by

xi = i · hx i = 0, 1, . . . ,m hx =
Lx
m

yj = j · hy j = 0, 1, . . . , n hy =
Ly
n

(4.8)

Using the notation ui,j ' u(xi, yj) = u(ihx, jhy) and fi,j = f(xi, yj), see
Figure 4.3. Also, assuming hx = hy = h and m = n renders Eq. (4.7) in a
very neat form

2ui,j − ui+1,j − ui−1,j

h2
+

2ui,j − ui,j+1 − ui,j−1

h2
= fi,j 1 ≤ i, j ≤ n− 1

(4.9)

We now have the discretized version of the Poisson equation.

4.1.2 Solving

The method in the program is a direct method based on diagonalization.
The simplest is to explain the approach in context of the one dimensional
problem.

uxx = −f (4.10)

CHAPTER 4. THE POISSON EQUATION 19

Add the assumption of a uniform grid, i.e. hx = hy = h and m = n, given
by

xi = x0 + ih i = 1, . . . , n− 1 (4.11)

By using the one dimensional form of Eq. (4.9) and the above assumptions,
the corresponding system of equations may be written as

2 −1 0 · · · 0
−1 2 −1 0

0 −1 2
. . .

...
...

. −1
0 0 · · · −1 2




u1

u2
...
...

un−1

 = h2


f1

f2
...
...

fn−1

 (4.12)

or equivalently
Tu = h2f (4.13)

Since T is symmetric positive definite, it can be diagonalized. This means
finding the eigenvalues λj and the eigenvectors qj of T

Tqj = λjqj j = 1, . . . , n− 1 (4.14)

where λj are positive eigenvalues (λj > 0) and the egenvectors are orthonor-
mal (qT

k qj = δjk). Here, δ is the Kronecker delta.

By collecting all the eigenvectors qj in an orthonormal matrix Q

Q = (q1,q2, . . . ,qn−1) (4.15)

we can write
TQ = QΛ (4.16)

where

Λ = diag(λ1, . . . , λn−1) =


λ1

λ2

. . .
λn−1

 (4.17)

Since the eigenvectors are orthonormal

QTQ = I =


1

1
. . .

1

 ⇒ QT = Q−1 (4.18)

and hence
T = QΛQT (4.19)

20 4.1. POISSON SOLVERS

or equivalently
QTTQ = Λ (4.20)

Now, in two dimensions u and f are not vectors any more, but matrices. Let

U =


u1,1 · · · · · · u1,n−1
...

...
...

...
un−1,1 · · · · · · un−1,n−1

 (4.21)

and

T =


2 −1

−1 2
. . .

. −1
−1 2

 (4.22)

By multiplying T and U we get

(TU)i,j = 2ui,j − ui+1,j i = 1
(TU)i,j = 2ui,j − ui+1,j − ui−1,j i = 2, . . . , n− 2
(TU)i,j = 2ui,j − ui−1,j i = n− 1

(4.23)

Relating this to the discretized version of the Poisson equation, Eq. (4.9),
we obtain

1
h2

(TU)i,j ' −
(
∂2u

∂x2

)
i,j

(4.24)

Equivalently for the derivative in the y-direction

1
h2

(UT)i,j ' −
(
∂2u

∂y2

)
i,j

(4.25)

We can now rewrite Eq. (4.9)

1
h2

(TU + UT)i,j = fi,j for 1 ≤ i, j ≤ n− 1 (4.26)

or
TU + UT = G (4.27)

where

G = h2


f1,1 · · · · · · f1,n−1
...

...
...

...
fn−1,1 · · · · · · fn−1,n−1

 (4.28)

CHAPTER 4. THE POISSON EQUATION 21

By combining Eqs. (4.20) and (4.27) we get

QΛQTU + UQΛQT = G (4.29)

Multiplying Eq. (4.29) by Q from the right and QT from the left and using
QTQ = I, we get

Λ QTUQ︸ ︷︷ ︸
≡eU

+ QTUQ︸ ︷︷ ︸
≡eU

Λ = QTGQ︸ ︷︷ ︸
≡ eG

(4.30)

This implies that Eq. (4.9) may be solved in the following three steps.

Step 1: Compute the matrix-matrix products

G̃ = QTGQ (4.31)

Step 2: Solve the equation sets

ΛŨ + ŨΛ = G̃ (4.32)

This is done by finding ũi,j

λiũi,j + ũi,jλj = g̃i,j 1 ≤ i, j ≤ n− 1
(λi + λj)ũi,j = g̃i,j 1 ≤ i, j ≤ n− 1

ũi,j =
g̃i,j

λi + λj
1 ≤ i, j ≤ n− 1

(4.33)

Step 3: Compute the matrix-matrix products

U = QŨQT (4.34)

Hence, we are left with U, which is the solution to the Poisson equation!

22 4.1. POISSON SOLVERS

Chapter 5

Simulation Results

In this chapter, all the simulation results has been gathered. Both general
simulation results displaying characteristics of the carrier distribution in the
different valleys under influence of external forces, simulations showing the
hot phonon effect, and the results from the Poisson solver at hand. They
will be presented in the same order as the theory discusses them. Unless
otherwise stated, all the simulations has been performed at 300 K and for
CdxHg1−xTe , x = 0.275.

The previous versions of the program used ∼30 hours to conclude a sim-
ulation of 20000 electrons and holes. [3] This is very slow compared to the
present version of the program, which only uses ∼2 minutes using the same
parameters and the same features as in that report. The reason for this
reduction in time is mainly caused by the tabulation of the scattering rates.
Also, time reduction was obtained by clean-up of the code. It should also
be mentioned that when running the program with the same parameters in-
cluding carrier-carrier interactions, the previous version required almost no
extra computing time. The current carrier-carrier interactions is extremely
slow. [5]

The simulations presented in the following sections have all been run on an
Intel Core2 Quad CPU Q9400 machine running Red Hat Enterprice Linux 5.
The processors are clocked at 2.66 GHz and the available memory is 4 GB
RAM. The program has been compiled with Intels Fortran Compiler for
Linux, version 11.0 with the following options
ifort MC2009.6.6.f90 -o mc -ipo -O3 -no-prec-div -static -xHost
-parallel

23

24 5.1. GENERAL RESULTS

5.1 General Results

Since the program allows the user to pick 10 arbitrary points during the
simulation to extract data, extensive study of different physical phenomena
can be made, e.g. characteristic times for the relaxation of the k-distribution
after optical stimuli, or the shift in the kz-distribution when applying an
external field.

In the following, no discussion of such characteristic times will be made.
The graphs are only presented to show the possibilites the program offers. In
addition to the examples made above, the carrier distribution to the different
valleys during an external field will also presented.

5.1.1 Optical distribution

The program is capable of simulating the relaxation of photoexcited carriers
after optical stimuli. Before the execution of the program is started, a user
specified portion of the carriers are given a user specified k. This is shown
as the large initial peak in Figures 5.1 to 5.4. As can be seen in the figures,
the peak quickly disperses and “wanders” and widens into a thermalized
Maxwellian distribution. The lines corresponding to 16 and 20 ps indicate
that the system has reached steady state.

Another effect that can be seen is the effect of the carrier-carrier interactions.
It has a smoothing effect on the distributions. This is especially clear when
looking at the distribution at 16 and 20 ps. The plots including the Pauli
principle show that the distribution becomes somewhat lower and wider.

In all of the Figures 5.1, 5.2, 5.3 and 5.4, the plots has been cut at 750
superelectrons to better follow the movement of the distribution. The initial
peak in all of the plots contains 1900 superelectrons. The wavelength of
the laser that has been used to excite the initial carriers is λ = 1064 nm,
corresponding to a Nd:YAG-laser.

In Figures 5.5 and 5.6 the corresponding kz distribution and times from
Figures 5.1 and 5.3 are shown. In Figures 5.7 and ?? the data for some
points in time has been removed to better study the thermalization effects.
What can be read from the figures is that after ∼2–4 ps a bellshape arises.

CHAPTER 5. SIMULATION RESULTS 25

0

100

200

300

400

500

600

700

0 0.5 1.0 1.5 2.0 2.5

nu
m
be

r
of

ca
rr
ie
rs

k (1/nm)

0 ps
0.1 ps
0.2 ps
0.3 ps
0.5 ps
1.0 ps
2.0 ps
4.0 ps
7.0 ps
12.0 ps
16.0 ps
20.0 ps

Figure 5.1: The k-distribution for Cd0.275Hg0.725Te as time progresses. In this
simulation there are 2000 superelectrons and n = 1018 cm−3.

0

100

200

300

400

500

600

700

0 0.5 1.0 1.5 2.0 2.5

nu
m
be

r
of

ca
rr
ie
rs

k (1/nm)

0 ps
0.1 ps
0.2 ps
0.3 ps
0.5 ps
1.0 ps
2.0 ps
4.0 ps
7.0 ps
12.0 ps
16.0 ps
20.0 ps

Figure 5.2: The k-distribution for Cd0.275Hg0.725Te as time progresses including
carrier-carrier interactions. In this simulation there are 2000 super-
electrons and n = 1018 cm−3.

26 5.1. GENERAL RESULTS

0

100

200

300

400

500

600

700

0 0.5 1.0 1.5 2.0 2.5

nu
m
be

r
of

ca
rr
ie
rs

k (1/nm)

0 ps
0.1 ps
0.2 ps
0.3 ps
0.5 ps
1.0 ps
2.0 ps
4.0 ps
7.0 ps
12.0 ps
16.0 ps
20.0 ps

Figure 5.3: The k-distribution for Cd0.275Hg0.725Te as time progresses including
carrier-carrier interactions and the Pauli principle. In this simulation
there are 2000 superelectrons and n = 1018 cm−3.

0

200

400

600

800

1000

0 0.5 1.0 1.5 2.0 2.5

nu
m
be

r
of

ca
rr
ie
rs

k (1/nm)

0 ps
0.1 ps
0.2 ps
0.3 ps
0.5 ps
1.0 ps
2.0 ps
4.0 ps
7.0 ps
12.0 ps
16.0 ps
20.0 ps

Figure 5.4: The k-distribution for Cd0.275Hg0.725Te as time progresses with the
Pauli principle. In this simulation there are 2000 superelectrons and
n = 1018 cm−3.

CHAPTER 5. SIMULATION RESULTS 27

0

50

100

150

200

250

300

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

nu
m
be

r
of

ca
rr
ie
rs

kz (1/nm)

0 ps
0.1 ps
0.2 ps
0.3 ps
0.5 ps
1.0 ps
2.0 ps
4.0 ps
7.0 ps
12.0 ps
16.0 ps
20.0 ps

Figure 5.5: The kz-distribution for Cd0.275Hg0.725Te as time progresses. In this
simulation there are 2000 superelectrons and n = 1018 cm−3.

0

50

100

150

200

250

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

nu
m
be

r
of

ca
rr
ie
rs

kz (1/nm)

0 ps
0.1 ps
0.2 ps
0.3 ps
0.5 ps
1.0 ps
2.0 ps
4.0 ps
7.0 ps
12.0 ps
16.0 ps
20.0 ps

Figure 5.6: The kz-distribution for Cd0.275Hg0.725Te as time progresses including
carrier-carrier interactions and the Pauli principle. In this simulation
there are 2000 superelectrons and n = 1018 cm−3.

28 5.1. GENERAL RESULTS

0

50

100

150

200

250

300

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

nu
m
be

r
of

ca
rr
ie
rs

kz (1/nm)

0 ps
1.0 ps
2.0 ps
4.0 ps
7.0 ps
12.0 ps
16.0 ps
20.0 ps

Figure 5.7: The kz-distribution for Cd0.275Hg0.725Te as time progresses. In this
simulation there is 2000 superelectrons and n = 1018 cm−3. In this
plot, some of the time steps has been removed to clarify the effect.

0

50

100

150

200

250

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

nu
m
be

r
of

ca
rr
ie
rs

kz (1/nm)

0 ps
1.0 ps
2.0 ps
4.0 ps
7.0 ps
12.0 ps
16.0 ps
20.0 ps

Figure 5.8: The kz-distribution for Cd0.275Hg0.725Te as time progresses including
carrier-carrier interactions and the Pauli principle. In this simulation
there is 2000 superelectrons and n = 1018 cm−3. In this plot, some of
the time steps has been removed to clarify the effect.

CHAPTER 5. SIMULATION RESULTS 29

0

100

200

300

400

500

600

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

nu
m
be

r
of

ca
rr
ie
rs

kz (1/nm)

0 ps
0.1 ps
0.2 ps
0.3 ps
0.5 ps
2.0 ps
4.0 ps

Figure 5.9: The kz-distribution for GaAs as time progresses. In this simulation
there are 5000 superelectrons, ni = 1.84 · 106 cm−3, and the external
field is set to 25 kV/cm in the z direction.

5.1.2 Gaussian distribution with an applied field

In the program, the external field is applied along the z direction. In Fig-
ure 5.9 one can clearly see the shift in the kz-distribution. This happens very
fast, but again, since the program allows the user to choose when to extract
data, this can be observed and studied more closely. In these simulations,
only the intrinsic carrier density has been used, i.e. no doping. Additionally,
with such a strong field present, most of the carriers will leave the Γ valley.
Looking at the data from the program an estimated 20% remain in the Γ at
program termination.

In Figure 5.9, one can se the three initial peaks are quite large and shiftet.
This indicates that the system requires some time to thermalize. From the
plots, this time can be estimated to 0.4–0.5 ps. After this time, the distri-
bution is warn and displaced. Studying Figure 5.10, it is clear that when
the field strength increases, the shift in the kz distribution also increases, as
expected.

30 5.1. GENERAL RESULTS

0

100

200

300

400

500

600

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

nu
m
be

r
of

ca
rr
ie
rs

kz (1/nm)

0 ps
0.1 ps
0.2 ps
0.3 ps
0.5 ps
2.0 ps
4.0 ps

Figure 5.10: The kz-distribution for GaAs as time progresses. In this simulation
there are 5000 superelectrons, ni = 1.84 ·106 cm−3, and the external
field is set to 35 kV/cm in the z direction.

CHAPTER 5. SIMULATION RESULTS 31

0

2000

4000

6000

8000

10000

0 2 4 6 8 10

nu
m
be

r
of

ca
rr
ie
rs

time (ps)

Γ valley
L valley
X valley

Figure 5.11: The electron distribution to the different valleys in GaAs with ni =
1.84 · 106 cm−3 without any external field applied.

5.1.3 Carrier distribution

In the following figures, the carrier distribution in the different valleys is
shown as a function of time. In Figure 5.11, the simulations is run without
any of the options turned on and only the intrinsic carrier density has been
used, i.e. no doping. As can be seen, very litle happens here. Virtually every
electron reside in the Γ valley and the diffusion to the other valleys are nearly
non-present. Allthough the figure does not provide much information as is,
a study of the datafiles confirms that there is some intervalley scattering
occurring.

In Figure 5.12 an external field of strength 25 kV/cm is applied. The elec-
trons now gain enough energy to “jump” to the higher lying valleys L and
X. When the field is even stronger, the electron diffusion to the other val-
leys become more dominant, see Figure 5.13. The distribution displayed in
Figures 5.12 and 5.13 is what should be expected. One may also notice that
after an external field is applied, the system reaches steady state after about
2 ps, hence displaying plausible physical time constants.

32 5.1. GENERAL RESULTS

0

2000

4000

6000

8000

10000

0 2 4 6 8 10

nu
m
be

r
of

ca
rr
ie
rs

time (ps)

Γ valley
L valley
X valley

Figure 5.12: The electron distribution to the different valleys in GaAs with ni =
1.84 · 106 cm−3 during an external field of strength 25 kV/cm in the
z direction.

0

2000

4000

6000

8000

10000

0 2 4 6 8 10

nu
m
be

r
of

ca
rr
ie
rs

time (ps)

Γ valley
L valley
X valley

Figure 5.13: The electron distribution to the different valleys in GaAs with ni =
1.84 · 106 cm−3 during an external field of strength 35 kV/cm in the
z direction.

CHAPTER 5. SIMULATION RESULTS 33

5.2 Hot Phonon Results

In Figure 5.14, the hot phonon effect is displayed for two different elecron
excitation levels, n = 5·1018 cm−3 and n = 1·1019 cm−3, in Cd0.275Hg0.725Te .
An equilibrium simulation has been added to the plot to show that the system
cools to an appropriate level. The three optically stimulated simulations was
stimulated with a laserbeam with λ = 1064 nm, corresponding to a Nd:YAG
laser. It is assumed that 99% of the carriers becomes excited. This is due to
the fact that the program handles integer input and that the program will
crash if a 100% is selected.

As can be seen, there is a clear slowdown in the cooling of the system when
hot phonon effects is taken into account. When the excited carrier con-
centration is n = 5 · 1018 cm−3, the cooling does not suffer too bad. The
production of hot phonons is not great enough to restrain the cooling of the
system. When the excited carrier concentration is n = 1019 cm−3, the pro-
duction of hot phonons is very high and the cooling of the system suffers very
much. Without the hot phonon effect the system has reached equilibrium
within ∼30 ps, while the low-excitation simulation requires approximately
25 ps longer to cool. The high-excitation simulation does not cool until
90–100 ps is reached which is a whopping ∼60 ps longer to cool down than
without the hot phonon effect!

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100

〈E
Γ
〉/

3 2
k
B
T

time (ps)

with “hPh”, n = 1 · 1019 cm−3

with “hPh”, n = 5 · 1018 cm−3

without “hPh”, n = 5 · 1018 cm−3

equilibrium

Figure 5.14: Cooling of Cd0.275Hg0.725Te with and without hot phonon effects
(“hPh”). The exciting laser has λ = 1064 nm and it is assumed that
95% of the carriers becomes excited. It is quite clear that with hot
phonon effects turned on, the cooling of the system suffers.

34 5.3. POISSON RESULTS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

µm

µm

Figure 5.15: The diffusion of electrons without the Poisson solver. Initial spatial
distribution.

5.3 Poisson Results

In the program, the carriers has been confined to a cube of 2 µm× 2 µm×
2 µm. The Poisson solver at hand is a 2D solver, hence the confinement in
the third dimension is strictly not nescessary, but poses no problem either.
The reason for the third “unnecessary” confinement is to be ready for a 3D
solver. As mentioned previously, the framework has been built to be very
flexible when it comes to swapping Poisson solvers.

Since the present Poisson solver only has been implemented as a “proof of
concept”, the presentation of data from it will be a bit scarce. Only the effect
on the spatial carrier distribution is shown.

In the following, a series of plots show the spatial distribution of 500 super-
electrons at four different times. The first four plots were simulated without
the Poisson solver. The dispersion is purely diffusional in nature and the su-
perelectrons do not fill the available space before 2.0 ps has passed. The last
four plots show the spatial distribution when run with the Poisson solver. As
can be seen from these plots, the superelectrons fill the space after 0.875 ps.
This is roughly half the time of the run without the Poisson solver.

CHAPTER 5. SIMULATION RESULTS 35

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

µm

µm

Figure 5.16: The diffusion of electrons without the Poisson solver. Spatial distri-
bution after 0.50 ps.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

µm

µm

Figure 5.17: The diffusion of electrons without the Poisson solver. Spatial distri-
bution after 0.875 ps.

36 5.3. POISSON RESULTS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

µm

µm

Figure 5.18: The diffusion of electrons without the Poisson solver. Spatial distri-
bution after 2.00 ps.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

µm

µm

Figure 5.19: The diffusion of electrons with the Poisson solver on a mesh with 64
nodes. Initial spatial distributin

CHAPTER 5. SIMULATION RESULTS 37

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

µm

µm

Figure 5.20: The diffusion of electrons with the Poisson solver on a mesh with 64
nodes. Spatial distribution after 0.50 ps.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

µm

µm

Figure 5.21: The diffusion of electrons with the Poisson solver on a mesh with 64
nodes. Spatial distribution after 0.875 ps.

38 5.3. POISSON RESULTS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

µm

µm

Figure 5.22: The diffusion of electrons with the Poisson solver on a mesh with 64
nodes. Spatial distribution after 2.0 ps

Chapter 6

Conclusion and Further Work

A program has been developed during two summer jobs, two project works,
and two master works. During these 18 months a lot of improvements have
been made and the program is now quite rich in features. The most impor-
tant features are listed below.

• A “proof of concept” Poisson solver.

• The program is faster than ever, due to tabulated rates [5] and cleaning
of the code.

• Hot phonon effects is implemented.

• Pauli principle is implemented. [23,24]

• More realistic bandstructures. [5]

• Tabulated scattering rates for significant speed-up.

• Several new scattering rates have been included, such as carrier-plasmon
and alloy scatterings.

• A more thorough carrier-carrier scatterings has been implemented. [5]

The implemented scheme for the hot phonon effect show a clear slow-down
of the cooling rate of a photoexcited system.

Solving the Poisson equation is very important in particle simulations, and
a “proof of concept” solver has been implemented. The results show that the
framework is working well and switching solver should be very easy.

39

40

Future plans for the program, with emphasis on the topics discussed in this
thesis, can be summarized in list-form

• Make the program parallel and more CPU efficient.

• Create several new Poisson solvers for use in the program, both 2D
and 3D, to enable simulation of novel semiconductor designs.

• Dynamic carrier ensembles to enable excitation and recombination ef-
fects. [25]

• Allow the lattice temperature to change when hot phonon effects has
been chosen.

• A more CPU-efficient carrier-carrier routine should be made. [26]

• Implement the ability to select several semiconductor materials without
recompiling.

If the reader is interested in the source code of our program, an e-mail can
be sent to ole.norum@gmail.com

Appendix A

Materials

The program can simulate two different materials, CdxHg1−xTe and GaAs.
The parameters of these are listed in section A.1, and the band structures
are displayed in section A.2

A.1 Material Parameters

Technical difficulties has forced us to create two versions of the program,
one for CdxHg1−xTe and another for GaAs. The parameters used in each
of the versions are listed in table A.1 below. I will not include the natural
constants, e.g. speed of light, fine structure constant, since these are widely
available and should be equal everywhere. The natural constants used in the
program has been taken from the Particle Data Group [27]

All parameters has been placed in MODULE-constructs, thus making them
accessible from anywhere within the program. This creates a tidy structure
in the code and updating constants is very easy.

A.2 Band structures

The two materials have quite different band structures. CdxHg1−xTe is a
narrow gap semiconductor while GaAs have a much larger bandgap. The
band structures are shown in Figures A.1 and A.2.

41

42 A.2. BAND STRUCTURES

T
ab

le
A

.1
:
M
at
er
ia
lp

ar
am

et
er
s
fo
r
G
aA

s
an

d
C
d x

H
g 1
−

x
T
e
(C

M
T
)
us
ed

in
th
e
pr
og
ra
m
.
A
ll
pa

ra
m
et
er
s
ar
e
co
ns
id
er
ed

at
T

=
30

0
K
.

V
al
ue

N
am

e
C
on

st
an

t
G
aA

s
C
dH

gT
e

U
ni
t

H
ig
h
fr
eq
ue
nc
y
di
el
ec
tr
ic

co
ns
ta
nt
G
a
A
s:
[2
8]
C
M
T

:[
29
]

ε ∞
10

.8
8

15
.2
−

15
.6
x

+
8.

2x
2

Lo
w

fr
eq
ue
nc
y
di
el
ec
tr
ic

co
ns
ta
nt
G
a
A
s:
[2
8]
C
M
T

:[
29
]

ε s
12

.8
5

20
.5
−

15
.6
x

+
5.

7x
2

In
tr
in
si
c
el
ec
tr
on

de
ns
it
yG

a
A
s:
[1
]C
M
T

:[
29
]

n
1.

84
·1

06
10

1
8
.5

8
−

9
.8

9
∗x

1
cm

3

M
as
s
de
ns
it
yG

a
A
s:
[2
8]
C
M
T

:[
29
]

ρ
5.
31

7
8.

05
−

2.
3x

g
cm

3

Lo
ng

it
ud

in
al

so
un

d
ve
lo
ci
ty
G
a
A
s:
[3
0,
31
]

S
52

40
45

70
m s

La
tt
ic
e
co
ns
ta
nt
G
a
A
s:
[2
8]
C
M
T

:[
29
]

a
5.
65

6
6.

47
7x

+
6.

49
0(

1
−
x

)
Å

E
ffe

ct
iv
e
m
as
s
in

Γ
va
lle

yG
a
A
s:
[1
,3
2]
C
M
T

:[
33
]

m
Γ

0.
06

7
3
~2
E

g

(2
·8
.2

8
·1

0
−

1
0
)2

m
∗

m
0

E
ffe

ct
iv
e
m
as
s
in

L
va
lle

yG
a
A
s:
[3
0]

m
L

0.
22

2
0.
22

2a
m
∗

m
0

E
ffe

ct
iv
e
m
as
s
in

X
va
lle

yG
a
A
s:
[3
0]

m
X

0.
58

0
0.
58

0a
m
∗

m
0

E
ffe

ct
iv
e
m
as
s
in

H
H

ba
nd

G
a
A
s:
[3
2]
C
M
T

:[
29
]

m
H

H
0.
50

0
0.
53

0
m
∗

m
0

E
ffe

ct
iv
e
m
as
s
in

LH
ba

nd
G
a
A
s:
[3
4]
C
M
T

:[
33
]

m
L

H
0.
07

4
3
~2
E

g

(2
·8
.2

8
·1

0
−

1
0
)2

m
∗

m
0

O
pt
ic
al

ph
on

on
fr
eq
ue
nc
yG

a
A
s:
[2
8]
C
M
T

:[
35
]

ω
0

5.
37

2
2
.9

2
+

2
·2
.8

1
3

b
1
0

1
3

s

O
pt
ic
al

ph
on

on
lif
et
im

eG
a
A
s:
[7
]

τ p
h

7
1.
5

ps
N
on

pa
ra
bo

lic
ty

pa
ra
m
et
er

in
Γ
va
lle

yG
a
A
s:
[3
0,
31
]C
M
T

:[
16
,3
3,
36
]

α
Γ

0.
61

0
(1
−

m
Γ

m
0
)2
/E

g
1 eV

N
on

pa
ra
bo

lic
ty

pa
ra
m
et
er

in
L
va
lle

yG
a
A
s:
[3
0,
31
]

α
L

0.
46

1
0.
46

1a
1 eV

N
on

pa
ra
bo

lic
ty

pa
ra
m
et
er

in
X

va
lle

yG
a
A
s:
[3
0,
31
]

α
X

0.
20

4
0.
20

4a
1 eV

E
ne
rg
y
ga

pc
G
a
A
s:
[2
8]
C
M
T

:[
37
]

E
Γ

1.
42

4
E
g
0

+
(6
.3
x

c
−

3
.2

5
x
−

5
.9

2
x
x

c
)1

0
−

4
T

2

1
1
x

c
+

7
8
.7
x

+
T

eV
V
al
en
ce

ba
nd

pa
ra
m
et
er
sG
a
A
s:
[3
3,
38
]

A
7.
98

7.
98

a

B
5.
16

5.
16

a

C
6.
56

6.
56

a

a
A

ss
um

ed
eq

ua
lt

o
th

at
of

G
aA

s
du

e
to

la
ck

of
pa

ra
m

et
er

s.
b
T

he
op

ti
ca

l
ph

on
on

fr
eq

ue
nc

y
ha

s
be

en
av

er
ag

ed
ov

er
th

e
tw

o
tr

an
sv

er
se

an
d

th
e

lo
ng

it
ud

in
al

m
od

es
,
si

nc
e

th
es

e
ar

e
no

t
di

st
in

gu
is

he
d

in
th

e
pr

og
ra

m
.

P
ar

am
et

er
s

ta
ke

n
at

80
K

c
W

he
re

E
g
0

=
−

0
.3

0
3
x

c
+

1
.6

0
6
x
−

0
.1

3
2
x
x

c
an

d
x

c
=

1
−

x

APPENDIX A. MATERIALS 43

Figure A.1: The band structure of GaAs at T=300 K.

44 A.2. BAND STRUCTURES

Figure A.2: The band structure of Cd0.275Hg0.725Te at T=300 K.

Appendix B

Creating Results from the
Program

In order to reproduce the results given throughout this thesis, the following
program and scripts has been used. All plots has been made with Matlab or
gnuplot.

B.1 Code to produce script input

The program presented here, “the reader”, is developed to refine some of
the output files produced from the main program. The reader is written in
fortran 90/95 and requires no special compiler options. Any fortran 90/95
compiler will compile the presented code. The operation of the program is
straight forward and well explained when executed.

The raw files containing information about the k and kz distribution are
made by looping through the ensemble and dumping the k and kz for each
valley into files. The reader takes these raw files as input and sorts the k’s
into a mesh producing files that are readable by MATLAB or gnuplot.

� �
1 PROGRAM r eader
2 IMPLICIT NONE
3 INTEGER,DIMENSION(12) : : n
4 INTEGER : : cho ice , s e l e c t o r , rerun
5 DOUBLE PRECISION : : kmin , kmax
6 CHARACTER(LEN=8) ,DIMENSION(10) : : f i l e l i s t
7 CHARACTER(LEN=8) : : f i l ename
8 n=0; cho i c e =0; s e l e c t o r =0; rerun=0; kmin=0. ; kmax=0;
9 f i l e l i s t (1)=’G. l s t ’

10 f i l e l i s t (2)=’L . l s t ’
11 f i l e l i s t (3)=’X. l s t ’

45

46 B.1. CODE TO PRODUCE SCRIPT INPUT

12 f i l e l i s t (4)=’HH. l s t ’
13 f i l e l i s t (5)=’LH. l s t ’
14 f i l e l i s t (6)=’Gz . l s t ’
15 f i l e l i s t (7)=’Lz . l s t ’
16 f i l e l i s t (8)=’Xz . l s t ’
17 f i l e l i s t (9)=’HHz. l s t ’
18 f i l e l i s t (10)=’LHz . l s t ’
19 WRITE(∗ ,∗) ’Max k−vector ’
20 READ(∗ ,∗)kmax
21 DO
22 WRITE(∗ ,∗) ’What do you wish to examine ? ’
23 WRITE(∗ ,∗) ’ 1 : The e n t i r e p i c ture ’
24 WRITE(∗ ,∗) ’ 2 : The component p a r a l l e l to the f i e l d ’
25 READ(∗ ,∗) cho i c e
26 IF (cho i c e == 1) THEN
27 kmin=0
28 ELSE IF (cho i c e == 2) THEN
29 kmin=−kmax
30 END IF
31 WRITE(∗ ,∗) ’What va l l e y /band would you l i k e to examine ? ’
32 WRITE(∗ ,∗) ’ 1 : G va l l ey ’
33 WRITE(∗ ,∗) ’ 2 : L va l l ey ’
34 WRITE(∗ ,∗) ’ 3 : X va l l ey ’
35 WRITE(∗ ,∗) ’ 4 : HH band ’
36 WRITE(∗ ,∗) ’ 5 : LH band ’
37 READ(∗ ,∗) s e l e c t o r
38 IF (cho i c e == 2) s e l e c t o r=s e l e c t o r+5
39 f i l ename= f i l e l i s t (s e l e c t o r)
40 WRITE(∗ ,∗) ’ In f i l e ’ , f i l ename , ’ you should f i nd the number of ’
41 IF (s e l e c t o r == 1 .OR. s e l e c t o r == 6) THEN
42 WRITE(∗ ,∗) ’ e l e c t r o n s in the G va l l e y at 12 snapshots . ’
43 ELSE IF (s e l e c t o r == 2 .OR. s e l e c t o r == 7) THEN
44 WRITE(∗ ,∗) ’ e l e c t r o n s in the L va l l e y at 12 snapshots . ’
45 ELSE IF (s e l e c t o r == 3 .OR. s e l e c t o r == 8) THEN
46 WRITE(∗ ,∗) ’ e l e c t r o n s in the X va l l e y at 12 snapshots . ’
47 ELSE IF (s e l e c t o r == 4 .OR. s e l e c t o r == 9) THEN
48 WRITE(∗ ,∗) ’ e l e c t r o n s in the HH band at 12 snapshots . ’
49 ELSE IF (s e l e c t o r == 5 .OR. s e l e c t o r == 10) THEN
50 WRITE(∗ ,∗) ’ e l e c t r o n s in the LH band at 12 snapshots . ’
51 END IF
52 WRITE(∗ ,∗) ’ Enter the se below : ’
53 WRITE(∗ ,∗) ’ Snapshot 1 : ’
54 READ(∗ ,∗) n (1)
55 WRITE(∗ ,∗) ’ Snaphsot 2 : ’
56 READ(∗ ,∗) n (2)
57 WRITE(∗ ,∗) ’ Snaphsot 3 : ’
58 READ(∗ ,∗) n (3)
59 WRITE(∗ ,∗) ’ Snaphsot 4 : ’
60 READ(∗ ,∗) n (4)
61 WRITE(∗ ,∗) ’ Snaphsot 5 : ’
62 READ(∗ ,∗) n (5)
63 WRITE(∗ ,∗) ’ Snaphsot 6 : ’
64 READ(∗ ,∗) n (6)
65 WRITE(∗ ,∗) ’ Snaphsot 7 : ’
66 READ(∗ ,∗) n (7)
67 WRITE(∗ ,∗) ’ Snaphsot 8 : ’
68 READ(∗ ,∗) n (8)
69 WRITE(∗ ,∗) ’ Snaphsot 9 : ’
70 READ(∗ ,∗) n (9)
71 WRITE(∗ ,∗) ’ Snaphsot 10 : ’
72 READ(∗ ,∗) n (10)
73 WRITE(∗ ,∗) ’ Snaphsot 11 : ’

APPENDIX B. CREATING RESULTS FROM THE PROGRAM 47

74 READ(∗ ,∗) n (11)
75 WRITE(∗ ,∗) ’ Snaphsot 12 : ’
76 READ(∗ ,∗) n (12)
77 ! Here we c a l l the p r i n t e r which p r i n t s according to

s p e s i f i c a t i o n s
78 CALL p r i n t e r (n , kmax , kmin , f i l ename , s e l e c t o r)
79 WRITE(∗ ,∗) ’Do you wish to examine another v a l l e y /band ? ’
80 WRITE(∗ ,∗) ’ 1 : Yes ’
81 WRITE(∗ ,∗) ’ 0 : No ’
82 READ(∗ ,∗) rerun
83 IF (rerun == 0) EXIT
84 END DO
85 STOP
86 ENDPROGRAM r eader
87 SUBROUTINE p r i n t e r (n , kmax , kmin , f i l ename , s e l e c t o r)
88 IMPLICIT NONE
89 INTEGER,INTENT(IN) : : s e l e c t o r
90 INTEGER,DIMENSION(12) ,INTENT(IN) : : n
91 DOUBLE PRECISION,INTENT(IN) : : kmax , kmin
92 CHARACTER(LEN=8) ,INTENT(IN) : : f i l ename
93 INTEGER : : i , j , out , meshs ize
94 DOUBLE PRECISION,DIMENSION(100 ,12) : : mesh
95 DOUBLE PRECISION : : k , s tep
96 CHARACTER(LEN=13) ,DIMENSION(10 ,12) : : meshname
97 out=0; meshs ize =100; mesh=0. ; k=0. ;
98 s tep=(kmax−kmin) /meshs ize
99 meshname (1 , 1)=’gmesh1 . l s t ’

100 meshname (1 , 2)=’gmesh2 . l s t ’
101 meshname (1 , 3)=’gmesh3 . l s t ’
102 meshname (1 , 4)=’gmesh4 . l s t ’
103 meshname (1 , 5)=’gmesh5 . l s t ’
104 meshname (1 , 6)=’gmesh6 . l s t ’
105 meshname (1 , 7)=’gmesh7 . l s t ’
106 meshname (1 , 8)=’gmesh8 . l s t ’
107 meshname (1 , 9)=’gmesh9 . l s t ’
108 meshname (1 ,10)=’gmesh10 . l s t ’
109 meshname (1 ,11)=’gmesh11 . l s t ’
110 meshname (1 ,12)=’gmesh12 . l s t ’
111 meshname (2 , 1)=’ lmesh1 . l s t ’
112 meshname (2 , 2)=’ lmesh2 . l s t ’
113 meshname (2 , 3)=’ lmesh3 . l s t ’
114 meshname (2 , 4)=’ lmesh4 . l s t ’
115 meshname (2 , 5)=’ lmesh5 . l s t ’
116 meshname (2 , 6)=’ lmesh6 . l s t ’
117 meshname (2 , 7)=’ lmesh7 . l s t ’
118 meshname (2 , 8)=’ lmesh8 . l s t ’
119 meshname (2 , 9)=’ lmesh9 . l s t ’
120 meshname (2 ,10)=’ lmesh10 . l s t ’
121 meshname (2 ,11)=’ lmesh11 . l s t ’
122 meshname (2 ,12)=’ lmesh12 . l s t ’
123 meshname (3 , 1)=’xmesh1 . l s t ’
124 meshname (3 , 2)=’xmesh2 . l s t ’
125 meshname (3 , 3)=’xmesh3 . l s t ’
126 meshname (3 , 4)=’xmesh4 . l s t ’
127 meshname (3 , 5)=’xmesh5 . l s t ’
128 meshname (3 , 6)=’xmesh6 . l s t ’
129 meshname (3 , 7)=’xmesh7 . l s t ’
130 meshname (3 , 8)=’xmesh8 . l s t ’
131 meshname (3 , 9)=’xmesh9 . l s t ’
132 meshname (3 ,10)=’xmesh10 . l s t ’
133 meshname (3 ,11)=’xmesh11 . l s t ’
134 meshname (3 ,12)=’xmesh12 . l s t ’

48 B.1. CODE TO PRODUCE SCRIPT INPUT

135 meshname (4 , 1)=’hhmesh1 . l s t ’
136 meshname (4 , 2)=’hhmesh2 . l s t ’
137 meshname (4 , 3)=’hhmesh3 . l s t ’
138 meshname (4 , 4)=’hhmesh4 . l s t ’
139 meshname (4 , 5)=’hhmesh5 . l s t ’
140 meshname (4 , 6)=’hhmesh6 . l s t ’
141 meshname (4 , 7)=’hhmesh7 . l s t ’
142 meshname (4 , 8)=’hhmesh8 . l s t ’
143 meshname (4 , 9)=’hhmesh9 . l s t ’
144 meshname (4 ,10)=’hhmesh10 . l s t ’
145 meshname (4 ,11)=’hhmesh11 . l s t ’
146 meshname (4 ,12)=’hhmesh12 . l s t ’
147 meshname (5 , 1)=’ lhmesh1 . l s t ’
148 meshname (5 , 2)=’ lhmesh2 . l s t ’
149 meshname (5 , 3)=’ lhmesh3 . l s t ’
150 meshname (5 , 4)=’ lhmesh4 . l s t ’
151 meshname (5 , 5)=’ lhmesh5 . l s t ’
152 meshname (5 , 6)=’ lhmesh6 . l s t ’
153 meshname (5 , 7)=’ lhmesh7 . l s t ’
154 meshname (5 , 8)=’ lhmesh8 . l s t ’
155 meshname (5 , 9)=’ lhmesh9 . l s t ’
156 meshname (5 ,10)=’ lhmesh10 . l s t ’
157 meshname (5 ,11)=’ lhmesh11 . l s t ’
158 meshname (5 ,12)=’ lhmesh12 . l s t ’
159 meshname (6 , 1)=’gzmesh1 . l s t ’
160 meshname (6 , 2)=’gzmesh2 . l s t ’
161 meshname (6 , 3)=’gzmesh3 . l s t ’
162 meshname (6 , 4)=’gzmesh4 . l s t ’
163 meshname (6 , 5)=’gzmesh5 . l s t ’
164 meshname (6 , 6)=’gzmesh6 . l s t ’
165 meshname (6 , 7)=’gzmesh7 . l s t ’
166 meshname (6 , 8)=’gzmesh8 . l s t ’
167 meshname (6 , 9)=’gzmesh9 . l s t ’
168 meshname (6 ,10)=’gzmesh10 . l s t ’
169 meshname (6 ,11)=’gzmesh11 . l s t ’
170 meshname (6 ,12)=’gzmesh12 . l s t ’
171 meshname (7 , 1)=’ lzmesh1 . l s t ’
172 meshname (7 , 2)=’ lzmesh2 . l s t ’
173 meshname (7 , 3)=’ lzmesh3 . l s t ’
174 meshname (7 , 4)=’ lzmesh4 . l s t ’
175 meshname (7 , 5)=’ lzmesh5 . l s t ’
176 meshname (7 , 6)=’ lzmesh6 . l s t ’
177 meshname (7 , 7)=’ lzmesh7 . l s t ’
178 meshname (7 , 8)=’ lzmesh8 . l s t ’
179 meshname (7 , 9)=’ lzmesh9 . l s t ’
180 meshname (7 ,10)=’ lzmesh10 . l s t ’
181 meshname (7 ,11)=’ lzmesh11 . l s t ’
182 meshname (7 ,12)=’ lzmesh12 . l s t ’
183 meshname (8 , 1)=’xzmesh1 . l s t ’
184 meshname (8 , 2)=’xzmesh2 . l s t ’
185 meshname (8 , 3)=’xzmesh3 . l s t ’
186 meshname (8 , 4)=’xzmesh4 . l s t ’
187 meshname (8 , 5)=’xzmesh5 . l s t ’
188 meshname (8 , 6)=’xzmesh6 . l s t ’
189 meshname (8 , 7)=’xzmesh7 . l s t ’
190 meshname (8 , 8)=’xzmesh8 . l s t ’
191 meshname (8 , 9)=’xzmesh9 . l s t ’
192 meshname (8 ,10)=’xzmesh10 . l s t ’
193 meshname (8 ,11)=’xzmesh11 . l s t ’
194 meshname (8 ,12)=’xzmesh12 . l s t ’
195 meshname (9 , 1)=’hhzmesh1 . l s t ’
196 meshname (9 , 2)=’hhzmesh2 . l s t ’

APPENDIX B. CREATING RESULTS FROM THE PROGRAM 49

197 meshname (9 , 3)=’hhzmesh3 . l s t ’
198 meshname (9 , 4)=’hhzmesh4 . l s t ’
199 meshname (9 , 5)=’hhzmesh5 . l s t ’
200 meshname (9 , 6)=’hhzmesh6 . l s t ’
201 meshname (9 , 7)=’hhzmesh7 . l s t ’
202 meshname (9 , 8)=’hhzmesh8 . l s t ’
203 meshname (9 , 9)=’hhzmesh9 . l s t ’
204 meshname (9 ,10)=’hhzmesh10 . l s t ’
205 meshname (9 ,11)=’hhzmesh11 . l s t ’
206 meshname (9 ,12)=’hhzmesh12 . l s t ’
207 meshname (10 ,1)=’ lhzmesh1 . l s t ’
208 meshname (10 ,2)=’ lhzmesh2 . l s t ’
209 meshname (10 ,3)=’ lhzmesh3 . l s t ’
210 meshname (10 ,4)=’ lhzmesh4 . l s t ’
211 meshname (10 ,5)=’ lhzmesh5 . l s t ’
212 meshname (10 ,6)=’ lhzmesh6 . l s t ’
213 meshname (10 ,7)=’ lhzmesh7 . l s t ’
214 meshname (10 ,8)=’ lhzmesh8 . l s t ’
215 meshname (10 ,9)=’ lhzmesh9 . l s t ’
216 meshname (10 ,10)=’ lhzmesh10 . l s t ’
217 meshname (10 ,11)=’ lhzmesh11 . l s t ’
218 meshname (10 ,12)=’ lhzmesh12 . l s t ’
219 OPEN(11 ,FILE=fi lename ,ACCESS=’SEQUENTIAL’ ,STATUS=’OLD’)
220 DO i =1,n (1)
221 READ(11 ,∗) k
222 IF (ABS(k) > kmax) out=out+1
223 DO j =1,meshs ize
224 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
225 mesh (j , 1)=mesh (j , 1)+1
226 EXIT
227 END IF
228 END DO
229 END DO
230 DO i =1,n (2)
231 READ(11 ,∗) k
232 IF (ABS(k) > kmax) out=out+1
233 DO j =1,meshs ize
234 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
235 mesh (j , 2)=mesh (j , 2)+1
236 EXIT
237 END IF
238 END DO
239 END DO
240 DO i =1,n (3)
241 READ(11 ,∗) k
242 IF (ABS(k) > kmax) out=out+1
243 DO j =1,meshs ize
244 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
245 mesh (j , 3)=mesh (j , 3)+1
246 EXIT
247 END IF
248 END DO
249 END DO
250 DO i =1,n (4)
251 READ(11 ,∗) k
252 IF (ABS(k) > kmax) out=out+1
253 DO j =1,meshs ize
254 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
255 mesh (j , 4)=mesh (j , 4)+1
256 EXIT
257 END IF
258 END DO

50 B.1. CODE TO PRODUCE SCRIPT INPUT

259 END DO
260 DO i =1,n (5)
261 READ(11 ,∗) k
262 IF (ABS(k) > kmax) out=out+1
263 DO j =1,meshs ize
264 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
265 mesh (j , 5)=mesh (j , 5)+1
266 EXIT
267 END IF
268 END DO
269 END DO
270 DO i =1,n (6)
271 READ(11 ,∗) k
272 IF (ABS(k) > kmax) out=out+1
273 DO j =1,meshs ize
274 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
275 mesh (j , 6)=mesh (j , 6)+1
276 EXIT
277 END IF
278 END DO
279 END DO
280 DO i =1,n (7)
281 READ(11 ,∗) k
282 IF (ABS(k) > kmax) out=out+1
283 DO j =1,meshs ize
284 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
285 mesh (j , 7)=mesh (j , 7)+1
286 EXIT
287 END IF
288 END DO
289 END DO
290 DO i =1,n (8)
291 READ(11 ,∗) k
292 IF (ABS(k) > kmax) out=out+1
293 DO j =1,meshs ize
294 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
295 mesh (j , 8)=mesh (j , 8)+1
296 EXIT
297 END IF
298 END DO
299 END DO
300 DO i =1,n (9)
301 READ(11 ,∗) k
302 IF (ABS(k) > kmax) out=out+1
303 DO j =1,meshs ize
304 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
305 mesh (j , 9)=mesh (j , 9)+1
306 EXIT
307 END IF
308 END DO
309 END DO
310 DO i =1,n (10)
311 READ(11 ,∗) k
312 IF (ABS(k) > kmax) out=out+1
313 DO j =1,meshs ize
314 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
315 mesh (j , 1 0)=mesh (j , 1 0)+1
316 EXIT
317 END IF
318 END DO
319 END DO
320 DO i =1,n (11)

APPENDIX B. CREATING RESULTS FROM THE PROGRAM 51

321 READ(11 ,∗) k
322 IF (ABS(k) > kmax) out=out+1
323 DO j =1,meshs ize
324 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
325 mesh (j , 1 1)=mesh (j , 1 1)+1
326 EXIT
327 END IF
328 END DO
329 END DO
330 DO i =1,n (12)
331 READ(11 ,∗) k
332 IF (ABS(k) > kmax) out=out+1
333 DO j =1,meshs ize
334 IF ((k >= (kmin+step ∗(j−1)) .AND. (k < (kmin+step ∗ j)))) THEN
335 mesh (j , 1 2)=mesh (j , 1 2)+1
336 EXIT
337 END IF
338 END DO
339 END DO
340 CLOSE(11)
341 OPEN(21 ,FILE=meshname(s e l e c t o r , 1) ,ACCESS=’SEQUENTIAL’ ,STATUS=’

REPLACE’)
342 DO i =1,meshs ize
343 WRITE(21 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 1)
344 END DO
345 CLOSE(21)
346 OPEN(22 ,FILE=meshname(s e l e c t o r , 2) ,ACCESS=’SEQUENTIAL’ ,STATUS=’

REPLACE’)
347 DO i =1,meshs ize
348 WRITE(22 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 2)
349 END DO
350 CLOSE(22)
351 OPEN(23 ,FILE=meshname(s e l e c t o r , 3) ,ACCESS=’SEQUENTIAL’ ,STATUS=’

REPLACE’)
352 DO i =1,meshs ize
353 WRITE(23 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 3)
354 END DO
355 CLOSE(23)
356 OPEN(24 ,FILE=meshname(s e l e c t o r , 4) ,ACCESS=’SEQUENTIAL’ ,STATUS=’

REPLACE’)
357 DO i =1,meshs ize
358 WRITE(24 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 4)
359 END DO
360 CLOSE(24)
361 OPEN(25 ,FILE=meshname(s e l e c t o r , 5) ,ACCESS=’SEQUENTIAL’ ,STATUS=’

REPLACE’)
362 DO i =1,meshs ize
363 WRITE(25 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 5)
364 END DO
365 CLOSE(25)
366 OPEN(26 ,FILE=meshname(s e l e c t o r , 6) ,ACCESS=’SEQUENTIAL’ ,STATUS=’

REPLACE’)
367 DO i =1,meshs ize
368 WRITE(26 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 6)
369 END DO
370 CLOSE(26)
371 OPEN(27 ,FILE=meshname(s e l e c t o r , 7) ,ACCESS=’SEQUENTIAL’ ,STATUS=’

REPLACE’)
372 DO i =1,meshs ize
373 WRITE(27 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 7)
374 END DO
375 CLOSE(27)

52 B.1. CODE TO PRODUCE SCRIPT INPUT

376 OPEN(28 ,FILE=meshname(s e l e c t o r , 8) ,ACCESS=’SEQUENTIAL’ ,STATUS=’
REPLACE’)

377 DO i =1,meshs ize
378 WRITE(28 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 8)
379 END DO
380 CLOSE(28)
381 OPEN(29 ,FILE=meshname(s e l e c t o r , 9) ,ACCESS=’SEQUENTIAL’ ,STATUS=’

REPLACE’)
382 DO i =1,meshs ize
383 WRITE(29 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 9)
384 END DO
385 CLOSE(29)
386 OPEN(30 ,FILE=meshname(s e l e c t o r , 1 0) ,ACCESS=’SEQUENTIAL’ ,STATUS=’

REPLACE’)
387 DO i =1,meshs ize
388 WRITE(30 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 1 0)
389 END DO
390 CLOSE(30)
391 OPEN(31 ,FILE=meshname(s e l e c t o r , 1 1) ,ACCESS=’SEQUENTIAL’ ,STATUS=’

REPLACE’)
392 DO i =1,meshs ize
393 WRITE(31 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 1 1)
394 END DO
395 CLOSE(31)
396 OPEN(32 ,FILE=meshname(s e l e c t o r , 1 2) ,ACCESS=’SEQUENTIAL’ ,STATUS=’

REPLACE’)
397 DO i =1,meshs ize
398 WRITE(32 ,∗) (kmin+step ∗(i −0.5)) ,mesh (i , 1 2)
399 END DO
400 CLOSE(32)
401 WRITE(∗ ,∗) ’ Ca r r i e r s ou t s id e k−mesh : ’ ,out
402 WRITE(∗ ,∗) ’Data wr i t t en to f i l e s : ’ ,meshname(s e l e c t o r , :)
403 RETURN
404 END SUBROUTINE p r i n t e r
� �

APPENDIX B. CREATING RESULTS FROM THE PROGRAM 53

B.2 Scripts to produce figures

Some of the MATLAB scripts to reproduce the graphs presented in the
report are given here. Additionally, gnuplot files are also presented for those
preferring free software. The following are just some example files as you will
need to change the input files according to what the user is interested in. The
first two will reproduce the Figures 5.1 to 5.3. To reproduce the Figures 5.9
and 5.10, just change the input files from gmeshx.lst to gzmeshx.lst, where
x is a number from 1 to 12. The next to scripts will reproduce the Figures 5.11
to 5.13.

� �
1 clear a l l ;
2 close a l l ;
3 clc ;
4

5 load gmesh1 . l s t ;
6 load gmesh2 . l s t ;
7 load gmesh3 . l s t ;
8 load gmesh4 . l s t ;
9 load gmesh5 . l s t ;

10 load gmesh6 . l s t ;
11 load gmesh7 . l s t ;
12 load gmesh8 . l s t ;
13 load gmesh9 . l s t ;
14 load gmesh10 . l s t ;
15 load gmesh11 . l s t ;
16 load gmesh12 . l s t ;
17 k=gmesh1 (: , 1) ;
18 n1=gmesh1 (: , 2) ;
19 n2=gmesh2 (: , 2) ;
20 n3=gmesh3 (: , 2) ;
21 n4=gmesh4 (: , 2) ;
22 n5=gmesh5 (: , 2) ;
23 n6=gmesh6 (: , 2) ;
24 n7=gmesh7 (: , 2) ;
25 n8=gmesh8 (: , 2) ;
26 n9=gmesh9 (: , 2) ;
27 n10=gmesh10 (: , 2) ;
28 n11=gmesh11 (: , 2) ;
29 n12=gmesh12 (: , 2) ;
30

31 % o− g i v e c i r c l e s , or− g i c e red c i r c l e s , s− g i v e squares
32 % r=red , g=green , b=blue , c=cyan ,m=mangenta , y=ye l low , k=black ,w=white
33 plot (k , n1 , ’ k− ’ , k , n2 , ’b− ’ , k , n3 , ’ g− ’ , k , n4 , ’ y ’ , k , n5 , ’ c− ’ , k , n6 , ’m− ’ , k , n7 , ’

b−. ’ , k , n8 , ’ g−. ’ , k , n9 , ’ y−. ’ , k , n10 , ’ r−. ’ , k , n11 , ’ k−. ’ , k , n12 , ’b− ’) ;
34 legend (’ 0␣ps ’ , ’ 1 . 5 ␣ps ’ , ’ 3 . 0 ␣ps ’ , ’ 4 . 5 ␣ps ’ , ’ 6 . 0 ␣ps ’ , ’ 7 . 5 ␣ps ’ , ’ 9 . 0 ␣ps ’ , ’

10 .5 ␣ps ’ , ’ 12 .0 ␣ps ’ , ’ 18 .0 ␣ps ’ , ’ 24 .0 ␣ps ’ , ’ 30 .0 ␣ps ’) ;
35

36 t i t l e (’ Ca r r i e r ␣ d i s t r i b u t i o n ␣ in ␣GaAs␣\Gamma−va l l ey , ␣500␣ e l e c t r o n s ␣ in ␣
ensemble ’) ;

37 xlabel (’Wavevector␣ | k | ␣ (1/m) ’) ;
38 ylabel (’Number␣ o f ␣ c a r r i e r s ’) ;
� �

54 B.2. SCRIPTS TO PRODUCE FIGURES

� �
1 set terminal ep s l a t ex c o l o r
2 # set au to s ca l e
3 set size 0 . 9 , 0 . 9
4 set output ’ k . eps ’
5 set ylabel "number o f c a r r i e r s "
6 set xlabel "k (1/nm) "
7 # set t i t l e ’ Ca r r i e r ␣ d i s t r i b u t i o n ␣ in ␣GaAs␣Γ␣ va l l e y ␣ a f t e r ␣

o p t i c a l ␣ s t imu l i , ␣2000␣ e l e c t r o n s ␣ in ␣ ensemble ’
8 plot "gmesh1 . l s t " t i t l e ’ 0␣ps ’ with l i n e s lw 4 ,\
9 "gmesh2 . l s t " t i t l e ’ 0 . 1 ␣ps ’ with l i n e s lw 4 ,\

10 "gmesh3 . l s t " t i t l e ’ 0 . 2 ␣ps ’ with l i n e s lw 4 ,\
11 "gmesh4 . l s t " t i t l e ’ 0 . 3 ␣ps ’ with l i n e s lw 4 ,\
12 "gmesh5 . l s t " t i t l e ’ 0 . 5 ␣ps ’ with l i n e s lw 4 ,\
13 "gmesh6 . l s t " t i t l e ’ 1 . 0 ␣ps ’ with l i n e s lw 4 ,\
14 "gmesh7 . l s t " t i t l e ’ 2 . 0 ␣ps ’ with l i n e s lw 4 ,\
15 "gmesh8 . l s t " t i t l e ’ 4 . 0 ␣ps ’ with l i n e s lw 4 ,\
16 "gmesh9 . l s t " t i t l e ’ 7 . 0 ␣ps ’ with l i n e s lw 4 ,\
17 "gmesh10 . l s t " t i t l e ’ 12 .0 ␣ps ’ with l i n e s lw 4 ,\
18 "gmesh11 . l s t " t i t l e ’ 16 .0 ␣ps ’ with l i n e s lw 4 ,\
19 "gmesh12 . l s t " t i t l e ’ 20 .0 ␣ps ’ with l i n e s lw 4
� �

� �
1 clear a l l ;
2 close a l l ;
3 clc ;
4

5 load gd i s t . l s t ;
6 load l d i s t . l s t ;
7 load xd i s t . l s t ;
8 n1=gd i s t (: , 1) ;
9 n2=l d i s t (: , 1) ;

10 n3=xd i s t (: , 1) ;
11

12 % o− g i v e c i r c l e s , or− g i c e red c i r c l e s , s− g i v e squares
13 % r=red , g=green , b=blue , c=cyan ,m=mangenta , y=ye l low , k=black ,w=white
14 plot (n1 , ’ k− ’) ;
15 hold a l l ;
16 plot (n2 , ’b− ’) ;
17 plot (n3 , ’ g− ’) ;
18 legend (’G’ , ’L ’ , ’X ’) ;
19

20 t i t l e (’Number␣ o f ␣ e l e c t r o n s ␣ in ␣ v a l l e y s ’) ;
21 xlabel (’Time␣ (10 ␣ f s) ’) ;
22 ylabel (’Number␣ o f ␣ c a r r i e r s ’) ;
� �

APPENDIX B. CREATING RESULTS FROM THE PROGRAM 55

� �
1 set terminal ep s l a t ex c o l o r
2 # set au to s ca l e
3 set size 0 . 9 , 0 . 9
4 set output ’ d i s t . eps ’
5 set ylabel "number o f c a r r i e r s "
6 set xlabel " time (ps) "
7 # set t i t l e ’ E l ec t ron ␣ d i s t r i b u t i o n ␣ in ␣GaAs , ␣5000␣ e l e c t r o n s ␣ in ␣ensemble

, ␣with␣25kV/cm␣ ex t e rna l ␣ f i e l d ’
8 plot "Gdist . l s t " t i t l e ’ Γ␣ va l l e y ’ with l i n e s lw 4 ,\
9 " Ld i s t . l s t " t i t l e ’L␣ va l l e y ’ with l i n e s lw 4 ,\

10 "Xdist . l s t " t i t l e ’X␣ va l l e y ’ with l i n e s lw 4
� �

In order to reproduce the Poisson plots presented in Section 5.3, the following
scripts may be used. If the user chooses the MATLAB script, the user must
manually remove the bottom line, containing text, from the output files
ex.lst and ez.lst. The last script will produce a movie in MATLAB, the
author has not made an equivalent for gnuplot in this particular case.

� �
1 clear a l l ;
2 close a l l ;
3 clc ;
4

5 xt=load (’ po i s64 /ex . txt ’) ;
6 zt=load (’ po i s64 / ez . txt ’) ;
7 x=xt (1 : 1000) ;
8 z=zt (1 : 1000) ;
9 s c a t t e r (x , z , ’ . ’) ;

10 xlim ([0 0 . 0 00002]) ;
11 ylim ([0 0 . 0 00002]) ;
� �

� �
1 set terminal ep s l a t ex c o l o r
2 # set au to s ca l e
3 set size 0 . 5 , 0 . 5
4 set xrange [0 : 2 e−6]
5 set yrange [0 : 2 e−6]
6 set ylabel "mu m"
7 set xlabel "mu m"
8 # set t i t l e ’ xz ’
9 set output ’ xz1 . eps ’

10 plot "< paste ex . l s t ez . l s t " every : : 0 : : 9 9 9 with po in t s
11 set output ’ xz2 . eps ’
12 plot "< paste ex . l s t ez . l s t " every : : 1 0 0 0 : : 1 9 9 9 with po in t s
13 set output ’ xz3 . eps ’
14 plot "< paste ex . l s t ez . l s t " every : : 2 0 0 0 : : 2 9 9 9 with po in t s
15 set output ’ xz4 . eps ’
16 plot "< paste ex . l s t ez . l s t " every : : 3 0 0 0 : : 3 9 9 9 with po in t s

56 B.2. SCRIPTS TO PRODUCE FIGURES

17 set output ’ xz5 . eps ’
18 plot "< paste ex . l s t ez . l s t " every : : 4 0 0 0 : : 4 9 9 9 with po in t s
19 set output ’ xz6 . eps ’
20 plot "< paste ex . l s t ez . l s t " every : : 5 0 0 0 : : 5 9 9 9 with po in t s
21 set output ’ xz7 . eps ’
22 plot "< paste ex . l s t ez . l s t " every : : 6 0 0 0 : : 6 9 9 9 with po in t s
23 set output ’ xz8 . eps ’
24 plot "< paste ex . l s t ez . l s t " every : : 7 0 0 0 : : 7 9 9 9 with po in t s
25 set output ’ xz9 . eps ’
26 plot "< paste ex . l s t ez . l s t " every : : 8 0 0 0 : : 8 9 9 9 with po in t s
27 set output ’ xz10 . eps ’
28 plot "< paste ex . l s t ez . l s t " every : : 9 0 0 0 : : 9 9 9 9 with po in t s
29 set output ’ xz11 . eps ’
30 plot "< paste ex . l s t ez . l s t " every : : 1 0 0 0 0 : : 1 0 9 9 9 with po in t s
31 set output ’ xz12 . eps ’
32 plot "< paste ex . l s t ez . l s t " every : : 1 1 0 0 0 : : 1 1 9 9 9 with po in t s
� �

� �
1 clear a l l ;
2 close a l l ;
3 clc ;
4 %number o f g r i dpo in t s −1
5 n=127;
6 %number o f t imes t eps
7 t=12; %12 for f . l s t , 11 f o r u . l s t and p . l s t
8 A=load (’ f . l s t ’) ; % change to proper f i l e , f . l s t , u . l s t or p . l s t
9 for j =1: t−1

10 Az=A(n∗n∗ j+1 : n∗n∗(j +1) ,1) ;
11 Az=reshape (Az , n , n) ;
12 surf (1 : n , 1 : n , Az) ; %mesh () , s u r f ()
13 %ax i s ([0 128 0 128 −1 1]) ; %−4.e19 4 . e19]) ;
14 view (0 , 90) ; %view (70 ,70) ; view (0 ,90) ;
15 F(j ∗3−2)=getframe ;
16 F(j ∗3−1)=getframe ;
17 F(j ∗3)=getframe ;
18 end
19 movie2avi (F , ’ po i s son . av i ’)
� �

APPENDIX B. CREATING RESULTS FROM THE PROGRAM 57

The script for producing the figure in Section 5.2 is only available for gnuplot.

� �
1 set terminal ep s l a t ex c o l o r
2 # set au to s ca l e
3 set size 0 . 9 , 0 . 9
4 set output ’ hot . eps ’
5 set ylabel "E/3kBT/2"
6 set xlabel " time (ps) "
7 # set t i t l e ’ E l ec t ron ␣ d i s t r i b u t i o n ␣ in ␣GaAs , ␣5000␣ e l e c t r o n s ␣ in ␣ensemble

, ␣with␣25kV/cm␣ ex t e rna l ␣ f i e l d ’
8 plot "cmt25/ energydistG . l s t " t i t l e ’ with , ␣n=19 ’ with l i n e s lw 2 ,\
9 "cmt24/ energydistG . l s t " t i t l e ’ with , ␣n=18 ’ with l i n e s lw 2 ,\

10 "cmtno24/ energydistG . l s t " t i t l e ’ without , ␣n=18 ’ with l i n e s lw 2 ,\
11 "cmtmax/ energydistG . l s t " t i t l e ’ e qu i l i b r i um ’ with l i n e s lw 2
� �

58 B.2. SCRIPTS TO PRODUCE FIGURES

References

[1] Jasprit Singh. Electronic and Optoelectronic Properties of Semiconduc-
tor Structures. Cambridge University Press, first paperback edition,
2007.

[2] M.A. Kinch, J.D. Beck, C.-F. Wan, and J. Campbell. HgCdTe Electron
Avalanche Photodiodes. Journal of Electronic Materials, 33(6):630–639,
2004.

[3] Ole Christian Norum. A Review of Poisson Solving Techniques for
Monte Carlo Simulation of Carrier Dynamics in Semiconductors. Nor-
wegian University of Science and Technology, December 2008.

[4] Øyvind Olsen. Modelling of Hole Scattering in a Monte Carlo Trans-
port Kernel for Semiconductors. Norwegian University of Science and
Technology, December 2008.

[5] Øyvind Olsen. Construction of a Transport Kernel for an Ensemble
Monte Carlo Simulator. Master’s thesis, June 2009.

[6] Jagdeep Shah. Ultrafast Spectroscopy of Semiconductors and Semicon-
ductor Devices. Springer, second enlarged edition, 1998.

[7] P. Lugli, C. Jacoboni, and L. Reggiani. Monte Carlo algorithm for
hot phonons in polar semiconductors. Applied Physics Letters, 50(18):
1251–1253, 1987.

[8] Eric Pop, Sanjiv Sinha, and Kenneth E. Goodson. Heat Generation and
Transport in Nanometer-Scale Transistors. Proceedings of the IEEE, 94
(8):1587–1601, 2006.

[9] Sandip Mazumder and Arunava Majumdar. Monte Carlo Study of
Phonon Transport in Solid Thin Films Including Dispersion and Po-
larization. Journal of Heat Transfer, 123:749–759, 2001.

[10] M. Rieger, P. Kocevar, P. Lugli, P. Bordone, L. Reggiani, and S.M.
Goodnick. Monte Carlo studies of nonequilibrium phonon effects in

59

60 REFERENCES

polar semiconductors and quantum wells. II. Non-Ohmic transport in
n-type gallium arsenide. Physical review B, 39(11):7866–7875, 1988.

[11] A.K. Storebø, T. Brudevoll, O. Olsen, O.C. Norum, and M. Breivik.
Energy relaxation in IR laser excited Hg1−xCdxTe. Accepted for pre-
sentation in EDISON 16, 2009.

[12] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in Fortran 77: The Art of Sci-
entific Computing, volume 1 of Fortran Numerical Recipes. Cambridge
University Press, second edition, 2006.

[13] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in Fortran 90: The Art of Paral-
lel Scientific Computing, volume 2 of Fortran Numerical Recipes. Cam-
bridge University Press, second edition, 1999.

[14] Einar Halvorsen. Numerical calculation of valence band structure and
hole scattering rates in GaAs, February 1991.

[15] S. Krishnamurthy, M.A. Berding, Z.G. Yu, C.H. Swartz, T.H. Myers,
D.D. Edwall, and R. DeWames. Model for Minority Carrier Lifetimes in
Doped HgCdTe. Journal of Electronic Materials, 34(6):873–879, 2005.

[16] Geir Uri Jensen. Monte Carlo simulation of III-V semiconductor de-
vices. PhD thesis, The Norwegian Institute of Technology, June 1989.

[17] R.W. Hockney. A fast direct solution of Poisson’s equation using Fourier
analysis. Journal of the Association of Computing Machinery, 12:95–
113, 1965.

[18] R.W. Hockney and J.W. Eastwood. Computer Simulation Using Parti-
cles. Adam Hilger, special student edition, 1988.

[19] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simula-
tions. Journal of Computational Physics, 73(2):325–348, 1987.

[20] Rick Beatson and Leslie Greengard. A short course on fast multi-
pole methods. URL http://www.math.nyu.edu/faculty/greengar/
shortcourse_fmm.pdf.

[21] L. Greengard and V. Rokhlin. A new version of the Fast Multipole
Method for the Laplace equation in three dimensions. Acta Numerica,
6:229–269, 1997.

[22] Erwin Kreyszig. Advanced Engineering Mathematics. Wiley, 8th edition,
1999.

http://www.math.nyu.edu/faculty/greengar/shortcourse_fmm.pdf
http://www.math.nyu.edu/faculty/greengar/shortcourse_fmm.pdf

REFERENCES 61

[23] Takayuki Fukui, Tadayoshi Uechi, and Nobuyuki Sano. Three-
dimensional Monte Carlo Simulation of Electron Transport in Si In-
cluding Full Coulomb Interaction. Applied Physics Express, 1, 2008.

[24] Mona Zebarjadi, Ceyhun Bulutay, Keivan Esfarjani, and Ali Shakouri.
Monte Carlo Simulation of Electron Transport in Degenerate Semicon-
ductors. Applied Physics Letters, 90, 2006.

[25] C.H. Grein, M.E. Flatté, and Yong Chang. Modeling of Recombination
in HgCdTe. Journal of Electronic Materials, 2008.

[26] Oliver Bonno and Jean-Luc Thobel. Monte Carlo modeling of carrier-
carrier scattering in semiconductors with nonparabolic bands. Journal
of Applied Physics, 104, 2008.

[27] C. Amsler et. al. (Particle Data Group). The Review of Particle Physics.
Physics Letters, B667(1), 2008.

[28] Geir U. Jensen, Bjørnar Lund, Tor A. Fjeldly, and Michael Shur. Monte
Carlo simulation of semiconductor devices. Computer Physics Commu-
nications, 67:1–61, 1991.

[29] Peter Capper. Narrow Gap Cadmium-based Compounds. Electronic
Materials Information Service Darareviews Series. INSPEC, 1994.

[30] Karl Hess. Advanced theory of semiconductor devices. Prentice-Hall
International, 1988.

[31] D.S. Kim. Monte Carlo Modeling of Carrier Dynamics in Photocon-
ductive Terahertz Sources. PhD thesis, Georgia Institute of Technology,
August 2006.

[32] Charles M. Wolfe, Nick Holonyak, and Gregory E. Stillman. Physical
properties of semiconductors. Prentic-Hall International, 1989.

[33] B. Lund. Monte Carlo Simulation of Charge Transport in Semiconduc-
tors and Semiconductor Devices. PhD thesis, The Norwegian Institute
of Technology, March 1992.

[34] Ben G. Streetman and Sanjay Kumar Banerjee. Solid state electronic
devices. Pearson Prentice Hall, 6th edition, 2006.

[35] Boris Gelmont, Bjørnar Lund, Ki-Sang Kim, Geir U. Jensen, Michael
Shur, and Tor A. Fjeldly. Monte Carlo simulation of electron transport
in mercury cadmium telluride. Journal of Applied Physics, 71(10):4977–
4982, 1992.

62 REFERENCES

[36] T. Brudevoll. Monte Carlo Algorithms for Simulation of Hole Transport
in Homogeneous Semiconductors. PhD thesis, The Norwegian Institute
of Technology, May 1991.

[37] J.P. Laurenti, J. Camassel, A. Bouhemadou, B. Toulouse, R. Legros,
and A. Lusson. Temperature dependence of the fundamental absorption
edge of mercury cadmium telluride. Journal of Applied Physics, 67(10):
6454–6460, 1990.

[38] Peter Lawætz. The Influence of Holes on the Phonon Spectrum of Semi-
conductors. PhD thesis, The Technical University of Denmark, January
1978.

	Introduction
	The Program
	Program Structure
	Compilation and Parallelization
	Executing the Program
	Post-Processing

	Hot Phonons
	The Hot Phonon Effect

	The Poisson Equation
	Poisson solvers
	Discretization
	Solving

	Simulation Results
	General Results
	Optical distribution
	Gaussian distribution with an applied field
	Carrier distribution

	Hot Phonon Results
	Poisson Results

	Conclusion and Further Work
	Materials
	Material Parameters
	Band structures

	Creating Results from the Program
	Code to produce script input
	Scripts to produce figures

