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Abstract

Interfaces between molten carbonates M2CO3 (M=Li, Na and K) and planar metal walls have

been investigated by molecular dynamics based on a rigid-ions force field (Janssen and Tissen,

Mol. Simul. 5, 83-98, (1990)). Simulations cover the temperature range 1200 K ≤ T ≤ 1500

K at a moderate (∼ 15 kbar) overpressure to compensate for a slight overestimate of the system

volume by the force field model. Most of the simulations represent neutral electrodes, but shorter

computations have been carried out for systems with a low surface charge distribution on the metal

side of the interface. The results provide an intriguing view of the interplay among ion packing,

oscillating screening, anisotropic correlations and ion dynamics at the interface. The mass and

charge density profiles display prominent peaks at contact, and tend to their constant bulk values

through several oscillations, whose amplitude decays exponentially moving away from the interface.

Oscillations in the charge density profile, in particular, limit the value of the interfacial dipole, and

increase the capacitance of the interface. Ion-ion correlations are enhanced in proximity of the

metal surface, but retain the exponentially-decaying oscillatory form of their bulk counterpart.

Diffusion is slower in the molecularly thin layer of ions next to the interface than in the bulk.

The analysis of interfaces is completed by the computation of structural properties of bulk phases,

and by the estimate of transport coefficients such as self-diffusion, electrical conductivity, and

especially thermal conductivity, which is seldom computed by simulation. All together, the results

of our simulations for homogeneous and inhomogeneous molten carbonates provide crucial insight

on systems and properties relevant for advanced devices such as fuel cells, that, in turn, might play

a prominent role in future power generation strategies.
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I. INTRODUCTION

The textbook picture of ionic liquids and solids primarily concerns single-atom ions, and,

in this acception, ionic systems have been modelled1 and simulated2–4 at the atomistic level

since a few decades ago. The present research activity, however, is focused on molecular ionic

systems, as highlighted by the overwhelming interest for the so-called room temperature ionic

liquids (RTILs5), driven by potential applications requiring ionic conductors liquid down to

low temperature (T ∼ 300 K) and chemically stable up to at least T ∼ 600 K.

Carbonate salts are an important and fairly extended class of molecular ionic compound,

relevant, first of all, for mineralogy,6,9 geophysics7,8 and even environmental sciences, since

geological formations made of limestone (CaCO3) are the most apparent manifestation of

massive biomineralisation processes, affecting the global carbon cycle over geological time

scales.

The small size and relatively low complexity of the carbonate ion make metal-carbonates

closer to traditional salts like NaCl or MgCl2 than to organic ionic system such as RTILs.10,11

The melting temperature of carbonates of simple monovalent metal ions, for instance, is

comparable to that of alkali-halides.10 Since the carbonate anion is di-valent, however, a fair

comparison is with M2X compounds such as Li2O, or Na2O, whose melting temperature is

still significantly higher.

Nevertheless, the low viscosity, high ionic conductivity, chemical stability, wide avail-

ability and low environmental impact make molten carbonates important players in high

temperature fluid technology, with applications in heat transport and thermal energy stor-

age. In economic terms, however, the brightest outlook for carbonate technologies concerns

electrochemistry, with applications in molten carbonate fuel cells (MCFC)12,13,50,51 and in

high capacity rechargeable batteries.14 Molten carbonate fuel cells, moreover, can be coupled

to CO2 capture and sequestration stages,15,16 enhancing the efficiency and the environmen-

tal appeal of these devices. Many other applications are being considered, including recent

attempts to develop efficient thermoelectric energy converters based on ionic conductors,17

and the usage of molten alkali-carbonates as the solvation medium for photovoltaic processes

powered by concentrated solar radiation.18

In most of these applications, the liquid carbonate interface with a conducting electrode

is an essential part of the system, affecting the overall device performance through the
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properties of the associated electrostatic double layer.19

Our study is devoted, in particular, to selected alkali carbonates such as Li2CO3, Na2CO3,

K2CO3, whose melting temperatures range from Tm = 996 K in Li2CO3 to Tm = 1164 K

in K2CO3. In applications, their liquid range can be extended downwards by considering

mixtures of alkali ions. Binary mixtures of alkali-carbonates, in particular, typically exhibit

at least an eutectic compositions whose melting temperature is below that of both pure

components.20 Tm can be further decreased by considering ternary21 and higher mixtures,

reaching its lowest known value at Tm = 672 K in the Li0.90Na0.62K0.48CO3 system.21

By molecular dynamics simulations we investigate structural and electrostatic properties

of alkali carbonate / metal interfaces at relatively high temperature, of the order of T ∼ 1200

K. The metal side of the interface is modelled at the atomistic but still very idealised

level. The size of the atoms representing the metal electrode, as well as their geometrical

arrangement, are intended to mimic the (111) surface of gold. Most of our simulations

concerned neutral metal electrodes, but a few simulations for charged electrodes have been

carried out as well. The ionic species on the liquid side are described by an empirical force

field, based on rigid (i.e., unpolarisable) ions, whose parameters are taken from an early but

still relevant model of alkali carbonates.22,23

From the theoretical and computational point of view, our simulations represent an im-

portant extension beyond the several computational studies of simple electrolytes made of

spherical charged particles confined in between rigid structureless walls, which have been

briefly reviewed in Ref. 24. Although a few studies of clean metal/molecular electrolyte

interfaces have already appeared in the literature (see, for instance, Ref. 25,26), the simul-

taneous inclusion of the molecular nature of the electrolyte, and of the atomistic structure

of the electrode is still a relative novelty.

Despite this inclusion of microscopic detail, our model interface is far from the complexity

of solid electrolyte interfaces in rechargeable Li-atom or Li-air batteries14, involving many

other elements (graphite) and compounds (semi-carbonates), as well as exotic structures

such as solid electrolyte interfaces.27 The interest in high capacity batteries especially for

automotive applications has driven a large number of computational and simulation studies

of these interfaces, that, however, are markedly distinct from those we target in our study.

Modelling of solid-electrode / molten carbonate interfaces in rechargeable batteries is a still

rapidly developing field,28 with ad-hoc force fields, often built on or complemented by ab-

3



initio simulations.29 In many cases, reactive force fields are strictly needed to describe the

chemical equilibrium at these interfaces.30

Our simulations, instead, concern cleaner and simpler interfaces in electrochemical devices

operating at relatively high temperature, based on pure alkali-carbonates and, more often,

on their mixtures. As such, the model is expected to be relevant for MCFC, but also for the

thermoelectric devices of Ref. 17.

Because of the simplicity of the model, the results of our simulations enjoy a broad

relevance, highlighting features and properties arising from very general principles. Our

results, in particular, provide an intriguing view of layering, ion-ion correlation parallel to

the electrode plane, and screening of electrostatic perturbations at the interface, due to the

interplay of charge and packing effects, and of broken symmetry at the metal/electrolyte

boundary.

To establish a firm contact with previous studies, we carried out simulations for static

and transport properties of homogeneous alkali carbonate liquid samples, whose results are

briefly presented and discussed in the paper. Comparison is also made with the results of

previous studies, devoted to simple, spherically symmetric particles confined by neutral or

charged structureless planar walls.24

Experimental data are available to benchmark all simulation results, but they are not as

detailed and as accurate as desirable, their quality being limited primarily by the challenge

of dealing with high temperature samples made of corrosive compounds. Nevertheless, X-

ray32–34 and neutron diffraction35 measurements, as well as Raman spectroscopy31,32 have

been carried out to characterise the structure and the vibrational dynamics of homogeneous

(bulk) molten alkali carbonates and of their mixtures.

A few self-diffusion coefficients of molten alkali carbonates obtained by the tracer method

are given in Ref. 36,37; more data covering a wider temperature range are obtained by

light scattering, and in particular by the forced Rayleigh scattering method;39 A critical

assessment of the different measurements of diffusion coefficients in molten salts is given in

Ref. 38. Thermal conductivity is reported by Nunes et al.41, and by Egorov and Revyakin;42;

fairly systematic data on electrical conductivity are listed in Janz and Lorenz.43 The error

bar on diffusion coefficients is of the order of 10− 20 %, and similar or larger relative error

bars are estimated for the other transport coefficients.

One can easily observe that, in contrast to the surge of computational studies, most of
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the experimental measurements on bulk molten alkali carbonates are not very recent.

Experimental results on metal electrode / molten alkali carbonate interfaces are less

systematic than for homogeneous liquid alkali carbonates, at least because the number of

systems of interest increases rapidly when the composition, structure, electric and thermo-

dynamic conditions of the electrode enter the picture. In fact, many voltammetry and a few

vibrational (Raman, infrared) and optical spectroscopy (XPS, AES) measurements have

been carried out, but seldom on clean and simple interfaces that could be considered as

paradigmatic. The relevant experimental data will be reported and discussed in the results

section when needed.

II. MODEL AND METHOD

A. Modelling approaches

The present state of metal carbonate models reflects the background and history of the

computational communities interested in these systems. Early computational activity,44–46

focused on lattice dynamics and using solid-state force fields,1 concerned primarily carbon-

ates of divalent metals, because of their role in mineralogy and geophysics.6–9 Density func-

tional computations for the structure, lattice dynamics and energetics of metal carbonate

crystals47,48 are relatively recent developments.

The interest in metal/carbonate interfaces50,51 came next, motivated by the technological

development and increasing application outlook of MCFC. The increasing role of alkali

carbonates as MCFC electrolytes, often as eutectic mixtures, motivated density functional

computations for surfaces of solid carbonates,49 but never progressed to full blown molecular

dynamics simulations of molten carbonate / solid metal interfaces. Because of computational

cost considerations, the subject of homogeneous and inhomogeneous molten carbonates has

been primarily the realm of empirical force fields.

Molten carbonates of geophysics interest, as well as MCFC interfaces, represent relatively

simple and clean systems, and the two concerned communities developed and favoured com-

paratively simple model force fields, relying on non-polarisable ions, and rigid or flexible

CO2−
3 ions described in atomistic detail. The simplicity of the model, in turn, endowed

the force field with good transferability, and with a general reliability over a broad range
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of thermodynamic conditions. These positive features partly explain the long life span of

these models in the otherwise rapidly evolving stage of force field modelling. Exemplary of

this class of force fields are those developed by Janssen and Tissen,22,23 and by Habasaki.52

More recent examples of force fields developed according to the same strategy and to similar

computational protocols are those of Ref. 53 and of Ref. 54.

Improvements on the basic models concerned primarily electric polarisation55 and exten-

sion to cover other species such as water.56,57 Including polarisation, in particular, appears

to be required to achieve an accurate and reliable prediction of dynamical properties and

transport coefficients. To some extent, the improvement in the description of these same

properties can be achieved by tuning the intra-molecular force field for the carbonate ion, as

done in Ref. 58, or by a more comprehensive re-parametrisation of the (still unpolarisable)

force field, see Ref. 53.

More recently, the simulation activity on carbonates in lithium-atom and lithium air bat-

teries surpassed, at least in volume, that for minerals and MCFC. In batteries, however, the

electrolyte ions diffuse in a complex matrix, and the electrode/carbonate interface contains

several additional components, reaching a complexity far higher than for metal/carbonate

interfaces in fuel cells. Semi-carbonates and a host of neutral organic carbonate species play

a role, and this complexity is reflected in the variety of models that have been developed,

tuned and validated for specific systems and applications,28,59 often combined with ab-initio

approaches.29

Lacking extensive past modelling of metal / alkali carbonate interfaces, we cannot rely

on the computational community expertise to guide our work for metal electrode / molten

carbonate interfaces. The model we propose to describe these interfaces is described in the

following subsection.

B. Force field definition

Since our interest is primarily focused on MCFC and in other relatively simple electro-

chemical interfaces, to model alkali-metal carbonates we resort to the force field of Janssen

and Tissen (JT, Ref. 22,23), thoroughly tested and validated by a long sequence of previous

studies, up to the very recent molecular dynamics simulations of Ref. 53,60

The JT model describes carbonates as assemblies of metal M+ cations and CO2−
3 anions,
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where CO2−
3 consists of four interaction centres representing individual atoms of fixed relative

geometry and D3h symmetry, in which the oxygen atoms in CO2−
3 occupy the vertices of an

equilateral triangle, whose centre of mass is occupied by the carbon atom.

The interaction among atoms on different ions is described through a Coulomb plus

Born-Mayer-Huggins (BMH) short range potential:

VBMH(rij) =
zizje

2

rij
+ b

(
1 +

zi
ni

+
zj
nj

)
exp[α(σi + σj − rij)] (1)

In this expression, rij is the distance between ions i and j, zi is the valence of atom i whose

charge is Zie, σi plays the role of an ionic radius and ni is the number of electrons in the

outer shell of atom i. The force field parameters have been set fitting the results of Hartree-

Fock computations22 for a single CO2−
3 ion and for the M2CO3 gas phase molecules. Partial

charges on CO2−
3 are also selected on the basis of the Hartree-Fock results, while the charge

of the M+ cation is equal to the formal charge +e. These are crucial choices that, together

with the neglect of polarisability, affect transport properties.61

The parameters from Ref. 22 are listed in Tab. I. The constant b = 4.865 kcal/mol

determines the relative size of the Coulomb and short-range energy contributions, while

α = 3.45 Å−1 determines the steepness of the short range repulsive potential.

Following the original Janssen and Tissen prescription,23 in our simulations the C−O

bond length was constrained to 1.27 Å by use of the SHAKE algorithm62. The accuracy

tolerance of the SHAKE solution was set to 10−7, as suggested by Ottochian et al.60, as they

experienced energy drift with the use of looser tolerances.

By contrast, our description of bending and out-of-planarity deformations of CO2−
3 de-

viates from Ref. 22,23, since we experienced a loss of energy conservation upon imposing

a fixed anion geometry by standard techniques to enforce constraints. To overcome this

purely technical and rather minor difficulty, we introduced bending and out of planarity

energy terms with ad-hoc force constants sufficiently large to ensure that discrepancies from

the intended geometry are small. By comparison with published results from rigid-ion sim-

ulations we verified that this deviation from the standard scheme affects only slightly our

results. The parameters defining this ad-hoc flexibility, not included in the original Jenssen

and Tissen force field, are collected in Tab. II.

Since the force field does not include polarisability, and the CO2−
3 intra-molecular flexi-

bility is only partially and empirically accounted for, we accept that the diffusion coefficient
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and electrical conductivity are underestimated, as already found in previous simulations us-

ing the same or a similar force field. This expectation is borne out by the simulation results

reported in the following section.

The Hartree-Fock is generally viewed as an outdated approach, therefore we investigated

the influence of higher level density functional approaches on the properties of ions and on

the force field parametrisation. The results of this side issue are discussed in the Appendix.

While the alkali carbonate side of the interface is described at least semi-quantitatively,

the metal side is admittedly more idealised. First of all, the metal electrode is represented

by a single layer of Lennard-Jones particles arranged on a compact hexagonal geometry. To

keep the mono-layer in place, the Nm metal atoms on the two metal electrodes are tethered

by a harmonic spring to a geometric lattice {Ri; i = 1, ..., Nm} fixed in space and of the

desired hexagonal geometry.

The potential energy of the metal layer, therefore, is:

Um =
4εm
2

Nm∑
i 6=j

[(
σ

rij

)12

−
(
σ

rij

)6
]

+
1

2
kteth

Nm∑
i

| Ri −R0
i |2 (2)

Disregarding at first the particle-particle Lennard-Jones interaction, the potential energy

for the metal layer represents a simple computational realisation of an Einstein model for

a crystal with localised vibrations. In our simulations, the spring constant also reported in

Tab. II is set to a value high enough (kteth = 50 kcal mol−1Å−2) to make sure that the metal

surface is sufficiently rigid and 2D-dense to prevent ions from crossing the metal barrier. In

principle, the spring constant could be tuned together with the Lennard-Jones parameters

to reproduce the elastic properties of the underlying metal bulk.

Since efficient and reliable interatomic potentials for bulk metals and their surfaces are

well known and widely used,63,64 the choice of Eq. (1) for the metal potential energy is due

exclusively to computational economy reasons.

The interaction of metal atoms with carbonate atomic species is given again by suitable

Lennard-Jones interactions. The parameters for the atoms present in the carbonate liquid

are taken from the OPLS model, and listed in Tab. III. These are combined with the metal
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Lennard-Jones parameter using Berthelot’rule:

σij =
σii + σjj

2
(3)

εij =
√
εiiεjj (4)

In other terms, atoms belonging to the metal carbonate ions are described through the

JT potential when interacting among themselves, and by the OPLS Lennar-Jones potential

when interacting with the solid-like wall.

The most apparent limitation of the force field describe in this subsection is its neglect of

image charge interactions at the metal electrolyte interface, that, again, can be seen as due

to the absence of polarisability. We accept this limitation partly for the arguments of Ref. 65

suggesting that image charges are not very important for real interfaces, and, again, because

of computer cost considerations. The GolP potential of Ref. 66 does cover image charges,

but its implementation and usage in LAMMPS appear to be rather demanding for the long

simulations required in our investigation. Moreover, the GolP assumption of fixed metal

atomic positions is not justified at the high temperature of our simulations. Nevertheless,

we adopt the Lennard-Jones diameter for particles used in GOLP, tuned on gold atoms. In

some limited sense, therefore, our metal surfaces represent (111) surfaces of gold, although

at the temperatures of our simulation gold is close to melting, its surface is reconstructed

at least to the (1×23) form, and probably criss-crossed by a multitude of steps delimiting

small compact terraces.

In our simulations all systems are modelled as periodic in 3D (details in Sec. III and in

SI), and the Coulomb interactions are computed using Ewald summation (see, for instance,

Ref. 67) in its particle-particle particle-mesh version.68 Three-dimensional periodicity is as-

sumed also for samples representing liquid slabs confined by solid metals electrodes. In this

case, the periodicity along the direction perpendicular to the interface is only a formal device

to allow us to use well known and widely implemented algorithms.68 On the other hand,

it affects the estimate of the electric field across the system. This effect will be taken into

account and subtracted off, as explained in Sec. III B. Approaches to evaluate Coulomb

interactions in systems periodic in 2D and in 1D are available,69–71 but not implemented in

popular MD packages, and experience in their performance and reliability is not extensive.

All simulations have been carried out using the LAMMPS package72 on the supercom-

puters of the NOTUR centre. (to be completed)
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III. RESULTS

The primary focus of our study are the interfaces between molten alkali carbonates and

solid metal surfaces. Nevertheless, we also compute the properties of homogeneous liquid

carbonates at equilibrium to validate our computational set up.

As already anticipated, all of our molecular dynamics simulations have been carried out

using the LAMMPS package sampling different statistical mechanics ensembles, from NVE

(microcanonical) to NVT and NPT. The integration time step is 1 fs in all cases.

A. Structure and transport coefficients of bulk Li, Na and K-carbonates melts

In the homogeneous case, samples consist of 512 M2CO3 molecules, with M being Li, Na

or K.

Widely accepted approaches to enforce pressure and temperature are known to reproduce

the correct distribution functions in a few ensembles of choice. Their effect on transport

coefficients is somewhat less certain. To bypass any potential problem, we follow the protocol

described in Ref. 60, used also in Ref. 53. For each sample, simulations are carried out at

first for 100 ps in the isothermal-isobaric (NPT) ensemble using a Nosé-Hoover thermo- and

barostat to prepare samples at pre-set values of temperature and pressure. The temperature

was relaxed with a characteristic time scale of 0.1 ps, while the pressure was relaxed on a

time span of 1 ps. After these first 100 ps, the barostat was discontinuously disconnected

and the simulation continued for another 100 ps in the canonical (NVT) ensemble, keeping

the sample close to the target temperature.

Finally, a 5 ns production run was carried out in the microcanonical (NVE) ensemble.

From this run, temperature, pressure and energy were stored every 0.1 ps. Atomic coor-

dinates and velocities were stored with the same 0.1 ps periodicity on a trajectory file for

further analysis. Note that neither the pressure nor the temperature are exactly imposed

through this protocol, which only aims at approaching the target (T, P) by applying the

least perturbation to the system.

Following again Ref. 60, simulations were carried out at a pressure close to 15 kbar, to

compensate for the slight under-estimate of the equilibrium density by the JT potential.

Ref. 53 adopted the alternative strategy of tuning a force field to obtain a better estimate
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of the equilibrium density, at the cost of loosing a direct comparison with previous studies

using the JT potential.

The target temperatures of our simulation have been T = 1200 K, 1300 K, 1400 K

and 1500 K. These high values have been selected to make sure that the system is in the

equilibrium liquid phase, despite the relatively high melting temperature of real (pure) alkali

carbonates, the uncertainty on the unknown melting temperature of model carbonates, and

despite the 15 kbar pressure applied during the simulation.

In reality, thermal decomposition of alkali carbonates starts right above the melting

temperature, even though in most cases it proceeds fairly slowly up to their boiling point

(see, for instance, the experimental analysis of the thermal decomposition of Na2CO3 in

Ref. 73).

In the production stage of our simulations, only the system volume is directly assigned in

input, while the average temperature and pressure of the run are computed a posteriori from

the trajectory. For this reason, we list the nominal and actual temperature and pressure

of each run in Tab. IV. The equilibrium volume, determined in the (NPT) stage of sample

preparation, is also listed in Tab. IV, and it is the first quantitative property we discuss. A

quick look into standard tables of ionic radii (RLi+ = 0.90 Å , RNa+ = 1.16 Å , RK+ = 1.52

Å, RCO2−
3

= 1.78 Å , from Ref. 96) shows that the equilibrium volume exceeds the sum of the

ions’ volume by more than a factor of two, because of interstitial spaces, some of which are

relatively large and empty. To partition space into contributions for cations and anions, we

resort to an analysis of Voronoi polyhedra. To overcome the difficulty of large samples and

disordered configurations, we resorted to a statistical Voronoi construction briefly described

in the SI, and that might be seen as an application of Monte Carlo integration. The results

are shown in Tab. V. We verified that the relative change of cation volume in going from

Li2CO3 to Na2CO3 and K2CO3 is significantly less than the corresponding change of the ions’

volume estimated on standard values of the ionic radius. Moreover, also the volume assigned

to the anion increases slowly along the same sequence, causing only a modest decrease of

the anion volume fraction from Li2CO3 to K2CBO3.
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1. Structural properties

Plots of the radial distribution functions at T = 1200 K and P = 15 kbar for C-C, C-M,

O-M and M-M pairs in M2CO3 can be seen in Fig. 2.

As expected, our results agree with those by Tissen and Janssen.22,23 They also agree

with those of previous studies base on rigid ion models.52,53,60,74 Moreover, the partial radial

distribution functions display features characteristic of ionic systems. First of all, the sum

of the ionic radii listed in the previous sub-section is a fair predictor of the position of the

cation-anion radial distribution function over the entire temperature range. We observe, in

particular, that the main peak of gLi−O is higher and closer to the origin than the main

peak of either gLi−Li and gO−O, reflecting the fact that the attractive cation-anion Coulomb

interaction is certainly not the average of the cation-cation and anion-anion interactions,

thus violating the simple additive (Berthelot’s) picture. Moreover, we observe the regular

alternation of positive and negative charge oscillations that, again, characterise the radial

distribution of ions in molten salts. In general, the radial distribution functions of alkali

carbonates are closer to those of simple ionic system than to those of molecular systems,

emphasizing again the relative simplicity of the CO2−
3 anion.

We comment here also on the oxygen-oxygen radial distribution function gOO(r), reported

in Fig. XXn of the Supplemental Information. In all cases, the gOO(r) function displays a

high and narrow peak at r = 2.2 Å accounting for intra-CO2−
3 correlations. As expected,

this peak hardly changes with M2CO3 compound and simulation temperature. Inter-CO2−
3

correlations are described by broad peaks in gOO(r) for r > 2.5 Å . For each M2CO3,

the temperature dependence of gOO(r) is mild. On the other hand, gOO(r) changes in a

characteristic way along the Li2CO3, Na2CO3, K2CO3 sequence. In going from Li2CO3 to

Na2CO3, for instance, this change consists primarily of a linear scaling of the radial distance,

reflecting the general expansion of the system volume, and conserving the characteristic

double-hump shape of the second peak in gOO. The result for K2CO3 is somewhat different,

since the broadening of all peaks causes the partial loss of the double hump. The change,

however, does not seem so drastic to point to a basic change in the local arrangement

among oxygen atoms. Similar observations apply to the oxygen-carbon and carbon-carbon

distributions (not shown). Hence, we can think of the CO2−
3 distribution as fairly similar for

the three compounds, providing the neutralising background for the distribution of cations
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into the system.

To better characterise the local arrangement of atoms into the liquid, the coordination

number of the first shell was found by integrating the partial radial distribution functions

according to:

Nij =
Nj

V

∫ Rmin
ij

0

gij(r)4πr
2dr (5)

where Rmin
ij is the minimum of the corresponding radial distribution function gij(r)

following its first peak. The results are collected in Table VI. By symmetry of the gij, the

coordination of atom type i by type j atoms (Nij) is Nj/Ni times the coordination of atom

type j by type i atoms (Nji).

The local arrangement of metal cations is easily rationalised starting from the configura-

tion of the oxygen atoms, that represent the space filling element. At the high temperature

of our simulations, the signature of the first oxygen-oxygen coordination shell is not very

strong, but the corresponding coordination number computed according to Eq. 5 is invari-

ably very close to 12, pointing to a compact packing of oxygen atoms. Needless to say, the

structure cannot be any ideal fcc, hcp, etc., since each oxygen has two very close neighbours

belonging to the same carbonate unit.

It is well known that the packing of spheres leaves tetrahedral and octahedral interstitial

sites, which cations occupy according to their size and charge.85 Tetrahedral sites, in par-

ticular, are the smallest void, and we find that, indeed, the coordination number of Li+ by

oxygen in Li2CO3 is four, confirming that the small Li+ ion occupies a tetrahedral interstitial

site in the oxygen structure. Because of the larger size of the K+ ion, in K2CO3 we find a

cage of six oxygen atoms around the metal ion, suggesting that it occupies an octahedral

site. The same coordination numbers in Li2CO3 and K2CO3 were also found from simulation

by Koishi et al.74.

The coordination number of Na+ by oxygen in Na2CO3 appears to be five, which agrees

with the value from Wilding et al.58 obtained from simulation at T = 1750 K. No simple

geometry has five-fold coordination, which appears to be the average of four-fold and six-

fold coordinated metal sites. Apparently the Na+ radius is close to the transition between

being stable in the tetrahedral and in the octahedral sites, hence this cation is statistically

distributed among all the interstitial sites.
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As can be seen from Table VI, the coordination number changes very little with temper-

ature in the range 1200 ≤ T ≤ 1500 K. This means that raising temperature from T = 1200

K up to T = 1500 K does not change the cations’ preference for the tetrahedral or octahedral

interstitial site, that depends primarily on the cation size.

Early X-ray diffraction data from Ref. 34 are fully compatible with the increase of cation

coordination by oxygen in going from Li2CO3 to K2CO3.

The number of CO2−
3 ions around each cation is apparently given by the cation coordina-

tion by C atoms, that turns out to be close to 4 irrespective of temperature and only slightly

dependent on the cation chemical identity. The coordination number for carbon increases a

bit in going from Li2CO3, Na2CO3 and K2CO3, but this increase is less than the increase in

the cation coordination number by oxygen. This would mean that nearly the same number

of carbonate ions surround each cation. To account for the change in the M-oxygen coor-

dination, we need to conclude that for the heavier cations the carbonate ions are oriented

so that more oxygens are within the first coordination shell. This can be explained as the

heavier cations are larger, giving more surface area and therefore more space for the oxygens

around them.

To summarise these observation, one could state that the usual description and trends

discussed long ago for solid silicates85 remain approximately valid in the case of molten alkali

carbonates, despite the obvious distortions imposed by the molecular structure of the cation.

2. Structure factor

To be able to compare with experiments, we calculated the partial structure factors Sij(k)

as a function of wave number k. The complete description of scattering, requires to consider

Sij(k) for all the {i, j} pairs corresponding to the metal, carbon and oxygen atoms in the

system. Instead, we adopt a simplified description based on a two component (cations and

anions) picture, obtained by identifying the anion position with the carbon atom in CO2−
3 .

Moreover, to ease the interpretation of the results, we combine the S++(k), S+−(k) and

S−−(k) into a number(NN) and a charge (QQ) structure factor,75 defined as:

SNN(k) =
1

2
[S++(k) + 2S+−(k) + S−−(k)] (6)

SQQ(k) =
1

2
[S++(k)− 2S+−(k) + S−−(k)] (7)
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where the fact that anions and cations have the formal charge ±e has been implicitly take

into account. The third function SNQ(k) nearly vanishes for all k, and for this reason is not

reported or discussed below.

The result for Li2CO3 and Na2CO3 can be seen in Figure 3.

Several observations are worth noting. First of all,75 the k −→ 0 limit of the number-

number structure factor is proportional to the value of the isothermal compressibility χT ,

divided by the ideal compressibility at the same density and temperature:

lim
k→0

SNN(k) = ρkBTχT (8)

In this equation, kB is Boltzmann’s constant and ρ is the number density. As expected, the

compressibility is relatively low, because of the high density and strong correlations among

ions.

The shoulder at k ∼ 1.8 Å−1 apparent in the lithium SNN and absent in the Na2CO3 case

is an important feature, pointing to a supramolecular clustering of the ions in Li2CO3 (but

not in Na2CO3), possibly due to the small size and strong polarising potential of the Li+

ion. It could be due, for instance, to some residual regularity in the geometrical disposition

of the tetrahedra occupied by Li+ in the oxygen structure. Unfortunately, such regularity

cannot be easily recognised in the disordered structure of the liquid phase.

Comparison with neutron scattering data is affected by the large uncertainty of the exper-

imental measures, and by the difficulty of disentangling the contributions of different atom

pairs from a single scattered intensity, since isotopic substitution is nearly ineffective in car-

bonates). As a result, it is difficult to assess the origin of the agreement or disagreement

between simulation and experiment, although the two sets of data are certainly in relatively

close correspondence. For instance, if one is to compare with the literature, e.g. the neutron

scattering experiments by Kohara et al.35, one would find the highest peak for Li2CO3 at

1013 K to be ∼ 3 and located around k = 2.5 Å−1, while in our case the peak is below 2

but still located around k = 2.5 Å−1. In this case, the difference in the peak hight might

also be due to the different temperatures of the computational and experimental samples.

For completeness, we report that Ohata et al.76 calculates the structure factors from density

functional theory (DFT) computation for a Li2CO3 tetramer. The values from this paper

are very similar to the ones by Kohara et al.35 However, calculating the structure factor
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from the periodic replication of as little as four molecules is not very accurate, so this result

is to be taken with some skepticism.

Comparison with X-ray scattering data is even more challenging than in the case of neu-

trons, since the experimental signal has to be deconvoluted from the form factors for atoms

and ions which are known only from approximate electronic structure computations. Never-

theless, the recent high energy X-ray diffraction data from Ref. 58 represent an obvious term

of comparison for simulation. To avoid the complication of the atomic form factors, we did

not compare the partial structure factors directly, but we compared the radial distribution

functions from our simulation with those reported in Ref. 58. The height and position of

peaks and valleys of the partial radial distribution functions agree for the two sets of data,

despite some slight quantitative differences along the gij functions. Since in Ref. 58 the

total structure factor from simulation and from X-ray diffraction do agree, by the transitive

property we conclude that also our structure factors agree with X-ray diffraction, at least in

the combined form of a total structure factor. However, more systematic comparisons are in

order since they provide an unambiguous assessment of the quality of the force fields used

in simulations.

The charge-charge structure factor SZZ(k) as a function of k has also been computed,

and can be seen in Figure 4.

Comparing this figure to Figure 3, one can observe that the peak for SZZ is higher than

for SNN , pointing to Coulomb correlations being stronger that ion packing effects, as seen

also in the structure factor of simple molten salts.75

Mixtures of molten alkali carbonates play a preferential role in applications, because their

melting temperature can be lower than that of either pure components. We carried out a

limited exploration of an equimolar Li and Na carbonate mixture at T = 1300 K. Samples

contained 512 LiNaCO3 molecules, and simulations lasted 5 ns after an equilibration stage

of 1.4 ns.

We focus here on the structure factor, that we computed to gain insight on the miscibility

between the two pure components, or, more precisely, to reveal signs of a miscibility gap. To

this aim, we consider the system as made of two positively charged components, consisting

of Li+ and Na+, while the carbonate anions are treated as a structureless continuum of

negative charge, needed to ensure the system neutrality. We compute both the number-
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number structure factor:

SNN(k) =
1

2
[SLiLi(k) + 2SLiNa(k) + SNaNa(k)] (9)

as well as the concentration-concentration structure factor, defined as:

Scc(k) =
1

2
[SLiLi(k)− 2SLiNa(k) + SNaNa(k)] (10)

Our interest in Scc(k) is due to the fact that:

lim
k→0

Scc(k) = ρkBTχc (11)

where χc is the static concentration susceptibility, which grows (in fact it diverges) at the

opening of a miscibility gap.

The results of our simulations are shown in Fig. 5. The low value of limq→0 SNN(q)

points to the virtual incompressibility of the cations’ fluid. The concentration-concentration

structure factor, instead, is nearly constant at Scc(q) ∼ 1. Strictly speaking, this result

rules out a miscibility gap, but it also shows that large concentration fluctuations of long

wavelength are likely, and opposed only by low resorting forces, implying, in turn, slow

relaxation of any concentration imbalance. These considerations will become relevant in

the interpretation of the results for inhomogeneous LiNaCO3 mixtures confined by solid-like

walls presented in Subsect. III B

3. Transport properties

The mean square displacement for Li+ and CO−3 in Li2CO3 at T = 1200 K and P = 15

kbar is shown in Figure 6, for up to 1 ns. The quantity reported in the plot is defined as:

MSDα(t) =
1

Nα

∑
i

〈|ri(t+ t0)− ri(t0)|2〉t0 (12)

where ri is the coordinate of an atom of species α, and Nα is the number of atoms of that

same species. The average over the reference time t0 spans the entire 5− t ns available from

the simulation trajectory.

As can be seen, the MSD is quite linear for both the cation and anion, confirming that

the system is in the liquid state. Also in this case, cations are identified with the carbon
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atom at the centre of CO2−
3 . The results shown in this plot are representative also of those

obtained for the other carbonates we investigated.

Tab. VII, Tab. VIII and Tab. IX show the computed transport properties for Li2CO3,

Na2CO3 and K2CO3, respectively.

The diffusion coefficient, computed by the Einstein relation:

Dα = lim
t→∞

1

6t
MSDα(t) (13)

agrees well with previous simulations of alkali carbonates at comparable conditions and using

a similar force field.53,60

An Arrhenius-like exponential fit allows us to compute activation energies for diffusion,

reported in Tab. ?? for both ions. The fit, in turn, can be used to interpolate our data, or

moderately extrapolate them outside the temperature range covered by simulation. Since

the diffusion coefficients computed by our simulations agree with those of similar studies, also

the activation energies tend to agree fairly well among different simulations, with, however, a

few systematic quantitative differences. The activation barriers for cation and anion diffusion

computed in our simulations, for instance, tend to be slightly higher than those of Ref. 60,

and somewhat lower than those of Ref. 53. In general, the activation barrier for diffusion

is remarkably low for a material whose applications concern temperatures approaching and

sometimes exceeding T = 1000 K.

The good agreement, unfortunately, does not extend to the experimental results, as

already noted in Sect. II. It is apparent that the computed diffusion coefficients tend to be

less than their experimental counterparts, and the activation barriers are underestimated

(check!) by the JT model. The statement generally applies both to cations’ and to anions’

diffusion, and the authors of previous studies argued that the discrepancy is due to the

neglect of polarisability by rigid ion force fields. While we find this argument to be relevant,

we also remark that the relative error bar on the experimental data38 is between 10 % and 20

%, and the underestimation of self-diffusion by simulation is not without exceptions, see the

overestimation of K+ mobility at low temperature in the simulations of Ref. 53. Moreover,

the comparison of experiments and simulations is often indirect, since the corresponding data

refer to different temperatures, and the comparison relies on the Arrhenius fit introduced in

the previous paragraph.

The authors of Ref. 58 point out that stiffening the intramolecular bonds in CO2−
3 results
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in a systematically smaller diffusion coefficient for the sodium ion, perhaps suggesting that

the rigidity of the CO2−
3 unit in the JT force field might be responsible for its underestimation

of the Na+ diffusion constant. While this argument is likely to be at least partly true, the

ab-initio computations described in the Appendix suggest that the CO2−
3 ion is too small

and too rigid to deform significantly even at temperatures in excess of 1000 K, and the effect

of CO2−
3 deformation on diffusion is not likely to be large.

At the very least, however, all classical simulations confirm the experimental finding that

the ionic mobility is due primarily to cations,86 contrary to early speculations attributing a

special role to anions in self-diffusion.87

The electric conductivity computed by the Green-Kubo route:

κ =
V

3kBT

∫ ∞
0

〈JQ(t)JQ(0)〉dt (14)

is shown in Tab. ??. We verified that these results agree with those from the Einstein route,

expressed by the relation:

κ =
1

KBTV
lim
t→∞

1

6t

〈∣∣∣∣∣∑
i

qi[ri(t)− ri(0)]

∣∣∣∣∣
2〉

(15)

The underestimation of self-diffusion by our model force field is reflected in a similar

underestimation of electrical conductivity, apparent from the comparison of computed and

measured results.

In particular, from Janz and Lorenz43, the electrical conductivity at T = 1118 K is

κ = 4.959 S/cm. This is the highest temperature at which they measured conductivity

for for Li2CO3. Since κ has a positive correlation with respect to temperature, both in my

simulations and in the measurements by Janz and Lorenz, κ at T ≈ 1200 K should be higher

than the value Janz and Lorenz found at T = 1118 K. Ottochian et al., which also uses the

force field by JT22, uses a scaling factor of ∼ 1.7 on the electrical conductivity to better

reproduce the experimental values. The authors of this paper argue that such a scaling

factor could mimic the effect of using classical simulation instead of quantum mechanics,

underlying the dynamics of experimental systems. This argument, however, is not fully

developed and quantified. However, the success of this multiplicative adjustment has the

merit of showing that the discrepancy between simulation and experiment concerns the pre-

factor of the Arrhenius fit to conductivity more than its exponential parameter representing

the activation energy for electrical conductivity.
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A simple approximation to estimate conductivity is expressed by the Nernst-Einstein

relation, based on the assumption that ions diffusion is uncorrelated:

κNE =
F 2

RT

ρ

Mw

(
ν+z

2
+D+ + ν−z

2
−D−

)
(16)

Ion-ion correlation, however, is always present, and almost without exceptions comparison

of the NE prediction with experimental or simulation data for the electric conductivity of

ionic fluids shows systematic differences. This observation lead to a modification of the NE

equation into:

κ′NE = κNE (1−∆) (17)

The ∆ parameter is attributed to cation-anion pairing, resulting into flow without net electric

current. Hence, pairing decreases conductivity, and ∆ is expected to be positive. For alkali

halides, for instance, ∆ is ∼ 0.2660. It is worth noting that the electrical conductivity we

estimated by the Nernst-Einstein equation, eq. (16), is lower than the one computed with

the Green-Kubo relation, eq. (14), for all systems at all temperatures. In order to get the

GK values by the modified Nernst-Einstein relation, Eq. (17), ∆ would have to be around

−0.2.

This result does not violate any known constraint, and in fact negative ∆ values have

been repeatedly obtained in simulations (see, for instance, 79–82). The explanation could

be due to “opposition of phase” correlation in the motion of the cations and anions, similar

to back-flow in many-electron systems.83 This effect could also be described saying that,

in dense fluids, the motion of one ion in the positive direction pushes counter-ions in the

opposite direction, enhancing electrical conductivity.

Still, if one is to calculate ∆ from the experimental data for Na2CO3 (taking the values

for diffusion coefficient by Spedding and Mills77 and the density and electrical conductivity

by Janz and Lorenz43), one would find that ∆ ∼ 0.3. Thus, simulation and experiment

apparently differ in this essential aspect, perhaps, once again, because of the neglect of

polarisability in the simulation model. Nevertheless, it is certainly true that in the simulated

model ion-ion correlation enhances electrical conductivity with respect to the ideal NE value.

The electrical conductivity can be seen to decrease as the cation goes down the period of

the alkali metals. This can also be seen in the measurements by Janz and Lorenz43, and, in

principle, it might simply reflect the slowing down of dynamics with increasing mass of the

diffusing species. It would be interesting to investigate whether the change from tetrahedral
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to octahedral coordination also plays a role. Our simulations, however, are not sufficient to

this aim.

Last but not least, we conclude our analysis of transport coefficient by discussing thermal

conductivity, computed by a Green-Kubo approach. The results of our simulations are

reported again in Tab. VII, Tab. VIII and Tab. IX.

The literature values for the thermal conductivity λ are scarce and with large errors, due

to the difficulty of measuring this property accurately at temperatures exceeding 103 K, as

discussed by Nunes et al.41. This makes simulation particularly useful. Gillis et al.40 presents

the thermal conductivity of molten Li2CO3 measured using forced Rayleigh scattering with

a CO2 laser. In the temperature region 1070−1355 K, λ is more or less constant ≈ 1 W m−1

K−1. However, the accuracy of these measurements are ∼ 20%. If there is a temperature

dependence, it is smaller than this error bar. The lack of temperature dependence can

also be seen in the results of our simulations, but the computed values are larger than the

experimental ones by a factor ∼ 3-4. We do not have an explanation of this large difference,

apart from the fact that, as for most anharmonic properties, conductivity is not included

among the properties that determine the force field through the initial fit of data computed

for low energy configurations.

Numes et al. estimate that at 1173 K, λ = 0.822 W m−1 K−1 for Na2CO3, but discuss

that the difference between different authors can be as large as 50%. Therefore, the values

obtained by simulation for the thermal conductivity might very well be correct for Na2CO3.

Moreover, in Ref. 40 the work by Egorov and Revyakin is presented, where the steady

state concentric cylinder method was used to find the thermal conductivity for molten

Li2CO3. Here, λ ≈ 2 W m−1 K−1 at 1000 K and λ ≈ 3 W m−1 K−1 at 1300 K. However,

Gills et al. believes that the Rayleigh scattering technique is superior when it comes to

measurement of thermal diffusivity of high temperature molten salts, so the values from

that method can be believed to be most accurate.

Although a quantitative agreement of computed and experimentally measured thermal

conductivities is still far away, it is apparent that both simulations and experiments agree in

attributing a remarkably large thermal conductivity to molten alkali carbonates, consistently

with their role of heat transducers in many applications.

Thermal conductivity for pure molten K2CO3 is, as of this time, lacking. However,
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Zhang and Fujii78 reports thermal conductivity for a 70/30 mol% mixture of molten

Li2CO3−K2CO3. At T = 922 K, λ = 0.829 W m−1K−1. Therefore, it is reasonable to

expect that the values obtained by simulation for the thermal conductivity of pure molten

K2CO3 are of the correct order of magnitude.

B. Inhomogeneous system

Most of our simulations for the inhomogeneous system were done using 2048 M2CO3

molecules enclosed into an orthorhombic cell, limited along the z direction by two layers

of atoms arranged on an hexagonal lattice (see Sec. II) along the xy plane. The cell is

periodically repeated in x and y to represent a carbonate slab confined between two planar,

parallel metal electrode surfaces at separation dz. The value of dz was chosen in such a way

that the pressure on the particles confined between the walls would be close to the pressure

in the homogeneous case. The force constant Kthet of the springs used to tether the wall

atoms to the underlying hexagonal lattice was set to Kteth = 50 kcal mol−1 Å −2.

The relatively large number of molecules in the simulation is imposed by the need to

have a locally homogeneous fluid phase far enough from the wall, so that a clear distinction

between the interface and the bulk can be made.

For reasons of computational convenience, the entire slab is periodically repeated also

along z with a period Lz somewhat larger than dz, leaving a gap between successive replicas

of the slab. A drawing of the simulation geometry, illustrating the position and width of

the gap, is shown in Fig. [...] of the SI. The aim of the gap is to decouple fluctuations

at interfaces otherwise contiguous because of periodic boundary conditions. Hence, a wide

gap is desirable, but computationally expensive: because of the reciprocal space term in the

Ewald sum, the cost of computing the Coulomb energy of a fixed number of atoms increases

linearly with the system volume. In our simulations, we set Lz = dz + 8 Å as a trade-off

between saving on the empty space and having a distance between the walls sufficient to

prevent sizeable spurious correlations. Test computations described in the Supporting Infor-

mation allowed us to verify the adequacy of this choice for neutral interfaces. Computations

with a net surface charge on the metal side of the interface require some additional care, as

described below.

For all samples and temperatures, the molten carbonate / metal interface has a 36.047×
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36.7038 Å2 cross area, determined by the number, size and geometric arrangement of the

tethered particles representing the confining wall. To account for the different molecular

volumes, the periodicity of the simulation box along z has been set to Lz = 150 Å for Li2CO3,

Lz = 169.5 for Na2CO3, Lz = 226 Å for K2CO3, and Lz = 161 Å for the single simulation

of LiNaCO3 in a confined slab. The choice of Lz does not determine the thermodynamic

width of the molten carbonate slab, that we compute as follows. First, we compute the

average number 〈N+〉 of cations and 〈N−〉 of anions in a relatively wide region at the centre

of the liquid slab, covering ∼ 25 % of its width, and representing our identification of the

bulk liquid phase. In Li2CO3, for instance, the width Wbulk of this bulk-like region was set

to Wbulk = 40 Å , while we used Wbulk = 48 Å and Wbulk = 60 Å for Na2CO3 and K2CO3,

respectively. After very minor corrections to 〈N+〉 and 〈N−〉 to enforce charge neutrality,

the bulk density of molecules is computed as:

ρmolb =
〈N−〉
ScWbulk

=
〈N+〉/2
ScWbulk

(18)

where Sc is the simulation box cros-section. Then, the widthWl of the liquid slab is computed

as:

Wl =
Nmol

Scρ
(m)
b

=
NmolWbulk

〈N−〉
(19)

where Nmol is the number of M2CO3 molecules in the system. The results are reported in

Tab. X.

Shorter simulations were also done for Li2CO3 at T = 1300 K in which the system

size were doubled and quadrupled along the y-direction, up to a maximum cross section

of 36.047 × 146.82 Å2. The first aim of these larger simulations was to quantify finite size

effects on the results. More importantly, the large interface areas allowed us to get a peek

at long range correlations along the surface.84

In what follows, we will assume that the z = 0 plane represents the middle of the

simulation cell, and of the molten carbonate layer, that, therefore, extend over [−Lz

2
; Lz

2
]

and [−Wl

2
; Wl

2
], respectively.

Before describing the electrostatic double layer on the electrolyte side, let us comment

on the geometry of the metal side of the interface. In statistical mechanics, a surface

is rough if the height-height correlation function diverges logarithmically with increasing

distance along the surface. In our samples, metal particles are tethered by a harmonic

spring to a geometric plane, and it is easy to show that the surface is statistically smooth
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by construction. Nevertheless, at T ≥ 1200 K, the surface is locally disordered (see Fig. 7),

thus mimicking the highly stepped appearance of gold surfaces at high temperature.92

The simulation was done with a time step of 1 fs in the NVT-ensemble enforces by

a Nosé-Hoover thermostat. The relaxation time for the temperature was the same as in

the homogeneous case, i.e. 100 fs. For each system, we carried out from 10 to 14 runs,

each consisting of 105 steps, resulting in up to 1.4 × 106 steps in total (1.4 ns). A few

of these runs were needed for equilibration. When the main quantities monitored during

our simulation appeared to settle at a stationary value, we considered equilibration to

have been achieved, and the rest of the runs represented our statistics stage. In Figure 8,

the density profile for anions, cations and neutral particles can be seen for Li2CO3 at 1300 K.

The goals of the simulations is to investigate layering of the carbonate ions next to the

metal surface, and to characterise the properties of the electrostatic double layer (EDL),

which, even in the absence of a net charge distribution on the metal surface, forms because

of the asymmetry between the ions, and from their unequal interactions with the metal

atoms. A visual impression of these effects is given in Fig. 9, showing the charge density

profile across the interface between Li2CO3 and the model electrodes. A prominent peak is

apparent in both profiles at contact, followed by a fairly extended sequence of oscillations of

decreasing amplitude and constant wavelength. The decay length and oscillation wavelength

are nearly the same for the mass and charge density profiles, while the phases differ by ∼ π/2

rad. Slight anomalies are apparent at near contact, where the liquid phase has to match the

solid-like wall.

The density profile next to the metal surface is largely determined by requirements of

constant pressure across the interface, as stated by several contact theorems,24 strictly valid,

however, only for somewhat idealised systems. The quantitative details of the mass density

profile, therefore, depend directly on the pressure and temperature of the system.

The charge density profile, on the other hand, reflects perfect screening conditions,88

imposing the exponential decay of every charge perturbation in an equilibrium fluid system

containing charged particles. At variance from the (monotonic) exponential decay predicted

by simple theories such as Poisson-Boltzmann90 and Debye-Hückel,91 screening is short range

but oscillating at the density and temperature conditions of our simulations.

Because of the diffuse character of the ion profiles, the absorption of ions at the interface
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does not need to vanish, provided the charge of absorbed cations and anions is the same.

Then, if we define:

Γ =

∫ −Wl

−Lz

[
ρCO3(z)− ρmolb

]
dz = −

∫ 0

−Wl

[
ρi(z)− ρmolb

]
dz = (20)

∫ −Wl

−Lz

[
ρM+(z)− 2ρmolb

]
dz = −

∫ 0

−Wl

[
ρM+(z)− 2ρmolb

]
dz

we obtain the results in Tab.XX (data available). Because of the repulsive solid-like wall, Γ

is small, but still represents a crucial parameter for the thermodynamic description of the

interface.

As already stated, oscillations continue well into the fluid phase. Fig. 9 shows that, as

expected, the amplitude of the oscillations decreases with increasing temperature, while

their phase is almost unaffected. A similar effect is observed upon decreasing the pressure,

as shown in Fig. 13, comparing the charge density profile for Li2CO3 at T = 1300 K at

P = 7 kbar and at P = 11 kbar. We point out that the simulations of the inhomogeneous

systems could not be done at exactly the same pressure of the corresponding homogeneous

samples, but at pressures shown in Table XII. This is due to the inaccessibility of the NPT

ensemble in our simulations, since the molten carbonate slab is confined by the wall fixed

to anchor points whose position is fixed at the beginning of the simulation.

A detailed analysis of the simulation trajectories reveals a wealth of microscopic infor-

mation on these systems. In all of our samples, cations are at least somewhat smaller than

anions, hence we observe that cations reach closer to the wall than anions. Moreover, cations

represent the majority of the ions in the first peak closest to the neutral wall. This numer-

ical predominance, however, is mainly a consequence of stoichiometry. Once the density

profiles along z are normalised to the bulk density of each species, the highest peak at the

interface belongs to CO2−
3 , hence the largest amplitude peak in the charge density profile

corresponds to negative charge (see the arrows in Fig. 9). Most of these features depend on

the asymmetry in the ion size, become less apparent in going from Li2CO3 to Na2CO3, and

almost disappear in K2CO3.

Inspection of simulation snapshots reveal that in all cases the CO2−
3 anions orient them-

selves parallel to the metal surface, and form an approximately hexagonal lattice (see

Fig. 10). The structure of lithium ions (not shown in Fig. 10) in the contact layer lo-

cally displays clear motifs of hexagonal symmetry, but ordering is blurred already on the
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nm scale by a multitude of defects.

Because of the great role of contact theorems, expressing the mechanical stability of

interfaces, these results are expected to be sensitive to the bulk density and temperature

through the bulk equilibrium pressure.

We now discuss the effect of the interface on dynamical properties, using diffusion as a

paradigmatic case. A fully quantitative discussion is not easy, since particles move freely in

and out of any finite layer at the interface. Moreover, the centre of mass of this variable set

of interfacial particles is not fixed, thus blurring the definition of the self-diffusion coefficient.

To provide a semi-quantitative characterisation of diffusion at the interface, we adopted the

following operational definition. First, at a given time t0, we identify all the ions belonging

to the density layer (3 Å width) in contact with the wall of neutral particles. Then, we

computed the mean square displacement of only these labelled cations and anions as a

function of time for (t− t0) up to 50 ps, and we averaged over t0, using the long trajectories

generated during the simulation.

The results of this lengthy analysis can be qualitatively summarised as follows. As ex-

pected, in proximity of the interface diffusion is apparently anisotropic, being slower in the

z direction than along x or y. Apparently, the density layering along z effects diffusion more

than the corrugation of the solid-like surface along xy. Moreover, even the relatively fast

diffusion along xy at the interface is still slower than diffusion in the bulk. A simple scaling

factor has been included to account for the different dimensionality of diffusion in the xy

plane and in the bulk. The simplest explanation for the in-plane slowing down of diffusion

involves the corrugation of the interfacial region due to the atomistic representation of the

solid-like surface. Slowing down of diffusion could also be due to the overcrowding of ions

at the interface.

The relative size of all these effects depends on the choice of the M metal in M2CO3.

Simulation temperature and pressure play a complementary role. Effects due to the prox-

imity of the solid-like wall are apparently and systematically more important for CO2−
3 than

for cations. They are also more apparent for Li2CO3 than for either Na2CO3 and K2CO3,

since the ionic asymmetry combines with the system anisotropy at the interface to affect

the structure and dynamics of the interfacial layers. More details on this analysis are given

in the Supplemental Information.

The slow diffusion of ions along z at the interface suggests that their motion could be
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described in terms of hopping among the several well defined layers that can be seen in

the density profiles of our samples. To verify this picture, we identify once again and label

all the ions residing in the first density layer. For each of these ions we measure the time

elapsed before it jumps to another layer. Jumps are disregarded if the hopping ion returns

to the first layer within 0.1 ps. This analysis is repeated many times along each trajectory

to average over the initial instant of time. The distribution of times to the first jump

pj(t) is indeed fairly exponential (see Fig. YY in SI), as expected for the rare hopping of

particles among distinct free energy valleys separated by sizeable activation barriers. The

time constants τ (Pj(t) = A exp[−t/τ ]) for all species and temperatures are reported in

Tab. XI. At the relatively high temperature of our simulations, however, the exponential

time constant is relatively short, somewhat undermining the discrete hop picture. Because of

these contradicting considerations, we leave open the question on whether hopping between

planes is a relevant picture for the dynamics of ions perpendicular to the interface, where

density oscillations are important.

A single simulation has been performed for the LiNaCO3 mixture, partly because of its

interest for MCFC, but especially to see how the Li+ and Na+ ions position themselves

relative to the interface. The simulation started from a random distribution of Li and Na

ions, and lasted 2 ns after an equilibration run of 1.2 ns, with a target temperature of

T = 1300 K. Figure 11 reports the difference in the Li+ and Na+ concentrations along z. It

turns out that Li+ and Na+ ions are nearly equally represented in the first layer at contact

with the solid-like wall. However, because of its smaller size, Li+ ions reach closer to the wall

than Na+ ions, giving a characteristic but rather irrelevant high-amplitude, high-frequency

oscillation to the concentration profile at contact.

Figure 11 also shows a long wavelength fluctuation of the Li+ and Na+ relative concen-

tration, whose amplitude, however, is fairly small, and decreases (slowly) with increasing

simulation time. Since the analysis of homogeneous LiNaCO3 mixtures provided evidence

of full miscibility of Li2CO3 and Na2CO3, we think that this oscillation is simply the re-

sult of a statistical fluctuation, whose relaxation time is long. The long relaxation time, in

turn, is consistent with the long-wavelength limit of Scc(k) briefly discussed in the previous

subsection.

Last but not least, we investigated the range of correlations in our inhomogeneous sam-

ples, to validate or disprove early speculations on the power-law decay of distribution func-
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tions parallel to the interface. The result for Li2CO3 at T = 1300 K is shown in Fig. 12.

The proximity of the interface greatly enhances the amplitude, and conserves the wavelength

and phase of the oscillating decay of bulk distribution functions. The envelop, however, is

exponential in both cases, implying short range correlations also parallel to the interface.

The dipole of each interface, Dleft and Dright, were calculated from the charge density,

ρQ, by the use of the following equations:

Dleft =

∫ 0

−Lz/2

zρQ(z)dz (21)

Dright =

∫ Lz/2

0

zρQ(z)dz (22)

Given the equivalence of the left and right interfaces at equilibrium, these two values

should be equal in magnitude and of opposite sign. Small deviations due to statistical errors,

however, might occur. To improve statistics, we average over the two opposite dipoles.

As already stated, in our protocol the simulation was done in stages. Each stage consisted

of 105 steps, i.e. 0.1 ns. The first two stages were used for equilibration. The remaining 8

stages was divided into 4 blocks, e.g. stage 3 and 4 becomes one block, 5 and 6 another one

and so on. The electrostatic dipole of each interface was averaged for each block.

To get the dipole, for each block an average was taken of |Dleft| and |Dright|. Thus for

each system, four values were acquired for the dipole. These were averaged to give the values

seen in Table XIII. The error bar was computed as 2 times the standard deviation of the

four values and then divided by
√
N , where N is the number of blocks.

The simulation of Li2CO3 at 1300 K and 1500 K where run up to 1.4 ns, meaning six

blocks were used for production instead of four.

The electrostatic potential difference ψs between the walls and the centre of the slab (bulk

M2CO3) is directly proportional to the interfacial dipole moment. The value of ψs is shown

in Tab. XIII. By construction, these values represent the potential of zero charge (ψpzc) for

the model interface.

As expected, the magnitude of the interfacial dipole increases monotonically with increas-

ing asymmetry between cation and anion, as can be seen in Tab. XIII.

The same table shows that the interfacial dipole increases with temperature, although the

relatively large error bar prevents us from verifying that | D | is a strictly monotonic function

of temperature. However, the results available from the literature for idealised models of
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simple spherical ions confined by structureless walls show a similar increase of the dipole with

increasing temperature,24 enhancing our confidence in this result. Moreover, the increase of

the dipole magnitude with increasing T could be interpreted as due to a decreasing ability

of the electrolyte to screen the strong perturbation represented by the metal wall, and, in

this sense, it is also consistent with simple analytical theories such as Poisson-Boltzmann90

and Debye-Hückel.91 The experimental picture is far more complex (see Trasatti, Ref. 94),

reflecting the huge variety of interfaces between metals and electrolytes.

Besides the electrostatic potential of zero charge, a second crucial parameter for any

electrified interface is the interfacial capacitance.

For a planar interface, this is directly related to the fluctuations of the instantaneous

dipole moment,93 according to:

1

CD
=
∂D

∂σ
= −4πβ

[
〈D2〉 − 〈D〉2

]
(23)

where σ is the surface charge, and D is either Dleft or −Dright. A correction is introduced

by the usage of periodic boundary conditions,89 and by the (particle-particle particle-mesh)

Ewald approach to account for long range Coulomb interactions. This further contribution,

however, is small, and it is further reduced by the electro-neutrality of the wall in our

simulations. For this reason, we estimate the capacitance through Eq. 23.

As already stated, the particles belonging to the solid-like wall are neutral. Despite the

asymmetry of cations and anions, the surface dipole is small and difficult to compute with

an acceptable relative accuracy. The fluctuations of the dipole, instead, are large, and the

computation of 〈D2〉 − 〈D〉2 can be carried out fairly quickly with a relative error of the

order of a percent. The results are given in Tab. XIV.

The capacitance measures how easy it is to change the interfacial charge upon changing

the electrostatic potential. The values in Tab. XIV show that the capacitance decreases with

increasing asymmetry of the ions, possibly because the local charge distribution of highly

asymmetric systems makes it difficult to add further charge to an already polarised interface.

The dependence of capacitance on temperature is an additional important issue. The

data in Tab. XIV show that CD increases with increasing T . This agrees both with idea

that the capacitance is the inverse of an electrostatic rigidity of the interface, and with

the available experimental data.95. Computations for idealised models of solid/molten salt

interfaces in most cases fail to reproduce this interesting feature.
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C. Charged interfaces

To verify the qualitative validity of our estimates of the interfacial capacitance, we carried

out a single computation for Li2CO3 at T = 1300 K in which the particles representing metal

atoms carry an electrostatic charge of ±0.1e on the left and right solid wall, respectively.

This corresponds to a surface charge σ = (0.3) C/m2, that is fairly high for real systems.

The periodicity of the charge distribution along z, however, reduces the surface electric field

by a factor of ... with respect to the planar capacitor value. The renormalised electric field

corresponds to a surface charge of .. C/m2,or .. e/nm2, that we take as the true surface

charge of the simulated interfaces. Also in this case simulations lasted 1 ns, covered in steps

of 1 fs. This relatively short time span is probably more adequate for charged interfaces

than for neutral systems, since the surface charge enhances the coupling of the solid wall

with the fluid, speeding up relaxation.

The charge density profiles is shown in Fig. 14, while the number or mass density profiles

(not shown) are almost indistinguishable from the neutral wall case.

The corresponding electrostatic potential at the two interfaces is shown in Fig. 15.

Because of the inherent asymmetry in the cation and anion species, and, even more,

because of the non-linearity in the electrostatic response of the fluid, the variation of the

electrostatic potential from the zero charge value is slightly different at the two interfaces.

However, the estimate of the interface capacitance, computed as:

1

CD
=

[ψ(+σ)− ψ(−σ)]

2σ
(24)

where σ = .. is the surface charge renormalised by pbc, turns out to be compatible with the

value obtained from the simulation at zero electrode charge.

The simulation of charged interfaces has not been extended much further in our study

because the limitations of the model do not warrant a larger scale effort.

IV. SUMMARY AND CONCLUSIONS

Molten alkali carbonates represent the electrolyte of choice for a wide variety of elec-

trochemical devices, and, in particular, for molten carbonate fuel cells (MCFC) that are

being developed and to some extent deployed to enhance the efficiency and decrease the

environmental impact of electric power generation.
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Moreover, molten alkali carbonates are among the simplest molecular liquid salts. Despite

their relatively high melting point, they could play an important role to spearhead the

development of devices based on molecular electrolytes of increasing complexity and lower

melting point, exemplified by the so called room temperature ionic liquids.5

To enhance our understanding of these systems, we carried out an extensive investiga-

tion of molten alkali carbonates Li2CO3, Na2CO3, K2CO3 and LiNaCO3 using molecular

dynamics simulation based on a thoroughly tested empirical force field.22,23 For reasons of

computational convenience, the model does not explicitly include atomic polarisability.

To verify and extend the several studies carried out by other groups using similar mod-

els and methods, we first performed simulations for homogeneous systems made of 512

molecules at temperatures 1200 ≤ T ≤ 1500 K, under a moderate overpressure of 15 kbar to

compensate for a systematic underestimate of the equilibrium density by the JT force field.

Since electrochemical devices usually involve the interface between the electrolyte and

an electronic (metal) conductor, we also simulated inhomogeneous systems in which a thick

slab of molten carbonates is confined between two thin layers of neutral atoms tethered to

a compact hexagonal 2D lattice, whose geometric parameters reproduce those of the (111)

surface of gold. The solid wall model is still very idealised, since it does not include image

charges, it is atomistically thin, and its interaction with the carbonate ions is described by

pair potentials, that are certainly inadequate for metal surfaces. Nevertheless, it introduces

a particle-based representation of the solid electrode, and, in this respect, it represents an

important step forwards with respect to previous simulations adopting structures-less, neu-

tral or charged rigid walls. Moreover, the springs tethering solid particles to the underlying

rigid 2D lattice re-introduce the effect of surface elasticity, which could be tuned to mimic

different solid materials.

The results could be described as follows.

Our simulations of homogeneous systems largely agree with those of previous studies

based on unpolarisable force fields. We find, in particular, that simulation results reproduce

the few experimental data available in the literature on the atomistic structure of molten

alkali carbonates, including details of the first coordination shell, as well as scattering prop-

erties as described by various combinations of the partial structure factors. Equimolar

M1M2CO3 mixtures, relevant to model eutectics used in applications, tend to behave as

ideal mixtures. Local fluctuations of composition relax very slowly to the homogeneous
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equilibrium state, probably because of the low free energy driving force, coupled to the

relatively low diffusion constant of all species.

On the other hand, the model tends to underestimate transport coefficients such as the

diffusion coefficient, the electrical conductivity, and, perhaps, the heat conductivity. It is

important to notice, however, that also the experimental data suffer from limitations in

their accuracy, with error bars no better than 10 %. Despite these drawbacks, simula-

tion fully confirms that diffusion, conductivity and heat transfer are predominantly due

to cations, contrary to early speculations attributing a special role to anions.87 Moreover,

the model displays a remarkable enhancement of electrical conductivity with respect to the

Nernst-Einstein (NE) value based on diffusion. This contradicts the usual interpretation of

deviations from NE as due to ion pairing, and we propose that it could be due to back-flow,

i.e., a many body effect introduced a few decades ago to explain correlation and dynamics

in the interacting electron gas.83

The simulation of inhomogeneous systems made of molten carbonates confined by parallel,

planar walls represents the most original and most important part of the present study.

Systems of 2048 molecular units are simulated in an orthorhombic cell of 36.047 × 36.7038

Å cross section, and length in all cases exceeding 100 Å . Basic thermodynamic properties

such as density of the bulk phase far from the interface and the interface absorption of

cations and anions are computed from simulation trajectories. We also determine and report

number density and electrostatic charge density profiles perpendicular to the solid-like wall,

displaying characteristic oscillations whose envelop decays exponentially moving towards

the centre of the slab. Needless to say, the robust oscillations seen in all simulation profiles

contradict the monotonic screening predicted by time honored theories such as Debye-Hückel

and Poisson-Boltzmann, and agree at least qualitatively with the results of integral equation

theories such as RISM.97

We analysed density and charge correlations along the interfacial plane, and found that

oscillations in the correlation functions are greatly enhanced with respect to the bulk. The

decay of correlation functions with increasing distance, however, remains exponential, con-

trary to the conclusions of statistical mechanics studies.

As expected, the presence of the interface greatly affects dynamical properties. Diffusion,

for instance, is highly anisotropic close to the solid wall, being faster along the interfacial

plane than in the orthogonal direction. Even along the parallel plane, diffusion is slower
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in the vicinity of the interface than in the middle of the slab. To model the slow diffusion

in the direction perpendicular to the interface, we developed and tested a simple hopping

picture for the motion of ions among density planes adjacent to the solid wall, which might

indeed capture a few qualitative features of the ion dynamics at interfaces.

Electrochemistry applications, of course, rely primarily on cations and anions to carry

out reactions and to transport charge and energy across the system. To investigate these

properties, we computed the electrostatic dipole moment of each interface, which, for walls

made of neutral particles, is proportional to the potential of zero change of our model.

The simulation results show that the dipole as well as the zero-charge potential increase

with increasing temperature, although the error bar prevents us from verifying whether

their dependence on T is monotonic. Despite fairly large error bars, our confidence in this

observation is supported by the results of idealised models based on simple (i.e., made of

isotropic point particles) Coulomb fluids, and we think that it reflects the decreasing ability

with increasing T of the fluid to screen the presence of the wall. The importance of all these

effects depends on the choice of the M2CO3 fluid, since the dipole moment an ψzpc for a

neutral wall greatly depend on the size asymmetry of cations and anions.

Finally, we computed the interfacial capacitance at the point of zero charge, using both a

fluctuation-based formulation, and a finite difference expression whose evaluation required

the simulation of charged interfaces. The results of the two computational approaches are

consistent with each other. Using the fluctuation route for neutral interfaces, we found that

the interfacial capacitance decreases with increasing asymmetry of the ions, and increases

with increasing temperature. This last result, in particular, agrees with experimental data

for simple molten salts, and differs from the results of more idealised models all based on

unpolarisable ions and rigid solid walls.

The simulation study presented in this paper provides a detailed and vivid picture of

the interplay of packing, correlation and electrification effects at interfaces between solid

walls and molecular ionic fluids. To the best of our knowledge, only a few other studies of

similar interfaces have been reported in the literature (we explicitly exclude simulations of

more complex interfaces relevant for Li batteries). Given the huge number and variety of

molecular molten salts, and, even more, given the current interest in ionic conductors at

moderate temperature, we expect a rapid growth of computational studies devoted to these

systems, that could greatly expand our understanding of complex interfaces, and ease the
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development of electrochemical devices.

To achieve these aims, however, more realistic models are needed, including polarisation,

and perhaps based on ab-initio methods.

Needless to say, simulations of systems under non equilibrium conditions such as those

corresponding to the steady state transport of heat, current or mass are more challenging

than equilibrium simulations, and highly valuable for electrochemical applications. The

information from the present study offers the opportunity to estimate the time required, for

instance, to compute the Seebeck coefficient of cells consisting of molten alkali carbonates

confined by two metal walls at different temperature. In practice, computing the Seebeck

coefficient requires computing the dipole moment across a cell in which a thermal gradient

drives the steady state transport of heat. In the experiments by Børset et al. Ref. 17,

the temperature difference between the electrodes were smaller than 20 K in order to avoid

non-linearity corrections in the Seebeck coefficient. Based on the results of our simulation

for D, taking into account the slow decay of statistical error bar δ with increasing simulation

time t (δ ∼ t−1/2) we estimate that a quantitative determination of the Seebeck coefficient

for alkali carbonates under realistic conditions will take simulations covering a few µs that

could be carried out with a large but feasible computational effort.
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Supporting information: - Optimised geometry of the neutral ion pairs; ESP charges

of cations, anions and neutral pairs; vibrational eigenvectors and infrared activity of har-

monic modes for all neutral ion pairs; discussion of similarities and differences between

ab-initio and force field modelling. This material is available free of charge via the Internet

at http://pubs.acs.org.

V. APPENDIX

The JT potential used in our study and in several other recent computational investiga-

tions of molten alkali carbonates has been constructed by fitting a standard analytical form

on the results of Hartree-Fock (HF) computations for single carbonate ions bound to zero,

one and two alkali cations. Since HF is no longer a popular approach in electronic structure
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computations, we carried out similar total energy computations comparing the results of HF,

and of closely related density functional approximations of the generalised gradient (PBE? )

and of the hybrid (B3LYP? ) type. For each exchange-correlation (XC) approximation, we

computed ground state geometry, total energy, vibrational frequencies and Mulliken charges

for Li2CO3, Na2CO3, K2CO3, and closely related species. Carbonic acid H2CO3 has been

added to the short list of bona fide alkali-carbonates because several computational studies

have been published on this molecule, whose existence in the gas phase is uncertain at best.

Detailed tables with all the data are given as supporting information. Here we summarise

the results relevant for our study.

First of all, we point out that, strictly speaking, no method among those we considered

is able to deal with the gas-phase CO2−
3 anion since at least a few of the HF or Kohn-

Sham eigenvalues for the occupied states turn out to be positive (see Table in Supporting

Information), implying that the corresponding orbital is not localised. The accepted practice

in quantum chemistry is to disregard this problem of principle, since the localised Gaussian

basis used in our (and similar) computations prevents the electron density to spread far

from the ion, and the potential energy obtained in this way is usually good enough for the

interpretation of basic thermochemistry data.

We adopt this pragmatic point of view, but we think important to realise that ab-initio

approaches are exact only in their idealised version, while in practical implementations they

involve many approximations and display important limitations.

With this note of caution, the results of our HF and DFT computations are as follows.

First of all, the geometry of the carbonate ion, and of all the other species considered in

our ab-initio computations depends very little on the exchange-correlation approximation.

Somewhat more surprising, also the energies to dissociate M2CO3 into ions are not so sen-

sitive to XC, and also vibrational frequencies are again rather insensitive to the XC part.

From all these points of view, therefore, the HF data are nearly as good as those of higher

level computations.

On the other hand, we observe that the out of planarity deformations of CO2−
3 has

a frequency of at least 800 cm−1, that corresponds to an energy of ∼ 103 K, suggesting

that the out of plane flexibility of this ion might play a role at the temperatures of our

simulations. Bending, and, even more, stretching have higher frequencies, and are effectively

frozen at realistic temperatures. Their freezing by a constraint cannot affect much the
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results, including, for instance, the self-diffusion constant.

Besides these general considerations, we remark a few more delicate features. First of

all, the ground state CO2−
3 moiety in M2CO3 doesn’t have D3h symmetry, but, rather C2v,

since the C-O1 distance is different from C-O2 and C-O3 (see Fig. 1). Needless to say, O1,

O2 and O3 are in principle equivalent in CO3mm, and only their position with respect to

the metal atoms differentiates their bond to C.

No standard model is able to reproduce the symmetry and bonding dependence of CO2−
3

on metal ion coordination. Since these effects arise from redistribution of electronic charge,

we might attribute them to electronic polarisation effects. However, it might be easier to

see them as environment-dependent effects that are more naturally covered by bond-order

potentials. The charge equalisation method used in Ref. 55 is another approach able to

overcome this problem, and the method is non included in most simulation packages.
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FIG. 1: Schematic of M2CO3, where M is either Li, Na, K or H.
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g
(r

)

O-K

C-C

C-K

K-K

FIG. 2: Radial distribution function for Li2CO3 (left), Na2CO3 (middle) and K2CO3 (right) at

T = 1200 K, P = 15 kbar. All the curves, except the bottom one, have been shifted for readability.
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FIG. 3: Number structure factor as a function of wavenumber for Li2CO3 (left) and Na2CO3 (right)

at T = 1200 K, P = 15 kbar.
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FIG. 4: Charge structure factor as a function of wavenumber for Li2CO3 (left) and Na2CO3 (right)

at T = 1200 K, P = 15 kbar.
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FIG. 5: Concentration-concentration structure factor of Li+ and Na+ ions in the LiNaCO3 liquid

mixture at T = 1300 K.
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FIG. 6: Mean square displacement for Li2CO3 at T = 1200 K, P = 15 kbar.

FIG. 7: Snapshot of the tethered particles’ layer mimicking the metal electrode layer at high

temperature. Particle sizes are tuned on gold atoms, see Ref. 66
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FIG. 8: Density profile for anions, cations and neutral particles from the simulation of Li2CO3

confined between two planar neutral walls at 1300 K.
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FIG. 9: Charge density profile for Li2CO3 confined between two planar neutral walls. Full line,

blue: T = 1300 K. Dashed line, red: T = 1500 K. The two horizontal arrows point to the largest

amplitude peaks in the charge density profile.
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FIG. 10: Snapshot metal and CO2−
3 anions at the interface: yellow: metal (Au); red: oxygen;

black: carbon. Li+ cations are not shown. A CO2−
3 vacancy is apparent at the middle of the lower

end.
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walls located at za = ... and zb = .... iT = 1300 K.
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FIG. 12: Density correlations parallel to the surface in molten Li2CO3 confined by two solid walls

located at za = ... and zb = .... Blue line: next to the metal surface. Red line: in the bulk.
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FIG. 13: Charge density profile for Li2CO3 at T = 1300 K for P ≈ 7 kbar (dashed line, blue) and

P ≈ 11 kbar (full line, red).
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surface charge density σ = 0.07 C/cm2 at zA = −66 Å , and σ = −0.07 C/cm2 at zb = 66 Å
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TABLE I: Force field parameters used to model Li2CO3, Na2CO3 and K2CO3 using Eq. (1)60.

Atom type z [e] n σ [Å]

C 1.54 2.46 1.10

O -1.18 7.18 1.33

Li 1.0 2.00 0.77

Na 1.0 8.00 1.07

K 1.0 8.00 1.39

TABLE II: Force field parameters used to model the harmonic bonds, angles and improper torsions

in CO 2–
3 .

Parameter value

Kθ [kcal mol−1 rad−2] 100.0

Kφ [kcal mol−1 rad−2] 45.0

θ0 [degrees] 120.0

φ0 [degrees] 180.0

TABLE III: Lennard-Jones parameters for the atom species in M2CO3 from the OPLS force field

model.

Species σii [Å ] εii [ ]

Li+

Na+

K+

C

O

TABLE IV: Nominal temperature (Tnom) and actual temperature (〈T 〉) and pressure (〈P 〉) for

all simulations of homogeneous samples in the microcanonical ensemble. The volume per M2CO3

molecule (Vm) is reported as well. The nominal pressure is 15 kbar in all simulations. The statistical

error is implicitly given by the number of digits in the quoted results. No attempt has been made

to correct for deviations from the nominal temperature and pressure.
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M2CO3 Tnom [K] 〈T 〉 [K] 〈P 〉 [bar] Vm [Å3]]

Li2CO3 1200 1207 15230 76.35

Li2CO3 1300 1295 13830 77.91

Li2CO3 1400 1406 15290 78.16

Li2CO3 1500 1492 13889 79.76

Na2CO3 1200 1192 15080 90.95

Na2CO3 1300 1320 15930 91.93

Na2CO3 1400 1390 14730 93.50

Na2CO3 1500 1494 15160 94.41

K2CO3 1200 1191 13640 125.11

K2CO3 1300 1302 15450 125.15

K2CO3 1400 1397 15070 127.03

K2CO3 1500 1494 13899 130.05

LiNaCO3 1300 1318 15280 84.78

TABLE V: Average volume in Å 3 of the Voronoi polyhedra around each ion species in homogeneous

M2CO3 molten alkali carbonates as a function of temperature. The volume for CO2−
3 is the sum

of the volumes of its carbon and oxygen constituent atoms. The volume fraction of cations and

anions is reported in parentheses on the following line. The statistical error bar affects the first

decimal digit of absolute and relative volumes.

M2CO3 Ion T = 1200 K T = 1300 K T = 1400 K T = 1500 K

Li2CO3

Li+ 15.3 15.7 15.8 16.1

(40.2) (40.4) (40.4) (40.5)

CO2−
3 45.6 46.4 46.5 47.4

(59.8) (59.6) (59.6) (59.5)

Na2CO3

Na+ 19.15 19.4 19.8 20.0

(42.2) (42.2) (42.3) (42.4)

CO2−
3 52.6 53.1 53.9 54.3

(57.8) (57.8) (57.7) (57.6)

K2CO3

K+ 28.0 28.1 28.5 29.3
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(44.8) (44.8) (44.9) (45.0)

CO2−
3 69.0 69.0 69.9 71.4

(55.2) (55.2) (55.1) (55.0)

LaNaCO3

Li+ - 15.6 - -

(18.4)

Na+ - 19.4 - -

(22.9)

CO2−
3 - 49.65 - -

(58.6)

TABLE VI: Coordination number between the cation and oxygen at different target temperatures.

Type T = 1200 K T = 1300 K T = 1400 K T = 1500 K

nOLi 4.0 3.9 3.9 3.9

nCLi 3.9 3.9 3.9 3.9

nONa 5.1 5.1 5.0 5.0

nCNa 4.3 4.3 4.3 4.3

nOK 6.2 6.2 6.1 6.0

nCK 4.5 4.5 4.5 4.5

TABLE VII: Transport properties for Li2CO3

T [K] ρ [g/cm3] λ [W m−1K−1] κ [S/cm] κNE [S/cm] DLi [cm2/s] DCO3 [cm2/s]

1207 1.609 3.7 ± 0.2 4.1 ± 0.6 3.31 (6.3 ± 0.2) × 10−5 (9.7 ± 1.3) × 10−6

1295 1.577 4.0 ± 0.2 5.1 ± 0.6 3.91 (8.0 ± 0.2) × 10−5 (1.31 ± 0.12) × 10−5

1406 1.572 3.7 ± 0.2 5.7 ± 0.6 4.43 (9.5 ± 0.6) × 10−5 (1.81 ± 0.09) × 10−5

1492 1.540 3.7 ± 0.2 5.5 ± 0.6 5.16 (1.2 ± 0.3) × 10−4 (2.40 ± 0.14) × 10−5

TABLE VIII: Transport properties for Na2CO3

T [K] ρ [g/cm3] λ [W m−1K−1] κ [S/cm] κNE [S/cm] DNa [cm2/s] DCO3 [cm2/s]

1192 1.937 0.94 ± 0.07 2.24 ± 0.11 2.03 (3.8 ± 0.3) × 10−5 (9.4 ± 1.1) × 10−6
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1320 1.916 0.98 ± 0.07 2.74 ± 0.11 2.35 (5.02 ± 0.09) × 10−5 (1.26 ± 0.04) × 10−5

1390 1.884 0.95 ± 0.07 2.90 ± 0.11 2.66 (5.8 ± 0.3) × 10−5 (1.56 ± 0.16) × 10−5

1494 1.866 0.93 ± 0.07 3.31 ± 0.11 2.99 (7.37 ± 0.06) × 10−5 (2.12 ± 0.14) × 10−5

TABLE IX: Transport properties for K2CO3

T [K] ρ [g/cm3] λ [W m−1 K−1] κ [S/cm] κNE [S/cm] DK [cm2/s] DCO3 [cm2/s]

1191 1.836 0.98 ± 0.06 1.24 ± 0.15 1.06 (2.60 ± 0.14) × 10−5 (8.2 ± 0.3) × 10−6

1302 1.835 0.87 ± 0.06 1.32 ± 0.15 1.29 (3.5 ± 0.3) × 10−5 (1.13 ± 0.09) × 10−5

1397 1.808 0.91 ± 0.06 1.61 ± 0.15 1.49 (4.34 ± 0.14) × 10−5 (1.53 ± 0.05) × 10−5

1494 1.766 0.94 ± 0.06 2.17 ± 0.15 1.77 (5.49 ± 0.18) × 10−5 (1.88 ± 0.14) × 10−5

TABLE X: Thermodynamic width Wl of the molten carbonate layer consisting of Nmol = 2048

M2CO3 molecules. Data available but to check.

M2CO3 T = 1300 T = 1400 T = 1500

Li2CO3 130.2 130.2 130.25

Na2CO3 149.6 151.6 -

K2CO3

LiNaCO3

TABLE XI: Characteristic time (ps) for ions hopping out of the first density layer in contact with

the solid wall (see text).

M2CO3 T = 1300 T = 1400 T = 1500

Li+ in Li2CO3 11.3 7.7 6.6

CO2−
3 in Li2CO3 36.7 28.7 28.4

Na+ in Na2CO3 14.0 - -

CO2−
3 in Na2CO3 66.4 - -

K+ in K2CO3 12.9 - -

CO2−
3 in K2CO3 15.0 - -
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TABLE XII: Average pressure in the liquid phase of molten carbonate sample confined between

two neutral solid walls.

System P (1300 K) [kbar] P (1400 K) [kbar] P (1500 K) [kbar]

Li2CO3 11.0 13.7 16.3

Li2CO3 (area × 2) 11.0 - -

Li2CO3 (area × 4) 11.0 - -

LiNaCO3 13.0 - -

Na2CO3 18.2 18.6 -

K2CO3 17.9 14.2 -

TABLE XIII: Interfacial dipole at different temperatures for different systems.

System D (1300 K) [D/nm2] D (1400 K) [D/nm2] D (1500 K) [D/nm2]

Li2CO3 2.56 ± 0.07 2.66 ± 0.08 2.73 ± 0.08

Li2CO3 (area × 2) 2.69 ± 0.06 - -

Li2CO3 (area × 4) 2.72 ± 0.05 - -

LiNaCO3 2.56 ± 0.09 - -

Na2CO3 2.39 ± 0.12 2.42 ± 0.06 -

K2CO3 1.77 ± 0.06 1.84 ± 0.06 -

TABLE XIV: Interfacial capacitance (µF/cm2) at different temperatures for different systems.

System Li2CO3 Li2CO3 Li2CO3 Na2CO3 K2CO3

T (K) 1300 1400 1500 1300

CD µF/cm2 24± 0.5 27± 0.6 29± 0.6 22± 0.8 17± 0.7
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