1 Is basal metabolic rate associated with recruit production and survival in

2 free-living house sparrows?

- 3
- 4 Bernt Rønning^{* 1}, Juli Broggi², Claus Bech³, Børge Moe⁴, Thor Harald Ringsby¹, Henrik

5 Pärn¹, Ingerid J. Hagen¹, Bernt-Erik Sæther¹ and Henrik Jensen¹

- ⁷ ¹Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science
- 8 and Technology, NO-7491 Trondheim, Norway
- 9 ² Estación Biológica Doñana, CSIC Avda. Americo Vespucio s/n, E-41092 Sevilla, Spain
- ³Department of Biology, Norwegian University of Science and Technology, NO-7491
- 11 Trondheim, Norway
- ⁴Norwegian Institute for Nature Research, P.O. Box 5685 Sluppen, NO-7485 Trondheim,
- 13 Norway
- 14 * Correspondence author. E-mail: bernt.ronning@ntnu.no
- 15 Running headline: Fitness effects of BMR

16 Summary

17 1. Life history theory predicts that available energy is limited and needs to be allocated among different processes such as growth, reproduction and self-maintenance. Basal 18 metabolic rate (BMR), a common measure of an animal's maintenance cost, is therefore 19 20 believed to be a trait of ecological and evolutionary significance. However, although BMR is 21 often assumed to be correlated with fitness, its association with individual variation in fitness 22 in free-living populations is virtually unknown. 23 2. We examined the relationship between BMR in late winter prior to the breeding season and 24 recruit production (number of offspring recorded the subsequent year), as well as adult 25 survival, in two populations of house sparrow (Passer domesticus) on the islands Leka and 26 Vega in northern Norway. 27 3. Number of recruits tended to be negatively related to BMR. However, analysing the data 28 for each sex within the two populations revealed that the negative effect of BMR on recruit 29 production was significant only for females on one of the islands. 30 4. Survival probability was associated with BMR, but the relationship differed both between 31 sexes and populations. In the Leka population, we found evidence for stabilizing selection in 32 the females and disruptive selection in the males. In contrast, there was no effect of BMR on survival in the Vega population. 33 34 5. Body mass influenced adult survival, but not recruit production. Furthermore, the 35 relationship between BMR and fitness in females remained significant after controlling for 36 body mass. Thus, the selection on BMR in females was not driven by a BMR-body mass

37 correlation.

6. Basal metabolic rate was significantly related to fitness in both populations. However, the
results in the present study show spatial variation as well as sex specific differences in the
influence of BMR on fitness in house sparrows.

41

42 Introduction

43 Basal metabolic rate (BMR) is the lowest level of metabolic output of an endothermic 44 organism in a normothermic state and represents an animal's maintenance cost (McNab 45 2002). This maintenance cost constitutes between 25 and 40 % of birds total energy 46 expenditure in the field (Bryant 1997) and is therefore believed to be of ecological relevance. 47 Basal metabolic rate shows great variation both between and within species, and the sources 48 of variation have been extensively studied (Burton et al. 2011; Konarzewski & Ksiażek 2013; 49 White & Kearney 2013). Variation in BMR between species appears to be linked to basic 50 life history characteristics. For example, tropical birds located at the slow end of the slow-fast 51 continuum of life history variation (Sæther & Bakke 2000) are characterized by a low BMR 52 compared to birds living in temperate environments belonging to the opposite end of the life-53 history continuum (Wiersma et al. 2007; Williams et al. 2010). At the intraspecific level 54 common garden studies on passerine birds have shown differences in BMR between 55 populations originating from different climates (e.g. Wikelski et al. 2003; Broggi et al. 2005; Maggini & Bairlein 2013), indicating an adaptive variation in BMR (Furness, 2003). 56 57 Furthermore, avian (Rønning et al. 2007; Nilsson, Åkesson & Nilsson 2009; Tieleman et al. 58 2009; Bushuev, Kerimov & Ivankina 2011; Mathot et al. 2013) as well as mammalian 59 (Konarzewski, Książek & Łapo 2005; Sadowska et al. 2005; Wone et al. 2009; Boratyński et 60 al. 2013) studies provide growing evidence for significant additive genetic variance in this trait. These finding are further supported by the fact that BMR responds to artificial selection 61

62 (e.g. Książek, Konarzewski & Łapo 2004). However, in spite of being a trait that has been
63 found to exhibit additive genetic variation and been shown to respond to selection, the link
64 between BMR and fitness is still poorly understood.

65 The sign of the relationship between BMR and individual fitness, if any, is not obvious 66 and arguments have been put forward for either a positive or a negative relationship. 67 According to life history theory, available energy is limited and a fixed resource budget needs 68 to be allocated between various biological processes such as growth, reproduction and self-69 maintenance (Gadgil & Bossert 1970; Roff 1992; Stearns 1992). Consequently, individuals 70 with low BMR should perform better because their lower self-maintenance cost enables them 71 to allocate more energy towards fitness-enhancing processes like growth and reproduction. 72 Hence, a negative relationship between BMR and reproduction should exist ('compensation' 73 hypothesis; Nilsson 2002). On the other hand, it has been argued that the ability to support a 74 high level of activity requires morphology with a high maintenance cost, i.e. high BMR (e.g. 75 Bennett & Ruben 1979; Hayes & Garland 1995). A high BMR is often associated with large 76 internal organs, including the alimentary tract (Lindström & Kvist 1995; Chappell, Bech & 77 Buttemer 1999). Individuals with high BMR may therefore have the capacity to eat more 78 food and convert it into usable energy at a higher rate. Basal metabolic rate has in turn been 79 found to correlate with total energy expenditure in free-living birds (Daan, Masman & Groenewold 1990), but see Ricklefs, Konarzewski & Daan (1996). If BMR is functionally 80 81 linked to working capacity, a positive relationship between BMR and reproduction should be 82 expected ('increased intake' hypothesis; Nilsson 2002).

Although studies on the relationship between energy metabolism and fitness are few (Burton *et al.* 2011), some evidence is now accumulating that BMR is related to differences in reproductive success of birds. For instance, in male Leach's storm-petrels (*Oceanodroma leucorhoa*) individuals with low BMR during the incubation period produced more offspring

 raised more offspring. However, in great tits (<i>Parus major</i>) Bouwhuis <i>et al.</i> (2014) found no evidence for directional selection on BMR when using the number of offspring produced during the breeding season as a measure of fitness. Instead males with an average BMR produced more offspring. Studies on laboratory rodents suggest that reproductive performance is unrelated to BMR (Derting & McClure 1989; Hayes, Garland & Dohm 1992; Johnson, Thomson & Speakman 2001; Johnston <i>et al.</i> 2007). To our knowledge only one study has investigated the association between reproduction success and BMR in a free-living mammal population, where Boratyński & Koteja (2010) found that BMR was positively associated with overall reproductive success in the bank vole (<i>Myodes glareolus</i>). In the only study investigating the association between BMR and survival in a free living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agressis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	87	by starting breeding earlier in the season (Blackmer et al. 2005). Conversely, Chastel,
 raised more offspring. However, in great tits (<i>Parus major</i>) Bouwhuis <i>et al.</i> (2014) found no evidence for directional selection on BMR when using the number of offspring produced during the breeding season as a measure of fitness. Instead males with an average BMR produced more offspring. Studies on laboratory rodents suggest that reproductive performance is unrelated to BMR (Derting & McClure 1989; Hayes, Garland & Dohm 1992; Johnson, Thomson & Speakman 2001; Johnston <i>et al.</i> 2007). To our knowledge only one study has investigated the association between reproduction success and BMR in a free-living mammal population, where Boratyński & Koteja (2010) found that BMR was positively associated with overall reproductive success in the bank vole (<i>Myodes glareolus</i>). In the only study investigating the association between BMR and survival in a free living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agressis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	88	Lacroix & Kersten (2003) found that house sparrows (Passer domesticus) with high pre-
 evidence for directional selection on BMR when using the number of offspring produced during the breeding season as a measure of fitness. Instead males with an average BMR produced more offspring. Studies on laboratory rodents suggest that reproductive performance is unrelated to BMR (Derting & McClure 1989; Hayes, Garland & Dohm 1992; Johnson, Thomson & Speakman 2001; Johnston <i>et al.</i> 2007). To our knowledge only one study has investigated the association between reproduction success and BMR in a free-living mammal population, where Boratyński & Koteja (2010) found that BMR was positively associated with overall reproductive success in the bank vole (<i>Myodes glareolus</i>). In the only study investigating the association between BMR and survival in a free living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	89	breeding plasma triiodothyronine levels, a hormone related to BMR in the studied population,
92 during the breeding season as a measure of fitness. Instead males with an average BMR 93 produced more offspring. Studies on laboratory rodents suggest that reproductive 94 performance is unrelated to BMR (Derting & McClure 1989; Hayes, Garland & Dohm 1992; 95 Johnson, Thomson & Speakman 2001; Johnston <i>et al.</i> 2007). To our knowledge only one 96 study has investigated the association between reproduction success and BMR in a free-living 97 mammal population, where Boratyński & Koteja (2010) found that BMR was positively 98 associated with overall reproductive success in the bank vole (<i>Myodes glareolus</i>). 99 In the only study investigating the association between BMR and survival in a free 100 living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR 101 and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for 102 negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North 103 American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction 104 has been found in short tailed voles (<i>Microtus agressis</i> ; Jackson, Trayhurn & Speakman 105 2001). Furthermore, BMR was found to affect over-winter survival in two geographically 106 seasons (Boratyński & Koteja 2009;	90	raised more offspring. However, in great tits (Parus major) Bouwhuis et al. (2014) found no
 produced more offspring. Studies on laboratory rodents suggest that reproductive performance is unrelated to BMR (Derting & McClure 1989; Hayes, Garland & Dohm 1992; Johnson, Thomson & Speakman 2001; Johnston <i>et al.</i> 2007). To our knowledge only one study has investigated the association between reproduction success and BMR in a free-living mammal population, where Boratyński & Koteja (2010) found that BMR was positively associated with overall reproductive success in the bank vole (<i>Myodes glareolus</i>). In the only study investigating the association between BMR and survival in a free living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	91	evidence for directional selection on BMR when using the number of offspring produced
 performance is unrelated to BMR (Derting & McClure 1989; Hayes, Garland & Dohm 1992; Johnson, Thomson & Speakman 2001; Johnston <i>et al.</i> 2007). To our knowledge only one study has investigated the association between reproduction success and BMR in a free-living mammal population, where Boratyński & Koteja (2010) found that BMR was positively associated with overall reproductive success in the bank vole (<i>Myodes glareolus</i>). In the only study investigating the association between BMR and survival in a free living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	92	during the breeding season as a measure of fitness. Instead males with an average BMR
 Johnson, Thomson & Speakman 2001; Johnston <i>et al.</i> 2007). To our knowledge only one study has investigated the association between reproduction success and BMR in a free-living mammal population, where Boratyński & Koteja (2010) found that BMR was positively associated with overall reproductive success in the bank vole (<i>Myodes glareolus</i>). In the only study investigating the association between BMR and survival in a free living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	93	produced more offspring. Studies on laboratory rodents suggest that reproductive
 study has investigated the association between reproduction success and BMR in a free-living mammal population, where Boratyński & Koteja (2010) found that BMR was positively associated with overall reproductive success in the bank vole (<i>Myodes glareolus</i>). In the only study investigating the association between BMR and survival in a free living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	94	performance is unrelated to BMR (Derting & McClure 1989; Hayes, Garland & Dohm 1992;
 mammal population, where Boratyński & Koteja (2010) found that BMR was positively associated with overall reproductive success in the bank vole (<i>Myodes glareolus</i>). In the only study investigating the association between BMR and survival in a free living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	95	Johnson, Thomson & Speakman 2001; Johnston et al. 2007). To our knowledge only one
 associated with overall reproductive success in the bank vole (<i>Myodes glareolus</i>). In the only study investigating the association between BMR and survival in a free living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	96	study has investigated the association between reproduction success and BMR in a free-living
In the only study investigating the association between BMR and survival in a free living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i> ; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011;	97	mammal population, where Boratyński & Koteja (2010) found that BMR was positively
 living bird population; Bouwhuis <i>et al.</i> (2014) found no relationship between winter BMR and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	98	associated with overall reproductive success in the bank vole (Myodes glareolus).
 and survival in great tits. However, in mammals, Larivée <i>et al.</i> (2010) found evidence for negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	99	In the only study investigating the association between BMR and survival in a free
 negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	100	living bird population; Bouwhuis et al. (2014) found no relationship between winter BMR
 American red squirrel (<i>Tamiasciurus hudsonicus</i>), whereas selection in the opposite direction has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	101	and survival in great tits. However, in mammals, Larivée et al. (2010) found evidence for
 has been found in short tailed voles (<i>Microtus agrestis</i>; Jackson, Trayhurn & Speakman 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	102	negative selection on resting metabolic rate, a trait closely related to BMR, in juvenile North
 2001). Furthermore, BMR was found to affect over-winter survival in two geographically separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	103	American red squirrel (Tamiasciurus hudsonicus), whereas selection in the opposite direction
 separated bank vole populations, but the selection on BMR differed both between sexes and seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	104	has been found in short tailed voles (Microtus agrestis; Jackson, Trayhurn & Speakman
 seasons (Boratyński & Koteja 2009; Boratyński <i>et al.</i> 2010). Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	105	2001). Furthermore, BMR was found to affect over-winter survival in two geographically
Results from studies investigating the relationship between variation in BMR and life history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011;	106	separated bank vole populations, but the selection on BMR differed both between sexes and
 history and behavioural parameters important for individual fitness provide inconclusive evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011; 	107	seasons (Boratyński & Koteja 2009; Boratyński et al. 2010).
evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton <i>et al.</i> 2011;	108	Results from studies investigating the relationship between variation in BMR and life
	109	history and behavioural parameters important for individual fitness provide inconclusive
111 Šíchová et al. 2014) Furthermore, much of our knowledge is based on studies conducted on	110	evidence for BMR as an important fitness-related trait (Biro et al. 2010; Burton et al. 2011;
Sienova et al. 2017). I dimerinore, inden of our knowledge is based on studies conducted on	111	Šíchová et al. 2014). Furthermore, much of our knowledge is based on studies conducted on

112 animals in captivity which may not be representative of free-living animals, which most 113 likely are facing different trade-offs between reproduction and other energy consuming tasks 114 like foraging, thermoregulation and predator avoidance. Hence, within the field of 115 evolutionary physiology there is great need for empirical studies on fitness consequences of 116 individual variation in BMR in free-living populations. In the present study we therefore 117 examined the relationship between BMR and important components of fitness in free-living 118 populations of a passerine bird. We measured BMR in adult house sparrows in late winter 119 prior to the breeding season. As a measure of fitness, we used number of recruits recorded the 120 subsequent year and adult survival to the next winter. First, we investigated whether natural 121 selection acted on BMR with respect to recruit production, by testing whether the relationship 122 was directional (as predicted by the 'compensation' and 'increased intake' hypothesis), 123 versus nonlinear (indicating stabilizing or disruptive selection). We then investigated whether 124 natural selection acted on BMR with respect to adult survival from one season to the next. 125 Whole body BMR, i.e. not controlled for the effect of body mass, is used in an ecological 126 context as a predictor of the cost of living (e.g. Tieleman et al. 2009), and is consequently a 127 potential target of selection. However, because body mass may influence both BMR and 128 fitness, we also fitted models which included body mass, in order to examine the residual 129 effect of BMR on fitness.

130

131 Materials and methods

132

133 STUDY SPECIES AND STUDY AREA

134

135 The study was conducted in 2007 and 2008 using two house sparrow (*Passer domesticus*,

Linnaeus, 1758, Fig. 1) populations living on the islands Leka (65.1 °N 11.6 °E) and Vega

137 (65.7 °N 11.9 °E) off the coast of northern Norway. These populations are included in a long 138 term study and nearly all birds (>90%) present on the two islands have been captured and 139 banded annually during winters 2002-2014. The house sparrows on these islands live in close 140 proximity to human settlements, and usually nest and seek shelter inside barns and cowsheds. 141 Birds were captured by mist-netting inside or close to farm buildings. Each bird was banded 142 with a metal ring, and a unique combination of coloured plastic rings to allow identification 143 with telescopes. To allow easier estimation of the overall proportion of birds captured during 144 the study, birds were continuously transferred to an empty barn (from now on referred to as 145 aviary) where they were provided water and food (bread, grain, grain feed and sunflower 146 seeds) ad libitum. After the experiment period, birds were released at the same location as 147 they were captured.

148

149 MORPHOLOGICAL AND PHYSIOLOGICAL MEASUREMENTS

150

Body mass was measured with a Pesola spring balance (to the nearest 0.1 g.). A small blood 151 152 sample (~25 μ L) was collected from the brachial vein and stored on 96% ethanol for later 153 DNA genotyping. In 2007 measurements of BMR were obtained for 105 individuals on Leka 154 during the period 13-27.02 and for 89 individuals on Vega during the period 2-15.03. 155 Basal metabolic rate was measured as oxygen consumption rates using an open flow 156 system. Dried outside air was pumped (500 mL min⁻¹) through four metabolic chambers (1.1 157 L) located inside a climate cabinet at ca. 30.5 °C, i.e. within the thermoneutral zone for the 158 house sparrow (Hudson & Kimzey 1966). Air flow into the chambers was adjusted using 159 calibrated Bronkhorst High-Tech mass flow meters (Ruurlo, The Netherlands), and a 160 Servomex type 4100 two-channel oxygen analyser (Crowborough, England) measured the oxygen concentration in dried effluent air. An automatic valve-system switched between two 161

and two chambers (every 30 min), and the voltage output from the oxygen analyser, the flow meters and thermocouples inside the metabolic chambers were stored every 30 s. on a Grant Squirrel, type 1200 data logger (Cambridge, England). The baseline gas level (without birds in the chambers) was recorded for one hour before and after each trial to enable correction for linear analyser drift during the measurement period. The rate of oxygen consumption (VO₂) was calculated following Withers (2001), using a respiratory quotient of 0.71. The lowest 10 min running average VO₂ value was used to represent BMR.

To reduce time spent in aviaries, birds were measured in two sessions per day, either in the evening between 16:00 and 22:30 local time, or during the night from 23:00 to 08:00. Note that in northern Norway day length is short in February and March. The average daily light cycle during the measurement period was 10L:14D (light: 07:30 - 17:30 local time). Consequently, the birds were measured during their normal resting phase, irrespectively of whether they were measured late in the evening or during the night.

175 Birds were captured at different locations around the islands between 10:00 and 15:00, 176 and from these birds we selected eight individuals to be measured the same day, while the 177 rest of the birds were transferred to the aviary to be recaptured and measured another day. 178 Thus, some birds were measured before they were put in the aviary, while other birds were 179 measured after spending some days inside the aviary (mean 6 days; range 1-14 days). The 180 birds went through the same experimental protocol irrespective of whether they were 181 processed the same day as they were captured or if they were recaptured (around 15:00) 182 inside the aviary. Four birds were placed directly in the metabolic chambers for metabolic 183 measurements, whereas the remaining four birds were placed in individual cages until the 184 start of their measurements at 23:00. To ensure that the birds held in cages did not starve, but 185 at the same time reached a post absorptive state during measurement, they were supplied with 186 a small piece of moist bread while in the cage. Immediately after the birds were taken out of

the metabolic chamber they were released into the aviary in a section separated from birdsnot yet measured.

189	Both measurement duration and circadian rhythm may affect physiological variables
190	(Page, Cooper & Withers 2011). However, neither number of days inside the aviary before
191	measurement nor measurement period (evening or night) affected oxygen consumption
192	significantly (Table S1 in Supporting Information). Thus, the metabolic measurements are
193	referred to as BMR regardless of being obtained in the evening or during the night.
194	Descriptive statistics of BMR and body mass are given in Table 1.
195	
196	ESTIMATION OF FITNESS COMPONENTS
197	
198	None of the birds measured for BMR in 2007 and assumed to be dead in 2008 were observed
199	in a subsequent year (until 2014). Thus, we are confident that a bird not observed during field
200	work in 2008 could be considered dead and we did not account for recapture rate in the
201	analyses (Lebreton et al. 1992). Furthermore, due to the high recapture rate in the study
202	system, we assumed that any unmarked bird captured in the winter was born the previous
203	year. These individuals were considered as being recruits to the breeding population and were
204	included as recruiting offspring in the calculations of reproductive success of putative parents
205	(i.e. previously marked birds). No data was collected during the breeding season. Thus, data
206	on e.g. number of eggs and fledglings is not available. A detailed description of the genetic
207	analysis and determination of parentage is provided in Appendix S1 in Supporting
208	Information. In short, birds were genotyped using 14 highly polymorphic microsatellite
209	markers. Microsatellite markers were amplified using polymerase chain reaction (PCR) and
210	their alleles separated by electrophoresis in an automated 16 capillary ABI Prism 3130xl
211	Genetic Analyser (Applied Biosystems, USA). Individual alleles at each microsatellite locus

212 were scored using the software GENEMAPPER 4.0 (Applied Biosystems, USA). The

213 parentage analysis software CERVUS version 3.0 (Kalinowski, Taper & Marshall 2007) was

used to determine the genetic parentage. All adult birds present on the islands in

February/March 2007 were classified as potential parents of any unmarked birds captured

during the 2008 field season assumed to be recruits from the previous breeding season. On

Leka, we identified the genetic father for 66.7% and the genetic mother for 69.2% of the

recruits. On Vega 62.3% and 81.2% of the recruits was assigned a genetic father and mother,
respectively.

220

221 STATISTICS

222

223 Variation in BMR was analysed in a generalized linear model (GLM) including body mass, 224 age, number of days in aviary, island (population), sex and measurement period (evening or 225 night) as explanatory variables. To test for differences between sexes and populations in the 226 effect of the other predictor variables, two- and three-way interactions between sex, island 227 and the other variables were included. The effect of BMR on fitness was examined in two 228 stages. First we tested for differences in selection between the populations and sexes by 229 investigating the effect of BMR on fitness (number of recruits and survival) in the pooled 230 data by including the linear and quadratic effects of BMR and the two- and three-way 231 interactions between sex, island and BMR. Secondly, linear and quadratic effects of BMR on 232 fitness were analysed separately for each sex in the two populations. Furthermore, as 233 variation in BMR was explained by body mass and age, we also examined the partial effect 234 of BMR on fitness by including body mass (measured shortly after the birds were captured) 235 and age in the models. To remove the correlation between linear and quadratic terms, values 236 of BMR and body mass were mean-centred within all birds in the pooled data analysis and

237	within the sexes in each population in the separate analysis. The models investigating the
238	effect on recruit production for the pooled data and for the males from both Leka and Vega
239	showed evidence of over-dispersion ('dispersiontest', R package AER, Kleiber & Zeileis
240	2008). Consequently, we applied negative binomial generalized linear models with a log link
241	using the function 'glm.nb' (including a parameter to model over-dispersion) in the R
242	package MASS (Venables & Ripley 2002). In females, number of recruits were analysed
243	using GLMs with a Poisson error distribution and a log link. The association between BMR
244	and survival was tested in a logistic regression, using a binomial GLM with a logit link
245	function. Survival was coded as a binary variable; alive the subsequent year (1) or not (0).
246	Note that standardized selection differentials and gradients, calculated following Lande &
247	Arnold (1983), are given in Supporting Information to allow for comparison of strength of
248	selection with other studies (Table S4). All statistical analyses were performed in R ver.
249	2.15.3 for Windows (R Development Core Team 2013).
250	
250 251	Results
	Results
251	Results RECRUIT PRODUCTION
251 252	
251 252 253	
251 252 253 254	RECRUIT PRODUCTION
251 252 253 254 255	RECRUIT PRODUCTION In the analysis including all individuals, BMR tended to be negatively associated with recruit
251 252 253 254 255 256	RECRUIT PRODUCTION In the analysis including all individuals, BMR tended to be negatively associated with recruit production (β = -0.022, χ_1^2 = 3.777, <i>P</i> = 0.052, Table S2 in Supporting Information).
251 252 253 254 255 256 257	RECRUIT PRODUCTION In the analysis including all individuals, BMR tended to be negatively associated with recruit production ($\beta = -0.022$, $\chi_1^2 = 3.777$, $P = 0.052$, Table S2 in Supporting Information). However, when analysing the data separately for each sex on each island, the relationship
251 252 253 254 255 256 257 258	RECRUIT PRODUCTION In the analysis including all individuals, BMR tended to be negatively associated with recruit production ($\beta = -0.022$, $\chi_1^2 = 3.777$, $P = 0.052$, Table S2 in Supporting Information). However, when analysing the data separately for each sex on each island, the relationship between BMR and recruit production was only apparent in females. For females in the Vega

262	there was no significant linear relationship between BMR and recruit production, but females
263	with an intermediate BMR tended to produce more recruits as indicated by the quadratic term
264	(Fig. 2). The second-order effect was reduced when body mass was included in the model,
265	indicating that the apparent selection on BMR was partly mediated through indirect selection
266	on body mass (Table 2). In males, BMR did not influence number of recruits in any of the
267	two populations studied (Fig. 2, Table 2). Although the effect of BMR on recruit production
268	differed slightly between the sexes and populations (Fig. 2), the slopes did not differ
269	significantly (Table S2). Furthermore, neither body mass nor age affected recruit production
270	significantly in any sex in the populations studied (Table 2)
271	
272	SURVIVAL
273	
274	The linear and quadratic effect of BMR on survival differed between the sexes, as well as
275	between the populations (Table S2). We found no evidence for an effect of BMR on survival
276	on Vega, in neither sex. This was true both without (Fig. 2) and with body mass in the models
277	(Table 2) In the Leke nonvelation, there was no significant linear relationship between

277 (Table 2). In the Leka population, there was no significant linear relationship between

278 survival and BMR. Instead, for the females we found a negative quadratic effect of BMR on

- survival (Fig. 2). Furthermore, after controlling for body mass, the quadratic effect of BMR
- on survival in the females was still highly significant (Table 2). For the males on Leka
- survival tended to be higher in individuals with high and low BMR (Fig. 2). When

controlling for body mass, the positive quadratic relationship between survival and BMR was

significant (Table 2), indicating disruptive selection on BMR which was independent of bodymass.

In contrast to recruit production, survival was related to body mass. In the Vega
population, there was a linear effect of body mass on survival, but the direction of selection

differed between the sexes. In females the probability of survival decreased with increasing
body mass, whereas in males survival probability increased with body mass (Table2). In
males on Vega survival also increased with age (Table 2). For females in the Leka
population, survival probability increased with increasing body mass, whereas for males we
found evidence for stabilizing selection on body mass based on survival from 2007 to 2008
(Table 2).

293

294 **Discussion**

295

296 This study has demonstrated different patterns in the influence of BMR on both survival and 297 fecundity in two populations of house sparrows. In the population on Vega, BMR was 298 negatively related to recruit production in the females, and this relationship was present also 299 after controlling for body mass. Hence, the effect of BMR on recruit production was not 300 driven by indirect phenotypic influence of body mass. This implies that females with low 301 maintenance cost independent of body mass invested more energy into reproduction, 302 compared to high BMR females. This finding is in contrast with a previous study of house 303 sparrows further south (46.1 °N) where individuals with high BMR prior to breeding season 304 produced more offspring, mainly as a consequence of starting breeding earlier in the season 305 and having more clutches (Chastel, Lacroix & Kersten 2003). Unfortunately, we cannot 306 determine whether individual differences in the number of recruits produced are due to 307 variation in the number of fledglings produced, differences in survival from fledging to 308 recruitment, or a combination of these factors. However, number of fledglings has previously 309 been shown to be a good predictor for number of recruits in passerine birds (e.g. Grant & 310 Grant 2000), making differences in number of fledglings produced the most plausible 311 explanation. In the Leka population there was no directional association between BMR and

production of recruits. Instead, females with an average BMR tended to produce more
recruits. Stabilizing selection on mass-corrected BMR based on number of hatchlings
produced has previously been found in free-living passerines (Bouwhuis *et al.* 2014).
However, when controlling for body mass in the present study the tendency of a stabilizing
selection on BMR was weakened, which may suggest that the influence of BMR was partly
driven by the correlation with body mass.

318 Basal metabolic rate is known to be a flexible trait, and to test the 'compensation' and 319 'increased intake' hypothesis metabolic measurements should ideally been obtained during 320 the energetically challenging breeding period. However, we measured BMR in February and 321 March, approximately 1.5-2 months before the start of the breeding season in these 322 populations (Kvalnes et al. 2013). Basal metabolic rate is generally found to be a repeatable 323 trait (Nespolo & Franco 2007). Thus, when discussing our results on the association between 324 BMR and recruit production, we assume that differences in BMR found among individuals 325 prior to the breeding season partly reflects differences in maintenance cost during breeding 326 (but see Bouwhuis, Sheldon & Verhulst 2011). The directional negative relationship between 327 BMR and reproduction found in the present study indicates that individuals with low 328 maintenance cost were able to devote more energy to reproduction, which supports the 329 'compensation' hypothesis (Gadgil & Bossert 1970; Nilsson 2002). However, although BMR 330 tended to have a negative effect on recruit production in the house sparrows, we have to 331 emphasize that this was only significant in females in one of the study populations. In 332 agreement with a previous study conducted in four Norwegian house sparrow populations 333 showing no effect of body mass on total recruit production measured as lifetime reproductive 334 success (Jensen et al. 2004), body mass was not found to be a significant predictor for recruit 335 production in any of the sexes in neither population in the present study (see also Jensen et al. 336 2008). Furthermore, although reproductive performance in birds is known to improve with

age (e.g. Forslund & Pärt 1995), we found no effect of age on recruit production in our studypopulations.

339 We found no evidence for a directional association between BMR and survival. This agrees with another study on a free-living passerine species, showing no effect of BMR on 340 341 survival of great tits (Bouwhuis et al. 2014). Contrary to the study on great tits, we found 342 evidence for a nonlinear relationship between BMR and survival in the house sparrows. In 343 the Leka population, the selection on BMR was stabilizing in the females, but disruptive in 344 the males. The fact that females with an average BMR were more likely to survive indicates 345 that there could be trade-offs between costs (e.g. compromised immunocompetence: Książek 346 et al. 2007) and benefits (e.g. increased cold tolerance: Liknes & Swanson 1996) of having a 347 high BMR. Based on the data in hand, we are unable to determine the underlying reasons for 348 why such trade-offs do not seem to apply for females on Leka and neither sex on Vega. 349 Nevertheless, because the house sparrows in our study populations spend much time inside 350 barns during the winter, they may not face trade-offs to the same degree as wintering forest 351 species which typically experience low temperatures as well as low food predictability 352 (Broggi et al. 2004).

353 The main predictor of survival in the house sparrow populations studied was body 354 mass. In the house sparrow population on Vega selection on body mass operated in opposite directions in the sexes, being positive in the males and negative in the females. A difference 355 356 between the sexes was also found in the Leka population where an increase in survival with 357 increasing body mass was observed for females, whereas a stabilizing selection on body mass 358 was observed for males. Sexual differences in selection on body mass was not found in a 359 previous study of house sparrows living on the coast of northern Norway, which found body 360 mass to be positively related to survival in both sexes (Jensen et al. 2008). The effect of body 361 mass on fitness was not the main objective of the present study. Nonetheless, our results

indicate that costs and benefits of high body mass probably differed between the sexes, and
that this resulted in different relationships with survival. Furthermore, an interesting
observation in the Leka population was that the effects of body mass and BMR on male
survival differed indicating that these traits may evolve in different directions. This is
however depending on both traits being heritable and exhibiting independent additive genetic
variance (e.g. Lynch & Walsh 1998).

368 In the present study we found evidence for a link between BMR and fitness, but this 369 was more pronounced in female house sparrows. Although, studies investigating the link 370 between BMR and fitness in free-living population are scarce, sexual differences in the 371 association between BMR and fitness related components have been shown earlier in avian 372 studies (Blackmer et al. 2005; Bouwhuis et al. 2014). Furthermore, selection on BMR has 373 been found to differ both between sexes and seasons in free-living rodents (Boratyński & 374 Koteja 2009, 2010). Hence, several studies (including the present) investigating the 375 association between BMR and life history parameters important for individual fitness have 376 failed to find a general pattern. Based on this observation one could argue that a single 377 optimal BMR probably does not exist. However, it has to be mentioned that most studies 378 investigating the link between BMR and fitness are correlative studies measuring the effect of 379 BMR on short-term fitness. Fitness relationships may also be revealed by manipulating genetic architecture (Ketola, Boratyński & Kotiaho 2014; see also Abbott 2014). Evidence 380 381 from studies using this approach is still limited, but suggests that the predominant direction of 382 past selection on BMR in e.g. bank voles has been negative (Ketola, Boratyński & Kotiaho 383 2014; Boratyński et al. 2013). Thus, at present we cannot exclude the possibility that there 384 might be a general trend of limiting maintenance cost which correlative studies measuring 385 short-term fitness effects fail to reveal. Nevertheless, it has been proposed that the association between BMR and fitness probably varies temporarily and spatially depending on 386

387 environmental factors such as e.g. food availability, predator abundance and temperature 388 (Mathot et al. 2009; Boratyński & Koteja 2010; Larivée et al. 2010; Burton et al. 2011). 389 Looking at morphological traits, changes in direction of selection are frequently observed in 390 nature (e.g. Siepielski, DiBattista & Carlson 2009). More studies are needed to determine if 391 this also apply to physiological traits like e.g. BMR. However, the persistence of large 392 variation in BMR between and among species indicates that it is unlikely to be a single 393 metabolic phenotype which is favourable under all environmental conditions. Thus, the effect 394 of different stochastic environmental factors on the association between metabolic traits and 395 fitness warrants further investigation.

396

397 Acknowledgments

398

399 We thank O.R. Davidsen and T. Kolaas for their contribution in the field work, and O.R. 400 Davidsen, H. Holand, R. Røsbak and T. Kvalnes for help with the laboratory work. We are 401 also grateful to Z. Boratyński and an anonymous reviewer for helpful comments on the 402 manuscript. Furthermore, we would like to thank the inhabitants and especially the farmers 403 on Leka and Vega, whose hospitality made this study possible. This work was supported by 404 grants from the Research Council of Norway (Storforsk, Strategic University Program (SUP) 405 in Conservation Biology, grant # 204303 to BES, and grant # 221956 to HJ) and Ph.D. 406 research grant # 159584/V40 to BR. The research was carried out in accordance with permits 407 from the Norwegian Animal Research Authority (permit # S-2007/1482) and the Bird 408 Ringing Centre at Stavanger Museum, Norway.

409

410 Data Accessibility

411 All data are included in the manuscript and supporting information.

412

413 **References**

415	Abbott, J.	(2014)	Success	of man	ipulation	of genetic	architecture	to reveal fitness
-----	------------	--------	---------	--------	-----------	------------	--------------	-------------------

- 416 relationships depends on selection history and genetic architecture. *Proceedings of*417 *Peerage of Science*, 1, e2.
- Bennett, A.F. & Ruben, J.A. (1979) Endothermy and activity in vertebrates. *Science*, 206,
 649-654.
- Biro, P.A. & Stamps, J.A. (2010) Do consistent individual differences in metabolic rate
 promote consistent individual differences in behavior? *Trends in Ecology & Evolution*, 25, 653-659.
- 423 Blackmer, A.L., Mauck, R.A., Ackerman, J.T., Huntington, C.E., Nevitt, G.A. & Williams,
- J.B. (2005) Exploring individual quality, basal metabolic rate and reproductive
 performance in storm-petrels. *Behavioural Ecology*, 16, 906-913.
- Boratyński, Z. and Koteja, P. (2009) The association between body mass, metabolic rates and
 survival of bank voles. *Functional Ecology*, 23, 330-339.
- 428 Boratyński, Z. and Koteja, P. (2010) Sexual and natural selection and body mass and
- 429 metabolic rates in free-living bank voles. *Functional Ecology*, **24**, 1252-1261.
- 430 Boratyński, Z., Koskela, E., Mappes, T. & Oksanen, T.A. (2010) Sex-specific selection on
- 431 energy metabolism selection coefficients for winter survival. *Journal of*
- 432 *Evolutionary Biology*, **23**, 1969-1978.
- 433 Boratyński, Z., Koskela, E., Mappes, T. & Schroderus, E. (2013) Quantitative genetics and
- 434 fitness effects of basal metabolism. *Evolutionary Ecology*, **27**, 301-314.

435	Bouwhuis, S., Sheldon, B.C. & Verhulst, S. (2011) Basal metabolic rate and the rate of
436	senescence in the great tit. Functional Ecology, 25, 829-838.
437	Bouwhuis, S., Quinn, J.L., Sheldon, B.C. & Verhulst, S. (2014) Personality and basal
438	metabolic rate in a wild bird population. Oikos, 123, 56-62.
439	Broggi, J., Orell, M., Hohtola, E. & Nilsson, JÅ. (2004) Metabolic response to temperature
440	variation in the great tit: an interpopulation comparison. Journal of Animal Ecology,
441	73 , 967-972.
442	Broggi, J., Hohtola, E., Orell, M. & Nilsson, JÅ. (2005) Local adaptation to winter
443	condition in a passerine spreading north, a common-garden approach. Evolution, 59,
444	1600-1603.
445	Bryant, D.M. (1997) Energy expenditure in wild birds. Proceedings of the Nutritional
446	Society, 56 , 1025-1039.
447	Burton, T., Killen, S.S., Armstrong, J.D. & Metcalf, N.B. (2011) What causes intraspecific
448	variation in resting metabolic rate and what are its ecological consequences?
449	Proceedings of the Royal Society of London. Series B - Biological Sciences, 278,
450	3465–3473.
451	Bushuev, A.V., Kerimov, A.B. & Ivankina, E.V. (2011) Estimation of heritability and
452	repeatability of resting metabolic rate in birds by the example of free-living Pied
453	Flycatchers Ficedula hypoleuca (Aves, Passeriformes). The Biological Bulletin, 1,
454	26-46.
455	Chappell, M.A., Bech, C. & Buttemer, W.A. (1999) The relationship of central and peripheral
456	organ masses to aerobic performance variation in house sparrows. Journal of
457	Experimental Biology, 202, 2269-2279.

- 458 Chastel, O., Lacroix, A. & Kersten, M. (2003) Pre-breeding energy requirements, thyroid
 459 hormone, metabolism and the timing of reproduction in house sparrows *Passer*460 *domesticus*. Journal of Avian Biology, **34**, 298–306.
- 461 Daan, S., Masman, D. & Groenewold, A. (1990) Avian basal metabolic rates, their
- 462 association with body composition and energy expenditure in nature. *American*463 *Journal of Physiology*, **259**, R333-340.
- Derting, T.L. & McClure, P.A. (1989) Intraspecific variation in metabolic rate and its
 relationship with productivity in the cotton rat, *Sigmodon hispidus. Journal of*
- 466 *Mammalogy*, **70**, 520-531.
- Forslund, P. & Pärt, T. (1995) Age and reproduction in birds hypotheses and tests. *Trends in Ecology & Evolution*, 10, 374-378.
- 469 Furness, R.W. (2003) It's in the genes. *Nature*, **425**, 779-780.
- 470 Gadgil, M. & Bossert, W.H. (1970) Life historical consequences of natural selection.
- 471 *American Naturalist*, **104**, 1-24.
- 472 Grant, P.R. & Grant, B.R. (2000) Non-random fitness variation in two populations of
- 473 Darwin's finches. *Proceedings of the Royal Society of London. Series B Biological*474 *Sciences*, 267, 131-138.
- 475 Hayes, J.P. & Garland, T., Jr. (1995) The evolution of endothermy: testing the aerobic
 476 capacity model. *Evolution*, 49, 836-847.
- Hayes, J.P., Garland, T., Jr. & Dohm, M.R. (1992) Individual variation in metabolism and
 reproduction of *Mus*, are energetics and life-history linked? *Functional Ecology*, 6,
 5-14.
- Hudson, J.W. & Kimzey, S.L. (1996) Temperature regulation and metabolic rhythms in
 populations of house sparrow, *Passer domesticus*. *Comparative Biochemistry and Physiology*, 17, 203-217.

Jackson, D.M., Trayhurn, P. & Speakman, J.R. (2001) Associations between energetics and
over-winter survival in the short-tailed field vole *Microtus agrestis*. *Journal of*

485 Animal Ecology, **70**, 633-640.

- 486 Jensen, H., Sæther, B.-E., Ringsby, T.H., Tufto, J., Griffith, S.C. & Ellegren, H. (2004)
- 487 Lifetime reproductive success in relation to morphology in the house sparrow *Passer*488 *domesticus*. *Journal of Animal Ecology*, **73**, 599-611.
- Jensen, H., Steinsland, I., Ringsby, T.H. & Sæther, B.-E. (2008) Evolutionary dynamics of a
 sexual ornament in the house sparrow (*Passer domesticus*): The role of indirect
 selection within and between sexes. *Evolution*, 62, 1275-1293.
- Johnson, M.S., Thomson, S.C. & Speakman, J.R. (2001) Limits to sustained energy intake. II.
 Inter-relationships between resting metabolic rate, life-history traits and morphology
 in *Mus musculus. Journal of Experimental Biology*, 204, 1937-1946.
- 495 Johnston, S.L., Souter, D.M., Erwin, S.S., Tolkamp, B.J., Yearsley, J.M., Gordon, I.J., Illius,
- 496 A.W., Kyriazakis, I. & Speakman, J.R. (2007) Associations between basal metabolic
- 497 rate and reproductive performance in C57BL/6J mice. *Journal of Experimental*
- 498 *Biology*, **210**, 65-74.
- 499 Kalinowski, S.T., Taper, M.L. & Marshall, T.C. (2007) Revising how the computer program
- 500 CERVUS accommodates genotyping error increases success in paternity
- 501assignment. Molecular Ecology, 16, 1099-1106.
- Ketola, T., Boratyński, Z. & Kotiaho, J. (2014) Manipulating genetic architecture to reveal
 fitness relationships. *Proceedings of Peerage of Science*, 1, e1.
- 504 Kleiber, C. & Zeileis, A. (2008) Applied Ecometrics with R. New York, Springer-Verlag. -
- 505 ISBN 978-0-77316-2. URL http://CRAN.R-project.org/package=AER

- 506 Konarzewski, M. & Książek, A. (2013) Determinants of intra-specific variation in basal
- 507 metabolic rate. *Journal of Comparative Physiology B: Biochemical Systemic and*508 *Environmental Physiology*, **183**, 27-41.
- Konarzewski, M. & Książek, A. & Łapo, I.B. (2005) Artificial selection on metabolic rates
 and related traits in rodents. *Integrative and Comparative Biology*, 45, 416-425.
- 511 Książek, A., Konarzewski, M. & Łapo, I.B. (2004) Anatomic and energetic correlates of
- divergent selection for basal metabolic rate in laboratory mice. *Physiological and Biochemical Zoology*, 77, 890-899.
- 514 Książek, A., Konarzewski, M., Chadzińska, M. & Cichoń, M. (2007) Selection for high basal
- 515 metabolic rate comprimises immune response in cold-stressed laboratory mice.
- 516 *Comparative Biochemistry and Physiology Part A: Molecular & Integrative*
- 517 *Physiology*, **148**, S20-S21.
- 518 Kvalnes, T., Ringsby, T.H., Jensen, H. & Sæther, B.-E. (2013) Correlates of egg size
- variation in a population of house sparrow *Passer domesticus*. *Oecologia*, 171, 391402.
- Lande, R. & Arnold, S.J. (1983) The measurement of selection on correlated characters. *Evolution*, 37, 1210-1226.
- 523 Larivée, M.L., Boutin, S., Speakman, J.R., McAdam, A.G. & Humphries, M.M. (2010)
- Associations between over-winter survival and resting metabolic rate in juvenile
 North American red squirrels. *Functional Ecology*, 24, 597-607.
- Lebreton, J-D., Burnham, K.P., Clobert, J. & Anderson, D.R. (1992) Modelling survival and
 testing biological hypotheses using marked animals: a unified approach with case
 studies. *Ecological Monographs*, 62, 67-118.
- Liknes, E.T. & Swanson, D.L. (1996) Seasonal variation in cold tolerance, basal metabolic
 rate, and maximal capacity for thermogenesis in white-breasted nuthatches *Sitta*

531	carolinensis and downy woodpeckers Picoides pubescens, two unrelated arboreal
532	temperate residents. Journal of Avian Biology, 27, 279-288.
533	Lindström, Å. & Kvist, A. (1995) Maximum energy intake rate is proportional to basal
534	metabolic rate in passerine birds. Proceedings of the Royal Society of London. Series
535	<i>B</i> - <i>Biological Sciences</i> , 261 , 337-343.
536	Lynch, M. & Walsh, B. (1998) Genetics and analysis of quantitative traits. Sinauer
537	Associates, Inc., Sunderland.
538	Maggini, I. & Bairlein, F. (2013) Metabolic response to changes in temperature in northern
539	wheatears from an arctic and a temperate populations. Journal of Avian Biology, 44,
540	1-7.
541	Mathot, K.J., Godde, S., Careau, V., Thomas, D.W. & Giraldeau, L.A. (2009) Testing
542	dynamic variance-sensitive foraging using individual differences in basal metabolic
543	rates of zebra finches. Oikos, 118, 545-552.
544	Mathot, K.J., Martin, K., Kempenaers, B. & Forstmeier, W. (2013) Basal metabolic rate can
545	evolve independently of morphological and behavioural traits. Heredity, 111, 175-
546	181.
547	McNab, B.K. (2002) The physiological ecology of vertebrates. A view from energetics.
548	Cornell University Press, New York.
549	Nespolo, R.F. & Franco, F. (2007) Whole-animal metabolic rate is a repeatable trait: a meta-
550	analysis. Journal of Experimental Biology, 210, 2000-2005.
551	Nilsson, JÅ. (2002) Metabolic consequences of hard work. Proceedings of the Royal Society
552	of London. Series B - Biological Sciences, 269, 1735-1739.
553	Nilsson, JÅ., Åkesson, M. & Nilsson, J.F. (2009) Heritability of resting metabolic rate in a
554	wild population of blue tits. Journal of Evolutionary Biology, 22, 1867-1874.

555	Page A.J., Cooper C.E. & Withers P.C. (2011) Effects of experimental start time and duration
556	on measurement of standard physiological traits. Journal of Comparative Physiology
557	B: Biochemical Systemic and Environmental Physiology, 181, 657-665.
558	R Development Core Team (2013) R, A language and environment for statistical computing.
559	R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
560	URL http://www.R-project.org/
561	Ricklefs, R.E., Konarzewski, M. & Daan, S. (1996) The relationship between basal metabolic
562	rate and daily energy expenditure in birds and mammals. American Naturalist, 147,
563	1047–1071.
564	Roff, D.A. (1992) The evolution of life histories: theory and analyses. Chapman and Hall,
565	New York.
566	Rønning, B., Jensen, H., Moe, B. & Bech, C. (2007) Basal metabolic rate, heritability and
567	genetic correlations with morphological traits in the zebra finch. Journal of
568	Evolutionary Biology, 20 , 1815-1822.
569	Sadowska, E.T., Labocha, M.K., Baliga, K., Stanisz, A., Wróblewska, A.K., Jagusiak, W. &
570	Koteja, P. (2005) Genetic correlations between basal and maximum metabolic rates
571	in a wild rodent: consequences for evolution of endothermy. Evolution, 59, 672-681.
572	Šíchová, K., Koskela, E., Mappes, T., Lantová, P. & Boratyński, Z. (2014) On personality,
573	energy metabolism, and mtDNA introgression in bank voles, Myodes glareolus.
574	Animal Behaviour, 92 , 229-237.
575	Siepielski, A.M., DiBattista, J.D. & Carlson, S.M. (2009) It's about time, the temporal
576	dynamics of phenotypic selection in the wild. <i>Ecology Letters</i> , 12 , 1261-1276.
577	Stearns, S.C. (1992) The evolution of life histories. Oxford University Press, Oxford.
578	Sæther, BE. & Bakke, Ø. (2000) Avian life history variation and contribution of
579	demographic traits to the population growth rate. Ecology, 81, 642-653.

580	Tieleman, B.I., Versteegh, M.A., Helm, B. & Dingemanse, N.J. (2009) Quantitative genetics
581	parameters show partial independent evolutionary potential for body mass and
582	metabolism in stonechats from different populations. Journal of Zoology, 279, 129-
583	136.
584	Venables, W.N. & Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth Edition.
585	Springer, New York.
586	Wiersma, P., Munoz-Garcia, A., Walker, A. & Williams, J.B. (2007) Tropical birds have a
587	slow pace of life. Proceedings of the National Academy of Sciences of the United
588	States of America, 104, 9340-9345.
589	Withers, P.C. (,2001) Design, calibration and calculation for flow-through respirometry
590	systems. Australian Journal of Zoology, 49, 445-461.
591	White, C.R. & Kearney, M.R. (2013) Determinants of inter-specific variation in basal
592	metabolic rate. Journal of Comparative Physiology B: Biochemical Systemic and
593	Environmental Physiology, 183, 1-26.
594	Wikelski, M., Spinney, L., Schelsky, W., Scheuerlein, A. & Gwinner, E. (2003) Slow pace of
595	life in tropical sedentary bird, a common-garden experiment on four stonechat
596	populations from different latitudes. Proceedings of the Royal Society of London.
597	Series B - Biological Sciences, 270, 2383-2388.
598	Williams, J.B., Miller, R.A., Harper, J.M. & Wiersma, P. (2010) Functional linkage for the
599	pace of life, life-history, and environment in birds. Integrative and comparative
600	<i>biology</i> , 50 , 855-868.
601	Wone, B., Sears, M.W., Labocha, M.K., Donavan, E.R. & Hayes, J.P. (2009) Genetic
602	variances and covariances of aerobic metabolic rates in laboratory mice.
603	Proceedings of the Royal Society of London. Series B - Biological Science, 276,
604	3695-3704.

606 Supporting Information

- 607 Additional supporting information may be found in the online version of this article.
- 608 Appendix S1: Description of the genetic analysis and determination of parenthood
- 609 Appendix S2: Data used in the study
- 610 **Table S1**: Sources of variation in BMR
- 611 **Table S2:** Relationship between BMR and fitness (pooled data)
- **Table S3:** Relationship between BMR and fitness (separately for island and sex)
- **Table S4:** Standardized selection differentials and gradients for BMR and body mass.
- 614

				Females				Males	
Population	Trait	Ν	Mean	S.D.	Range	Ν	Mean	S.D.	Range
Vega	BMR (mL $O_2 h^{-1}$)	39	77.54	9.04	53.46 - 98.61	50	79.53	9.50	58.24 - 96.95
	Body mass (g)	39	30.76	1.73	27.50 - 33.90	50	31.67	2.12	26.60 - 37.70
Leka	BMR (mL O ₂ h ⁻¹)	52	82.73	6.77	67.08 - 96.18	53	81.51	7.32	62.85 - 97.82
	Body mass (g)	52	31.81	2.04	27.50 - 36.90	53	32.01	1.45	28.80 - 35.00

Table 1. Descriptive statistics of basal metabolic rate (BMR) and body mass in house

617 sparrows from Vega and Leka, Norway.

618

Population		Recr	uit productio	on [*]		Survival [†]	
VEGA	Predictor variables	Estimate	χ^2_1	Р	Estimate	χ^2_1	Р
Females	Intercept	0.755	7.553	0.006	0.985	0.617	0.432
(N = 39)	BMR	-0.034	6.281	0.012	0.011	0.066	0.797
	BMR ²	-1e-4	0.160	0.690	1e-4	0.002	0.967
	Body mass	-0.011	0.026	0.873	-0.528	5.498	0.019
	Body mass ²	-0.033	1.095	0.295	0.018	0.023	0.878
	Age	0.137	0.967	0.325	-0.528	1.165	0.280
Males	Intercept	-0.332	0.570	0.450	-1.807	4.289	0.038
(N = 50)	BMR	-0.015	0.271	0.603	-0.067	1.854	0.173
	BMR ²	0.002	0.692	0.406	0.005	1.525	0.217
	Body mass	0.114	0.658	0.417	0.839	11.162	<0.00
	Body mass ²	0.015	0.194	0.660	-0.039	0.187	0.666
	Age	0.203	1.411	0.235	0.986	4.870	0.027
LEKA							
Females	Intercept	-0.762	2.538	0.111	0.561	0.465	0.495
(N = 52)	BMR	-0.017	0.163	0.687	0.047	0.343	0.558
	BMR ²	-0.009	3.152	0.076	-0.030	10.920	<0.00
	Body mass	-0.116	1.176	0.278	0.425	4.798	0.029
	Body mass ²	0.019	0.309	0.578	-0.010	0.022	0.882
	Age	0.093	0.213	0.645	-0.157	0.207	0.649
Males	Intercept	-0.246	0.195	0.659	-0.465	0.347	0.556
(N = 53)	BMR	-0.050	1.134	0.287	-0.044	0.639	0.424
	BMR ²	-0.003	0.549	0.459	0.011	5.163	0.023
	Body mass	-0.087	0.131	0.718	0.094	0.077	0.782
	Body mass ²	-0.212	2.767	0.096	-0.427	6.264	0.012

620 (years) and components of fitness in two populations of house sparrows in northern Norway.

A	Ige	-0.013	0.002	0.968	-0.194	0.206	0.650

- 622 *Recruit production = number of recruits recorded the subsequent year.
- † Survival = adults surviving from late winter 2007 to late winter 2008 (1) or not (0).

626 FIGURES

627

628

629

- 630 Fig. 1. Male house sparrow (*Passer domesticus* Linnaeus, 1758). The bird is banded with a
- 631 unique combination of coloured plastic rings which enables identification with telescope.
- 632 Photo: Bernt Rønning.

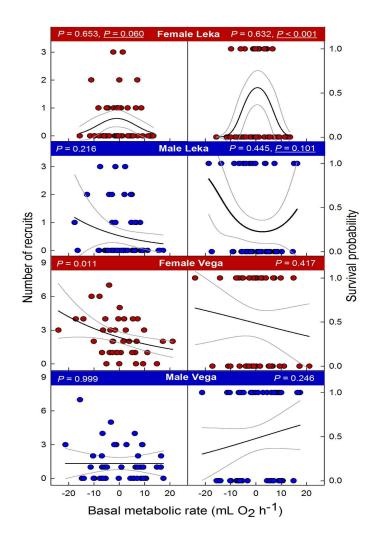


Fig. 2. Relationship between basal metabolic rate measured in late winter 2007, number of 636 637 recruits recorded the subsequent year (left panel) and the probability of survival to the subsequent year (right panel) in house sparrows from Vega and Leka, Norway. Fitted lines 638 639 represent predicted values for the linear effect (solid lines) or a combination of the linear and 640 quadratic effect (if $P \le 0.1$; short dashed lines) of BMR. Dotted lines represent the 95% 641 confidence intervals. P-values for the linear and quadratic (underlined) effect of BMR are 642 given. Statistics from models used to calculate the predicted values are shown in Table S3 in 643 Supporting Information.

645	Supporting Information Table S1. Sources of variation in basal metabolic rate (BMR) in
646	free-living house sparrows ($N = 194$) from Leka and Vega, Norway. The model was
647	simplified by backward stepwise removal of least significant terms, where significance was
648	based on likelihood ratio tests. Statistics for excluded terms ($P > 0.05$ and not included in a

- 649 significant interaction) correspond to the step when they were removed from the model.
- 650

Fixed effects	Estimate	χ^2_1	P
Intercept	57.005	995.62	< 0.001
Island*	-64.156	12.842	< 0.001
Sex [†]	3.361	2.703	0.100
Period [‡]	-0.384	0.133	0.716
DIA	0.157	1.197	0.274
Body mass	0.815	3.857	0.050
Age	-0.236	0.100	0.752
Sex : island	1.938	0.798	0.372
Sex : period	1.546	0.543	0.461
Sex : DIA	0.068	0.054	0.816
Sex : body mass	1.014	3.039	0.081
Sex : age	-2.807	9.036	0.003
Island : period	-2.742	1.702	0.192
Island : DIA	-0.169	0.305	0.581
Island : body mass	1.795	10.138	0.001
Island : age	3.305	6.731	0.009
Sex : island : period	-6.054	2.059	0.151
Sex : island : DIA	-0.494	0.667	0.414
Sex : island : body mass	-0.466	0.144	0.705
Sex : island : age	0.762	0.100	0.752

- 652 *Reference is Leka.
- [†]Reference is female.
- ⁶⁵⁴ [‡]Reference is night measurement.
- 655 DIA = days inside aviary before BMR was measured.
- 656 Period= BMR measured in the evening or during the night.

658 Supporting Information Table S2. The association between basal metabolic rate (BMR, mL

659 $O_2 h^{-1}$), sex, island and components of fitness in house sparrows (N = 194) from Leka and

660 Vega, Norway. The models were simplified by backward stepwise removal of least

significant terms (BMR was retained in the models at all time), where significance was based

on likelihood ratio tests. Statistics for excluded terms (P > 0.05 and not included in a

significant interaction) correspond to the step when they were removed from the model.

664

	Recru	Recruit production [*]			Survival [†]		
Fixed effects	Estimate	χ^2_1	Р	Estimate	χ^2_1	Р	
Intercept	-0.682	18.382	< 0.001	0.020	0.002	0.960	
Sex [‡]	-0.320	2.838	0.092	-1.174	4.721	0.030	
Island [§]	1.216	37.285	< 0.001	-0.101	0.034	0.854	
BMR	-0.022	3.777	0.052	0.160	3.910	0.048	
BMR ²	-1E-4	0.013	0.909	-0.029	11.233	< 0.001	
Sex : island	-0.663	2.789	0.095	1.104	2.034	0.154	
Sex : BMR	0.012	0.272	0.602	-0.204	5.040	0.025	
Island : BMR	0.023	0.601	0.438	-0.197	4.654	0.031	
$Sex : BMR^2$	0.002	0.978	0.323	0.035	13.816	< 0.001	
Island : BMR^2	0.004	2.591	0.107	0.028	8.713	0.003	
Sex : island : BMR	0.095	2.326	0.127	0.279	7.127	0.008	
Sex : island : BMR ²	-0.004	0.302	0.583	-0.033	9.081	0.003	

665

^{*}Recruit production = number of recruits recorded the subsequent year.

 † Survival = adults surviving from late winter 2007 to late winter 2008 (1) or not (0).

668 [‡]Reference is female.

669 [§]Reference is Leka.

671 Supporting Information Table S3. The effect of basal metabolic rate (BMR) on recruit

672 production and survival in free-living house sparrows from Vega and Leka, Norway.

673

Population	Population Recruit production*			Survival [†]			
VEGA	Predictor	Estimate	χ^2_1	Р	Estimate	χ^2_1	Р
Female	Intercept	0.857	49.37	< 0.001	-0.052	0.026	0.872
(N = 39)	BMR	-0.029	6.462	0.011	-0.030	0.660	0.417
	BMR^2	-3E-4	0.158	0.691	-0.001	0.130	0.719
Male	Intercept	0.278	1.758	0.185	-0.082	0.082	0.774
(N = 50)	BMR	2E-5	< 0.001	0.999	0.035	1.344	0.246
	BMR^2	0.001	0.496	0.481	0.001	0.146	0.702
LEKA							
Female	Intercept	-0.480	4.288	0.038	0.234	0.346	0.556
(N = 39)	BMR	-0.018	0.202	0.653	0.035	0.230	0.632
	BMR ²	-0.009	3.530	0.060	-0.029	11.23	< 0.001
Male	Intercept	-0.687	21.389	< 0.001	-1.192	11.308	< 0.001
(N = 50)	BMR	-0.046	1.531	0.216	-0.032	0.599	0.445
	BMR ²	-0.004	0.992	0.319	0.006	2.687	0.101

674

⁶⁷⁵ *Recruit production = number of recruits recorded the subsequent year.

 † Survival = adults surviving from late winter 2007 to late winter 2008 (1) or not (0).

Supporting Information Table S4. Standardized selection differentials and gradients for
basal metabolic rate (BMR) and body mass in relation to recruit production and survival in
house sparrows from Vega and Leka, Norway. Parameter estimates for linear effects were
obtained from models only including linear terms, while quadratic parameter estimates were
obtained from models including both linear and quadratic terms. 95 % confidence intervals
(CI) are based on 1000 bootstrap replicates. Note that parameter estimates for quadratic terms
were doubled before the nonparametric bootstrapping procedure was performed.

Recruit production		Selection	Selection differentials		Selection gradients		
	Trait	Estimates	Estimates 95 % CI		95 % CI		
Vega							
Females	BMR	-0.266	-0.507, -0.102	-0.260	-0.521, -0.097		
(N = 39)	BMR^2	0.017	-0.335, 0.319	0.029	-0.430, 0.519		
	Body mass	-0.107	-0.346, 0.160	-0.015	-0.293, 0.253		
	Body mass ²	-0.346	-0.604, 0.347	-0.174	-0.628, 0.471		
Males	BMR	2e-4	-0.491, 0.463	-0.202	-0.746, 0.156		
(N = 50)	BMR^2	0.316	-0.585, 1.525	0.341	-0.616, 1.489		
	Body mass 0.175		-0.308, 0.940	0.307	-0.189, 1.514		
	Body mass ²	0.292	-0.404, 2.156	0.230	-0.521, 1.817		
Leka							
Females	BMR	-0.089	-0.529, 0.293	-0.069	-0.448, 0.337		
(N = 52)	BMR^2	-0.556	-1.216, 0.248	-0.507	-1.208, 0.243		
	Body mass	-0.186	-0.738, 0.344	-0.178	-0.746, 0.327		
	Body mass ²	0.340	-0.502, 1.330	0.216	-0.491, 1.382		
Males	BMR	-0.300	-0.733, 0.035	-0.271	-0.734, 0.159		
(N = 53)	BMR^2	-0.173	-0.771, 0.396	-0.110	-0.795, 0.398		
	Body mass	-0.179	-0.683, 0.187	-0.082	-0.513, 0.357		
	Body mass ²	-0.556	-1.083, -0.049	-0.496	-1.033, 0.111		
Survival	-						
Vega							
Females	BMR	-0.134	-0.419, 0.240	0.003	-0.338, 0.306		
(N = 39)	BMR ²	-0.073	-0.584, 0.533	0.013	-0.573, 0.629		
	Body mass	-0.388	-0.654, -0.062				
	Body mass ²	0.027	-0.532, 0.631	0.026	-0.610, 0.641		
Males	BMR	0.172	-0.143, 0.460	-0.167	-0.521, 0.283		
(N = 50)	BMR ²	0.111	-0.622, 0.623	0.242	-0.413, 0.755		
	Body mass	0.406	0.160, 0.562	0.515	0.153, 0.806		
	Body mass ²	-0.019	-0.335, 0.259	-0.075	-0.433, 0.224		
Leka	-						
Females	BMR	0.029	-0.316, 0.408	-0.023	-0.363, 0.284		
(N = 52)	BMR ²	-0.863	-1.414, -0.441	-0.842	-1.346, -0.370		
	Body mass	0.447	0.047, 0.733	0.450	0.057, 0.735		
	Body mass ²	0.184	-0.402, 0.555	-0.011	-0.531, 0.513		
Males	BMR	-0.207	-0,679, 0.314	-0.207	-0.693, 0.277		
(N = 53)	BMR ²	0.488	-0.343, 1.120	0.577	-0.113, 1.364		
	Body mass	-0.075	-0.451, 0.321	-0.001	-0.411, 0.342		
	Body mass ²	-0.581	-1.095, -0.016	-0.654	-1.259, -0.210		