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Abstract

Suspension bridges with very long spans and slender designs are susceptible to large-amplitude dynamic excitation. Monitoring
systems installed on bridges can provide measurement data (e.g. accelerations) and therewith valuable information on the true
dynamic behaviour. This pilot study examines the possible use of recently developed methods for real-time response estimation
at unmeasured locations. The methodology for response estimation is tested in a case study on the Hardanger Bridge, a 1310 m
long suspension bridge in Norway, which has a network of twenty accelerometers. Two techniques, a joint input-state estimation
algorithm (JIS) and a dual Kalman filter (DKF), are used to estimate the full-field dynamic response using data measured at the
bridge and a reduced order structural model. The results show that the DKF is able to estimate accelerations fairly accurately. The
JIS estimate, however, suffer from ill-conditioning and consequently show severe errors. Possible reasons for this ill-conditioning
are briefly discussed.
© 2017 The Authors. Published by Elsevier Ltd.
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1. Introduction

Full-scale ambient vibration testing of bridges has already been going on for decades [1,2] and continuous monitoring
of structures has become a well-known activity in experimental structural dynamics. Reviews of structural monitoring
of bridges can be found in Cunha et al.[3] and Caetano et al.[4]. The applications range from checking vibration
serviceability limits [5] and fatigue prediction [6] to studying the ambient load conditions in relation to dynamic
response [7–9]. Frameworks for structural health monitoring (SHM) systems is rapidly developing [10], where the
idea is to use the measurement data for determining the current state of the system’s health. Recent examples of SHM
in large structures using vibration data can be found for cable-stayed and suspension bridges in [11–13].

The design of monitoring systems is often restricted by limitations in the number of available sensors, either due
to cost or practical operational factors (installation, maintenance or implementation). The reconstruction of structural
responses at unmeasured locations based on a limited set of measured data is therefore an appealing goal. Real-time
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prediction of response has been done for example with the help of influence lines [14] or novel methods for system
inversion [6,15–17].

Novel and complex structures which advance the existing frontiers (in terms of design concepts, span lengths or
material use) often make interesting case studies for monitoring, not only for reasons of structural safety, but also to
better understand the behaviour of these structures. We present a pilot case study of the Hardanger Bridge (Norway),
a slender suspension bridge with a main span of 1310 m. A monitoring system is installed at the bridge, including
a network of accelerometers. In this contribution the aim is to estimate the acceleration response at unmeasured
locations, which could be implemented as part of a SHM scheme. For this purpose, state of the art techniques for
system inversion are employed: a dual Kalman Filter (DKF) [18] and a joint input-state estimation algorithm (JIS)
[19,20]. The methods make use of measured acceleration data together with a reduced order structural model.

2. System model equations and identification algorithms

The equations of motion for a suspension bridge modelled with nDOF degrees of freedom (DOFs) can be written
as:

M0ü(t) + C0u̇(t) +K0u(t) = f(t) (1)

where u(t) ∈ RnDOF is the response vector. M0, C0 and K0 ∈ RnDOF×nDOF are the mass, damping and stiffness matrices
related to the structure only. Static and vortex-induced loads are not considered in this contribution. The load vector
f(t) ∈ RnDOF can then be expanded as follows:

f(t) = Caeu̇(t) +Kaeu(t) + fB(t) (2)

Here, the two first terms on the right hand side represent the motion induced forces, while fB(t) is the buffeting wind
load. The dynamic response commonly has contributions from a limited number of vibration modes. The following
eigenvalue problem is solved to obtain the so-called still-air modes, where only the structural mass and stiffness is
considered:

(K0 − ω2
jM0)φ j = 0 ( j = 1 . . . nm) (3)

The modal transformation u(t) = Φz(t) is used to establish a reduced order model containing nm modes. z(t) ∈ Rnm

is the vector of still-air modal coordinates and Φ ∈ RnDOF×nm contains the corresponding mass-normalized mode
shapes. The modal form of Eq. 1 now reads:

z̈(t) + Γż(t) +Ω2z(t) = ΦTf(t) = p(t) (4)

whereΩ = diag(ω1, ω2, . . . , ωnm ) and Γ = diag(2ω1ξ1, 2ω2ξ2, . . . , 2ωnmξnm ); ω j and ξ j being the undamped natural
frequency and damping ratio for mode j, respectively. Note that Eq. 4 assumes the structural damping (C0) is
proportional. p(t) ∈ Rnm are now regarded as the unknown modal forces in the system. A discrete time state-space
representation of Eq. 4 is introduced with a sample rate of Fs = (∆t)−1 and a zero order hold on the force:

xk+1 = Axk + Bpk, xk =

(
z(tk)
ż(tk)

)
, pk = p(tk) (5)

Here, xk is the modal state vector and pk is the modal force vector at time tk = k∆t (k = 1 . . .N). It can be shown
that the state transition matrix A ∈ R2nm×2nm and input matrix B ∈ R2nm×nm are given as:

A = exp
( [ 0 I
−Ω2 −Γ

]
∆t
)
, B = (A − I)

[
0 I
−Ω2 −Γ

]−1 [0
I

]
(6)

We now consider nd,a acceleration outputs measured at selected DOFs of the structure. The acceleration output
vector y ∈ Rnd,a reads:

yk = Saü(tk) = Gxk + Jpk, G = −SaΦ
[
Ω2 Γ

]
, J =

[
SaΦ
]

(7)
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Fig. 1. Location of accelerometers installed at the bridge.

where Sa ∈ Rnd,a×nDOF is a binary selection matrix. G ∈ Rnd,a×nm and J ∈ Rnd,a×nm symbolizes the output influence
matrix and direct transmission matrix. Zero mean white noise vectors are added to Eq. 5 and 7, which renders a
stochastic state-space representation:

xk+1 = Axk + Bpk + wk (8)
yk = Gxk + Jpk + vk (9)

The process noise wk and measurement noise vk are assumed to have the following covariance relations:

E[wkwT
l ] = Q δkl , E[vkvT

l ] = R δkl , E[wkvT
l ] = S δkl (10)

Additionally, the random walk force evolution in Eq. 11 is assumed for the DKF, where E[ηkη
T
l ] = Qpδkl is the

covariance parameter controlling the allowable step size.

pk+1 = pk + ηk (11)

Two algorithms will be used for the response estimation; a joint-input state estimation algorithm [19,20] and the
Dual Kalman Filter [18]. Both methods are based on principles of minimum-variance unbiased estimation. For the
sake of brevity the filter equations are omitted in this paper. It is recommended to look into the referred original works.
Through the use of the measurement data and state space model, the algorithms recursively calculate state estimates
(x̂k) and input estimates (p̂k). Using the obtained state and input estimates, the acceleration response in any DOF can
now be predicted:

ŷk = S′a ˆ̈uk = G′x̂k + J′p̂k (12)

where S′a selects the DOFs of interest, and G′ and J′ is calculated using Eq. 7.

3. System model and monitoring system

The dynamic behaviour of the bridge and ambient wind is monitored by an extensive system consisting of 20
triaxial accelerometers and 9 sonic anemometers. The accelerometers are located in the girder and at the top of the
pylons; see Fig. 1 for a layout. Details of the system is featured in Fenerci et al.[7].

The structural model is created in the finite element software Abaqus. Quadrilateral shell elements (S4R) is used
for the steel box girder, stiffeners, internal diaphragms as well as the concrete pylons. 2-node Timoschenko beam
elements (B31) is used to model the cables, taking into account the important geometric stiffness from the cable
tension. Selected modes from the model is shown Fig. 2.

The modes in the reduced order model should represent the dynamic behaviour observed in the measurement data.
Fig. 3 shows the acceleration spectral density at the girder mid span. A great number of modes contributes to the total
response, however in this work it is decided to focus on the low-frequent dynamics. Thus only modes below 1 Hz
with a significant deflection in the girder or pylons are considered as candidates for the model. The nm = 25 modes
listed in Tab. 1 are included in the reduced order model. 7 of the modes are horizontal bending modes, 14 are vertical
bending modes, while the remaining modes are either torsion modes (3) and pylon modes (1). The state space model
and sensor network used complies with the necessary conditions for instantaneous system inversion listed in [21],
except that instabilities in the state and input estimates can occur, since acceleration measurements cannot account for
(quasi-)static behaviour.
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Fig. 2. Still-air modes of the finite element model: a) H1; b) H2; c) T1; d) V1; e) V2.
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Fig. 3. Auto spectral density of the response at mid span: a) horizontal acceleration; b) vertical acceleration. A Welch average has been used to
estimate the spectra. The black dots represent the natural frequencies of the FE model.

Table 1. List of modes included in the reduced order model and their natural frequencies. H=horizontal bending, V=vertical bending, T=torsion,
P=pylon.

Mode type f j [Hz] Mode type (cont.) f j [Hz] Mode type (cont.) f j [Hz]

H1 0.051 V6 0.331 H6 0.694
H2 0.105 T1 0.371 V11 0.709
V1 0.111 V7 0.400 V12 0.786
V2 0.141 H5 0.462 T3 0.826
H3 0.185 V8 0.465 V13 0.892
V3 0.200 P1 0.507 H7 0.940
V4 0.211 V9 0.544 V14 0.962
V5 0.276 T2 0.551 - -
H4 0.318 V10 0.621 - -

4. Response estimation and discussion

A recording from January 26th 2016 with a duration of 30 minutes is selected for this study, during which the
mean wind velocity was 12 m/s. A Chebyshev low-pass filter with a cut-off at 1.1 Hz is applied to the acceleration
data, which is resampled at 20 Hz. Signals which are numerically redundant (e.g. y-direction for sensor pairs) or
insignificant (e.g. z-direction for the pylon sensors) are removed from the sensor network. The acceleration signals
A3-y and A14-z (see Fig. 1) are used as reference signals and therefore left out of the sensor network. The remaining
sensor network consists of nd,a = 36 acceleration outputs.

The matrix R is taken proportional to the output data: R(i,i) = α
2
i Cov[yi(t)], where the scale factor αi=0.2 is used

for the x-signals, and αi = 0.1 is used for the y- and z-signals. We assume S of Eq. 10 is zero, while the matrices Q
and Qp are tuned manually, based on the expected level of modal excitation:

Q( j, j) = Q( j+nm, j+nm) =


0.1 j = 1 . . . 8
0.001 j = 9 . . . 25

Qp,( j, j) =


0.1 j = 1 . . . 8
0.001 j = 9 . . . 25

(13)

Note that the obtained input and state estimates are more sensitive to Qp, which controls the input norm, than to
Q, which controls the level of process noise, e.g. model errors. Fig. 4 and 5 and shows the estimated accelerations at
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Fig. 4. Time detail (t ∈ 500 − 600 s) of acceleration response estimates and reference signal: a) A3-y (horizontal) ; b) A14-z (vertical).
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Fig. 5. Auto spectral density (Welch average) of the estimated acceleration: a) A3-y (horizontal) ; b) A14-z (vertical).
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Fig. 6. Auto spectral density (Welch average) of the innovation terms: a) A5-x (longitudinal) ; a) A5-y (horizontal) ; c) A5-z (vertical).

the sensor locations A3 and A14 as predicted using Eq. 12. The DKF estimate generally agrees with the reference,
although slightly larger errors are observed for the z-direction. Even though the JIS estimate correctly estimates the
acceleration in the y-direction, severe errors occur for the A14-z estimate. Ill-conditioning of the matrices in the
system inversion is likely the reason.

Some practical reasons for the ill-conditioning can be elaborated upon. Inverse problems are by nature ill-posed,
which means that they are sensitive to errors and noise. The algorithms behind the JIS (cf. [19,20]) and DKF (cf. [18])
are structured differently. The matrix G in Eq. 7, related to system observability, is involved in more inverse operations
in the JIS algorithm than for the DKF. This means that for the JIS estimates, errors tend to magnify when G is not
well-conditioned, which can happen when the outputs are almost linearly dependent on the states. For the considered
structure the modes are close to symmetric or antisymmetric, implying that the symmetric sensor layout is inherently
less robust to linear dependencies between the different acceleration outputs. The current sensor network layout is
not optimal for system inversion applications. We emphasize that outputs which were fully linearly dependent on the
states were removed from the sensor network to begin with.
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Fig. 6 also shows the how well the algorithms fit the acceleration at the sensor A5, which is included in the sensor
network. The largest discrepancy is seen for the x-direction, which could indicate that the model modes do not
sufficiently describe the longitudinal dynamic motions, i.e. model errors are present.

5. Concluding remarks

Recently developed methods for real-time system inversion make it possible to predict the full-field dynamic
response of a structure from a limited set of measurements and a modal model of the structure. This methodology
was tested in a case study of the Hardanger Bridge, which is instrumented with accelerometers. The results show
that the DKF is able to accurately reconstruct the acceleration response at unmeasured locations, while the estimates
obtained with the JIS experiences severe errors. The failure to accurately reconstruct the response is mainly attributed
to increased ill-conditioning during the system inversion.
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