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Summary

1. Genomewide association studies (GWAS) enable detailed dissections of the genetic basis for organisms’ abil-

ity to adapt to a changing environment. In long-term studies of natural populations, individuals are often

marked at one point in their life and then repeatedly recaptured. It is therefore essential that amethod forGWAS

includes the process of repeated sampling. In a GWAS, the effects of thousands of single-nucleotide polymor-

phisms (SNPs) need to be fitted and any model development is constrained by the computational requirements.

A method is therefore required that can fit a highly hierarchical model and at the same time is computationally

fast enough to be useful.

2. Ourmethod fits fixed SNP effects in a linear mixedmodel that can include both random polygenic effects and

permanent environmental effects. In this way, themodel can correct for population structure andmodel repeated

measures. The covariance structure of the linear mixed model is first estimated and subsequently used in a gener-

alized least squares setting to fit the SNP effects. The method was evaluated in a simulation study based on

observed genotypes from a long-term study of collared flycatchers in Sweden.

3. The method we present here was successful in estimating permanent environmental effects from simulated

repeated measures data. Additionally, we found that especially for variable phenotypes having large variation

between years, the repeated measurements model has a substantial increase in power compared to a model using

average phenotypes as a response.

4. The method is available in the R package RepeatABEL. It increases the power in GWAS having repeated

measures, especially for long-term studies of natural populations, and the R implementation is expected to

facilitatemodelling of longitudinal data for studies of both animal and human populations.

Key-words: Ficedula albicollis, genomic relationship, hierarchical generalized linear model, single-

nucleotide polymorphisms

Introduction

The fast development of molecular genetic techniques offers

novel integration possibilities by making it feasible to investi-

gate how processes at the molecular genetic level relate to

processes at the different phenotypic levels, that is ranging

from developmental pathways up to morphological and

behavioural traits. Genomewide association studies (GWAS)

that link molecular genetic information with phenotypic

information have successfully been applied to detect causal

mutations and to understand the genetic architecture of

complex traits in both plants and animals, including humans

(Rosenberg et al. 2010; Flint & Eskin 2012). Dissection of the

genetic architecture of adaptive traits is essential in under-

standing evolutionary processes and can be used to infer past

processes as well as future predictions of adaptation. For

these reasons, evolutionary biologists are interested in apply-

ing these techniques to their own study systems, and as the

previously prohibitive price of genotyping has come down,

are becoming able to do so (Slate et al. 2010; Ellegren 2014).

Thus, it has become feasible to study evolution at the geno-

mic level in a wide range of organisms (Slate et al. 2010;

Ekblom & Galindo 2011). For example, recent studies have

applied genomic data, and more traditional selection analyses

using pedigree information, to explain the maintenance of
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variation in Soay sheep horn shape (Johnston et al. 2013),

and in collared flycatcher clutch size (Husby et al. 2015),

where life-history trade-offs appear to be involved in main-

taining genetic variation at one or several loci in both species.

Long-term monitoring studies in wild animals include

repeated measures on individuals and allow for estimation of

year effects, age effect, senescence and changes over time (Clut-

ton-Brock & Sheldon 2010). For example, collared flycatchers

(Ficedula albicollis), which are the subject of a number of long-

term studies (e.g. Qvarnstr€om, Rice & Ellegren 2010), are phi-

lopatric (P€art 1994), with high recapture rates (P€art &Gustafs-

son, 1989), and sometimes live to be more than 5 years old

(Gustafsson & P€art 1990). Collared flycatchers have been used

to study a wide range of central evolutionary questions includ-

ing senescence (Gustafsson & P€art 1990), effects of climate

change (Both et al. 2004; Robinson et al. 2012), sexual selec-

tion (Qvarnstr€om, P€art & Sheldon 2000; Qvarnstr€om, Brom-

mer & Gustafsson 2006) and microevolution (Meril€a, Kruuk

& Sheldon 2001). Since they hybridize with the closely related

pied flycatcher (Ficedula hypoleuca), they are also used as a

model for speciation research (Sætre et al., 1997; Sæther et al.,

2007; Qvarnstr€om et al. 2009; Ellegren et al. 2012; Qvarn-

str€om et al. 2015). The extensive use of collared flycatchers as

an avian model for ecological and evolutionary research was

the main reason for the development of a 50 L illumina iSelect

SNP array forGWASanalysis of this species (Kawakami et al.

2014). Repeated measures of the same individuals are not

exclusive to studies of flycatchers, but is a shared feature

among wild animal GWAS programs, such as Soay sheep

(Hayward et al. 2013), great tits (Husby, Visser & Kruuk

2011) and bighorn sheep (Martin et al. 2014).

Repeated measures are difficult to model using traditional

GWAS software as themost frequently used software have not

been primarily developed for studies on wild populations

where repeated observations are common and the number of

observation per individual varies. Thus, several methods to

solve this problem have been applied. A first possibility is to

use the average phenotypic value for each individual, which

might be appropriate if the data are balanced with equal num-

ber of observations per individual. Furthermore, important

ecological cofactors that change over time for an individual,

such as age and year, cannot be included when average pheno-

types are used. An alternative to using mean estimates is to

compute a linear mixed model not including the SNP effect

and subsequently use the fitted random effect for each individ-

ual as response in an ordinary least squares analysis (Johnston

et al. 2011; Santure et al. 2013).

However, this approximate method reduces power and

inflates false positives, if error estimates are not also carried

into the next analysis (Postma 2006; Valdar et al. 2009;

Hadfield et al. 2010; Ekine et al. 2013). The user may alter-

natively resort to non-standard GWAS software fitting a

linear mixed model at each marker including both a ran-

dom polygenic effect and a random permanent environmen-

tal effect, where the former adjusts for the relatedness

between individuals and the latter for repeated observations

on each individual. This is possible using the commercial

software ASREML (Gilmour et al. 2009) for instance, but

would be time-consuming and to our knowledge has not

been applied to large GWAS. Consequently, in many statis-

tical analyses of GWAS, repeated measurements are treated

as a burden rather than an asset, and thus, there is a need

to develop a method and software for genomewide associa-

tion analyses on populations having repeated measurements

on related individuals.

Here, we develop a user-friendly statistical method that can

be used for GWAS where there are related individuals that

may have repeated observations. The method also gives flexi-

ble modelling of random effects (including spatial correlations)

for GWAS in general. The method assumes Gaussian pheno-

types, and we further investigated the adequacy of the method

for use with binary data. In a recent paper, Husby et al. (2015)

applied the method on clutch size in collared flycatchers and

here we assess an open-source implementation of the method

in the RepeatABEL package. Although the focus of this paper

is on applications of GWAS in natural populations, we expect

that the RepeatABEL package will be useful in human studies

where methods to perform GWAS on longitudinal data has

also been recently investigated and discussed (Beyene&Hamid

2014). The RepeatABEL package is available on CRAN

(https://cran.r-project.org) and is part of the GenABEL suite

of packages at http://www.genabel.org.

Materials andmethods

STATISTICAL METHODS

The statistical model used in GWAS can be described in terms of a lin-

ear regression fitted at every marker position on the genome, where the

phenotype is modelled as response and the marker dosage as covariate.

For a SNP, the marker dosage can be graded as 0, 1 or 2, according to

the number of non-reference alleles that an individual is carrying. The

basic model applied assumes that the residuals in this regression model

can be treated as independent having a common variance. If the indi-

viduals are related, this assumption is violated and as a result the com-

puted significance for the fitted SNP effects will be inflated. Several

computational tools for GWAS have been developed and two of the

most commonly used by biologists are PLINK (Purcell et al. 2007) and

GenABEL (Aulchenko et al. 2007b). As GenABEL is implemented in

the freely available statistical software R (http://www.r-project.org), it

is also fairly user-friendly. Yu et al. (2006) suggested that confounding

effects in GWAS caused by individuals being related should be mod-

elled using a linearmixedmodel including a random polygenic effect. If

this effect is excluded, a GWAS will produce inflated� log10 P values.

The reason for this is two-fold. Closely related individuals tend to share

common environmental effects as well as a common genetic back-

ground (Flint & Eskin 2012). Methods to correct for individuals being

related have been developed and implemented in the widely used Gen-

ABELpackage.

In studies having repeated observations, the � log10 P values will

also be inflated because observations from the same individual can

be correlated. In studies with repeated measures, permanent envi-

ronmental effects that the individual is exposed to throughout its

lifetime can be substantial, but methods to correct for repeated

observations have not been widely developed in standard GWAS

software. To address this problem, we developed a method for
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GWAS that includes related individuals having repeated observa-

tions. The method is implemented in the R package RepeatABEL

and is GenABEL-dependent which makes it user-friendly especially

for those acquainted with the GenABEL package. Although the

focus of the package is on models for related individuals having

repeated observations, it can be used for linear models having arbi-

trary covariance structures.

The standard model for testing the significance of a SNP effect can

be formulated as a linearmodel

y ¼ lþ xsnpbsnp þ e

where l is an intercept term, xsnp is the SNP dosage, bsnp is the SNP

effect, and the residuals e are assumed independent coming from a com-

mon normal distribution. The model is fitted for each marker location

along the genome, and a standard Wald statistic can be used to com-

pute theP-value for each SNP. It is also possible to include other cofac-

tors as fixed effects in the model (e.g. sex, age and year), but to simplify

the notation only the intercept and SNP effects are included in the fol-

lowing equations.

A linear mixed model including also random polygenic effects, g,

and permanent environmental effects, p, is

y ¼ lþ xsnpbsnp þ Zgþ Zpþ � eqn 1

whereZ is an incidencematrix relating the individuals to their observed

values. The random effects aremultivariateGaussian

g�Nð0; r2gGÞ
p�Nð0;r2pInÞ
��Nð0; r2� INÞ

where G is the genomic relationship matrix (VanRaden 2008), I is the

identity matrix with subscript indicating its size, and n and N are the

number of individuals and total number of observations, respectively.

The samemodel can be written as

y ¼ lþ xsnpbsnp þ e eqn 2

e�Nð0;VÞ
whereV ¼ ZGZ0r2g þ ZZ0r2p þ INr2� .

Fitting algorithm

The P-value for the SNP effect in model (1) can be computed from the

ratio of the estimate of bsnp and its standard error, that is a standard

Wald test statistic, which is equivalent to using the test statistic

z1 ¼
x0snpV

�1ðy� lÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0snpV�1xsnp

q

Here z1 is asymptotically standard normal, where V and l are com-

puted at the estimated values of the variance components.

An alternative is to use the score test statistic

z2 ¼
x0snpV

�1
0 ðy� l0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0snpV
�1
0 xsnp

q

which is also asymptotically standard normal but here V0 and l0 are

computed from a model where the SNP effect xsnpbsnp has been

excluded. A computational advantage of using a score test is that theP-

values can be computed without having to estimate bsnp, but on the

other hand the estimates of bsnp needs to be computed separately if

required. The score test is implemented in the mmscore function in

GenABEL for instance (Aulchenko et al. 2007b).

The following test statistic approximates theWald and score tests

z3 ¼
x0snpV

�1
0 ðy� ~lÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0snpV
�1
0 xsnp

q

where ~l is the estimated intercept term and is computed for each SNP

from amodel in the generalized least squares

y ¼ lþ xsnpbsnp þ e eqn 3

e�Nð0;V0r
2
eÞ:

Algorithm. The statistic z3 is computed for each SNP in theRepeatA-

BEL package to obtain P-values. It is calculated in a computationally

efficientway togetherwith an estimate for the SNP effect b̂snp. The algo-
rithmworks as follows:

1. Fit themodel y = l + Zg + Zp + e to estimateV0.

2. For each SNP fit, the generalized least squares y ¼ lþ xsnpbsnp þ e

with e�Nð0;V0r2eÞ. This can be performed in a computationally effi-

cient way:

(a) Eigen decomposeV0 ¼ CKC0

(b) Rotate the linear model to obtain a new, but equivalent, model

having independent residuals by pre-multiplying the left- and right-

hand sides withKC�0:5

(c) Estimate l and b using ordinary least squares and subsequently

compute the sum of squared residuals to get the P-value using a Wald

test for the null hypothesisH0 : bsnp ¼ 0.

Note that the eigen decomposition only needs to be performed

once and that QR-factorization (Golub & Van Loan 2012) is used to

solve the ordinary least squares to speed up the computations. One

may also note that the algorithm works for any estimated V0 and

can be applied to arbitrary covariance structures, and by setting V0

equal to the identity matrix the model reduces to ordinary linear

regression. The hglm package in R (R€onnegard, Shen & Alam 2010)

is suitable for estimating random effects and covariance structures

and is used in the RepeatABEL package for variance component

estimation for model (3).

SIMULATIONS

Data sets

The flycatcher data set includes 10 000 autosomal marker genotypes

from 849 collared flycatchers (Ficedula albicollis) on chromosomes 1–

24. 1118 collared flycatchers from the Swedish island of €Oland

(56∘440N 16∘400E) were genotyped on an Illumina iSelect BeadChip

(Kawakami et al. 2014). These birds are part of a long-term monitor-

ing project, where we caught, ringed and sampled blood from breed-

ing adults and their offspring in the population (Qvarnstr€om et al.

2009). A total of 50 000 SNPs were included on the chip, of these,

45 138 were successful (Kawakami et al. 2014). A total of 2400 SNPs

were not unambiguously placed on a scaffold during genome assem-

bly, and 2083 SNPs were excluded because the genotypes of these

SNPs were not unambiguously determined due to poor genotype

quality (Kawakami et al. 2014; Husby et al. 2015). We removed SNPs

that did not pass our quality control for a call rate of at least 95%,

minor allele frequency of at least 0�01 and a P-value of Hardy Wein-

berg equilibrium more than 0�001. This left us with 38 598 SNPs for

analysis, of which we have chosen 10 000 for the simulations. Some of

the individuals were highly related and the off-diagonal elements in

© 2016 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,

Methods in Ecology and Evolution, 7, 792–799

794 L. R€onneg�ard et al.



the genetic relationship matrix had values up to 0�64. The data

set is included in the RepeatABEL package as a GenABEL

object ‘flycatchers’.

Simulated SNPeffects and phenotypes

For each scenario, a QTL effect, completely linked to an arbitrary

SNP, was simulated. One or several QTLs were simulated along the

genome, and their location was sampled at random among all

SNPs.

The phenotypes were either simulated as Gaussian or binary (0/1).

For a Gaussian trait, y was computed as y ¼ xsnpbsnp þ Zgþ Zpþ e,

with g, p and e sampled from normal distributions having zero means

and variances r2g, r
2
p and r2e , respectively. The simulated phenotypes

were computed using the simulate_PhenData function in

theRepeatABELpackage.

The binary trait values were simulated using a threshold model

where the underlying phenotype, yu, was simulated as a Gaussian

trait described above. The observed phenotype, y, was subsequently

given a value y = 1 for yu [ s and y = 0 otherwise, where s is a given

threshold.

If otherwise not stated, the data were simulated using the flycatcher

data and with random effects having variance components of r2g ¼ 1,

r2p ¼ 1, and r2e ¼ 1, together with a fixed additive SNP effect of 0�5 (i.e.
the difference between homozygotes is 1�0).

Two main data structures were simulated. In the balanced scenario,

each individual had two observations, and in the unbalanced scenario,

the number of observations per individual was on average 2�0 with a

variance of 2�0.

Results

COMPARISON OF THE REPEATED MEASUREMENTS

MODEL TO A MODEL WITH INDIVIDUAL AVERAGES AS

RESPONSE

We evaluated the advantage of using the repeated measure-

ments model compared to a model using individual averages

as response by simulating 20 replicates under different scenar-

ios. For a balanced data scenario, where individuals having

two observations each were simulated, no apparent differences

in effect size estimates (Table 1) nor � log10 P-values (Table 2)

were found. In an unbalanced scenario without year effects,

where the number of observations per individual was on

average 2�0 with a variance of 2�0 there was a slight (2%)

improvement in � log10 P-values for the simulated QTL. The

flycatcher genotype data that we used for the simulation study

included 849 individuals and 10 000markers.

For an unbalanced scenario including year effects, the two meth-

ods deviated substantially. This was expected because large yearly

variations cannot be captured in a model using individual averages,

whilst the repeated measurements model explicitly models the year

effects to reduce the noise in the data and increase the SNPeffect sig-

nal. The improvement in � log10 P-values for the simulated QTL

increasedwith the variance explained by the year effects (Fig. 1). For

example, for a trait like tarsus length in collaredflycatcherswhere the

year effects explain a bit over 7% of the total phenotypic variance,

we founda5%increase in� log10 P-values,whenusing the repeated

measuresmodel compared to the individual averagesmodel.

Whenwe simulated a trait that was influenced by year effects

explaining 25% of the total phenotypic variance, we found a

� log10 P-value of 5�4 from the individual averagesmodel. This

can be contrasted with the� log10 P-value of 6�1 that we found
using the repeated measurements model. This increase in

power is indeed large and corresponds to increasing the num-

ber of individuals of around 15% in a standardGWAS.

FURTHER ASSESSMENT OF THE REPEATED

MEASUREMENTS MODEL

The performance of the repeatedmeasuresmethodwas further

evaluated using simulations based on the flycatcher genotype

Table 1. Average (SD) of estimates from repeated measurement model (rGLS) compared to a model fitting average phenotypes as response (using

themmscore function inGenABEL)a

Balanced Year effectsb Method b̂snp h2 pe2 k

Yes No mmscore 0�484 (0�14) 0�392 (0�06) NA 1�01 (0�01)
Yes No rGLS 0�484 (0�14) 0�340 (0�04) 0�334 (0�03) 1�01 (0�01)
Yes Yes mmscore 0�476 (0�07) 0�424 (0�06) NA 1�01 (0�01)
Yes Yes rGLS 0�475 (0�07) 0�362 (0�03) 0�321 (0�03) 1�00 (0�01)
No No mmscore 0�475 (0�08) 0�366 (0�08) NA 1�00 (0�01)
No No rGLS 0�474 (0�08) 0�339 (0�05) 0�329 (0�05) 1�00 (0�01)
No Yes mmscore 0�477 (0�17) 0�233 (0�07) NA 1�00 (0�00)
No Yes rGLS 0�466 (0�10) 0�357 (0�04) 0�313 (0�04) 1�01 (0�01)

aSimulated bsnp ¼ 0�5, heritability h2 ¼ 1
3, coefficient of permanent env. effects pe2 ¼ 1

3.
bSimulated year effect explaining 57%of the total phenotypic variance. Year effects fitted as fixed effects in the repeatedmeasurementmodel.

Table 2. Comparison ofP-values betweenmethods: repeatedmeasure-

ment model (using rGLS) vs. a model fitting average phenotypes as

response (usingmmscore)a

Balanced

Year

effectsb
Increase

in� log10 P-values
c

Correlation

of� log10 P-values

Yes No 1�0% 0�9999
Yes Yes 0�8% 0�9999
No No 1�7% 0�9948
No Yes 40% 0�8319

aSimulated bsnp ¼ 0�5, additional polygenic heritability h2 ¼ 1
3, coeffi-

cient of permanent env. effects pe2 ¼ 1
3.

bSimulated year effect explaining 57%of the total phenotypic variance.

Year effects fitted as fixed effects in the repeatedmeasurementmodel.
cAt the simulatedQTL. Significant differences betweenmethods shown

as bold text.
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data with four observations per individual and 100 simulation

replicates per scenario.

The proportion of false positives at a specific QTL position

was close to 5%, at a 95% significance level, when no QTL

effects were simulated (Table 3). Furthermore, the inflation

factor k was close to 1�00, and it was concluded that the

repeatedmeasurementmodel performed as expected.

The estimated SNP effects were close to the simulated ones

under all tested scenarios.When a large number of QTL effects

were simulated, however, the estimated genetic variance com-

ponent was inflated, because part of the simulated QTL effects

were picked up as genetic variance in the model fitting each

SNP separately. The inflation factors k were also substantially

greater than 1�00 under this rather extreme scenario with 20

simulatedQTLs having large effects.

For the flycatcher data, where several individuals are highly

related, the two variance components r2g and r2p could be sepa-

rated (Table 4), although the variance component for the

permanent environmental effect, r2p, absorbed a small

proportion (8%) of the genetic variance when no permanent

environmental effect was simulated. For populations having a

large proportion of closely related individuals, the need to

model the two variance components separately increases,

whilst in a population of less related individuals it might be suf-

ficient to only include r2g in the model. In a population of less

related individuals, r̂2g is expected to absorbmost of the perma-

nent environmental effects and thereby produce correct P-

values for the SNP effects. However, in our proposed method

it is easy to include both variance components and is suggested

as the default model.

BINARY PHENOTYPES

For the simulated binary phenotype data (Table 5), the pro-

portion of false positives was close to 5% as expected when no

QTL effects were simulated. The estimated variance compo-

nents add up to 0�25 as expected for a binary proportion of 0�5.
Furthermore, the estimated genetic variance was close to the

expected value of 0�053 (see Appendix S1) except for the very

extreme scenario of 20major QTL effects.

The expected and estimated SNP effects for various binary

proportions (Table 6) coincided well (formula for computing

expected values in Appendix S1). The power to detect causal

SNPs decreases for skewed ratios of 0’s to 1’s, dropping from

95% to 92% for the simulated scenarios. The inflation factor k
was close to 1�00 for all proportions. The model therefore

seems to be suitable for binary data, but the power to detect

causal SNPs decreases when the proportion of successes for

the analysed trait decreases.

Discussion

Here, we present a method for GWAS in populations having

repeated measurements that also allows for population family

structure. TheR package implementation, RepeatABEL, gives

a user-friendly interface for fitting data having repeated obser-

vations, and the proposed algorithm is fast, which makes vari-

ance component modelling in GWAS feasible. Our

simulations showed that in the case of unbalanced data and

data where there is between year variation, inclusion of
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Fig. 1. Percentage increase in� log10 P-values depending on the size of

the year effects. Flycatcher data were used to simulate a population

with unbalanced number of observations per individual.

Table 3. Performance of repeatedmeasurementmodel for different number of SNP effects and effect sizes

No.QTL bsnp b̂snp AverageP Prop.P\10�6

Estimated variance components

kPolygenic Perm. env. Residual

0 0 0�00 (0�11) 0�50 ( 0�29) 0 1�03 (0�10) 0�98 (0�08) 1�00 (0�03) 1�00 (0�01)
1 1�0 1�00 (0�10) <0�01 (<0�01) 0�97 1�30 (0�16) 1�06 (0�10) 1�00 (0�03) 1�02 (0�02)
1 1�5 1�50 (0�10) <0�01 (<0�01) 0�98 1�66 (0�27) 1�14 (0�15) 1�00 (0�03) 1�01 (0�02)
20 1�0 1�00 (0�21)a 0�01 (0�05) 0�75 6�00 (0�54) 2�58 (0�26) 0�99 (0�03) 1�21 (0�02)

aAverage over the 20 estimated effects.

Table 4. Performance of estimated variance components in the

repeated measurement model. Two scenarios simulated including per-

manent environmental effects in the simulations (with a variance of 1),

andwithout permanent environmental effects simulated

Perm. env. effect

simulated

Estimated variance components

kPolygenic Perm. env. Residual

Yes 1�03 (0�10) 0�98 (0�08) 1�00 (0�03) 1�00 (0�01)
No 0�90 (0�08) 0�08 (0�03) 0�99 (0�03) 1�00 (0�01)
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repeated measures in the analysis increases the power of a

GWAS to detect causal variants (Fig. 1). It is therefore reason-

able that the proposed method will be useful especially in stud-

ies of natural populations where large variation in phenotypes

between years is common. Although the method assumes that

the trait is normally distributed, it seems robust to the use of

binary phenotypic data (except in the extreme case of many

QTL having large effects). For traits having extreme binary

proportions (either <5%or >95%), thismethod should be used

with care and we suggest that the P-values for the most signifi-

cant SNPs should be recomputed using a model assuming a

binomial response.

Our proposed method is a two-stage method where the dis-

tribution of the residuals and random effects are estimated in

a preliminary model that does not include the SNP effects. In

the second stage, a model including the SNP effect is fitted.

Consequently, part of the SNP effects will be captured by the

random polygenic effect fitted in the first preliminary model.

This is seen in the results of Table 3 as the polygenic variance

component is overestimated for large simulated SNP effects,

but still the inflation factor k is around 1�0 (except for the

extreme case of 20 QTL having large effects). The over-esti-

mation of polygenic effects does not seem to affect the detec-

tion of significant SNP effects in the GWAS. However, if

large SNP effects are detected and the focus is on estimating

the polygenic variance then one should fit a linear mixed

model including both the random polygenic effects and the

detected SNPs (having a significant effect) as explanatory

variables, which is feasible since this model only needs to be

fitted once after performing the GWAS.

In most previous analyses, repeated measurements in natu-

ral populations have been treated as nuisance information

and the GWAS performed on average individual values.

Hence, repeated measures are considered as unnecessary extra

information complicating the analysis. By contrast, the

RepeatABEL package takes advantage of repeated measure-

ments to increase power and add information and the analysis

is rather easy to perform for users acquainted with the R envi-

ronment and GenABEL (Aulchenko et al. 2007b). Our simu-

lation study focused on applications in natural populations,

but the RepeatABEL package is also expected to be useful in

human studies. Beyene & Hamid (2014) summarized the pro-

posed methods discussed during the Genetic Analysis Work-

shop 18. Several of these methods included linear mixed

models that incorporated genetic relatedness through kinship

matrices, but the computational efficiency of the methods was

not studied and the aim of that workshop was not to develop

new software.

One of the earliest methods proposed for GWAS having

related individuals was GRAMMAR (Aulchenko, DeKoning

& Haley 2007a). It takes the estimated residuals from a linear

mixed model, without SNP effects, and uses these as response

in a second linear model including the SNP effect. Extending

GRAMMAR to include repeated measurements within the

GenABEL framework would have been technically difficult to

implement due to the structure of gwaa.data objects in GenA-

BEL. Furthermore, GRAMMAR does not perform as well as

themethod implemented inRepeatABEL formodels including

several fixed effects (see Appendix S2), which is highly unsatis-

factory especially in ecological field studies where modelling of

non-genetic effects is essential.

A couple of methods have been developed recently for

GWAS having repeated observations from unrelated individ-

uals. The GEE method proposed by Sitlani et al. (2015) does

not include explicit modelling of random effects and requires

strong assumptions of the missing data process as the GEE

method is not likelihood based. Sikorska et al. (2013) pro-

posed a two-stage method to fit SNP effects for random

slopes where individual slope effects are fitted using estimated

random effects from a preliminary model without SNP

Table 5. Performance of repeatedmeasurementmodel for binomial data. Using an underlyingGaussian distribution, an equal binary proportion of

zeros and ones was simulated for individuals having the common allele

No.QTL bsnp b̂snp AverageP Prop.P\10�6

Estimated variance components

kPolygenic Perm. env. Residual

0 0 0�00 (0�03) 0�50 ( 0�29) 0 0�06 (0�01) 0�06 (0�01) 0�13 (0�01) 1�00 (0�01)
1 1�0 0�22 (0�02) <0�01 (<0�01) 0�96 0�06 (0�01) 0�06 (0�01) 0�13 (0�01) 1�02 (0�02)
1 1�5 0�31 (0�02) <0�01 (<0�01) 0�98 0�07 (0�01) 0�06 (0�07) 0�12 (0�01) 1�02 (0�02)
20 1�0 0�13 (0�03) 0�01 ( 0�07) 0�52 0�11 (0�01) 0�06 (0�01) 0�07 (0�01) 1�12 (0�02)

Table 6. Performance of repeatedmeasurement model for different binary proportions. An additive effect size of 1�0 for one QTLwas simulated on

the underlyingGaussian scale

Binary cut off Proportion 1’s Expected estimatea Estimated effect size Prop.P\10�6 k

0 0�63 0�201 0�202 (0�028) 0�95 1�02 (0�02)
�0�5 0�73 0�172 0�172 (0�026) 0�95 1�01 (0�02)
�0�75 0�77 0�155 0�155 (0�020) 0�93 1�01 (0�03)
�1�0 0�80 0�136 0�137 (0�022) 0�91 1�01 (0�02)
�1�25 0�84 0�118 0�118 (0�018) 0�92 1�00 (0�02)b

aExpected value on the observed binary scale derived inAppendix S1.
bNot estimated for one of the replicates due to non-convergence using theGenABELestlambda function.
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effects. These methods are not suitable for analyses of popu-

lations having related individuals. The GEE method does not

allow explicit modelling of the genetic relationship between

individuals, and two-stage methods using pre-computed ran-

dom effects (i.e. BLUPs) are known to reduce power for pop-

ulations having related individuals (Ekine et al. 2013) unless

uncertainty can be carried over with the BLUP estimates

(Postma 2006; Valdar et al. 2009; Hadfield et al. 2010). Our

proposed method is also a two-step approach, because we

first estimate the covariance structure without fixed SNP

effects and thereafter fit each SNP effect in a generalized least

squares given the estimated covariance structure. With our

approach, however, the uncertainty in the BLUPs is included

in the fitting of the SNP effects because the BLUPs are not

pre-computed but rather estimated separately for each SNP.

The proposed method should therefore be relevant and useful

for GWAS in populations having repeated measurements on

related individuals.

In our simulation study, we found that the crude method of

using average individual phenotypic values as response in a

GWAS works quite well as long as there are no substantial

yearly phenotypic variation and random polygenic effects are

included in the model. A possible explanation to this rather

surprising result is that the individuals in our simulations are

moderately related, and the genomic relationship matrix there-

fore resembles an identity matrix to some extent. Conse-

quently, the random polygenic effects pick up most of the

permanent environmental effects too, when a model using

average phenotypes as response is used and random polygenic

effects are included in the model. However, long-term natural

studies regularly report significant year effects, ranging from

explaining only 2% of the variation to more than 30% (e.g.

Qvarnstr€om, Brommer & Gustafsson 2006; Stopher et al.

2012; Petelle, Martin & Blumstein 2015). Whilst some studies

may not find strong year effects, without testing for these

effects explicitly, it is impossible to know how impactful they

will be in a GWAS. Furthermore, the advantage of using our

proposed repeated measurements model should be greater in

populations having a higher degree of relatedness between

individuals. In general, one must evaluate the fit of data to the

model assumptions on a case-by-case basis; thus, the suitability

of anymodel will be population specific.

The repeated measurements model implemented in the

RepeatABEL package has a moderate but substantial effect

on the power to detect QTL in GWAS of natural populations.

The benefit of the method mainly depends on the variance

of temporal effects, such as year and age effects, and allows

for the estimate of these effects in a GWAS framework. We

believe that this development will lead to new findings in

GWAS and an increased understanding of evolutionary ecol-

ogy. Furthermore, understanding evolution driven by natural

selection requires studies of wild populations, and with the

ever-cheapening of sequencing, the precision of these studies is

increasing. Posing and answering relevant questions in evolu-

tionary biology, including those related to populations’ ability

to adapt and persist in changing environments, as well as basic

research questions about life-history processes such as repro-

duction and senescence, require that we ensure that the meth-

ods we use suit the data we have.
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