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Highlights 
 

 Result uncertainty due to environmental effects and other inputs is estimated. 

 The analysis replaces costly repeated tests. 

 Input uncertainties are propagated using Monte Carlo simulations. 

 Variance decomposition shows contribution of the input factors. 

 

Abstract 
This paper describes how to estimate the uncertainty of manoeuvring sea trial results without performing 

repeated tests using only a simulation model. The approach is based on the Monte Carlo method of 

uncertainty propagation. Moreover, the global sensitivity analysis procedure based on variance 

decomposition is described. As an example, the method is applied to estimate the uncertainty of 10°/10° 

zigzag overshoot angles and a 20° turning circle advance and tactical diameter for a small research 

vessel. The estimated uncertainty is compared with corresponding experimental uncertainty assessed 

from repeated tests. The method can be useful for validation studies and other studies that involve the 

uncertainty of sea trial results. 
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1 Introduction 
Currently, ship manoeuvring simulation models are widely applied for training, standardization and 

engineering purposes. However, recent studies [1] have shown a large scatter in the results predicted by 

models developed by different organizations. This indicates high demand for the development of 

validation techniques, as well as for the improvement of ship simulation models. The ITTC 

Manoeuvring Committee indicates the importance and a lack of validation activities for ship simulators 

[2,3]. Validation is performed via comparison of predictions made by a simulator with experimental 

results for identical trials. Full-scale or model-scale experiments are used to obtain a benchmark for 

validation. However, model-scale experiments are prone to scale effects; therefore, full-scale 

experiments are preferable. Evaluation of the uncertainty of experimental results is an important part of 

validation. The ITTC issued a recommended procedure for the uncertainty analysis of free running 

model tests [4] that outlines the main sources of uncertainty in manoeuvring experiments. They use a 

combination of three approaches to obtain the combined uncertainty: measurement uncertainty analysis, 

repeatability analysis and uncertainty propagation analysis. The uncertainty propagation analysis is 

based on the Taylor series method. According to the method, the uncertainty of the experimental result 

due to some input factor is equal to the product of the uncertainty of this factor and the so-called 

uncertainty magnification factor (UMF). The UMF is a linear local absolute sensitivity coefficient and 

can be numerically estimated using a simulation model. The total combined uncertainty is calculated as 

the root summed squared of the individual uncertainty contributions. Although this approach can be 

partly applied to full-scale tests, some features cause a significant difference between full-scale tests and 

model-scale tests. The price of repetitions is very high for full-scale tests; therefore, the repetitions are 

rarely performed. Moreover, sea trial results are influenced by environmental effects, whose 

contribution to the resulting uncertainty is sometimes dominating. These effects are represented by two 

or more independent factors (such as current speed and direction, or wave height, period and direction) 

with strong interaction. Therefore, the combined result uncertainty cannot be estimated using the UMFs.  

In this paper, we consider an alternative approach to uncertainty propagation based on the Monte Carlo 

method [5,6]. The Monte Carlo method is more flexible and suitable for highly nonlinear systems and 

interconnected input factors. The Monte Carlo method was previously used in manoeuvring to propagate 

the uncertainty of force measurements in captive tests to the final uncertainty of  manoeuvring indices 

(overshoot angles) [7,8]. We apply the method to estimate the uncertainty of repeated tests and compare 

it with the experimentally determined uncertainty. We also describe the global sensitivity analysis based 

on variance decomposition and apply it to estimate the contribution of the input factors to the total 

uncertainty. Thus, the main goal of the paper is to demonstrate how to estimate uncertainty of full-scale 

manoeuvring tests in practice, without actually performing repeated tests. Therefore, we do not consider 

some possible sources of uncertainty which are negligible, while focusing on more important ones. We 

emphasize also that all the sensitivity coefficients obtained are specific for the case vessel and prescribed 

conditions. However, the same algorithm can be applied to any other vessel. 

The paper is organized as follows. Section 2 describes the Monte Carlo method of uncertainty 

propagation. Section 3 describes how to estimate the contribution of the input factors to the total 

uncertainty of the result using graphical analysis and variance decomposition. Section 4 describes how 

to use the Monte Carlo method to estimate the uncertainty of manoeuvring trial results. Section 5 

presents an example of the application of the analysis to estimate the uncertainty of 10°/10° zigzag and 

20° turning circle test results. Section 6 contains discussion and conclusions. 

2 Monte Carlo method 
Consider the result Y predicted by a simulation model. The result depends on the set of uncertain input 

factors X: 

  Y f X   (1)  



Each of the input factors in X has an associated known probability distribution. The goal of the Monte 

Carlo propagation method is to estimate the uncertainty of 𝑌 due to the uncertainty of X. The following 

algorithm describes the procedure: 

1. Generate a matrix A with numbers distributed randomly on [0, 1], with N rows and k columns, 

where N is a sufficiently large number, k is the number of input factors in X. N defines the total 

number of simulations. 

2. Apply the corresponding inverse cumulative distribution function to the samples of each column 

and compose a new matrix X from the resulting numbers: 

  1

ji i jix CDF a   (2) 

3. Now, each row of the matrix X contains a set of input parameters for (1). Perform the simulations 

for each row of X and calculate the array of results Y according to (1). 

4. According to the central limit theorem [9], the result Y is distributed approximately normally if 

it is not dominated by a single input factor. Therefore, calculate the standard deviation σ of Y 

and then calculate expanded uncertainty U95 by multiplying σ by the coverage factor 2. In some 

cases, the resulting distribution of Y is not close to a normal distribution. Then, to find the 95% 

confidence interval, build the empirical CDF of Y and find the lower and the upper border of 

the confidence interval as the argument of the function, where it equals 0.025 and 0.975, 

respectively. 

Thus, the Monte Carlo method provides the uncertainty of the model output due to the uncertainty of 

the input factors X. However, the method does not provide information regarding the contribution of 

each individual input factor to the total uncertainty.  

3 Global sensitivity analysis 
In the Taylor series method of uncertainty propagation, the individual contributions of the input factors’ 

uncertainty are calculated as a part of the analysis. In the Monte Carlo method, it is not possible to say 

directly which input parameters make the main contribution to result uncertainty. However, this 

knowledge is very useful. It increases confidence in the uncertainty analysis and helps to detect faults 

or to improve the experiment. 

We consider two methods to assess the relative importance of the input factors. The first method is 

graphical. According to the method, one should plot the result Y versus the input factor Xi (this will be 

illustrated in subsection 5.5, see Figure 6). If the result changes for different values of the input factor, 

or, in other words, a pattern is observed, the parameter is important. The stronger the pattern is, the more 

important the parameter is. The method is simple and does not demand additional simulations. However, 

it does not give any objective quantitative measure of the factor’s importance, and it is not suitable for 

studying the joint effects of several interacting factors. 

The second method is based on variance decomposition. The further description of the method closely 

follows [10,11]. The method uses the concept of a sensitivity index as the measure of factors’ 

importance. There are first-order, joint and total effect sensitivity indices. The first-order sensitivity 

index Si and the total effect STi of the factor Xi are defined correspondingly as:  
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where VXi(…), EXi(…) is the variance and the mean, respectively, of the argument (…) taken over Xi; 

VX~i(…), EX~i(…) is the variance or mean of the argument (…) taken over all factors but Xi; V(Y) is 

unconditional variance. Thus, Si is the expected relative reduction in variance V(Y) that would be 

obtained if Xi could be fixed; STi is the expected relative variance that would be left if all factors but Xi 

could be fixed. The joint sensitivity indices are defined by analogy, for instance, for two factors: 
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The higher-order effects (interactions) are defined as the residual component as: 

 ,

c

ij i j i jS S S S     (6) 

In fact, the unconditional variance can be decomposed as the sum of the first-order and higher-order 

effects:  
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The total effect of the factor Xi contains all terms in (7) that involve this factor, for instance: 

 1 1 12 13 123  TS S S S S       (8) 

To sum up the method, we list important properties of the sensitivity indices: 

 Si and STi are numbers between 0 and 1. Higher value indicates higher influence. 

 STi = 0 means that Xi does not influence Y and can be fixed. 

 Si shows the primary effect of the factor Xi. The difference (STi - Si) is the measure of the 

interaction between Xi and the other input factors. STi = Si indicates the absence of the 

interaction. 

One can use the following algorithm to estimate Si and STi numerically:  

1. Generate a 2k-dimensional Sobol sequence of quasi random numbers of length N (k – number 

of input parameters, N – sufficiently large number). The function ‘sobolset’ can be used in 

Matlab. Split the sequence into two matrices: A, containing first k columns of the sequence, and 

B, containing the remaining k columns.  

2. Compose auxiliary matrices AB
(i), where all columns come from A except for the ith column, 

which comes from B. 

3. For each column, use the mapping function CDFi
-1 that maps, uniformly distributed on [0, 1], 

numbers to the custom distributions according to (2). For simplicity, we keep the notation of the 

matrices. 

4. Run simulations using each row from the matrices A, B and AB
(i) as the input of model (1) and 

calculate corresponding outputs f(A), f(B) and f(AB
(i)). 

5. Calculate variance V(Y) using f(A) and f(B). 

6. Estimate conditional variances and expectations using formulas: 
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7. Calculate Si using (3) and (9) and STi using (4) and (10). 

 

Instead of the Sobol sequence, one can use random numbers to compose the design matrices A and B. 

However, more simulations can be necessary to achieve convergence. For alternative sampling 

techniques and formulas for conditional variance and mean, consult [10]. One needs N(k+2) simulations 

to estimate Si and STi for each input factor. The uncertainty of the result is obtained as part of the analysis 

(in step 5); therefore, no separate Monte Carlo simulations are needed. To calculate sensitivity indices 

for the joint effects, one needs to compose additional auxiliary matrices in step 2, substituting several 

columns instead of one column from B. 

 

The analysis based on variance decomposition is more objective compared to the graphical analysis. It 

provides the quantitative measures of the relative importance of the input factors and allows for 

investigating interaction effects. However, it demands more simulations than one needs for the Monte 

Carlo analysis itself. 

4 Application to manoeuvring trial results 
It is very expensive (and sometimes impossible) to perform multiple repetitions of the trial to estimate 

uncertainty statistically. Instead, the simulation model can be used. Thus, the Monte Carlo simulations 

represent virtual experiments with varying input factors. System-based manoeuvring models typically 

allow accounting for: uncertainties in control parameters, such as rudder angles, rpm and execute time; 

kinematic parameters during approach and initial conditions; current speed and direction; wind speed 

and direction; wave parameters (for combined manoeuvring and seakeeping models); mass and 

moments of inertia; measurement uncertainty. The distributions for the factors should be based on the 

observations during the experiment and the problem statement (an example is given below). Sometimes, 

a single physical parameter can have multiple associated uncertainties, which are considered as separate 

input factors with their own probability distributions. For instance, rudder angle can have associated 

bias uncertainty (non-zero neutral rudder angle) and random uncertainty (deviation from the commanded 

value, changing each rudder execution). Important factors that cannot be included in the Monte Carlo 

analysis are loading conditions and the corresponding change of hydrodynamic effects (this would 

demand recalculation of all hull hydrodynamic coefficients at each iteration of Monte Carlo 

simulations). These factors are not revealed in repeated tests (unless the loading conditions change). 

However, they are important for validation analysis. Uncertainty due to loading conditions can be 

estimated using CFD or another numerical method, and the Taylor series method of uncertainty 

propagation can be applied as explained in [4]. Thus, the total combined uncertainty of the result is 

calculated as: 

           
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where uC_Meas(Y) is the measurement uncertainty of Y, uC_MCM_prop(Y) is the propagation uncertainty for 

the factors that can be varied at each simulation and are estimated using the Monte Carlo method, and 

uC_TSM_prop(Y) is the propagation uncertainty for the factors that cannot be varied at each simulation and 

are estimated using the Taylor series method.  

5 Case study: uncertainty of repeated tests 

5.1 Case vessel description 

In this study, we use a relatively small (31.25 m overall length) research vessel, i.e., “Gunnerus”, as a 

case vessel (Figure 1). The ship is owned and operated by the Norwegian University of Science and 

Technology (NTNU), which makes it cheaper and easier to access for full-scale trials for research 

purposes. Due to this fact, it is possible to perform repeated tests. Table 1 lists the main parameters of 

the vessel. “Gunnerus” is equipped with two ducted propellers and two flapped rudders. The diesel-



electric propulsion system comprises main electric propulsion (2 x 500 kW) and the bow tunnel thruster 

(200 kW), powered by generators (3 x 500 kW). The cruising speed of the vessel is 10.5 knots.  

 

Figure 1. Research vessel “Gunnerus”. 

Table 1. Main dimensions of research vessel “Gunnerus”. 

Length overall [m] 31.25 

Length between perp. [m] 28.90 

Length in waterline [m] 29.90 

Breadth midships [m] 9.60 

Mast height / antenna [m] 14.85 / 19.70 

Dead weight [t] 107 

 

5.2 Measurement equipment 

To register ship motions, two integrated orientation and position sensors produced by Kongsberg Seatex 

were used: the permanently mounted Seapath 330+ with correction signals and the temporarily installed 

Seapath 330. The sensors combine GNSS signals and inertial measurements. Table 2 demonstrates some 

accuracy limits of the measurement system. Further information can be found on the webpage of the 

supplier (http://www.km.kongsberg.com).  

Table 2. Accuracy of the Seapath 330+ measurements, i.e., RMS, according to the manufacturer 

(position depends on the distance to the closest correction station). 

Heading 0.04° 

Position (X and Y) 1 cm + 1 ppm 

Velocity 0.03 m/s 

 

Propeller RPMs were measured via optical measurement of pulses from the shaft. Wire-over-

potentiometer distance sensors attached to each rudder stock were used for rudder angle measurements. 

The sensors were calibrated using the mechanical indicators on top of the rudder stocks. Rudder 

measurements by the DP system of the vessel were also recorded, where available. Wind direction and 

speed were measured by the wind sensor mounted on the mast of the ship, approximately 10 m above 

the water surface. 

Apart from the measurement equipment on the ship, two wave buoys were used. An advanced Fugro 

Oceanor Wavescan buoy was anchored near the trial site during the first series of trials (further referred 

to as “the fjord trials”). The buoy measures the directional wave spectrum, current speed and direction 

at 1.5 m depth, wind speed and direction, and some other parameters. For the second series of trials 

(further referred to as “the ocean trials”), a drifting Datawell DWR-G4 40 cm buoy was used. The buoy 

measures only its own position and a directional wave spectrum. 

http://www.km.kongsberg.com/


5.3 Experimental program and conditions 

Results from two different series of trials are used in the paper. Both were performed near Trondheim, 

Norway. The first series of trials (the fjord trials) was conducted in August 2013 in the Trondheim fjord 

(N 63° 29.717', E 10° 27.951'). The program included 10°/10° and 20°/20° zigzag tests with different 

approach speeds, executed both manually and in the automatic mode, 20° and 35° turning circles, speed 

tests, and some low speed and DP tests. In the automatic mode, the rudder is controlled by a special 

program in the DP system, which is made to automatically execute 10°/10° and 20°/20° zigzag tests. 

The fjord area is well sheltered, so despite the relatively strong wind (sometimes up to 8-10 m/s), the 

significant wave height was typically 0.2 – 0.3 m. Current speed measured by the buoy was up to 0.4 

m/s; the direction of the current varied due to tides and two rivers flowing into the fjord. The second 

series (the ocean trials) was conducted in the open ocean (N 63° 35.334', E 8° 5.980') in November 2013, 

with an emphasis on turning circles. Several tests were executed in a sheltered area behind islands, where 

no significant waves were observed. Wind speed was up to 6 m/s. Current was estimated by applying 

the IMO correction procedure [12] for each turning manoeuvre:  
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where points ψi are chosen during steady turning, then equal points ψi+2π are found on the next turn, 

and then corresponding differences of position r and time t are calculated. Note that in general, this 

estimate includes the actions of other factors, such as wind and waves. Current speed estimated using 

(12) was up to 0.5 m/s. 

5.4 Results of trials 

For demonstration, we focus only on two types of trials: 10°/10° zigzag (1st overshoot and 2nd overshoot 

angles) and 20° turning circle (advance and tactical diameter). The trials are executed in automatic mode. 

Five repetitions of each trial are used. Table 3 contains the mean values of first and second overshoot 

angles from the zigzag tests, standard uncertainty and relative expanded uncertainty, with 95% 

confidence. The latter one is calculated using a coverage factor of 2.776, taken from two tail Student’s 

t-distribution, with 95% confidence for four degrees of freedom (equal to the number of experiments 

minus one). Figure 2 demonstrates the time series of the heading and both rudder angles for the zigzag 

tests. It is easy to see some reasons for the scatter of overshoot angles. The rudder angles differ from the 

commanded 10° or –10° (the deviations are within 1°). The 2nd and 3rd rudder executions occur with 

some delay after variation of the heading reaches 10° (the mean of the delays is 1.6° and 2.1°, with a 

standard uncertainty of 0.3° and 0.5° for the 2nd and 3rd rudder executions, correspondingly). The rudders 

deviate 1°–2° during approach to keep the vessel on a straight course (which also causes deviations of 

yaw rate during the 1st execution).  

Table 3. Results of 10°/10° zigzag tests. 
 1st OA 2nd OA 

mean [deg] 8.5 7.9 

σ [deg] 0.5 0.4 

U95 [%] 16.7 13.9 



 

 

Figure 2. Results of 10°/10° zigzag trials. 

 

Table 4 contains the mean values of advance and tactical diameter from the turning circle tests. Corrected 

values after applying (12) are also included.  

 

Table 4. Results of the turning circle tests  
Advance Tactical diam. 

not cor. cor. not cor. cor. 

mean [m] 92.8 91.0 118.0 115.3 

σ [m] 7.2 1.5 7.7 1.4 

U95 [%] 21.7 4.5 18.2 3.4 

 

5.5 Uncertainty and sensitivity analysis 

In this section, we demonstrate how to estimate the uncertainty of repeated tests using a simulation 

model. The model is described in the Appendix. For simplicity, we neglect the measurement uncertainty, 

as it is negligible compared to uncertainty due to environmental effects and control factors. We also 

neglect all bias sources of uncertainty as they do not change during the tests series. Thus, the analysis 

answers the question “what would the uncertainty be if the test was repeated multiple times under 

particular conditions”. These conditions are based on the observations made during the sea trials. 

Table 5 lists input factors that are treated as uncertain in simulations of the turning circle test, with 

corresponding PDFs. All other model parameters are fixed and therefore do not affect the random 

uncertainty of the result. As no adjustment with respect to wind and current directions was made during 

the trials, every direction is equally possible. The uncertainty of initial conditions is presented by a single 

factor – the initial rudder deviations. The total number of simulations performed is 4000. Figure 3 and 

4 demonstrate distributions of the values of advance and tactical diameter for a corrected turning circle 

resulting from the Monte Carlo simulations. Table 6 presents the mean values, standard deviations and 

expanded uncertainty (a coverage factor of 2 is used) of advance and tactical diameter both for corrected 

and non-corrected turning circles. From the comparison of Table 4 and Table 6, it follows that the Monte 

Carlo analysis gives reasonable estimates of the uncertainties, although for the advance, the value of 

uncertainty is lower in the simulations. The mean values are also similar. 

 

 

 

 



Table 5. Input factors with distributions for turning circle simulations. 

ID Input factor Distribution 

1 Wind direction [deg] U(0, 360) 

2 Wind speed [m/s] N(5, 2) 

3 Current direction [deg] U(0, 360) 

4 Current speed [m/s] N(0.25, 0.07) 

5 Initial rudder dev. [deg] U(-1, 1) 

6 SB rudder dev.  [deg] U(-0.5, 0.5) 

7 PT rudder dev.  [deg] U(-0.5, 0.5) 

 

 

 

Figure 3. Results of Monte Carlo simulations of turning circles with correction: advance. 

 

 

 

Figure 4. Results of Monte Carlo simulations of turning circles with correction: tactical diameter. 



Table 6. Results of Monte Carlo simulations of turning circles. 

 Advance 
Advance 

(corr) 

Tact. 

diam. 

Tact. 

diam. 

(corr) 

mean [deg] 88.1 88.1 113.7 113.7 

σ [deg] 4.7 1.3 8.6 1.1 

U95 [%] 10.7 3.1 15.2 1.9 

 

To identify which of the factors from Table 5 make the largest contribution to the uncertainty of the 

results, we perform a sensitivity analysis. Figure 5 demonstrates the first-order sensitivity indices and 

the total effects for advance. For the current direction and current speed, the total effect is higher than 

the first-order sensitivity index. The same holds for the wind direction and speed, although less 

obviously. This difference indicates the presence of interaction between the input factors. The alternative 

way to see whether the input factor is important is graphical analysis. Figure 6 demonstrates advance 

resulting from Monte Carlo simulations plotted versus some input factors. A strong effect is observed 

for the current direction. There is also some pattern for current speed. However, the mean values of 

advance for each current speed are approximately the same. Therefore, there is strong interaction of 

current speed with other factors. A weaker effect is observed for wind direction, while almost no effect 

is observed for rudder deviation. Thus, graphical analysis leads to the same conclusions as variance-

based analysis.  

 

 
Figure 5. Sensitivity indices for advance (without correction). 

 



 

Figure 6. Advance [m] vs input parameters. 

 

Figure 7 and 8 present the sensitivity indices of the advance and the tactical diameter for non-corrected 

and corrected turning circles, where related input factors are combined. In both cases, the current effect 

is the main contribution to the combined uncertainty of the results for the non-corrected trajectory. The 

other factors are much less important. However, the effect of current is negligible if the correction is 

applied. The effect of wind is also partly reduced. Nevertheless, it becomes an important contribution 

to the total uncertainty of both results. A significant part of the total uncertainty of advance after 

correction is due to uncertainty in the initial conditions. The rudder deviation from the commanded value 

gives the main contribution to the advance for the corrected turning circle. These results are reasonable: 

initial conditions affect time when the heading changes by 90° or 180° and therefore have high influence 

on the distance travelled along the approach direction (but not in the transverse direction), while small 

rudder deviations affect the curvature of the track. 

 
Figure 7. Sensitivity indices for the advance (without and with correction). 

 



 

Figure 8. Sensitivity indices for the tactical diameter (without and with correction). 

 

Table 7 lists input factors that are treated as uncertain in the simulations of zigzag tests. The initial 

rudder deviation accounts for uncertainty in the initial conditions during the first execution. The heading 

deviations during the 2nd and 3rd execution account for the delay in the DP system controlling the 

automatically executed zigzag trials. Because the ship is small and responds quickly, the 2- to 4-second 

delay from detecting the threshold heading change to executing the rudder was a major problem, which 

was only partly compensated for by means of trial and error lowering of the actuation threshold angle 

from 10° or 20° to lower angles. In fact, the mean value of the heading that activates the rudder execution 

in the simulations is 12° instead of 10° to increase the similarity of the simulations to the experiment. 

Rudder deviations from commanded values are independent for each rudder and each execution. The 

effect of the current is not included as it does not affect the heading. 

Table 7. Input factors with distributions for zigzag simulations. 

ID  Input factor  Distribution 

1 Wind direction [deg] N(0, 15) 

2 Wind speed [m/s] N(5, 2) 

3 Initial rudder dev. [deg] U(-1, 1) 

4 Heading dev. 2nd exec. [deg] N(0, 0.5) 

5 Heading dev. 3rd exec. [deg] N(0, 0.5) 

6 SB rudder dev. 1st exec. [deg] U(-0.5, 0.5) 

7 PT rudder dev. 1st exec. [deg] U(-0.5, 0.5) 

8 SB rudder dev. 2nd exec. [deg] U(-0.5, 0.5) 

9 PT rudder dev. 2nd exec. [deg] U(-0.5, 0.5) 

10 SB rudder dev. 3rd exec. [deg] U(-0.5, 0.5) 

11 PT rudder dev. 3rd exec. [deg] U(-0.5, 0.5) 

 

Figure 9 and 10 demonstrate the histogram of the first and second overshoot angles resulting from Monte 

Carlo simulations of the zigzag test and corresponding normal distributions. The total number of 

simulations is 4000. Table 8 contains the mean values, the standard deviations and the relative expanded 



uncertainties of the overshoot angles. For the expanded uncertainties, a coverage factor of 2 is used. 

Comparing Table 3 and Table 8, we see that both the mean values and the expanded uncertainties are 

similar.  

 

Figure 9. Results of Monte Carlo simulations of the zigzag trial: 1st overshoot angle. 

 

Figure 10. Results of Monte Carlo simulations of the zigzag trial: 2nd overshoot angle. 

Table 8 Results of Monte Carlo simulations of the zigzag test 
 1st OA 2nd OA 

mean [deg] 9.5 9.4 

σ [deg] 0.6 0.6 

U95 [%] 12.5 12.1 

 

To evaluate the contribution of each of the factors to the total uncertainty of the result, we perform global 

sensitivity analysis. Figure 11 presents the sensitivity indices. For convenience, we grouped related 

factors such as wind speed and direction and starboard and port rudder deviations for the same execution. 

We now see that the uncertainty of the heading at the time of change of the rudders preceding the 

corresponding overshoot angle is the largest contribution to the total uncertainty. The rudder deviation 

(previously the overshoot) and wind also have some influence. The rest of the input factors are 

insignificant. The importance of the heading deviation is easy to understand: if heading during the rudder 



execution is different from the “planned” value (for example, 11° instead of 10°), this difference will 

directly affect the result (that is, that 1° will be added to the corresponding overshoot angle).  

 

Figure 11. Sensitivity indices for the first (top) and second (bottom) overshoot angles. 

6 Discussion and conclusions 
In the paper, we have demonstrated how to estimate the uncertainty of the results of manoeuvring trials 

due to environmental effects and other factors without performing repeated tests. Although not all 

factors affecting the results can be included in the analysis, the approach may give a reasonable estimate 

of the uncertainty of the result and significantly reduce the cost of analysis. Contrary to the Taylor series 

propagation method, the Monte Carlo method considered in the paper is suitable for the cases when the 

relation between a result and input factors is nonlinear and interaction effects between different input 

factors are important. It is easy to apply the method and interpret the results. However, the method 

demands multiple simulations; thus, it is applicable to system-based models with input factors that can 

easily be varied. The choice of the distributions of the input factors is very important for the estimated 

uncertainty of the result. Therefore, one should make this choice with care, for instance, based on 

observations during the sea trials. However, we would like to emphasise that it is much easier to make 

good engineering estimates of the uncertainty of input variables such as wind and current than to directly 

estimate the uncertainty of the output results trials. This is actually the key contribution of this paper.  

We have also demonstrated how to assess the contribution of individual input factors to the total 

uncertainty. The graphical method does not demand additional simulations. However, only the global 

sensitivity analysis based on the variance decomposition provides quantitative measures of the 

importance of the different factors and shows joint effects. Performing the global sensitivity analysis 

reduces the risk of a fault in the uncertainty analysis. The uncertainty estimates and the sensitivity of 

factors hold only for a specific vessel and specific input parameters. For instance, if the same simulations 

were performed with random wind direction, the combined uncertainty of overshoot angles and the 

sensitivity to wind would be bigger. Similarly, the delays of reaction and actuation of the control system 

or helmsman are important for this vessel, as it has a particularly fast reaction; however, they are mostly 

insignificant for slow reacting vessels. The analysis may be useful both in the design stage of the 



experiment to assess the possible uncertainty of the results and importance of different factors and 

possibly modify the experiment to reduce the uncertainty of the result and after the experiment to 

estimate the actual uncertainty. 
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Nomenclature 
σ  Standard deviation 

CDF   Cumulative distribution function 

N(μ, σ)   Normal distribution with the mean μ and the standard deviation σ 

OA  Overshoot angle 

PDF  Probability distribution function 

U(ξ1, ξ2)  Uniform distribution, with the lower and upper borders ξ1 and ξ2 

U95  Expanded uncertainty, with 95% confidence 

UMF  Uncertainty magnification factor 
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Appendix. Description of simulation model 
In this study, we use a relatively simple 3-degrees-of-freedom modular mathematical model. The model 

is mainly based on [13–15]. Figure A.1 illustrates reference systems and some corresponding notations. 

Coordinates of the ship η = [X Y ψ]T are expressed in the inertial reference frame {O-X-Y}, or {i}. 

Velocities of the ship υ = [u v r]T are expressed in the reference frame that moves with the ship {C-x-

y}, or {b}, with the origin at Lpp/2 and axes x and y pointing forward and toward starboard, respectively.  

 

 

Figure A.1. Reference systems: inertial {O-X-Y} and body-fixed {C-x-y}. 

 

The velocities in {b} and {i} are related as follows: 

 η R υ( )   (A.1) 

where R(ψ) is the rotation matrix from {b} to {i}. The manoeuvring model is expressed in {b} in general 

form as (see, for instance, [13]): 
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  (A.2) 

The subscripts ‘H’, ‘P’, ‘R’ and ‘W’ refer to the hull, propeller, rudder and wind forces, respectively. In 

the presence of a constant irrotational current with speed VC and direction αC, (A.2) holds for relative 

velocities (see [13]), defined as  
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Let us now consider the components of forces and moment on the right-hand side of (A.2). We use the 

following representation of the hull hydrodynamic velocity-dependent forces:  
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  (A.4) 



where X(u) is ship resistance. The propulsion forces are calculated using a propeller open water 

characteristic KT(J): 
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where  
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Here and in the following expressions, the subscripts ‘1’ and ‘2’ refer to the starboard and port sides, 

respectively. Forces acting on a rudder are based on lift and drag coefficients (see Figure A.2 for the 

angles definitions): 

 

 

 

 

2

2

1

2

1

2

Ri Ri R L i D i

Ri Ri R L i D i

X V A C sin C cos

Y V A C cos C sin

  

  

  

 

  (A.7) 

where 
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We assume that the whole rudder is situated within the propeller slipstream. Longitudinal inflow 

velocity is calculated as follows: 
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  (A.9) 

where 
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Figure A.2. Rudder inflow velocity and forces. 



 

The inflow to the rudders is affected by flow straightening: 

  Ri i Rv v rx    (A.11) 

Thus, 
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and 

 i i i      (A.13) 

The total rudder lateral force and moment include the rudders-hull interaction via the rudder-hull 

interaction coefficients aH, tR and xH: 
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Finally, the wind forces and moment are calculated according to [15]: 
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where ρair is air density, VW,a is the apparent speed of wind, AF and AL are the frontal and lateral projected 

areas of the ship, and L is the overall length of the ship.  

The hydrodynamic coefficients of the hull in (A.4) are estimated from PMM tests. Table A.1 lists the 

non-dimensional coefficients (terms ρLpp2U2/2 and ρLpp3U2/2 are used as dimensional factors for forces 

and moment, respectively; U=5.28 m/s). 

Table A.1. Hull hydrodynamic coefficients in non-dimensional form, 10-4. 

Xu
′ -0.89 Yr

′ 19.09 

Xuu
′ -0.79 Yv|v|

′ -19.68 

Xuuu
′ -0.90 Yr|r|

′ 2.46 

Xuuuu
′ -1.10 Yv|r|

′ 1.15 

Xuuuuu
′ -0.63 Yr|v|

′ 3.34 

Xu̇
′ -6.12 Nv

′ 20.55 

Yv̇
′ -37.34 Nr

′ -6.23 

Yṙ
′ 0.47 Nv|v|

′ 15.86 

Nv̇
′ 0.47 Nr|r|

′ -2.19 

Nṙ
′ -1.12 Nv|r|

′ 2.18 

Yv
′ -66.05 Nr|v|

′ -6.16 



Coefficients CL and CD for the flapped rudder are evaluated based on the results of open water tests 

found in [16]. The hull-propeller-rudder interaction coefficients are estimated from the free running 

model tests. The wind coefficients CW,X, CW,Y and CW,N for the research vessel are found in [15]. 

 

 

 

 

  

  

 

 

 

 

 

 


