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Abstract We present a Markov Chain Monte Carlo algorithm based on the Metropolis
algorithm for simulation of the flow of two immiscible fluids in a porous medium under
macroscopic steady-state conditions using a dynamical pore network model that tracks the
motion of the fluid interfaces. The Monte Carlo algorithm is based on the configuration
probability, where a configuration is defined by the positions of all fluid interfaces. We show
that the configuration probability is proportional to the inverse of the flow rate. Using a two-
dimensional network, advancing the interfaces using time integration, the computational time
scales as the linear system size to the fourth power, whereas the Monte Carlo computational
time scales as the linear size to the second power.We discuss the strengths and theweaknesses
of the algorithm.
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1 Introduction

The characterization of porous media at the pore level is undergoing a revolution (Blunt
et al. 2013). Through the use of new scanning techniques, we are capable of reconstructing
the pore space completely, including the tracking of motion of immiscible fluids. A gap is
now appearing between the geometrical characterization of porous media and our ability to
predict their flow properties based on this knowledge.

The pore scale may be of the order of microns, whereas the largest scales—e.g., the
reservoir scale—may be measured in kilometers. Hence, there are some eight orders of
magnitude between the smallest and the largest scales. At some intermediate scale, that
of the representative elementary volume (REV), the porous medium may be regarded as a
continuum and the equations governing the flow properties are differential equations. The
crucial problem is to construct these effective differential equations from the physics at the
pore scale. This is the upscaling problem. A possible path toward this goal is to use brute
computational power to link the pore-scale physics to pore networks large enough so that a
continuum description makes sense. Alas, this is still beyond what can be done numerically.
However, computational hardware and algorithms are steadily being improved, and we are
moving toward this goal.

It is the aim of this paper to introduce a new algorithm that improves significantly the
efficiency of network models (Joekar-Niasar and Hassanizadeh 2012). These are models that
are based on the skeletonization of the spaces in such a way that a network of links and nodes
emerge. Each link and node is associated with parameters that reflect the geometry of the
pore space they represent. The fluids are then advanced by time stepping some simplified
version of equations of motion of fluid. The bottleneck in this approach is the necessity to
solve the Kirchhoff equations to determine the pressure field whose gradient drive the fluids
in competitions with the capillary forces.

A different and at present popular computational approach, among several, is the lattice
Boltzmann method (Ramstad et al. 2010, 2012). This method, based on simultaneously solv-
ing the Boltzmann equations for different species of lattice gases, is very efficient compared
to the network approach necessitating solving the Kirchhoff equations. However, the draw-
back of the lattice Boltzmann approach is that one needs to resolve the pore space. Hence,
one needs to use a grid with a finer mask than the network used in the network approach.
This makes the lattice Boltzmann approach very efficient at the scale where the actual shape
of the pores matters, but not at the larger scale where the large-scale topology of the pore
network is more important. Further methods that resolve the flow at the pore level are, e.g.,
smoothed particle hydrodynamics (Tartakovsky andMeakin 2005; Ovaysi and Piri 2010; Liu
and Liu 2010) and density functional hydrodynamics (Armstrong et al. 2016).When network
models are so heavy numerically that the networks that can be studied are not much larger
than those studied with the pore-scale methods, the latter win as they can give a more detailed
description of the flow. However, if the computational limitations inherent to network models
could be overcome, they would form an important tool in resolving the scale-up problem:
At small scales network, models would be calibrated against the methods that are capable of
resolving the flow at the pore level. On large scales, their results may be extrapolated to scales
large enough for homogenization, i.e., replacing the original pore network by a continuum.
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As pointed out above, the bottleneck in the network models is the necessity to determine
the pressure field at each time step. When the time steps are determined by the motion of
the fluid interfaces, these will be small as they typically are set by the time lapse before
the next interface reaches a node in the network. Time stepping allows detailed questions
concerning how flow patterns develop in time to be answered. That is, the time stepping
provides a detailed sequence of configurations where each member of the sequence is the
child of the one before and the parent of the one after. If the quantities that are calculated are
averages over configurations, time stepping will provide too much information; for averages,
the order in which the configurations occur is of no consequence. If the order in which the
fluid configurations occur is scrambled, the averages remain unchanged. This is where the
Monte Carlo method enters. It provides a way to produce configurations that will result in the
same averages as those obtained through time stepping. The order in which the configurations
occur will be different from those obtained by time stepping. The time-stepping procedure
necessitates that there are tiny differences between each configuration in the sequence, since
the time steps have to be small. This limitation is overcome in the Monte Carlo method,
which we will describe here. This makes the Monte Carlo method much more efficient than
time stepping as we will see.

In Sect. 2, we describe the networkmodel we use to compare theMonte Carlomethodwith
time stepping, see Aker et al. (1998), Knudsen et al. (2002). In the next Sect. 3, we start by
explaining the statistical mechanics approach to immiscible two-phase flow in porous media
that lies behind the Monte Carlo algorithm we propose (Hansen et al. 2016; Savani et al.
2016). In particular, we derive the configuration probability—the probability that a given
distribution of fluid interfaces in the model will appear. This is also known as the ensemble
distribution in the statistical physics community. Based on this knowledge, we then go on
to describe the Monte Carlo algorithm itself. This section is followed by Sect. 4 where we
compare theMonteCarlomethodwith time stepping using the same networkmodel described
in Sect. 2. We then go on to compare the efficiency in terms of computational cost of the two
methods. We end this section by discussing the limitations of the Monte Carlo algorithm as
it now stands and point toward how these may be overcome. We end by Sect. 5 where we
summarize the work and draw our conclusions.

2 Network Model

In order to have a concrete system to work with, we describe here the details of the network
modelwe use. Themodel is essentially the one first developed in referencesAker et al. (1998),
Knudsen et al. (2002). For simplicity, we do not consider a reconstructed pore network based
on a real porous medium (Tørå et al. 2011; Ramstad et al. 2009). Rather, we simply use a
two-dimensional square network, with disorder in the pore radii, oriented at 45◦ with respect
to the average flow direction as shown in Fig. 1. As described in Knudsen et al. (2002), we
use bi-periodic boundary conditions. Hence, the network takes a form of the surface of a
torus. In this way, the two-phase flow enters a steady state after an initial transient period.
This steady state does not mean that the fluid interfaces are static. Rather, we use capillary
numbers high enough so that fluid clusters incessantly form and break up. By steady state,
we mean that the macroscopic averages—averages over the entire network—are well defined
and do not drift.
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Fig. 1 Geometry of the pore
network we use. The shaded area
constitutes a link between two
nodes

Fig. 2 This is one of the links in
the network. The wetting and
non-wetting fluids, colored by
white and gray, respectively, are
separated by interfaces. Each
interface provides a capillary
pressure pc(x) that points in the
direction from the non-wetting
toward the wetting fluid. Through
the link, a flow q passes. We
indicate the two node pressures
p1 and p2 at the end of the link

q

l x0

pp 21
p(x)c

The network contains L × L links. All links have equal length l, but their radii have been
drawn from a uniform distribution of random numbers in the interval [0.1l, 0.4l]. We set
l = 1mm. We neglect gravitational effects.

Fluid flow through each link in the network is modeled using the Washburn equation
(Washburn 1921), see Fig. 2. There is a volume flow q passing through it driven by the
two pressures p1 and p2. Each fluid interface contributes a capillary pressure pc(x) where
x ∈ [0, l] is the position of the interface. The capillary pressure is given by theYoung–Laplace
equation

|pc(x)| = 2γ cos θ

r0

[
1 − cos

(
2π

x

l

)]
, (1)

where γ is the surface tension, θ is the contact angle between the interface and the pore wall.
We set γ cos θ = 30dyn/cm. r0 is the average link radius.We assume that the link has a shape
so that pc attains the given x dependence. It has been chosen so that pc(0) = pc(l) = 0 and
maxx |pc(x)| = |pc(l/2)|. The Washburn equation then becomes
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q = − πr40
8μav

[
p2 − p1 −

∑
i

pc(xi )

]
, (2)

where μav = snwμnw + swμw is the effective viscosity. snw = lnw/ l and sw = lw/ l are the
fractions of the link length that cover the non-wetting and wetting fluids, respectively, so that
snw + sw = 1. We set μnw = μw = 1poise.

We define the capillary number Ca as

Ca = 〈|q|〉〈μav〉
γπ〈r0〉2 , (3)

where 〈· · · 〉 is an average over all links.
A pressure difference �P is applied across the network. This is done in spite of the

network being periodic in the direction of the pressure difference, see Knudsen et al. (2002).
By demanding balance of flow at each node using the Washburn equation (2), we determine
the pressures (pi ) at the nodes. This is done by solving the corresponding matrix inversion
problem by using the conjugate gradient algorithm (Batrouni and Hansen 1988).

When the pressures at nodes are known, the flow qi j—here between neighboring nodes i
and j connected by a link—is calculated using Eq. (2). Knowing the velocity of the interfaces
in each link, we then determine the time step such that any meniscus can move a maximum
distance, say, one-tenth of the length of corresponding link in that time. All the interfaces are
then moved accordingly, and the pressure at the nodes are determined again by the conjugate
gradient algorithm. This is equivalent to event-drivenmolecular dynamics.When an interface
reaches the node, the interface will spread into the links that are connected to the node and
which have fluid entering them from the node. The rules for how this is done are described
in detail in Knudsen et al. (2002).

3 Metropolis Monte Carlo

We first describe the theory that lies behind the Monte Carlo algorithm that we present. We
need to introduce the concepts of configuration, and configuration probability, also known
as the ensemble distribution in the statistical mechanics community. We then go on to derive
the configurational probability. Armed with this, we construct the Monte Carlo algorithm
(Press et al. 2007) after having presented a short review of the Metropolis version of Monte
Carlo (Press et al. 2007; Metropolis et al. 1953).

3.1 Statistical Mechanics of Immiscible Two-Phase Flow

Sinha et al. (2013) studied the motion of bubbles in a single capillary tube with varying
radius. Suppose that the capillary tube has a length L and a radius that varies as r = r0/[1−
a cos 2πx/ l]where l � L , a is an amplitude and r0 is the average radius of the tube. Suppose
furthermore that the tube is filled with wetting fluid except for a bubble of length �xb and a
center position xb. By using Eq. (1), one derives the net capillary force from the two interfaces
that limit the bubble as,

pb(xb) = −σ sin

(
2πxb
l

)
, (4)
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where σ = 4aγ cos θ sin(π�xb/ l)/r0. By combining this equation with the Washburn
equation (2), one finds

ẋb = − r0
8lμav

[
�p + σ sin

(
2πxb
l

)]
, (5)

where πr20 ẋb = q , and�p = (l/L)�P where�P is the pressure difference across the tube.
Suppose there is a quantity f = f (xb) that depends on the position of the bubble in the

capillary tube. For example, f might be the flow q . Let us now assume that �P does not
vary in time. The time average of f is then

f = 1

Tb

∫ Tb

0
f (xb(t)) dt, (6)

where xb(t) is the time integration of the Washburn equation (2) and the time period
Tb = (2πσ)/

√
�p − σ 2. We note, and this is the crucial observation, that we may change

integration variable from time t to bubble position xb,

f = 1

Tb

∫ l

0
f (xb)

dxb
dxb/dt

=
∫ l

0
f (xb)Π(xb)dxb, (7)

where

Π(xb) = 1

Tb(dxb/dt)
= πr20

Tb

1

q
(8)

is the configuration probability. That is, the configuration of the tube is given by the position
of xb of the bubble. Equation (8) gives the probability density to find the bubble at position
xb—and hence in that configuration.

The Washburn equation (5) gives the motion of the bubble that is used in Eqs. (7) and (8).
The Washburn equation assumes that we control the pressure drop �P . If we on the other
hand control the flow q , the equation of motion becomes

ẋb = q

πr20
. (9)

The time period now becomes

Tb = πr20 L

q
, (10)

and hence the configurational probability is

Π(xb) = πr20
Tb

1

q
= 1

L
, (11)

which states that all positions of the bubble are equally probable.
To ramp up the complexity of the problem, we assume that there are N bubbles in the

one-dimensional tube. The centers of mass of bubble number j ∈ [1, N ] are x j , and it has a
width of �x j . Since the system is one dimensional, all bubbles move with the same speed
ẋ j = ẋ1. The Washburn equation is then

ẋ j = ẋ1 = − r0
8Lμav

⎡
⎣�p +

N∑
j=1

γ j sin

(
2π

l
(x1 + δx j )

)⎤
⎦ , (12)
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where δx j = x j − x1 and

γ j = 4σa

r0
sin

(
π�x j

l

)
. (13)

Solving the equations of motion (12) gives x j = x j (t). We may invert x1 = x1(t) to get
t = t (x1). Hence, we then have x j (x1) = x j (t (x1)) for all j . Suppose nowwe have a function
f = f (x1, . . . , xN ), analogous to the one introduced in Eq. (7). Its time average is

f = 1

Tb

∫ Tb

0
f (x1(t), . . . , xN (t)) dt

= 1

Tb

∫ L

0
f (x1, . . . , xN (x1))

dx1
dx1/dt

=
∫ L

0
f (x1, . . . , xN (x1)) Π(x1)dx1, (14)

where

Π(x1) = 1

Tb

1

(dx1/dt)
= πr20

Tb

1

q
, (15)

where q = πr20 ẋ1. This is precisely the same expression as in (8).
We now turn to complex network topologies. For concreteness, we may imagine a

two-dimensional square network. However, the arguments presented in the following are
general. A configuration is given by the position of all interfaces. Let us denote that
x = (x1, x1, x2, . . . , xN ), where xi is the position of the i th interface. Hence, xi contains
information both on which link the interface sits in and where it sits in the link. A flow
Q passes through the network. The flow equations for the network consist of a Washburn
constitutive equation for each link combined with the Kirchhoff equations distributing the
flow between the links. The motion of the interfaces is highly nonlinear, but of the form
ẋi = gi (x). Solving these equations gives x j = x j (t).

Again we consider a function f = f (x) of the position of the interfaces. Its time average
is

f = 1

Tb

∫ Tb

0
f (x(t)) dt = 1

Tb

∫ L

0
f (x(xi ))

dxi
dxi/dt

=
∫ L

0
f (x(xi )) Π(xi )dxi . (16)

Here, we have inverted xi = xi (t) so that we have t = t (xi ) and then substituted x(t) =
x(t (xi )) = x(xi ). The configurational probability is defined as before,

Π(x) = 1

Tb

1

dxi/dt
. (17)

Let us now choose xi = x1 to be an interface moving in a link that carries all the flow in the
network. Such a link is a capillary tube connected in series with the rest of the network. In
this case, we have ẋ1 = Q/πr20 , where Q is the total flow. Hence, we have

Π(x1) = πr20
Tb

1

Q
. (18)

We have in the discussion so far compared the time evolution of a given sample defined by
an initial configuration of interfaces. We now imagine an ensemble of initial configurations
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of interfaces. Each sample evolves in time, and there will be a configurational probability
(18) for each. This will have the same value for each configuration x that corresponds to the
same flow Q. Hence, we have the configurational probability

Π(x) ∝ 1

Q
. (19)

This equation is the major theoretical result of this paper: all configurations corresponding
to the same Q are equally probable. Intuitively, Eq. (19) makes sense: The slower the flow,
proportionally the more the system stays in—or close to—a given configuration (Savani et al.
2016).

Is the system ergodic? Equations (7), (14) and (16) answer this question positively. Time
averages give, by construction, the same results as configurational averages.

3.2 Implementation of the Metropolis Algorithm

In order to present the details of the Metropolis Monte Carlo algorithm that we propose, we
first review the general formulation of the Metropolis algorithm (Krauth 2006; Landau and
Binder 2015).

3.2.1 General Considerations

We have a set of configurations characterized by the variable x, the positions of the interfaces.
We now wish to construct a biased random walk through these configurations so that the
number of times each configuration is visited—i.e., the random walk comes within dx of the
configuration—is proportional toΠ(x), proportional to the probability for that configuration.
The Metropolis algorithm accomplishes this goal. In order to do so, a transitional probability
density from state x to state x′ is constructed as

Π(x, x′) = π(x, x′) min

(
1,

Π(x′)
Π(x)

)
. (20)

where π(x, x′) is the probability density to pick trial configuration x′, given that the system
is in configuration x. It is crucial that π(x′, x) is symmetric,

π(x, x′) = π(x′, x). (21)

Equations (20) and (21) ensure detailed balance,

Π(x)Π(x, x′) = Π(x′)Π(x′, x). (22)

Detailed balance guarantees that the biased random walk visits the configurations x with a
frequency proportional to Π(x). The generated configurations follow the ensemble distrib-
ution.

When we combine Eqs. (19) and (20), we have

Π(x, x′) = π(x, x′) min

(
1,

Q(x)
Q(x′)

)
. (23)

3.2.2 The Implementation

The Metropolis Monte Carlo algorithm based on Eq. (23) consists of two crucial steps. The
first step consists in generating a trial configuration, and the second step consists in deciding
whether to keep the old configuration or replacing it with the trial configuration.
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Fig. 3 We show here a typical
network of the kind we use for
comparing the time stepping and
Monte Carlo methods. The
network is bi-periodic, and the
flow is from the bottom toward
the top. The dark red constitutes
the non-wetting fluid and the
gray constitutes the wetting fluid.
When using the Monte Carlo
method, a random sub-network is
chosen as shown in the box, taken
out of the network, integrated
forward in time after having been
made bi-periodic, and then
re-entered into the network. This
is the heart of the Metropolis
Monte Carlo algorithm

The first step, generating the trial configuration, is governed by the trial configuration
probability π(x, x′), which must obey the symmetry (21). That is, if the system is in config-
uration x, the probability to pick a trial configuration x′ must be equal to the probability to
pick as trial configuration x if the system is in configuration x′.

Suppose the system is in configuration x. One needs to define a neighborhood of config-
urations among which the trial configuration is chosen. If the neighborhood is too restricted,
the Monte Carlo random walk will take steps that are too small and hence would be ineffi-
cient. If, on the other hand, the neighborhood is too large, the random walk ends up doing
huge steps that will miss the details.

We propose generating the trial configurations as follows. Our system is shown in Fig. 3
and consists of L × L links as described in Sect. 2. There is a flow qi j through link i j
connecting the neighboring nodes i and j . There is a total flow rate Q in the network given
by

Q = 1

L

∑
all i j

qi j , (24)

and a corresponding pressure drop �P .
We choose a randomly positioned sub-network as shown in Fig. 3. The network consists

ofΛ×Λ links.We “lift” the sub-network out of the complete network and fold it into a torus,
i.e., implementing bi-periodic boundary conditions. The configurations of fluid interfaces in
the sub-network remain unchanged at this point.

We calculate the flow rate in the sub-network

Θ = 1

Λ

∑
i j in sub network

qi j . (25)

By solving the Kirchhoff equations on the sub-network, we time step the configuration for-
wards in time while keeping the flow rate Θ constant. We end the time integration when
4—arbitrarily chosen—sub-network pore volumes have passed through it.
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Fig. 4 Non-wetting fractional flow (Fnw) as a function of non-wetting saturation (Snw) in the steady state
obtained via Monte Carlo simulations (MC) with constant flow rate (Q) at capillary numbers Ca = 0.1 and
0.01. Results are compared with that obtained via time-stepping simulations (TS). The diagonal dashed lines
in the plots imply Fnw = Snw, a system of miscible fluids would follow that line. The data are averaged over
10 samples

The bi-periodic boundaries of the sub-network are then opened up, and the sub-network
with the new configuration of fluid interfaces is placed back into the full network. This is
then the trial configuration x′.

Part of the probabilistic choice of the trial configuration that defines π(x, x′) rests on the
choice of the sub-network: Its position is picked at random. Hence, if the system is in state x
or in trial state x′, the probability to pick a particular sub-network is the same. This makes this
part of the choice of trial configuration symmetric. When the sub-network is time stepped
for 4 sub-system pore volumes, this is done at constant flow rate Θ . Hence, all sub-network
configurations are equally probable, see Eq. (19). Hence, also this part of the choice of trial
configuration is symmetric. The full probability π(x, x′) is the probability of picking a given
sub-network times the probability that a given configuration will occur. Combining the two
leads to the necessary symmetry (21).

We point out here that whereas the configurational probability Π(x) in (19) is valid for
all configurations, through the way we generate our samples, we are restricting ourselves
to physically realistic samples in that they are generated through time-stepping parts of the
system. We cannot at this stage prove that this does not bias our sampling.

Once the trial configuration x has been generated, it is necessary to calculate the total flow
rate Q = Q(x′) in the network. We then decide to accept the trial configuration x′ by using
(23). This defines a Monte Carlo update.

We repeat this procedure until each link in the network has been part of at least one
sub-network. This defines a Monte Carlo sweep.

4 Results

We now present numerical results of the Monte Carlo simulation considering the model
described in Sect. 2, and we will compare themwith the results by time-stepping simulations.
Simulations are performed for two different ensembles, one is when the total flow rate Q is
kept constant (CQ ensemble) and the other when the total pressure drop �P is kept constant
(CP ensemble). A network of 40×40 links (L = 40) is considered for both Monte Carlo and
time-stepping procedure. The sub-network size is 20×20 links (Λ = 20). To identifywhether
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the system has reached the steady state, wemeasured the quantities as a function of time steps
in time stepping and as a function of sweeps in the case of Monte Carlo. We then identified
the steady states when the averages of measured quantities (e.g., Fnw and �P or Q) did not
drift with time or with sweeps. We then take average over time (time stepping) or sweeps
(Monte Carlo), which give us the time average and the ensemble average, respectively. We
average 10 different networks, but with the same sequence of networks for both Monte Carlo
and time stepping. First we present the results for CQ ensemble. Two capillary numbers,
Ca = 0.1 and 0.01, are used, and for each Ca, simulations are performed for different values
of non-wetting saturations in intervals of 0.05 from 0.05 to 0.95.

4.1 Constant Q Ensemble

With Q constant, the Metropolis Monte Carlo algorithm becomes very simple. Equation (23)
simply becomes

Π(x, x′) = π(x, x′). (26)

In other words, all trial configurations are accepted.
In Fig. 4, we plot Fnw—the non-wetting fractional flow—as a function of Snw—the non-

wetting saturation—where the circles and the squares denote the results from Monte Carlo
and time stepping, respectively. The plots, as expected, show an S-shape. This is because
the two immiscible fluids do not flow equally, and the one with higher saturation dominates.
Hence, the curve does not follow the diagonal dashed line, which corresponds to Fnw = Snw,
shown in the figure. Rather, Fnw is less than Snw for low values of Snw and higher than Snw
for higher value of Snw. It therefore crosses the Fnw = Snw line at some point, which is not
at Snw = 0.5. This is due to the asymmetry between the two fluids, as one is more wetting
than the other with respect to the pore walls. This behavior is more prominent for the lower
value of Ca, as capillary forces play a more dominant role. The curves from the Monte Carlo
and time-stepping calculations fall on top of each other for most of the lower to intermediate
range of the saturation values, and we only see some difference at very high or low Snw. We
will present a more quantitative comparison between the results of Monte Carlo and time
stepping later in Sect. 4.4. The variation of total pressure drop �P for the two capillary
numbers as a function of Snw is shown in Fig. 5. Similar to the fractional flow plots, we see
that the results are same for Monte Carlo and time stepping for a wide range of Snw. We

0.0 0.2 0.4 0.6 0.8 1.0
Snw

20.5

21.0

21.5

22.0

22.5

23.0

ΔP
 (k

Pa
)

MC
TS

Ca = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
Snw

2.0

3.0

4.0

5.0

6.0

7.0

Δ P
 (k

Pa
)

MC
TS

Ca = 0.01

Fig. 5 Values of pressure difference (�P) for constant flow rate (Q) in the steady state as a function of
non-wetting saturation (Snw) for the capillary numbers Ca = 0.1 and 0.01 obtained via Monte Carlo (MC)
simulations and time stepping (TS). The data are averaged over 10 samples
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only see differences at high values of Snw. �P increases with Snw, reaching a maximum at
some intermediate saturation and then decreases again. When Snw increases from zero, more
and more interfaces appear in the system causing an increase in capillary barriers associated
with interfaces. As the total flow rate Q is constant, a higher pressure is needed to overcome
the capillary barriers. The decrease of �P after the maximum is due to the decrease in the
number of interfaces blocking the fluids.

4.2 Constant �P Ensemble

We now turn to the constant pressure ensemble. Here we keep �P constant throughout the
calculations. In this case, the Metropolis Monte Carlo algorithm, Eq. (23), becomes

Π(x, x′) = π(x, x′) min

(
1,

Q(x,�P)

Q(x′,�P)

)
. (27)

Results for the simulations with constant �P are shown in Figs. 6 and 7. Simulations are
performed for two different values of �P, 15 and 6.5 kPa. The steady-state values of Fnw
show similar variation with Snw as in the constant Q ensemble, and we see good agreement
between the results for Monte Carlo and time stepping for a wide range of Snw. Here Q varies
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Fig. 6 Non-wetting fractional flow (Fnw) as a function of non-wetting saturation in the steady state for
constant �P ensemble. Results are presented for Monte Carlo (MC) and time stepping (TS) for two different
overall pressure drops �P = 15 and 6.5 kPa. As Q varies with saturation for constant �P,Ca is not constant
here, which is demonstrated in the next Fig.7. The data are averaged over 10 samples
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Fig. 7 Capillary numbers, calculated from the total flow rates (Q), in the steady state as a function of the
non-wetting saturation Snw for constant �P ensemble. Results are compared between Monte Carlo (MC) and
time stepping (TS). The data are averaged over 10 samples
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Table 1 Percentage of rejected
configurations in the constant
�P ensemble

�p Snw Rejections (%)

15kPa 0.3 2.1

0.5 2.3

0.7 1.5

6.5kPa 0.3 8.8

0.5 11.6

0.7 4.2

with the saturation, and the corresponding capillary numbers are plotted in Fig. 7 for Monte
Carlo and time stepping. As discussed before, the number of interfaces first increases with the
increase in saturation from zero, reaches a maximum value, and then decreases again as Snw
approaches 1. The pressure is constant here, so the total flow rate decreases with increasing
capillary barriers at the interfaces and correspondingly Ca varies as in Fig. 7. Here again,
good match between the results Monte Carlo and time stepping can be observed.

We show in Table 1 the percentage of rejections for the data shown in Fig. 7. The number of
rejections is in all cases quite small. This can be understood as follows. Set Q(x,�P) = Q
and Q(x′,�P) = Q + δ where δ may be positive or negative. Hence, the probability to
accept the new configuration is

min

(
1,

Q(x,�P)

Q(x′,�P)

)
= min

(
1, 1 − δ

Q

)
, (28)

wherewe have assumed δ � Q.With a small δ, the probability to reject the trial configuration
is small. This is reflected in Table 1.

4.3 Computational Cost

Here, we present a detailed comparative analysis of the computational cost of the two algo-
rithms. We do this by measuring the computational time (TMC for the Monte Carlo method
and TTS for the time-stepping method, respectively) for different system sizes L .

We use the conjugate gradient method to solve the Kirchhoff equations. This is an iterative
solver. When the network contains L × L links (L2/2 nodes), each iteration demands L2/2
operations. The number of iterations necessary to solve the equations exactly scales as L2,
making the total cost scale as Lβ , where β = 2 + 2 = 4. However, in practice, the number
of iterations necessary to reach the solution of the Kirchhoff equations to within machine
precision is much lower than that needed for the theoretically exact solution. As we shall see,
β is much smaller than four.

The number of time steps needed to push one pore volume through the network is nt.
We expect it to depend on L as nt = aLτ , where a is a prefactor essentially measuring the
number of time steps on the average it takes for an interface to cross a link. In our calculations,
this is of the order of 10. Intuitively, this number should be proportional to the length of the
network, L , making τ = 1. In practice, as we shall see, it is slightly larger.

For each time step, the conjugate gradient demands tcg = bLβ operations where b is
another prefactor. The total computational time (TTS) per pore volume is then

TTS = nt × tcg = abLτ+β = abLαTS , (29)
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Fig. 8 Plot of total computational time, TMC,TS (in seconds) used by Monte Carlo (MC) and time stepping
(TS) for different system sizes (L). Here the time-stepping procedure is run for 100 injected pore volumes and
in the Monte Carlo method, we do 25 sweeps. Each update is based on running the sub-system for 4 injected
sub-network pore volumes. In this way, when Λ = L = 20, the timing of the two methods is equal. We use
the CQ ensemble with Ca = 0.1 and Snw = 0.4. Six different system sizes, L = 20, 40, 60, 80 and 120, are
considered. From the slopes, the exponents α for time stepping and Monte Carlo are found. For Monte Carlo,
we find αMC = 1.98±0.01, which is close to the theoretically expected value TMC ∼ L2 (see text). However,
for time stepping, we find αTS = 3.99±0.03, which is much smaller than theoretical expectation—TTS ∼ L5.
In the inset, we plot the average time, tcg, taken by the conjugate gradient solver to solve one entire pressure
field. We find tcg ∼ L2.88±0.02. The number of time steps per pore volume, nt, scales as nt ∼ L1.11±0.03.
Combining these two results, we find that the computational time for the time-stepping procedure to scales as
TTS ∼ L3.99

where αTS = τ + β. Based on the theoretical considerations above, setting β = 4 and
τ = 1, we have TTS ∼ L5. The actual computational time measured using the clock()
function in C is plotted in Fig. 8 for Ca = 0.1 and Snw = 0.4. We find that TTS scales with
L with an exponent αTS = 3.99± 0.03, which is much smaller than 5. Measuring nt and tcg
independently gives τ = 1.11 ± 0.03 and β = 2.88 ± 0.02, see the inset in Fig. 8.

For the Monte Carlo algorithm, each sweep ideally contains (L/Λ)2 individual Monte
Carlo updates. EachMonte Carlo update consists of time stepping a sub-lattice of sizeΛ×Λ.
Hence, the cost of a Monte Carlo update is abΛαTS when using Eq. (29). However, each time
stepping of a sub-lattice is followed by solving the Kirchhoff equations for the entire lattice
in order to determine Q for the trial configuration. The cost of this operation is bLβ . The
time per Monte Carlo sweep is then

TMC =
(
L

Λ

)2 [
4abΛαTS + bLβ

] = 4abΛαTS−2L2 + b

Λ2 L2+β, (30)

where αTS = 3.99 and β = 2.88. The factor “4” signifies that we time step the sub-lattice
for four pore volumes. By setting a ≈ 10 and Λ = 20, the first term will dominate compared
to the second term on the right-hand side of this equation if 4aΛαTS ≈ 6.4× 106 > L2.88 or
L > 230 where the second term, which scales as L4.88, starts dominating. It is this behavior
we see in Fig. 8: The computational time in the Monte Carlo method scales according to the
first term, i.e., as L2.

Hence, we summarize: The time-stepping procedure scales as L3.99, whereas the Monte
Carlo algorithm scales as L1.98, as shown in Fig. 8.
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Fig. 9 Non-wetting fractional flow Fnw as a function of non-wetting saturation Snw for time stepping com-
pared to Monte Carlo for different sub-network sizes (Λ) in the constant Q ensemble. The size of the network,
L , is 40 for both Monte Carlo and time stepping
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Fig. 10 Difference of the non-wetting fractional flow (�Fnw) between time stepping and Monte Carlo for
different values ofΛ is plotted as a function of Snw.�Fnw fluctuates around zero forΛ = L , and a systematic
increase is observed with the decrease in Λ for the whole range of Snw

4.4 Limitations

A closer inspection of Figs. 4, 5, 6 and 7 shows that the match between the Monte Carlo
and the time-stepping procedures is good, but not perfect. In this section, we discuss the
discrepancies between the two methods quantitatively.

We show in Fig. 9 the non-wetting fractional flow for a 40 × 40 network using both time
stepping and Monte Carlo with sub-network size Λ ranging from 4 to 40. Notice that we
also consider the sub-network size 40, which is equal to L . The calculations here are done
in the constant Q ensemble with a capillary number Ca equal to 0.1 or 0.05. As we see,
there is a systematic deviation between the time stepping and the Monte Carlo results that
increases with increasing non-wetting saturation Snw. This deviation is highlighted in Fig. 10
where the difference between the time stepping and theMonte Carlo results for differentΛ is
shown. We note that the difference between the Monte Carlo and the time stepping decreases
with increasing capillary number Ca. This is, however, to be expected, as for infinite Ca, any
curve, Monte Carlo or time stepping, must fall on the diagonal of Fig. 9.

In Fig. 11, we show the discrepancy between the pressure drop �P using time stepping
and Monte Carlo for different sub-lattice size Λ. The systematics seen in the fractional flow
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Fig. 11 Pressure difference�P as a function of non-wetting saturation Snw for time stepping compared with
Monte Carlo for different sub-network sizes (Λ) in the CQ ensemble. The size of the network, L , is 40 for
both Monte Carlo and time stepping
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Fig. 12 Comparison of cumulative distribution P(si ) of link saturation si for time stepping and for Monte
Carlo with different sub-system sizes. For Snw = 0.3, P(s) for Monte Carlo match with time stepping for all
the sub-system sizes, whereas for Snw = 0.8, a systematic difference in P(s) is observed for Λ < L

data, Figs. 9 and 10, where the difference grows with increasing non-wetting saturation is
much less pronounced in this case.

In Fig. 12, we show histograms over the non-wetting saturation of the links. That is,
we measure how much non-wetting fluid each link contains. When the overall non-wetting
saturation Snw = 0.3, there is essentially no difference between the time stepping and the
Monte Carlo result. However, for Snw = 0.8, there is a difference that depends on the sub-
lattice sizeΛ. This difference, measured as the area between the time stepping and theMonte
Carlo histograms, is shown in Fig. 13 as a function of Snw. The picture seen here resembles
that seen for the non-wetting fractional flow (Fig. 9): the difference grows with increasing
Snw.

When the non-wetting saturation Snw is small, the non-wetting fluid will form bubbles
or small clusters surrounded by the wetting fluid. As Snw is increased, these clusters grow
in size until there is a percolation-type transition where the wetting fluid starts forming
clusters surrounded by the non-wetting fluid. This scenario has been studied experimentally
by Tallakstad et al. (2009a, b). They argued that there is a length scale l∗. Clusters that are
larger than this length scale will move, whereas clusters that are smaller will be held in place
by the capillary forces. The Monte Carlo algorithm calls for selecting a sub-network, which
is then “lifted” out of the system, “folded” into a torus and then time stepped. The boundaries
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Fig. 13 Area between the P(si ) curves (Fig. 12) for time stepping and for Monte Carlo with different sub-
system sizes as a function of Snw
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Fig. 14 Typical non-wetting clusters forMonte Carlo (MC) and time stepping (TS) at Ca = 0.05. The network
is of 40 × 40 links, and the sub-network size for Monte Carlo is 20 × 20 links. Each cluster is marked with
different colors so that the structure is readily visible

of the sub-network will cut through clusters and mobilize these. This changes the cluster
structure from that of the time-stepping procedure.

In order to investigate this, we have studied the cluster structure in the model under Monte
Carlo and time stepping. In order to do this, we identify the non-wetting clusters. To do
this, two nodes are considered to be part of the same cluster if the link between them has
a non-wetting saturation more than a threshold value, a clip threshold ct . Here, we use a
clip threshold equal to ct = 0.9 (Ramstad and Hansen 2009). In Fig. 14, we show typical
cluster structures for two different non-wetting saturations obtained with Monte Carlo and
with time stepping. For Snw = 0.7, the non-wetting clusters are still quite small, and there is
no discernable difference between the configurations obtained with time stepping and with
Monte Carlo. However, for Snw = 0.8, there is one dominating cluster in the time-stepping
case, whereas the clusters are more broken up in the Monte Carlo case.

We measure this qualitative difference in cluster structure for Snw = 0.8 by recording
the cluster size distribution for the two types of updating, see Fig. 15. When following the
time-stepping procedure, we run the system for 500 pore volumes. During the last 125 pore
volumes injected (1/4th of the total), we measure the cluster size distribution after passing
each pore volume of fluids. When using Monte Carlo, we run the system for 400 Monte
Carlo updates. We record the cluster size distribution for every of the last 100 updates. In
both the time stepping and Monte Carlo runs, we average over 10 samples. The number of
links belong to a cluster defines the size of that cluster. The total number of clusters is Ntotal

and the number of clusters of size k that we record is Nk . We show P(k) = Nk/Ntotal in
the figure. For Snw = 0.6 and 0.7, there is no discernable difference in the cluster structure
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Fig. 15 Cluster size distribution
P(k) = Nk/Ntotal versus cluster
size k for time stepping and
Monte Carlo. The blue circles
signify the Monte Carlo data and
the red circles the time-stepping
data. The red and blue curves
with triangles pointing upwards
or downwards signify the Monte
Carlo and time-stepping data
after logarithmic binning. Here
L = 40 and Λ = 20. The data are
averaged over 10 samples
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between theMonteCarlo and the time-stepping procedures.However, for Snw = 0.8, there are
differences. For every k, the number of clusters during the Monte Carlo updating procedure
is larger than for the time-stepping procedure, except for the largest clusters, the percolating
cluster seen in Fig. 14. This supports the supposition that theMonte Carlo breaks up the large
non-wetting clusters.

Clearly, for the Monte Carlo algorithm to be perfected, this tendency of chopping up large
non-wetting clusters needs to be counteracted. Presumably, this is a problem that decreases
with increasing system and sub-lattice size as it is a boundary effect.

5 Conclusion

We have in this work presented a new Monte Carlo algorithm for immiscible two-phase
flow in porous media under steady-state conditions using network models. It is based on the
Metropolis transition probability (23), which in turn is build upon the configuration proba-
bility (19) which we derive here. By steady-state conditions, we mean that the macroscopic
parameters that describe the flow such as pressure difference, flow rate, fractional flow rate
and saturation all have well-defined means that stay constant. On the pore level, however,
clusters flow, merge, break up, and so on. The flow may be anything but stationary. We
described the algorithm in Sect. 3.2.2.

Computationally, the Monte Carlo algorithm is very fast compared to time stepping. We
find that the time-stepping procedure when implemented on a square lattice demands a
computing time that scales as the linear size of the lattice, L , to the fourth power, whereas
the Monte Carlo method scales as the linear size to the second power, see Sect. 4.3. However,
there is another term that contributes to the computing time in the Monte Carlo procedure
which scales as L4.88. This term has a prefactor associated with it, which is very small
compared to the other term scaling as L2. For L up to about 230, this term is small compared
to the first one.

5.1 Open Questions

There are open questions with respect to the Metropolis Monte Carlo approach that we
present here. The most important step in the direction of constructing such an approach is to
identify the configuration probability (19). The second most important step is to provide a
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way to generate trial configurations that obey the symmetry requirement (21). Section 3.2.2
is concerned with this.

We see three challenges that will need to be overcome before the Monte Carlo algorithm
that we propose here is fully capable of replacing time stepping.

– The Monte Carlo algorithm needs to be generalized to irregular networks, e.g., those
based on reconstructed porous media (Blunt et al. 2013).

– The necessity to solve the Kirchhoff equations for the entire pore network once for every
Monte Carlo update will slow down the algorithm when it is implemented for large
systems. Ideally, one should find a way to circumvent this necessity.

– The Monte Carlo algorithm has a tendency to break up large non-wetting clusters as
described in Sect. 4.4. This is a problem for large non-wetting saturations. It is most
probably a boundary effect that comes from the way the sub-networks are constructed.
However, it needs to be overcome if the algorithm is to be useful for the entire range of
saturations.

Overcoming these three challenges will allow network models to take advantage to the
full of the ongoing revolution in pore space characterization.

We have in this article presented a first attempt at constructing a Markov Chain Monte
Carlo algorithm based on the configurational probability (19). There is no reason not to
believe that other ways of constructing such Monte Carlo algorithms might be possible that
are both faster and do not pose the challenges listed above.
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