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Abstract

Slender, free-standing structures subjected to ground motions, may substantially decrease

the seismic moment and shear at the base by uplifting and rocking motion. However, the

rocking motion response is sensitive to all parameters, and slight differences in the parame-

ters, can lead to significant changes in the time history.

The aim of this study is to explore whether the rocking response could be predicted by

a statistical approach. Could the maximum response and the probability of overturning of

a rigid rocking oscillator subjected to an ensemble of ground motions with same statistical

properties be predicted in terms of average quantities?

Two recorded ground motions are used as a basis for generation of two ensembles of 100

statistically similar ground motions. The rocking motion of the oscillator subjected to the

ensembles, are tested experimentally on a shaking table to three different prototype scales.

Thus 600 laboratory tests establish an experimental basis for statistical comparison with nu-

merical predictions.

Conclusions There is observed an apparent correlation between the statistical distribution

of maximum rocking response for the numerical and laboratory results. Based on a limited

number of 100 predictions, the maximum response of a rigid rocking oscillator could be well

estimated by mean and median values for the two smallest prototype scales. The largest scale

shows larger relative errors on the predicted means, but the values are numerically small and

prone to be dominated by physical and numerical disturbance.

The effect of a slight parameter change that is unpredictable on the individual level, is

shown to be more predictable on the distribution of maximum response. These findings

support the view that maximum rocking response could be predicted in a statistical manner.

Contrastingly, the obtained prediction of overturning is shown to be uncertain and highly

sensitive to small changes in coefficient of restitution or accelerations. Based on a limited

number of 100 predictions, the probability of overturning is not well estimated. The results

that are observed, call in to question whether the probability of overturning could be pre-

dicted with the limited number of 100 tests. The estimates on overturning could presumably

be improved by increasing the number of test or by studying overturning with more than one

variable.
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Sammendrag

Slanke, frittstående konstruksjoner utsatt for bakkebevegelser, kan vesentlig redusere seis-

misk moment og skjærkraft på bunnen av konstruksjonen ved oppløft og påfølgende vugge-

bevegelse. Imidlertid er vuggeresponsen svært følsom for alle parametere som bestemmer

den, og små forskjeller i parameterne, kan føre til betydelige endringer i tidshistorien.

Målet med denne studien er å undersøke om vuggeresponsen kan bli forutsagt ved en

statistisk tilnærming. Kan maksimal respons og sannsynligheten for velting av en stiv vugge-

oscillator utsatt for en gruppe av bakkebevegelser med samme statistiske egenskaper, forutsies

med gjennomsnittlige verdier?

To målte bakkebevegelser benyttes som grunnlag for generering av to grupper av 100

statistisk lignende bakkebevegelser. Vuggeresponsen til oscillatoren utsatt for bakkebeveg-

elser, er testet eksperimentelt på et ristebord ved tre forskjellige prototypeskalaer. Dermed

danner 600 laboratorietester et eksperimentelt grunnlag for statistisk sammenligning med

numeriske forutsigelser.

Konklusjon Det er observert en tydelig sammenheng mellom den statistiske fordelingen av

maksimal vuggerespons for de numeriske og eksperimentelle resultatene. Basert på et be-

grenset antall på 100 prediksjoner, kan den maksimale responsen av en stiv vugge-oscillator

bli godt anslått av gjennomsnitts- og medianverdier for de to minste prototypeskalaene. Den

største skalaen utviser større relative feil på de predikerte resultatene, men verdiene er nu-

merisk små og mer utsatt for å bli dominert av fysisk og numerisk forstyrrelse.

Effekten av en liten parameterendring som er uforutsigbar på individnivå, er vist å være

mer forutsigbar når fordelingen av maksimal respons blir vurdert. Disse funnene støtter det

syn at maksimal vuggerespons kan forutsies på en statistisk måte.

På den annen side har den oppnådde prediksjon av velting vist seg å være usikker og svært

følsom for små endringer i dempingsparameteret eller akselerasjoner. Basert på et begrenset

antall på 100 prediksjoner, er sannsynligheten for velting ikke godt estimert. Resultatene som

blir observert, setter spørsmålstegn ved om sannsynligheten for velting kan forutsies med et

begrenset antall av 100 tester. Estimatene for velting kan antagelig bli forbedret ved å øke

antallet tester eller ved å studere veltefenomenet med mer enn en variabel.
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Chapter 1

Introduction

1.1 Background

Rocking motion of rigid columns is a technique that might be used for seismic isolation of

large bridges. Slender, free-standing structures subjected to ground motion shaking, may

substantially decrease the seismic moment and shear at the base by uplifting and rocking

motion. The rocking motion response is however sensitive to all parameters, and the existing

models are not able to predict the entire time history with sufficient accuracy. The idea of

this project is to explore the chaotic nature of rocking motion with a statistical approach. In

the end, earthquake engineering is performed on statistical quantities based on an ensemble

of ground motions with same earthquake hazard.

The goal of this project is to determine whether the maximum response could be pre-

dicted in a statistical manner. 600 laboratory tests are performed as an experimental basis

for statistical comparison with numerical predictions.

Example of Sensitive Response Figure 1.1 shows in the upper plot the laboratory rocking

response of a rigid column that overturns. The two lower plots show the predicted numerical

response to the measured accelerations from the laboratory. The only difference in the pre-

dictions is a slight change of the damping parameter by 0.7 %. Nevertheless the maximum

predicted responses differ with 62 % and they do not overturn, which the experimental re-

sponse that should be predicted does.

The existing numerical models for rocking motion are evidently not able to predict the

entire time history with sufficient accuracy. This project is initiated to explore whether we

2
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Figure 1.1: Different rocking response. Top: overturning in laboratory. Middle and bottom:
predicted sustained rocking motion with slightly different damping parameters cHousner and
cExp. For rocking angles θ larger than the critical angle α, i.e. |θ/α| ≥ 1, the motion becomes
unstable and the column overturns in most cases.

are able to predict the maximum response in a statistical manner. If a rigid block is subjected

to an ensemble of statistically similar ground motions, will we able to predict the maximum

rocking response and the probability of overturning in an average sense?

1.2 Objectives

The main goal of this project is to explore whether the response of a rigid rocking oscillator

to an ensemble of ground motions with the same statistical properties can be predicted by

the numerical model in terms of average quantities. The two quantities

• average maximum rotation angle for those specimens that did not overturn

• probability of overturning

should be obtained by experimental tests and numerical predictions and finally compared.

The two sub-questions that should be answered in this thesis are thus:
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• Could the mean of maximum rocking response of a rigid rocking oscillator be predicted

when subjected to an ensemble of ground motions with similar statistical properties?

The maximum rocking response is here meant as the maximum absolute rotation an-

gle for those specimens that do not overturn.

• Could the probability of overturning of a rigid rocking oscillator be predicted when sub-

jected to an ensemble of ground motions with similar statistical properties?

Research Design The research is performed in the following four main steps:

1. Generate artificial ground motions that are suitable for producing shaking table mo-

tions. The ground motions are generated as two sets of 100 statistically similar mo-

tions, which thereafter are time scaled to model three different prototypes. The ground

motions should be chosen such that a considerable amount of the the test do not over-

turn. Thus preliminary numerical predictions should be made.

2. Test the rocking response of a rigid rocking oscillator experimentally on the shaking

table. The rocking response and the actual accelerations of the shaking table should

be measured. The 600 measured acceleration signals of the shaking table are used as

input for the numerical predictions.

3. Post process the measured signals to obtain laboratory values for the rocking response.

Perform numerical predictions of the rocking response based on the measured accel-

erations.

4. Perform statistical analysis of the laboratory and numerical results and compare the

findings.

1.3 Limitations

The limitations of the project are as follows:

• The main limitation of the project is the shaking table. First of all, the table is not able

to represent the ground motions accurately. The numerical rocking predictions based

on input accelerations are thus not expected to be comparable with the experimental

rocking response. Secondly, the table has limits for maximum displacement and ve-

locities of the input signal. Due to these limitations the input accelerations must be

chosen with care, and the actual accelerations of the shaking table must be measured.

• The rocking oscillator is assumed to be rigid and rotate in only one direction. Thus the
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problem is modeled as a single degree of freedom system, where the rocking angle is

the only variable. This variable is continuous and limited by the boundary conditions:

no rocking and overturning.

• The overturning phenomenon is quantified by a discrete variable with only two out-

comes: overturning or not overturning.

• The problem is limited to explore the response of a rigid rocking oscillator to an en-

semble of ground motions with same statistical properties. If the statistical properties

of the ensemble are not the same, then each rocking response represents different pro-

cesses and will not necessarily be comparable.

• Each ensemble of ground motion consists of 100 artificial ground motions. Thus the

accuracy of the average quantities is bound by the limited size of the set of results.

• The numerical results are limited by the accuracy of acceleration measurements and

optical measurements of the experimental rocking motion.

1.4 Structure of the Report

The rest of the report is organized as follows:

Chapter 2 gives an introduction to the relevant theory of rocking motion, generation of ground

motions and prototype scaling.

Part II Method

Chapter 3 describes the generated ground motions, choice of prototype scales and initial

assessments before the experimental tests.

Chapter 4 describes how the properties of the test specimen, shaking table and the measure-

ment equipment. Further are the setup of the laboratory and the experiments described.

Chapter 5 presents how the measured results are post processed in order to obtain physical

quantities that could be analyzed and compared.

Chapter 6 defines and explains statistical variables, terms and visualization methods that are

used to compare the results.

Part III Results

Chapter 7 verifies that the measured accelerations share the same statistical properties in

time and frequency domain.

Chapter 8 presents the results from the laboratory and the numerical prediction with tables,
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plots and comments.

Chapter 9 discusses the results in order to answer the problem statement. The conclusions

are presented.

Chapter 10 summarizes the project and the main conclusions.

Appendix

Appendix A shows all box plots for the results grouped by the ground motion.

Appendix B shows cumulative distribution function (CDF) plots including response from

simulated accelerations.

Appendix C presents CDF plots of the response with varying slenderness of the rigid block.

Most of the figures are implemented as vector graphics, which enables zooming with accu-

racy if details of figures need to be investigated. All references to figures, tables, equations,

sections and bibliography are clickable links. Consequently this report is best read digitally.



Chapter 2

Theoretical Background

2.1 Rocking Response of Rigid Block

The theory of rocking response of rigid blocks will be presented based on descriptions by

Housner [6], Makris [7], Makris and Konstantinidis [8], Zhang and Makris [11]. The equations

and assumptions that are stated, establish the basis for the numerical rigid body rocking

response model to be validated.

2.1.1 Response to Quasistatic Loads

Consider a free-standing rigid block with semidiagonal R =
p

b2 +h2, slenderness b/h =
tan(α) and slenderness angle α as shown in figure 2.1. In the quasistatic situation we are

considering a slowly increasing ground acceleration üg at the base of the block. The block

will uplift when the seismic demand müg h reaches the seismic resistance mg b. The static

moment equilibrium about point O gives

müg h = mg b or üg = g
b

h
= g tanα (2.1)

The uplift criterion for the block is

üg ≥ g
b

h
= g tanα (2.2)

The moment rotation diagram is presented in figure 2.2. Until the seismic resistance mo-

ment M reaches its maximum at ±mg R sin(α), the stiffness is infinite. After uplift has oc-

curred, the block experiences a positive rotation θ(t ). Due to the assumption that the base

7
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Figure 2.1: Geometric characteristics of rigid block with height H = 2h and width B = 2b
rotating with positive angle θ about point O due to the ground motion üg . Based on figure
from [8].
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Figure 2.2: Moment rotation diagram of rigid block. The block has infinite stiffness until the
seismic resistance moment M reaches its maximum at ±mg R sin(α). Thereafter the block
uplifts, the stiffness is negative, and the seismic resistance moment M decreases until it be-
comes zero at θ = ±α. The rocking motion is notably sensitive for angles in the range close
to α.
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acceleration is quasistatic, the inertia moment due to rotational acceleration is negligible,

θ̈(t ) ≈ 0. Now the seismic demand is müg R cos(α−θ(t )) and the seismic resistance is merely

mg R sin(α−θ(t )). For θ > 0 the seismic resistance of the block after uplift is g tan(α−θ(t )) <
g tan(α). The seismic resistance moment M decreases with increased rocking angle, hence

the stiffness is negative.

Under quasistatic loading conditions we can draw two conclusions. Firstly once the block

has uplifted, it will also overturn. Secondly the stability of the block is only dependent on the

slenderness tanα and is independent of the size R.

2.1.2 Response to Dynamic Loads

When considering earthquake loads, üg is not quasistatic, rather time varying. After uplift

the block will experience rotational acceleration θ̈(t ) 6= 0. Dynamic moment equilibrium

gives

−müg (t )R cos(α−θ(t )) = IO θ̈(t )+mg R sin(α−θ(t )), θ > 0 (2.3)

where IO is the rotational moment of inertia about the pivot point O at the base. This quan-

tity is proportional to the square of the size parameter R. For rectangular blocks where the

mass is evenly distributed, IO = 4
3 mR2 and equation 2.3 simplifies to

− üg (t )R cos(α−θ(t )) = 4

3
R2θ̈(t )+ g R sin(α−θ(t )), θ > 0 (2.4)

The implications of equation 2.4 are remarkable, as stated by Housner [6]. The seismic de-

mand is proportional to R whereas the seismic resistance is proportional to R2. This means

that regardless of how intense the ground motion üg or how slender the block is, the second

power of R can ensure stability of the block. This scale effect explains why the larger of two

geometrically equal blocks, i.e. same slenderness angleα, can survive the excitation that will

overturn the smaller block.

According to the time history of the fluctuating ground motion, the ground acceleration

could either act in the same or the opposite direction of the restoring force at each time

instant. Consequently, under dynamic loads an uplifted block will not necessarily overturn,

which is the case under quasistatic loads. Moreover, we might also experience rocking angles

larger than the critical angle α without overturning.

Due to the negative stiffness of the rocking block there exists no resonance frequency.
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Hence, the block neither amplifies nor resonates due to any frequency content in ground

motions, which is a great advantage in rocking isolation applications, Makris [7].

2.1.3 Equation of Motion

For negative rotations θ(t ) < 0, the equation of motion of a rocking block is

−müg (t )R cos(−α−θ(t )) = IO θ̈(t )+mg R sin(−α−θ(t )), θ < 0 (2.5)

Equation 2.3 and 2.5 can be expressed in the general and compact form

θ̈(t ) =−p2
[

sin
[
αsgn[θ(t )]−θ(t )

]+ üg

g
cos

[
αsgn[θ(t )]−θ(t )

]]
(2.6)

where p = √
mRg /IO is the frequency parameter of the block and is an expression of its

size R. sgn[θ(t )] is the signum function that returns +1 for positive values of θ(t ) and -1 for

negative values for θ(t ). Equation 2.6 is used in the numerical rigid body rocking response

model to be validated.

2.1.4 Rotational Inertia of Inhomogeneous Block

For a rigid block with evenly distributed mass, the rotational inertia could easily be calcu-

lated by integration. For other blocks, e.g. blocks with hollow cross sections, the calculations

are more cumbersome. In rocking motion the rotational inertia, IO , about the pivot point

O, is of interest. In the following, the geometrical center of the block is assumed to coincide

with the mass center C . A factor λ given by

λ= IC

mR2
(2.7)

expresses the ratio between IC , the rotational inertia about C , and mR2 where m is the mass

of the block and R is the distance between O and C . The rotational inertia of a block IO about

point O, is then given by

IO = IS + IC = mR2 +λC R2 = (1+λ)mR2 (2.8)
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where IS is the added rotational inertia according to Steiner’s theorem. For a rigid block with

evenly distributed mass λ = 1/3. λ could be interpreted as a measure of the inertia distri-

bution around the mass center. If the main part of the mass exists far from the mass center,

compared to evenly distributed mass, the λ-value is greater than 1/3. Thus for hollow cross

sectionsλ> 1/3. The factorλ could be determined by calculations as well as by experiments.

The frequency parameter p(λ) dependent on the the inertia factor, could then be calcu-

lated as

p(λ) =
√

g

(λ+1)R
(2.9)

2.1.5 Coefficient of Restitution

When a specimen exhibits oscillatory rocking motion, energy is only lost during impact,

which is when the angle of rotation reverses, Housner [6], Makris [7]. Once during each half-

cycle there would be an increment decrease in kinetic energy. The coefficient of restitution

c equals the ratio of kinetic energy before and after the impact and is given as

c =
(
θ̇2

θ̇1

)2

(2.10)

where θ̇1 and θ̇2 are the angular velocities before and after impact respectively. If the impact

is assumed to be inelastic, the moment of momentum about the tilting point O is conserved,

and equation 2.10 is further developed into

c =
(
1− 3

2
sin2α

)2

(2.11)

for rigid blocks with evenly distributed mass, Housner [6]. For general blocks where the geo-

metrical center coincides with the mass center, equation 2.11 is expressed as

c =
(

1−
1
2 sin2α

1
4 (1+λ)

)2

(2.12)

Equation 2.12 is used in the numerical response calculations when an experimental value is

not given. Equations 2.11 and 2.12 are equal for λ= 1/3.
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2.2 Generation of Artificial Ground Motions

The goal of the process described in this section is to fit a stochastic model to a single recorded

target ground motion. The fitted model is further utilized to generate artificial ground mo-

tions with similar frequency content and energy distribution as the target ground motion.

The theoretical background for generation of artificial ground motions using frequency

domain discretization as applied in this project, is briefly summarized here. The theory is

based on the work of Broccardo and Der Kiureghian [3], which is an extension of the work of

Rezaeian and Der Kiureghian [9] into frequency domain. For further details and derivations,

see their work.

2.2.1 Frequency Domain Discretization

A spectral representation of a zero-mean stationary stochastic process could be discretized

as a canonical random Fourier series

X (t ) =
K∑

k=1
σk [uk cos(ωk t )+ ūk sin(ωk t )] (2.13)

where the variance of the process is described byσ2
k = 2Φ(ωk )∆ω. Φ(ωk ) is the power spectral

density (PSD) of X (t ) for frequencyωk , and K is the number of frequency increments. uk and

ūk are standard normal variables, thus making the process Gaussian. The process described

by equation 2.13 is stationary in both time and frequency domain, and must consequently

be further developed to describe the nonstationarities of ground motions.

2.2.2 Spectral and Temporal Nonstationarity of Ground Motions

Earthquake ground motions have nonstationary characteristics both in time and frequency

domain. The temporal nonstationarity arises from the transient nature of the earthquake.

The intensity of a typical ground motion is increasing from zero to a nearly constant inten-

sity during a strong shaking phase. Thereafter the intensity decreases to zero with a total

duration of 20-60 seconds. The spectral nonstationarity arises from the evolving nature of

the seismic waves arriving at the site. The first few seconds are typically dominated by high-

frequency P waves. These are followed by moderate-frequency S waves, which tend to domi-

nate the strong shaking phase. Thereafter the ground motion is dominated by low-frequency
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surface waves. The total ground motions is a mixture of these waves with a dominant fre-

quency that tends to lower values with time, Rezaeian and Der Kiureghian [9].

Spectral Nonstationarity The spectral nonstationarity is obtained by letting the power

spectral density be varying with time, that is defining an evolutionary power spectral den-

sity (EPSD). The discretized EPSD of a nonstationary colored noise process can be written as

Φ(ωk ) =Φ f (ωk |θ(t ))Φ0, where Φ f (ωk |θ(t )) is a parametrized filter with time varying param-

eters θ(t ), and Φ0 is the white noise spectral density. The EPSD is normalized such that the

process is temporally stationary with unit variance. In this way the variance of the process

X (t ) is controlled by time modulating function q(t ) only.

The parametrized filterΦ f (ωk |θ(t )) can be compared with a damped single degree of free-

dom oscillator with time varying parameters θ(t ) = [ωg (t ),ζg (t ),ω f ,ζ f ]. The time varying

frequency ωg (t ) controls the predominant frequency, and the time varying damping ratio

ζg (t ) controls the bandwidth of the process. The fixed model parameters ω f and ζ f ensures

that the process is twice integrable such that the ground velocity and displacement processes

have finite variances.

Temporal Nonstationarity The time varying intensity of the process is controlled by the

non-parametric time modulating function q(t ). q(t ) is determined such that the expected

Arias intensity Ia(t ) of the process is fitted to the Arias intensity of the target ground motion.

Arias intensity is defined as

Ia(t ) =
(
π

2g

)
E

[∫ t

0
X 2(τ)dτ

]
=

(
π

2g

)
E

[∫ t

0
q2(τ)dτ

]
(2.14)

2.2.3 Probabilistic Model

A fully nonstationary process with N time steps and K frequency steps could be described

in its discretized form as

X [n] =
K∑

k=1
σ[n,k] {u[k]cos[n,k]+ ū[k]sin[n,k]} (2.15)

where σ2[n,k] = q2[n]2Φ[n,k]∆ω, Φ[n,k] = Φ(ωk |θ(tn)), cos[n,k] = cos(ωk tn) and

sin[n,k] = sin(ωk tn). The main and important difference from equation 2.13 is that the vari-

ance given by σ2[n,k] varies with time and frequency.
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Estimation of Model Parameters The model is estimated based on a target ground motion

acceleration üg (t ). The empirical EPSD of üg (t ) is calculated using short-time Thomson’s

multiple-window spectrum estimation (TMWSE) as explained by Conte and Peng [5].

In this study the modulating function q(t ) is a non-parametric function. This is obtained

by a kernel smoothing of the cumulative energy density. The kernel is a Hanning window

of size 5 s. The justification for a cumulative non-parametric function can be found in

Broccardo and Dabaghi [2]. Here shortly, it is reported that the non-parametric cumula-

tive function represents a significant improvement of the fitting; moreover, it relates directly

the model to the engineering quantities t5−95 = t95−t5, t45 and t75, which are of great interest

in engineering application. These quantities state the time tn for reaching n % of the Arias

energy as determined by the relation

Ia(tn) = n

100
Ia(T ) (2.16)

where T is the total duration of the earthquake. t5−95 could be interpreted as the duration of

the strong shaking phase.

Thereafter the empirical EPSD is fitted to a Kanai Tajimi PSD one main frequency para-

metric function. Finally the parameters of the earthquake ground model are estimated such

that the analytical EPSD best fits, in a least-squares sense, the EPSD of the target ground

motion.

Simulation of Ground Motions An artificial acceleration signal X (t ) is generated by equa-

tion 2.15 and the determined model parameters. However, integration of the signal may

exhibit non-zero velocity residuals, which is not physically realizable for ground motions. To

satisfy this requirement, a high-pass filter in form of a critically damped oscillator is applied

as described by Rezaeian and Der Kiureghian [9]. Due to the high damping of the filter, the

acceleration, velocity and displacement residuals of the resulting process will rapidly vanish,

thus leading to zero or small displacement residuals even though the target motion might

exhibit finite end displacements.

2.2.4 Similarities Between Target and Artificial Ground Motions

The main similarities between the target and artificial ground motions are the time-varying

characteristics of



2.3. PROTOTYPE SCALING OF GROUND MOTION SIGNALS 15

• Intensity

• Predominant frequency

• Bandwidth

All together the target and artificial ground motions could be regarded as realizations of the

same stochastic ground motion that has the characteristics of the site and earthquake that

produced the target signal, Rezaeian and Der Kiureghian [9].

2.3 Prototype Scaling of Ground Motion Signals

In order to experimentally test the rocking response of rigid blocks with equal slenderness,

but different prototype sizes, the ground motions could be scaled in time domain. Through

dimensionless analysis it can be shown that the time scale of the ground motion to experi-

mental scale can be increased or decreased in order to describe an equivalent motion for a

smaller or larger prototype block respectively.

Consider a ground acceleration pulse üg with peak acceleration ap and peak frequency

ωp . From equation 2.6 we can see that the rocking response θ(t ) of a rigid block to the ground

acceleration pulse is given as a function of five variables

θ(t ) = f (p,α, g , ap ,ωp ) (2.17)

The six variables θ = [], p = [T ]−1, α = [], g = [L][T ]−2, ap = [L][T ]−2, ωp = [T ]−1 are

represented by the two dimensions length [L] and time [T ].

2.3.1 Vaschy-BuckinghamΠ-theorem

The Vaschy-BuckinghamΠ-theorem of dimensional analysis Makris [7] states that the num-

ber of dimensionless products p with which the problem can be completely described, is

equal to the number of variables n minus number of reference dimensions k. Applying the

theorem on equation 2.17, the number of variables may be reduced. In our case equation
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2.17 may be described by p = n −k = 6−2 = 4 dimensionless variables

Πθ = θ

Πω = ωp

p
=ωp

√
4R

3g

Πα = tan(α)

Πg = ap

g

(2.18)

as

θ(t ) =φ(
ωp

p
, tan(α),

ap

g
) (2.19)

2.3.2 Time Scaling

Consider a rigid, homogeneous block to experimental scale with slenderness angle α and

semidiagonal Rexperimental. It is of interest to experimentally determine the rocking response

θ(t ) of a prototype block to a given ground motion. The prototype has the same slender-

ness angle α, but different semidiagonal Rprototype. By scaling the time vector of the ground

motion, the response could be tested to the experimental scale.

As long as the values of the dimensionless variables Πω, Πα and Πg remain constant,

equation 2.19 holds and represents the rocking angle θ(t ) according to the input variables.

Since g in Πg is a natural constant and Πα is represented by one variable α, these variables

determiningΠα andΠg could not be changed without changing the values of the dimension-

less variables. Πω is on the other hand given by two independent variables ωp and p =
√

3g
4R ,

and could thus be scaled by the same factor.

If we require thatΠω be equal for the experimental and the prototype scale, we have

Πω,experimental =Πω,prototype

ωp,experimental

√
4Rexperimental

3g
=ωp,prototype

√
4Rprototype

3g

ωp,experimental

√
Rexperimental =ωp,prototype

√
Rprototype

ωp,experimental =ωp,prototype

√
Rprototype

Rexperimental

(2.20)

If we have a larger prototype to be tested to a smaller experimental scale, Rexperimental <
Rprototype, we see from equation 2.20 that the experimental peak frequency must be increased
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by a factor

√
Rprototype

Rexperimental
.

In general a ground motion signal consist of different frequencies. Since frequencyω and

period T are reciprocal quantities, i.e. ω=π/T , an increase in frequency leads to a decrease

in period by the same factor. Hence, to scale the frequency content of the ground motion

signal, the time scale could be changed accordingly. The actual ground motion to be tested

is discretized using a prototype time scale with a constant time step dtprototype. The time

vector in experimental scale is calculated with time step

dtexperimental = dtprototype

√
Rexperimental

Rprototype
(2.21)

We see that when a larger prototype is tested to a smaller experimental scale, Rexperimental <
Rprototype, the experimental time scale is reduced by the factor

√
Rexperimental

Rprototype
.



Part II

Method
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Chapter 3

Initial Calculations and Assessments

In the preparation period for the laboratory experiments 2×100 artificial ground motions

were produced based on the earthquakes El Centro and Lefkada respectively. The rocking

response to different time scales was tested numerically in order to choose scaling factors

that will produce results with statistical significance. Additionally must the scaling factor be

chosen such that the shaking table was able to reproduce the signal appropriately.

3.1 Generation of Artificial Ground Motions

The artificial ground motions utilized in this project are generated with a MATLAB script

developed by Dr. Marco Broccardo at ETHZ. The script generates artificial ground motions

according to the descriptions in section 2.2.

Throughout the work in this project the Zürich value for the gravitational constant g =
9.807 m/s2 is chosen.

3.1.1 El Centro Simulations

The original El Centro ground motion is shown in figure 3.1 together with the mean values of

the simulations. The original signal record is given as acceleration time history with peak ac-

celeration 0.3141 g, time step 0.02 seconds and a duration of 49.62 seconds. The velocity and

displacement are integrated numerically. The mean values of the simulations show values

near zero, as expected for Gaussian variables.

In figure 3.2 the 100 simulations are shown. By comparing the accelerations in the two

figures, it can be seen that the intensities has a similar distribution. As seen in table 3.1, the

19
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peak values for acceleration, velocity and displacement are compared for the original signal

and the mean of the simulations. The acceleration and velocity mean values are higher for

the simulations, and all standard deviations are small compared to the means. The peak

displacement for the original is not baseline corrected and is thus higher than the mean

value of the simulations, which are limited by the high-pass filter.

Figure 3.4 shows the cumulative energy distribution of 100 simulations, the mean of the

simulations and the original signal. As seen from figure 3.4 and table 3.2, the energy distri-

bution of the simulations fit well to that of the original. The mean of the simulations has

a strong shaking phase with duration t5−95 = 24.50 s as compared to t5−95 = 24.10 s for the

original. The shape of the curves are similar, and for all signals there is almost no increase in

cumulative energy for t > 25.70 s. The cumulative energy E(t ) is calculated as

π

2g
Ia(t ) =

∫ t

0
X 2(τ)dτ (3.1)

where Ia(t ) is the Arias intensity as given in equation 2.14.

The upper plot of figure 3.3 show the time modulation function q(t ) compared to the

absolute value of original |üg ,0| and mean absolute value of simulated |üg | accelerations.

q(t ) and |üg | fit well as expected, since the simulations are time modulated with this func-

tion. The original signal could be interpreted as one realization of the underlying stochastic

ground motion, of which q(t ) is describing the time varying intensity. As seen in the lower

plot of figure 3.3, q(t ) and −q(t ) are enveloping the original ground motion acceleration in a

smoothed sense.

Figure 3.5 show the the smoothed and time modulated evolutionary PSD that is gener-

ated based on the original El Centro ground motion. This EPSD is assumed to represent the

non-stationary characteristics of the underlying stochastic ground motion in both time and

frequency domain.

Table 3.1: Comparison of peak values for El Centro. Original values compared with mean µ

and standard deviation σ of the 100 simulations.

üg ,p [g] u̇g ,p [mm/s] ug ,p [mm]
Original 0.314 408.3 515.7

Simulations
µ 0.354 498.2 441.5
σ 0.00219 6.59 12.93
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Figure 3.1: Original acceleration, velocity and displacement history for El Centro. The simu-
lations have a near-zero mean in all plots.

Figure 3.2: 100 simulated acceleration, velocity and displacement histories for El Centro
compared with mean of simulations.
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Figure 3.3: The original accelerations üg ,0 and mean value of simulated üg accelerations
compared to time modulation function q(t ). Upper figure show absolute values, lower figure
actual values. The absolute mean values of the simulations fit well to the time modulation
function q(t ).

Figure 3.4: Cumulative distribution of energy of 100 simulations compared with original ac-
celeration üg ,0 and mean of simulations |üg |. The mean of the simulations is well fitted to
the original ground motion.
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Table 3.2: Comparison of time for energy accumulation for El Centro. Values for original
accelerations and mean of simulations. The time measures are well fitted.

t5 [s] t45 [s] t75 [s] t95 [s] t95−5 [s]
Original 1.54 4.36 11.70 25.64 24.10
Simulations 1.20 4.38 12.00 25.70 24.50

Figure 3.5: Smoothed and time modulated evolutionary power spectral density for original
El Centro ground motion. Highest value of EPSD for t = 2.04 s and f = 1.5667 Hz. The EPSD
shows the variation of the stochastic model in time and frequency domain.
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3.1.2 Lefkada Simulations

The original Lefkada ground motion and the mean values of the simulations are shown in

figure 3.6. The original signal record is given as acceleration time history with peak accel-

eration 0.4473 g, time step 0.01 seconds and a duration of 46.82 seconds. The velocity and

displacement are integrated numerically. As observed for El Centro the mean values of the

simulations are near zero, and there is a finite displacement residual in the original signal

because it is not baseline corrected. The peak values for the original signal and the mean of

the simulations are presented in table 3.3.

As observed by comparing table 3.4 and figure 3.8 and 3.9, the distribution of energy is

well fitted for Lefkada in the same manner as discussed for El Centro. The shape of the curves

in figure 3.9 are similar, and for all signals there is almost no increase in cumulative energy for

t > 12.34 s. The mean of the simulations has a strong shaking phase with duration D5−95 =
10.63.

When Lefkada is compared to El Centro, it is observed that Lefkada has a shorter and

more distinct strong shaking phase, 12.34 s compared to 24.60 s (mean of simulations), and

a higher measure of cumulative energy.

Figure 3.10 show the smoothed and time modulated evolutionary PSD that is generated

based on the original Lefkada ground motion. This EPSD is assumed to represent the non-

stationary characteristics of the underlying stochastic ground motion.

Table 3.3: Comparison of peak values for Lefkada. Original values compared with mean µ

and standard deviation σ of the 100 simulations.

üg ,p [g] u̇g ,p [mm/s] ug ,p [mm]
Original 0.447 344.9 137.6

Simulation
µ 0.554 511.2 274.7
σ 0.00259 4.48 3.60

Table 3.4: Comparison of time for energy accumulation for Lefkada. Values for original ac-
celerations and mean of simulations. The time measures are well fitted.

t5 [s] t45 [s] t75 [s] t95 [s] t95−5 [s]
Original 1.73 5.05 7.02 12.21 10.48
Simulations 1.71 5.17 7.22 12.34 10.63
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Figure 3.6: Original acceleration, velocity and displacement history for Lefkada compared
with mean of simulations.

Figure 3.7: 100 simulated acceleration, velocity and displacement histories for Lefkada. The
simulations have a near-zero mean in all plots.
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Figure 3.8: The original accelerations üg ,0 and mean value of simulated üg accelerations
compared to time modulation function q(t ). Upper figure show absolute values, lower figure
actual values. The absolute mean values of the simulations fit well to the time modulation
function q(t ).

Figure 3.9: Cumulative distribution of energy of 100 simulations compared with original ac-
celeration üg ,0 and mean of simulations üg . The mean of the simulations is well fitted to the
original ground motion.
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Figure 3.10: Smoothed and time modulated evolutionary power spectral density for original
Lefkada ground motion. Highest value of EPSD for t = 2.29 s and f = 2.0333 Hz. The EPSD
shows the variation of the stochastic model in time and frequency domain.
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3.2 Choice of Prototype Scales

If the test specimen with height H0 = 0.5 m were exposed to the 100 ground motion simu-

lations of El Centro and Lefkada with original time steps, we expect the specimen to over-

turn for all 100 of the tests, as shown in table 3.5. In order to observe sustained rocking, the

time steps are decreased according to equation 2.21. By scaling the time steps by a factor√
Rexperimental

Rprototype
=

√
Hexperimental

Hprototype
=

√
H0
H we are able to represent the rocking response of a block

with height H .

Shaking Table Limits The shaking table has displacement limit ug ,lim = 250 mm and ve-

locity limit u̇g ,lim = 220 mm/s. If the ground motions have displacements higher than the

limit, the shaking table will experience a sudden stop. On the other hand if the velocities are

slightly higher than the limit, the shaking table will still try to represent the ground motions,

but by reduced accuracy compared to the input signal. Since the measured accelerations

are used as input for the numerical comparison, the velocity limit is not an absolute limit.

When time signals are squeezed, the maximum velocity u̇g ,max and the displacement ug ,max

decrease by factors
p

H0/H and
p

H0/H
2

respectively.

Choice of Heights When the heights of the prototype models were chosen, the following

criteria were stressed: The scaled simulations

1. should represent three different scales and thus three different values of the frequency

parameter p.

2. should be able to produce a considerable amount of rocking motions without over-

turning.

3. must have ug ,end ≤ ug ,lim for all tests.

4. should have u̇g ,max ≤ u̇g ,lim for a low amount of the tests.

As seen in table 3.5, criterion 3 excludes heights lower than 3 m. To obtain a small number

of overturns and a small number of velocities over the limit, height 5 m was chosen as the

smallest specimen. For higher specimens criteria 2-4 are met, and heights 10 m and 20 m

were chosen to represent three different prototype models.
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3.3 Generation of Displacement Files

The shaking table is able to represent a ground motion with a given displacement time his-

tory as input. The CSV-inputfile (Comma Separated Values) consists of one column with

time values in seconds and six equal columns with displacement values in millimeter. The

values in all seven columns are written to the CSV-file with precision 6, i.e. 6 significant dig-

its.

The generated ground motions tend to have small, finite end displacements ug ,end. In or-

der to place the shaking table in its zero-position after each test, a zero-correction displace-

ment was appended to each file as shown in figure 3.11. Firstly three seconds of a constant

displacement equal to ug ,end was added. In this way there is a clear distinction between the

varying original displacement time history and the constant added values. Thereafter a co-

sine term equal to 0.5ug ,end(1+ cos(πx)), which attains values from ug ,end to 0, is added. x

is a vector with values from 0 to 1, discretized such that the mean velocity of the motion is 5

mm/s.
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Figure 3.11: Generation of displacement ug to input file from simulated acceleration üg and
appending constant displacement ug ,end and zero correction.
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Table 3.5: Number of simulations that attain values above the velocity limit u̇g ,lim and dis-
placement limit ug ,lim of the shaking table and expected number of overturns. The values
are calculated for 100 simulations with various time scaling based on the heights for both
ground motions. The height of the test specimen is 0.5 m and has thus scaling 1. Number
of overturns are calculated for slenderness b/h = 0.15, λ= 0.6235 and Housner coefficient of
restitution. Prototype heights marked in grey are chosen. See appendix B for CDF plots of
the numerical results of the chosen heights.
Means and medians are calculated based on those tests that did not overturn. The mean
values are in general higher than the median values.

Number of Mean Median
Ground motion Height [m] u̇g ,max ≥ u̇g ,lim ug ,max ≥ ug ,lim Overturns θmax/α θmax/α
El Centro 0.5 100 99 100 - -
El Centro 1 98 72 96 0.82 0.89
El Centro 2 64 4 77 0.65 0.64
El Centro 3 34 0 64 0.53 0.48
El Centro 4 18 0 43 0.50 0.48
El Centro 5 7 0 32 0.42 0.40
El Centro 6 4 0 21 0.42 0.37
El Centro 7 2 0 12 0.37 0.32
El Centro 8 1 0 9 0.31 0.27
El Centro 9 0 0 3 0.29 0.24
El Centro 10 0 0 1 0.25 0.21
El Centro 15 0 0 0 0.16 0.15
El Centro 20 0 0 0 0.12 0.10
Lefkada 0.5 100 95 100 - -
Lefkada 1 99 18 99 0.80 0.80
Lefkada 2 76 0 88 0.71 0.71
Lefkada 3 37 0 61 0.69 0.70
Lefkada 4 11 0 47 0.52 0.49
Lefkada 5 4 0 30 0.51 0.45
Lefkada 6 1 0 24 0.44 0.38
Lefkada 7 0 0 10 0.44 0.38
Lefkada 8 0 0 8 0.39 0.37
Lefkada 9 0 0 5 0.36 0.34
Lefkada 10 0 0 3 0.32 0.29
Lefkada 15 0 0 0 0.20 0.17
Lefkada 20 0 0 0 0.15 0.13



Chapter 4

Laboratory Work

The main goal of the laboratory work was to obtain experimental values for the rocking an-

gle time history and the associated measured acceleration time history. The measured ac-

celerations were used as input for numerical calculation of rocking response such that this

response could be compared to the experimental one.

The rocking block was exposed to two different ground motions of 100 simulations each

that were time scaled according to three different prototype heights, i.e. six test setups of 100

simulations. In this chapter the laboratory equipment and procedures are described, and

figures 4.1 and 4.2 give a schematic overview of the laboratory. Figures 4.6 to 4.9 in the end

of the chapter show complimentary pictures of the laboratory set up.

4.1 Shaking Table

The servohydraulic shaking table is built in 1997 and is able to represent shaking motion in

one direction. As shown in figure 4.1 the shaking table is moved by the cylinder which is con-

trolled by the controller. From the controller PC the shaking table could be governed man-

ually or by input files with displacement or force time history. The servohydraulic cylinder

that moves the table, has a maximal range of ±125 mm and ±100 kN and maximal velocity

of ±220 mm/s.

The shaking table controller could be tuned in such a way that the shaking table is able to

reproduce the motions in an appropriate manner. We are able to choose parameter values

for stiffness Kp , inertia Ki and damping Kc . The values are chosen by trial and error with a

special focus on the represented acceleration values. High stiffness Kp leads to a close match

31
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Figure 4.1: Schematic overview of laboratory setup.

Figure 4.2: Setup of shaking table from the side.
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between the prescribed and the actual displacement time history, but on the other hand will

too high stiffness values imply that accelerations may be higher than realistic. For some high

values of Kp , the cylinder reached the force limit and accelerations in the magnitude of 1.5

g was measured, which is clearly unrealistic for the simulated ground motions. Since the

measured acceleration time history forms the basis for the numerical rocking response, the

shaking table was tuned to reproduce realistic accelerations at the expense of exactness of

represented displacement.

Table 4.1: Tuning values for the shaking table controller. The values for Kp and Ki for Tuning
1 were not noted explicitly, but were higher than the values for Tuning 2.

Tuning Kp Ki Kc

1 >3.2 >0.04 0.03
2 3.2 0.04 0.03

When the system is under hydraulic pressure and the target displacement value is con-

stant, the cylinder position is oscillating around the target displacement. Based on measured

displacement files we see that the motion has an amplitude of about 0.05-0.15 mm and main

frequency of about 1.5-2.0 Hz. An example from one test is shown in figure 4.3. This motion

might be present also when the shaking table is moving and might influence the measure-

ments.

As long as the shaking table is connected to the cylinder, it will move, and according to

the time instant the prescribed displacement is started, the initial conditions will vary. The

rocking response is sensitive to initial conditions, and consequently it is not expected that

the rocking response of the block to one simulation is exactly repeatable. The same observa-

tion is also reported by Aslam et al. [1].

4.2 Shaking Table Measurements

As seen in figure 4.1 the measurement PC is connected to two accelerometers on the shaking

table and a displacement sensor on the cylinder. Two accelerometers are chosen to have

redundancy in case of failure in measurements, which was the case for some of the 700 tests.

Measurements are recorded at sampling rate Fs = 500 Hz, displayed on the PC screen and

finally saved to a CSV-file when the recording is stopped. The recording must be started

and stopped manually, thus the duration of the records are longer than the duration of the

respective ground motion simulation.
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Figure 4.3: Actual variation of displacement of the shaking table for constant target displace-
ment based on result from the 114 last seconds of test 2016_11_01_135701_018. Maximum
amplitude 0.075 mm and main frequency 1.727 Hz. This motion might influence the mea-
surements.

4.3 NDI Optical Measurements

To measure the rocking response of the rocking block, the optical measure system Optotrac

Certus from the company Northern Digital Inc (NDI) is used. Hereafter this system will be

referenced by the abbreviation NDI.

As seen on figure 4.1 the NDI system consists of a position sensor that tracks the positions

and motions of infrared light emitting diodes (optical markers) within a specific area. The

markers are connected to the host PC through cables and the marker strober, and motions

are recorded with a sampling rate Fs = 500 Hz.

Calculation of Rocking Angle Marker 1 and 3 are attached to the shaking table and marker

2 and 4 are attached to the rocking block as shown in figure 4.2. The NDI software is able to

calculate the acute angle θinit(t ) = 6 (l1,2(t ), l2,4(t ) between the lines l1,2(t ) and l2,4(t ) directly.

We are interested in the rocking angle of the test specimen relative to the equilibrium state,

in other words the change of the angle relative to the angle at rest. For a specimen that is at

rest, the rocking angle is zero. Consequently we need to subtract the offset of about 87◦ to

obtain the rocking angle.

θlaboratory(t ) = θinit(t )−θoffset (4.1)
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The orientation of the position sensor was calibrated such that the y-axis of the position

sensor coincides with the direction of motion of the shaking table. This calibration was per-

formed by setting the shaking table to move back and forth and checking that z-positions of

marker 1 and 3 did not change.

4.4 Test Specimen

The test specimens used in the experimental tests consist of a triple symmetric assembly of

two hollow columns, two linking plates and four wedges as shown in figure 4.4. The wedges

pictured in 4.4(a) are replaced by the wedges in 4.4(b). All parts are made of aluminum and

connected by aluminum bolts, and the specimen is assumed to be rigid.

Specimen Parameters The total height of the specimen H = 2h = 500 mm is measured

from the lowest part of the bottom wedge to the highest part of the top wedge. When the

specimen is uplifting, it is tilting about the lower, outer corners of the wedge, a distance B =
2b = (2+71+2) mm = 75 mm apart from each other. According to section 2.1 the slenderness

b/h is
b

h
= B

H
= 75

500
= 0.15 (4.2)

the slenderness angle α is

α= tan−1
(

b

h

)
= tan−1(0.15) = 0.148889... rad ≈ 0.15 rad (4.3)

and the semidiagonal R is

R =
√

b2 +h2 = 1

2

√
B 2 +H 2 = 1

2

√
752 +5002 mm ≈ 252.80 mm (4.4)

Double Column Design The initial design consisted of only one column and a wedge on

top and bottom, however this assembly turned out to rotate about its longitudinal axis when

exposed to shaking table motions. In order to avoid rotation and to model the targeted one

degree of freedom system better, the design consisting of two columns was chosen as shown

in figure 4.4.

The chosen design exhibits a main drawback: The foundation of the rocking specimen

consists of two wedges and a linking plate instead of one piece. These three parts need to
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be connected and tightened by uttermost precision to avoid twisting and to obtain a parallel

rocking edge. If not, the specimen will rest on three of four edges and exhibit a wobbling

motion instead of a clean rocking motion with one simultaneous impact on each side.

Consequently the rocking block was assembled on a flat steel table and tightened until

the bottom surface was precisely in plane. Whether the surface is in plane or not, is easily

observed by gently pushing and pulling the top of the specimen from side to side and feel for

instabilities and wobbling motion. A perfect specimen should exhibit no tilting for a gentle

push below the uplift criterion, and a simultaneous tilt about the entire bottom edge for a

push over the uplift criterion.

Instabilities from Overturn Impacts As seen on figure 4.2 a crash pad, consisting of a

wooden specimen and a rubber mat on top, was put on each side of the foundation plate

to avoid damages of cables, bolts etc. and to limit impacts on the specimen when over-

turning. Nevertheless, during the test it was observed that especially the bolts on the top of

the rocking block became looser after several impacts from overturns, which in turn lead to

twisting of the block. Consequently the stability of the rocking block should be checked after

each overturn, and if need be, the bolts should be re-tightened. For some of the tests this

was not performed and the effect thereof is observed as discussed later. The test specimen

used for the two first test groups is called Model 1, the second, equal test specimen used for

the following five test groups is called Model 2.

4.5 Free Vibration Test

Since the test specimen is not a perfect rectangular cylinder with evenly distributed mass,

the inertia must be experimentally determined. The inertia factor λ affects the frequency

parameter p and thus the period of the rocking motion. Also the coefficient of restitution c

could be experimentally determined. The coefficient of restitution affects the loss of energy

and thus the decrease of rocking amplitude.

Free vibration tests are performed, and values for λ and c are tested to obtain a numerical

rocking response which fits the laboratory response in a good manner. The obtained values

are shown in table 4.2 and the corresponding numeric and laboratory response are shown in

figure 4.5.
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(a) Assembled rocking block consisting of two
columns, two linking plates and four wedges. Total
height H=500 mm.
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(b) Correct wedges used in experiments with mea-
surements in mm. Total width of bottom B=75 mm.

Figure 4.4: Test column with wedges as pictured in (b). Figures from Jonas Bachmann.
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Figure 4.5: Free vibration response and fitting of values for λ and c. The upper graph corre-
sponds to model 1, the lower to model 2.

Table 4.2: Experimental and analytical Housner values for coefficient of restitution c and
experimental inertia factor λ for the two different models used. The Housner values are
lower than the experimental, thus more energy is lost on each impact for cHousner (λ).

Model λ cExp cHousner(λ) cExp − cHousner(λ)
cExp−cHousner(λ)

cExp

1 0.63 0.9520 ≈ 0.97572 0.9467 ≈ 0.97302 5.3 ·10−3 0.56 %
2 0.6235 0.9532 ≈ 0.97632 0.9465 ≈ 0.97292 6.7 ·10−3 0.70 %

4.6 Test Procedures

When the tests were performed, the following procedures were pursued for each test.

1. Check stability of column, and if needed, tighten the bolts until the bottom surface is

in plane.

2. Check the position of the column. The initial position was measured to be perpendic-

ular to the shaking table and then marked with pen on the table.

3. Choose and load displacement file into controller PC.

4. Start recording of NDI on host PC. The measurement stops automatically after a spec-

ified amount of time.

5. Start recording of shaking table on measurement PC.

6. Start shaking table movement from controller PC.
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7. Observe movement of the rocking block.

8. End recording of shaking table after the shaking table has stopped, and save the file

manually. Even if the block overturns in the beginning, the measured accelerations

must be recorded until the shaking table has stopped its movement.

9. Note any comments or observations in log. Qualitative observations about each rock-

ing motion were noted to have a possibility to verify the correspondence of a test and

its measured rocking response, if need be.

Observation of Errors In total over 700 laboratory tests were performed, and the risk of

human errors or unwanted events is imminent. Following test procedures, noting of obser-

vations and regularly controlling the output results, were found useful as means of avoiding

and observing errors and mistakes. In addition to following the test procedures, the prelim-

inary results were regularly checked, compared and validated on the computer. According

to observations in the laboratory and on the computer, the test procedures were iteratively

improved. Observations during the laboratory period lead to that some of the simulations

needed to be retested. Other observed challenges could be dealt with by post-processing of

measured data on the computer.

Name of Files A consistent naming procedure of the test results was crucial to be able to

post-process the signals by loop-iterations in a computer script. Moreover a log was filled out

during the lab period to connect each test result with the corresponding input displacement

file that was tested. Any notes important for the post-processing were also noted in the log.

Output Result Files The NDI software automatically saves the calculated angle recordings

as a CSV-file in the manner

Artificial_Ground_Motions_Rocking_YYYY_MM_DD_HHMMSS_NNN_cal.csv

where the timestamp YYYY_MM_DD_HHMMSS denotes the time when the new project was ini-

tiated and NNN is a counter from 001 to 999 indicating the test number. An example is given

as

Artificial_Ground_Motions_Rocking_2016_11_01_135701_001_cal.csv

The corresponding recording of acceleration and displacement of the shaking table is saved

manually as
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Artificial_Ground_Motions_Rocking_2016_11_01_135701_001_acc.csv

where the suffix acc is the only difference.

Input Displacement Files The generated input displacement files were saved as a CSV-file

in the following manner

Artificial_Ground_Motions_Input_GM SCALE_N.csv

where GM is the name of the ground motion, SCALE is the applied scaling and N is the simu-

lation number. An example is given as

Artificial_Ground_Motions_Input_Lefkada H5m_1.csv

4.7 Description of Laboratory Tests

Preparations Model 1, Tuning 1 The laboratory equipment was set up October 25, 2016.

Thereafter time was spent on getting used to the software, the equipment and the test pro-

cedures. The input and output files were tested, and MATLAB scripts were improved itera-

tively to be able to analyze and validate the results during the test period. The shaking table

controller was tuned to represent the accelerations of El Centro H10m in an appropriate

manner: Tuning 1 according to table 4.1. Free vibration tests were performed on Model 1 to

obtain the values for c and λ as given in table 4.2.

The groups of ground motions that were tested, are described chronologically in the fol-

lowing as showed in table 4.3. The number of model and tuning coincides for all seven test

groups.

El Centro H10m The first tests were performed November 1, 2016. Out of 100 tests only

8 overturned, leading to impacts that might loosen bolts. The bolts were not tightened, but

nevertheless the column foundation remained stable throughout all tests, and the results are

assumed to be sufficient for comparison with numerical response.

El Centro H5m, Model 1, Tuning 1 Out of 100 tests 50 overturned. After the fourth over-

turn, an instable foundation was observed, nevertheless the tests were continued without

tightening of the bolts. Due to the following 46 overturn impacts, the degree of twisting of

the foundation was varying throughout the tests.
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Table 4.3: Overview of tests. Some of the testruns for El Centro H5m Model 1 (marked in
grey) were performed with wobbling column foundation. All 100 tests for El Centro H5m
were therefore retested with model 2.

Ground motion Model Tuning Test project Test number

El Centro H10m 1 1
2016_11_01_135701 001-040
2016_11_02_125617 001-060
2016_11_08_134036 001-052

El Centro H5m 1 1
2016_11_09_134129 001-048

Lefkada H5m 2 2

2016_11_11_093855 001-007
2016_11_11_132038 001-047
2016_11_14_104011 001-045
2016_11_17_172214 001

Lefkada H10m 2 2 2016_11_14_125700 001-100
Lefkada H20m 2 2 2016_11_17_104502 001-100
El Centro H20m 2 2 2016_11_17_131517 001-100
El Centro H5m 2 2 2016_11_17_151155 001-100

The unstable foundation was resting on three of four edges: two edges on the right side

and only one edge on the left side, directions as in figure 4.2 and 4.4. When the column was

gently pushed to the right side, thus pivoting about the right parallel edge, the column tilted

without wobbling or twisting. On the other hand, when the column was pushed to the left

side, thus pivoting about the nonparallel, left edge, the column exhibited a small wobbling

motion for even a gentle push.

It is reasonable to assume that the coefficient of restitution has changed, at least on the

left, unstable edge, due to the changed impact mechanism. When the column foundation

rested on three edges, it could be tilted a small angle from one side to the other without up-

lifting. Consequently this small, spurious rocking angle will influence the angle measured by

the NDI, leading to higher angle values compared to what is expected from a perfectly plane

foundation. Due to these imperfect initial conditions, there are many sources of errors in

the results and many discrepancies compared to the analytical model applied in numerical

response. The experimental rocking response to El Centro H5m was therefore rerun at a later

time.

Preparations Model 2, Tuning 2 Due to the unstable column used in the previous test, a

new, equal column, Model 2, was assembled and tightened until the bottom surface of the

foundation was in plane. Free vibration tests were performed on Model 2 to obtain the values

for c and λ as given in table 4.2. From now on the test procedure "Check stability of column,

and if needed, tighten the bolts until the bottom surface is in plane." was followed. As seen
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by comparing figures 3.2 and 3.4 with 3.7 and 3.9, the Lefkada simulations have higher peak

accelerations and cumulative energy than the El Centro simulations. When the first Lefkada

simulation was tested on the shaking table with the previous controller Tuning 1, the shaking

table stopped due to exceeded force limit. The shaking table was retuned according to the

values in table 4.1, and Tuning 2 was used for all the following test groups. Thus the number

of model and tuning coincides for all seven test groups.

Lefkada H5m The measured acceleration signal from test 2016_11_14_104011_005 shows

a spurious spike of 1.15 g in the period after the shaking table had stopped. The spike orig-

inates from an accidental impact on the accelerometer. This spike must be excluded before

numerical response is calculated based on the measured acceleration signal.

The test of simulation number 100 had to be retested some days later because the NDI-

recording was missing.

Lefkada H10m No remarkable events.

Lefkada H20m For tests 2016_11_17_104502_052-100 the cable connecting accelerom-

eter 1 to the measurement PC was not properly connected, thus only recordings from ac-

celerometer 2 are available.

El Centro H20m For tests 2016_11_17_131517_001-007 the cable connecting accelerom-

eter 1 to the measurement PC was was not properly connected, thus only recordings from

accelerometer 2 are available.

El Centro H5m, Model 2, Tuning 2 The displacement input-files used for these tests are

the same as used for El Centro H5m, Model 1, Tuning 1. Due to the rationale mentioned in

the end of section 4.1, and due to the fact that the tuning of the shaking table is different, the

measured accelerations are not expected to be equal to the respective measurements from

the previous tests.

If the numeric response of El Centro H5m is calculated based on input accelerations, in-

stead of measured accelerations, the response would not be equal for Model 1 and 2 because

the respective c- and λ-values given in table 4.2 are used. See figures in appendix B.

The last laboratory test was performed November 17, 2016.
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Figure 4.6: Picture of shaking table and test specimen. Notice the two pairs of optical markers
on the side of the shaking table and on the test specimen. See figures 4.1 and 4.2 for further
descriptions.

Figure 4.7: Overview picture of laboratory set up. The NDI optical sensor is seen to the left,
the shaking table and the test specimen to the right. The three PCs are seen in the back-
ground. See figures 4.1 and 4.2 for further descriptions.
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Figure 4.8: Close picture of test specimen. The grey cables are connecting the optical markers
with the NDI host PC. See figures 4.1 and 4.2 for further descriptions.
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Figure 4.9: Rocking test specimen before overturning. Overturning lead to impacts that
slightly influences the measured accelerations. The impacts lead additionally to that the
bolts connecting the wedges and the columns become looser and must be re-tightened. See
figures 4.1 and 4.2 for further descriptions.
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Post Processing of Laboratory Results

The measured test results need to be post-processed in order to obtain the maximum rocking

angle and compare the results of laboratory response with that of numerical response. The

certain steps performed to obtain these values, are described in this chapter.

All test results are named according to the rules described in section 4.6 and saved in fold-

ers according to their test project. A MATLAB script iterates through the logfile with records

for each test, imports the associated output files and links the meta-information about the

associated, scaled ground motions that are tested.

5.1 Adjusting Offsets of Measured Variables

All the variables that are measured in the laboratory, show near-constant non-zero values

when we expect zero-values, e.g. when there is no movement of the shaking table. Moreover

if we consider the initially measured variable Xinit(t ), the expected value E [Xinit(t )] = Xoffset 6=
0. To obtain physically realistic results with a zero mean for the variables, we subtract the

mean of the first M recorded points

Xoffset =
1

M

M∑
i=1

Xinit,i (5.1)

from the initially measured value at every point i

Xmeas,i = Xinit,i −Xoffset (5.2)

46
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The measurement records are started before the shaking table movement is initiated, thus

the mean of the first M points is assumed to represent the offset of the measure device. For

the acceleration and theta values M = 100 is chosen. For a sampling rate Fs = 500 Hz that

implies that the mean is calculated based on the values of the first 0.2 seconds.

Accuracy of Method The accuracy of this method of offset correction is not determined

explicitly, but the offset correction is also performed with the built-in MATLAB function

detrend for comparison. The detrend function calculates and subtracts the least square

fit of a linear trend of the input signal. See discussion in section 8.10 for details.

5.2 Measured Rocking Angle

As explained in section 4.3 the measured rocking angle θlaboratory(t ) is calculated by equation

4.1 by subtracting the offset such that the angle is zero at rest. The offset θinit(t ) has a value of

about 87◦ ≈ 1.52 rad due to the placement of the NDI optical markers on the rocking block,

se figure 4.2.

θlaboratory(t ) = θinit(t )−θoffset (4.1 revisited)

Maximum, Absolute Value The value of interest for further comparisons is θmax, the maxi-

mum, absolute value of the rocking angle. The value is normalized by the critical slenderness

angle α.

θmax = max(abs(θlaboratory(t ))), [rad] (5.3)

Since we might observe θmax ≥ 1.0αwithout overturning, θmax ≥ 1.5α is set as the discretized

definition of overturning. All values higher than 1.5α are set to 1.5α. The maximum value

below 1.5α that was observed, was 1.030α. The domain of θmax is consequently given as

θmax ∈ [0,1.5]α (5.4)

Examples of initial measured signal θinit(t ) and normalized, corrected rocking angle

θlaboratory(t )/α are shown in figure 5.1.
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(a) Overturn. θmax is set to 1.5α.
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(b) Sustained, long rocking.
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(c) Sustained, short rocking.

Figure 5.1: Initial measured signal θinit(t ) and normalized, corrected rocking angle
θlaboratory(t )/α. Plots (a), (b) and (c) show measured response to El Centro H10m simula-
tions 6, 14 and 21 respectively. Time axis given in seconds.
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5.3 Measured Accelerations

The measured accelerations need to be imported and post-processed to serve as input for

numerical response calculations. The offset must be subtracted, the main component of the

acceleration must be calculated and the accelerations with highest peak values from either

accelerometer 1 or 2 is chosen as input. See figure 5.3 for an overview.

Main Component The accelerometers record accelerations in three directions and are at-

tached to the shaking table surface with tape as shown in figure 5.2. Consider an initial accel-

eration record üg ,init,i , j in direction j = x, y, z for time ti where i = 1, .., N for N record points.

The recorded acceleration values üg ,init,i , j have an offset üg ,offset, j in each direction. To ob-

tain physically realistic results üg ,meas,i , j , the offset corrections are calculated by equations

5.1 and 5.2.

The accelerometers are aligned such that the x-axis coincides with the direction of move-

ment of the shaking table. Since the accelerometers hardly could be aligned in an exact

manner, the main component of the acceleration for all the N recording points is calculated

in the x-y-plane as

üg ,meas,i = sgn(ü∗
g ,meas,i )

√
ü2

g ,meas,x,i + ü2
g ,meas,y,i , i = 1, ..., N (5.5)

where ü∗
g ,meas,i is the acceleration component üg ,meas,x,i or üg ,meas,y,i that has the largest

absolute value. The accelerations in z-axis are not taken into account.

Figure 5.2: Accelerometer 1 attached to the shaking table.

The acceleration signal are cut such that eventual spurious spikes from the period before

or after the shaking table started to move, are avoided. The time instants t0, for the first
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acceleration value to be included, is determined by the first acceleration value to fulfill 80 %

of the uplift criterion

üg ,meas(t0) ≥ 0.8g tan(α) (5.6)

The numerical rocking response script takes only acceleration values greater than the uplift

criterion into account, as described in section 5.4. The last time instant, tend , is determined

by

tend = t0 +T + tadded/2 (5.7)

where T is the duration of the input displacement signal and tadded = 3 s is the duration of

added constant displacement as shown in figure 3.11.

The accelerations are measured by two accelerometers. Due to the fact that some of the

measurements for accelerometer 1 are lacking, see section 4.7, the two signals must be com-

pared for each test result. The offset-corrected and time-cut acceleration signal with the

highest absolute value, is chosen as input signal for further numerical response calculations.

As seen on figure 5.3, measured accelerations from responses where the block overturned,

has a spike from the overturning impact. Such spikes are not observed for the y-signals for

those responses without overturning. These spikes introduce additional inaccuracy of the

acceleration signals.

Displacement Records Displacement time history is recorded at the shaking table cylin-

der in one direction. To obtain physically realistic results, the offset must be calculated by

equations 5.1 and 5.2.

5.4 Calculation of Numerical Results for Rocking Angle

The numerical rocking response is calculated by a MATLAB script written by advisor Jonas

Bachmann. The script F could be explained by the simplified equation

θ(t ) = F [üg (t ),R,α,λ,c] (5.8)

where üg (t ) is the acceleration time history, R is the semidiagonal of the prototype, α is the

slenderness angle,λ is the inertia factor and c is the coefficient of restitution. The script gives
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Figure 5.3: The offset corrected x- and y-components of the measured acceleration signal are
used to calculate the main component of the accelerations. The main component signal is
then cut to avoid disturbance and to facilitate post-processing. The spike of the y-signal after
8 seconds coincides with the time of overturning impact. This spike is not seen on y-signals
from measurements where the block did not overturn.
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the numerical solution to the nonlinear state space equations

{
y(t )

}=
 θ(t )

θ̇(t )

 (5.9)

and

f (t ) = {
ẏ(t )

}=
 θ̇(t )

−p2
[

sin
[
αsgn[θ(t )]−θ(t )

]+ üg (t )
g cos

[
αsgn[θ(t )]−θ(t )

]]
 (5.10)

based on equation 2.6 where the frequency parameter p = p(λ) is calculated by equation 2.9.

t is the time vector discretized with time instants ti .

Time Instant of Uplift The response calculation is started at the first time instant ti where

the uplift condition is met, i.e. |üg (ti )| ≥ g tan(α). Thereafter the time history response is

calculated by a loop for every time instant t j > ti :

Loop Calculations and Checks

• Solve equations 5.9 and 5.10 according to the chosen tolerance limits.

• If overturn: |θ(t j )| ≥ 1.5α =⇒ Calculation is stopped.

• If impact, decrease the angular velocity: θ(t j ) = 0 =⇒ θ̇(t j ) = p
cθ̇(t j−1), where c is

the coefficient of restitution given by either equation 2.12, c = cHousner(λ), or by exper-

imental tests, c = cExp.

– If θ̇(t j ) ≤ 0.0005 rad/s =⇒ The calculation is provisionally stopped for very small

angular velocities, but it must be checked whether there exist later accelerations

that fulfill the uplift criterion.

* If |üg (tk )| ≥ g tan(α) for k > j =⇒ Start new calculation from tk .

• End loop and return θ(t ).

Response to Different Accelerations and Coefficients of Restitution For each test result

the rocking response is calculated with four different combinations of accelerations and co-

efficients of restitution:

• Measured accelerations, üg ,meas

– Housner coefficient of restitution, cHousner

– Experimental coefficient of restitution, cExp
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• Simulated accelerations, üg ,sim

– Housner coefficient of restitution, cHousner

– Experimental coefficient of restitution, cExp

The goal of this project is to verify the response calculated with measured accelerations

against the measured rocking response. The calculations based on simulated accelerations

are included for comparison, see appendix B for figures.
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Statistical Analysis

6.1 Definitions

We define the statistical variable θmax as the maximum absolute rocking angle, where the

values for overturning are set to 1.5α. The state of overturning is a discrete variable with only

two outcomes: either the column overturns or it remains stable. The maximum absolute

rocking angle, where there is no overturn, is a continuous variable that can attain all values

in the interval [0, 1.5α). To analyze the continuous variable separately, we rather define the

statistical variable

βmax = θmax, where θmax < 1.5α (6.1)

which describes the maximum rocking angle for those tests that did not overturn.

Definitions The statistical measures that are applied in this project are defined as:

P(OT) Probability of overturning, P (θmax ≥ 1.5α). Percentage of the values that equals 1.5α.

n Number of βmax-values, which the following statistical measures are based on. P(OT) =
1− n

N when there are N θmax-values.

Mean Mean µ of the βmax-values. The mean is affected by extreme values of the sample.

Min The minimum value of βmax, which equals the miniumum of θmax.

Q(p) The p-percentile value of the βmax-values.

Q25 The 25-percentile (or first quartile) value of the βmax-values. 25 % of the values in the

sample are equal to or lower than Q25.

Q50 The median, 50-percentile (or second quartile) value of the βmax-values. 50 % of the

values in the sample are equal to or lower than Q50. The median is not affected by
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extreme values in the sample.

Q75 The 75-percentile (or third quartile) value of the βmax-values. 75 % of the values in the

sample are equal to or lower than Q75.

Max The maximum value of the βmax-values.

IQR IQR = Q75-Q25. The interquartile range of the βmax-values, which is a measure of sta-

tistical dispersion that is not affected by extreme values in the sample.

Conservative Prediction The numeric model is considered to produce conservative pre-

dictions

• where the predicted probability of overturning is larger than that of the laboratory re-

sults.

• where the predicted minimum, quartile, mean or maximum values are larger than

those of the laboratory results.

• where the predicted CDF-graph of βmax/α exists lower than or left of the CDF-graph of

the laboratory results.

Where the opposite is true, we have non-conservative predictions. In table 8.1, 8.2 and 8.3

conservative nominal errors are positive and non-conservative values are negative.

6.2 Box Plots

A sample of values could conveniently be visualized by box-and-whisker-plots, henceforth

called box plots. The boundaries of the plot is determined by quartile values as defined

above, and the spacing between the boundaries indicates the degree of dispersion and skew-

ness of data. An explanatory diagram of a box plot is shown in figure 6.1.

The limits for the upper wu and lower whisker wl are defined as

wu =Q75+1.5(Q75−Q25) =Q75+1.5IQR

wl =Q25−1.5(Q75−Q25) =Q25−1.5IQR

and outliers are points that have values outside the whisker limits. The whiskers are plotted

at the lower and the higher value within the limits for the lower and upper whisker respec-

tively. If and only if the the tested sample follow a normal distribution, it is expected that

about 0.7 % of the values are outliers. Many outliers in a sample might be a sign of measure-
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ment errors, systematic failures or that the theoretical model is not valid in this area. Outliers

might also be a sign of values from another population or of an unsymmetrical distribution.

The box height indicates the size of the interquartile range (IQR), which includes the mid-

50-percentage of the values. The mean is sensitive to outliers, whereas the median, Q50,

denotes the middle value of the sorted values. Thus the median is a more robust estimator

of the central tendency of the sample in question.

6.3 Cumulative Distribution Function Plots

A cumulative distribution function (CDF) FX (x) determines the probability that the under-

lying random variable X attains values lower than or equal to x:

FX (x) = P (X ≤ x) (6.2)

The CDF attains probability values between 0 and 1 and is a continuous, non-decreasing

function of x. The empirical CDF of the underlying random variable X could be calculated

and plotted based on n measurements. The empirical function is a non-decreasing step

function that increases with 1/n for each of the ordered values, and converges to the un-

derlying CDF by increased number of measurements n if the samples represent the same

distribution as X .

Different Interpretation of βmax/α and θmax/α The empirical CDF of βmax/α and θmax/α

must be interpreted differently. They are equal only if n = N , i.e. if there are no overturns

in the sample. The empirical CDFs of βmax/α are related to the minimum, maximum and

quartile values as defined above and based on the number of measurements given by n.

Probability values related to this CDF are calculated on the subset βmax/α. The higher the n,

the finer is the graph. The graph reaches a probability of 1 for the largest value of βmax/α.

The percentile values Q(p) are related to the CDF as

FX
(
Q(p)

)= P
(
X ≤Q(p)

)= p % (6.3)

To obtain real probability values for the whole sample, the percentage must be scaled.

For a set of totally N θmax/α-values, and a subset of n βmax/α-values, we have the following
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relations

P (βmax/α≤Q(p)) = p %

P (θmax/α≤Q(p)) = p · n

N
%

(6.4)

The percentile values for the whole set consisting of N values, can not be calculated implic-

itly by the percentile values of the subset. They must be calculated on the whole set including

overturn values.

The empirical CDFs of θmax/α are calculated based on all N = 100 maximum values. Nev-

ertheless, the values associated with overturning are all set to the same value, 1.5α, so the the

step-line is as coarse as that of βmax/α. The probability value of the horizontal line between

θmax/α ≈ 1 and θmax/α < 1.5 equals the probability of not overturning, P(OT), i.e. probabil-

ity of sustained rocking. The value for probability of overturning presented in table 8.2, is

given as P(OT) = 1−P(OT). The graph reaches a probability of 1 for θmax/α= 1.5 if there are

overturn in the sample. The derivative of the CDF is the probability density function. Thus

the slope is a measure of probability density. A gentle slope means low density, while a steep

slope means high density.



58 CHAPTER 6. STATISTICAL ANALYSIS

Min
Q25

Q50

Mean

Q75

Upper
whisker

Max

Figure 6.1: Box plot of βmax/α with explanations. Grey +-signs are outliers. The underlying
values are equal for figure 6.2.
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Figure 6.2: CDF plot with explanations. Example for Q75: there is a probability of 75 % that
the values in the sample are lower than Q75. Min and lower whisker are here the same value.
The interquartile range is IQR = Q75-Q25. The underlying values are equal for figure 6.1.
The steep slope for the values below Q50 means that there is a high density of values in this
interval. The gentle slope for values larger than Q75 means that there is a low density of
values in this interval.
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Chapter 7

Similar Statistical Properties of Measured

Ground Motions

A main assumption of this project is that the rigid rocking oscillator is subjected to an ensem-

ble of ground motion accelerations that share similar statistical properties. By generation of

the artificial ground motions, as described in section 3.1, the ensemble has same proper-

ties in time and frequency domain. The shaking table is not able to reproduce the ground

motions perfectly. To verify that also the measured accelerations has similar statistical prop-

erties, we study the energy distribution and the elastic response spectra of accelerations.

7.1 Measured Accelerations and Energy Distribution

The measured accelerations that are used as input for the numerical rocking response

model, is in general not expected to be the same as those used as input for the shaking table.

The shaking table behaves like an unknown transfer function that takes integrated displace-

ment signals as input and produces a transformed output ground motion. This continuous

ground motion of the shaking table is measured by accelerometers and discretized with a

given sampling rate. Then the accelerations are post processed as described in section 5.3.

The goal in this project is to explore the response of a rocking oscillator to an ensemble of

ground motions with same statistical properties. To substantiate this in time domain, we

compare the energy distribution of the post processed measured accelerations.

As seen in figure 7.1 to 7.7 the 100 measured accelerations in each ensemble are plotted

together with the cumulative distribution of energy calculated as in equation 3.1. The time
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measures for reaching a certain percentage of the cumulative energy (or Arias intensity) are

calculated based on the mean of all energy distributions within the ensemble and showed

in the energy distribution plots and in table 7.1. The time measures are calculated on the

prototype scaled and cut accelerations. For comparison in the table, the time measure is

upscaled to the original, unscaled length and an offset is added such that the t5-values are

equal to the mean of simulations value.

From table 7.1 it is observed that there is a clear correlation between the time measures

of the measured accelerations and the simulated accelerations. The largest difference is ob-

served on the t95-values, and El Centro have in general more similar values than Lefkada.

From figures 7.1 to 7.7 it is seen that there is a clear correlation between shapes of the

energy distribution curves within each ensemble. For six of the ensembles there are one or

two obvious outliers with higher values on the y-axis, but nevertheless the shape of these

curves are similar to the other curves. Such outlier curves are also observed for the original

simulations as seen in figure 3.4 and 3.9.

Conclusion There is an apparent correlation between the distribution of energy in time

domain within each ensemble of measured accelerations. These distributions are compa-

rable to the distributions of the simulations that were used as input for the shaking table.

We conclude that the measured accelerations within each ensemble have similar statistical

properties in time domain.
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Table 7.1: The time tn for reaching n % of the Arias intensity is calculated for the mean of each

ensemble. Each time measure is upscaled to original length by

√
Hprototype

Hexperimental
for comparison

with the measures for the mean of the simulations and the original targeted signal. Due to
that the measured accelerations are cut, an offset is added such that the t5-values are equal.
The total duration of the original signals are 50 s for El Centro and 47 s for Lefkada. The time
measures are well fitted.

Offset [s] t5 [s] t45 [s] t75 [s] t95 [s] t5−95 [s]

E
lC

en
tr

o

Original - 1.5 4.4 11.7 25.6 24.1
Simulations - 1.2 4.4 12.0 25.7 24.5
H5m M1 measured 0.59 1.2 4.0 10.9 25.7 24.5
H5m M2 measured 0.75 1.2 4.2 11.0 26.1 24.9
H10m measured 0.70 1.2 3.9 10.0 25.4 24.2
H20 measured 1.00 1.2 3.7 10.0 26.0 24.8

Le
fk

ad
a

Original - 1.7 5.2 7.2 12.3 10.6
Simulations - 1.7 5.1 7.0 12.2 10.5
H5m measured 1.15 1.7 5.4 7.8 13.5 11.8
H10m measured 1.22 1.7 5.3 7.1 12.1 10.4
H20m measured 1.30 1.7 5.2 6.9 10.8 9.1

Figure 7.1: Accelerations and distribution of energy for El Centro H5m M1.
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Figure 7.2: Accelerations and distribution of energy for El Centro H5m M2.

Figure 7.3: Accelerations and distribution of energy for El Centro H10m.
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Figure 7.4: Accelerations and distribution of energy for El Centro H20m.

Figure 7.5: Accelerations and distribution of energy for Lefkada H5m.
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Figure 7.6: Accelerations and distribution of energy for Lefkada H10m.

Figure 7.7: Accelerations and distribution of energy for Lefkada H20m.
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7.2 Elastic Response Spectra of Accelerations

The elastic response spectra are calculated based on measured üg ,meas and simulated accel-

erations üg ,sim. The spectra describes how the maximum amplification of a single degree

of freedom system responds to different natural periods. A response specter is a means to

compare the frequency content of the ensemble of accelerations to each other.

The natural vibration period Ts of the single degree of freedom system that is chosen,

varies from Ts,0 = 0.01 s to Ts,max = 3.0 s with a period time step dTs = 0.01 s. The damping

coefficient is chosen as ζ = 0.02. The time history response ü(t ,Ts ,ζ) of the system to the

ground motion acceleration üg (t ) is calculated by Newmark’s noniterative formulation as

described in Chopra [4] section 5.4.3. The following plots show the maximum absolute value

üt ,max(Ts ,ζ) of the total acceleration response üt (t ,Ts ,ζ) for each natural vibration period Ts .

üt (t ,Ts ,ζ) = ü(t ,Ts ,ζ)+ üg (t )

üt ,max(Ts ,ζ) = max |üt (t ,Ts ,ζ)|
(7.1)

Description of Plots In the following seven figures the elastic response spectra are shown

to logarithmic scale. In the lower left corner the black spectra are based on 100 simulated ac-

celerations. In the right corner the black spectra are based on measured accelerations. The

original specter denotes the response specter of the target ground motion that the simula-

tions are generated from. This blue line is equal in all three subplots in each figure. The mean

of the 100 spectra is shown as an orange line for both simulated and measured accelerations.

These means are compared with the original specter in the top subplot. All accelerations are

to the same time scale for each figure. For El Centro and Lefkada H10m, figure 7.10 and

7.13, the spectra of those measured accelerations that led to overturning in the laboratory,

are colored yellow. There is no apparent difference between the spectra of those who led to

overturning and those who did not.

Different Tuning of Shaking Table In figure 7.8 and 7.9 the response spectra of El Centro

H5m M1 and M2 are shown. The spectra of the simulated accelerations are equal in both

figures, but the measured accelerations are different due to different tunings of the shaking

table. Thus the spectra of the measured accelerations are different for M1 and M2 as well.

For M1 the peak of the measured is considerably larger than the peak of the simulated. For

M2 there is no significant difference in peak value. Moreover, when we consider all seven
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elastic spectra, we observe that El Centro H5m M1 and El Centro H10m are the only spectra

where there is a significant difference in peak heights. For the other five spectra based on

accelerations with tuning and model 2, the peak heights of simulated and measured are quite

equal.

Difference of Spectra based on Simulated and Measured Accelerations Consider the sim-

ulated acceleration spectra of El Centro H5m M1 in figure 7.8. The 100 simulated spectra

envelopes the original specter for 0.01 s < Ts < 0.40 s and show a low, broad peak of 1.071g

for 0.12 s < Ts < 0.15 s . The mean resembles a smoothed version of the original specter. For

Ts < 1.0 s the original specter has values lower than most of the simulations, meaning that

the simulations overestimates the response for this interval of natural periods.

Consider now the measured acceleration spectra. The mean of the 100 measured spectra

show a distinct, narrow peak of 1.7g for Ts = 0.05 s. For Ts > 0.6 s the mean of the simu-

lated and measured spectra are almost equal. Also the measured specter of M2 in figure 7.9

shows a peak for the mean Ts = 0.05 s, but the peak value is reduced to 1.007g. All the seven

spectra based on measured accelerations show a distinct peak for Ts = 0.05 s or Ts = 0.06 s.

Consequently the accelerations that the shaking table generates based on the simulated ac-

celerations, have a significant frequency content in this region of natural periods.

The spectra of the other ground motions are shown in figure 7.10 to 7.14, and they show

similar properties as for El Centro H5m. The time scales are different, thus the peak period of

the simulated and original spectra are shifted, but the peak period for the measured spectra

remain constant. The spectra of the 100 measured accelerations do not necessarily envelope

the original specter, as most of the simulation spectra do.

Similarities Between Spectra Within Ensemble Based on the seven figures of elastic spec-

tra it is evident that the shaking table is not able to reproduce the exact same accelerations

that are used as input. Moreover the frequency content has a more narrow peak, and the

peak natural period is between 0.05 s and 0.06 s for all prototype scales. Nevertheless, there

is an apparent correlation between the 100 spectra within each ensemble of accelerations.

In fact the measured spectra have in most cases a smaller dispersion than the simulated

spectra. It is also observed that the accelerations that lead to overturning, do not have sig-

nificantly different response spectra. In general it seems that the elastic response spectra

within each ensemble of measured accelerations has similar properties, and thus that each
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Figure 7.8: Elastic spectra El Centro H5m M1. Mean of measured: peak of 1.7g for Ts = 0.05 s.
Mean of simulated: peak of 1.071g for Ts = 0.15 s. Notice the difference in peak height for the
spectra based in simulated and measured accelerations, this difference is caused by Tuning
1.

ensemble has similar statistical properties in frequency domain.
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Figure 7.9: Elastic spectra El Centro H5m M2. Mean of measured: peak of 1.007g for Ts =
0.05 s. Mean of simulated: peak of 1.071g for Ts = 0.15 s.
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Figure 7.10: Elastic spectra El Centro H10m. Mean of measured: peak of 1.566g for Ts =
0.06 s. Mean of simulated: peak of 1.068g for Ts = 0.08 s. Notice the difference in peak height
for the spectra based in simulated and measured accelerations, this difference is caused by
Tuning 1.
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Figure 7.11: Elastic spectra El Centro H20m. Mean of measured: peak of 0.79g for Ts = 0.06 s.
Mean of simulated: peak of 1.068g for Ts = 0.06 s.
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Figure 7.12: Elastic spectra Lefkada H5m. Mean of measured: peak of 1.754g for Ts = 0.06 s.
Mean of simulated: peak of 2.16g for Ts = 0.10 s.
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Figure 7.13: Elastic spectra Lefkada H10m. Mean of measured: peak of 1.979g for Ts = 0.06 s.
Mean of simulated: peak of 2.14g for Ts = 0.07 s.
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Figure 7.14: Elastic spectra Lefkada H20m. Mean of measured: peak of 1.723g for Ts = 0.06 s.
Mean of simulated: peak of 2.157g for Ts = 0.05 s.



Chapter 8

Laboratory Response Compared to

Numerical Response

The results are represented by the statistical measures explained in chapter 6. These values

are best interpreted visually by box plots and CDF plots as described in section 6.2 and 6.3.

All box plots are shown together in appendix A. The underlying numbers are presented in ta-

bles at the end of this chapter. Table 8.1 show the minimum, maximum and quartile values of

the response that did not overturn. Also the nominal and relative error are calculated. Table

8.2 presents the probability of overturning and its errors based on different offset methods.

Table 8.3 compare mean and median values and their errors based on different offset meth-

ods.

8.1 All Ensembles

The empirical CDF of βmax/α and θmax/α are plotted in figures 8.1 and 8.2 for El Centro and

Lefkada respectively. Notice the different interpretation of these plots as explained in section

6.3.

There is a clear correlation between the distributions of the predicted results and the lab-

oratory results. For all ensembles the slope of the curves change similarly for the green labo-

ratory lines and for the red and blue predicted lines, based on cHousner and cExp respectively.

For most of the interval the curves lie close to each other, thus having close percentile val-

ues. On the CDF plots including overturn values for both El Centro and Lefkada, there are

notable discrepancies on the overturning values for H5m. The red line of cHousner, which are

72
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calculated with most damping, i.e. lowest coefficient of restitution, are lower for El Centro

and higher for Lefkada. The overturning lines for H10m are closer to each other, but here the

opposite trend is seen on the red lines. It is higher for El Centro and lower for Lefkada.

Plots of θmax Compared To βmax

For H5m for both ground motions between 34 % and 49 % of the tests overturn, so the graph

of βmax is substantially shifted upwards compared to that of θmax. For El Centro H5m M2 the

response with cHousner has P(OT) = 45.0 %. By comparing graph (a) and (b) of figure 8.1, the

red line is shifted upwards in (a), the larger the βmax/α-value, the larger is the shift. The dis-

crepancy between the three lines for θmax > 0.6α in (b) is noticeably reduced in (a). Also for

Lefkada H5m in figure 8.2 (a) and (b) similar observations can be made, and the discrepancy

for θmax > 0.6α is reduced here as well. The increasing discrepancy between the lines for the

graphs in (b) comes as a result of the difference in probability of overturning for the three

different lines.

For H20m for both ground motions there are no overturns, soβmax = θmax, and the graphs

are equal. For H10m between 5 % and 9 % of the tests overturn, so the graph ofβmax is slightly

shifted upwards compared to that of θmax. We can draw the same conclusions for H10m as

for H5m regarding decreased discrepancy between the lines for high values.
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(a) Empirical CDF of maximum rocking angle βmax/α excluding the overturn values. The
graph is comparable to statistical measures in table 8.1 and to the associated box plots in
figure A.1.
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(b) Empirical CDF of maximum rocking angle θmax/α, including the overturn values. The
graph is only comparable to probability of overturning in table 8.1.

Figure 8.1: Empirical CDF for El Centro. (Values for H5m M2). There is an apparent correla-
tion between the predicted and the laboratory graphs. H10m is best fitted. When considering
relative errors are also the graphs of H5m good fitted. The H20m graphs show similar slopes,
but are not well fitted when relative errors are considered. Notice that the red line for H5m
predicts considerably more overturns than the green and and blue lines.
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graph is comparable to statistical measures in table in table 8.1 and to the associated box
plots in figure A.2.
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(b) Empirical CDF of maximum rocking angle θmax/α, including the overturn values. The
graph is only comparable to probability of overturning in table 8.1.

Figure 8.2: Empirical CDF for Lefkada.There is an apparent correlation between the pre-
dicted and the laboratory graphs. The lines of both H5m and H10m are good fitted. Notice
that the red line for H5m predicts considerably less overturns than the green and and blue
lines, compare with for El Centro. The lines of H20m are good fitted for low and high values,
but not in the middle.
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8.2 Observations on Coeffecient of Restitution

As seen in table 4.2 the Housner coefficient of restitution cHousner is lower than the experi-

mental cExp for both models. This means that rocking motion with cHousner will lose around

0.7 % more energy per impact. One might expect that the numerical response with cHousner

will exhibit smaller values for the maximum rocking angle βmax than the response with cExp.

Effect on Maximum Angle As seen in table 8.1, the results with cHousner show both higher

and lower values than those of cExp. The general effect is better seen in the CDF plots in

figure 8.1(a) and 8.2(a). The red cHousner lines lie to the left of the blue lines cExp for most of

the βmax-interval for all heights in both plots. The red lines lie to right of the blue lines only

for small regions.

In general it seems that a smaller coefficient of restitution leads to smaller maximum

rocking angles for the whole ensemble of ground motions when all other parameters are

equal. In other words, more rapid energy loss leads to smaller maximum rocking angles

in an average sense. When considering the relative error on the quartile values for all test

groups there is no obvious trend regarding which coefficient of restitution that predicts the

values with least error.

Effect on Overturning Consider the CDF plots including overturn values. The blue lines of

cExp are close to the green lines of the laboratory tests for both ground motions and for H5m

and H10m. The nominal error of the predictions relative to the laboratory values are ±3 out

of 100 tests for both prototypes. While for the red lines cHousner the nominal error is 11 and -9

for H5m and -3 and 2 for H10m. Thus the greatest difference is seen for predictions on both

H5m tests. Since the difference values are both positive and negative, the predictions are

both conservative and non-conservative. As seen in in table 8.2, a slight change of the accel-

erations reverses the observations on which coefficient of restitution that leads to smallest

error, as discussed in section 8.10. In general the overturning values are not well predicted

when relative errors are considered. The cHousner-value implies larger damping than with

cExp, but there is no clear trend that implies that larger damping lead to fewer overturns.
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8.3 El Centro H5m M2

The distributions for El Centro M2 fit well to each other. The prediction lines in the CDF plot

in figure 8.4 show relative errors between -19 % and 26 % on Q25, between -10 % and 13 % on

Q50 and between -2.9 % and 5.3 % on Q75. The red line of cHousner is in general best fitted to

the green laboratory line, which is also observed by the box plots in figure 8.3. The red line

is non-conservative and the blue line of cExp is conservative for most of the domain, which

follows the general trend observed in subsection 8.2. The slopes of the curves vary similarly,

and there is an apparent correlation between the predicted and laboratory distributions.

The probability of overturning equal to 34 % is not good estimated. The predictions are

between 37 % cExp and 45 % for cHousner, which equals a relative error up to 32 %. Even though

predictions with cHousner implies more energy loss per impact, there is observed significantly

more overturns. This effect is albeit not predictable, as seen by comparing the results with

different offset correction in table 8.2.

For comparison of the the results with the flawed test of El Centro H5m M2, see section

8.9.
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Figure 8.3: Box plots of the maximum rocking angle βmax/α for El Centro H5m. Notice the
difference in height of the box for laboratory results. The median values differ with -10 % and
13 %, but the mean is better fitted for cHousner with error of only 3 %
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Figure 8.4: Empirical CDF for El Centro H5m M2. The red line is in general higher than the
green laboratory line, but the Q25 and Q75 values are similar, as seen on the box plot. The
blue line has significantly larger value for Q25.
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8.4 El Centro H10m

The CDF graphs for El Centro H10m in figure 8.6 fit in general well. In the interval 0.06 <
βmax/α < 0.4 the fit of both predictions is close. The relative error at Q25 is between 2.8 %

and -5.1 %, while the values at Q50 are increased to 17 % and 12 %. At Q75 the relative error

is decreased to 5.3 % and -2.9 %. For the interval 0.4 < βmax/α < 0.6 both prediction lines

lie to the left of the laboratory line, giving non-conservative predictions. For βmax/α > 0.6

the fit is yet again close. For most of the βmax-values the prediction with cHousner fits the

laboratory line better. The minimum and maximum values differ with up to 0.049 and 0.106

respectively, but these extreme values belongs to the tail of the distribution and are indeed

not expected to be well predicted in a set of 100 values. The interquartile range is predicted

with a relative error of -9.0 % and -2.8 %, thus the predictions give lower dispersion of the

results than the laboratory results, which is non-conservative.

The predicted probabilities of overturning are 6 % and 5 % compared to 8 %, which leads

to non-conservative relative error of -25 % and -38 %, as shown in table 8.2.

When considering the box plot in figure 8.5, the three boxes are similar. The predicted me-

dians are similar, but higher than the laboratory median. The means are on the other hand

well fitted an higher than the median values. In general there is a good fit of the predicted

and laboratory distributions.
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Figure 8.5: Box plots of the maximum rocking angle βmax/α for El Centro H10. There is a
good fit of the distributions. The mean values are better fitted than the medians with less
than 1 % error compared to less than 17 % error.
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Figure 8.6: Empirical CDF for El Centro H10m of values excluding overturns. There is in
general a good fit of the prediction lines to the laboratory line.
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8.5 El Centro H20m

The CDF graphs for El Centro H20m in figure 8.8 does not fit as good as expected. For the

three quartile values Q25, Q50 and Q75 there is a relative error in prediction between -39 %

and -71 %. For βmax/α> 0.011 the blue prediction line of cExp fits better to the green labora-

tory line, the red line of cHousner still shows errors to the same degree.

Both prediction lines have 23 values belowβmax/α= 0.00495 which is the minimum value

of the measured laboratory results. This minimum value equals a rocking angle of 1.89◦.

The values that represent the laboratory results are maximum values of the offset-

corrected signal. This offset-correction introduces uncertainty in addition to the uncertainty

of the measurements itself. What we interpret as measured maximum rocking angles in

this low-value-region might be heavily influenced by inaccuracies in measurements, post-

processing, numerical noise or motions that not represent rigid rocking.

Possible Error Causes One of the measured acceleration signals, simulation 92, has peak

value üg ,p = 0.141 g, which is below the theoretical uplift criterion. For the numerical

predictions the values are 0, i.e. no rocking, but the laboratory value from this test is

0.00657α = 0.056◦. According to the log note for this test, no rocking was observed by the

naked eye. When examining the plot of the NDI records of rocking motion, there is a sig-

nificantly increased amplitude of the motion for a duration of 4 seconds, which is about the

duration for reaching 95 % of the Arias intensity, see figure 7.4. This increase in amplitude

means that the angle between line 1-3 and line 2-4 of figure 4.2 is changed. This change is

interpreted as rocking motion when we assume that the column is rigid. If the column is

not totally rigid, this change in amplitude might also be interpreted as elastic vibrations of

the column or the connection between the bottom wedge and the column. In the numerical

model, the column is assumed perfectly rigid.

Uplift Criterion An other explanation might be that the theoretical criterion for uplift as

given in equation 2.2, does not describe the uplift criterion of the test specimen precisely.

Assume that the total height of the test specimen is given as H = 500±2 mm and the total

width is given as B = 75± 1 mm. Then the theoretical value for the uplift criterion attain
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Figure 8.7: Box plots of the maximum rocking angle βmax/α for El Centro H20m including all
values. Notice the high amount of outliers and the difference of height and location of the
predicted boxes compared to the laboratory box. The 23 lowest predicted numerical values
are so low that similar laboratory values hardly could be measured, thus there is a notable
difference in the distributions.
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Figure 8.8: Empirical CDF for El Centro H20m of all values. The predictions have 23 values
below 0.005α, which is the minimum measured laboratory value (for El Centro H20m), thus
there is considerable discrepancy in the whole domain.
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values between

75−1

500+2
g ≤üg ≤ 75+1

500−2
g

0.1474g ≤üg ≤ 0.1526g
(8.1)

The uplift criterion is then given as üg = 0.15g ±0.0026g with these hypothetical uncer-

tainty values, which is still higher than the lowest peak acceleration of 0.141 g. Nevertheless,

the script is calculating the response for the deterministic value of 0.15g only. The actual

limit of overturning for our specimen is not tested experimentally. The measured response

for shaking table motions with peak acceleration below the uplift criterion is also not tested.

Lower Bound for Measurement The box plots of El Centro H20m in figure A.1 show a sig-

nificant difference between the two predictions and the laboratory results. First of all there

are many outliers: 19, 15 and 10 for cExp, cHousner and laboratory results respectively. Outliers

in the box plots could mean that the values might be influenced by errors or that the values

represent different distributions. For the prediction values 19 and 18 values are below 10−3

for cExp, cHousner respectively. The laboratory results are obtained by correcting the offset by

an approximation of the mean and then returning the maximum absolute value of the entire

signal. It is therefore likely that one of the 15 000 values measured in a 30 second-signal has

one value greater than 10−3. This value is then interpreted as the maximum rocking angle

from the laboratory. From the box plot we can also observe that the mean values are con-

siderably larger than the median values, and for the predictions the means are even larger

than Q75. The means are heavily biased by the outliers with values up to 0.462, while all Q75

values are lower than 0.096. The predicted dispersion, given by IQR, is notably lower than for

the laboratory results.

If we construct the CDF of the prediction lines only for βmax ≥ 0.00495α, which is the

lowest laboratory value, we get the plots in figure 8.10. These lines fit considerably better

for the values where βmax ≤ 0.04α. The red line of cHousner fits good for almost the entire

domain. When we compare the associated, reduced box plots in figure 8.9, the amount of

outliers is considerably reduced and the IQRs are more equal. The predicted medians are still

notably lower than for the laboratory values. Nevertheless, these distributions seem more

equal, which might imply that we are not able to measure rocking angles somewhere below

0.00495α with sufficient accuracy. For all 700 tests there are four laboratory values that are
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determined to be between 0.00039α and 0.00062α, which evidently are lower than 0.00495α,

but nevertheless their accuracy remain unknown. These values are obtained for El Centro

H5m M2 and El Centro H10m.

Also other methods of calculating the offset are tested. The built in MATLAB function

detrend computes a least-square fit line which is subtracted from the original signal. Using

this offset correction did neither reduce the error nor determine maximum values lower than

0.00495α for El Centro H20m. With this offset correction method the lowest laboratory value

for all 700 tests was determined to 0.00038α. The effect of different offset correction methods

is further discussed in section 8.10.
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Figure 8.9: Box plots of the maximum rocking angle βmax/α for El Centro H20m values ex-
cluding predicted values that are lower than the minimum measured value from the labora-
tory. The box plots are more similar when the low predicted values are excluded.
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Figure 8.10: Empirical CDF for El Centro H20m of values excluding predicted values that
are lower than the minimum measured value from the laboratory. The fit of the lines is no-
tably better for the 40 % lowest values. The predicted lines are based on 77 values, while the
laboratory line is based on 100 values, which influences how coarsely the lines are plotted.
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8.6 Lefkada H5m

The prediction lines for Lefkada H5m fit well to the laboratory line in figure 8.12. The rel-

ative error at Q25 is between -3.0 % and 8.1 %, at Q50 between 3.9 % and 11.3 % and at Q75

between 2.0 % and 2.7 %. The red line based on cHousner shows a better fit to the laboratory

line than the blue prediction line with cExp for the entire domain. The blue line shows con-

servative predictions for most of the domain, while the red line has smaller errors and lies on

both conservative and non-conservative side of the laboratory line. Also the interquartile re-

gion is relatively well fitted with relative error between -6.8 % and 11 %. Thus the dispersion

of the values for all three responses are similar. In general for Lefkada H5m the predictions

of βmax with cHousner has smaller error values than the predictions with cExp.

The probability of overturning is predicted with relative error of -2 % for cExp and -18 %

for cHousner. cHousner < cExp, so here an increased loss of kinetic energy, smaller c, lead to less

overturns, which is the opposite effect than for El Centro H5m.
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Figure 8.11: Box plots of the maximum rocking angle βmax/α for Lefkada H5m. The distribu-
tions are well fitted with errors on the mean less than 6 % and errors on the median less than
11 %.
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Figure 8.12: Empirical CDF for El Centro H5m. The predicted lines are well fitted to the
laboratory lines. The largest errors on quartile values are observed for the blue line.



90 CHAPTER 8. LABORATORY RESPONSE COMPARED TO NUMERICAL RESPONSE

8.7 Lefkada H10m

For Lefkada H10m the two prediction lines are non-conservative in most of the domain as

shown in figure 8.14. The blue line of cExp fits considerably better to the laboratory line than

the red line of cHousner. The relative error at Q25 is -11 % for both, at Q50 is between -2.7 %

and -7.8 % and at Q75 is between -1.3 % and -14 %. As seen in the plot, the fit of the blue

line for cExp is notably close for 0.35 < βmax/α < 0.73. The red line of cHousner show larger,

non-conservative errors for the entire domain.

The probability of overturning is fitted for cExp with a nominal error of 1%, which equals a

relative error of 14 %. The prediction of probability with cHousner has a relative error of 29 %.
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Figure 8.13: Box plots for Lefkada H10m. The box for predictions with cHousner is smaller
than the two others. cHousner means more energy loss compared to cExp, and in this case the
maximum response is reduced for the whole distribution.
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Figure 8.14: Empirical CDF for Lefkada H10m. The blue line is best fitted for all quartile
values, especially the median and Q75 are predicted well. The red line predict smaller values
for the entire distribution.
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8.8 Lefkada H20m

For Lefkada H20m in figure 8.16 there is a considerable discrepancy for 0.03 < βmax < 0.19,

which almost coincides with the interquartile range for all three lines. The minimum mea-

sured value is 0.033 which is almost seven times higher than the minimum measured value

for El Centro H20m. The lines fit here well for the lowest 20 values, which was not the case for

El Centro H20m in figure 8.8. In the box plot in figure 8.15 we observe that the interquartile

region is well fitted although the relative errors on the quartile values attain values between

34 % and 80 % for Q25 and between 39 % and 44 % for Q50. The relative error on Q75 is no-

tably smaller and between 3 % and 12 %. The blue line of cExp has almost constant nominal

error between 0.022 and 0.036 on the three quartile values. The red line of cHousner shows

smaller errors, but the error on the median is considerable for both predictions.

From the box plot we observe that there is only a limited number of outliers, and the dis-

tributions seem relatively equal. There is thus not a notable sign of measurement errors or

unexpected influences. The minimum measured peak acceleration is 0.218g, which is con-

siderably higher than the theoretical uplift criterion. The uncertainty on the real limit for up-

lift will therefore mainly introduce errors if the angular velocity in the numerical predictions

is lower than the cutoff-limit and there is later accelerations that fulfill the uplift criterion.

Consequently uncertainty on the real limit for uplift is not expected to affect these results to

a high degree.

8.9 El Centro H5m M1 and M2

The measured laboratory response for the two tests of El Centro H5m are compared in CDF

plots in figure 8.17. CDF plots including the prediction lines for üg ,meas are shown in figure

8.18. Since the number for model and tuning coincide, we refer to them together as M1 and

M2

In figure 8.17 there is a significant difference in the graphs for θmax < 0.2α. The first tests

performed with M2 has a minimum value of 0.128α while the second tests show 9 values

below this. When comparing all 2× 3 minimum values in table 8.1 and figure 8.18, we see

that the numerical results based on measured accelerations fit quite well to those of the lab-

oratory results for both M1 and M2. The measured accelerations are unequal for M1 and M2

due to the different tuning of the shaking table. The combination of an unstable foundation
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Figure 8.15: Box plots for Lefkada H20m. The two predicted boxes are more equal to each
other than the laboratory box. The IQR of the predictions are given with an error of only 3 %
and 4 %, even though the Q25 has an error up to 80 % and the median up to 44 %. The means
are better estimated, but still have errors between 13 % and 18 %.
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Figure 8.16: Empirical CDF for Lefkada H20m. Here the lowest values are significantly better
predicted than for El Centro H20m. The two predicted lines are close to each other, and the
red line, with more energy loss, predicts lower values than the blue for the entire distribution.
From the Q25 to Q75 for the laboratory results there is a notable discrepancy between the
laboratory and the predicted lines.
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and applied accelerations that lead to higher minimum values also for the numeric results,

might explain why the laboratory results for M2 start first at 0.128α.

When we compare the probability of overturning as shown in table 8.2 and figure 8.17(b),

M1 has a measured probability of 50 % and M2 34 %. The laboratory probability for M1 is

higher than that of the numerical probabilities - thus the numerical model underestimates

the probability of overturning. For M2 we observe the opposite case - the numerical model

overestimates the probability. For both M1 and M2 the maximum error in number of over-

turns is 11. The numeric results from simulated accelerations are shown in figure B.1 and B.2

in the appendix. Due to the slightly different values for c and λ as showed in table 4.2, the

numerical graphs based on the same simulated accelerations are notably different.

When we compare the box plots of M1 and M2 in figure 8.19, we observe that the in-

terquartile range of laboratory M1 is much higher than that of the predictions. This IQR is

also higher than all IQRs for M2. This means that the dispersion of the laboratory results for

M2 is significantly higher than what is expected by the numeric results, which is not seen for

any of the other test groups. A larger IQR means in other words that the probability density

in the mid region is lower than for the comparable distributions. Consequently the density in

both ends become higher than for the comparable distributions, which is also observed by in

the CDF plots by less steep curve in the middle. We observe more maximum rocking angles

in both the low and high angle region than expected with a perfectly stable foundation. The

twisting of the foundation for M1 was varying during the test, leading to non-constant initial

conditions for the rocking motion. Varying initial conditions leads to the conclusion that

the measured maximum rocking angles for M2 arises from not one single distribution, and

that this combined distribution hardly could be predicted precisely by the applied stationary

numeric model.

The relative errors of the quartile values for M1 are considerably larger than those of M2,

as seen in table 8.1. The largest relative error for M1 is 72 % while it is 26 % for M2. The

median of M1 cExp has an error of only 0.2 %, but as seen on the CDF graphs of figure 8.18 (a)

this small error is purely coincidental.

Conclusions Overall the laboratory results from M1 does not fit well to the numerical re-

sults. This is mainly caused by the unstable foundation leading to non-constant initial con-

ditions. Both the numerical and laboratory results for M1 does not compare well to those of

M2. This difference is mainly caused by the unequal tuning of the shaking table and slightly
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different values for c and λ.

Nevertheless, the results for M2 does fit well to each other, and these results are used for

further validation of the numerical model. The prediction lines for M2 show relative errors

between -19 % and 26 % on Q25, between -10 % and 13 % on Q50 and between -2.9 % and

5.3 % on Q75. In figure 8.18 (b) the red line of cHousner fits the laboratory line better for most

of the domain. The red line is non-conservative and the blue line is conservative for most of

the domain, which follow the general trend observed in subsection 8.2.
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(a) Empirical CDF excluding overturn values. The graph of M1 is based on 50 values and
shows a more distinct change of slope with higher density for low and high angles. The
M2 graph is based on 66 values and shows a smoother line and more even density of angle
values.
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(b) Empirical CDF including overturn values. There is a difference of 16 overturns out of
100, where the unstable M1 shows most overturns.

Figure 8.17: Comparison of empirical CDF of El Centro H5m laboratory values for M1 and
M2. The graph of M1 shows no values for βmax/α< 0.128. The M1 and M2 curves are signifi-
cantly different for the entire domain of rocking angles.
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(a) For 0.40 < βmax/α < 0.62 the slope of the green line is significantly lower than for the
prediction lines. This means that there are fewer laboratory results in this region compared
to the predictions as seen in the box plot in figure 8.19 as well.
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(b) The three graphs fit notably better for all βmax/α values compared to M1.

Figure 8.18: Comparison of empirical CDF for El Centro H5m M1 and M2. The curves have
different minimum values for M1 and M2 because of different tunings of the shaking table.
The M2 curves are significantly better fitted than the M1 curves.
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Figure 8.19: Box plots of the maximum rocking angle βmax/α for El Centro H5m. Notice the
difference in height of the box for laboratory results, which might be interpreted as a sign of
two different distributions.
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Table 8.1: Minimum, maximum and quartile values excluding overturns. Nominal, ∆, and relative, |∆|/Q, errors of quartile values from table.
The nominal error values show the discrepancy of the numerical predicted values to the laboratory values. Green values denote relative error
less than 10 %, orange values between 10 % and 20 % and red values larger than 20 %. n is the number of samples that the statistical values
are based on, which is 100 - number of overturns. Offset correction based on mean of the first 100 points. All values except for n are given as
βmax/α [-]. The largest nominal error value ∆ is 0.07α≈ 0.6◦ and largest relative error value |∆|/Q is 80 % (El Centro H5m M1). Lefkada shows
in general smaller nominal errors than El Centro. The nominal errors are to the second decimal for all scales, which is slightly higher than the
estimate of average uncertainty of measurements.

n Min Q25 Q50 Q75 Max IQR
H Response Q ∆ |∆|

Q Q ∆ |∆|
Q Q ∆ |∆|

Q Q ∆ |∆|
Q

Laboratory 50 0.128 0.23 0.52 0.77 1.00 0.55
cHousner 61 0.116 0.31 0.08 34% 0.46 -0.06 12% 0.64 -0.13 17% 1.02 0.34 -0.21 39%

5
M1

cExp 60 0.152 0.39 0.16 72% 0.52 0 0% 0.68 -0.09 12% 0.98 0.29 -0.26 47%
Laboratory 66 0.000 0.29 0.46 0.65 1.03 0.36
cHousner 55 0.006 0.23 -0.06 19% 0.42 -0.04 10% 0.63 -0.02 3% 1.03 0.40 0.04 10%

5
M2

cExp 63 0.015 0.36 0.07 26% 0.52 0.06 13% 0.68 0.03 5% 1.01 0.32 -0.04 11%
Laboratory 92 0.000 0.17 0.25 0.42 0.80 0.25
cHousner 95 0.049 0.16 -0.01 5% 0.28 0.03 12% 0.40 -0.02 4% 0.81 0.24 -0.01 3%10
cExp 94 0.036 0.18 0 3% 0.29 0.04 17% 0.40 -0.02 4% 0.92 0.22 -0.02 9%
Laboratory 100 0.005 0.02 0.03 0.10 0.46 0.08
cHousner 100 0.000 0.01 -0.01 71% 0.02 -0.01 42% 0.05 -0.04 45% 0.44 0.05 -0.03 40%

E
lC

en
tr

o

20
cExp 100 0.000 0.01 -0.01 66% 0.02 -0.01 39% 0.05 -0.04 45% 0.46 0.05 -0.03 40%

Laboratory 51 0.271 0.45 0.55 0.70 0.98 0.25
cHousner 60 0.220 0.43 -0.01 3% 0.57 0.02 4% 0.71 0.01 2% 0.96 0.28 0.03 11%5
cExp 52 0.240 0.48 0.04 8% 0.61 0.06 11% 0.72 0.02 3% 0.94 0.24 -0.02 7%
Laboratory 93 0.033 0.25 0.36 0.51 1.02 0.26
cHousner 91 0.033 0.22 -0.03 11% 0.33 -0.03 8% 0.43 -0.07 14% 0.82 0.22 -0.04 17%10
cExp 92 0.041 0.22 -0.03 11% 0.35 -0.01 3% 0.50 -0.01 1% 0.83 0.28 0.02 8%
Laboratory 100 0.014 0.03 0.08 0.19 0.54 0.15
cHousner 100 0.019 0.04 0.01 34% 0.11 0.03 39% 0.19 0.01 3% 0.49 0.15 -0.01 4%
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fk

ad
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20
cExp 100 0.011 0.06 0.03 80% 0.12 0.04 44% 0.21 0.02 12% 0.51 0.15 0 3%
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Table 8.2: Comparison of probability of overturning for different offset correction methods:
first 100 and detrend. The accelerations are offset corrected with either first 100 or detrend
method. Laboratory values for overturning are not affected by the offset method. Average
values are calculated based on the four combinations of predicted P-values within each en-
semble. Green values denote relative error less than 10 %, orange values between 10 % and
20 % and red values larger than 20 %. First 100 values are comparable to the all CDF and box
plots in part III if not stated otherwise.
The results show significant differences on probability of overturning for slight changes in
either accelerations or coefficient of restitution. Notice how the influence of coefficient of
restitution is reversed for El Centro H5m by changing the accelerations. The overturning
values for prototype scale H10m show large relative errors, even though the nominal errors
are small. Probabilities lower than 10 % can hardly be accurately determined by a set of only
100 values.
For the average values the predictions are based on a set of 400 and the results are closer. For
Lefkada the probabilities are predicted with 7 % error, especially for Lefkada H10m the error
is reduced significantly. The probability for El Centro H10m is still notably underestimated.

Overturning P(OT)

First 100 Detrend Average

H Response
P

[%]
∆

[%]
|∆|
P

P
[%]

∆

[%]
|∆|
P

P
[%]

∆

[%]
|∆|
P

Laboratory 34 34 34
cHousner 45 11 32 % 35 1 3 %5
cExp 37 3 9 % 42 8 24 %

39.8 5.8 17%

Laboratory 8 8 8
cHousner 5 -3 38 % 4 -4 50 %10
cExp 6 -2 25 % 3 -5 63 %

4.5 -3.5 44 %

Laboratory 0 0 0
cHousner 0 0 - 0 0 -

E
lC

en
tr

o

20
cExp 0 0 - 0 0 -

0 0 -

Laboratory 49 49 49
cHousner 40 -9 18 % 47 -2 4 %5
cExp 48 -1 2 % 47 -2 4 %

45.5 -3.5 7 %

Laboratory 7 7 7
cHousner 9 2 29 % 3 -4 57 %10
cExp 8 1 14 % 6 -1 14 %

6.5 -0.5 7 %

Laboratory 0 0 0
cHousner 0 0 - 0 0 -

Le
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20
cExp 0 0 - 0 0 -

0 0 -
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Table 8.3: Comparison of mean and median values for different offset correction method, values of overturns are excluded. Both accelerations
and maximum rocking angle are offset corrected with either first 100 or detrend method. Green values denote relative error less than 10 %,
orange values between 10 % and 20 % and red values larger than 20 %. First 100 values are comparable to the all CDF and box plots in part III
if not stated otherwise.
The mean values show small relative errors for prototype scales H5m and H10m. For all scales the mean is better predicted than the median.
The mean values are either higher than or almost equal to the median values for all results. For the detrend method some of the medians are
slightly higher. For scale H20m there are notable relative errors on predictions of both mean and median, but the nominal differences are in
the range of the uncertainty in measurements.

Mean µ [-] Median Q50 [-]

First 100 Detrend First 100 Detrend
H Response µ ∆ |∆|

µ
µ ∆ |∆|

µ
Q ∆ |∆|

Q Q ∆ |∆|
Q

Laboratory 0.46 0.46 0.46 0.46
cHousner 0.45 -0.01 3 % 0.47 0.02 3 % 0.42 -0.04 10 % 0.49 0.03 7 %5
cExp 0.51 0.05 10 % 0.48 0.02 4 % 0.52 0.06 13 % 0.48 0.02 4 %
Laboratory 0.31 0.31 0.25 0.25
cHousner 0.31 0.00 1 % 0.31 0.00 1 % 0.28 0.03 12 % 0.27 0.02 9 %10
cExp 0.31 0.00 0 % 0.33 0.02 5 % 0.29 0.04 17 % 0.30 0.05 19 %
Laboratory 0.08 0.08 0.03 0.03
cHousner 0.06 -0.02 28 % 0.06 -0.02 28 % 0.02 -0.01 42 % 0.02 -0.01 37 %

E
lC

en
tr

o

20
cExp 0.07 -0.01 17 % 0.06 -0.01 18 % 0.02 -0.01 39 % 0.02 -0.01 40 %

Laboratory 0.58 0.57 0.55 0.55
cHousner 0.58 0.00 0 % 0.59 0.02 3 % 0.57 0.02 4 % 0.60 0.05 9 %5
cExp 0.61 0.04 6 % 0.61 0.04 7 % 0.61 0.06 11 % 0.62 0.08 14 %
Laboratory 0.38 0.38 0.36 0.36
cHousner 0.33 -0.05 13 % 0.37 -0.01 2 % 0.33 -0.03 8 % 0.34 -0.02 5 %10
cExp 0.37 -0.02 4 % 0.38 0.00 0 % 0.35 -0.01 3 % 0.35 -0.01 1 %
Laboratory 0.12 0.12 0.08 0.08
cHousner 0.14 0.02 13 % 0.14 0.02 14 % 0.11 0.03 39 % 0.11 0.03 39 %

Le
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ad
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20
cExp 0.14 0.02 18 % 0.16 0.03 28 % 0.12 0.04 44 % 0.13 0.05 57 %
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8.10 Comparison of Offset Methods

Both measured accelerations and measured rocking angle signals are given with offset values

that are assumed to be constant. For the results in all plots in part III the values are based

on signals that are offset corrected by subtracting the mean value of the first 100 data points,

see chapter 5. Thereafter the acceleration signals are further manipulated by calculation

of main component and cutting. The post processed acceleration signal is used as input

for the numeric rocking response model, which is known to be sensitive to all parameters.

All these steps of numeric manipulation of the signal are associated with uncertainty and

possible propagation of error. Additionally the accuracy of the accelerometers and of the

discretization of the acceleration signal is not determined.

A second offset correction method is applied on both rocking angle and acceleration sig-

nals to compare how the results are affected. The second method is based on the built-in

MATLAB function detrend [10]. This method computes the least-squares fit of a straight

line, which might have a slope, and subtracts it from the the original signal. The detrend

function bases thus the offset on all data points in the signal, while the first 100 method only

bases the offset on the first 100 data points.

Comparison of Overturning In table 8.2 the probability of overturning is compared for

offset correction by the methods first 100 and detrend. The laboratory values for number

of overturns are equal for both methods since this is based on a count of discrete cases:

either does it overturn or not. There is no uncertainty in measuring this quantity. On the

other hand, are the numbers of overturns definitely not equal for the predictions based on

different methods. By comparing the values for El Centro H5m predictions based on cHousner

it is observed that the number of overturning is reduced from 45 to 35 only by correcting the

offset of the acceleration signals. For El Centro H5m predictions based on cExp the opposite

effect is observed: the number of overturning is increased from 37 to 42. Also for the three

other ensembles where overturning were observed, a similar, unpredictable effect is seen.

See also CDF plots in figure 8.24 and 8.25.

Figure 8.20 to 8.23 show two examples of how the predicted rocking response is signifi-

cantly changed by input accelerations calculated with different offset correction method. All

other parameters are identical. The maximum and minimum accelerations differ only to the

third decimal when comparing the offset methods. In figure 8.21 the lower response show
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overturning after short time, where the upper response at same time shows low amplitude

rocking and do not overturn at all. In figure 8.23 the predicted responses are similar for the

first 6 seconds, but the lower overturns while the upper remains rocking.

The probability of overturning could also be estimated based on an average of all pre-

dictions. The predicted results from the four combinations of cHousner, cExp, first 100 and

detrend method lead to a set of 400 results. The uncertainty of the calculated probability de-

ceases by increased size of the set of values. The average results are presented in table 8.2. For

both prototype scales for Lefkada the error is reduced to 7 %. Especially for Lefkada H10m

is the reduction notable, from errors between 14 % and 57 % down to 7 %. The four original

predictions were both larger and smaller than the laboratory value, thus the obtained error

is smaller than all previous errors. For the three other ensembles the obtained errors are

smaller than the original maximum errors, but here two or three of the original predicted

errors are smaller. Nevertheless, the probability based on average of a larger set of results,

lead in general to better predictions and smaller errors.

Comparison of Maximum Rocking Angle Table 8.3 shows mean and median values for the

maximum rocking angle calculated with different offset correction methods. Here both ac-

celerations and maximum rocking angle are offset corrected with either first 100 or detrend

method.

Consider first the measured laboratory values. When all laboratory mean and median

values are compared, they are equal to the second decimal, except for Lefkada H5m where

the mean differ with 0.005 and the highest value is rounded up. When comparing each of the

700 measured results with each other, the maximum difference is 5.3 ·10−2 and the average

difference is 2.2 ·10−3. Thus there is at least an uncertainty of measurement of rocking angle

in the third decimal.

Consider now the predicted median and mean values. Even though a change in the mea-

sured accelerations can lead to significant differences regarding overturning, the same sig-

nificance is not observed for mean and median values. In fact, all values are equal to the first

decimal or have a difference lower than 0.07. The errors on predictions on mean and median

values are in general small for H5m and H10m. Especially the mean is good predicted with

errors less than 13 %. For H20m the relative error on predictions are larger, but because of

the uncertainty of angle measurements on the second or third decimal, the predictions are

hard to fit to the laboratory tests. As seen in figure 8.24 and 8.25, the rest of the distributions
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Figure 8.20: Different method of offset correction of accelerations leads to slightly different
accelerations, which in turn leads to significantly changed rocking response.
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Figure 8.21: Different response for changed method of acceleration offset correction. The
upper plot shows almost no rocking for t < 3 seconds, while the lower plot shows overturning
after less than 2 seconds.
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Figure 8.22: Different method of offset correction of accelerations leads to slightly different
accelerations, which in turn leads to significantly changed rocking response.
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Figure 8.23: Different response for changed method of acceleration offset correction. The
two plots show similar responses for 6 seconds, then they diverge.



106 CHAPTER 8. LABORATORY RESPONSE COMPARED TO NUMERICAL RESPONSE

are well fitted and comparable to the distributions obtained with first 100 offset correction.

Conclusions As seen on the moment diagram in figure 2.2, the seismic resistance is very

low for rocking angles close to the critical slenderness angleα. Due to the negative stiffness, a

higher angle will lead to even lower resistance. Thus only slight differences in any parameter

determining the rocking motion, can affect the response to either overturn or not overturn.

Thus rocking motions that attain rocking angles close to α, are much more sensitive to any

changes of parameters than for lower rocking angles.

Based on the values and observations that are presented, there is no clear trend regard-

ing which offset correction method that is more correct. However, it is observed that num-

bers of overturning are notably sensitive to small changes in accelerations. The median and

mean values are on the other hand only slightly affected by changes in accelerations. The

differences in predicted mean and median values are in the same range as the uncertainty in

measurements of rocking angle.
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Figure 8.24: Empirical CDF for El Centro with detrend offset correction method on both ac-
celerations and rocking angle. There is a close fit for all prototype scales and no significant
differences on the distribution of maximum response compared with figure 8.1(b). Notice
the difference of predictions of overturning for changed offset method: for H5m the blue
line is lower and predicts with most error. In figure 8.1(b) the red line shows similar error.
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Figure 8.25: Empirical CDF for Lefkada with detrend offset correction method on both ac-
celerations and rocking angle. There is a close fit for all prototype scales and no significant
differences on the distribution of maximum response compared with figure 8.2(b). An excep-
tion is the red line of H5m for 0.5 < θmax/α < 0.8. Notice also the difference of predictions
of overturning for changed offset method: for H5m the blue and red line line predicts the
overturning with small errors. In figure 8.2(b) the red line shows a significantly larger value
and error.
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Discussion of Results

9.1 Could the Maximum Rocking Response Be Predicted?

In the presented results there is a significant correlation between the distribution of max-

imum rocking response for predicted and laboratory results. The ensembles that are used

as input for the numerical predictions, are shown to share the same statistical properties by

studying energy distributions and elastic response spectra. As seen on the CDF plots, the

graphs are similar and have similar variations of slopes and thus similar variations of prob-

ability density. As seen on the box plots the distribution represented by quartile values are

similar and given with nominal errors less than 0.07α. The means are even better predicted

with nominal error less than 0.05α.

El Centro H20m are not so well predicted considering relative errors. On the other hand

when nominal errors are considered, these small differences of less than 0.04α on quartile

values, might be explained by inaccuracies in measurements, elastic vibrations or inaccura-

cies in the uplift criterion. About 2×19 of the lowest predicted values are so small that the

measurements of a similar physical rocking response, would be dominated by noise.

The ensemble El Centro H5m was tested two times. First with a test specimen that did not

have a stable foundation. This unstable foundation lead to that assumptions about initial

conditions and uplift criterion in the numeric model, did not represent those of the motion

that was measured. If only the median and mean values were compared, the prediction

errors were comparable to those results based on test specimens with stable foundations.

By studying CDF and box plots, the differences in the rest of the distribution become more

evident. Consequently, the central tendency could be well fitted by coincidence. The rest

108
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of the distribution should be investigated to validate the correlation of the predictions with

the laboratory results. When the ensemble was retested with the second test specimen, the

predicted distributions were closely fitted.

Variation of the damping parameter, coefficient of restitution, is also explored. cHousner

implies that around 0.7 % more energy is lost on each impact compared with cExp. On the

CDF plots the red line of cHousner is in general to the left of the blue line for predictions with

cExp. The same effect is seen on the box plots where the box of cHousner in most cases have

smaller quartile values than that of cExp. These observations imply smaller, non-conservative

results for higher damping. When the response to only one acceleration signal is tested, in-

creasing the damping might lead to both higher and lower maximum response, thus the

effect seems unpredictable. Nonetheless, from these statistical observations there is a clear

trend that higher damping, given by lower coefficient of restitution, leads to smaller max-

imum rocking responses for the whole ensemble of ground motions. Moreover the distri-

bution of maximum response is predicted to shift to smaller values when the damping is

increased.

The measured accelerations that are used as input for the numerical model, are numer-

ically manipulated by discretization, offset correction, calculation of main component and

cutting. By changing the method of offset correction of the acceleration signals, the final

accelerations that were used as input were only slightly changed. Nevertheless, the effect of

this change could be significant for each time history. When the effect of an entire ensemble

is compared, the difference in the predicted distributions are observable, but not significant.

If only means and medians are compared, there are observed slight differences to the second

decimal, but the error is in the same range for both offset methods. The offset correction of

the rocking angle is compared with the same methods, and the difference for the measure-

ments are only observable to the third decimal. To conclude, small differences in the input

acceleration signal could affect each time history response drastically. When the distribu-

tion of maximum rocking response is considered, a small difference in accelerations does

not affect the distribution significantly. Also for changes of accelerations: the effect that is

unpredictable on the individual level, is more predictable on the distribution of maximum

response.
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Conclusions

Could the mean of maximum rocking response of a rigid rocking oscillator be predicted when

subjected to an ensemble of ground motions with similar statistical properties?

Based on the results here presented, there is a clear trend substantiating that the distri-

bution of maximum rocking response, excluding overturn values, could be predicted. For

the lowest prototypes, H5m and H10m, the mean and median values are predicted with low

errors for both ground motions. The nominal errors are in the range of ±0.08α, while the

relative errors are in the range of ±19%. The mean values are in general found to be higher

than the median values, and are thus conservative predictions of the central tendency. Both

when nominal and relative errors are considered, the mean values are best fitted.

For the highest prototype, H20m, the maximum rocking angles are small, 75 % of the val-

ues are lower than 0.10α for El Centro and 0.19α for Lefkada (measured values). Thus dis-

turbances or errors from measurements, elastic vibrations or other flawed assumptions are

more dominant in the measured value that is interpreted as maximum rocking angle. Even

though the relative errors on quartile and mean values are as high as 80 %, the nominal errors

are in the range of ±0.05α, which is comparable to the other prototype scales.

Small changes of the input parameters coefficient of restitution and acceleration are

shown to potentially change each time history significantly. But when the response on a

whole ensemble is considered, the distributions are only affected to a low degree. The ef-

fect of a parameter change that is unpredictable on the individual level, is shown to be more

predictable on the distribution of maximum response. These findings support the view that

maximum rocking response could be predicted in a statistical manner.

Further Studies

The largest relative errors are experienced for the prototype scales H20m. The different pos-

sible error sources should be further explored. First of all the uncertainty of the optical mea-

surements and acceleration recordings should be more accurately determined. Secondly the

offset correction methods should be further investigated to obtain the most correct results.

An experimental value for the uplift criterion could also be determined to possibly improve

the numerical predictions for input accelerations with low peak values. If the test specimen

is subjected to various ground motions with peak accelerations lower than the experimental

uplift criterion, it could be verified whether there are elastic vibrations in the column that
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could be measured by the NDI system or not.

9.2 Could the Probability of Overturning Be Predicted?

In the results presented in this project, the probability of overturning is predicted with signif-

icant discrepancy. For El Centro H5m the laboratory probability of 34 % was predicted with

values varying from 35 % to 45 %, which equals a relative error up to 32 %. The values for

Lefkada H5m were closer fitted. The probability of 49 % in the laboratory was predicted with

values between 40 % and 48 %, which equals a relative error up to 18 %. For the prototype

scale H10m for El Centro and Lefkada the laboratory values are 8 % and 7 % and the predic-

tions are calculated with nominal errors up to 5 % and 4 %, which leads to relative errors up

to 63 %. When an average value is calculated based on the 400 predictions, the estimate of

probability of overturning is better predicted.

When the coefficient of restitution is slightly changed, the probability of overturning is

drastically changed with an ensemble size of 100. For H5m for both El Centro and Lefkada

the number of overturns was changed by 8 by increased damping. The changes were how-

ever in different directions: more overturns for El Centro and less for Lefkada. With changed

method of offset correction there was observed large changes in the number of overturns,

but for El Centro H5m the effect of changed damping was reversed compared to the pre-

dictions with first 100 offset correction. The effect of changed parameters on overturning is

observed to be highly unpredictable with the limited number of tests.

The effect of changed damping on maximum rocking response was investigated by com-

paring distributions of a continuous variable. For the overturning phenomenon the effect is

studied by comparing the count of a final, binary outcome only. This method is comparable

to draw conclusions on maximum rocking response considering mean values only, which

could lead to flawed conclusions. The overturning phenomenon could be better understood

by comparing more variables, as proposed later.

Conclusions

Could the probability of overturning of a rigid rocking oscillator be predicted when subjected

to an ensemble of ground motions with similar statistical properties?

Based on the observations that are presented, we can conclude that overturning is very
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sensitive to small changes in the parameters determining the rocking motion. The predic-

tions of probability of overturning that are obtained, are inaccurate and associated with large

uncertainty. When only an ensemble of 100 ground motions are used as basis for compari-

son, small variations of coefficient of restitution or accelerations lead to significant changes

on the number of overturns. There is observed no clear trend to substantiate which effect

increased damping has on overturning. On the contrary, when only numbers of overturning

are compared, the effect thereof seems highly unpredictable.

The obtained prediction of overturning is shown to be uncertain and highly sensitive to

small changes in coefficient of restitution or accelerations. Based on a limited number of

100 predictions, the probability of overturning is not well estimated. The results that are ob-

served, call in to question whether the probability of overturning could be predicted with the

limited number of 100 tests. The estimates on overturning could presumably be improved

by increasing the number of test or by studying overturning with more than one variable.

Further Studies

So far the probability of overturning is determined by a discrete variable with only two out-

comes: either overturning or sustained and transient rocking. This is a crude approach of

quantifying the overturning phenomenon. By the limited number of 100 predictions, the

accuracy of the predictions was poor and the uncertainty was large. By increasing the num-

ber of predicted results to 400, the predictions became better. By increasing the number of

predicted results even more, the estimated probability will most likely converge to the prob-

ability observed in the laboratory. This approach is then based on the assumption that the

numerical model is able to predict the overturning phenomenon accurately. Even though

the maximum response that do not lead to overturning, is well predicted by the numerical

model, it might be that the instability leading to overturn is not well implemented by the

numerical model.

A possible approach to increase the numbers of predictions is to increase the amount

of accelerations that the numerical predictions are based on. Every measured acceleration

signal of an ensemble could be used as a basis to generate e.g. 9 new artificial accelerations.

Thus an original ensemble of 100 ground motions is increased to 1000 ground motions. If we

assume that these 1000 ground motions share the same statistical properties, they could be

used to predict the probability of overturning with possibly increased accuracy and reduced
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uncertainty.

Angular Velocity For rocking angles close to the critical angle α, the seismic resistance is

very low. For θ = α the seismic resistance is zero and for θ > α gravity increases the rocking

angle until the column falls to the ground, see the moment diagram in figure 2.2. Due to the

low or possibly no resistance only a slight change of a parameter that determine the motion,

might drastically change the outcome. For lower rocking angles the seismic resistance is

higher, and the effect of a little parameter difference is not critical to the same extent. If

the angular velocity θ̇ is large when the rocking angle approaches α, the response will for

most cases lead to overturning. In such a case one might assume that a slight change in a

parameter will not change the outcome and the column overturns anyhow because of a large

angular momentum. On the other hand if the angular velocity is small when the rocking

angle approaches α, the outcome will be less predictable. If the column is at the verge of

overturning and the angular velocity is approximately zero, even an infinitesimal change of

acceleration would determine whether the column overturns or not.

Parameter Studies If the rocking phenomenon rather would be statistically analyzed with

a second, continuous variable θ̇, more conclusions could be drawn. Then the distribution

of the angular velocity of the response that overturned, could be determined and compared

with results from numerical predictions. With this approach the effect of increased or de-

creased coefficient of restitution on overturning could be investigated by studying the distri-

bution of angular velocity. Will an increased damping lead to lower angular velocities at the

instant of overturning in an average sense? The conditional probability of overturning could

be investigated considering the angular velocity. In the same manner the effect of slightly

different input accelerations could be studied.

Until now the numerical values for R, λ and α have been deterministic. By applying

structural reliability analysis, by e.g. Monte Carlo simulations, the parameters üg (t ),R,α,λ,c

could be given as stochastic variables. In such a way could the overturning phenomenon be

studied further in a stochastic manner. Also sensitivity analysis could be performed to de-

termine which parameter that the overturning phenomenon is most sensitive to.
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Summary and Conclusions

10.1 Summary

In this master thesis statistical validation of a rigid body rocking response model is explored.

Laboratory tests are performed on a shaking table, and the associated rocking response and

accelerations are measured. The measured accelerations are used as input for the numerical

predictions, and the results thereof are compared with the laboratory results.

Problem Description The problem description is based on the fact that the rocking re-

sponse model in question is not able to predict the entire time history with sufficient accu-

racy. Moreover the response is very sensitive to all parameters that determine the motion.

The main goal of this project is to explore whether the response of a rigid rocking oscillator

to an ensemble of ground motions with the same statistical properties can be predicted by

the numerical model in terms of average quantities.

A rigid rocking column has only one degree of freedom: the rocking angle θ. The motion

could either be unstable and overturn, or secondly the rocking column could exhibit stable

and transient rocking. In the former case the number of overturns is counted to calculate the

probability of overturning. In the latter case the maximum, absolute rocking angle |θmax| is

determined. Instead of predicting the response of the rigid rocking column subjected to one

ground motion, the column is subjected to an ensemble of ground motions that have the

same statistical properties. Could the probability of overturning and the average maximum

rocking response be predicted in this case?
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Rocking Motion The motion of a rocking oscillator differs substantially from the motion

of a more common elastic oscillator. First of all the stiffness is negative. This means that by

increasing the deformation, the restoring force decreases. Moreover, for large angles there

is almost no resistance, which makes the response very sensitive in the large angle range.

Secondly, while elastic oscillator restores the motion by elastic forces, the rocking oscillator

restores by gravity. Thirdly, the taller the structure, the more stable it is, given same slender-

ness. This third fact is caused by that the rocking structure mobilizes rotational inertia, which

increases proportionally to the square of the height. The seismic demand, on the other hand,

increases by the first order of the height. The rocking response model to be tested, predicts

the motion by solving a nonlinear differential equation. The parameters for the equation are

based on size, slenderness, damping and distribution of mass of the rigid column. The load

is given as ground accelerations. In this project overturning is defined as maximum rocking

angle larger than 1.5 times the critical angle α.

Ground Motions The two earthquake ground motions El Centro and Lefkada are used as

a basis for generation of two ensembles of 100 artificial ground motions. Each ensemble is

generated by random Fourier series such that the time variation of the frequency content

and the intensity is similar within the ensemble, and such statistically similar. The physical

column that is tested in the lab has a height of Hexperimental = 0.5 m. We want to experimen-

tally test the response of prototypes with heights H = Hprototype of 5, 10 and 20 meters. By

dimensionless analysis the time vector could be downscaled by a factor
p

0.5/H such that

the same simulations could be used for each prototype.

Experiments The test specimen consists of two hollow aluminum columns that are con-

nected at the top and bottom. The test specimen is placed onto the shaking table without

any connection or attachment to the foundation. The 2×100 simulations to three different

prototype scales are set into motion on the shaking table, in total 600 tests as a basis for com-

parison with numerical predictions. One ensemble of ground motions, El Centro H5m, was

tested twice because of instability of the column foundation. Two optical markers are con-

nected to the shaking table making a near-horizontal line, and two other optical markers are

connected to the rocking column making a near-vertical line. An optical sensor measures

the variation of the angle between the two marker lines. This variation is the rocking angle

θ(t ). The actual acceleration of the shaking table, ug ,meas(t ), is measured by accelerometers
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and used as input for the numerical prediction.

Post Processing Both measured accelerations and rocking angles are given with a offset

that needs to be estimated and subtracted to obtain physical values. The calculation of this

offset is associated with uncertainty that affects the numerical predictions and the accuracy

of the laboratory results. The numerical predictions are calculated with two different coeffi-

cients of restitution: one analytical Housner value and one experimental value. The experi-

mental value for coefficient of restitution and an inertia factor are determined by fitting the

numeric prediction to a measured free vibration response.

Same Statistical Properties of Accelerations The measured accelerations are analyzed by

comparing distribution of energy and calculating elastic response spectra. There is an ap-

parent correlation between the accelerations within each ensemble both in time and fre-

quency domain. The accelerations are thus considered to share the same statistical proper-

ties within each ensemble. The elastic spectra of the accelerations that lead to overturning

show no significant difference compared to the spectra of those accelerations that did not

lead to overturning.

Results There is observed a clear correlation between the distributions of the predicted and

measured maximum response. When only values excluding overturns are considered, the

median and mean are well predicted for prototype scales H5m and H10m for both El Centro

and Lefkada. The mean values are predicted with error less than 13 % and the medians with

error less than 19 %. The error on the mean is in general smaller than for the median, and

the mean values are in most cases larger than the median.

When the maximum response for prototype scale H20m is considered, the nominal errors

are in the same range as for the other results. The relative errors are on the other hand high

because the rocking angles are small. For El Centro is there observed a significant discrep-

ancy for the 20 % lowest values. Possible error sources for these low values are uncertainty

in optical measurements of rocking angle, inaccurate uplift condition or elastic vibrations

of the test specimen. These errors might dominate the laboratory results leading to a poor

correlation between the measured results and the numerical predictions for low values.

Small changes in the damping parameter or accelerations are shown to lead to small

changes in the distribution of maximum response. Increased or decreased damping showed
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additionally a predictable direction of the change of distribution.

Overturning was only observed for the prototype scales H5m and H20m. The probabili-

ties of overturning was inaccurately predicted and associated with large uncertainty. Small

changes of damping or acceleration signal lead to drastic, but highly unpredictable, changes

of the estimated overturning probability.

10.2 Conclusions

Based on a limited number of 100 predictions, the maximum response of a rigid rocking

oscillator could be well estimated by mean and median values for the prototype scales H5m

and H10m. The mean and median values for the scale H20m show nominal prediction errors

in the same range, but the predicted values are numerically small and prone to be dominated

by numerical and physical disturbance. The mean values are in general found to be higher

than the median values, and are thus conservative predictions of the central tendency. Both

when nominal and relative errors are considered, the mean values are best fitted.

The effect of a parameter change that is unpredictable on the individual level, is shown

to be more predictable on the distribution of maximum response. These findings support

the view that maximum rocking response could be predicted in a statistical manner. The

obtained prediction of overturning is uncertain and highly sensitive to small changes in co-

efficient of restitution or accelerations.

The obtained prediction of overturning is shown to be uncertain and highly sensitive to

small changes in coefficient of restitution or accelerations. Based on a limited number of

100 predictions, the probability of overturning is not well estimated. The results that are ob-

served, call in to question whether the probability of overturning could be predicted with the

limited number of 100 tests. The estimates on overturning could presumably be improved

by increasing the number of test or by studying overturning with more than one variable.



Appendix A

All Box Plots Gathered

All seven box plots are shown together in figure A.1 and A.2.
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Figure A.1: All box plots for El Centro.
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Appendix B

CDF Plots Including Response to

Simulated Accelerations

CDF plots for the seven different test groups are shown in figure B.1 to B.7 based on both

measured and simulated accelerations and experimental and Housner coefficient of restitu-

tion. The predicted lines based on simulated accelerations do in general neither fit well to

the laboratory lines nor to the lines based on measured accelerations.
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Figure B.5: Empirical CDF for Lefkada H5m
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Appendix C

Numerical Response to Varyingα-Values

The following CDF plots are calculated based on measured accelerations and Housner value

for coefficient of restitution. The slenderness angle α attains three different values as

α= tan−1[0.10 0.15 0.20] while all other parameters are as before.

As expected a more slender column exhibits a higher possibility of overturning and a

larger maximum rocking angle and vice versa.
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