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Abstract: A signal-based hybrid observer combining measurements of different fidelities
is proposed for position and velocity estimation of marine vessels. The concept assumes
that noisy position measurements are available only sporadically at a non-constant sampling
rate. Predictions of position between the samples are provided by integrating acceleration
measurements, which are available at a high rate (approximated to be continuous sampling).
Estimates with smaller variance are computed by averaging multiple observer copies of the
position. This work is a continuation of the observer proposed in Brodtkorb et al. (2015). The
main contributions of this paper is extending the observer to the more realistic scenario where
linear velocity and angular acceleration measurements are not available. A simulation study
showed that the observer performed well in closed loop with a controller conducting dynamic
positioning operations of a marine vessel.
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1. INTRODUCTION

Observers are important components of dynamic position-
ing (DP) systems for marine vessels. Common observer
types used in DP today include model-based designs such
as the nonlinear passive observer (NPO), see Fossen and
Strand (1999), or an exteded Kalman filter, see Sørensen
(2011) for an overview and the references therein. For other
examples of implementation in DP see for instance Tannuri
and Morishita (2006) and Hassani et al. (2013). These
observers are based on a kinetic model of the vessel, and
use position measurements from e.g. Global Navigation
and Sensor Systems (GNSS), hydro-acoustic, laser, or mi-
crowaves, to reconstruct unmeasured states, filter out wave
frequency motions, estimate bias, and in case of signal loss,
do dead reckoning.

Signal-based, or kinematic, observers are also recently
proposed for DP applications. These do not contain model
parameters nor vessel-specific information, in contrast to
model-based observers. In general, the methods integrate
acceleration and angular rate measurements from iner-
tial measurement units (IMU) to compute position and
attitude estimates, correcting the estimates from drifting
using position and compass (or magnetometer) measure-
ments. Gravity and gyro bias are also compensated. For
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details see e.g. Grip et al. (2012), Grip et al. (2015) and
Bryne et al. (2015).

The observers mentioned here assume in the design that
the measurements are available continuously, which is not
the case in reality. This was addressed in Brodtkorb et al.
(2015), where measurements of position, velocity and ac-
celeration were fused in a hybrid signal-based observer.
The observer design was based on the assumption that
position and velocity measurements were available only
sporadically, and used acceleration measurement available
at a high rate for position prediction. On a similar note,
Ferrante et al. (2016) considers state estimation of linear
systems where the measurements are available sporadi-
cally. The work considers systems where data used for
control is transmitted over networks, where data can get
lost or is available intermittently.

This paper extends the observer from Brodtkorb et al.
(2015) to the more realistic case where no linear velocity
and angular acceleration measurements are available. The
observer error dynamics are shown uniformly globally
asymptotically stable (UGAS) by using theory from hybrid
dynamical systems as described in Goebel et al. (2012) and
cascaded systems. The observer is tested in simulations of
a marine surface vessel conducting DP operations.

The paper is organized as follows: Section 2 introduces the
mathematical model and available measurements used for
the observer design. The observer is designed in Section
3, and stability is discussed in Section 4. The observer is



tested in simulations of a surface vessel in DP in Section
5, and Section 6 concludes the paper.

2. MATHEMATICAL MODELING

Two reference frames are used thoughout this paper.
The North-East-Down (NED) frame is a local Earth-fixed
reference frame with origin at the mean free surface, and
the second reference frame is a body-fixed frame. The NED
frame is assumed inertial.

2.1 Marine Vessel Modeling

The signal-based observer is based on the kinematic (strap-
down) equations relating position, velocity and accelera-
tion of the vessel. Here, we are looking only at motions in
the horizontal plane, so we only consider surge, sway and
yaw motions 1 . The equations of motion are

ṗ = R(ψ)v (1a)

ψ̇ = r (1b)

v̇ = a (1c)

where p is the position vector in north and east, v is the
body-fixed surge and sway velocity vector, a is the body-
fixed surge and sway acceleration vector, ψ is the heading
angle, and r is the yaw rate. Throughout this paper the
rotation matrix R(ψ) refers to the 2 × 2 rotation matrix
given by

R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
. (2)

2.2 Measurements

DP vessels have statutory class requirements on the on-
board instrumentation, and system redundancy. Vessels
have positioning systems, e.g. GNSS, acoustics, or laser,
a compass measuring heading angle, and inertial measure-
ment units (IMU) that combine gyroscopes for measuring
angular rates and accelerometers for measuring linear ac-
celeration. The measurements are taken at different sam-
pling rates ranging from 0.1-2 Hz for acoustics, 0.5-4 Hz
for GNSS position measurements, to 100-200 Hz for IMU
angular velocity and acceleration measurements.

We assume to have measurements of position p = [N E]>

and heading ψ with non-constant sample time in the inter-
val [Tmin, Tmax], where 0 < Tmin ≤ Tmax. The yaw rate r,
and linear acceleration a are assumed to be measured at a
high rate, approximated as continuous sampling. We also
assume that r and a are bounded. Notice that we do not
have linear velocity or angular acceleration measurements
available. Noise on the measurements is not considered in
the stability analysis, but is included in the simulations.

For convenience we constrain the system states to a
compact set K, (p, ψ, v) ∈ K ⊂ R5. The observer design
does not depend on this set.

1 Since we are considering only surge, sway and yaw motion, the
coupling effects in roll and pitch are neglected, as well as the effect
of gravity.

3. HYBRID OBSERVER

A hybrid observer is designed based on (1) by utilizing
the measurements when they are available. The observer
states, denoted (·)i, flow with the yaw rate and linear
acceleration measurements, and are updated with the oc-
casional position and heading measurements. To mitigate
the effect of position and compass measurement noise,
multiple copies of position, heading and velocity are saved
in the observer and averaged. The position, heading, and
velocity estimates are

p̂ :=
1

N

N∑
i=1

pi, ψ̂ :=
1

N

N∑
i=1

ψi, v̂ :=
1

N

N∑
i=1

vi (3)

where pi, i = {1, ..., N} are the north and east position
states in the observer, ψi are the heading states, and vi
are the linear velocity states. The observer states flow as

ṗi = R(ψ̂)vi (4a)

ψ̇i = r (4b)

v̇i = a (4c)

Ṁ = R(ψ̂) (4d)

τ̇ = −1, (4e)

with i = {1, ..., N} copies of position, heading and velocity
flow with the available yaw rate r and acceleration mea-
surement a. The states are allowed to flow when

((p, ψ, v), (p1, ψ1, v1), ..., (pN , ψN , vN ),M, τ) ∈ C
C := K × (R2 × R1 × R2)N (5)

×
{
P ∈ R2×2 : ||P ||2 ≤ Tmax

}
× [0, Tmax].

In particular M belongs to the set of 2× 2 matrices with
induced 2 norm less than or equal to Tmax, see Section
4.3 for details. The observer flows in between position
and compass measurement times, when τ ∈ [0, Tmax]. A
new position and compass measurement is available with
non-constant sampling time with at least Tmin seconds
between samples and at most Tmax seconds. Hence a jump
is triggered when τ = 0, with the jump dynamics

p+i = pi−1 (6a)

ψ+
i = ψi−1 (6b)

v+i = vi + κM−1(pi − pi−1), (6c)

M+ = 0, (6d)

τ+ ∈ [Tmin, Tmax], (6e)

with i = {1, .., N} and the measurements p0 := p and
ψ0 := ψ. The measurements of position and heading
are saved into the first observer states (p1, ψ1), and the
remainder of the states are shifted one place back in the
shift register. The velocity states are updated with the
state itself, and a correction term consisting of a gain κ,
the inverse of the matrix M involving the rotation matrix
integrated over time, and the error between position states
i and i− 1. The jump set is

((p, ψ, v), (p1, ψ1, v1), ..., (pN , ψN , vN ),M, τ) ∈ D
D := K × (R2 × R1 × R2)N (7)

×
{
P ∈ R2×2 : ||P ||2 ≤ Tmax, det(P ) ≥ ρ

}
× {0}.

The observer has two parameters; κ in (6c), which can be
anything in (−2, 0), and ρ > 0 in (7) which ensures that
det(M) is larger than zero so that M is invertible during
jumps. This last constraint is related to making sure that



the system is observable with the available measurements.
The yaw dynamics are usually slow compared to the
sampling period, and this makes it less likely to encounter
det(M)=0. The parameter ρ should be small to allow for
as many signals ψ as possible.

4. STABILITY

We are using Lyapunov results for hybrid systems (Goebel
et al., 2012), and cascaded systems to prove that the
observer error dynamics has the origin uniformly globally
asymptotically stable (UGAS).

We are analyzing stability of the plant (1) with the
observer given in (4) and (6), with the flow set (5) and the
jump set (7). The set for which we are analyzing stability
is

A :={((p, ψ, v), (p1, ψ1, v1), ..., (pN , ψN , vN ),M, τ) ∈ C :

pi = p, ψi = ψ, vi = v, ∀i ∈ {1, ..., N}}. (8)

Theorem 1: If κ ∈ (−2, 0) and ρ > 0 then the set A in
(8) is UGAS for the hybrid system consisting of the plant
(1) the observer given in (4) and (6), with flow set (5) and
jump set (7). �

The proof is done sequentially in the next sections. The
observer error dynamics are first introduced. The heading
error dynamics are shown UGAS, and the observer error
dynamics for N = 1 without including heading are shown
UGAS by applying a coordinate transformation. Lastly the
analysis for the observer error dynamics for N > 1 follows
from the case where N = 1 by using cascade theory.

4.1 Error Dynamics

Define the error states as:

ei = pi − pi−1,
yi = ψi − ψi−1,
zi = vi − vi−1,

for all i ∈ {1, .., N}, with the actual states of the system
p0 := p, ψ0 := ψ, and v0 := v. The relationship between
the velocity and position is ṗ0 = R(ψ0)v0. Write the
observer error dynamics as:

ėi =

{
R(ψ̂)zi + [R(ψ̂)−R(ψ)]v i = 1

R(ψ̂)zi i ∈ {2, . . . , N}
(9a)

żi = 0 i ∈ {1, . . . , N} (9b)

Ṁ = R(ψ̂) (9c)

τ̇ = −1 (9d)

e+i = ei−1 i ∈ {1, . . . , N} (9e)

z+i = zi + κM−1ei i ∈ {1, . . . , N} (9f)

M+ = 0 (9g)

τ+ ∈ [Tmin, Tmax], (9h)

with position error e0 := p − p = 0. Note that when the

heading estimate has converged, ψ̂ = ψ, the extra term for
i = 1 in (9a) disappears. The heading error dynamics are:

ẏi = 0 i ∈ {1, . . . , N} (10a)

y+i = yi−1 i ∈ {1, . . . , N} , (10b)

with heading error y0 := ψ − ψ = 0.

4.2 Heading Error Analysis

The heading error dynamics are independent of the other
states, and is input to the flow dynamics of position via
M .
Claim 1: The origin of the heading error dynamics (10)
with states yi are UGAS. �

Proof: The proposed Lyapunov function candidate is

V (y, τ) := exp(Lτ)

N∑
i=1

kiy
>
i yi (11)

L > 0, and with weights ki chosen so that

ki > exp(LTmax)ki+1, i ∈ {1, ..., N}
with kN+1 := 0. The Lyapunov function V (y, τ) can be
lower bounded by choosing τ = 0 and upper bounded
by choosing τ = Tmax. The time derivative of V along
the trajectories of the state, and the difference between V
before and after a jump are

〈∇V (y, τ), f〉 = exp(Lτ)

(
Lτ̇

N∑
i=1

kiy
>
i yi + 2

N∑
i=1

kiy
>
i ẏi

)
= −LV (y, τ).

V (y+, τ+)−V (y, τ)

≤ exp(LTmax)

N∑
i=1

kiy
>
i−1yi−1 −

N∑
i=1

kiy
>
i yi

y0 = ψ − ψ = 0, so the first sum can be contracted.

V (y+, τ+)−V (y, τ)

≤ exp(LTmax)

N∑
i=2

kiy
>
i−1yi−1 −

N∑
i=1

kiy
>
i yi

≤ exp(LTmax)

N−1∑
i=1

ki+1y
>
i yi −

N∑
i=1

kiy
>
i yi

≤
N∑
i=1

(exp(LTmax)ki+1 − ki) y>i yi

Due to the definition of ki ∀i , the terms in the first sum
can be dominated by the terms in the second sum. Then
there exists a δ > 0 such that

V (y+, τ+)− V (y, τ) ≤ −δy>y.
�

4.3 Lyapunov Analysis for N = 1

Assume that ψ̂ has converged to ψ, so that R(ψ̂)−R(ψ) =
0.

Claim 2: Given that ψ̂ = ψ, the origin of the observer
error dynamics given by (9) is UGAS. �

Proof: We introduce new coordinates

x1 := e1 −Mz1
x2 := z1, (12)

and rewrite the error dynamics as



ẋ1 = 0 (13a)

ẋ2 = 0 (13b)

τ̇ = −1 (13c)

x+1 = 0 (13d)

x+2 = (1 + κ)x2 + κM−1x1 (13e)

τ+ ∈ [Tmin, Tmax]. (13f)

Choose the following Lyapunov function candidate:

V (x, τ) := exp(µτ)(`x>1 x1 + x>2 x2) (14)

with 0 < µ� 1, and a large number `. The time derivative
of V along the trajectories of (x, τ) is

〈∇V (x, τ), f(x, τ)〉 = −µV (x, τ) + 2 exp(µτ)
(
x>1 ẋ1 + x>2 ẋ2

)
= −µV (x, τ).

Before investigating what happens during jumps, we cal-
culate a convenient bound on V (x+, τ+) − V (x, τ) using
the induced 2 norm of M−1

||M−1||2 =
||M ||2

det(M)
,

where det(M) is the determinant of M . The induced 2
norm of a matrix is defined as

||M ||2 := max
|v|2=1

|Mv|2,

with the vector norm |v|2 = 1. In this case M evolves

as Ṁ(t) = R(ψ̂(t)) with initial condition M(0) = 0. The
induced 2 norm of M is computed in the following:

|M(t)v|2 =

∣∣∣∣∫ t

0

R(ψ̂(s))ds v

∣∣∣∣
2

≤
∫ t

0

∣∣∣R(ψ̂(s))v
∣∣∣
2
ds.

Use that R(ψ̂(s)) is a rotation matrix for all s, so it rotates
v, not altering the magnitude of the vector.

|M(t)v|2 ≤
∫ t

0

|v|2 ds

≤
∫ t

0

ds = t ≤ Tmax,

so ||M ||2 ≤ Tmax. The determinant ofM cannot be smaller
than ρ in the jump map, so we get that

||M−1||2 ≤
Tmax
ρ

.

During jumps we get

V (x+,τ+)− V (x, τ) ≤ exp(µTmax)[(1 + κ)x2 + κM−1x1)>

((1 + κ)x2 + κM−1x1]− `x>1 x1 − x>2 x2
≤ exp(µTmax)[(1 + κ)2x>2 x2 + κ2x>1 (M−1)>M−1x1

+ 2κ(1 + κ)x>1 (M−1)>x2]− `x>1 x1 − x>2 x2

≤ exp(µTmax)[(1 + κ)2x>2 x2 + κ2
T 2
max

ρ2
x>1 x1

+ 2(1 + κ)κ
Tmax
ρ

x>1 x2]− `x>1 x1 − x>2 x2.

We use Young’s inequality for completion of squares

2a>b ≤ 1

ε
a>a+ εb>b, ∀ε > 0.

By choosing a = κTmax

ρ x1, and b = (1 + κ)x2, we get

V (x+,τ+)− V (x, τ)

≤
[
exp(µTmax)

(
κ2
T 2
max

ρ2
+ κ2

T 2
max

ρ2
1

ε

)
− `
]
x>1 x1

+
[
exp(µTmax)

(
(1 + κ)2 + (1 + κ)2ε

)
− 1
]
x>2 x2

The Lyapunov function decreases during jumps if

` > exp(µTmax)κ2
T 2
max

ρ2

(
1 +

1

ε

)
(15a)

1 > exp(µTmax)(1 + κ)2 (1 + ε) . (15b)

When µ = 0 and ε = 0 (15b) holds since κ ∈ (−2, 0). By
continuity it still holds for µ > 0 and ε > 0 sufficiently
small. After picking such a µ > 0 and ε > 0, we choose `
to satisfy (15a).

We can bound the Lyapunov function given in (14) with
the original states (e1, z1) by noting that

V (x, τ) ≤ ` exp(µTmax)

∣∣∣∣[ x1x2
]∣∣∣∣2

≤ ` exp(µTmax)(1 + Tmax)2
∣∣∣∣[ e1z1

]∣∣∣∣2 , (16)

and

V (x, τ) ≥
∣∣∣∣[ x1x2

]∣∣∣∣2
=

(1 + Tmax)2

(1 + Tmax)2

∣∣∣∣[ x1x2
]∣∣∣∣2

≥ 1

(1 + Tmax)2

∣∣∣∣[ e1z1
]∣∣∣∣2 . (17)

By Theorem 3.18 Goebel et al. (2012) the set A in (8)

is globally asymptotically stable for (9) with ψ̂ = ψ and
N = 1 given that (15) holds. �

4.4 Lyapunov Analysis for N > 1

When N > 1 there are two considerations we have to
take. Firstly, the flow dynamics get an extra term when
the heading estimate is not equal to the actual heading,
and secondly, the position estimates ei−1, i = {2, ..., N}
in the jump dynamics are not zero.

Flow Dynamics with ψ̂ 6= ψ When ψ̂ has not converged
to ψ yet, we are left with an extra term in the position
error dynamics of e1. Using (12), the error dynamics are

ẋ1 = [R(ψ̂)−R(ψ)]v (18a)

ẋ2 = 0 (18b)

τ̇ = −1 (18c)

x+1 = 0 (18d)

x+2 = (1 + κ)x2 + κM−1x1 (18e)

τ+ ∈ [Tmin, Tmax] (18f)

The rotation matrix is bounded for all ψ̂ and ψ, and the
velocity v is bounded, since it is contained in the compact
set K. The jump dynamics are unchanged.

Claim 3: The system given by (18) with input v is input-
to-state stable (ISS). �



Proof (from the proof of Proposition 2.7, Cai and Teel
(2009)): The Lyapunov function V (x, τ) in (14) is bounded
by two κ∞-functions in (17). Furthermore, we get the time
derivative along the state trajectories

〈∇V (x, τ), f(x, τ)〉
≤ −µV (x, τ) + 2 exp(µτ)`x>1 [R(ψ̂)−R(ψ)]v,

where the first term is from the unperturbed e1 dynamics,

and the second term is due to the difference ψ̂ − ψ.
Using Young’s inequality for completion of squares with

a =
√
`x1 and b = 2

√
` exp(µτ)[R(ψ̂)−R(ψ)]v, we get

〈∇V (x, τ), f(x, τ)〉

≤ −µV (x, τ) +
1

2
µ`x>1 x1 +

1

2µ
` exp(2µTmax)(2|v|)2

≤ −1

2
µV (x, τ) + α1(|v|).

We know that V (x, τ) can be lower bounded as in (17),
and α1(s) := 2

µ` exp(2µTmax)s2, ∀s ≥ 0 is a class κ-

function since α1(0) = 0 and it is strictly increasing. Then
the Lyapunov function V (x, τ) in (14) is an ISS-Lyapunov
function w.r.t the input v, and the hybrid system (18) is
ISS w.r.t. v. �

Theorem 2: Given that κ ∈ (−2, 0) and (15) holds, the
origin of the cascaded system (18) and (10) is UGAS. �

The proof follows from Goebel et al. (2009) Corollary 19.
Consider the hybrid system H = (C,F,C,G) consisting
of the position and velocity error dynamics (18) and the
heading error dynamics (10). The compact set

A1 ={((p, ψ, v), (p1, ψ1, v1), ..., (pN , ψN , vN ),M, τ) ∈ C :

pi = βB, ψi = ψ, vi = βB, ∀i ∈ {1, ..., N}},
with β > 0 and B the unit ball is globally pre-
asymptotically stable (GpAS) for H (Claim 1). Further,
the compact set A from (8), which is a subset of A1 is
GpAS for H|A1 := (C ∩A1, F,D ∩A1, G∩A1) (Claim 2).
Then set A in (8) is UGAS for H, given by (18) and (10).
�

Jump Dynamics with ei−1 6= 0 Again, we assume that

ψ̂ = ψ so that R(ψ̂) − R(ψ) = 0. In general, the system
(9) with i = {1, ..., N} can be written as

ėi = R(ψ̂)zi (19a)

żi = 0 (19b)

Ṁ = R(ψ̂) (19c)

e+i = ei−1 (19d)

z+i = zi + κM−1ei (19e)

M+ = 0. (19f)

In Section 4.3 the case with N = 1 was proved. The error
dynamics for i ∈ {2, ..., N} are identical to the case where
N = 1, except for the position error jumps e+i = ei−1, in
stead of e+1 = 0.

Claim 4: Assuming that ψ̂ = ψ, the system given by (19)
with input ei−1 is ISS, implying that the origin of the
unforced system (19) with ei−1 = 0 is UGAS. �

Proof: The position jump dynamics changes the x1 jump
dynamics in (13d), which adds an extra term in the
Lyapunov function during jumps. The flow dynamics are

unchanged. The change in the V (x, τ) in (14) can be
written as

V (x+, τ+)− V (x, τ)

≤ −γ1x>1 x1 − γ2x>2 x2 + exp(µTmax)`e>i−1ei−1

≤ −α2(|x|) + α3(|ei−1|),
where α2(|x|) is a class κ∞-function given that (15) holds,
and α3(|ei−1|) is a class κ-function. It follows that V (x, τ)
(14) is an ISS-Lyapunov function for (19), then the system
(19) is ISS with respect to the input ei−1 (Cai and Teel,
2009, Proposition 2.7). �

5. SIMULATION RESULTS AND DISCUSSION

The observer was implemented in MATLAB/Simulink,
and simulated with a platform supply vessel in DP. The
vessel has length 80 meters and breadth 17.4 meters. The
control objective was to control the vessel to the desired
time-varying reference pd(t) with the desired velocity tra-
jectory vd(t):

lim
t→∞

p(t)− pd(t) = 0

lim
t→∞

v(t)− vd(t) = 0.

A nonlinear proportional, integral, derivative (nPID) con-
troller was used to achieve trajectory tracking using output
feedback, with current as the only environmental force.
The current speed was [−0.3 0.5] m/s in the North-East
frame. Realistic noise values were used, where the position
noise variance σ2

p was varied in the simulations.

Figures 1 and 2 show the actual and estimated north
position and surge velocity for different values of N when
the vessel changes setpoint and heading several times.
At 200 seconds the vessel starts changing to the first
setpoint; 3 m north, -5 m east, and with a heading of
−90◦. At 500 seconds the vessel does a new setpoint change
to -2 m north, 5 m east, and heading angle −60◦. The
observer performance in the other degrees of freedom was
comparable to the north position and surge velocity.
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Fig. 1. Position and estimated position, for N = 1, N = 8
and N = 20. Tmin = 1 Tmax = 5 with noisy
measurements σ2

p = 0.32 and estimates in feedback.
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Fig. 2. Velocity and estimated velocity, for N = 1, N = 8
and N = 20. Tmin = 1 Tmax = 5 with noisy
measurements σ2

p = 0.32 and estimates in feedback.

The observer states were initialized as pi = 1 m, ψi = 1◦

and vi = 0 m/s, with the vessel states all starting at zero.
It is clear from Figure 1 that as the number of states in the
observer increases, the variance on the estimates decreases.
Table 1 shows the variance for N = 1, N = 8, and N =
20. The estimation error also decreases for increasing N ,
and the overall reference tracking performance increases
when the estimates are less oscillatory. The performance is
similar for N = 8 and N = 20, with a longer initialization
phase for N = 20 and some induced oscillations on the
position for N = 8. Decreasing N and Tmax decreases
the convergence time greatly since pi − pi−1 is used as
correction term in the velocity update dynamics. It was
also found that with higher noise variance, the effect of
increasing N was greater.

Position variance [m2] Velocity variance [m2/s2 ]

N = 1 0.1016 6.53 · 10−5

N = 8 0.0162 1.34 · 10−5

N = 20 0.0030 1.21 · 10−5

Table 1. Variance of the estimates with Tmin =
1 Tmax = 5, and σ2

p = 0.32

The velocity estimates in Figure 2 were also better for
larger N . The best velocity estimates were achieved by
choosing κ just large enough so the velocity estimates
did not drift. In particular for N = 1, κ = −0.08, for
N = 8, κ = −0.03, and for N = 20, κ = −0.02. In general
it was found that for increasing N , the value of κ could
beneficially be decreased slightly. Without noise κ = −1
provided perfect position and velocity estimation.

The velocity dynamics were sensitive to position noise.
For high position noise variance, small feedback gain on
velocity produced less oscillatory estimates, but too low
gain caused the velocity estimates to drift. Increasing N
improved the estimation. The frequency of the position
updates also influences the choice of κ, see (15). With fre-
quent position measurements, κ could be chosen smaller,
and vice versa in the simulations.

6. CONCLUSION

The signal-based observer without velocity and angular
acceleration measurements updates worked well in sim-
ulations with and without measurement noise. Having a
large number of states N in the observer was beneficial to
mitigate noise with large variance.

For future work, rigorously analyzing the effect of the noise
in the position and compass measurements is of interest. In
addition, we may consider extending the velocity update
dynamics to the case where M is not necessarily invertible
at every sampling time.
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