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Abstract: Dynamic positioning (DP) systems are used on marine vessels for automatic station
keeping and tracking operations solely by use of thrusters. Observers are key components of
DP systems, and two main types are proposed in this paper. The model-based type is used
in steady state conditions since it is especially good at filtering out first order wave induced
motions and predicting states in the case of signal loss, and the signal-based type typically has
superior performance during transients. In this paper a hybrid observer including a signal-based
part and a model-based part with a performance monitoring function is proposed. The observer
part that provides the best estimate of the vessel position and heading is used in closed-loop
control, thereby allowing for improved transient response while maintaining good steady-state
performance. The contributions of this paper include the design of a hybrid signal-based and
model-based observer with performance monitoring, stability analysis of the vessel with hybrid
estimates in output feedback control, and simulations of a platform supply vessel during a
setpoint and heading change.
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1. INTRODUCTION

Marine operations are moving further from shore and into
harsher environments, and with it requirements for the DP
vessel’s operational window, safety functions and energy-
efficiency become stricter. Vessels that are doing opera-
tions with longer duration experience changing sea states
with varying wind and wave directions, with suboptimal
heading at times. Large forces and moments act on the ves-
sel, making quick and precise control essential, especially
when operating close to other offshore infrastructures.

There are many unknown factors at sea that may cause
transients in the vessel response depending on the type of
operations: wave trains, ice loads, mooring line break, etc.
However, many transients are triggered by the operator,
which makes them easier to account for with proactive con-
trol strategies, e.g. heading and setpoint changes, pipelay
operations, well intervention operations, the lowering of
a jack-up vessel from jacked-up to floating, etc. In this
work the transient response of a DP vessel is improved by
combining two observers.
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The model-based observer, like the Extended Kalman filter
(Tannuri and Morishita, 2006), (Hassani et al., 2013),
or the nonlinear passive observer (Fossen and Strand,
1999), are commonly used in DP systems. The model-
based observer uses noisy position and heading angle
measurements to estimate the low frequency position,
heading, and velocity of the vessel. A key feature of this
observer type is the wave filter, which eliminates the wave
frequency vessel motion from the output feedback control
law. This reduces the wear and tear on the machinery as
well as reducing the energy consumption.

The signal-based observer, also referred to as a kinematic,
or sensor-based observer, is based on the kinematic equa-
tions, see for instance Mahony et al. (2008), Hua (2010),
Grip et al. (2012), and Bryne et al. (2015). It is especially
well suited during transients, as it uses linear acceleration
measurements to predict velocity and position. In this im-
plementation no wave filter was included in this observer,
but it is ongoing work by Bryne et al. (2016). As a result
this observer estimates the total vessel motion, including
low frequency and wave frequency motion. When inserted
into the control law it gives an oscillatory thrust command.

Earlier hybrid control theory has been applied to dynamic
positioning in a changing sea state, see Nguyen et al.



(2007) and Brodtkorb et al. (2014), and for changing
operational modes (Nguyen et al., 2008). These all consist
of a bank of controllers and observers with a supervisory
mechanism that monitors performance and chooses the
best controller/observer pair. Dwell-time and hysteresis
switching were applied to avoid chattering. In this paper
we apply an output feedback DP controller, using analysis
from Loria et al. (2000). Related to this, Prieur and Teel
(2011) looks at output feedback control using a hybrid
controller with a nonlinear globally stabilizing part, and a
linear locally stabilizing part.

The main contributions of this paper includes the design,
analysis, and simulation of a hybrid observer with a model-
based part and a signal-based part for improving the tran-
sient vessel response in an uncertain marine environment.
A performance monitoring function keeps track of the
mean estimation error over a time period for the observers,
and the estimates from the better-performing observer are
used in closed-loop output feedback control using a non-
linear proportional, integral, derivative (nPID) controller.
Hysteresis is applied in order to limit the number of jumps
for the system, and this is important for the stability of
the system.

The organization of the paper is as follows: In Section
2 typical instrumentation for DP vessels is discussed,
and two mathematical models of marine DP vessels are
presented. A model-based and a signal-based observer
are introduced in Section 3, and Section 4 presents the
output feedback control algorithm. The hybrid signal-
based and model-based observer in closed loop control is
modeled in Section 5, and stability is discussed in Section
6. Simulation results for a platform supply vessel doing a
setpoint change are presented and discussed in Section 7.
Section 8 concludes the paper.

2. MARINE VESSEL MODELING AND DYNAMIC
POSITIONING

Two reference frames are used in this paper: the North-
East-Down (NED) reference frame which is a local Earth-
fixed frame, and the body frame, which is body-fixed.

2.1 Instrumentation

DP vessels have statutory class requirements on the on-
board instrumentation, and system redundancy. Vessels
have positioning systems, e.g. GNSS, acoustics, or laser,
a compass measuring heading angle, and an inertial mea-
surement unit (IMU) that combines gyroscopes for mea-
suring angular rates and accelerometers for measuring lin-
ear acceleration. The measurements are taken at different
sampling rates ranging from 0.1-2 Hz for acoustics, 0.5-
4 Hz for GNSS position measurements, to 100-200 Hz for
IMU angular velocity and acceleration measurements. The
measurements are in this paper assumed to be of the form

pn = [N,E]> (1a)

ψc = ψ (1b)

ωbimu = ωb + bg (1c)

f bimu = R(Θ)(v̇n − gn), (1d)

where the measurements in the NED frame have super-
script n, and measurements in the body frame have su-
perscript b. pn ∈ R2 is the measured position in north
and east. A heave measurement may also be obtained
through GNSS, but it is typically of low quality and is not
used here. ψc ∈ R is measured heading angle (ψ is used
in the remainder of the paper), ωbimu ∈ R3 is measured
angular rate ωb, f bimu ∈ R3 is measured linear acceleration,
Θ = [φ, θ, ψ]> ∈ R3 is the orientation in roll, pitch and
yaw, R(Θ) ∈ R3×3 is the rotation matrix about the z, y, x
axes, gn ∈ R3 is acceleration due to gravity, and bg ∈ R
is the gyro bias. Measurement noise is disregarded in the
stability analysis, but inserted in simulations.

2.2 Marine vessel modeling

Two models of the same system are presented.

Control plant model The control plant model for a
vessel is a simplification of the real vessel dynamics. It
is different for the various vessel types, operational and
environmental conditions, and the design problem under
consideration (e.g. observer design or feedback control
design); see Fossen (2011) or Sørensen (2013). A surface
vessel in DP with starboard/port symmetry, M = M>,
has largest motions in the horizontal plane (surge, sway,
and yaw), so the heave, roll, and pitch dynamics are
neglected. The control plant model in this case is:

ξ̇ = Awξ + Ewww, (2a)

η̇ = R(ψ)ν, (2b)

ḃ = −T−1b b+ Ewwb (2c)

Mν̇ = −Dν +R>(ψ)b+ u, (2d)

y = η +Wξ + vy; (2e)

where the states of the system include the 3 DOF North,
East position and heading η := [N,E,ψ]> and body-fixed
velocity ν in surge, sway and yaw. In normal operational
conditions we want to control only the low frequency part
of the vessel motion, and the wave filter in (2a) allows us
to separate the motion into a wave frequency part, and
a low frequency part. The wave filter has a state ξ ∈ R6

and system matrix Aw ∈ R6×6 that contains the peak
wave frequency and damping. It is driven by zero mean
white noise ww. (2b-d) are the low frequency dynamics of
the vessel. (2b) is the 3 DOF kinematics that transforms
velocity from the body to the NED frame; R(ψ) is the
rotation matrix about the z-axis,

R(ψ) =

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
. (3)

The wave frequency part of the heading angle, ψw, is
assumed to be small, R(ψ+ψw) ≈ R(ψ). (2c) is a bias force
model with state b ∈ R3, accounting for slowly-varying
environmental disturbances from mean wind, current, and
second-order wave loads and unmodeled vessel dynamics.
Tb is the Markov time constant, and wb zero mean white
noise. Note that the bias force model does not capture
rapidly varying disturbances. In (2d) M ∈ R3×3 is the
inertia matrix including added mass for asymptotic values
of wave frequency equal to zero, D ∈ R3×3 is the linear
damping coefficient matrix, and u ∈ R3 is the control
input. (2e) is the measurement y = [(pn)> ψ]> ∈ R3 of



position and heading including low frequency motion η,
wave frequency motion Wξ with W = [03×3, I3×3], and
measurement noise vy.

Kinematic model The kinematic model is based on fun-
damental principles of inertia, relating position, velocity
and acceleration of the vessel in 6 DOF. It represents the
same vessel as in (2), but now the acceleration and angular
velocities are inputs as well as the position and heading.
The dynamics are split into a translational part and an
angular part. The translational part is written as

ṗn = vn (4a)

v̇n = R(Θ)f bimu + gn. (4b)

pn is the north, east and down (heave) position and vn is
the NED velocity. The acceleration measurements from
the IMU are rotated directly to the NED frame. The
orientation of the vessel is Θ in roll, pitch, and yaw angles,
and R(Θ) is the 6 DOF rotation matrix about the z, y, x-
axes. Gravity is also acting on the vessel. The attitude part
is written as

Θ̇ = T (Θ)ωb (5)

with the velocity transformation matrix T (Θ) and angular
rate ωb.

Relating the two models, we have that

η = [pn(1), pn(2), ψ]>,

ν = R(ψ)>[vn(1), vn(2), ωb(3)]>. (6)

3. OBSERVERS USED IN DYNAMIC POSITIONING

The two observers are briefly presented in this section.
The reader is referred to Fossen and Strand (1999), Fossen
(2011) for details on the model-based observer, and to Grip
et al. (2012), Grip et al. (2013), Bryne et al. (2014), and
Bryne et al. (2015) for details on the signal-based observer.

3.1 Model-based observer

We have chosen to work with the nonlinear passive ob-
server (Fossen and Strand, 1999) since it is an intuitive
observer to tune, and it has global stability results. This is
based on the control plant model (2) taking in position and
heading measurements, and commanded thrust u from the
controller (see Section 4). It is a 3 DOF observer, and the
algorithm can be written as

˙̂
ξ = Aω ξ̂ +K1,ω ỹ (7a)

˙̂η = R(ψ)ν̂ +K2ỹ (7b)

˙̂
b = T−1b b̂+K3ỹ (7c)

M ˙̂ν = −Dν̂ +R>(ψ)b̂+ u+R>(ψ)K4ỹ (7d)

ŷ = η̂ + Cω ξ̂, (7e)

where ξ̂, η̂, v̂, b̂ ∈ R3 are the estimates of the states in
(2), ỹ = y − ŷ is the measurement estimation error and
K1,ω ∈ R6×3

>0 ,K2,K3,K4 ∈ R3×3
>0 are observer gains chosen

to satisfy the Kalman-Yakubovich-Popov (KYP) lemma
(Khalil, 2002). The wave filter contains estimates of the
peak wave frequency and damping in Aω ∈ R6×6, and
Cω = W from (2). The key feature in this observer is the
wave filter. This means that the wave frequency motion
Wξ is separated from the low frequency motion η, and

the output from this observer is the low frequency motion
estimate of the vessel: η̂1 := η̂ and ν̂1 := ν̂.

Define the estimation errors as (̃·):=(·) - (̂·), and collect
them in the state x1 := [ν̃>, η̃>, ξ̃>, b̃>]>. The error
dynamics of (2) and the model-based observer (7) is
written compactly as

ẋ1 = F1(x1, p
n, ψ). (8)

3.2 Signal-based observer

The signal-based observer is a 6 DOF observer, and is
based on the kinematic relations (4) and (5). The attitude
is represented using quaternions, q.

Attitude observer Write the attitude observer dynamics
as

˙̂q = T (q̂)(ωbimu − b̂g + σ̂) (9a)

˙̂
bg = Proj(b̂g,−kI σ̂), (9b)

with the correction term

σ̂ = k1c
b ×R(q̂)>cn + k2f

b
imu ×R(q̂)>f̂n (10)

where q̂ is the attitude estimate, T (q̂) is the velocity

transformation matrix, b̂g is the gyro bias estimate, and
a bias compensated angular rate estimate is provided as
well ω̂b. The projection function used is found in (Grip
et al., 2012, Appendix). The symbol × represents the cross
product, cb = [cos(ψ), − sin(ψ), 0]>, ψ is measured by
the compass, and cn = [1, 0, 0]> is a reference vector.

f bimu is the measured acceleration and f̂n is the estimated
acceleration in NED. Choose the gains k1 ≥ kP , k2 ≥ kP ,
with kP > 0 sufficiently large.

Translational Observer The translational observer is
based on (4). The equations are taken from Bryne et al.
(2015), as we use a virtual vertical reference in heave
in stead of the low quality GNSS measurement. The
algorithm is

˙̂pnI = p̂nz + kpipip̃I (11a)

˙̂pn = v̂n + θ2
[
02×1 Kpp

kppi 01×2

] [
p̃I
p̃

]
(11b)

˙̂vn = f̂n + gn + θ3
[
02×1 Kvp

kvpi 01×2

] [
p̃I
p̃

]
(11c)

ξ̇f = −R(q̂)S(σ̂)f bimu + θ4
[
02×1 Kξp

kξpi 01×2

] [
p̃I
p̃

]
(11d)

f̂n = R(q̂)f bimu + ξf . (11e)

The driving errors are defined as: p̃ = pn − p̂n ∈ R2, p̃I =
pI − p̂I = 0 − p̂I ∈ R. R(q̂) is the rotation matrix in roll,
pitch, and yaw represented with quaternion estimates from
(9). ξf is a correction term on the acceleration estimate.

Kpp,Kvp,Kξp ∈ R2×2
>0 , and kpipi, kppi, kvpi, kξpi ∈ R>0.

θ ≥ 1 is a high gain. The equation (11a) includes only
the virtual heave part of the position estimate, i.e. it is
scalar.

The estimation error state can be written compactly as
x2 := [q̃>, b̃>g , p̃I , p̃

>, ṽ>, f̃>]>, with estimation errors
defined as before, (̃·):=(·) - (̂·). The error dynamics can be
written compactly as

ẋ2 = F2(x2, p
n, ψ, ωbimu, f

b
imu). (12)



The signal-based estimation error dynamics (12) has the
origin uniformly locally exponentially stable (ULES) with
almost global attractivity (Grip et al. (2012) and Bryne
et al. (2015)). The attractivity is almost global but not
global; hence, the convergence rate from points near the
boundary of the basin of attraction, particularly those cor-
responding to yaw estimation error equal to 180 degrees,
is slow.

The output from the signal-based observer is transformed
so it has the same form as the output from the model-based
observer using (6)

η̂2 := [p̂n(1), p̂n(2), ψ̂2]>

ν̂2 := R(ψ̂2)>[vn(1), vn(2), ω̂b(3)]> (13)

where ψ̂2 is the heading angle estimate we get when
converting from quaternions q̂ to Euler angles, and the
velocity output is transformed from the NED frame to the
body frame. Because this observer relies on acceleration
measurements and does not include a bias force estimation
model, it reacts fast and accurately to transients. The
downside to this is that the estimates are not wave filtered,
so η̂2 and ν̂2 will cause an oscillatory control input.

4. CONTROLLER

The control objective is to control the vessel to the de-
sired time-varying setpoint ηd(t) with the desired velocity
trajectory νd(t):

lim
t→∞

η(t)− ηd(t) = 0

lim
t→∞

ν(t)− νd(t) = 0.

We write the tracking error dynamics as x0 := [ν−νd, η−
ηd, ζ −K−1i b], with the integral state in the controller ζ
defined below.

The control objective is achieved by combining feedfor-
ward of the desired trajectory and output feedback using
a nonlinear proportional, integral, derivative (nPID) algo-
rithm. The algorithm is

ζ̇ = (η̂s − ηd) (14a)

u = −KpR
>(ψ)(η̂s − ηd)−Kd(ν̂s − νd) (14b)

−KiR
>(ψ)ζ +Mν̇d +Dνd. (14c)

u ∈ R3 is the commanded thrust, Kp,Kd,Ki ∈ R3×3

are the proportional, derivative and integral gains, and η̂s
and ν̂s are the estimates from the model-based observer
when s = 1, and from the signal-based observer when
s = 2. ζ compensates for the unknown bias force in
(2d), which is commonly assumed constant for control
design. The integral action error is ζ − K−1i b. Ki should
be picked so it can commute with the rotation matrix,
i.e. KiR(ψ) = R(ψ)Ki. The last two terms in (14b) are
feedforward terms of the desired acceleration times inertia
and desired velocity times damping.

Loria et al. (2000) showed that the feedback control law
(14) using model-based estimates renders the closed-loop
vessel and output feedback controller UGAS.

Following a similar approach for the other observer renders
the closed-loop vessel and output feedback controller using
signal-based estimates uniformly locally asymptotically
stable (ULAS). We conclude local because the desired

behavior of the observer error dynamics (12) is predicated
on the derivative of the tracking error, ẋ0, being bounded.
It is not clear whether the region of attraction for the origin
of the signal-based output feedback controller and vessel is
almost global. The simulations in Section 7 indicate that
the basin of attraction when the signal-based estimates are
used in feedback is fairly large, but further research on this
problem is required to make rigorous statements about the
basin of attraction of the origin for (12), (14), (4) and (5).

5. HYBRID SIGNAL-BASED AND MODEL-BASED
OBSERVER IN CLOSED-LOOP CONTROL

The observers flow in parallel in the hybrid observer
design, and the position and velocity in surge, sway, and
yaw from the observer that performs best is used in output
feedback with (14). The estimation errors are monitored,
and switching is limited by hysteresis.

5.1 Plant, controller, and observer

The flow dynamics of the hybrid system constitutes the
marine vessel, controller, and observer dynamics is

η̇ = R(ψ)ν, (15a)

Mν̇ = −DLν +R>(ψ)b+ u (15b)

ζ̇ = η̂s − ηd (15c)

u = −R>(ψ)Kp(η̂s − ηd)−Kd(ν̂s − νd)
−R>(ψ)Kiζ +Mν̇d +Dνd (15d)

ẋ1 = F1(x1, p
n, ψ) (15e)

ẋ2 = F2(x2, p
n, ψ, ωbimu, f

b
imu) (15f)

ṡ = 0, (15g)

with η, ν, η̂s, ν̂s ∈ R3. (15a-b) are the vessel dynamics,
(15c-d) is the control algorithm with output feedback and
reference feedforward, (15e) is the model-based observer
(7), and (15f) is the signal-based observer from (9) and
(11). s ∈ {1, 2} is a logic variable that indicates if the
model-based or signal-based estimates are used in closed-
loop control. s = 1 is model-based and s = 2 is the signal-
based estimates, as decided by the performance monitoring
and switching logic.

5.2 Performance monitoring and switching logic

The performance monitoring function computes the esti-
mation errors of the two observers in position and heading
over a time period to make sure the system does not switch
unnecessarily often. In order to make a fair comparison,
the total (low frequency and wave frequency) estimates
are compared with the measured position and heading
where north and east positions are measured in meters and
heading in degrees. The model-based estimate, including
wave frequency components, is ŷ1 := ŷ from (7), and the
signal-based position and heading estimates are ŷ2 := η̂2.

We sample y, ŷ1, and ŷ2 every T > 0 seconds and N ∈ Z≥1
consecutive measurements are stored in the state of three
different shift registers with states χk ∈ R3N , k = {0, 1, 2}.
χk,i ∈ R3, i ∈ {1, . . . , N} are the stored measurements and
estimates. The state component χk,1 contains the most
recent samples, and χk,N contains the least recent samples;
see (17a-f).



Let ` ∈ R be a counter that triggers a performance check
of the observer. This happens every LT seconds where
L ∈ Z≥1. Let us define the shift register mean value

for the measurements: χ̄0 := 1
N

∑N
i=1 χ0,i, model-based:

χ̄1 := 1
N

∑N
i=1 χ1,i, and signal-based: χ̄2 := 1

N

∑N
i=1 χ2,i.

We switch to the other observer if it performs better than
the one currently in feedback with a hysteresis margin of
ε > 0; see (17g-i).

The jumps for these variables are allowed when

(x0, x1, x2, χk, τ, `, s) ∈ D (16)

D : = R9 × R15 × R16 × R3Nk × {T} × {0, . . . , L} × {1, 2}
x0 is the tracking error defined in Section 4. The jumps
satisfy

χ+
0,1 = y (17a)

χ+
1,1 = ŷ1 (17b)

χ+
2,1 = ŷ2 (17c)

χ+
k,2 = χk,1, k = {0, 1, 2} (17d)

... (17e)

χ+
k,N = χk,N−1, k = {0, 1, 2} (17f)

τ+ = 0 (17g)

`+ =

{
`+ 1 ` ∈ {0, . . . , L− 1}
0 ` = L

(17h)

s+ ∈


s ` ∈ {0, . . . , L− 1}
3− s ` = L, |χ̄0 − χ̄3−s| ≤ |χ̄0 − χ̄s| − ε
s ` = L, |χ̄0 − χ̄3−s| ≥ |χ̄0 − χ̄s| − ε.

(17i)

All the states introduced in this section remain constant
during flows, except for τ that satisfies τ̇ = 1. Flows are
allowed when

(x0, x1, x2, χk, τ, `, s) ∈ C (18)

C := R9 × R15 × R16 × R3Nk × [0, T ]× {0, . . . , L} × {1, 2}.

6. STABILITY

The stability results used to analyze the set are based on
invariance and uniform convergence according to Proposi-
tion 7.5 of Goebel et al. (2012). Consider the set

A := {0} × {0} × {0}
×Ψ× [0, T ]× {0, . . . , L} × {1, 2}, (19)

with Ψ := {χ0,ss} × {χ1,ss} × {χ2,ss} and χk,ss, k =
{0, 1, 2} are the steady-state values of the shift register
with saved measurements and estimates of the total vessel
motion. The set A is compact because its components are
closed and bounded sets.

Theorem 1. The set A defined in (19) is uniformly locally
asymptotically stable (ULAS) for the hybrid system de-
fined in (15)-(18).

Proof: The set A is:

(i) strongly forward invariant. If the solution starts inside
the set A, the observer in closed loop, regardless of
which, will keep the solution within A during flows.
During jumps the solution still remains in A since
jumping from the set of values A ∩ D, will yield a
solution that still is in A.

(ii) uniformly attractive from a neighborhood of itself.
Since each observer is converging, at least locally, it
follows from the switching condition in (17i) that the
number of switches will be uniformly bounded, at
least from initial conditions sufficiently close to the
set A, and that the last switching time can also be
uniformly bounded. That is there exists a T such that

|χ̄0(t)− χ̄1(t)|+ |χ̄0(t)− χ̄2(t)| ≤ ε ∀t ≥ T,
and there will be no more switching. Then, because of
uniform attractivity in the absence of switching, we
also have uniform attractivity with the switching. �

7. SIMULATION RESULTS AND DISCUSSION

Simulations are done in Matlab/Simulink with a platform
supply vessel in a marine environment with waves, wind
and current. The high fidelity simulation model is based
on the MSS GNC toolbox (Fossen and Perez, 2010) with
realistic measurement noise and sample time. The sea
state is very rough with significant wave height 4 meters,
peak frequency 0.6 rad/s taken from the JONSWAP 1

spectrum, with mean incident wave heading 150◦ in the
North-East frame (Price and Bishop, 1974). The current
speed is 0.5 m/s with direction 180◦, and the wind speed
and direction are taken as expectation values based on the
wave parameters.

The case simulated is a setpoint change where the vessel
moves 20 meters North and East, and changes heading
from ψ = 0◦ to ψ = −90◦. The change happens at 2500
seconds so the observer parts have ample time to converge
to steady state first. Figure 1 shows the estimation error
for the signal-based and model-based observer parts after
the initialization phase. The switching variable s indicates
which observer estimates are used in closed loop.
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Fig. 1. Estimation error for the signal-based and model-
based parts. The estimates used in closed-loop s is
indicated, with axis to the right.

At initialization the model-based observer is chosen in
feedback, as it takes time for the gyro bias estimate b̂g
in the signal-based observer to converge. The bias force

estimate b̂ in the model-based observer converges after
about 500 seconds. When the vessel changes heading,

1 Joint North Sea Wave Project.



the forces on the hull due to current, wind and waves
changes rapidly. This induces a transient in the model-
based part since the bias force estimate takes time to
converge to the new value. 40 seconds after the vessel starts
the setpoint change, the signal-based observer performs
better and is used in feedback. 700 seconds later the model-
based bias force estimate b̂ has converged to the new
value and is used in feedback once more. While performing
better during the setpoint change, the signal-based part
has higher estimation error during steady state, as seen
clearly in the figure. The simulation results indicate that
the basin of attraction for the signal-based estimates in
output feedback control is fairly large, since it includes
points from where we end up switching.

The vessel response is more oscillatory when the signal-
based observer is used in closed-loop. This is because
the signal-based observer does not include a wave filter
and has oscillatory estimates. It therefore induces some
wave frequency motion on the system through the control
law, approximately ±1 meter. This motion is insignificant
compared with the motion due to the 4 meter waves,
however, the vessel uses more energy and in a real system
the wear and tear on the machinery would be increased.

8. CONCLUSION

The hybrid observer with a signal-based and a model-
based part was shown to have good performance in simu-
lations of a DP vessel in a rough sea state. The observer
used in output feedback with a nonlinear PID tracking con-
troller, was shown uniformly locally asymptotically stable.
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