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Abstract

We study transport and magnetisation dynamics in nanoscale ferromagnets and fer-
romagnetic heterostructures. Motivated by its novel physics and significant techno-
logical and commercial potential, we devote our attention to how the magnetisation
in ferromagnets is affected by spin-flip scattering and applied currents. We also
study the opposite effect, namely how the precessing magnetisation generates a spin
current in a ferromagnet-superconductor heterostructure.

Excitations of the magnetisation vector are generated by e.g. external magnetic
fields or spin currents traversing the ferromagnet. Spin dephasing mechanisms, such
as scattering from magnetic impurities or the spin-orbit interaction, imply a loss
of angular momentum. Unless the magnetic excitation is sustained by an external
source, the magnetisation vector undergoes damped precessional motion towards a
stable fixed point. We contribute to the understanding of magnetic dissipation by
studying how the mentioned spin dephasing mechanisms affect the time evolution
of the magnetisation vector in a uniform ferromagnet.

In inhomogeneous ferromagnets, such as domain walls, several intriguing effects
caused by the interaction between current and magnetisation vector can be observed.
Since the magnetisation varies in space, electrons flowing through the ferromagnet
need to constantly adapt their spin direction to the varying magnetic configuration.
Spin dephasing results in a mismatch between itinerant spins and the magnetisa-
tion. Mistracking generates current-driven magnetisation dynamics, which affects
the magnetisation shape and position. We report analytical calculations of current-
driven dynamics in itinerant ferromagnets and analyse numerical results obtained
for ferromagnetic semiconductors.

The spin pumping effect, where a time-dependent magnetisation generates spin
currents in neighbouring materials, has been studied extensively in normal metal-
ferromagnet nanostructures. Using sophisticated fabrication techniques, heterostruc-
tures with both superconducting and ferromagnetic elements can now be manufac-
tured. Inspired by spin pumping theory and recent interest in the superconducting
proximity effect, we calculate charge and spin currents pumped by the magneti-
sation vector in a normal metal-ferromagnet-superconductor junction. We expand
upon previous studies by considering pumping in the presence of applied bias voltage,
and obtain results that coincide with expectations based on the spin valve pump-
ing theory. The findings agree qualitatively with previous results in the absence of
applied voltage.
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Chapter 1

Introduction

Just over four decades ago, Neil Armstrong and Buzz Aldrin landed the lunar module
Eagle in the south-western corner of the lunar plane Mare Tranquillitatis, or the
Sea of Tranquility. The landing, at Tranquility Base on July 20th 1969, marked
the definitive apex of the space race, and stands as a solid testament to the radical
technological progress that had been achieved since President Kennedy declared
“We choose to go to the Moon” in 1962. Families gathered around television sets,
marvelling at the blurred pictures of Armstrong and Aldrin, the first men to leave
their bootprints on the dry lunar surface, is a poignant symbol of mankind’s long
fascination with the Moon. As the only heavenly body close enough to Earth to
sport features visible to the naked eye, the Moon continues to be a constant source
of inspiration for practitioners in the fields of art, literature, science, music and
philosophy.

The Moon and the Earth, one silently orbiting the other, is a prime example
of what is referred to as the two-body problem in physics. A two-body problem
is special in the sense that it can be transformed to two independent one-body
problems, and thus often solved exactly. Once a third body is included, e.g. that
of a weather satellite or an abandoned space vehicle, exact analytic solutions are
usually out of reach. This observation is not restricted to satellites and lunar orbits,
however, but is also valid for systems at the very opposite end of the scale, such as
the hydrogen atom and the other elements of the periodic table.

The hydrogen atom, in which an electron moves around a proton, belongs to the
somewhat mind-boggling realm of quantum mechanics, and not the classical world
of celestial objects. The exact description of the hydrogen atom is found in most
elementary textbooks on quantum mechanics, and provide a nice, albeit temporary,
boost of morale for the reader. At one time or another, but most likely when
ambitious studies of other elements in the periodic table are undertaken, the search
for exact, microscopic solutions seems futile. Heads bang against walls anew, just
as they did while working on that impossible many-body homework problem from
an astrophysics class the previous semester. Feeling stumped already by helium,
what then about 12 grams of the 12C isotope, containing some 6,022 · 1023 atoms?
Thankfully, the detailed behaviour of each single electron is usually not what we
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2 Chapter 1 Introduction

desire. The physical properties of the system at large is usually far more interesting,
and as long as we stick to these, tremendous headway can still be achieved.

The Moon orbiting the Earth is in many ways an appealing analogy to the
electron circling the proton in a hydrogen atom. The resemblance seems to suggest
some underlying order or universality to Nature, which the rationalising brain fancy.
To the dismay of some, perhaps, the analogy is not necessarily a good one, as certain
pitfalls need circumnavigation when classical systems are scaled down into the world
of quantum mechanics. A common example of an“issue” that might be encountered,
is one that is seen when a magnetic moment traverses an inhomogeneous magnetic
field, as in the pivotal Stern-Gerlach experiment. The experiment, which was devised
in 1921 by Otto Stern and performed the following year together with Walther
Gerlach, investigated how a beam of silver atoms is deflected as it passes through an
inhomogeneous magnetic field [5]. Where none was expected, a vertical deflection
parallel or anti-parallel to the gradient of the magnetic field was observed. The same
two-fold beam splitting was observed when ground state hydrogen atoms was passed
through an inhomogeneous magnet in a similar experiment a few years later [6].
These observations suggested the existence of an angular momentum unknown to
classical physics, and unexpected at the time of the first Stern-Gerlach experiment.

During the years separating the two Stern-Gerlach measurements, the Dutch-
American physicists Samuel A. Goudsmit and George E. Uhlenbeck made the radical
suggestion that the electron has an internal angular momentum, a spin, that does
not have a classical counterpart [7]. Being quantised and taking one of two values,
i.e. either “up” or “down”, the existence of electron spin offered an elegant, albeit
unexpected, way out of the conundrum of the Stern-Gerlach experiments. Final
evidence of the existence of spin came in the form of Paul A. M. Dirac’s celebrated
relativistic treatment of the Schrödinger equation, which confirmed Goudsmit and
Uhlenbeck’s hypothesis [8]. Thus, spin, being an integral part of quantum mechanics,
follows directly from Dirac’s wave equation, and is a particle property with no direct
counterpart in the world of classical physics. As we will see, spin is not just an
abstract concept, but a particle property that can be detected, manipulated and
exploited to great advantage in modern technology.

Quantum mechanics, developed at furious pace during the first decades of the
20th century, was a great leap forward for the natural sciences. The emerging
theory not only explained experiments and illustrated the limited applicability of
classical theories, it also opened doors to rich, unprecedented physics. Lasers, nuclear
power plants, transistors, modern chemistry, hard drives and flash memory chips
are all founded upon our understanding of quantum theory. The idea of quantum
computation or quantum teleportation, both active research areas, might tickle the
fascination and interest of many, perhaps even those who derided natural sciences
during their high school years.

A recent addition to our shared vocabulary is the concept of nanotechnology, a
broad field in modern science and technology that is receiving extensive media cov-
erage and ever increasing attention from scientists. As the name suggests, the main
focus of nanotechnology is to develop, manufacture and efficiently utilise nano-scale
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devices, ranging from nanopores used in hydrogen storage to gold nanoparticles that
detect DNA sequences and clever nanofibres that make clothing wrinkle-free. As de-
vice sizes shrink, the importance of quantum phenomena increase, and one is forced
to incorporate elements of quantum theory in a proper description of new implemen-
tations. Nanoelectronics is a direction within nanotechnology that seeks to combine
elements of quantum theory with modern electronics, all in a push to improve our
present day electronic devices. Combining “orthodox” electronic circuitry that are
largely based on flow of electronic charge, with the electron spin, as in magneto-
electronics, is a very intriguing way of increasing functionality and performance of
electronic devices. This thesis is devoted to theoretical studies of spin-dependent
phenomena in nano-scale structures, and fits into the area of magnetoelectronics.
In the following chapters and in the appended papers, we study dynamics of the
magnetic order parameter in bulk ferromagnets, and how flow of spins affects, and
is affected by, the magnetisation. The ambition of the thesis work has been to con-
tribute to the present understanding of magnetisation dynamics at the nano-scale,
and bring about results that might guide future developments in the field.

The thesis itself is based on four papers. My intention with the first part of the
thesis is to give a general introduction the appended papers, without restating or
repeating calculations. It is my hope that the papers themselves communicate these
details. More space is granted to explaining the theoretical framework of paper [4]
compared to the other three manuscripts. I believe the explicit results of this final
paper require more technical background in order to be comprehensible, and I also
think that more of the theoretical framework should be provided since the work is
still unpublished.

Papers [1, 2, 3] are concerned with magnetisation dynamics in bulk ferromagnets,
and how loss of angular momentum and how currents affect the time evolution of
the magnetisation. Spin-flip scattering, such as magnetic impurity or extrinsic spin-
orbit scattering, contributes to the loss of angular momentum, as these scattering
processes randomise the electron spin. Such dissipative mechanisms ensure that
the magnetisation move towards a stable fixed point, or a magnetic configuration
corresponding to an energy minima.

Highly intriguing phenomena occur when a current is passed through an in-
homogeneous ferromagnet. As current-carrying electrons traverse a magnetisation
that varies in space, their spin try to align with the local magnetisation direction.
Spin-flip scattering mechanisms randomise current-carrying spins, and this yields a
mismatch between local magnetisation vector and itinerant spins. The mismatch
results in an important current-induced torque that is capable of changing both the
profile and the centre position of the magnetisation texture. Dissipation and this
current-induced torque, both commonly quantified by phenomenological parameters
in the magnetic equation of motion, and their relationship, is the topic of paper [1].
The follow-up study presented in paper [2] focuses on magnetic dissipation only, but
should still be of interest since it clarifies subtle discrepancies between paper [1] and
related contemporary studies of current-induced torques, e.g. Refs. [9, 10]. Paper [3]
presents a numerical study of the effect of the current-induced torque in a ferromag-
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netic semiconductor, with emphasis on how the intrinsic spin-orbit interaction in
such materials affects the domain wall mobility. Finally, paper [4] is an analytical
study of how a moving magnetisation in a uniform ferromagnet pumps spin into
neighbouring materials, and in particular how a superconductor affects the pumped
currents in a normal metal-ferromagnet-superconductor junction.

The organisation of the thesis is largely based on the content of the papers. An
introductory review of magnetoelectronics and of superconductivity is given in the
following chapter. In Chap. 3, emphasis is put on magnetisation dynamics, Gilbert
damping and current-induced torque in bulk ferromagnets. Chap. 4 is devoted to
the proximity effect in ferromagnet-superconductor junctions, and our calculation of
pumped currents using a time-dependent scattering matrix formalism. The papers
are appended after the bibliography.



Chapter 2

Preliminary concepts

The Greek word meso means “in between” or “intermediate”. Physics observed on
length scales in between the macroscopic and the microscopic worlds, belong to the
class aptly titled mesoscopic physics. Devising a proper theoretical description of
structures belonging to the class of mesoscopic objects can often be highly chal-
lenging. Devices that typically extend from a few atomic radii to a few microns
are usually too complex to be studied by methods from the microscopic divide, and
at the same time too small to be described by classical physics of the macroscopic
world. Mesoscopic physics, and the previously mentioned area of nanotechnology
in particular, is one of the most active research areas to emerge in modern physics,
and the reason for the interest is at least twofold. In addition to exhibiting well-
proven technological and commercial potential, the field of mesoscopic physics also
motivates research for its novel underlying physics. Mesoscopic devices, such as
quantum dots, or “artificial atoms”, probe the border between classical physics and
purely microscopic, quantum physics, and are expected to play an important role in
future electronic appliances.

2.1 Magnetoelectronics and ferromagnetism

The concept of magnetoelectronics was briefly touched upon in Chap. 1, and here
we seek to elaborate a bit further on the subject. As mentioned, magnetoelectronics
is a field of mesoscopic physics that seeks to use both the charge and the spin
of the electron in modern circuitry. For this reason, magnetoelectronics is also
often referred to as spintronics, short for “spin transport electronics”. The fact that
electrons have an internal spin, in addition to a charge, means that functionality
and performance of magnetoelectronic devices can be increased compared to their
conventional, electronic counterparts.

For magnetoelectronics to be useful, we need efficient ways of producing and de-
tecting currents of spin. Inserting ferromagnetic elements in conductors is one way
of achieving this. The internal magnetic moments in ferromagnets are aligned at
temperatures lower than the Curie temperature. The ferromagnetic elements cobalt
and iron, both widely used in magnetoelectronic devices, have Curie temperatures
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6 Chapter 2 Preliminary concepts

exceeding 1000 K, while nickel, another popular ferromagnet, has a Curie temper-
ature of 627 K. A ferromagnet can either have all internal moments aligned in the
same direction, in which case it is called a single domain ferromagnet, or it can have
internal regions, or domains, where all magnetic moments inside the domain are
parallel. At temperatures above the Curie temperature, thermal energy randomises
the direction of the magnetic moments, and the material is said to be paramagnetic.
To appreciate why certain materials are ferromagnetic below the Curie tempera-
ture, one must consider the combined effect of the electron spin and the exclusion
principle. Due to the exclusion principle, fermions with parallel spins tend to be
separated by a greater distance than fermions with anti-parallel spins. The greater
separation reduces the Coulomb repulsion between the charged electrons, and will,
for materials such as nickel, cobalt and iron, result in a ferromagnetic ordering of the
material. The energy difference between the anti-parallel and the parallel alignment
of two spins is called the exchange energy.

The exchange energy shifts electron bands either up or down in energy. Thus,
the Fermi level density of states, which determines scattering rates and conductivity,
is different for the two spin directions. The spin-dependent asymmetry in conduc-
tivities can be used to efficiently produce a net flow of spin angular momentum, as
an imbalance in the number of up- and down-spins is observed at the far side of the
ferromagnetic element.

��

�

�

N F N F N

� ���
����
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(a) High resistance configuration
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N F N F N
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(b) Low resistance configuration

Fig. 2.1: Principles of giant magnetoresistance: The resistance of a conductor with al-
ternating magnetic (F) and non-magnetic (N) elements depends on the magnetic con-
figuration of the heterostructure. In absence of external magnetic fields, a weak anti-
ferromagnetic coupling results in the configuration sketched in 2.1(a), characterised by
high electrical resistance. Application of an external magnetic field can overcome the cou-
pling and align the magnetisations, as in 2.1(b), resulting in significantly lower resistance.

The applicability and importance of this spin-dependent resistance is clearly dis-
played in setups exhibiting GMR, short for giant magnetoresistance. The effect,
which was discovered in 1988 by independent research teams led by Peter Grün-
berg [11] and by Albert Fert [12], is most notable for being the basis of read heads
in today’s hard disk drives. The GMR effect is observed in conductors made up
of alternating ferromagnetic and non-magnetic layers, as sketched in Fig. 2.1. Ini-
tially, a weak anti-ferromagnetic coupling between the magnetic layers ensures an
anti-parallel configuration of the successive magnetisations, as in Fig. 2.1(a). In
the figure, we assume that spins parallel to the magnetisation vector experience
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low resistance. Thus, the magnetic configuration in Fig. 2.1(a) results in high a
resistance, since electrons of both spin directions encounter a ferromagnetic element
with anti-parallel magnetisation direction. The anti-ferromagnetic coupling can be
overcome by application of an external magnetic field, which aligns the two mag-
netisations as sketched in Fig. 2.1(b). The new configuration exhibits a significantly
lower resistance than the previous configuration, since now a part of the incoming
electrons traverses the heterostructure with relative ease. Whether spins parallel or
anti-parallel to the magnetisation experience low resistance depends on the Fermi
level density of states of the ferromagnetic elements, and the energy band mismatch
between the ferromagnetic and the non-magnetic elements [13]. The multilayer setup
used by Fert et al. measured a resistance reduction as high as 80% [12]. The dis-
covery of GMR is often said to mark the birth of magnetoelectronics, and Fert and
Grünberg shared the 2007 Nobel prize in physics for their simultaneous discovery of
the effect [14].

A related phenomena, also of utmost importance in magnetoelectronic devices, is
the spin-transfer torque [15, 16, 17, 18]. This effect is observed when a polarised spin
current passes through a ferromagnet, and the polarisation direction of the current
is non-collinear to the magnetisation direction of the ferromagnet. This can be
achieved in ferromagnet-non-magnetic heterostructures such as those in Fig. 2.1, but
with the two magnetisation directions pointing in different, non-collinear directions.
The first ferromagnet produces the spin polarised current. Upon entering the second
ferromagnet, spins of the polarised current start to precess around the magnetisation
direction of this layer. The momentum of the incoming particles varies, so incoming
spins precess with different frequencies. This means that the overall transverse
spin component varies rather randomly, with an average approaching zero as the
number of incoming particles increases. Thus, the component of the incoming spin
current polarised transverse to the magnetisation is apparently lost by the current
and absorbed by the magnetisation of the ferromagnet. This transfer of angular
momentum translates into a torque on the ferromagnetic magnetisation [19, 20, 21,
22]. As first suggested by Slonczewski [15], the effect, called spin-transfer torque,
can be used to excite precession or even reverse the magnetisation in ferromagnets.
It can be used as a means to detect spin currents in magnetoelectronic structures as
well. This is tangible evidence underlining the fact that electron spin is something
that can be manipulated, detected and used to great effect in nanoscale structures.

We argued above that a spin current flowing through a ferromagnet affects the
magnetisation of the magnet via the spin-transfer torque. As the next logical step,
one could ask whether the reverse effect can be observed as well: Can a precessing
magnetisation produce spin currents in neighbouring materials? Indeed, a theory
of spin pumping describes this very process, in which a precessing magnetisation
“pumps” electron spins into adjacent materials [23]. As long as the emitted spins
are not all returned to the ferromagnet, the net effect of the precessing magnetisa-
tion is an increased loss, or dissipation, of angular momentum in the ferromagnet.
The effect is very real, and can be observed as increased linewidths, i.e. enhanced
damping, in ferromagnetic resonance (FMR) experiments [24].
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The interaction between electron spin and ferromagnetic order parameters in
mesoscopic heterostructures is a rapidly evolving research field, offering rich physics
and significant technological and commercial potential. Given the diversity of the
field, the above presentation is nothing but a small amuse-bouche; a somewhat more
detailed account of the interplay between currents and the ferromagnetic magneti-
sation relevant to this thesis can be found in Chap. 3.

2.2 Superconductivity

As superconductivity is among the key components of the final manuscript presented
in this thesis, a brief summary of this phenomenon feels in order. Superconductivity
was first observed by the Dutch physicist Heike Kamerlingh Onnes in 1911 [25, 26,
27]. Kamerlingh Onnes found that mercury (Hg), cooled by liquid helium to the
cryogenic temperature of 4,2 K, produced dissipationless electric currents. In the
following years, superconductivity was observed at similar temperatures in other
simple metals as well, notably aluminium, lead and niobium.

What set superconductors apart from non-superconducting materials, are the
properties of perfect conductivity and that of perfect diamagnetism below a critical
temperature Tc [28]. Perfect conductivity, i.e. current flow in the absence of dissipa-
tion or energy loss, implies that the current, or supercurrent, can flow uninterrupted
until the“end of time”. The second characteristic of superconductors, that of perfect
diamagnetism, was discovered by Walther Meissner and Robert Ochsenfeld in 1933,
while measuring the magnetic field distribution outside tin and lead samples [29].
The magnetic field outside a superconductor is increased as the temperature of the
sample is lowered through Tc. By conservation of total magnetic flux, this implies
that the magnetic field is reduced inside the superconducting material. Indeed, apart
from in a narrow surface layer, the magnetic field is completely expelled from the
superconducting material. The thickness of the surface layer is referred to as the
London penetration depth, and the perfect diamagnetism, a phenomenon called the
Meissner effect, is an important characteristic of superconductors.

Significant theoretical progress in understanding superconductivity was achieved
during the 1950s, primarily in the form of the phenomenological Ginzburg-Landau
theory [30] and the microscopic BCS theory [31]. The latter theory, proposed by
Bardeen, Cooper and Schrieffer in 1957, is based upon Cooper’s observation that
electrons experiencing an attractive interaction, couple together in so-called Cooper
pairs as long as the temperature is sufficiently low. In many conventional supercon-
ductors, the origin of the attractive interaction is the second-order electron-phonon
coupling with the crystal lattice. An important characteristic of the Cooper pair
energy spectrum, is the existence of an energy gap, meaning that a minimum en-
ergy, equal to twice the magnitude of the gap, is required to break up a pair of
electrons. At low temperatures, interactions with the crystal lattice do not provide
the required energy, implying that Cooper pairs flow through the lattice without
experiencing any resistance. This is the origin of the above mentioned supercur-
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rent. The size of the gap is reduced, and eventually vanishes, as the temperature of
the sample is increased towards its critical temperature Tc. Above Tc, the material
ceases to be superconducting.

In conventional superconductors, Cooper pairs have no net magnetic moment,
which means that the paired electrons have spin pointing in opposite directions. In
ferromagnets, on the other hand, the exchange energy favours a parallel alignment of
the electron spins. In other words, in structures consisting of both superconducting
and ferromagnetic elements, there will be a competition between the two ordering
parameters. Although ferromagnetism and superconductivity only rarely coexist
in the same material, recent progress in manufacturing techniques allow scientists
to study the competing order parameters in nanoscale ferromagnet-superconductor
junctions. Such a structure is considered in paper [4], and we provide a more in-
depth discussion of ferromagnet-superconductor junctions in Chap. 4.
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Chapter 3

Magnetisation dynamics in bulk
ferromagnets

The giant magnetoresistance is a famous example of how spin can be used to great
effect in modern electronic circuitry, and in the domain of information storage in
particular. Spin-sensitive devices are most easily fabricated by introducing ferromag-
netic elements in electronic circuitry, such as in magnetoelectronic circuits. Fabri-
cation of superior devices depends upon a thorough understanding of the relevant
physical mechanisms - only with this insight is it possible to systematically target
implementations that reduce size and power consumption and improve performance.
In this chapter, magnetisation dynamics of ferromagnets is discussed, with special
emphasis on magnetisation damping and on the interaction between current and
magnetisation. A spin polarised current flowing through a ferromagnet, transfers
part of its angular momentum to the magnetisation. The result is a torque that can
move and change the profile of an inhomogeneous magnetisation. The effectiveness
with which the current-induced torque moves an inhomogeneous magnetisation is
quantified by a coefficient β. The induced motion is opposed by magnetic damping,
which in turn is quantified by the phenomenological damping coefficient α. As we
will discuss in this chapter, both coefficients are determined by the same microscopic
processes, and the resulting magnetisation dynamics are often highly sensitive to the
ratio β/α.

3.1 The Landau-Lifshitz-Gilbert equation

The time-evolution of the unit magnetisation vector m in ferromagnets is usually
described by the Landau-Lifshitz equation [32]:

dm(r,t)

dt
= −γm(r,t) × Heff(r,t). (3.1)

Here, γ is the gyromagnetic ratio and Heff is called the effective magnetic field. For
free electrons, γ = 2μB/h̄, where μB is the Bohr magneton, while the effective field

11
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is determined from the functional derivative of the free energy F [M ] of the system:

Heff(r,t) = −
δF [M ]

δM
,

where M is the instantaneous magnetisation vector. The effective field is usually
a sum of any externally applied magnetic fields, various anisotropy fields related to
the particular geometry of the ferromagnet, and possible dipole interactions with
neighbouring magnetic materials. The Landau-Lifshitz equation describes preces-
sional motion of m about the effective magnetic field with the Larmor frequency
ω = γ|Heff |.

When we write the Landau-Lifshitz equation as in Eq. (3.1), it is assumed that
the effective field is determined by the instantaneous magnetic configuration of the
system. This can be justified if the magnetisation dynamics take place on a very
long time-scale, so that microscopic degrees of freedom respond immediately to the
time-varying magnetisation. If this is not fulfilled, there is a time lag of the effective
field response to the current magnetic configuration. The time lag can be accounted
for by augmenting the Landau-Lifshitz equation (3.1) with the dissipative Gilbert
damping term [33, 34, 23]:

dm

dt
= −γm × Heff + αm ×

dm

dt
. (3.2)

In Eq. (3.2), which is commonly referred to as the Landau-Lifshitz-Gilbert (LLG)
equation, we have dropped the position and time arguments (r,t) for sake of notation,
and introduced the positive Gilbert damping parameter α. The Gilbert damping
term ensures that the magnetisation vector spirals in towards the energy minimum,
determined by Heff .

The LLG equation (3.2) is widely used to describe magnetisation dynamics in
bulk ferromagnets and in layered magnetic heterostructures, and it is the basis
for modelling magnetisation dynamics in ferromagnetic resonance (FMR) experi-
ments [35, 24, 36]. In such experiments, the ferromagnetic sample is placed in an
external dc magnetic field. To excite the magnetisation, a small, time-dependent
rf field is applied in the transverse directions, causing the magnetisation to precess
about the dc field. The power absorption spectrum is then measured as a function
of the magnitude of the dc field. The measured spectrum peaks at a resonance fre-
quency determined by the total effective field Heff , and dissipation affects the peak
by reducing peak height, i.e. the absorbed power at resonance, and by broadening
the shape of the curve. The Gilbert damping coefficient is then extracted by mea-
suring the half-width at half-maximum of the resonance peak, which is, according
to the LLG equation, proportional to α [24]. In paper [4], which is discussed in
Chap. 4, we consider how a slowly precessing magnetisation affects the observed
charge and spin currents in a magnetoelectronic heterostructure. Such precessional
motion of the magnetisation can be sustained by e.g. a weak, transverse magnetic
field, such as that used in the described FMR experiments.
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3.2 Gilbert damping

To fully realise the potential of magnetoelectronic devices, a thorough understand-
ing of dissipative processes is of utmost importance. Gilbert damping, parametrised
by the coefficient α in the LLG equation (3.2), is a restoring force that brings the
magnetisation towards an energy minimum. The damping can help eliminate possi-
bly unwanted thermal fluctuations, and the magnitude of α will determine not only
the magnitudes of switching fields and currents, but also the time it takes for the
magnetisation to reach its stable fixed point. A proper understanding of Gilbert
damping would significantly aid in future tailoring of improved magnetoelectronic
structures. Thus, mapping the detailed makeup of the damping coefficient is essen-
tial not only from a theoretical point of view, but is arguably even more important
from a technological and commercial perspective.

Despite these incentives, a complete microscopic understanding of Gilbert damp-
ing is yet to be reached. Even though the first studies date back several decades, the
sheer amount of processes contributing to dissipation in bulk ferromagnets delays
the emergence of any unified, complete picture. Eddy currents, phonon and magnon
scatterings, extrinsic and intrinsic spin-orbit interactions and magnetic impurities
are some of the contributions to the damping coefficient measured in FMR experi-
ments [24]. Additionally, the already mentioned spin pumping effect introduces an
enhanced damping coefficient as long as the emitted spins are efficiently dissipated
outside the ferromagnetic film [23].

Some of the first studies of bulk magnetic dissipation were based on the s-d
model of ferromagnetism [37, 38]. In this model, electrons are classified in one of two
categories: Localised d-electrons provide the magnetic moment, while itinerant s-
electrons carry current in the material. The spin densities of the two kind of electrons
are coupled via an exchange interaction. Within this model, the exchange interaction
gives rise to three-particle processes involving the annihilation (creation) of a spin
wave and the creation (annihilation) of an electron-hole pair. The itinerant electron
spin is flipped during the magnon scattering process, and angular momentum is
dissipated when the outgoing electron undergoes spin-orbit scattering [38]. Thus,
dissipation of angular momentum is closely associated to the effective lifetime τsf of
the itinerant electron-hole pair. The quantum mechanical treatment was performed
by Heinrich et al., who obtained the Gilbert damping coefficient

αs−d =
ηh̄2νF

2s0τsf
, (3.3)

where νF is the Fermi energy density of states, s0 the equilibrium spin density and
η < 1 is the fraction of total spin carried by the itinerant electrons [38]. Thus,
it was found that Gilbert damping scales as resistivity, since τsf is proportional to
momentum scattering time τ in simple normal metals [39]: α ∼ τ−1 ∼ ρ, where ρ is
the resistivity of the material.

A more general treatment of the problem of magnetic dissipation followed a few
years later, when the concept of a “breathing Fermi surface”was introduced [40, 41].
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In the presence of a time-dependent magnetisation, the energy levels and the Fermi
surface oscillate and distort according to the instantaneous magnetisation via the
spin-orbit interaction. The rotating magnetisation generates empty states below the
Fermi surface and filled states above, and the electron population needs to constantly
adapt to a changing energy environment. This picture explains the notion of a
“breathing Fermi surface”. The excitations caused by the rotating magnetisation
have a finite lifetime τ , which ensures the existence of a time lag before the electron
population is able to readjust to the current energy landscape. From the arguments
in Sec. 3.1, this translates into a Gilbert damping coefficient α ∼ τ ∼ ρ−1, i.e.
proportional to the conductivity of the material.

Based on the above two scenarios, it seems one can expect either a“conductivity-
like” or a “resistivity-like” behaviour on the part of magnetic damping. Indeed,
a fusion of these qualitative traits was observed in early experiments, which re-
vealed fascinating non-monotonous temperature dependences in cobalt, nickel and
iron [35, 42, 43]. Fig. 3.1, adapted from Ref. [35], displays the qualitative tempera-
ture dependence of the Gilbert damping in these materials. In the case of cobalt, the
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Fig. 3.1: Qualitative temperature dependence of the Gilbert damping in iron, nickel and
cobalt. Nickel and cobalt exhibit conductivity-like temperature-dependence below room
temperature, while cobalt and iron show resistivity-like behaviour above approx. 100 K
and above room temperature, respectively. After Ref. [35].

dissipation initially drops markedly with increasing temperature, before reaching a
minimum at approximately 100 K. Nickel exhibits the same sharp drop at low tem-
peratures, before reaching a constant value at room temperature, while iron shows no
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temperature dependence below room temperature [35]. Since the initial drop in dis-
sipation observed in cobalt and nickel is reminiscent of the temperature dependence
of conductivity, this regime is referred to as the “conductivity-like” contribution to
magnetic damping. The linear temperature dependence observed closer to room tem-
perature is the “resistivity-like” contribution. Recently, it has been shown that the
torque-correlation model developed by Kamberský [44] describe both these regimes,
and fit qualitatively to experimental results at room temperature and below [45].
Better quantitative agreement are yet to be achieved, however, and more studies are
required to improve the fundamental understanding of magnetic dissipation and to
better guide fabrication of future, superior magnetoelectronic structures.

3.3 Current-induced magnetisation dynamics

As we argued in Sec. 2.1, a spin current flowing through a ferromagnet looses its
transverse spin component to the ferromagnetic magnetisation. The transverse com-
ponent is absorbed as a torque on the local magnetisation, which means that the
LLG equation (3.2) needs to be supplemented by a source term whenever a spin
current flows through the magnet. In single-domain ferromagnets, transfer of the
transverse spin component can be accounted for by including the third term on the
right hand side:

dm

dt
= −γm × Heff + αm ×

dm

dt
+

γ

MsV
m × (Is × m), (3.4)

where Is is the spin current and V the volume of the ferromagnet. The spin-transfer
term is of the form

m × (Is × m) = Is − m(Is · m),

which equals the transverse spin current component. A source term of this form
was initially suggested by Slonczewski [15], and a number of experiments have sup-
ported this model for the spin-transfer torque [17, 18, 46, 47, 48, 49]. The LLG
equation (3.4) has been frequently applied to various mesoscopic trilayer heterostruc-
tures, such as that in Fig. 2.1, where two ferromagnets are separated by a normal
metal spacer. The sketched trilayer is usually referred to as a spin valve when it
is fabricated so that the magnetisation of the first ferromagnet is pinned by strong
anisotropy fields, while the second magnetisation is unpinned. The pinned layer
polarise any incoming current, so that the spin-transfer torque can be observed on
the second, unpinned magnetisation. The resulting dynamics might yield magneti-
sation reversal, steady state precessional motion, or a new stable fixed point for the
unpinned magnetisation vector, all depending on current amplitude, dissipation and
effective magnetic fields.

The situation is more complicated when the magnetisation of the ferromagnet is
no longer uniform, but varies in space. When electrons flow through an inhomoge-
neous magnetisation texture, their spins try to align with the local magnetisation.
When the width W of the domain wall is much larger than the typical Fermi wave
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vector, i.e. W � λF , as is the case for most metallic ferromagnets, it is reasonable
to assume that the electron spin adiabatically aligns with the local magnetisation
vector. The equation of motion incorporating the resulting adiabatic spin-transfer
torque on the magnetic texture is [50, 51, 52]:

dm

dt
= −γm × Heff + αm ×

dm

dt
+

P

s0
(j · ∇)m. (3.5)

The quantity P, defined as

P ≡
h̄

2e

σ↑ − σ↓

σ↑ + σ↓

,

where σs is the conductivity for an electron with spin s (=↑, ↓), is a constant that
converts charge current to spin current. The charge current density is denoted by
j, and s0 is the equilibrium spin density.

Analytical [52, 53] and numerical [54] studies based on the adiabatic torque in
Eq. (3.5) divided the resulting dynamics into two regimes: When the applied elec-
tric current is below a certain critical value, the effect of the adiabatic torque is to
slightly deform and move the domain wall. The wall motion is quickly decelerated,
however, as the injected spin current is dissipated via the anisotropy field of the
domain wall. Thus, the adiabatic spin-transfer torque itself does not induce steady
wall motion when the applied current is below the critical value. Currents exceeding
the critical value on the other hand, generate a time-dependent domain wall velocity
whose average value eventually scales linearly with applied current density [53, 54].
The value of the critical current is determined by the detailed anisotropy fields and
domain wall width. It was quickly realised, however, that the computed critical
current was at least an order of magnitude greater than that observed in exper-
iments [55, 56]. This suggested that the formulation of the spin-transfer process
contained in Eq. (3.5) is incomplete.

It is known that spin dephasing processes in ferromagnets contribute to the
total dissipation of angular momentum, and thus the Gilbert damping constant α.
In a magnetic texture, these processes will also cause mistracking between carrier
spins and the local magnetisation texture, and in turn an additional current-induced
torque. Thus, spin dephasing processes introduce a new, non-adiabatic spin-transfer
torque that needs to be accounted for in the magnetic equation of motion. Inclusion
of this torque, in the form of the so-called β-term, results in the following LLG
equation for the magnetisation vector [57]:

dm

dt
= −γm × Heff + αm ×

dm

dt
+

P

s0
(1 − βm×) (j · ∇)m, (3.6)

where β depends on the ferromagnetic exchange interaction and relevant spin de-
phasing processes. In the present context, non-adiabaticity does not refer to an
abrupt or rapidly varying domain wall, but rather the angular momentum mis-
match introduced by spin dephasing. The coefficient β is often assumed to be of the
same order as the Gilbert coefficient β ∼ α � 1. In other words, the magnitude of
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the non-adiabatic torque is initially much smaller than the adiabatic torque. The
β-term does affect magnetisation dynamics qualitatively different than the adiabatic
torque, however, and its inclusion in the LLG equation is often essential. As can be
seen from Eq. (3.6), the form of the β-term is similar to a magnetic field in the equa-
tion of motion, and will, as the magnetic field, determine steady state velocity and
shape of a domain wall. To demonstrate this, paper [1] considered a head-to-head
Néel wall, where the magnetisation lies in the y-z plane, pointing along the positive
z-axis when z → −∞, and along the negative z-axis for z → +∞. Assuming that
the domain wall can be described by its width, centre position and out-of-plane tilt
angle, i.e. the widely used Walker ansatz [58], it can be shown that the steady state
velocity of the considered Néel wall is given by:

v(t → ∞) = −
β

α

Pj

s0

=
β

α
v(t = 0), (3.7)

in the absence of magnetic driving fields [57, 59, 1]. In Eq. (3.7), we have substituted
for the initial domain wall velocity

v(t = 0) = −
Pj

s0
,

to emphasise the importance of the ratio β/α on the steady state velocity. This
underlines the qualitative difference between the adiabatic and non-adiabatic spin-
transfer torques, and shows that the terminal velocity of domain walls is governed
by the β-term, for small electric currents. The domain wall motion is sustained by
the continuous mistracking of electron spins and the local magnetisation texture.

Analytical progress much beyond the Walker ansatz remains limited, but micro-
magnetic simulations based on Eq. (3.6) supports analytical predictions and qualita-
tively confirm experiments on current-induced spin-torques in domain walls [59, 55].
Fig. 3.2, adapted from Ref. [59], shows domain wall velocity as a function of the
initial domain wall velocity −Pj/s0, for different values of β/α in a perfect wire.
There are no external magnetic driving fields present.

The β = 0 curve confirms the time-averaged domain wall velocity reported by
Tatara and Kohno for the adiabatic torque [53], which is ∼

√
j2 − j2

cr, with jcr being
the critical current density mentioned above. The average velocity eventually grows
linearly with current density, when the applied current far exceeds the critical value.
For non-zero β, the numerical results reported in Ref. [59] agree remarkably well
with the prediction in Eq. (3.7).

The presented analytical and numerical results suggest that current-induced mag-
netisation dynamics in domain walls are indeed captured by the LLG equation

dm

dt
= −γm × Heff + αm ×

dm

dt
+

P

s0

(1 − βm×) (j · ∇)m.

To improve the quantitative agreement with experimental results, and to better un-
derstand the underlying physics, several reports have microscopically investigated
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Fig. 3.2: The steady state domain wall velocity of a perfect wire as a function of the
adiabatic torque driven velocity −Pj/s0 for different values of β/α with zero magnetic
driving field. After Ref. [59].

the α and β coefficients. Even though they both come from band structure and
spin dephasing processes, it has become apparent that there are no general symme-
try properties relating them, and their values depend on the model and processes
considered [1, 9, 10].

3.4 Damping and non-adiabatic torque in itiner-

ant ferromagnets

From the brief survey presented in Secs. 3.2 and 3.3, it is clear that the two di-
mensionless parameters α and β profoundly affect magnetisation dynamics in ferro-
magnets. In single-domain ferromagnets for instance, the magnitude of α directly
influences the switching time of the magnetisation and the critical current required
to achieve such reversal in spin valve structures. In inhomogeneous magnetisation
textures such as domain walls, the ratio β/α determines the terminal velocity and
the shape of the wall. The focus of this section is research papers [1] and [2], and
the main results and insights from our own studies of α and β will be presented.

Much of the reported work on magnetisation damping and current-induced dy-
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namics in bulk ferromagnets have used the s-d model of ferromagnetism as starting
point [38, 53, 57]. As mentioned in Sec. 3.2, the s-d model classifies electrons as
belonging to either the localised d-orbital or the itinerant s-orbital. The two classes
of electrons interact via an exchange field that is directed along the magnetic mo-
ment of the localised electrons, and current is carried by the itinerant s-electrons.
An important consequence of this separation is that the localised d-electrons are
not directly affected by magnetic dissipation due to e.g. spin-flip scattering. Loss
of angular momentum thus relies on spin dephasing processes involving s-electrons
only.

There is a strong overlap between s- and d-orbital electrons in many transition
metal ferromagnets, so the applicability of the s-d model to these materials can be
questioned. Papers [1] and [2] consider dissipation and current-induced torque in the
alternative Stoner model of ferromagnetism, where current and magnetic moment
are carried by the same electrons. Thus, all electrons are prone to spin dephasing in
the presence of spin-flip scattering. Much of the calculational details do not depend
on the model of ferromagnetism however, so the model-specific results come about
when the non-equilibrium spin density is related to the magnetisation, at the end of
the calculation [1].

Values for α and β was obtained in paper [1] by explicitly deriving an equation of
motion for the non-equilibrium, transverse spin density in the presence of a charge
current. The equation for the spin density, which is a quantum Boltzmann equation,
can be written in the form of a LLG equation. The two parameters α and β are then
readily extracted for the considered model. The microscopic derivation in paper [1]
was deliberately limited to weak ferromagnets, i.e. ferromagnets where the exchange
field is much smaller than the Fermi energy, Δxc � EF . In this limit, several complex
source terms due to scattering, so called collision integrals [60], can be disregarded,
and the resulting equation of motion keeps a transparent and rather intuitive form.
Additionally, spin relaxation was introduced phenomenologically by an unspecified
spin dephasing rate τ−1

σ .
The subsequent paper [2] dealt specifically with the Gilbert damping coefficient,

and did not consider the effect of current or an inhomogeneous magnetisation tex-
ture on the dynamics. It complimented the previous paper by not assuming weak
ferromagnetism and by considering magnetic impurity and extrinsic spin-orbit scat-
tering as specific sources of spin dephasing. The detailed analysis supported the
way spin dephasing was phenomenologically included in paper [1]. Additionally, the
paper presented specific dephasing rates for the model considered, and it illustrated
how the previously ignored corrections to collision integrals affect the microscopic
equation of motion. The latter was an essential ingredient to understanding why
the results of paper [1] conflicted with related, contemporary studies [9, 10].

In both cases, the starting point for the computations was the single-particle
Hamiltonian

H = H0 + U(r,t) +
1

2

[
Δxcm(r,t) + γh̄H(r,t)

]
· σ + Hσ, (3.8)

where H0 is the free particle crystal Hamiltonian and U is the spin-independent
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potential, including spin-conserving impurity scattering and, in the case of Ref. [1],
a current-generating electric field. The external magnetic field is specified by H ,
Hσ contains any spin dephasing contributions, while σ is a vector of the three Pauli
matrices. The main quantity of interest in both papers is the spin density s, which
is related to the density matrix ραβ = 〈Ψ†

βΨα〉 by the equation

s(r,t) =
h̄

2
Tr {σρ} .

In the expression for the density matrix, the annihilation (creation) operator for

electrons of spin σ is denoted as Ψ
(†)
σ , and the brackets 〈· · · 〉 indicate thermody-

namical averaging. A quantum Boltzmann equation for the non-equilibrium spin
density was in both cases derived from a Dyson equation using the Keldysh Green’s
function technique [60, 61]. The magnetic equation of motion that was obtained in
paper [1], identified

α = β =
h̄

Δxcτσ

, (3.9)

for samples with dilute impurity concentrations and a weak exchange field, h̄/τσ �
Δxc � EF . Thus, the special point β/α = 1 is realised in such Stoner models, where
the energy bands have a simple, parabolic shape.

The phenomenologically introduced spin dephasing processes give a “resistivity-
like”, i.e. ∼ τ−1, contribution to the Gilbert damping coefficient, in agreement with
the original s-d model study of Heinrich et al. [38]. If we assume the Fermi level
density of states to be insensitive to the electron spin direction, we can approximate
2s0 ≈ h̄ΔxcνF , where νF is the density of states for both spin directions at the Fermi
level. Then, the result in Eq. (3.9) can be written

α ≈
h̄2νF

2s0τσ

=
αs−d

η
.

As in Sec. 3.2, η < 1 is the ratio of angular momentum carried by s-electrons in the
s-d model, and αs−d is the Gilbert damping from Eq. (3.3). The fact that αs−d < α
should not be surprising, since only itinerant electrons undergo spin dephasing in
the s-d model, while all electrons contribute to dissipation in the Stoner model.
Recalling the discussion of domain wall motion in Sec. 3.3, and the result in Eq. (3.7)
in particular, the special point α = β means that the initial and terminal velocities
of the considered Néel domain walls are equal. The result α = β also suggests that
the steady state width Wf of the domain wall is slightly increased compared to the
equilibrium value W :

Wf =

(
1 +

(Pj)2h̄

2γAΔxcs
2
0

)
W,

where A is the exchange stiffness of the domain wall [1].
The complimentary paper [2], devoted to the Gilbert damping parameter, found

the same result for α, i.e. the result in Eq. (3.9), with spin dephasing rate

1

τσ

=
1

τso
+

1

τm
,
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where τ−1
so and τ−1

m are the scattering rates associated with extrinsic spin-orbit and
magnetic impurity scattering, respectively. The scattering rates depend on the de-
tailed characteristics of the scattering potential. In paper [2], random, short-ranged
potentials were assumed. More specifically, a Gaussian distributed scalar scattering
potential with zero average 〈V (r)〉 = 0, and white noise correlator 〈V (r)V (r′)〉 =
ξδ(r − r′) was considered. Similarly, the magnetic impurity potential was char-
acterised by the white noise correlation amplitudes ξ⊥ and ξ|| as in Ref. [9]. The
scattering rates were obtained from the quantum Boltzmann equation, and found
to be:

1

τso

=
2πΔxc

9s0

ξλ2
[
(ν2

↑k
4
F↑ + ν2

↓k
4
F↓) + 2ν↑ν↓k

2
F↑k

2
F↓

]
,

and
1

τm
=

πΔxc

s0

[
ξ⊥(ν2

↑ + ν2
↓) + 2ξ||ν↑ν↓

]
.

In these equations, νσ and kFσ are the Fermi level density of states and momentum
for spin-σ electrons, respectively, while the amplitude of the spin-orbit coupling is
given by the parameter λ = −h̄2/4m2

ec
2.

Before concluding this section, some comments about the assumption of weak
ferromagnetism in paper [1] are in order. Shortly after paper [1] was made available
online, a calculation of α and β that was not restricted to weak ferromagnets was
reported by Kohno et al. [9]. The report, which presented an elegant diagrammatic
imaginary time calculation, found that α = β, in general, contradicting the result
obtained in [1]. Even though the ratio β/α predicted by the improved treatment
is close to unity for most transition metal ferromagnets, the result underlined that
there are no fundamental symmetries suggesting that the two coefficients are equal
in magnitude. On the contrary, involved impurity potential anisotropies and realistic
band structures are expected to contribute differently to α and β. Our follow-up
paper was not restricted to weak ferromagnetism, and here we obtained a Gilbert
damping coefficient identical to that of the superior imaginary-time formalism of
Ref. [9]. We did not obtain an expression for β, however, due to technically involved
calculations. Results confirming those of Kohno et al. was later obtained using an
impressive functional Keldysh theory formulation [10].

3.5 Current-driven domain wall dynamics in fer-

romagnetic semiconductors

As we have seen, spin dephasing processes determine both the Gilbert damping coef-
ficient α and the non-adiabatic torque parameter β. Processes involving dissipation
of angular momentum contribute to α, and the same mechanisms introduce a mis-
match between carrier spins and the local magnetisation texture, even in the limit
of a very wide domain wall. In addition to the discussed spin-flip scattering, compli-
cated band structures is another possible source of spin mistracking, and, in turn, a
non-adiabatic torque. Ferromagnetic semiconductors, which exhibit strong intrinsic
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spin-orbit interaction, is an example of a system in which such band structure effects
are expected to play a key role. Experimental evidence suggest that the current den-

(a)

(b)

Fig. 3.3: The dependence of transverse propagating modes on the magnetisation vector in
(Ga,Mn)As is illustrated in 3.3(a). The top arrows indicate local magnetisation direction,
while the white (grey) cross-section correspond to two (one) propagating spin channels.
In 3.3(b) the calculated domain wall displacement for zero spin-orbit coupling (left), and
varying spin-orbit coupling strength γ2 (right) is shown. Further details can be found by
consulting paper [3].

sity needed to move a domain wall in ferromagnetic semiconductors is two to three
orders of magnitude lower than in ferromagnetic metals [62, 63]. This observation
make ferromagnetic semiconductors highly interesting for e.g. magnetic random ac-
cess memory devices. The purpose of paper [3] was to illustrate numerically how
the intrinsic spin-orbit coupling in the ferromagnetic semiconductor (Ga,Mn)As en-
hances the non-adiabatic torque and the domain wall velocity, compared to systems
with simple parabolic energy bands.

In itinerant, bulk ferromagnets with simple parabolic bands, carrier spins are
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assumed to align themselves adiabatically to the local, slowly varying magnetisation
texture. In clean ferromagnets, the intrinsic domain wall resistance vanishes in the
adiabatic limit, where domain wall width far exceeds the Fermi wavelength. This is
no longer true for systems exhibiting intrinsic spin-orbit coupling, since now the car-
rier wave vector and spin are coupled by the spin-orbit interaction. The anisotropy
introduced in the distribution of propagating modes as the carrier spin adiabat-
ically aligns with the local magnetisation texture, leads to carrier reflection and
increased domain wall resistance [64]. The anisotropy in mode space is illustrated
in Fig. 3.3(a), where the effect is shown for a spin traversing a Bloch wall. Only
modes with transverse wave vectors lying inside the circular cross-sections shown to
the far right in Fig. 3.3(a) contribute to the overall conductivity. Modes outside this
area are eventually blocked, leading to finite resistance in the structure [64], and
mistracking between carrier spins and the local magnetisation [3].

The effect of intrinsic spin-orbit coupling on domain wall displacement is shown in
Fig. 3.3(b), where the left-most graph corresponds to vanishing spin-orbit coupling,
γ2 = 0, and varying domain wall width. As expected, the terminal domain wall
velocity approaches zero as the width λw exceeds the Fermi wave length λ0, and
deviations from perfect adiabaticity are reduced. The right-most graph in Fig. 3.3(b)
shows the effect of intrinsic spin-orbit coupling on the non-adiabatic torque and the
domain wall terminal velocity. The numerical study in paper [3] found a substantial
three to four order increase in domain wall velocity when a ferromagnetic metal
is replaced by a (Ga,Mn)As sample. These findings offer ample evidence of how
a β-term is produced in clean systems, by a non-trivial band structure. Finally,
the fact that the simulations were performed in clean systems might explain why
the calculated increase in domain wall velocity is larger than the experimentally
observed two to three order increase [62, 63].
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Chapter 4

Pumped currents in a
ferromagnet-superconductor
junction

To no degree can the previous chapter do justice to the rich physics or the wealth of
intriguing phenomena caused by the interaction between current and the magnetic
order parameter. This is arguably one of the most exciting fields of contemporary
magnetoelectronics, not least because of its significant technological and commercial
potential. The focus of Chap. 3 was bulk ferromagnets and the effect of polarised
spin currents on the macroscopic magnetisation. As we have pointed out, however,
the opposite effect can also be observed: While a spin polarised current generates
magnetisation dynamics, an excited magnetisation can pump angular momentum
into adjacent materials and produce spin currents. Spin pumping by a precessing
magnetisation is a key ingredient in the present chapter and in paper [4], where
we study how magnetisation motion and superconducting correlations affect charge
and spin currents in a normal metal-ferromagnet-superconductor junction. Before
the main findings of paper [4] are communicated, we briefly review the important
Andreev reflection process and some recent developments in the field of proximity
effects.

4.1 Andreev reflection

As mentioned in Sec. 2.2, the energy spectrum of a superconductor is characterised
by a finite gap at low temperatures. Still, the conductance of a normal metal-
superconductor junction is finite; indeed, it is twice that of a normal metal-normal
metal junction when the normal metal is in good contact with the superconductor.
The question that naturally arises then, is how charge is transferred between a non-
superconducting material and a superconductor, when the carrier energies lie well
inside the superconducting gap?

The solution to this apparent conundrum is a process called Andreev reflection,

25
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after Russian physicist Alexander F. Andreev [65]. To illustrate the process, we
consider an electron with charge e just above the Fermi energy, approaching a nor-
mal metal-superconductor interface from the normal side. There are no available
states at this energy in the superconductor, so the electron couples together with
another electron situated just below the Fermi energy, and enters the superconduc-
tor together with the coupled electron as a Cooper pair. Thus, for every Andreev
reflection, a total charge 2e is transferred to the superconductor since the process in-
volves transmission of two electrons. The second transmitted electron leaves behind
a hole that is reflected away from the normal metal-superconductor interface [65, 66].
Using the popular Blonder-Tinkham-Klapwijk framework, one readily observes that
the conductance of a perfect normal metal-superconductor junction is twice that of
a normal metal-normal metal junction, i.e. GNS = 2GNN [67].

Andreev reflection is compared to normal reflection in Fig. 4.1. Normal scat-
tering, the process that takes place at e.g. a normal metal-insulator interface, is
depicted in Fig. 4.1(a). Since no charge is transferred to the insulating side, charge
is conserved during the process. The total momentum, however, is in general not
conserved. The opposite is seen when the insulator is replaced by a superconduc-
tor: Now total charge 2e is transferred to the superconducting side, while the total
momentum is (approximately) conserved.
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Fig. 4.1: Andreev reflection process: 4.1(a) Normal reflection at a normal metal-insulator
interface, where no net charge is transferred across the interface. 4.1(b) The insulator is
substituted with a superconductor, and charge 2e is transferred into the superconductor
by means of Andreev reflection.

In conventional superconductors, Cooper pairs are made up of electrons with
opposite spins. Thus, as a spin-up electron in the normal metal approaches the
superconductor, it pairs with a spin-down electron upon transmission. This means
that the reflected hole on the normal side has opposite spin compared to the incoming
electron. As will be further explored in the next section, spin sensitivity of Andreev
reflection processes leads to rich and unexpected phenomena in these mesoscopic
heterostructures.
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4.2 Proximity effects in mesoscopic heterostruc-

tures

The BCS theory that was briefly outlined in Sec. 2.2, is the prevalent theory of
superconductivity, and explains how a weak, phonon-mediated attraction between
electrons results in Cooper pairs that flow unhindered through the crystal lattice at
low temperatures. Properties of these superconducting correlations are now studied
extensively, largely aided by an ever-increasing level of technological sophistication
by which new mesoscopic heterostructures are fabricated [68, 69]. It is now possible
to make high-quality normal metal-superconductor junctions, where the length of
the normal metal is of the same order as the superconducting coherence length.
This implies that one can perform detailed measurements of how the superconductor
affects physical properties of the normal metal.

When a superconductor is in good contact with a non-superconducting material,
Cooper pairs penetrate into the non-superconducting side of the junction. The in-
troduction of finite superconducting correlations in a non-superconducting material
is known as the proximity effect [70]. Andreev reflection, which was the topic of
Sec. 4.1, and one of the key processes studied in paper [4], is an important exam-
ple of the proximity effect. The reflected hole will (almost) retrace the path of the
incoming electron, but also obtain a phase relative to the incoming electron. The
obtained phase is given by the phase of the superconductor and the ratio of the
particle energy to the magnitude of the superconducting gap. In a clean normal
metal at temperature T , the electron-hole correlations persist over a length given by
the thermal coherence length of the metal, ξN,0 = h̄vF /kBT . In the diffusive regime,
the coherence length is determined by the diffusion coefficient DN of the normal
metal, ξN =

√
h̄DN/kBT . Thus, especially at low temperatures, superconducting

correlations exist far into the normal metal region and, as the size of fabricated
heterostructures gradually become smaller, might even extend throughout the en-
tire normal metal. The presence of superconducting correlations on the normal side
leads to a small gap in the energy spectrum and a suppression of the normal density
of states [71].

Another example of the proximity effect and long-range superconducting corre-
lations, is the famous Josephson effect [72, 73]. When two bulk superconductors
are connected by a weak link, e.g. a tunneling barrier or a normal metal that is
made weakly superconductive due to the proximity effect, a zero voltage supercur-
rent flows through the structure as long as there is a finite phase difference between
the superconductors. Brian D. Josephson predicted a simple sine-dependence of the
supercurrent on the phase difference, and this is known as the dc Josephson effect
in superconductor-weak link junctions. The ac Josephson effect is observed when
a finite voltage bias is applied across the weak link: In this case the phase differ-
ence becomes time-dependent, resulting in an alternating current with frequency
2eV/h, where V is the applied voltage and h is Planck’s constant [72]. Josephson
was awarded one half of the Nobel Prize in Physics in 1973 for his theory on the
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Josephson effect [74].

The leakage of Cooper pairs into a normal metal will not only affect physical
properties of the receiving material, but also the superconductor itself. Thus, in
addition to the above mentioned proximity effects, there are also inverse proximity
effects. An example of the inverse effect in normal metal-superconductor junctions,
is the reduction of the superconducting order parameter close to the junction on
the superconductor side. Reduced superconductivity manifests itself in a lowered
critical temperature of the condensate, a temperature that is reduced as the length
of the non-superconducting region is increased [70].

So far, we have not discussed proximity effects in structures where there is a def-
inite spin ordering on the non-superconducting side of the junction. As pointed out
above, Cooper pairs in conventional superconductors do not have any net magnetic
moment attached to them, i.e. the pairs are composed of electrons with oppo-
site spins. In a ferromagnet, the exchange field lifts spin degeneracy and make a
certain spin direction more energetically favourable than the other. This order-
ing is rather incompatible with singlet Cooper pairs, as the exchange interaction
breaks up pairs of opposite spins. Thus, apart from the exotic, recently discovered
ferromagnetic superconductors UGe2 [75], ZrZn2 [76] and URhGe [77], a layered
ferromagnet-superconductor structure is arguably the most promising system for
studying interplay between the two competing order parameters.

A number of spin-related effects manifest themselves when a ferromagnet is in-
serted as the non-superconducting material in these mesoscopic junctions. At the
end of Sec. 4.1, it was pointed out that Andreev reflected particles have their spin
direction reversed with respect to the incoming particle. This is a consequence of
the required singlet nature of Cooper pairs in conventional superconductors. Thus,
in a ferromagnet where there are different numbers of transport channels for ma-
jority (n↑) and minority spin channels (n↓), only a fraction n↓/n↑ of the major-
ity spin channels can undergo Andreev reflection. As a result, the conductance of
ferromagnet-superconductor junctions is reduced when the ferromagnet has a high
degree of spin polarisation. Indeed, the conductance becomes even smaller than that
of a ferromagnet-normal metal junction when n↓/n↑ < 1/3, as shown in Ref. [78].

Equally important is the effect of the exchange field on the momentum of the
Andreev reflected particle. Depending on spin direction, the momentum is either
increased or decreased with respect to the momentum of the incoming particle.
The wave vector mismatch, which is significant for common transition metal fer-
romagnets, results in rapidly decaying superconducting correlations in the ferro-
magnet. In the diffusive regime, the length scale for the correlation decay is given
by ξF =

√
h̄DF /Δxc, where DF is the diffusion coefficient of the ferromagnet [69].

Thus, the decay length is determined by the exchange field Δxc, and not the thermal
energy kBT , as in diffusive normal metals. In iron or nickel, ξF is of the order of
Ångströms, which is much shorter than the penetration length ξN associated with
normal metal-superconductor junctions, which can reach several hundred nanome-
tres.

More intriguing perhaps, is the observation that superconducting correlations, in
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addition to being exponentially decaying, are accompanied by oscillations in space.
Thus, the correlation function changes sign at selected points in space as it traverses
the uniform ferromagnet, leading to an increase in the density of states in certain
space intervals [79, 80]. This is contrary to the density of states suppression observed
in normal metal-superconductor junctions. Related to the correlation function os-
cillations is also the emergence of the π-junction [81, 82]. For a Josephson junction
in the π-state, the Josephson coupling energy sees a minimum when the phase dif-
ference between the superconductors is π. This implies that the Josephson current
in a π-state junction flows in the opposite direction to that of an ordinary 0-state
junction. Evidence of a π-junction can be seen as the length of the ferromagnet is
varied: The critical Josephson current is first reduced, before it switches direction.
The effect was predicted several years ago [83, 84], but only recently observed in
experiments [80, 85].

Another proximity effect in ferromagnet-superconductor junctions that has re-
ceived a great deal of attention, is one that was first observed in experiments in
the mid- to late-1990s. A most unexpected decrease in resistance of ferromagnet-
superconductor junctions was seen as the temperature was lowered through the
superconducting critical temperature Tc [86, 87, 88]. The measured resistance drop,
which is assumed to take place in the ferromagnetic part of the junction, was found
to be twice as large as that predicted by the then-prevalent theory [88]. The ex-
perimental results spawned significant theoretical work, which eventually suggested
that the resistance drop was indeed due to long-ranged superconducting correlations
in the ferromagnet, and that these correlations are insensitive to the pair-breaking
exchange field.

The dominating explanation for the observed long-ranged proximity effect in
ferromagnet-superconductor junctions, is based on the generation of triplet super-
conducting correlations in the ferromagnet. Contrary to the anti-parallel spin order-
ing in singlet pairs, parallel spin ordering is possible in triplet Cooper pairs. When
two paired electrons have their spins in the direction of the exchange field, they no
longer experience the pair-breaking effect of the field, and the corresponding coher-
ence length becomes comparable to that of singlet Cooper pairs in normal metals.
Theoretical reports showed that a ferromagnet with an inhomogeneous magnetisa-
tion texture would indeed produce triplet correlations with amplitude comparable to
the short-ranged singlet correlations [89, 90], and that the resulting resistance drop
at Tc could be comparable to that of normal metal-superconductor junctions. It is
now established that a inhomogeneous magnetisation texture, such as a domain wall,
various spin-flip sources and even a precessing, single-domain magnetisation vector
can produce long-ranged correlations in a ferromagnet [91, 92]. However, it remains
to be verified whether inhomogeneous magnetic regions are actually present in the
heterostructures used in experiments. Recommended in-depth reviews of proximity
effects in ferromagnet-superconductor junctions and long-ranged triplet correlations
can be found in e.g. Refs. [69, 91].

Inspired by the exotic and rich proximity physics discussed above, and insights
from spin pumping theory [23], paper [4] details a theoretical investigation of charge
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and spin currents in a ferromagnet-superconductor junction. Motivated in part by
the model study recently reported by Houzet [92], we considered how the process of
Andreev reflection contributes to charge and spin currents pumped by a precessing,
spatially uniform magnetisation vector. The theoretical framework and main results
from the paper are described in the following sections.

4.3 Scattering formulation

The spin pumping theory, which describes how a time-dependent magnetisation vec-
tor affects charge and spin currents in spin valves and similar structures, dates back
several years. It is well known that in the absence of voltage bias, a precessing
magnetisation pumps a pure spin current, with no accompanying charge flow. The
pumped spin current has vector components along ∂tm and m × ∂tm. Both direc-
tions are transverse to the magnetisation unit vector m, with respective magnitudes
given by the imaginary and real part of the mixing conductance [23]. The latter is a
complex-valued conductance parameter defined as the off-diagonal spin components
of the conductance matrix:

g↑↓
N |F ≡

∑
m,n

[
δm,n − r↑mn(r↓mn)∗

]
, (4.1)

where (m,n) denote transport channels and rσ is the reflection amplitude for a spin-σ
carrier impinging on the ferromagnet interface from the normal metal side.

To study how Andreev reflections affect the familiar results from normal metal-
ferromagnet junctions, we study the model sketched in Fig. 4.2. At either end, we
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Fig. 4.2: Sketch of the normal metal-ferromagnet-superconductor trilayer studied in pa-
per [4]. The normal metal reservoir Nres is connected to a superconductor S via the
ferromagnetic scattering region F. Right-going charge and spin currents are calculated in
ballistic lead N1 in response to a precessing magnetisation m(t) in F, and a bias voltage
V applied to the normal side of the structure.

place particle reservoirs that are assumed to be in thermal equilibrium. The normal
metal reservoir Nres at the left hand side, is connected to a ferromagnetic scatter-
ing region via a ballistic normal lead N1. We assume that any bias voltage V is
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applied at the normal metal side of the structure. Similarly, the superconducting
reservoir S is coupled to the scattering region via ballistic normal lead N2. We take
couplings between reservoirs and leads to be ideal, which means that only Andreev
reflection takes place at the N2|S interface, and that all left-moving carriers in N1

exit reflectionless into Nres. The insertion of ballistic lead N2 is a conceptual sim-
plification that spatially separates the two scattering processes that we study, i.e.
spin-dependent scattering in the ferromagnet, and Andreev reflection at the super-
conductor interface, and allows us to describe transport by well-defined scattering
states in the two leads. The magnetisation is uniform throughout the ferromag-
netic scattering region, and the exchange field Δxc is of constant magnitude along
m(t) = (sin θ(t) cos Ωt, sin θ(t) sin Ωt, cos θ(t)). Here, θ(t) is the time-dependent po-
lar angle of the magnetisation, while Ω is the precessional frequency about the z-axis.
The motion of m can be sustained by e.g. a weak, external FMR field, as suggested
in Sec. 3.1. In paper [4], m is the sole pumping parameter.

A mean field BCS Hamiltonian is assumed applicable for the superconducting
reservoir:

H =
∑
σ=↑,↓

∫
dr ψ†

σ(r)H0(r)ψσ(r) +

∫
dr

{
Δ(r)ψ†

↑(r)ψ†
↓(r) + Δ∗(r)ψ↓(r)ψ↑(r)

}
,

where H0 is the normal state, single-particle Hamiltonian and Δ(r) is the supercon-
ducting gap. We apply the “rigid boundary condition” described in Ref. [66], and
model the gap by a step function at the N2|S interface: Δ(r) = ΔeiφΘ(x), where
x is the coordinate perpendicular to this interface, and φ is the constant phase of
the superconductor. This approximation for the superconducting order parameter
disregards the inverse proximity effect discussed in the previous section, but super-
conducting correlations induced on the normal side of the interface are fully included,
however.

In the following, we limit our attention to particle energies below the supercon-
ducting gap, or, to be more specific, we consider the situation where eV ≤ Δ �
Δxc, EF . In this energy regime there is no ordinary transmission through the N2|S
interface. This means that any left-moving particle in lead N1, i.e. an “outgoing”
particle, can be related to a set of right-moving particles, or “incoming” particles,
in the same lead. Letting bα (aβ) be the second-quantised operator that annihilates
outgoing (incoming) scattering state α (β), we relate the operators as follows:

bα(t) =
∑

β

∫
dt′ Sαβ(t,t′)aβ(t′), (4.2)

where S is the scattering matrix for the system, and the indices (α,β) completely
determine the scattering state in question, i.e. both spin, transport mode and
whether the state is electron- or hole-like. Due to the assumption that any left-
moving carriers in N1 exit without reflection into the normal reservoir, there is no
mixing between right- and left-moving carriers in this lead. Thus, all right-moving
carriers in N1 follow the known thermal distribution function of the normal reservoir.
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Once we determine the makeup of the scattering matrix S, we can derive currents
from the generalized current operator [93]

Iαβ(t) ≡ 2πτ z
αα

(
a†

α(t)aβ(t) − b†α(t)bβ(t)
)
,

where τ z is a diagonal matrix in electron-hole space:

τ z =

(
1 0
0 −1

)
.

From this operator, the right-flowing charge and spin currents in N1 are obtained
from the prescriptions

Ic(t) =
∑

α

〈Iαα(t)〉, (4.3)

and

Is(t) =
h̄

2e

∑
α,β

ραβ〈Iβα(t)〉, (4.4)

respectively. The angular brackets 〈· · · 〉 imply thermal averaging, and ρ is a matrix
with the electron-hole space structure

ραβ =

(
σαβ 0
0 σ∗

αβ

)
,

and σ(∗) is the vector of (complex conjugated) Pauli matrices.
The above formulation of transport theory, which is applied in paper [4], is

referred to as scattering theory [94]. In the general time-dependent formulation of
Eq. (4.2), this framework captures both ballistic and diffusive transport properties,
and is capable of describing systems exhibiting arbitrary time-dependence.

Another framework frequently used in transport studies of superconductor het-
erostructures is that of quasiclassical Green’s functions [60]. This framework has
been developed to an extraordinary level of sophistication, and has been applied
with great success in describing various non-equilibrium phenomena in normal metal-
superconductor heterostructures [95]. Unlike the general scattering theory, however,
the quasiclassical formalism is restricted to diffusive transport and to weak ferro-
magnetism, Δxc � EF . Thus, quasiclassics is not immediately applicable to strong,
transition metal ferromagnets, such as iron, nickel or cobalt, and should only be
expected to produce qualitatively correct results for such structures.

In the subgap energy regime, spin-dependent scattering in the ferromagnet and
Andreev reflections at the N2|S interface contribute to the total scattering matrix
of the structure. In other words, the total scattering matrix S is a concatenation of
the ferromagnetic scattering matrix sF and the Andreev reflection matrix rA. The
ferromagnetic scattering region does not convert electron-like carriers to hole-like
carriers, or vice versa, so sF is diagonal in electron-hole space. It has the following
structure in lead space:

sF =

(
r11 t12
t21 r22

)
.
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The matrix components rii and tij describe reflection of an incoming electron in
mode i, and transmission of an electron from lead j to lead i, respectively. Both rii

and tij are matrices in spin and mode space. Andreev reflection is described by rA

with the following electron-hole structure:

rA =

(
0 rA

eh

rA
he 0

)
=

(
0 iασyeiφ

−iασye−iφ 0,

)

where α = exp[−i arccos(ε/Δ)], and ε is the excitation energy, measured with respect
to the Fermi level. The above scattering elements are all obtained by demanding
continuity of scattering wave functions and their spatial derivatives [66].

When the magnetisation vector in the ferromagnetic region is static, the total
scattering matrix is simply the spin-generalisation of the well-known normal metal-
superconductor scattering matrix, derived in e.g. Ref. [66]. The components de-
scribing how an incoming electron is reflected as an electron, See

0 , or as a hole, She
0 ,

read:

See
0 (ε) = r11(ε) + t12(ε)r

A
eh(ε)r

∗
22(−ε)Me(ε)r

A
he(ε)t21(ε),

She
0 (ε) = t∗12(−ε)Me(ε)r

A
he(ε)t21(ε),

where Me(ε) =
[
1 − rA

he(ε)r22(ε)r
A
eh(ε)r

∗
22(−ε)

]−1
represents multiple reflections at

the F|N2 and N2|S interfaces.
Even though the matrices See

0 and She
0 look involved, they can be understood by

simple pictures of the actual scattering processes. For an incoming electron to be
reflected as an electron (a hole), it must undergo an even (odd) number of Andreev
reflections. Thus, See

0 is a sum of direct reflection at the N1|F interface (r11) and
a trajectory that sees the electron transmit through the ferromagnet once (t21),
undergo an even number of Andreev reflections (rA

ehr
∗
22Mer

A
he), before transmitting

back through F (t12). Since scattering in F itself will not turn an electron into a
hole, She

0 is made up of transmission through F (t21), an odd number of Andreev
reflections (Mer

A
he), followed by transmission through F as a hole (t∗12).

The caveat so far is that the above scattering matrices are only applicable for
time-independent scattering. Once the magnetisation vector starts precessing, the
scattering matrix sF attains a time-dependence. Simple matrix multiplication is now
replaced by time convolutions, which greatly complicates evaluation of the matrices.
However, restricting our attention to a slowly oscillating magnetisation vector, we
can systematically account for the time-dependence by expanding scattering matri-
ces in the frequencies Ω and ∂tθ.

It should be pointed out that Moskalets and Büttiker have previously developed a
general time-dependent scattering theory in a series of papers, see e.g. Refs. [96, 97].
They base their studies on the Floquet matrix S(ε, ε′), which is an energy repre-
sentation of the total scattering matrix, and develop a framework for calculating
currents in multiterminal structures. Time-dependent scattering is incorporated by
expanding in sideband contributions S(ε, ε ± nh̄Ω) of the scattering matrix, simi-
larly to the way we expand the scattering matrix in magnetisation vector frequency,
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mentioned above. The Floquet formulation and the time-dependent formulation are
equivalent, and observations made during the work with paper [4] agree with those
previously reported by Moskalets and Büttiker.

4.4 Charge and spin currents pumped by a time-

dependent magnetisation

Once the scattering matrices See and She are determined to first order in frequency
of the magnetisation vector, pumped charge and spin currents can be obtained by
evaluating Eq. (4.3) and (4.4). As mentioned in Sec. 4.3, only a transverse spin
current is pumped by a precessing magnetisation in normal metal-ferromagnet junc-
tions that are in electrochemical equilibrium [23]. A recent study of pumped charge
and spin currents in normal metal-ferromagnetic superconductor junctions reported
similar qualitative behaviour, but with the mixing conductance (4.1) augmented by
Andreev reflection processes:

g↑↓
N |FS

=
∑
m,n

[
δm,n − r↑mn(r↓mn)∗ + r↑he,mn(r↓he,mn)

∗
]
. (4.5)

Here rσ
he is the electron-hole reflection amplitude for an incoming spin-σ electron [98].

Based on these findings, we expect similar qualitative behaviour for the normal
metal-ferromagnet-superconductor structure sketched in Fig. 4.2.

Most of the previous work on spin pumping have been restricted to first-order
pumping in structures that are held in electro-chemical equilibrium. In paper [4],
we attempt to expand upon previous work by considering the effect of pumping
when a finite bias voltage is applied across the structure. As previously reported by
Moskalets and Büttiker, time-dependent scattering introduces non-trivial corrections
to currents when reservoirs are held at different chemical potentials [96]. These
corrections include gradient corrections to the adiabatic scattering matrix that must
be calculated explicitly for the specific system at hand. In paper [4], we find that
the charge current is not affected by these complications, but that spin current is.

The charge current retains its simple stationary value, and is thus unaffected by
the pumping parameter also in normal metal-ferromagnet-superconductor trilayers.
The result

Ic =
e

2πh̄

∫ ∞

−∞

dε [fe(ε) − fh(ε)] g̃(ε), (4.6)

echoes the current derived by de Jong and Beenakker for ferromagnet-superconductor
junctions [78], and by Brataas and Tserkovnyak for normal metal-ferromagnetic su-
perconductor junctions [98]. The distribution functions are those of the normal
metal reservoir:

fe(h)(ε) = f0(ε + (−)eV ) = [1 + exp{(ε + (−)eV )/kBT}]−1 ,
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and the total conductance is defined as in Refs. [78, 98]:

g̃ ≡
∑
m,n

{∣∣She
↓↑,mn

∣∣2 +
∣∣She

↑↓,mn

∣∣2} ,

where the summation runs over all transport modes. The matrix element She
↓↑ de-

scribes Andreev reflection of an incoming electron with spin parallel to the magneti-
sation vector, and is thus equivalent to the reflection amplitude r↑he in Ref. [98]. It
is evident from the difference in electron and hole distribution functions that the
charge current vanishes in electrochemical equilibrium. As a final note, it is worth
mentioning that even though we have found the same qualitative expression for the
charge current as that reported in the normal metal-ferromagnetic superconductor
junction, we do expect quantitative differences, since She will, in general, be different
from rhe of Ref. [98].

As advertised, the spin current is more involved. After careful evaluation, we
find that it can be written as

Is(t) = −
1

4π

∫ ∞

−∞

dε (fe(ε) − fh(ε))
(
p̃g̃m(t) − Tr

{
σ∗(ΓheShe†

0 + She
0 Γhe†)

})

+
h̄

8π

∫ ∞

−∞

dε (fe(ε) − fh(ε)) ∂ε

(
m × ∂tm

(
g̃ + 2Re

∑
m,n

She
↓↑,mnShe∗

↑↓,mn

)
+ 2∂tmIm

∑
m,n

She
↓↑,mnShe∗

↑↓,mn

)

+
h̄

4π

∫ ∞

−∞

dε ∂εfe(ε)
(
m × ∂tmReg̃↑↓ + ∂tmImg̃↑↓

)
, (4.7)

where the conductance polarisation

p̃ ≡
1

g̃

∑
m,n

{∣∣She
↓↑,mn

∣∣2 − ∣∣She
↑↓,mn

∣∣2} ,

and the generalised mixing conductance

g̃↑↓ ≡
∑
m,n

{
δm,n − See

↑,mnSee∗
↓,mn + She

↓↑,mnS
he∗
↑↓,mn

}
, (4.8)

are identical in form to those of Ref. [98]. The matrix Γhe is a “gradient remainder”
matrix introduced in paper [4], which contains contributions to the spin current that
are linear in pumping frequency. This is one of the non-trivial corrections to the
pumped current when the system is out of electro-chemical equilibrium, and it can
be shown that

Γhe = ih̄t∗12∂ε(Mer
A
he)∂tt21 + ih̄t∗12∂ε∂tMer

A
het21

+ ih̄t∗12∂tMe∂εM
−1
e Mer

A
het21 − ih̄t∗12Mer

A
he∂tr22∂εr

A
ehr

∗
22Mer

A
het21,
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for our model.
When the system is in electro-chemical equilibrium, we observe that only the

final line of Eq. (4.7) remains. This agrees with the pumped spin current that
has previously been obtained in normal metal-ferromagnet and in normal metal-
ferromagnetic superconductor junctions, albeit with quantitatively different mixing
conductances.

Even though the spin current in Eq. (4.7) is unwieldy, it is possible to arrive at
a simpler expression if we limit our attention to long ferromagnets. Based on the
discussion of various proximity effects in Sec. 4.2, we expect reduced influence of
Andreev reflections on the measured spin current as the ferromagnet increases in
length. The expression for the charge current, Eq. (4.6), should remain unchanged
however, since Andreev reflection is the process by which charge is transferred be-
tween the two reservoirs. To investigate how the spin current is affected when the
ferromagnet is made “long”, we consider ferromagnets longer than the transverse
spin coherence length,

Lx > Lsc ≡
π

|kF↑ − kF↓|
, (4.9)

where Lx is the length of the ferromagnet, and kFσ the Fermi wave vector of a spin-
σ particle. In this limit, one disregards “mixing transmission” terms ∼ tσt∗−σ [19],
which simplifies the mixing conductance:

g̃↑↓ → g↑↓
N |F =

∑
m,n

[
δm,n − r↑,mnr∗↓,mn

]
,

where rσ is the reflection coefficient for an electron of spin-σ impinging on the normal
metal-ferromagnet interface. By inspection, one also verifies that matrix products
involving the “gradient remainder” matrix are proportional to “mixing transmission”
terms, and should thus be disregarded in the limit (4.9). Taken together, we arrive
at the following expression for the spin current when Lx > Lsc:

Is(t) → −
1

4π

∫ ∞

−∞

dε (fe(ε) − fh(ε)) (p̃g̃m(t) − h̄m × ∂tm∂εg̃/2)

+
h̄

4π

∫ ∞

−∞

dε ∂εfe(ε)
(
m × ∂tmReg↑↓ + ∂tmImg↑↓

)
.

In this limit, the contributions of Andreev reflections are contained in the conduc-
tance polarisation and in the energy gradient of the conductance. In electro-chemical
equilibrium, both terms vanish, and the spin current is exclusively determined by the
normal metal-ferromagnet interface. The charge current (4.6) remains unchanged
in this limit, and will still be determined by details of the complete structure, as
expected.
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We study charge and spin transport in normal metal-ferromagnet-superconductor trilayers induced
by bias voltage and/or magnetization precession. Transport properties are discussed in terms of time-
dependent scattering theory. We assume that the superconducting gap is small on the energy scale
set by the Fermi energy and the ferromagnetic exchange splitting, and compute the non-equilibrium
charge and spin current response to first order in precession frequency, in the presence of a finite
applied voltage. We find that both charge current and longitudinal spin current are unaffected
by the precessing magnetization, while the pumped transverse spin current is determined by spin-
dependent conductances and details of the electron-hole scattering matrix. A simplified expression
for the transverse spin current is derived for structures where the ferromagnet is longer than the
transverse spin coherence length.

PACS numbers: 74.25.Fy,74.78.Na,85.75.-d,72.25.-b

I. INTRODUCTION

Experimental and theoretical studies of spin polarized
transport in hybrid magnetic nanostructures is a fron-
tier in mesoscopic physics. The most prominent example
of conceptual, technological, and commercial impact is
the giant magnetoresistance effect utilized in magnetic
information storage devices. In order to gain a deeper
understanding of spin and charge transport, and to en-
hance circuit functionality and efficiency, more complex
structures are fabricated and studied. In recent years,
hybrid nanoscale circuits containing normal conductors,
ferromagnets, and superconductors have been realized.
These structures allow observation and understanding of
competing mechanisms of electron-electron interactions.

The simultaneous existence of ferromagnetism and su-
perconductivity is rare. In ferromagnets, the exchange
interaction lifts the spin-degeneracy and induces an itin-
erant spin polarization. In s-wave superconductors, on
the other hand, electrons with anti-parallel spins form
Cooper pairs. In conventional ferromagnets (Fe, Ni, Co,
and alloys thereof), the large exchange interaction effi-
ciently dephases electron-hole pairs, and eliminates sin-
glet superconducting correlations over distances larger
than the ferromagnetic coherence length. This would
suggest a short-range superconducting proximity effect
in transition metal ferromagnets.1,2 Such a simple picture
cannot explain recent measurements on Co and Ni ferro-
magnets coupled to Al superconductors, however, where
a substantial resistance drop was observed at the onset of
superconductivity.3,4 The simple picture also fails to ex-
plain the long-range superconducting proximity effect re-
cently observed via the Josephson supercurrent through a

half-metallic ferromagnet.5 Subsequent theoretical work
show that induced triplet superconducting correlations
give rise to long ranged proximity effect in transition
metal ferromagnets.6,7 Triplet superconducting correla-
tions are insensitive to the pair-breaking exchange in-
teraction and exhibit a longer coherence length, similar
to that of superconducting correlations in normal met-
als. It is now established that spin-flip processes in a
ferromagnet can convert singlet into triplet pair correla-
tions. A spatially inhomogeneous magnetization texture8

or magnons9–11 are examples of spin-flip sources that are
able to induce long ranged triplet correlations.

In this report, we focus our attention on the influ-
ence of magnons on the transport properties in normal
metal-ferromagnet-superconductor systems. Even nor-
mal metal-ferromagnet systems without superconductors
exhibit intriguing physics, and especially the interaction
between spin and charge currents and the magnetic or-
der parameter in such structures have attracted tremen-
dous interest. For instance, a non-collinear spin flow to-
wards a ferromagnet exerts a torque on the magnetiza-
tion, a spin transfer torque, that can excite the magneti-
zation and even induce steady state, precessional motion
of the ferromagnetic order parameter.12,13 The inverse
effect is also of significant interest: A precessing ferro-
magnet in electrochemical equilibrium with its environ-
ment, acts as a“spin battery”by emitting (or“pumping”)
pure spin currents into neighboring materials.14 When
emitted spins are dissipated in adjacent materials, spin
pumping enhances magnetic dissipation in the precess-
ing ferromagnet, and thus increases observed linewidths
in FMR experiments.15

Some ideas from spin transfer physics in normal
metal-ferromagnet structures were recently used to



study superconductor-ferromagnet systems. A FMR
experiment16 and the following theoretical analysis17

have shown how spin pumping can be used to visualize
proximity effects and spin relaxation processes inside the
superconductor. In essence, in metallic contacts, ferro-
magnetic correlations reduce the superconducting order
parameter close to the layer interface, enabling pumped
sub-gap electrons to enter and deposit spin in the super-
conductor. This is a prime example of how the inverse
proximity effect affects the FMR linewidth broadening
when typical spin-flip lengths are comparable to the su-
perconducting coherence length.18

We direct our attention to a different aspect of the in-
terplay between magnetization and carrier dynamics in
ferromagnet-superconductor structures. In contrast to
the works mentioned above, where the magnetization dy-
namics have been the primary concern, we will consider
how a precessing magnetization and an applied voltage
bias induce spin and charge currents in a normal metal-
ferromagnet-superconductor (N|F|S) trilayer. The com-
puted charge currents can be measured directly, whereas
spin currents can possibly be measured by its dissipa-
tive effect on the precessing ferromagnet, its spin trans-
fer torque effect on a second ferromagnet, or via spin-
filtering as a charge buildup on another ferromagnet.14

Related to our work, sub-gap transport properties have
recently been studied in a normal metal-ferromagnetic
superconductor structure.19 It was shown how supercon-
ducting correlations, namely Andreev reflections at the
layer interface, add features to the results of spin and
charge pumping in normal metal-ferromagnet systems.
In this report, we also consider how pumping in the
N|F|S trilayer is related to pumping in the normal metal-
ferromagnetic superconductor system.

Diffusive transport in hybrid superconductor-normal
metal systems, is usually formulated within a quasiclassi-
cal description.20 Although this description give qualita-
tive insight into transport properties of superconductor-
ferromagnet systems,8,11 the formalism is limited to fer-
romagnets with exchange interactions much smaller than
the Fermi energy. Thus, a quasiclassical description can-
not be used to quantitatively study transport in transi-
tion metal ferromagnets Fe, Ni and Co used in experi-
ments. For this reason, we adopt the scattering theory
to transport.21

Scattering theory has proven most useful in the study
of stationary charge and spin currents in magnetoelec-
tronic structures,22 and the time-dependent generaliza-
tion has successfully been applied to describe para-
metric pumping of charge23–25 and spin currents.14

For the N|F|S structure under consideration, we de-
rive charge- and spin currents in the normal metal
conductor in response to a slowly precessing ferromag-
netic exchange field and applied bias voltage. We focus
on sub-gap energies, and how Andreev scattering con-
tributes to the conductivites of the currents. In electro-
chemical equilibrium, we make contact with the results
for pumping in normal metal-ferromagnetic superconduc-

tor structures.19 We proceed by detailing how time- and
energy gradients of the total scattering matrix contribute
to non-equilibrium pumped currents, and find that both
charge and longitudinal spin currents are unaffected by
the precessing magnetization. Finally, we consider non-
equilibrium charge and spin currents for trilayers where
the ferromagnetic region is longer than the transverse
spin coherence length.

This paper is organized in the following way: The
N|F|S system is described in Sec. II. In Sec. III, we
use time-dependent scattering theory to derive general
expressions for charge and spin currents to first order
in pumping frequency. The total scattering matrix for
the system is then invoked in Sec. IV to obtain non-
equilibrium pumped currents. Our conclusions are in
Sec. V.

II. MODEL DESCRIPTION

The system is sketched in Fig. 1. It consists of a su-
perconductor (S) in series with a ferromagnet (F) and
a normal metal lead (N1). N1 is ideally coupled to a
normal metal reservoir (Nres). We assume Nres and S
to be in local thermal equilibrium, and denote a pos-
sible chemical potential difference between the normal
and the superconducting side as μN − μS = eV . Spin-
orbit interactions are disregarded, and the ferromag-
netic order parameter is assumed to be homogeneous
and with a fixed magnitude Δxc inside F. Its direc-
tion is along the time-dependent unit vector m(t) =
(sin θ(t) cos Ωt, sin θ(t) sin Ωt, cos θ(t)). The precessing
magnetization serves as the pumping parameter in the
system.

F
m(t)

SN2N1

Nres

b

a

�
�

�
�
�
��

FIG. 1: A ferromagnetic scattering region (F) is connected to
a superconductor (S) and a normal metal reservoir (Nres) via
two normal metal leads (N1 and N2). Amplitudes of outgoing
(incoming) carrier states are given by b (a).

We focus on sub-gap transport properties. Thus, pos-
sible scattering processes include Andreev reflections at
the F|S interface26 and spin-dependent normal scattering
inside F. Following a standard procedure,27 the scatter-
ing problem is greatly simplified by spatially separating
regions where scattering processes occur. This is achieved



by inserting a fictitious normal metal lead (N2) between
F and S. We assume that N2 is longer than the Fermi
wavelength, so that asymptotic, plane wave solutions are
applicable in this region. The total scattering matrix will
be a concatenation of the scattering matrices for N1|F|N2

and for Andreev reflections at the N2|S interface. Trans-
port between F and S is mediated by the ballistic N2

lead.
The singlet superconductor is described by the BCS

Hamiltonian

Ĥ =
∑

σ=↑,↓

∫
dr Ψ̂†

σ(r)H0(r)Ψ̂σ(r)

+

∫
dr

{
Δ(r)Ψ̂†

↑(r)Ψ̂†
↓(r) + Δ∗(r)Ψ̂↓(r)Ψ̂↑(r)

}
, (1)

where H0 is the normal state, single-particle Hamiltonian
and Δ(r) the superconducting gap. We model the gap
by a step function, Δ(r) = ΔeiφΘ(x), where the phase
φ is constant, and x is the coordinate perpendicular to
the N2|S interface. We take the Fermi energy EF to be
the largest energy scale, and focus on the situation where
eV ≤ Δ � Δxc, EF . The Hamiltonian (1) is diagonalized
by the following Bogoliubov transformation28

Ψ̂σ(r) =
∑

n

{
γ̂nun(r, σ) + γ̂†

nv∗n(r, σ)
}

, (2)

where γ̂
(†)
n are quasiparticle annihilation (creation) oper-

ators that satisfy the fermionic anti-commutation rela-
tion

{γ̂m, γ̂†
n} = δm,n. (3)

The transformation (2) results in a matrix equation for
the quasiparticle eigenfunctions un and vn:(

H0(r) iΔ(r)σy

−iΔ∗(r)σy −H∗
0 (r)

)(
un(r)
vn(r)

)
= εn

(
un(r)
vn(r)

)
. (4)

The quasiparticle excitation energy εn is measured with
respect to the chemical potential of the superconductor,
which is set to zero. σy is a Pauli matrix operating in spin
space. The Bogoliubov-de Gennes Hamiltonian (4) is the
starting point when we in Sec. III B derive the appropri-
ate reflection amplitudes for quasiparticles impinging on
the superconductor interface.

III. TIME-DEPENDENT SCATTERING

THEORY

We now focus on the time-dependent scattering the-
ory for the N|F|S structure in Fig. 1, apply the general
framework established in Refs. 14,23–25,29, and make
use of the scattering theory for hybrid superconductor-
normal metal structures discussed in Refs. 27,30. We find
it most convenient to study a slowly precessing magne-
tization by a scattering matrix expressed in the Wigner

representation,20 making the derivation of pumped cur-
rents similar to that carried out for normal systems in
Refs. 31,32.

In order to describe a scattering potential of arbitrary
time-dependence, we start by considering the two-time
scattering matrix S(t, t′), that relates annihilation op-
erators between states outgoing and incoming from the
scattering region:

b̂α(t) =
∑

β

∫
dt′ Sαβ(t, t′)âβ(t′). (5)

As indicated in Fig. 1, b̂α (âα) annihilates outgoing (in-
coming) state α. α labels electron-hole Nambu space in-
dex, spin and transverse wave-guide number. We assume
that the reservoirs connected to the scattering region are
in local thermal equilibrium, and that incoming carriers
from the normal metal reservoir fulfill

〈â†
α(ε)âα′(ε′)〉 = δα,α′δ(ε − ε′)fα(ε), (6)

where the brackets indicate a quantum and statistical
average, and

fe(h)(ε) = f0(ε − σe(h)eV )

=
[
1 + e(ε−σe(h)eV )/kBT

]−1

, (7)

where σe(h) = +(−)1, and fe(h)(ε) is the Fermi-Dirac
distribution of incoming electrons (holes) at a charge bias
eV . We will now proceed by computing charge and spin
currents in the system.

A. Matrix current

We seek the right-going charge and spin currents in
normal metal lead 1, and start by introducing the matrix
current33

Î1,αβ(t) = 2πeτz
αα

(
â†

β(t)âα(t) − b̂†β(t)b̂α(t)
)

, (8)

where e is the electronic charge, and τz is a Pauli matrix
in electron-hole space:

τz =

(
1 0
0 −1

)
. (9)

Charge and spin currents are obtained from the matrix
current (8) as follows:

Ic(t) =
∑
α

〈Î1,αα(t)〉, (10)

and

Is(t) =
1

2e

∑
α,β

ραβ〈Î1,βα(t)〉, (11)



respectively. Summations run over electron-hole, spin
and mode space, and ρ is a matrix with diagonal struc-
ture in electron-hole space:

ραβ ≡

(
σαβ 0
0 σ∗

αβ

)
, (12)

and with a vector of the Pauli matrices and their complex
conjugates, as the diagonal elements.

For a slowly oscillating scatterer, it is conve-
nient to express the scattering matrix in the Wigner
representation20,31,32

Sαβ(t, t′) =

∫ ∞

0

dε

2π
e−iε(t−t′)Sαβ

(
ε;

t + t′

2

)
. (13)

In this representation, the matrix current is:

〈Î1,αβ(t)〉 =
e

2π
τz
αα

{
δα,β

∫ ∞

0

dε fα(ε) −
∑

γ

∫ ∞

−∞

dτ dT

∫ ∞

0

dε1 dε2

2π
fγ(τ)

× e−iε1(T−τ/2)eiε2(T+τ/2)Sαγ

(
ε2; t +

T + τ/2

2

)
S∗

βγ

(
ε1; t +

T − τ/2

2

)}
. (14)

The current is expressed in terms of the center and rel-
ative time coordinates T = (t′ + t′′)/2 and τ = t′′ − t′,
and the Fourier transform of the distribution function

fγ(τ) ≡

∫ ∞

0

dε

2π
e−iετfγ(ε). (15)

When the scattering matrix S(ε; t) is a concatena-
tion of multiple time-dependent scattering elements, the
Wigner representation of S will also be an infinite sum of
time and energy gradients.20 In the adiabatic approxima-
tion, we assume the scattering matrix evolves on a much
longer timescale than the typical dwell times of particles
inside the scattering region. In this regime, we formally
expand S as34

S(ε; t) = S0(ε; t) + A(ε; t) + O(∂2
t S0) (16)

where S0 is the “frozen” or instantaneous scattering ma-

trix, and the matrix A represents all first-order gradi-
ent corrections to S0 resulting from the concatenation
of time-dependent scattering elements that describe the
device. Unitarity of S to all orders in time- and energy-
gradients implies34

S0A
†+AS†

0 =
i

2

(
∂tS0∂εS

†
0 − ∂εS0∂tS

†
0

)
≡

1

2
P

{
S0; S

†
0

}
,

(17)
where a Poisson bracket has been defined to ease the
notation. In the following, scattering matrix arguments
(ε; t) are omitted in places where there is no risk of con-
fusion.

To obtain a local (in time) expression for the matrix
current (14), we Taylor expand S to first order in time
derivatives, and obtain the matrix current

〈Î1,αβ(t)〉 =
e

2π
τz
αα

∑
γ

∫ ∞

0

dε

{
(fα(ε) − fγ(ε))

(
S0,αγS∗

0,βγ + AαγS∗
0,βγ + S0,αγA∗

βγ −
1

2
P

{
S0,αγ ; S∗

0,βγ

})

+
i

2
(−∂εfγ(ε))

(
S0,αγ∂tS

∗
0,βγ − ∂tS0,αγS∗

0,βγ

)}
+ O

(
∂2

t S0

)
(18)

where Eqs. (16) and (17) have been used. The matrix
current in Eq. (18) is exact to first order in frequency of
the pumping parameter.

Finally, we observe that in the absence of a voltage
bias, the gradient corrections to the frozen scattering ma-
trix, represented by A, vanish from the matrix current. In
electro-chemical equilibrium, when V = 0, fe(ε) = fh(ε),

the first line of Eq. (18) vanishes, and the pumped current
is determined by the frozen scattering matrix. Naturally,
the same is also true for the time-dependent theory based
on Floquet scattering matrices.25



B. Scattering matrix for a N|F|S structure

In this section, the scattering matrix formalism derived
for N|S structures27 is applied to our N|F|S trilayer. As
described in Sec. II, the scattering description of a N|F|S
structure is greatly simplified by inserting a fictitious nor-
mal metal lead (N2) between the two scattering regions,
thereby spatially separating spin-dependent scattering in
F and Andreev reflection at the N2|S interface.27 The
scattering matrix SF , describing the disordered ferromag-
netic region, is block-diagonal in electron-hole space. We
write SF as

SF (ε; t) =

(
sF (ε; t) 0

0 sF (−ε; t)∗

)
, (19)

where the diagonal elements are

sF =

(
r11 t12
t21 r22

)
. (20)

Here, rii and tij are matrices in spin-space that describe
reflection of an incoming electron in lead i, and transmis-
sion of an electron from lead j to lead i, respectively.

Electrons and holes with opposite spins are coupled
by Andreev reflection at the superconductor interface,
where an incoming electron (hole) is reflected as a hole
(electron) with reversed spin direction. The reflection
amplitudes are derived by matching propagating wave
functions in N2 with evanescent wave functions in the su-
perconductor. The resulting scattering matrix reads27,35

rA =

(
0 rA

eh

rA
he 0

)
=

(
0 iασyeiφ

−iασye−iφ 0

)
, (21)

where α = exp [−i arccos(ε/Δ)].
The total scattering matrix of the N|F|S structure is a

concatenation of SF and rA, and in terms of the frozen
scattering matrices, we obtain the familiar results27,30

See
0 (ε; t) = r11(ε)

+ t12(ε)r
A
eh(ε)r∗22(−ε)Me(ε)r

A
he(ε)t21(ε), (22a)

Shh
0 (ε; t) = r∗11(−ε)

+ t∗12(−ε)rA
he(ε)r22(ε)Mh(ε)rA

eh(ε)t∗21(−ε), (22b)

Seh
0 (ε; t) = t12(ε)Mh(ε)rA

eh(ε)t∗21(−ε), (22c)

She
0 (ε; t) = t∗12(−ε)Me(ε)r

A
he(ε)t21(ε), (22d)

where time arguments are omitted on the right hand side
of the equations for sake of notation. Multiple reflections
between S and F, mediated by propagations through N2,
are described by

Me(ε) =
[
1 − rA

he(ε)r22(ε)r
A
eh(ε)r∗22(−ε)

]−1
, (23)

Mh(ε) =
[
1 − rA

eh(ε)r∗22(−ε)rA
he(ε)r22(ε)

]−1
. (24)

From Eqs. (22), and using rA
eh(−ε)∗ = rA

he(ε), one obtains
the following symmetry relations for the total scattering
matrix:

See(ε; t) =
[
Shh(−ε; t)

]∗
, (25a)

and

Seh(ε; t) =
[
She(−ε; t)

]∗
. (25b)

The frozen scattering matrices in Eqs. (22) are all time-
dependent due to the slowly varying magnetization in
the ferromagnet. Arguably the easiest way to evaluate
the matrix current, is to perform a spinor rotation that
aligns the spin quantization axis with the instantaneous
magnetization direction.14,19 The total scattering matrix

S0(ε; t) =

(
See

0 Seh
0

She
0 Shh

0

)
(26)

can be related to the total scattering matrix S in the
rotating frame by the spinor rotations

S0(ε; t) = W †(t)S(ε)W (t), (27)

where W (t) = V (t)U(t), with

U(t) =

(
U(t) 0

0 U†(t)

)
=

(
exp

[
iΩt
2 σz

]
0

0 exp
[
− iΩt

2 σz
]
)

,

(28)
and

V (t) =

(
V(t) 0
0 V(t)

)
=

⎛
⎜⎝exp

[
iθ(t)

2 σy
]

0

0 exp
[

iθ(t)
2 σy

]
⎞
⎟⎠ .

(29)

In the rotating frame, See
0 and Shh

0 are both diagonal in

spin space, while Seh
0 and She

0 , which mix spin σ electrons
with spin −σ holes, only have off-diagonal elements.

Now that the matrix current and relevant scattering
matrices are derived, we proceed to study pumped charge
and spin currents for a voltage biased trilayer structure.

IV. PUMPED CURRENTS OUT OF

EQUILIBRIUM

A complication that arises when the system is driven
out of equilibrium, is that time- and energy gradients of
the frozen scattering matrix must be evaluated. Before
presenting the detailed expressions for charge and spin
currents in the normal metal lead, we derive the required
gradient corrections. Due to electron-hole symmetry, it
is sufficient to consider only Ahe.

A. Gradient correction matrix

In the following, we determine Ahe by a formal gradient
expansion of the corresponding scattering matrix She,
whose full time and energy dependence of She is given
by (see Eq. (22d)):

She(ε; t) =
(
t∗12 ⊗ Me ⊗ rA

he ⊗ t21
)
(ε; t). (30)



Evaluating the convolutions in the Wigner represen-
tation can be done by systematically expanding the
exponentials:20

(A ⊗ B)(ε; t) = ei(∂A

ε
∂B

t
−∂A

t
∂B

ε )/2A(ε; t)B(ε; t), (31)

where the superscripts indicate which matrix the oper-
ator works on. A significant simplification of the final
result is achieved when Δ � Δxc, EF , the regime of in-
terest. Since we are evaluating the energy gradients close
to the Fermi level, ∂εsF � ∂εr

A, and we obtain the sim-
plified expression

Ahe(ε; t) ≈ −
i

2
∂ε∂tS

he
0 + it∗12∂ε(Mer

A
he)∂tt21

+ it∗12∂ε∂tMer
A
het21 + it∗12∂tMe∂εM

−1
e Mer

A
het21

− it∗12Mer
A
he∂tr22∂εr

A
ehr∗22Mer

A
het21

≡ −
i

2
∂ε∂tS

he
0 + Γhe. (32)

for the gradient matrix Ahe. Here, She
0 is the frozen scat-

tering matrix from Eq. (22d), and Before evaluating the
currents, we observe that Γhe in the rotating frame is di-
agonal in spin space. This fact, which is important when
evaluating non-equilibrium pumped charge and spin cur-
rents, can be seen from

Γhe = UV†ΓheVU , (33)

with

Γhe =
i

2
t∗12∂ε(M er

A
he)Λ(t21↑ − t21↓)

+
i

2
t∗12(M e↑ − Me↓)∂ε(r

A
heΛr22r

A
eh)r∗22M er

A
het21

−
i

2
t∗12Mer

A
he(r22↑ − r22↓)Λ∂εr

A
ehr∗22M er

A
het21

−
i

2
t∗12∂ε(M e↑ − M e↓)r

A
heΛt21, (34)

where

Λ ≡ VU∂t(m · σ)U†V† = ∂tθσ
x + sin θΩσy . (35)

Multiplying rA
he, which is ∼ σy, with Λ, and using that

the other components in the equation are all diagonal,
brings us to the conclusion that Γhe is diagonal in spin
space. Finally, we note that Γhe → 0 for a vanishing
ferromagnetic ordering parameter.

Once the gradient corrections to the frozen scatter-
ing matrix are derived, one can obtain non-equilibrium
pumped currents to first order in pumping frequency.

B. Pumped charge current

According to Eq. (10), the charge current is obtained
by tracing the matrix current (18) over electron-hole,

spin and mode space. Making use of the electron-hole
symmetries from Eqs. (25a)(25b), and using that both

Tr
{

∂tS
ee
0 See†

0

}
= 0 and Tr

{
∂tS

he
0 She†

0

}
= 0, one finds

that the pumped charge current is determined by

Ic(t) =
e

2π

∫ ∞

−∞

dε

(
[fe(ε) − fh(ε)] Tr

{
She

0 She†
0

+ AheShe†
0 + She

0 Ahe† −
1

2
P

{
She

0 ; She†
0

}})
, (36)

to first order in pumping parameter frequency. Using
that Ahe = − i

2∂ε∂tS
he
0 + Γhe, the current (36) simplifies

to

Ic(t) =
e

2π

∫ ∞

−∞

dε

(
[fe(ε) − fh(ε)]

× Tr
{
She

0 She†
0 + ΓheShe†

0 + She
0 Γhe†

})
. (37)

Any non-equilibrium pumped contributions to the cur-
rent are determined by the remainder Γhe from Eq. (34).

However, as pointed out at the end of Sec. IVA, Γhe is a
diagonal matrix in spin space. From Eq. (22d), we know

that She
0 is strictly off-diagonal in spin space. This im-

plies that Tr
{

ΓheShe†
0

}
= 0, and the charge current is

reduced to the stationary result:

Ic =
e

2π

∫ ∞

−∞

dε [fe(ε) − fh(ε)] g̃(ε), (38)

where the total conductance is defined as

g̃ ≡
∑
m,n

{∣∣∣She
↓↑,mn

∣∣∣2 +
∣∣∣She

↑↓,mn

∣∣∣2} . (39)

The result in Eq. (38) shows that there is no pumped
charge current in N|F|S structures, even when there is an
additional bias voltage driving the system. The station-
ary result is similar to that obtained in FS|N structures,19

a result that indicates that the total scattering matrix for
a disordered region coupled to a ferromagnetic supercon-
ductor, is structurally equivalent to that of a disordered
ferromagnetic region coupled to a superconductor. The
two structures have different scattering matrices, how-
ever, and therefore the expressions for the conductances
differ.

C. Pumped spin current

We proceed by evaluating the pumped spin current to
first order in pumping parameter frequency. Utilizing the
electron-hole symmetry relations for the total scattering
matrix, we obtain



Is(t) =
1

4π

∫ ∞

−∞

dε (fe(ε) − fh(ε))
[
Tr

{
σ∗

(
She

0 She†
0 + ΓheShe†

0 + She
0 Γhe†

)}
+ ∂εImTr

{
σ∗∂tS

he
0 She†

0

}]

+
1

4π

∫ ∞

−∞

dε (−∂εfe(ε))
[
ImTr

{
σ∂tS

ee
0 See†

0

}
− ImTr

{
σ∗∂tS

he
0 She†

0

}]
. (40)

Introducing the conductance polarization

p̃ ≡
1

g̃

∑
m,n

{∣∣∣She
↓↑,mn

∣∣∣2 − ∣∣∣She
↑↓,mn

∣∣∣2} , (41)

and the generalized mixing conductance19

g̃↑↓ ≡
∑
m,n

{
δm,n − See

↑,mnSee∗
↓,mn + She

↓↑,mnShe∗
↑↓,mn

}
. (42)

we find the following expression for the spin current:

Is(t) = −
1

4π

∫ ∞

−∞

dε (fe(ε) − fh(ε))
(
p̃g̃m(t) − Tr

{
σ∗(ΓheShe†

0 + She
0 Γhe†)

})

+
1

8π

∫ ∞

−∞

dε (fe(ε) − fh(ε))∂ε

(
m × ∂tm

(
g̃ + 2Re

∑
m,n

She
↓↑,mnShe∗

↑↓,mn

)
+ 2∂tmIm

∑
m,n

She
↓↑,mnShe∗

↑↓,mn

)

+
1

4π

∫ ∞

−∞

dε ∂εfe(ε)
(
m × ∂tmReg̃↑↓ + ∂tmImg̃↑↓

)
. (43)

The term ∼ p̃g̃m(t) on the right hand side of Eq. (43)
corresponds to the non-equilibrium spin current observed
also in the absence of a precessing magnetization vec-
tor. Terms in the final line are similar to those derived
previously within electro-chemical equilibrium pumping
theory for F|N14, and FS|N structures19. However, we
ask the reader to note that the generalized mixing con-
ductance in Eq. (3) in Ref. 19 is valid for triplet super-
conductors only; the correct mixing conductance for a
singlet superconductor is given by Eq. (42) above. The
remaining terms on the right hand side of Eq. (43) are
non-equilibrium, pumped contributions to the spin cur-
rent. They depend on pumping parameter frequency via
∂tm and the Λ term from Eq. (35), which is contained
in the gradient remainder Γhe.

Finally, we would like to point out that there are no
pumped contributions to the longitudinal spin current

I
||
s ≡ m · Is. The terms in the second and third line of

Eq. (43) are all perpendicular to m, so this leaves only
a possible gradient remainder contribution coming from
Γhe. However, due to the particular matrix structure of

Γhe mentioned in Sec. IVA, m ·Tr{σ∗ΓheShe†
0 } is trace-

less in spin space. This observation implies that, when
Δ � Δxc, EF , the longitudinal spin current is stationary
and unaffected by the precessing magnetization. Thus,

to first order in precession frequency:

I ||s = m(t) ·Is(t) = −
1

4π

∫ ∞

−∞

dε (fe(ε)− fh(ε))p̃g̃. (44)

In the following, we will investigate pumped charge and
spin currents when the ferromagnetic region is longer
than the typical transverse spin coherence length.

D. Long ferromagnet limit

When the length Lx of the ferromagnet is longer than
the transverse spin coherence length,

Lx > Lsc ≡
π

kF↑ − kF↓
, (45)

where kFσ is the Fermi wave vector of a spin σ electron,
we expect to find a mixing conductance that is deter-
mined by the properties of the N|F subsystem, charac-
terized by the spin-dependent conductances14

gσσ′

=
∑
m,n

(
δm,n − rσ,mnr∗σ′,mn

)
. (46)

Indeed, in the limit (45), one can disregard “mixing
transmission” terms,

∑
m,n tσ,mnt∗−σ,mn → 0, so that



∑
m,n She

↓↑,mnShe∗
↑↓,mn → 0. Disregarding interference

terms between reflected and transmitted electronic wave
functions, one obtains

∑
m,n

See
↑,mnSee∗

↓,mn →
∑
m,n

r11↑,mnr∗11↓,mn, (47)

for a long ferromagnet. This implies that g̃↑↓ → g↑↓,
while the total conductance g̃ and the conductance po-
larization p̃ remain unchanged. Since the mixing con-
ductance is now determined by properties of the N|F
structure, energy gradients of the mixing conductance
should be disregarded in the limit Δ � Δxc, EF , as de-
scribed in Sec. IVA. Finally, by an explicit calculation,

one can show that Tr{ΓheShe†
0 σ∗} ∼ tσt∗−σ, which van-

ishes when Eq. (45) holds. To summarize, when the fer-
romagnet is longer than the transverse spin coherence
length, the charge current and longitudinal spin current
are still given by

Ic =
e

2π

∫ ∞

−∞

dε (fe(ε) − fh(ε)) g̃, (48)

and

I ||s = −
1

4π

∫ ∞

−∞

dε (fe(ε) − fh(ε))p̃g̃, (49)

while the transverse spin current is simplified to

I⊥
s (t) =

1

8π

∫ ∞

−∞

dε (fe(ε) − fh(ε))m × ∂tm∂εg̃

+
1

4π

∫ ∞

−∞

dε ∂εfe(ε)
(
m × ∂tmReg↑↓ + ∂tmImg↑↓

)
.

(50)

With no applied bias voltage, the pumped spin current
in Eq. (50) is identical to that found in N|F systems14, as
should be expected. In this situation, emission of spins
from the ferromagnet into the normal metal are unaf-
fected by the superconductor.

To compare the exact result (43) with the long ferro-
magnet approximation of Eq. (50), we plot in Fig. 2 the
spin current along ∂tm for a ballistic N|F|S trilayer, as
a function of the ratio between the ferromagnet length
(Lx) and the transverse spin coherence length (Lsc) de-
fined in Eq. (45). When Lx ≤ Lsc, non-negligible“mixing
transmission”terms combine with energy gradients of the
scattering matrix and produce large deviations between
the two equations. As Lx exceeds Lsc, the fit improves
and the exact result oscillates towards the spin current
obtained by the approximate Eq. (50). These numerical
results suggest that, indeed, structure added to the trans-
verse spin current by scattering matrix energy gradients
and “mixing transmission” terms are most important for
ferromagnets with lengths shorter than, or approximately
equal to, the transverse spin coherence length.
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Eq. (43)
Eq. (50)

(a) Transverse spin component ∂tm · Is/Ω
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(b) Transverse spin component (m× ∂tm) · Is/Ω

FIG. 2: Exact (red line) and approximate (blue dashed line)
transverse spin currents for a ballistic N|F|S structure as
functions of length of the ferromagnetic region. In the plot,
EF = 10 eV, Δxc = 9EF /16, Δ = EF /160, eV = Δ/2 and
Ω = 0.2 GHz. The straight black lines serve as guides to the
eye, and indicate the non-zero values the currents oscillate
toward.

V. CONCLUSION

In conclusion, we have derived non-equilibrium
pumped charge and spin currents to first order in pump
frequency, using time-dependent scattering theory. Mag-
netization precession induces transverse spin currents,
but neither charge nor longitudinal spin currents, which
are both given by their stationary values. The currents
are expressed in terms of generalized, spin dependent con-
ductances, that include spin-dependent scattering in the
ferromagnet and Andreev reflection at the F|S interface.
Finally, we consider trilayers where the ferromagnetic re-
gion is longer than the transverse spin coherence length,
and derive an approximate expression for the transverse
spin current. Numerical calculation of the spin current in
a ballistic trilayer shows good agreement between exact
and approximate spin currents for ferromagnets whose



layer thicknesses exceed the transverse spin coherence
length.
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