
Deckbuilding in Magic: The Gathering
Using a Genetic Algorithm

Sverre Johann Bjørke
Knut Aron Fludal

Master of Science in Informatics

Supervisor: Anders Kofod-Petersen, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Til mormor
- Knut

Abstract

An important factor when playing Magic: The Gathering is choosing which cards one
should play with. This is an example of a combinatorial optimization problem in a large
and bewildering search space. In this thesis we have conducted a systematic literature
review to gain an overview of the different solutions for this type of problem. Based on the
findings from the review we have proposed and implemented a system for automatic card
selection using a genetic algorithm. This was tested and an expert analysis was performed
on the results.

i

ii

Samandrag

Ein viktig faktor når ein spelar Magic: The Gathering er å velje kva kort ein skal spele
med. Dette er eit eksempel på eit kombinatorisk optimeringsproblem i eit stort og uover-
siktleg søkerom. I denne oppgåva har vi gjennomført ein systematisk litteraturstudie for å
kartlegge dei forskjellige løysingane for denne typen problem. Basert på funna frå denne
studien har vi foreslått og implementert eit system for automatisk utveljing av kort ved
hjelp av ein genetisk algoritme. Denne vart testa og ein ekspertanalyse av resultata vart
gjennomført.

iii

iv

Preface

We would like to thank our supervisor, Anders Kofod-Petersen, for his input and guidance
during this project.

Thanks to Gjertrud Fludal for the valuable feedback and grammatical nitpicking we sorely
needed, albeit not deserved. Thanks to Ole Håvik Bjørkedal for his eagle eyed observa-
tions and sharing his LATEX knowledge. Thanks to Ole Kristian Ekseth for his feedback,
encouragement and positive attitude.

Thanks to Sveinung Knudsen Nøding for helping as an MTG Expert by creating decks,
and for helping us evaluate the results. Thanks to the open-source MTG community for
helping out with our technical problems and for developing the tools we have used.

v

vi

Table of Contents

Abstract i

Norwegian abstract iii

Preface v

Table of Contents ix

List of Tables xi

List of Figures xiii

Abbreviations xv

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Goals . 2
1.4 Contributions . 3
1.5 Structure . 3

2 Background 5
2.1 Summary of gameplay . 5
2.2 Competitive MTG . 7

2.2.1 Constructed . 7
2.2.2 Limited . 7
2.2.3 Automatic deckbuilding in competitive play 8

2.3 Building a better deck builder . 8
2.4 Problem generalization . 8

2.4.1 Problem Analysis . 9
2.4.2 A combinatorial optimization problem 9

vii

3 Systematic Literature Review 11
3.1 Introduction . 11

3.1.1 Motivation . 12
3.2 The review process . 12

3.2.1 ST1 - Defining the research questions 12
3.2.2 ST2 - The systematic literature review protocol 13
3.2.3 ST3 - Literature search . 13
3.2.4 ST4 - Filter on inclusion criteria 14
3.2.5 ST5 - Filter on quality criteria 15
3.2.6 ST6 - Data Collection . 17
3.2.7 ST7 - Quality assessment . 17
3.2.8 ST8 - Analysis . 18
3.2.9 ST9 - Dissemination . 18

3.3 Analysis . 18
3.3.1 RQ1: What is state of the art on deck-building systems in Magic:

The Gathering? . 18
3.3.2 RQ2: What is the strength of the evidence in support of the differ-

ent solutions? . 19
3.3.3 RQ3: How can our findings be applied when creating a system for

programmatic deckbuilding? . 20
3.3.4 Conclusion . 23

3.4 Challenges met . 23
3.5 Summary . 24

4 Designing a deckbuilder 25
4.1 Proposal . 25
4.2 Requirements . 25
4.3 Genetic Algorithms . 26

4.3.1 Fitness evaluation . 26
4.3.2 Selection . 28
4.3.3 Mutation . 28
4.3.4 Crossover . 28

4.4 Design and Implementation . 29
4.4.1 Genetic algorithm . 29
4.4.2 Card pool . 30
4.4.3 Chromosome representation . 30
4.4.4 Crossover . 30
4.4.5 Mutation . 31
4.4.6 Fitness Function . 31
4.4.7 Selection . 34
4.4.8 Termination strategy . 34
4.4.9 Logging and visualization . 34

viii

5 Experiments 37
5.1 Introduction . 37
5.2 Testing Strategy . 37

5.2.1 Planned tests . 37
5.2.2 Deviation from the plan . 38

5.3 Experiments . 38
5.3.1 Experiment 1 . 39
5.3.2 Experiment 2 . 41

6 Discussion 45
6.1 Results . 45

6.1.1 Experiment 1 . 45
6.1.2 Experiment 2 . 46
6.1.3 General analysis . 48

6.2 The proposed solution . 48
6.3 Conclusion . 49

7 Summary and further work 51
7.1 Summary . 51
7.2 Further work . 51

Bibliography 55

A SLR Protocol 59

B Opponent Decks 65
B.1 GB . 65
B.2 UWg . 65
B.3 RG . 66
B.4 GBw . 66
B.5 UR . 66
B.6 RW . 67

C Experiment Sealed Pools 69
C.1 Experiment 1 . 69
C.2 Experiment 2 . 70

D Expert decks 73
D.1 Experiment 1 . 73
D.2 Experiment 2 . 73

ix

x

List of Tables

3.1 Digital libraries . 14
3.2 First search matrix . 14
3.3 Second search matrix . 15
3.4 Collected studies . 16
3.5 Quality criteria scores . 18
3.6 Distribution of solution types . 23

4.1 Experiment Parameters . 29
4.2 Magic: The Gathering AIs . 31
4.3 AI opponents . 33
4.4 Win percantage of opponents . 34

5.1 Test Plan . 38
5.2 Experiment 1 Parameters . 39
5.3 Expert and solution deck win rate Experiment 1 41
5.4 Experiment 2 Parameters . 41
5.5 Expert and solution deck win rate Experiment 2 43

A.1 List of search engines and databases. 60
A.2 Search Matrix . 61

xi

xii

List of Figures

2.1 Aggro curve . 6
2.2 Midrange curve . 6
2.3 Control curve . 7

4.1 Evolutionary process . 27

5.1 Experiment 1 . 39
5.2 Experiment 2 . 42

A.1 Targeted studies . 61

xiii

xiv

Abbreviations

MTG = Magic: The Gathering
COP = Combinatorial Optimization Problem
SLR = Systematic Literature Review
GA = Genetic Algorithm
AI = Artificial Intelligence

xv

xvi

Chapter 1
Introduction

Luck is an important factor in many games, while others rely purely on skill and strategy.
A deciding factor when playing trading card games such as Magic: The Gathering, Yu-
Gi-Oh! and Pokémon is which cards the players choose to bring to the table. Selecting
these cards is often an important part of the game itself, and of the so-called meta game.
In trading card games with hundreds or even thousands of available cards, choosing which
ones to pick can be a daunting task. This problem of choosing a number of cards from a
larger body of cards is an example of a combinatorial optimization problem. This group of
problems often deal with large search spaces where an exhaustive search is not tractable,
and a better search algorithm is required. In this master’s thesis this problem is explored,
with Magic: The Gathering as a case study.

1.1 Background
Magic: The Gathering (also known as MTG) is a trading card game invented in 1993 by
Richard Garfield, PhD, and was the first modern game of its kind. It has been hailed as the
origin of all following trading card games. Today, it is by far the most played trading card
game in the world, with more than 20 million players globally (Guinness World Records,
2016).

MTG is played both for recreational purposes and in more competitive settings. Tour-
naments are arranged in many forms, from small local events to large world championships
with grand prizes attracting participants and spectators from all across the globe.

In MTG one plays as a powerful wizard, trying to defeat one or more opponents in bat-
tle. The game is played by casting spells, summoning creatures or laying down powerful
enchantments. This is done by playing different cards from a personal selection of cards
known as a deck. A player wins the game by reducing the opponent’s score to zero.

Players assemble their deck in a process known as deckbuilding. This is an essential
part of the game and is where the players do most of the strategizing before a match. How
one composes the deck greatly impacts how the game is played. The effects and various
abilities of different cards can combine in countless ways, resulting in many different

1

Chapter 1. Introduction

playstyles and strategies. A well composed deck will mean the difference between defeat
and victory.

Most of the combinations of cards utilized by players fall into three widely recog-
nized archetypes. These are aggressive decks, control decks and midrange decks. Each
archetype has specialized subtypes that again fall into more or less well known categories.
The control and aggressive decks are extremes on the scale, with control focusing on de-
fence and aggressive focusing on offence. Midrange decks falls somewhere in the middle,
features aspects from the two other and focuses on adaptability.

There are of writing more than 15.000 unique MTG cards (Wizards of the Coast, 2016).
Throughout MTG’s 23 year old history, these cards have been published in batches, called
sets. Multiple sets with the same thematic setting form so-called blocks. The settings span
everything from steampunk, alien invasions and lovecraftian horrors.

1.2 Motivation

As deckbuilding is such a deciding factor in MTG, it is subject to of a lot of discussion,
analysis and testing by players. There are many websites and online forums dedicated to
cataloguing, showcasing and rating decks that has been utilized during tournaments.

Deckbuilding is a complex problem, with a lot of intricate interactions. MTG cards
have multiple attributes, both quantitative and qualitative, as well as natural language text
describing different spells and effects. The strength of a card is not always obvious. A
card can be underwhelming on its own, but have strong synergies with certain other cards.
Discovering these synergies and utilizing them is a considerable part of Magic: The Gath-
ering.

Experienced players acquire a knack for building decks, by being skilled at recogniz-
ing positive synergies, assessing cards and predicting which cards opponents might choose
to bring to the table. Computers, on the other hand, are not able to do this without sophis-
ticated approaches.

In some MTG-formats, deckbuilding is an integral part of the competition, where the
players are given a randomly chosen limited pool of cards to construct their deck from.
If a player wants to train for this format, he needs to play in a tournament versus real
players. A deckbuilding AI would theoretically make it possible to arrange single player
tournaments where players can hone their skills in a realistic environment.

A system for building decks is also interesting for a game developer perspective. Test-
ing how a new set of cards can interact with all the previous releases can help identify and
mitigate balancing issues.

We therefore propose deckbuilding in Magic: The Gathering as an interesting problem
worth exploring.

1.3 Goals

Deckbuilding is not a widely researched problem. In order to identify and draw upon
previous related work, the first goal of this thesis is presented as:

2

1.4 Contributions

G1 Survey the existing implementations for programmatic deckbuilding by con-
ducting a systematic literature review.

As deckbuilding in MTG and other games is an interesting problem to solve programmat-
ically, the second goal for this thesis is presented as:

G2 Propose and implement a system for programmatic deckbuilding using an ap-
proach based on the result from the literature review.

This includes figuring out what algorithm we want to use and also how is should be im-
plemented. It will also be required to design a framework for determining the quality of
the decks suggested by the algorithm. This will be important in order to achieve Goal 3.

G3 The decks produced by the system must be of a high quality and should be
comparable to decks created by seasoned players.

1.4 Contributions
Our work will primarily contribute to the field of deckbuilding in collectible card games
and how the problem can be generalized and solved using algorithmic approaches decided
by the result from our literature review.

By conducting a systematic literature review we will also contribute to the field of
methodical research in computer science. Systematic literature reviews originates from
medicinal research methodologies and provides a structured and reproducible method for
discovering papers and articles, as well as reviewing them (Kitchenham and Charters,
2007). Thus, the systematic review improves the legitimacy of our findings. Our thesis
will illustrate how this methodology can be utilized in computer science research.

1.5 Structure
The remaining six chapters of this thesis are structured as follows: Chapter 2 gives a
more thorough introduction to how Magic: The Gathering is played, important aspects
of deckbuilding, the different formats, and a generalization of the problem. In chapter
three we discuss the structured literature review, our findings and our interpretations. Our
proposed implementation of an AI deckbuilder is presented in Chapter 4, while Chapter
5 shows our experiments and their results. Chapter 6 covers the discussion of our results
and, and Chapter 7 concludes our thesis by summarizing our results and future work.

3

Chapter 1. Introduction

4

Chapter 2
Background

For the benefit of the readers not familiar with Magic: The Gathering we here give a
brief introduction to the basics of the game. The emphasis is on the important aspects for
building a deck, and not specific game-rules and mechanics. In Section 2.4 we discuss the
problem of deckbuilding and how it can be generalized.

2.1 Summary of gameplay
Magic: The Gathering is designed to be played by two or more players, either in teams, or
in everyone versus everyone matches. In competitive games the game is primarily played
one versus one. Each player start with twenty points known as lives, and uses the cards
in their deck to reduce the opponent’s life total to zero. There exists a few other winning
conditions, but these are rarely invoked, and not typically seen in tournament play.

Each player start the game by shuffling their deck and drawing seven cards to form
their hand. The game is then played by the players taking alternating turns playing cards
from their hand. A player’s turn last until he declares that he is done playing cards. For
each turn the players also draw a card from their respective decks, except on the first
player’s first turn.

Lands are an essential part of MTG. These are a special type of card that is used to
produce a resource known as mana. Mana is used to cast spells and activate abilities. Lands
does not require mana to be played, but only one land can be played each turn. There are
five different types of basic land cards, each producing a different color of mana. Plains
produce white mana, swamps produce black mana, forests produce green mana, mountains
produce red mana, and islands produce blue mana. A land produces mana when the player
activates it, which is indicated by turning the card sideways. This is known as “tapping”
the land. A tapped land is unusable until it is untapped, which happens at the start of ones
turn.

Different cards require different amounts and color of mana. A spell might need one
red mana, and another spell might require one green, two white, and three additional mana
of any color. A 40-card deck usually contains 16 to 18 lands, depending on how aggressive

5

Chapter 2. Background

it is. Manabase is a term used to describe what colors a given deck can produce, and how
many sources there are of each. Having a sustainable manabase in a deck is important,
because of the different color and mana requirements of the cards.

The more mana required to cast a spell, the better the spell usually is. Players are only
allowed to play one land every turn. Because of this, a deck usually has a mix of cards
with a low mana cost to play early, and more powerful spells to play later in the game. This
distribution is known as the curve of a deck, and ensure that the mana is used as efficiently
as possible. Figure 2.1, 2.2 and 2.3 show example curves for different deck-archetypes.

1 2 3 4 5 6+
0

2

4

6

4

5

6 6

3

0

Mana Cost

N
um

be
ro

fc
ar

ds

Figure 2.1: Mana curve in an aggro deck with only 16 lands.

1 2 3 4 5 6+
0

2

4

6

2

4

5

6

4

2

Mana Cost

N
um

be
ro

fc
ar

ds

Figure 2.2: Mana curve in a midrange deck with 17 lands.

6

2.2 Competitive MTG

1 2 3 4 5 6+
0

2

4

6

0

3

5

6

5

4

Mana Cost

N
um

be
ro

fc
ar

ds

Figure 2.3: Mana curve in a control deck with 18 lands.

2.2 Competitive MTG
MTG is played in many different formats. These formats fall into one of two categories,
Limited or Constructed. There is one major difference between these two. Playing Con-
structed requires a deck built in advance, while in Limited the deck creation is part of the
game.

2.2.1 Constructed
There are multiple different constructed formats. They all have different rules when it
comes to deckbuilding. Some only allow certain types of cards, like Pauper, where only
common and uncommon cards can be used. Others, like standard, only allow cards from
certain sets, while Vintage allow any card, as long as it is not on a short list of banned
and restricted cards. Legacy is similar to Vintage, but with a more extensive list of banned
cards.

Constructed decks usually fall within a specific decktype. There exists different cate-
gories of decks that have been fine tuned to a given format. This has been done over many
years, and netdecking is very common. This is the practice of finding complete deck list-
ings online, copying them, and only making minor adjustments. Netdecking is common
because it is hard to make new decks that are competitive and can hold their own against
other decks.

2.2.2 Limited
In Limited the deck-creation is part of the competition. This is done in two ways. Draft, or
drafting, is done in groups of eight, where each player have three booster packs containing
15 cards each. When drafting, a player picks one card from his first pack and passes the
pack to the player on the right. That player then picks a card from the pack he receives from

7

Chapter 2. Background

the left, and the process continues for all cards in all packs. The players then create decks
with the cards they drafted. These cards are called a cardpool. Sealed is the other way
of playing Limited. In Sealed, the players open six booster packs each, which constitutes
their cardpool.

2.2.3 Automatic deckbuilding in competitive play
Using electronic devices to gain a strategic advantage during tournament play is prohibited
by the tournament rules (Wizards of the coast, 2016, Section 2.12). This is both on a
professional and competitive rules enforcement level, and on the regular enforcement level.
This means that the potential for creating an app to help create a deck during a competition
is low, as it is not allowed, and therefore not something to pursue. However, in online play,
such restrictions does not apply. A person playing a sealed event in Magic: The Gathering
Online has unlimited time to create a deck from the boosters he or she opens. This means
we can theoretically create a system that gives some examples of decks the player can
create with his or her card pool.

2.3 Building a better deck builder
As stated in goal G2 we will aim to create a system that can take a card pool and create one
or more complete deck suggestions. These deck suggestions need to be of a high quality if
they are to be useful. High quality in this context is defined as being comparable to decks
created by seasoned players. How to score proposed decks will also be a problem for us
to solve.

A deck produced by our proposed solution needs to exhibit some important properties
to be viable. It needs to have a good curve. This includes having high-end threats to play,
but also early-game spells. The curve must also adhere to the manabase available in the
cardpool, so the number of usable colors and color-combinations is limited. The deck must
also be able to take advantage of synergy in cards, it can not just consist of a number of
cards that fit nicely into a curve. Two weak cards working great together might be better
than two good cards working alone.

Conducting a systematic literature review will enable us to draw upon previous relevant
work and finding one or more suitable AI approaches. We must also decide if the AI
should be general purpose or specialized for a single MTG set. Seeing that sets often
features game mechanics and effects that go well together, this might yield better results
than trying to construct valid decks from all the available MTG cards.

2.4 Problem generalization
As programmatic deckbuilding in trading card games is not an extensively researched
topic, in order to be able to draw upon previous work we need to generalize the problem.
Deckbuilding is, as previously stated, a complex problem with many factors. Building a
strong deck can be viewed as an optimization problem in a large and complex solution
space.

8

2.4 Problem generalization

2.4.1 Problem Analysis
In order to be able to reason about the size of the solution space we perform a simplified
calculation.The size of a set of MTG cards can range in size from the smallest set, Arabian
Night at 92 unique cards, to the largest, Fifth Edition, at 449 unique cards. These sets are
outliers, and the size of a set depends on whether it is the first or second set in a block. First
and second sets are around 270 and 220 in size, respectively. In sealed, one is normally
given 90 cards from one or two sets, where 22-24 non-land cards are to be picked for use in
a deck. One should expect to see some duplicates in these 90 cards, but to keep it simple,
we will assume they are all unique cards. If we were to create a deck of 23 cards from a
card pool of 90, the following equation shows the number of possible unique decks one
could make: (

90

23

)
≈ 1.58 ∗ 1021

This is a search space many orders of magnitude higher than one can search using conven-
tional search methods. Assuming one could examine one billion decks per second it would
still take close to fifty thousand years to examine the whole search space. One could elimi-
nate the 10 worst cards, and determine what two colors to play so we could eliminate 60%
of the remaining cards, since there are five colors in total. This is calculated as follows:(

32

23

)
= 28048800

This is a more realistic search space, but this would still require a lot of computation in
order to examine. This could also be view as the best case scenario, and doing these
simplifications are not necessarily trivial.

2.4.2 A combinatorial optimization problem
Within the field of mathematical optimization, combinatorial optimization relates to find-
ing an optimal solution in a finite set of discrete objects. Solutions typically include sets,
subsets, combinations, permutations as well as concepts from graph theory such as graphs,
subgraphs, cliques and cuts.

Combinatorial optimization problems range from the simple minimum spanning tree
problem to the well known travelling salesman problem. Many real life problems encoun-
tered every day are combinatorial optimization problems, such as finding optimal routes
for infrastructure, planning time schedules for classes or even games like Sudoku.

In essence, most search algorithms can be used to solve combinatorial optimization
problems, as finding a solution can be reduced to searching for the best item in a set.
However, in many cases, this is not feasible. In our concrete case of deckbuilding, finding
the optimal deck in the large solution space is as such not computationally tractable with
exhaustive search. This is the case with many combinatorial optimization problems.

9

Chapter 2. Background

10

Chapter 3
Systematic Literature Review

In accordance with our established goal G1, we conducted a systematic literature review
in order to survey the existing implementations for programmatic deckbuilding.

The rest of this chapter is structured as follows: In Section 3.1 we introduce the back-
ground of systematic literature reviews, the state of systematic literature reviews in the
field of computer science and our motivation for conducting one. In Section 3.2 we detail
the review process. Our analysis is presented in Section 3.3. In Section 3.4 we evaluate
our process and in Section 3.5 we summarize the review.

3.1 Introduction

A systematic literature review is a secondary review where the goal is to extract and com-
bine the knowledge in primary studies related to a specific topic of inquiry (Kitchenham
and Charters, 2007). Stemming from the field of medicine, systematic literature reviews
are characterized by their extensive use of planning and their adherence to protocol, as
well as being objective and transparent. Explicitly defined steps constitutes the review
protocol by which the review is executed.

While not widely adopted in computer science, the methodology has some useage,
much to the credit of Barbara Kitchenham. Spearheading the usage of systematic reviews
in software development, Kitchenham proposes a guideline for undertaking such a study.
We have employed the “light” version of the systematic literature review as proposed in
Guidelines for performing systematic literature reviews in software engineering (Kitchen-
ham and Charters, 2007) .

As an example of a well executed systematic literature review in computer science,
we have looked at the work of Lillegraven and Wolden. In their master’s thesis Design
of a bayesian recommender system for tourists presenting a solution to the cold-start user
problem (Lillegraven and Wolden, 2010) they conduct a systematic literature review of the
recommender system literature focusing on the cold-start user problem. The design of the
review protocol is largely based on their work.

11

Chapter 3. Systematic Literature Review

3.1.1 Motivation
Most research involves a literature review in order to draw upon previous work. In order for
this process to be of high value and relevance, it has to be thorough and fair (Kitchenham
and Charters, 2007). Systematic literature reviews are used to achieve this. Through a well
defined and systematic process, literature related to a certain question or topic is gathered,
reviewed and analysed.

There are several advantages in performing a systematic review. They are reproducible,
and easier to peer review. They help with identifying gaps in current research and they
provide a solid fundament for performing further research. They make it less likely that the
results are biased and help with identifying tendencies across different works (Kitchenham
and Charters, 2007).

The main disadvantage of systematic literature reviews, as pointed out by Kitchenham,
is that it requires a lot of work compared to traditional reviews.

3.2 The review process
This section describes the different steps performed during this process. These steps are
adapted from the guidelines by Kitchenham. They are:

ST1 Define research questions for the systematic literature review

ST2 Write a protocol for the systematic literature review

ST3 Literature search

ST4 Filter on inclusion criteria

ST5 Filter on quality criteria

ST6 Data collection

ST7 Quality Assessment

ST8 Analysis

ST9 Dissemination

All the steps are described in further detail below. An analysis of the results is presented
in Section 3.3.

3.2.1 ST1 - Defining the research questions
Research questions are the starting point of any academic work, and are fundamental to
methodical research. Research questions are, simply put, questions to be answered by the
following research. In this work, the research questions for the systematic literature review
were defined as:

RQ1 What is state of the art on deck-building systems in Magic: The Gathering?

12

3.2 The review process

RQ1.1 If no current system exists, how can such a system be created?

RQ1.2 If such systems exists, in what way is it possible to improve them?

RQ2 What is the strength of the evidence in support of the different solutions?

RQ3 How can our findings be applied when creating a system for programmatic deck-
building?

3.2.2 ST2 - The systematic literature review protocol
The systematic literature review protocol is a guiding document that describes how each
step of the review is to be performed. The protocol should be defined in advance and
should contain unambiguous instructions. This is done in order to counteract human ten-
dencies towards bias while conducting research, which will compromise the objectivity of
the work.

As stated in the review protocol, the protocol has been subject to an iterative process.
In some cases we found it necessary to change some parts of it, in order to proceed. The
protocol can be viewed in it’s final iteration in Appendix A.

3.2.3 ST3 - Literature search
In this step the search for literature that could help us answering our research questions
was carried out. To adhere to the principles of the review method, this step was conducted
systematically, following the predefined steps in the protocol.

Searched Libraries

The review protocol lists the various online libraries and search engines used during the
search step. These were selected based on recommendation by our supervisor, with the
addition of Google Scholar. The latter does not host papers and articles itself, but indexes
other well known sources, including the rest of the list, and will in some cases, by our
experience, return more relevant results than the integrated search engines offered by the
libraries. The libraries were distributed between the researchers to share the workload and
speed up the process. The list of sources searched during this process is presented in Table
3.1.

Search Terms

Before performing the search we decided on a set of search terms to be used, as well as
synonyms and alternative words with the same or similar meaning for these terms. These
terms are all selected based on the research questions. The complete search matrix is
presented in Table 3.2.

By combining the search items in the search matrix, we were able to construct a search
string that targets the overlap of the articles corresponding to each search term. This was
done by combining each word within a group with the OR operator, and combining each
group with the AND operator. This search string could then be used in the advanced
search engine that most of the digital libraries offer. In the cases where such advanced

13

Chapter 3. Systematic Literature Review

Table 3.1: The digital libraries and search engines used during the search process.

Library URL Assignee
ACM digital library http://dl.acm.org/advsearch.cfm Knut
IEEE Xplore http://ieeexplore.ieee.org/search/advsearch.jsp Knut
Web of Science https://apps.webofknowledge.com Knut
ScienceDirect http://www.sciencedirect.com/science/search Knut
CiteSeerX http://citeseerx.ist.psu.edu/advanced search Sverre
SpringerLink https://link.springer.com/advanced-search Sverre
Wiley Online Library http://onlinelibrary.wiley.com/advanced/search Sverre
Oria https://bibsys-almaprimo.hosted.exlibrisgroup.com Sverre
Google Scholar https://scholar.google.no/ Sverre

Table 3.2: The first search matrix used during the search process.

Group 1 Deckbuilding Deck building Combinatorial optimization COP
Group 2 Evolutionary algorithm Neural Network
Group 3 Magic: The Gathering MTG Trading card game TCG
Group 4 Artificial intelligence AI Machine learning

functionality was not supported, we performed the equivalent as separate searches and
combined the results. The resulting search string for the search matrix was:

(“Deckbuilding” OR “Deck Building” OR “Combinatorial Optimization” OR “COP”)
AND (“Evolutionary Algorithm” OR “Neural Network”) AND (“Magic: The Gathering”

OR “MTG” OR “Trading Card Game” OR “TCG”) AND (“Artificial Intelligence” OR
“AI” OR “Machine Learning”)

New Search Matrix

The first search matrix did not yield many results. As deckbuilding in MTG and similar
card games is not an extensively researched subject, the strictness of the AND operator
meant that most of the searched libraries did not return any results at all. In the few cases
where results were found they were with one exception not related to computer science.
This forced us to rethink our search terms and generalize the problem, as described in
Section 2.4. From this we created a new search matrix and restarted the search step (Table
3.3). The resulting search string:

(“Combinatorial optimization” OR “COP”) AND (“Optimal subset” OR “subset
selection”) AND (“Artificial Intelligence” OR “AI” OR “Machine Learning”) AND

(“Evolutionary Algorithm” OR “Neural Network” OR “Simulated Annealing”)

3.2.4 ST4 - Filter on inclusion criteria
Following the search step, the collected studies were filtered based on the inclusion criteria
defined in the protocol. The goal of these criteria is to ensure that the collected articles

14

3.2 The review process

Table 3.3: The second search matrix used during the search process.

Group 1 Combinatorial optimization COP
Group 2 Optimal subset Subset selection
Group 3 Artificial intelligence AI Machine Learning
Group 4 Evolutionary algortithm Neural network Simulated annealing

have a certain relevance for our systematic literature review. The inclusion criteria were:

IC1 The study’s main concern is Combinatorial Optimization Problems

IC2 The study is a primary study presenting empirical results.

IC3 The study focuses on finding an optimal subset of a given set.

IC4 The study proposes a general solution.

Each inclusion criteria focuses on a different aspect we felt was needed in order for an
article to be relevant. IC1 ensures that the article focuses on the problem we want to solve,
along with IC3. IC2 ensures that an article is a primary study, and not a meta-analysis or
secondary study.

This step in the process was carried out in two parts, the primary and secondary filter-
ing. The primary filtering was carried out by each of the researches reading the abstract
of their assigned articles, considering the two first inclusion criteria, and making a note
of whether or not it should be included. Following this, we discussed our verdicts and
exchanged brief summaries of the contents of the articles in order to identify any disagree-
ment in the inclusions.

The secondary filtering was executed in a similar fashion, replacing reading of the
abstracts with full text filtering and considering the second two inclusion criteria. Again
we discussed our findings and reached a mutual decision on which items to proceed with.

3.2.5 ST5 - Filter on quality criteria

A final filtering step was performed, in order to ensure that all the included articles had a
high level of credibility and quality. This filtering was performed with two quality criteria.

QC1 Is there is a clear statement of the aim of the research?

QC2 Is the study put into context of other studies and research?

If the answer to any of these questions was no for any of the collected articles it was not
included for further study. The nine resulting articles from the filtering steps are presented
in Table 3.4.

15

Chapter 3. Systematic Literature Review

Table 3.4: The studies collected during the search.

Study ID Author(s) Title Year Assignee
S1 Garcı́a-Sánchez, Pablo,

et al
Evolutionary Deckbuild-
ing in HearthStone

2016 Knut

S2 Garcı́a-Martı́nez,
C., Lozano, M., &
Rodrı́guez-Dı́az, F. J.

A simulated annealing
method based on a spe-
cialised evolutionary al-
gorithm

2011 Sverre

S3 Nahar, S., Sahni, S., &
Shragowitz, E.

Simulated annealing and
combinatorial optimiza-
tion

1986 Knut

S4 Park, K., & Carter, B. On the effectiveness of
genetic search in combi-
natorial optimization

1995 Sverre

S5 Kubalı́k, J. Evolutionary-based iter-
ative local search algo-
rithm for the shortest
common supersequence
problem

2011 Knut

S6 Meinl, T., & Berthold,
M. R.

Crossover operators for
multiobjective k-subset
selection

2008 Sverre

S7 Rainville, D., Gagné, C.,
Teytaud, O., & Lauren-
deau, D.

Optimizing low-
discrepancy sequences
with an evolutionary
algorithm

2009 Knut

S8 Osaba, E., Carballedo,
R., López-Garcı́a, P., &
Diaz, F.

Comparison between
Golden Ball Meta-
heuristic, Evolutionary
Simulated Annealing
and Tabu Search for
the Traveling Salesman
Problem

2016 Sverre

S9 Beheshti, Z., Shamsud-
din, S. M., & Yuhaniz, S.
S.

Binary Accelerated Par-
ticle Swarm Algorithm
(BAPSA) for discrete
optimization problems

2012 Knut

16

3.2 The review process

3.2.6 ST6 - Data Collection
In this step, data from each of the articles in the filtered list was extracted. The data to
be extracted was chosen with respect to the research questions to be answered, as well as
metadata necessary for citation. All articles and corresponding data was catalogued in a
new spreadsheet. The extracted data fields were:

• Author

• Title

• Year of publication

• Type of article

• Aims

• Type of COP

• Algorithm type

• Experimental design

• Performance metric used

• Conclusion

3.2.7 ST7 - Quality assessment
To map the quality of the research on the selected topic, and to answer RQ2, we assessed
the quality of the collected articles. Every article was scored on ten questions, where every
Yes was worth 1 point, every No was 0 points, and any answer in between was scored 0.5.
The scoring was done in collaboration between the researchers, and unanimous consensus
was reached on the scoring for all the articles.

The full list of quality criteria was used during this process. All of these questions
were taken from (Kofod-Petersen, 2014).

QC1 Is there is a clear statement of the aim of the research?

QC2 Is the study put into context of other studies and research?

QC3 Are system or algorithmic design decisions justified?

QC4 Is the test data set reproducible?

QC5 Is the study algorithm reproducible?

QC6 Is the experimental procedure thoroughly explained and reproducible?

QC7 Is it clearly stated in the study which other algorithms the study’s algorithm(s) have
been compared with?

17

Chapter 3. Systematic Literature Review

QC8 Are the performance metrics used in the study explained and justified?

QC9 Are the test results thoroughly analyzed?

QC10 Does the test evidence support the findings presented?

The following table show the scores for all the articles.

Table 3.5: The scores for the included studies on the quality criteria.

Study ID S1 S2 S3 S4 S5 S6 S7 S8 S9
QC1 1 1 1 1 1 1 1 1 1
QC2 1 1 1 1 1 1 1 1 1
QC3 1 1 1 0.5 1 0.5 1 1 1
QC4 1 1 0.5 1 1 1 1 1 1
QC5 1 1 1 1 1 1 1 0.5 1
QC6 1 1 1 1 1 1 1 1 1
QC7 0.5 1 0.5 1 1 1 1 1 1
QC8 1 1 1 1 1 1 1 0.5 1
QC9 1 1 1 1 1 1 0.5 1 0.5
QC10 1 1 1 1 1 1 1 1 1
Total: 9.5 10 9 9.5 10 9.5 9.5 9 9.5

3.2.8 ST8 - Analysis
In this step we analyzed the results of our literature review. This process was done by thor-
oughly reading and discussing the collected studies with respect to the research questions.
The analysis is detailed in Section 3.3.

3.2.9 ST9 - Dissemination
The systematic review protocol describes dissemination as the final step of the review.
The current chapter is our presentation of the review and its execution, the results from the
study itself, as well as our experience with performing a systematic literature review.

3.3 Analysis
In this section we analyze the results from our literature review. In Section 3.3.1 through
3.3.4 we discuss our findings with respect to each of the three research questions.

3.3.1 RQ1: What is state of the art on deck-building systems in Magic:
The Gathering?

Following our planned search strategy, we found no solutions for automatic deckbuilding
in Magic: The Gathering. We did find a solution for deckbuilding for the immensely

18

3.3 Analysis

popular computer game Hearthstone (S1). Hearthstone is developed and published by
Blizzard Entertainment and is a digital collectible card game. Hearthstone shares many
similarities with Magic: The Gathering. Players strive to defeat each other using spells
and creatures represented by cards that require a resource to use.

To iterate, we were unable to find any existing solutions for programmatic deckbuild-
ing specifically for Magic: The Gathering. We have therefore eliminated RQ1.2 from our
further research and we will focus on RQ1.1: If no current systems exists, how can such a
system be created?

3.3.2 RQ2: What is the strength of the evidence in support of the
different solutions?

As a part of our systematic literature review we have evaluated the quality of the reviewed
studies, in order to determine the strength of the evidence in accordance with RQ2. This
process is detailed in Section 3.2.7. In this section we discuss the results.

All of the collected articles achieved good scores in our quality assessment, with the
worst score being 9 out of 10. None of the articles were marked 0 on any of the questions.
A good result here is to be expected, as the initial filtering process should have excluded
any studies of poor quality.

QC1, QC2 and QC3

All the studies achieve full score on the two first criteria, clearly stating the aim of the
research and putting the research into context of other studies. Most of the articles did
well to justify their algorithmic design decisions, the exceptions being S4 and S6. In S4
the author does not propose an algorithmic design but tests the effect of the crossover
operator in a well known evolutionary algorithm. S6 compares the efficiency of different
crossover operators on a well known evolutionary algorithm. Both are rated 0,5 points on
this criteria. While they do not explicitly state the rationale behind the examined operators,
the choice of algorithm itself is the premise of the papers.

QC4, QC5 and QC6

All of the articles had reproducible data sets, except S3, which used randomly generated
test sets. This, combined with the fact that all the included articles describes reproducible
algorithms and experimental procedures, shows that the overall reproducibility of the se-
lected papers is good. The only exception here is S8, which does not describe the imple-
mentation of the Golden Ball algorithm, but refers the reader to another publication that
does.

QC7

Most of the articles clearly state which algorithms they compare, the exception being S1
where no comparison is performed. We have thus rated S1 half point, as it does not tech-
nically fail on this criteria.

19

Chapter 3. Systematic Literature Review

QC8

The chosen performance metrics are well justified. The only article to be given a half
point on this criteria is S8. The performance metrics used are distance and computational
time. As these metrics are obvious choices when comparing algorithmic performance on
the traveling salesman problem, we agreed that this was not a choice that required much
justification.

QC9 and QC10

S7 and S9 does not thoroughly analyze the presented test results. Much can be inferred
from the prsented results, as the premise for these articles is a comparison between perfor-
mance of different techniques. There is some analysis of the results, and the articles have
been scored based on the admittedly subjective definition of the word “thoroughly”. In all
of the articles the presented findings are supported by the test results.

As shown, all the found articles are of high quality, and there seems to be strong
evidence in support of the different solutions for the various combinatorial optimization
problems examined.

3.3.3 RQ3: How can our findings be applied when creating a system
for programmatic deckbuilding?

Deckbuilding is a very specific combinatorial optimization problem. While only one of
the included studies directly discuss deckbuilding, and for a different game, all the other
studies deals with other forms of combinatorial optimization problems. We here discuss
how the knowledge gained from the studies can be applied to the problem of deckbuilding
in Magic: The Gathering.

S1 Evolutionary Deckbuilding in HearthStone

In their paper, Evolutionary Deckbuilding in HearthStone, Garcı́a-Sánchez et al. 2016 pro-
pose and implement a genetic algorithm for creating decks in trading card games, using
Hearthstone as a case study. The produced decks are analysed and tested against strong
decks designed by humans. From their experiments they show that their methodology is
indeed able to create competitive decks for the two attempted player classes in Hearth-
stone. While their results does not conclusively transfer to Magic: The Gathering, the
strong similarities between the two games hint that this approach could be applicable to
deckbuilding in MTG as well. However, there are some important differences between
Hearthstone and MTG.

Hearthstone was designed with simplicity in mind, and wile the game has some depth,
it does not feature the amount of different mechanics that MTG does. In Hearthstone all
cards require the same type of mana. Mana is automatically generated at a fixed rate, with
one additional mana added per turn. This is different from MTG, where the player must
manage both mana and spell cards together. All cards can be used together in MTG. In
Hearthstone many of the cards are limited to one of the different classes that the players
choose to play as. This limits the search space considerably.

20

3.3 Analysis

S2 A simulated annealing method based on a specialised evolutionary algorithm

In this paper, the authors present a novel approach for searching in a solution space us-
ing simulated annealing based on a specialised evolutionary algorithm, SASEA (Garcı́a-
Martı́nez et al., 2012). Comparing their proposed algorithm with other hybrid algorithms,
traditional techniques and other optimizers they show that their approach of combining
evolutionary algorithms with simulated annealing achieves better results on several of the
problems chosen for the test. As most optimization problems, including deckbuilding, can
be formulated as a search problem, this hybrid method might be applicable to our problem.

S3 Simulated annealing and combinatorial optimization

This paper presents a class for general adaptive heuristics and compare the performance
of simulated annealing with the sequence method. The paper concludes that for some
problems when using randomization heuristics such as simulated annealing, having a good
starting solution will yield a better result than a randomly chosen one, but this difference
evens out with longer runtime of the algorithm (Nahar et al., 1986).

S4 On the effectiveness of genetic search in combinatorial optimization

This paper compares the performance of three algorithms on the well known max-clique
problem (Cormen et al., 2009). The first is the full procedure of a genetic algorithm,
crossover, mutation and selection. The second is a reduced version, with only mutation and
selection. The third is an implementation of simulated annealing. This is done in order to
evaluate contribution and importance of the crossover operator when solving combinatorial
optimization problems.

The results from the experiments performed show that the reduced version of the ge-
netic algorithm outperforms the full version with respect to CPU time, and that found
solutions are mostly of the same quality. The simulated annealing approach outperforms
both of the genetic algorithms (Park and Carter, 1995).

The paper suggest that the crossover operator contributes marginally for problems
where the building block hypothesis does not hold true, and that the additional CPU-time
required clearly outweighs the miniscule improvement. In addition simulated annealing
might be superior to both in these cases. This suggests that whether or not the building
block theorem applies to deckbuilding is important when choosing a method.

S5 Evolutionary-based iterative local search algorithm for the shortest common su-
persequence problem

This paper suggest two extensions to the POEMS algorithm (Kubalik and Faigl, 2006) for
solving the shortest common supersequence problem. This paper is highly specific for this
one combinatorial optimization problem, and it shows that evolutionary algorithms can
perform well in combinatorial optimization (Kubalı́k, 2011).

21

Chapter 3. Systematic Literature Review

S6 Crossover operators for multiobjective k-subset selection

This paper discusses the k-subset selection problem, the problem of choosing a subset
from a larger set while optimizing for some factors (Meinl and Berthold, 2009). The
authors compare the effect of different crossover functions when using the multiobjective
NSGA-II algorithm (Deb et al., 2002) to solve a k-subset problem. For their experiments,
both a real life and a randomly generated data set is used. The compared functions are a
single point crossover on binary encoded individuals, a two-point crossover on individuals
represented by integer lists, and a pseudolinear crossover also on integer based individuals.

The results of the experiments show that the linear crossover function offers faster
convergence than the other methods, but is eventually outperformed on the real life dataset.
On the randomly generated dataset the linear crossover is superior to the two other methods
with respect both to speed and results.

This paper is especially interesting, as the described problem of k-subset selection is
close to the problem of deckbuilding. The choice of crossover and genetic representation
is clearly important and needs to be selected according to the problem to be solved.

S7 Optimizing low-discrepancy sequences with an evolutionary algorithm

This paper discusses the application of an evolutionary algorithm to create low-discrepancy
sequences with better space filling properties than uniformly distributed random numbers
(Rainville et al., 2009). Low-discrepancy sequences are used for sampling. The authors
show that their proposed method performs significantly better than the more established
methods. While this paper does not directly relate to deckbuilding, it shows that evolu-
tionary algorithms are versatile in their applications.

S8 Comparison between Golden Ball Meta-heuristic, Evolutionary Simulated An-
nealing and Tabu Search for the Traveling Salesman Problem

This paper presents an algorithm based on Binary Swarm Particle Optimization and New-
tonian motion laws for solving combinatorial optimization problems (Osaba et al., 2016).
The algorithm is compared with traditional binary swarm optimization and genetic al-
gorithms on the binary 0-1 multidimensional knapsack problem. The results from the
comparison show that the new algorithm offers better results and faster convergence. This
algorithm also comes with the inherent benefits such as easy implementation and no need
for setting algorithmic specific parameters.

S9 Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization
problems

This paper presents an algorithm based on Binary Swarm Particle Optimization and New-
tonian motion laws for solving combinatorial optimization problems. The algorithm is
compared with traditional binary swarm optimization and genetic algorithms on the bi-
nary 0-1 multidimensional knapsack problem. The results from the comparison show that
the new algorithm offers better results and faster convergence (Beheshti et al., 2013). This
algorithm also comes with the inherent benefits such as easy implementation and no need
for setting algorithmic specific parameters.

22

3.4 Challenges met

Distribution of articles

To gain an overview for analyzing the results we categorized the found studies. The search
matrix contained three different solution methods, and we here sort the found articles in
three columns. In addition there is the “Other” column for the cases where methods not
specified in the search matrix were studied. In some of the articles multiple solutions were
discussed, these articles are placed in multiple columns.

Table 3.6: The distribution of studies based on solution type.

Simulated annealing Evolutionary algorithms Neural networks Other
S2 S1 S8
S3 S2 S9
S8 S4

S5
S6
S7

Total: 3 6 0 2

3.3.4 Conclusion
As seen in Table 3.6 there were a majority of studies related to evolutionary algorithms.
S1 shows that a very similar problem, deckbuilding in Hearthstone, can be solved using
a genetic algorithm. S5 shows that genetic algorithms can solve the max-clique problem,
which is a COP. Since COPs in essence can be reduced to selecting k elements from a
set, it also follows that we can use this for solving deckbuilding. S6 shows that a genetic
algorithm with linear crossover works well in for the k subset selection problem, which is
similar to deckbuilding. There were also some support for simulated annealing, as seen
in S2, S3 and S8, as well as the novel methods described in S8 and S9. However, based
on the number of articles in support of evolutionary algorithms and the contents of these
articles we decided that a genetic algorithm would be the best approach for deckbuilding.

3.4 Challenges met
While conducting a systematic literature review provides many benefits to the researcher,
it is the experience of these researches that it is not a task without challenges.

Increased workload

The strength of the methodology comes from its adherence to a predefined protocol and a
strict framework. While this has great benefits with respect to reproducibility and reviewa-
bility, it is our experience this also makes conducting this type of review more demanding
on the available resources compared to more traditional reviews. A significant portion of
the allotted time for this thesis was spent on familiarizing ourselves with the methodology,
developing the protocol, evaluating the protocol and updating it when required.

23

Chapter 3. Systematic Literature Review

Too rigorous?

The strictness of the process itself was also perceived as a challenge for the researchers.
Continuously making sure that each step was carried out in accordance with the method
was mentally taxing. This made the process seem like drudgery. We also experienced
that focusing on adhering to the method had the effect of making us lose focus of the real
issue to be researched. Put differently, focusing too hard on how the process was to be
performed made us lose track of what we were trying to accomplish.

Challenges concerning computer science

Performing a systematic review in computer science comes with some challenges, com-
pared to more established fields. There are many different naming conventions in computer
science, and acronyms are prevalent. Compared to the field of medicine where terminol-
ogy is more rigid (Lillegraven and Wolden, 2010), coming up with the right search terms
might be more difficult in computer science.

Inexperienced researchers?

The mentioned problems might in part be caused by the lack of experience with this form
of work in the researchers, and not necessarily an inherent problem with the method. We
postulate that the methodology might not be suited for everyone, and will work better for
PHD students or students that excel at systematic and structured research.

3.5 Summary
In this review we have surveyed existing solutions for deckbuilding in Magic: The Gath-
ering, and generally for combinatorial optimization problems, in order to find an approach
to generating strongly performing decks in Magic: The Gathering.

A protocol for conducting a systematic literature review was defined. The protocol
was followed and the resulting review is presented in this chapter.

A selection of related work was collected from several digital libraries. These were
filtered based on inclusion and quality criteria defined in the review protocol. The resulting
list of articles was included and further reviewed.

We have evaluated the quality of the selected articles in order to judge the strength of
the evidence. Each collected article has been thoroughly read and evaluated on ten differ-
ent quality criteria. As a result, we found that the literature on our branch of combinatorial
optimization holds a high level of quality.

We have discussed the results of the review with respect to the research questions de-
fined in the review protocol and compared the different proposed solutions for the different
combinatorial optimization problems.

Based on the reviewed articles we have concluded that an evolutionary approach to
deckbuilding in Magic: The Gathering can be viable. This will be pursued in the following
chapters.

24

Chapter 4
Designing a deckbuilder

In this chapter we describe the proposed solution for programmatically building decks in
Magic: The Gathering, and how it was implemented.

4.1 Proposal
Based on the findings in our literature review, we have concluded that a genetic algorithm
can be utilized to solve the optimization problem that deckbuilding is. We therefore pro-
pose to use a genetic algorithm for optimizing decks under the limitations of the sealed
format in Magic: The Gathering.

Starting with randomly drawn decks from a card pool emulating a real sealed sce-
nario, an evolutionary process is applied, mutating and combining the strongest perform-
ing decks. A genetic algorithm is not guaranteed to find the global maximum of the search
space, but will find solutions that in some cases can be good enough.

We made the choice to restrict the scope of the solution to the sealed format due to the
reduction in solution space, as well as the interesting constraints it puts on the potential
decks. A sealed pool is the result of a stochastic process, and in order to produce strong
decks one might need to utilize card combinations that otherwise would be overlooked.

4.2 Requirements
To help us with designing and developing our solution we defined four high level require-
ments for our system.

R1 The system should take a card pool as input.

As our proposed design is tailored for the sealed scenario, it should take a sealed pool as
input. This input is the search space in which the algorithm will perform its task of finding
strong performing decks.

25

Chapter 4. Designing a deckbuilder

R2 The system should output one or more decks.

The goal of the system is to find well performing decks in the search space, and return the
strongest solution.

R3 The system should be able to evaluate the individuals in parallel.

It was evident from the start that the evaluation step would be the bottleneck in our imple-
mentation, and in order to make running the algorithm within reasonable time, we needed
to be able to perform the evaluation step concurrently.

R4 The system should log and visualize the performance during the process.

In order for us to be able to reason about the performance of the algorithm, the system
should provide insight into how the strength of the candidates evolves during the process.

4.3 Genetic Algorithms
A genetic algorithm is a metaheuristic partly comparable to biological evolution, and is an
example of the class of evolutionary algorithms. Genetic algorithms are a tried and tested
learning method, and has been applied with success to many learning and optimization
problems (Mitchell, 1997, p 249). Genetic algorithms work well in solution spaces where
the intricate interactions between elements can be challenging to model and predict, as
certainly is the case with decks in MTG.

After first generating the initial generation of solutions, either by guessing or based
on a hypothesis, genetic algorithms are applied in primarily two main steps. These are
the genetic operators step and the selection step. The genetic operators are crossover
and mutation. The selection step itself consists of two parts, evaluating the fitness of the
population and selecting the individuals for the next generation. These four components
are all called from a main loop driving the algorithm and incrementing the generation. A
simple visualization of this process can be seen in Figure 4.1.

4.3.1 Fitness evaluation
A fitness function is a way to measure the performance, or “strength”, of a particular
individual in an evolutionary algorithm. It is crucial in an algorithm like this, because
evolutionary algorithms need to be able to rank any population of individuals from best
to worst. The fitness values can either be relative to each other, or on an absolute scale.
There are many different ways to calculate fitness, and they usually has to be tailored to the
problem being solved. In the case of rating decks in Magic: The Gathering we considered
various options, including those listed below.

Expert evaluation

Having an expert player judge a deck is a pretty good way of determining its strength.
An experienced player will know what types of cards are required in order for a deck to

26

4.3 Genetic Algorithms

Initialize population

Crossover

Mutation

Evaluation

Selection

Termination criteria
reached?

No

Yes

Solution found

Figure 4.1: Flowchart showing an example of an evolutionary process.

perform well. Expert players can also create decks that rely on positive synergy between
cards as well.

A drawback with this approach is that it is labour intensive, and not well suited for
being incorporated in an automated system. The time needed to judge a deck is depend-
ing on a number of things, including skill, complexity of set and the order of accuracy
wanted, but anything less than five minutes is not to expected. Ordering the list of decks
from strongest to weakest would also be challenging, as humans may have trouble with
accurately sorting a large set of complex entities.

Custom evaluation criteria

It is feasible that one could create a set of criteria, which all strong decks would need to
follow. Factors like how many creatures it should contain, the number of removal spells,
and what type of mana curve it should feature, could all potentially be used to gauge

27

Chapter 4. Designing a deckbuilder

whether a deck is good or not. The required ruleset for this approach is complex, and
would require extensive research into the finer intricacies of the metagame in Magic: The
Gathering. It would also be subject to constant change, as the metagame of MTG is in
constant flux with new cards and mechanics being introduced.

Playtesting

When comparing the strength of decks in other tournament formats, tournament results
are often used as basis for discussion. For formats such as Legacy and Modern, there
are multiple websites which record and store such data. For the sealed format, however,
this is not the case. Compared to the other tournament formats where the player is free
to construct decks from almost all available cards, the Sealed format puts considerable
constraints on the cards available to the player. Therefore, decks used in this format will
vary greatly from the decks that are featured in the tournament results.

A solution to this would be to arrange tournaments where some players would use the
generated decks, reporting their results for each generation. This could be done using a
web app or other software, but would still be subject to challenges regarding time and
human resources. Alternatively, one could employ artificial intelligence agents to play
each other. This method is best suited for our purpose, and is expanded on in Section
4.4.6.

4.3.2 Selection

For each generation in the algorithm a subset of the current population has to be selected
for further breeding and mutation, while the others are culled. Generally the most fit
individuals are selected. There exist several strategies for selecting individuals, and like
the fitness function, it might need to be chosen based on the problem.

4.3.3 Mutation

The mutation operator is how the genetic algorithm explores the search space and main-
tains genetic diversity in the population. Mutation is also important to avoid converging
towards a local optima. The workings of the mutation operator will depend on the genome
representation, but will, in general, change one or more of the properties of the individual.

4.3.4 Crossover

As mutation covers the exploration part of the algorithm, the crossover function covers
the exploitation behaviour of the algorithm. Crossover, also known as recombination or
breeding, is the process of taking elements from two or more parent individuals and cre-
ating children by combining the chromosomes. The idea behind this is that the building
block hypothesis is valid for the given problem. If this is not the case, then there will be
little point in utilizing a crossover (Park and Carter, 1995). The building block hypothesis,
as described by (Goldberg, 1989, p. 41), states:

28

4.4 Design and Implementation

Short, low order, and highly fit schemata are sampled, recombined [crossed
over], and resampled to form strings of potentially higher fitness. In a way,
by working with these particular schemata [the building blocks], we have re-
duced the complexity of our problem; instead of building high-performance
strings by trying every conceivable combination, we construct better and bet-
ter strings from the best partial solutions of past samplings.

4.4 Design and Implementation
We here detail our implementation of the genetic algorithm and the various components
that constitutes the deck builder.

4.4.1 Genetic algorithm
The genetic algorithm is implemented using DEAP, Distributed Evolutionary Algorithms
in Python (Fortin et al., 2012). DEAP is a simple to use framework for evolutionary algo-
rithms. It has broad selection of options regarding representation, methods for performing
selection, mutation and crossover and other means of configuration.

In our implementation there are a few parameters that can be varied to explore different
results. The various parameters and their function are shown in the Table 4.1.

Table 4.1: The different parameters used for the experiments.

Mutation Rate The probability that a given individual mutates
Crossover Rate The probability that two individuals mate
Number of Generations The number of generations before terminating
Number of games per opponent Number of games against each opponent
Opponents Array of opponent decks, closer described in 4.4.6.

The genetic operators are applied by using DEAP’s varAnd-method. This method both
applies breeding and mutation independently based on the corresponding probabilities. In
other words, one, both or neither genetic operator can occur in the same individual.

As the fitness function (Section 4.4.6) is rather computation intensive and time con-
suming, we needed to be able to do parallel evaluation of individuals for any experimenta-
tion to feasible finish within the time constraints of this project. As DEAP is built with this
in mind, it works well with frameworks for distributed computing. One such framework
is SCOOP, Scalable COncurrent Operations in Python (Hold-Geoffroy et al., 2014).

SCOOP allows for distributing task across multiple worker machines over network
using SSH, with one central broker coordinating the process. We chose to implement our
cluster on Google Compute Engine1, as it offers easily configured virtual machines which
allowed us to set up one machine and rapidly duplicate it, creating the worker nodes. As
the individuals can be evaluated independently, we chose to have one worker node for
each individual in the population, thus achieving full parallelization of the evaluation step.
Google Compute Engine is a paid service, but all users get 300 USD worth of credits

1https://cloud.google.com/compute/

29

Chapter 4. Designing a deckbuilder

upon signing up. We chose to create 10 worker nodes and one broker node, and chose an
population size of 10 for all tests and experiments.

4.4.2 Card pool
When playing the sealed format in Magic: The Gathering, the players compose their deck
from a pool of cards, obtained by opening six booster packs, each containing 15 cards. In
our implementation, we use card pools generated by a sealed pool simulator2. Card pools
are represented as text files, containing a number and a card name for each card. These
files are read and parsed. The pool is represented as a hashmap, with sequential integers
as keys, and a tuple with the card name and the quantity of that card in the pool as value.
We know a MTG deck needs lands in order to play cards. Therefore, 14 lands of each
color were also added to the card pool. This way, every individual in the first generation
will statistically get some amount of basic lands. This helps reduce the run time, because
without any starting mana the individuals would need to mutate in a land card in order to
use a single spell.

For our implementation and experiments, we primarily used card pools generated for
the Aether Revolt set. This set was chosen because it was the most recent standard set
released. The set being the second set in a block, also meant that the sealed pools would
contain cards from both sets, which would increase variety, and make the problem more
interesting. It is also a set where synergies between cards are important, and whether our
solution can take advantage of them or not, will be important to it’s success.

4.4.3 Chromosome representation
Typically, individuals in genetic algorithms are represented using an array of bits, with
each bit representing an individual attribute (Mitchell, 1997, p. 252). The individuals in
our population, the decks, consists of various cards from the card pool, and duplicates of
some cards are present. We needed to be able to represent this. Therefore, we opted for
using an array of integers. The integers each corresponds to a card in the card pool.

By contrast, having n bits representing the n allowed instances of each card would re-
quire more complex generation of individuals. By representing individuals as fixed length
integer arrays, we avoided potential errors during development, and made the code eas-
ier to reason about. As DEAP supports representation using almost any imaginable data
structure, this was simple to implement.

The initial generation is generated by drawing random cards from the card pool, using
the randint function in Python’s random module and checking if the amount of any given
card was within the bounds given by the card pool, until the individuals contained 40 cards.

4.4.4 Crossover
When applying the crossover function, we wanted to retain the validity of the decks by not
having any of the resulting offspring containing more than the allowed number of copies
of a card, determined by availability in the card pool. This could be the case if crossing

2http://www.magicdrafting.com/aether-revolt-sealed

30

4.4 Design and Implementation

over two individuals using more traditional methods, such as a one or two point crossover.
To counter this, we implemented an adaptation of a linear crossover function.

The function takes two individuals, combine their integer arrays and sort the combined
array. The two resulting offspring are then produced by selecting the elements on the odd
positions for the first child and the even positions for the second child. This ensures that
no offspring ends up with more than the limited amount of each card in the pool.

4.4.5 Mutation

In our implementation, mutation is done by randomly trying to swap one card for another
card from the card pool until a legal swap, that is, one that does not invalidate the deck
by having too many of any given card, has been done. As with the initial generation of
individuals, this is done using the randint function, first selecting a random mutation site,
and then replacing that card with a randomly drawn card. The mutated individual is then
returned.

4.4.6 Fitness Function

In order to rate the fitness value of each candidate deck, we chose to test how well they
performed in play. As playing actual matches with the generated decks were out of the
question for obvious reasons, we opted for simulating the games using artificial intelli-
gence agents playing with the candidate decks, as well as opponent decks. Designing and
implementing such an MTG AI would constitute the workload of a master’s thesis on it’s
own, if not several. Fortunately, there exists many open source AI engines for Magic: The
Gathering, as seen in Table 4.2.

Table 4.2: List of MTG AIs, taken from: https://www.slightlymagic.net/wiki/List of MTG Engines

Name AI AI vs AI Implemented cards
Forge Simple Yes 16697
Incantus None ? 2583+
XMage Mad, DraftBot During Tournament 239293

BotArena Minimax ? 10744
Magarena Minimax/Monte

Carlo/Vegas
Yes 11404

Multiverse None No 1500+
Wagic Simple Limited 9000+
Manalink 3.0 Simple No 12869
Magicgrove Minimax Yes 690

Comparing the different engines, we first decided on using Magarena, as it is the most
sophisticated engine, and widely recognized as the strongest open source MTG AI. Our
rationale here was that it would provide the most realistic testbed for our candidate decks.

3XMage has more cards implemented than there exists because reprints are counted as different cards.

31

Chapter 4. Designing a deckbuilder

It also sports the most active developer community and have frequent releases, which could
become important during the implementation phase.

Unfortunately, upon testing we discovered that the Magarena engine, while being a
strong player, uses a prohibitive amount of time per match. Depending on the chosen
strength level for the AI, a match could take upwards of fifteen minutes. While this might
not seem like an unreasonable amount of time, we wanted to run several matches for
each individual in the population against each of our opponent decks. There are several
elements of a match in MTG that are influenced by chance, and we wanted to average
out the results to avoid decks receiving a higher or lower fitness value than deserved.
Magarena also lacked over 2000 cards in its implementation at the time this was written.
Since replacing unimplemented cards with other cards would not correctly represent a
realistic sealed pool, we require an engine with every card from the desired set.

We finally decided on using Forge as our chosen AI. It has many of the same benefits
as Magarena, with the addition of being much faster. While the AI is not as advanced,
each match can be completed in seconds instead of minutes. Forge is distributed as a full
featured game, but can also be used as a command line tool without any graphical user
interface. This was mandatory in order for us to integrate it with the genetic algorithm.
Forge also has more cards implemented than the other available engines, reducing the
need for screening the used sealed pools for cards that are not supported. The list of
implemented cards includes almost all of the Kaladesh and Aether Revolt cards.

A downside of using Forge is the lack of insight into how the algorithm works. As the
development process has been moved between different hosts during its development, it is
hard to find any reliable documentation on how the AI is implemented. Unlike Magarena,
where there are plenty of documentation, and an open github repository.

Python’s subprocess module is used to start Forge and read the resulting output from
each match. When evaluating the fitness of the individuals, each candidate deck is matched
against our opponent decks, with the number of matches determined by a parameter of the
algorithm. The output from the matches is parsed, and the fitness values are then calculated
as the total win percentage of all the matches. Using SCOOP, this process is distributed
across the cluster, with each individual being evaluated on a separate node in parallel.

Opponents

An important aspect when designing our fitness function was deciding upon which oppo-
nents our candidate decks should be tested against. Garcı́a-Sánchez et al. (2016) used an
external site to determine what opponents the AI should play against. That was based on
the most predominant decks in a specific season. As mentioned before, there is no avail-
able and similar datasets for the Sealed format. Instead, we opted for generating opponent
decks by asking multiple seasoned players to create sealed decks based on randomly drawn
Sealed pools using a website 4 that generates sealed pools.

Since we wanted our opponents to represent what one could realistically meet in an
actual tournament, we had 8 different decks created. One of these was removed due to
strong similarities with another, and one deck was deemed too poorly made. The six
remaining decks are a varied mixture of aggro, midrange and control decks, and have quite

4http://www.magicdrafting.com/aether-revolt-sealed

32

4.4 Design and Implementation

distinctive features, and all the five colors are represented. Not all decks were used for
every test. This was partly because some of the tests were performed before the external
experts asked to create decks for us responded, and also because we in some instances
wanted to test the performance against specific sets.

We here present an overview of each of the six used opponent decks. For a complete
list of cards for these decks, see Appendix B. The names are based on the primary colors
of the decks. W for white, U for blue, B for black, R for red and G for green. Lower case
letters indicate a small, but not insignificant, number of cards in an additional color. This
is known as a splash color.

Table 4.3: Opponents used in the experiments.

Name Description
GB A green and black control deck. This deck performs decently in the early game,

and a well during mid-game. This deck is favored to win if the game goes on.
UWg A primarily blue and white control deck, with some green. The green cards

are very strong, which weighs up for the inconsistency from including a third
color.

RG A red and green aggro deck. This uses cheap and efficient creatures to defeat
the opponent early in the game.

GBw This is a green and black midrange deck, with some white in it. This was not
constructed from a good sealed pool, and was expected to do poorly. This is
essentially a weaker version of GB.

UR This is a red and blue midrange deck. This deck has a good mix of cheap and
expensive creatures, and can do well both in the early and late game.

RW This is a red and white aggro deck. This deck was built from a very good card
pool, and was expected to be a strong opponent.

A tournament between the opponent decks using the Forge AI was held. This was to gauge
the difference in power-level between them, to get an indication of the best decks, and to
see if the Forge-engine favored one type of decks over the others. Every deck played 1250
games versus every other deck, which means that the win percentage is derived from 2500
games between different decks, and 1250 mirror-matches. The mirror-matches, matches
between the same decks, should yield an approximate 50 % win percentage, unless the
program does not perform symmetrical between equal opponents. The results can be seen
in Table 4.4.

33

Chapter 4. Designing a deckbuilder

Table 4.4: The win rate for each deck in the first column versus every subsequent column.

GB UWg RG BGW UR RW Average vs
everyone else

GB 49.52 29.4+ 26.32 53.24 44.04 13.92 33.38
UWg 70.60 48.56 55.24 80.16 65.40 44.60 63.20
RG 73.68 44.76 52.80 77.00 52.32 42.56 58.06
GBw 46.76 19.84 23.00 50.40 38.48 14.24 28.46
UR 55.96 34.60 47.68 61.52 50.32 30.00 45.95
RW 86.08 55.40 57.44 85.76 70.00 48.08 70.94

It is clear that some matchups were better than others. RW performed the best, winning
every matchup more than 50% of the times, except against itself. BGw on the other hand,
won less than 50% in every matchup, having an average win percentage at 28.5%. We are
unsure if the great variance in performance among the decks are due to a fault in Forge, or
because the decks themselves just are very uneven quality wise. A more thorough study
on these results and Forge would be ideal.

4.4.7 Selection
Selecting which individuals to be carried over to the next generation is done by using
DEAP’s selTournament method. This is a tournament selection, which takes the current
generation and parameters k and t, and returns a collection of k individuals to serve as the
next generation.

The tournament selection works by randomly selecting a subset of size t, and then
selecting the strongest individual in that tournament. This is repeated k times. This ensures
that a good solution is much more likely to be included in the next generation, while the
t-1 weakest individuals will always be culled.

4.4.8 Termination strategy
The generational process is terminated when one of the following conditions are met:

• The defined number of generations is reached.

• The median fitness score have reached a threshold of 60%.

• The algorithm is plateauing and has not found a better solution for 60 generations.

Any of the termination conditions will end the main loop and the algorithms proceeds to
logging and visualization.

4.4.9 Logging and visualization
After termination the results are written to a log file, containing the used parameters, top,
median and lowest fitness score for each generation, the card list for the strongest perform-
ing deck, as well as the time spent. A graph showing the fitness score for each generation

34

4.4 Design and Implementation

is also plotted, using the widely used matplotlib library. For convenience the log file and
the graph are sent by email to the researchers. For archive purposes, each candidate deck
for each generation is also saved in a folder structure on the main node.

35

Chapter 4. Designing a deckbuilder

36

Chapter 5
Experiments

To test the performance of our solution we conducted several experiments. In this chapter
we describe how we tested different parameters of the algorithm in order to calibrate it,
how we performed our experiments and of the results of those experiments.

5.1 Introduction
Although we achieved good parallelization by evaluating all individuals concurrently, the
runtime of each experiment was still long, spanning several days. Therefore, we were
only able to perform a limited amount of experiments while varying the parameters of
the algorithm in order to find the optimal configuration. In Section 5.2 we outline our
planned strategy for running tests in order to calibrate the parameters. The experiments,
the parameters used and the results are presented in Section 5.3. In Chapter 6 we discuss
our findings.

5.2 Testing Strategy
As this work was conducted under limited resources with respect to time and and budget,
a well defined plan for running the testing was required. We here detail our plan and how
well we were able to adhere to this plan.

5.2.1 Planned tests
In the interest of determining which combinations of parameters that would produce the
best decks, we planned on running several test runs. For each test we would use different
parameters and log the results. If some combination seemed exceedingly promising we
would adjust our plan accordingly in hopes of finding even better results. The number
of tests planned was based on the average time each of the initial tests ran for and the
remaining time of the project. The initial plan for the tests are shown in Table 5.1.

37

Chapter 5. Experiments

Table 5.1: Planned tests with different values for crossover and mutation probability. X denotes
values that were to be determined based on previous tests.

Nr Crossover Mutation
1 0.2 0.2
2 0.5 0.2
3 0.7 0.2
4 0.9 0.2
5 0.2 0.5
6 0.2 0.7
7 0.2 0.9
8 0.X 0.X
9 0.X 0.X
10 0.X 0.X

5.2.2 Deviation from the plan

We experienced problems when performing our tests. Due to technical issues with memory
overflow on our nodes we ended up spending a significant time running tests that never
terminated. Time was also spent trying to fix this issue. Running 11 nodes on Google’s
cloud service is expensive, and we quickly ran out of the free credits we received when
we signed up. Another problem we encountered was that the fitness evaluation process
would hang on some nodes, never terminating. Unfortunately, the developers of SCOOP
has as of writing yet to implement how to handle timeouts, and as a result our algorithm
would never proceed to the next generation. We were unable to figure out the cause of this
problem, and were not able complete all the planned tests.

5.3 Experiments

We performed two experiments after the testing. These are presented with focus on the
deck from each experiment that achieved the overall best fitness score. We chose this over
using an individual from the last generation based on the assumption that our fitness func-
tion correctly assessed the individuals and that a subsequent generation might be weaker
than the one before due to the genetic operators.

We enlisted the help from an expert1 to examine the two selected decks and evaluate
them with respect to the card pools they were generated from, as this is a substantial
limiting factor. The expert also constructed a deck from each of the card pools in order to
provide a baseline for what a strong deck could look like and how it would perform. These
are included in Appendix D. The expert gave a rating to every card in the generated deck,
and compared it to the cards in baseline deck, while also rating them on how good of an
inclusion it was in the deck. The ratings were:

1 This expert was Sveinung Knudsen Nøding. He is the reigning norwegian Legacy champion, and also a
seasoned Draft and Sealed player. He has played MTG actively for more than a decade.

38

5.3 Experiments

• Good card: This card appear in the optimal deck in the sealed pool created by the
expert.

• Potentially good: A card was given this rating if it was a good card, but a bad
inclusion in the generated deck.

• Bad: This card should not be included in any deck created from this sealed pool, or
it is a good card, but very suboptimal in the generated deck.

5.3.1 Experiment 1
This experiment was conducting on the sealed pool found in Appendix C.1. The parame-
ters used can be found in Table 5.2.

Table 5.2: The parameters for Experiment 1.

Mutation rate 0.5
Crossover rate 0.7
Number of generations 200
Matches per opponent 50
Opponents GB, UWg, RG, GBw, UR, RW
Completion time 63 hours

Figure 5.1: Graph of the strongest, median and weakest individual for each generation.

39

Chapter 5. Experiments

Some things can be observed from the graph. Major improvements happen during
the first 50 generations, before the growth rate tapers off. The graph also shows some
tendencies to overall climb during the last 150 generations.

This is the cardlist of the best performing deck from this experiment. The overall win
rate from the fitness evaluation was 57.3%.

Creatures (21)
1x Accomplished Automaton
1x Aether Poisoner
1x Aethertorch Renegade
2x Audacious Infiltrator
1x Augmenting Automaton
1x Countless Gears Renegade
1x Dawnfeather Eagle
1x Filigree Familiar
1x Freejam Regent
1x Glint-Sleeve Artisan
1x Kari Zev, Skyship Raider
1x Maulfist Squad
1x Ovalchase Daredevil
1 Reckless Fireweaver
1x Scrapper Champion
1x Thriving Rhino

1x Vengeful Rebel
2x Verdant Automaton
1x Weldfast Wingsmith

Instants (1)
1x Shock

Artifacts (1)
1x Aethersphere Harvester

Lands (17)
6x Mountain (red mana)
4x Swamp (black mana)
4x Plains (white mana)
1x Island (blue mana)
2x Forest (green mana)

Here is the expert’s ratings of the cards in the deck.

Good inclusions (24):
1x Accomplished Automaton
1x Aether Poisoner
1x Aethersphere Harvester
1x Aethertorch Renegade
1x Augmenting Automaton
1x Filigree Familiar
1x Freejam Regent
1x Kari Zev, Skyship Raider
1x Maulfist Squad
6x Mountain
1x Ovalchase Daredevil
1x Reckless Fireweaver
1x Scrapper Champion
1x Shock
4x Swamp

1x Vengeful Rebel

Potentially good inclusions (9):
2x Audacious Infiltrator
1x Countless Gears Renegade
1x Dawnfeather Eagle
1x Glint-Sleeve Artisan
4x Plains

Bad inclusions (7):
2x Forest
1x Island
1x Thriving Rhino
2x Verdant Automaton
1x Weldfast Wingsmith

40

5.3 Experiments

Expert’s verdict

This deck had seven bad inclusions. Those are cards that would never be added by a real
player. There is no reason to increase the number of colors in this deck up to five, in order
to add these cards. To cast the card “Weldfast Wingsmith”, the single island in the deck
is needed in play. That is a suboptimal card, even if one can cast it, and in this deck one
almost never can. The same goes for the other cards marked as bad. The expert marked
every white card as potentially good, instead of good. This is done, because all the white
cards should be replaced by blue or black cards in order to make the deck more consistent.
This does not mean the white cards are bad, just that they don’t fit in the deck.

To more accurately evaluate the strength of the deck under the Forge AI we ran a
set of 1000 matches against each opponent. The same was done with the reference deck
designed by the expert to compare their performance.The win percentage against each
opponent deck is shown in the Table 5.3. The deck created by the expert can be found in
Appendix D.1

Table 5.3: Win rates for the generated deck and the expert created deck.

GB UWg RG GBw UR RW Average
Generated
deck

0.712 0.303 0.493 0.733 0.549 0.37 0.526

Expert deck 0.781 0.451 0.551 0.858 0.702 0.464 0.635

5.3.2 Experiment 2

This experiment was conducting on the sealed pool found in Appendix C.2. The parame-
ters used can be found in Table 5.4.

Table 5.4: The parameters used for Experiment 2.

Mutation rate 0.5
Crossover rate 0.5
Number of generations 350
Matches per opponent 50
Opponents GB, UWg, RG, GBw, UR, RW
Completion time 43 hours

41

Chapter 5. Experiments

Figure 5.2: Graph showing the performance of the strongest, median and weakest deck for each
generation.

The experiment was set to run for 350 generations, but it terminated after 235 generations
by the termination criteria fulfilled when there was no improvement to the median score
over 60 generations. The graph again shows rapid improvement the beginning, and a more
gradual improvement until termination of the experiment.

The generated deck:

Creatures (15)
1 Aether Poisoner
2 Audacious Infiltrator
1 Countless Gears Renegade
2 Dawnfeather Eagle
1 Dukhara Scavenger
1 Filigree Familiar
1 Foundry Screecher
1 Herald Of Anguish
1 Hinterland Drake
1 Shipwreck Moray
1 Spire Patrol
1 Vedalken Blademaster
1 Welder Automaton
1 Wind-Kin Raiders

Artifacts (4)
1 Bomat Bazaar barge
1 implement of Malice
1 Planar Bridge
1 Renegade Map

Instants (1)
1 Skywhaler’s Shot

Enchantments (2)
2 Caught in the Brights

Lands (18)
5 Island (blue mana)
2 Mountain (red mana)

42

5.3 Experiments

6 Plains (white mana) 5 Swamp (black mana

The rating of the cards from the expert:

Good inclusions (25):
1x Aether Poisoner
1x Bomat Bazaar Barge
2x Caught in the Brights
1x Filigree Familiar
1x Herald of Anguish
5x Island
6x Plains
1x Renegade Map
1x Skywhaler’s Shot
5x Swamp
1x Wind-Kin Raiders

Potentially good inclusions (12):
2x Audacious Infiltrator

1x Countless Gears Renegade
1x Dawnfeather Eagle
1x Dukhara Scavenger
1x Foundry Screecher
1x Hinterland Drake
1x Implement of Malice
1x Planar Bridge
1x Shipwreck Moray
1x Spire Patrol
1x Vedalken Blademaster

Bad inclusions (3):
2x Mountain
1x Welder Automaton

Expert’s verdict

This deck only had three bad cards, which is better than the first generated deck. This
deck is almost exclusively three colored, with the exception of two mountains and a single
creature card, which makes the deck more consistent than the one from Experiment 1. The
expert said that a control deck with only blue and black colored cards and no white would
be more optimal than the three color deck generated by the solution. Some of the cards
that got marked as potentially good is still included in the deck created by the expert. He
said this was due to them having bad synergy in the generated deck, but that in a suited
deck they would be good. Some cards white cards like “Caught in the Brights”, are cards
that are marked as good inclusion, even though they don’t appear in the expert deck. This
is because he has deemed white colored cards unnecessary in his deck, but if his deck were
white, these cards would be excellent. The expert also said that the deck is not very good,
but it is not unrealistic to see a deck of equal quality in a tournament.

Again a set of 1000 matches against each opponent was performed for both the gen-
erated and the expert’s deck. The deck created by the expert can be found in Appendix
D.2

Table 5.5: Win rates for the generated deck and the expert created deck.

GB UWg RG GBw UR RW Average
Generated
deck

0.717 0.400 0.421 0.75 0.596 0.346 0.538

Expert deck 0.452 0.317 0.259 0.578 0.516 0.205 0.387

43

Chapter 5. Experiments

Interestingly, the deck created by the expert performed worse than the solution deck
generated in this experiment. This is discussed further in Chapter 6

44

Chapter 6
Discussion

In which we discuss our results, including the strengths and limitations of the proposed
solution and the implementation.

6.1 Results
To reason about Goal 3 and the strength of the generated decks, the results from the ex-
periments need to be analyzed. We’ll begin by analyzing the results from the individual
experiments, then we will compare them to the decks the expert created, and discuss what
improvements could be done to the solution. The decks created in Experiment 1 and Ex-
periment 2 will be analyzed and discussed with regard to synergy, curve, land count, colors
and overall focus.

6.1.1 Experiment 1
The implemented solution generated a deck with all five colors of mana, where only three
of them were predominant. Our expert proposed that a deck with only two colors, red and
black, would be better (Appendix D.1). Every red and black card in the generated deck
would have been included in the deck created by the expert. However, there are some
weaknesses with the generated deck, and they are outlined in more detail in the sections
below.

Colors:

The deck features all five colors of mana. This is very suboptimal, because most decks
have at most three colors. Removing two of them would improve the deck immensely,
because it would become more consistent. The two colors with the least amount of cards
in the deck, blue and green, drags the rest of the deck down, and makes it more unreliable,
without bringing in any powerful cards to make up for the inconsistency. The expert would
also have removed all white cards from the deck, to further make it more consistent.

45

Chapter 6. Discussion

Synergy:

The deck features some synergy between the cards. It has multiple cards that create “en-
ergy”, a mechanic specific to the Kaladesh and Aether Revolt sets. It also features multiple
cards that benefit from the energy mechanic in different ways, creating flexibility. This is
similar to the deck created by the expert. The expert deck contains the same number of
energy cards, only in more appropriate colors. The generated deck also contains multiple
ways to create so-called “1/1 tokens”, which is an important aspect of this set. However,
it lacks some ways to benefit in full from these tokens. It is likely that there would be
some synergy no matter what, in the deck, just due to the nature of the game. However,
the synergy in this deck is similar to that of the professional deck.

Mana curve:

The curve of this deck is very suboptimal. It has more creatures costing two mana than any
other cost. This would normally mean that the deck is very aggressive. However, the deck
also contains multiple cards costing more than four. This is bad. A player would either end
up running out of cards very quickly, or end up having expensive cards in its hand, which
are never cast, because the opponents wins before he accumulates the required amount of
mana. In comparison, the deck created by the expert has the same expensive cards, but the
rest of the curve is centered around four mana instead of two, which is much better.

Lands:

There are 17 lands in the solution deck. This is good, because that is the normal amount
when creating a sealed deck. The distribution of colors among the lands is however sub-
optimal. To maximize the chance of drawing a specific land color, multiple copies are
needed. This deck only have six mountains to produce red mana, and then four or less
of each other basic land type. In addition, the two forest and the island cards reduce the
usable mana base. There should ideally be minimum 4 lands of the rarest color, unless
there are special circumstances. Having less than this amount reduces the probability of
having the necessary land type when you want to play cards of that color, which in turn
affects your win rate and consistency.

Focus:

As mentioned previously, the deck lacks focus, and that makes it weak. It has many cards
suited for early and aggressive play, while also featuring cards which will not be played
before turn eight or nine at the earliest, due to the high mana cost. At that point most
games will have ended if one plays with an aggressive deck, or against one. Generally it is
a bad idea for a deck to try to do two things half-ways instead of committing fully to one
strategy.

6.1.2 Experiment 2
Overall, this deck seems stronger than the one created in Experiment 1. It has fewer colors,
and seems more balanced. It only has three cards which the expert rated as a bad inclusion.

46

6.1 Results

That means the deck, with the exception of those three cards, could potentially have been
created by a novice player. This is still weaker than the original ambition, but is quite a bit
better than the result from Experiment 1.

Colors:

This deck features primarily three colors. This is a great improvement over the deck cre-
ated during Experiment 1. As in Experiment 1, the expert suggested that a deck featuring
only two colors, black and blue (Appendix D.2), would be optimal, given the underlying
card pool. Both of these colors are represented in the generated deck, which is good. Re-
moving white from the generated deck would make it more consistent and focused. The
expert noted that having three colors could be justified, if one of them was less predomi-
nant than the others, and only to include very powerful cards. That is not the case for this
deck however, which has cheap creatures in all three colors.

Synergy:

The deck has some good synergies, while also having some cards with poor synergy. An
example of good synergy is “Renegade Map”, which helps the deck being more consistent
with its three colors by finding basic lands from the deck, while also helping trigger the
mechanic “revolt” which some of the other cards feature. An example of bad synergy is
“Implement of Malice”, which requires several cards with a certain mechanic to become
useful. The deck created by the expert contains five of those cards, which is why the card
is marked as a suboptimal inclusion in the solution deck, while at the same time is included
in the deck created by the expert.

Mana curve:

The curve is centered around cards costing three mana, while also having some good
expensive cards. Some of the more expensive cards also has a mechanic which makes
them cheaper to cast. The curve could benefit from being smoothed out a bit, like in the
deck created by the expert, but it is decent.

Lands:

This deck has 18 land cards. Considering that the deck has three colors, and some late
game cards like “Herald of the Anguish”, this is a decent number, although 17 would be
more fitting. There are two mountains among the land cards, and they should obviously
be replaced for the same reasons as in Experiment 1. Trading them for another white and
blue colored land would be ideal.

Focus:

This deck also lacks focus, and appears to be trying to do multiple things. As in Experi-
ment 1, this deck contains cards that are best suited for aggressive decks, while also having
late game cards, which is suboptimal in a aggro deck. An example is the card “Dukhara

47

Chapter 6. Discussion

Scavenger”, which is only a suitable inclusion if there are enough high power cards in the
deck.

6.1.3 General analysis

Every deck output by the solution, during both testing and experiments, contained cards
of at least three different colors. The expert deemed this suboptimal in both experiments.
Removing a color from a deck might require adding cards that are suboptimal short term.
As this would be unfavorable for the algorithm, it got stuck in local maxima. This is a
common problem with genetic algorithms (Laumanns et al., 2002). To ensure that the
generated decks only contained two colors the initial generation could have been seeded
with predetermined land cards. However, this would partly defeat the purpose of this
experiment, since figuring out what colors to compose the deck of is an important aspect
of deckbuilding.

There also seem to be less synergy in the generated decks, than in the expert created
decks. This can be explained by the way mutation is implemented in our solution. Muta-
tion swaps one card for another. This means in order for an individual to gain two cards
with good synergy together, it must either mutate favorably twice, or be mated with an
individual containing a match. Cards with strong synergy can often be poor on their own.
This is a problem in a solution like this, where a bad card will affect the result of the fitness
function, and a lower score means that there is a smaller likelihood that the individual will
live on to the next generation.

The difference in the strength of the decks produced in Experiment 1 and 2 is inter-
esting. Experiment 1 produced a deck which could not have been mistaken for even a
mediocre player’s deck. It has a bad curve, too many colors, bad land distribution between
the colors and a general inconsistency. Experiment 2 yielded a more promising deck,
which, with exception of some cards, could have been created by a player. It is hard to tell
what the cause of this improvement is. The only difference in parameters for the algorithm
are 0,5 in mutation rate instead of 0,7 and a higher generation limit. This experiment was
set to run for 350 generations instead of 200. It only ran around 240 generations before it
met a termination criteria. However, the improved result could also be due to running the
experiment on another sealed pool, or just pure chance.

In one regard, the solution performed very well. It always converges towards the cor-
rect number of lands overall. The solution yielded the optimal or near optimal number of
lands in every experiment and test we ran. Even though the decks did not always have the
correct color distribution of lands, there were never lands without at least one card of that
color. This means that the Forge AI works to some extent.

6.2 The proposed solution

Genetic algorithms can be subject to premature convergence (Garcı́a-Martı́nez et al., 2012),
and this seems to be the case in our work. While the fitness value across the population is
shown to be increasing with time the growth decelerates early and none of the generated
decks reached more than 60% win rate against the opponent decks, even when running for

48

6.3 Conclusion

hundreds of generations. We suspect that the population quickly developed into a mono-
culture due to the small population size (10) and the nature of the implemented selection
method. The tournament selection always ends up killing off the two weakest individu-
als (for tournsize = 3) and replacing them with copies of more fit individuals to keep the
population size constant.

In the proposed solution a third party AI is used for evaluating the fitness of the gen-
erated individuals. The assumption was that the AI would perform close enough to how
humans play MTG, and that this would encourage the evolution of decks that would con-
form to the patterns present in human created decks. As seen from the test performed with
the expertly created deck in Experiment 2, this does not hold true for all decks.

The difference in win rate between the generated deck and the expert deck is nearly
15 percent points. There is no reason to believe that the expert deck should perform worse
than the generated deck. It is better with regard to consistency, curve, land composition
and overall focus than the deck generated by the solution. This has multiple implications.
The first implication is that the Forge AI does not accurately represent a real player. If it
did, the expert deck should have performed better than the generated deck. This means
that Forge favors some types of decks over others. If Forge is unable to map a good deck
to good performance, then the result is never going to live up to real player’s standard.
However, the algorithm is still able to create decks that perform well in Forge, and both
decks generated in the experiments had an average win rate above 50%. This is a decent
win rate considering that the opponent decks were all built by seasoned players. This
suggests that the algorithm itself works, even though Forge is a suboptimal substitute for
a player. Using a better MTG AI would most likely yield better decks as a result. One
possible explanation for the weak performance by the expert deck could be that Forge doe
not exploit the synergies in the deck to the fullest.

The time aspect of running an experiment severely hampers the usability. The current
solution has a runtime of over 48 hours when run on 11 nodes. The majority of time is
spent on the fitness evaluation, relying on simulating several games for each iteration. At
its current state, this implementation would be unsuitable for any real time purpose.

6.3 Conclusion

To conclude the thesis, we need to look at the goals we set when we started on the thesis.
We need to compare these to the results we have discussed in the previous sections, and
conclude whether we have achieved our goals.

G1 Survey the existing implementations for programmatic deckbuilding by con-
ducting a systematic literature review.

We achieved this goal when we performed the Systematic Literature Review detailed
in Chapter 3. We were unable to find any research on implementation of deckbuilding
directly related to Magic: The Gathering. We did however find other research that helped
us come to the conclusion that we should use genetic algorithms to implement this. Due
to the nature of an SLR, we can determine that the articles we found are of high standard,
which in turn strengthens the findings of this thesis.

49

Chapter 6. Discussion

G2 Propose and implement a system for programmatic deckbuilding using an ap-
proach based on the result from the literature review

During the SLR, the majority of articles we retrieved was related to genetic algorithms
in one way or another. This led us to implement a genetic algorithm. We used an external
AI in the implementation for the fitness function. Any decisions regarding the implemen-
tation is described in Chapter 4.

G3 The decks produced by the system must be of a high quality, when compared to
decks created by seasoned players.

We have showed that it is possible to create decks using genetic algorithms. The decks
performed well under the AI we used, and had an average win rate of over 50% versus six
widely different opponents. However, the decks we produced lacked many of the defining
qualities of the decks created by the expert. We believe this can be improved, and suggest
some further work in Section 7.2.

50

Chapter 7
Summary and further work

Befitting the last chapter of our thesis, we here briefly summarize the process of our work.
We also discuss points that would benefit from further research.

7.1 Summary

During this project we have explored the problem of deckbuilding in the popular trading
card game Magic: The Gathering. We have shown that this problem can be interpreted
as a combinatorial optimization problem, and that it is an interesting testbed for applying
different strategies for solving such problems.

We have conducted a systematic literature review, researching the various approaches
for solving combinatorial optimization problems. During this review, we have catalogued
different methods, synthesized the knowledge from the studies found and analyzed the
results in the context of our research questions.

We have proposed and designed a system that uses a genetic algorithm to create
playable decks from a given card pool that simulates the constrictions under which the
sealed format is played.

We have implemented our proposed solution, using the DEAP and SCOOP frame-
works for creating a distributed genetic algorithm that uses simulated matches played with
the open source MTG AI Forge to evaluate the fitness of the generated individuals.

In order to test our proposed and implemented design, two experiments have been
carried out, and the results analyzed. These have been presented, along with a discussion
of the project as a whole.

7.2 Further work

As often is the case with time constrained projects, there is always more that could have
been done. We here present some of the points that could have been expanded upon.

51

Chapter 7. Summary and further work

More testing

As stated in Chapter 5, we were not able to perform all the tests and experiments that we
wanted. Given more time and resources, we would have performed more tests, in order to
identify which combinations of parameters that yielded the best results, as well as better
gauging the quality of the decks produced by our implementation.

Different genetic operators

In our solution we have implemented a simple one point mutation operator, and a linear
crossover operator. It would be prudent to explore if and how other types of operators,
such as one or two point crossover functions and different mutation types, would influence
the quality of the output from the algorithm.

The effect and importance of crossover in genetic algorithms is also a subject of re-
search (Park and Carter, 1995; Meinl and Berthold, 2009). An implementation fully reliant
on only the explorative nature of mutation could easily be implemented and tested to de-
termine the importance of crossover in our solution.

Adaptive parameters

The various parameters that influence the implemented algorithm are all static, in that
they do not change during the generational process. Genetic algorithms with adaptive
parameters are shown to outperform traditional algorithms (Srinivas and Patnaik, 1994;
Garcı́a-Martı́nez et al., 2012). Implementing various strategies for self adaptive parameters
to explore how they could affect the results would be a logical next step.

Pareto optimization with a multi-objective fitness function

As of now, the fitness score is aggregated from the win statistics against different oppo-
nents. With the goal of producing decks that perform well against a diverse selection of
opponents, it is not hard to see that this approach can be flawed. As an exaggerated exam-
ple one can imagine a scenario where a candidate deck defeats all opponents consistently
apart from one archetype, which it loses to every time. The overall win rate is still high,
but this would not be considered a well rounded deck.

An alternative to our approach would be for the fitness function to return the individual
win statistics for each opponent, and use a different selection algorithm. DEAP features
the NSGA-II algorithm from (Deb et al., 2002) which attempts to create pareto optimal
solutions with genetic evolution. Pareto optimal solutions are optimal in the sense that
there are no other solution that are stronger when all objectives are considered (Zitzler and
Thiele, 1999). This would help optimizing the decks more evenly for all opponents.

Another approach could be to optimize for both win percentage against an AI opponent
as well as different factors, such as the mana curve and color distribution. As we have seen
in our experiments, balancing these factors seems to be one of the problems that limit the
strength of the generated decks.

52

7.2 Further work

Different AI engines in the fitness evaluation

Using an AI to evaluate the fitness of the individuals comes with a limitation, as the algo-
rithm will unavoidably optimize for the different strengths and weaknesses of the chosen
AI. Depending on the chosen AI, this may or may not accurately reflect how humans play
the game. To mitigate this, one could include multiple AIs in the fitness calculation, and
either calculate the fitness as an aggregate of this, or implement an multi-objective fitness
rating optimizing for all AIs.

Population diversity measure

Currently, we do not measure the diversity in our populations. As discussed, it is a real pos-
sibility that the population quicly develops into a monoculture and that the search space is
not thoroughly explored (Laumanns et al., 2002). If we could detect this, countermeasures
could be implemented in order to improve the generated results.

Present multiple decks as solutions

Our solution only outputs one deck for every run. The solution could potentially present
multiple of the individuals from the last generation as output. It would be possible to
write a function to recognize what colors each individual is. This could be used to present
the strongest deck from each color combination created during the run. Presenting these
would help to create a more diverse results. It would also give a higher chance at giving
the player a deck he likes to play with, since he could choose a deck that better fits his
style.

Different card sets

The mechanics in Magic: The Gathering vary with different sets. As stated, we have
limited our experiments to card pools drawn from the Kaladesh and Aether Revolt sets. In
order to establish the validity of our proposed solution as a general solution for building
decks in the sealed format of Magic: The Gathering, tests with different card sets should
be performed.

Other tournament formats

For this work we limited our scope to the MTG format Sealed, as this would greatly limit
the search space, as well as putting interesting constraints on the production of decks.
However, it would indeed be interesting to see how our proposed solution would perform
within a search space an order of magnitude larger. This could also lead to the discovery of
previously unseen combinations of cards spanning multiple sets that might be very potent.

Generation of specific deck types

The algorithm proposed in this paper might be biased towards specific types of decks due
to the available cards in the supplied card pool, or the Forge AI favoring one type of deck
more than the others. Unlike the implementation described in (Garcı́a-Sánchez et al., 2016)

53

Chapter 7. Summary and further work

however, it does not steer the generated decks towards a specified type. Bootstrapping the
first generations with land cards of a specific color, or cards that lean towards a given deck
type might yield stronger decks.

Code refactoring and dissemination

The resulting source code from our project has been built in several stages, with parts
added as they were required and conceived. As a result, the code repository has a lot of
potential for a systematic overhaul in order to raise the standard of the code. This should
be prioritized, as we would very much like to present our code and findings to the overlap
among the MTG community and those with an interest in computer science. A codebase
that is easier to understand, maintain and use will probably be better received.

Other approaches for programmatic deck building

Only one technique for building decks in Magic: The Gathering has been tested in this
work. Genetic algorithms have been around for a long time (Barricelli, 1957), but there are
many novel and more recent approaches for combinatorial optimization that seem promis-
ing (Osaba et al., 2016; Garcı́a-Martı́nez et al., 2012; Kubalı́k, 2011). It is the researchers’
opinion that exploring different methods for solving this problem is interesting, both from
an academic perspective, as well as from one with interest in trading card games, and that
it is well worth pursuing.

54

Bibliography

Barricelli, N. A. (1957). Symbiogenetic evolution processes realized by artificial methods.
Methodos, 9(35-36):143–182.

Beheshti, Z., Shamsuddin, S. M., and Yuhaniz, S. S. (2013). Binary accelerated parti-
cle swarm algorithm (BAPSA) for discrete optimization problems. Journal of Global
optimization, 57(2):549.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
algorithms, pages 1086–1087. MIT press Cambridge.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation,
6(2):182–197.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and Gagné, C. (2012).
DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research,
13:2171–2175.

Garcı́a-Martı́nez, C., Lozano, M., and Rodrı́guez-Dı́az, F. J. (2012). A simulated anneal-
ing method based on a specialised evolutionary algorithm. Applied Soft Computing,
12(2):573–588.

Garcı́a-Sánchez, P., Tonda, A., Squillero, G., Mora, A., and Merelo, J. J. (2016). Evolu-
tionary deckbuilding in hearthstone. In Computational Intelligence and Games (CIG),
2016 IEEE Conference on, pages 1–8. IEEE.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning,
page 41. Addison-Wesley Professional.

Guinness World Records (2016). Most played trading card game.
http://www.guinnessworldrecords.com/world-records/
most-played-trading-card-game/. Accessed: 2016-09-28.

55

http://www.guinnessworldrecords.com/world-records/most-played-trading-card-game/
http://www.guinnessworldrecords.com/world-records/most-played-trading-card-game/

Hold-Geoffroy, Y., Gagnon, O., and Parizeau, M. (2014). Once you scoop, no need to fork.
In Proceedings of the 2014 Annual Conference on Extreme Science and Engineering
Discovery Environment, page 60. ACM.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature
reviews in software engineering.

Kofod-Petersen, A. (2014). How to do a structured literature review in computer science.
Document released as a guide to performing a Structured Literature Review at NTNU.
Retrieved December.

Kubalı́k, J. (2011). Evolutionary-based iterative local search algorithm for the shortest
common supersequence problem. In Proceedings of the 13th annual conference on
Genetic and evolutionary computation, pages 315–322. ACM.

Kubalik, J. and Faigl, J. (2006). Iterative Prototype Optimisation with Evolved Improve-
ment Steps, pages 154–165. Springer Berlin Heidelberg, Berlin, Heidelberg.

Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining convergence
and diversity in evolutionary multiobjective optimization. Evolutionary computation,
10(3):263–282.

Lillegraven, T. N. and Wolden, A. C. (2010). Design of a bayesian recommender system
for tourists presenting a solution to the cold-start user problem. Master’s thesis, NTNU,
Institutt for datateknikk og informasjonsvitenskap.

Meinl, T. and Berthold, M. R. (2009). Crossover operators for multiobjective k-subset
selection. In Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, pages 1809–1810. ACM.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1
edition.

Nahar, S., Sahni, S., and Shragowitz, E. (1986). Simulated annealing and combinatorial
optimization. In Proceedings of the 23rd ACM/IEEE design automation conference,
pages 293–299. IEEE Press.

Osaba, E., Carballedo, R., López-Garcı́a, P., and Diaz, F. (2016). Comparison between
golden ball meta-heuristic, evolutionary simulated annealing and tabu search for the
traveling salesman problem. In Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion, pages 1469–1470. ACM.

Park, K. and Carter, B. (1995). On the effectiveness of genetic search in combinatorial
optimization. In Proceedings of the 1995 ACM symposium on Applied computing, pages
329–336. ACM.

Rainville, D., Gagné, C., Teytaud, O., Laurendeau, D., et al. (2009). Optimizing low-
discrepancy sequences with an evolutionary algorithm. In Proceedings of the 11th An-
nual conference on Genetic and evolutionary computation, pages 1491–1498. ACM.

56

Srinivas, M. and Patnaik, L. M. (1994). Adaptive probabilities of crossover and mutation in
genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 24(4):656–
667.

Wizards of the Coast (2016). Gatherer. http://gatherer.wizards.com/. Gath-
erer is the Magic Card Database. Accessed: 2016-10-14.

Wizards of the coast (2016). Magic: The gathering tournament rules.
http://www.wizards.com/contentresources/wizards/wpn/main/
documents/magic_the_gathering_tournament_rules_pdf1.pdf.
This is the rule set for tournament play. Accessed: 2016-10-26.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative
case study and the strength pareto approach. IEEE transactions on Evolutionary Com-
putation, 3(4):257–271.

57

http://gatherer.wizards.com/
http://www.wizards.com/contentresources/wizards/wpn/main/documents/magic_the_gathering_tournament_rules_pdf1.pdf
http://www.wizards.com/contentresources/wizards/wpn/main/documents/magic_the_gathering_tournament_rules_pdf1.pdf

58

Appendix A
SLR Protocol

This is the protocol for the performed systematic literature review. The protocol was used
as a guidance document during the SLR phase of the thesis work to ensure that the review
was conducted in a structured and reproducible way. It is based on the guidelines proposed
in ”Guidelines for performing Systematic Literature Reviews in Software Engineering”
(Kitchenham and Charters, 2007). We have continuously reviewed this document during
the process, and it has such been subject to change.

Background
As a part of our master thesis at NTNU (Norwegian University of Science and Technol-
ogy) we are to conduct a Systematic Literature Review. This systematic literature review
is being performed in the period of autumn 2016 and spring 2017. A Systematic Litera-
ture Review (SLR) is a method to gather and process available research on a given topic
or set of research questions. This includes identifying, evaluating and collecting primary
studies, assessing the quality of these studies and extracting and synthesizing relevant data.

The topic for our master’s thesis is deckbuilding in the Magic: The Gathering sealed for-
mat. We want to create a system that uses AI to build these decks. The main objective for
this SLR is to learn more about the topic of Artificial Intelligence methods in card games
like Magic: The Gathering. The reason we use an SLR is because our results and findings
need to be a of a high quality, and because our method needs to be reproducible.

Magic: The Gathering is a card game where you build decks, and use them to battle
against opponents. There are several different card types, and they all have different roles
in a deck. You need land cards to produce mana in order to cast spells. These spells can do
different things, like summoning a creature, or lay down enchantments. In order to have a
good deck you need a good mixture of all of these card types.

The main challenges with building decks is choosing cards that compliment each other,

59

balancing early and late game cards, building a mana base that supports the chosen cards
well and having the overall deck fit into a specialized playstyle.

Research Questions

RQ1 What is state of the art on deck-building systems in Magic: The Gathering?

RQ1.1 If no current system exists, how can such a system be created?

RQ1.2 If such systems exists, in what way is it possible to improve them?

RQ2 What is the strength of the evidence in support of the different solutions?

RQ3 How can our findings be applied when creating a system for programmatic deck-
building?

Search Strategy

During the search process, we will go through multiple digital libraries in order to attain
the knowledge we seek. We will do this in a structured and controlled manner. Based
on the recommendations in the supervisor’s paper (Kofod-Petersen, 2014) on conducting
SLRs in computer science, we have selected the following databases and search engines.

Table A.1: List of search engines and databases.

Name of database /search engine Assignee
ACM digital library Knut
IEEE Xplore Knut
ISI web of knowledge Knut
ScienceDirect Knut
CiteSeerX Sverre
SpringerLink Sverre
Wiley Inter Science Sverre
Oria Sverre
Google Scholar Sverre

To shorten the list of papers needed to process, we will follow these simple guidelines
when adding articles to the list of potential studies:

• If we encounter multiple releases of the same article, we will keep the newest one,
on the assumption that it is the most up to date.

• In cases where an author has written multiple articles on the same subject, we will
use the most comprehensive one.

60

Table A.2 lists the terms we will use when searching for articles. They are grouped up
to ensure high prescision and recall. In other words, to ensure that we minimize irrelevant
results, while hopefully getting all the relevant articles. This is the revised search matrix.
This is elaborated further on in section 3.2.3 in the thesis.

Table A.2: Matrix with search terms used during the search step.

Group 1 Combinatorial optimization COP
Group 2 Optimal subset Subset selection
Group 3 Artificial intelligence AI Machine Learning
Group 4 Evolutionary algortithm Neural network Simulated annealing

In our search phase we will use the following search string, made by combining the terms
in our search matrix using boolean operators.

(“Combinatorial optimization” OR “COP”) AND (“Optimal subset” OR “subset selec-
tion”) AND (“artificial intelligence” OR “AI” OR “Machine Learning”) AND (“evolu-
tionary algorithm” OR “neural network” OR “Simulated annealing”)

If this should not return any usable results we will exclude one of the groups of terms
and repeat the search, resulting in four different searches. This is illustrated in figure A.1,
where green represents the results of the full search string above and blue represents the
result of any search string where you exclude one group of terms.

Group1

Group2

Group3

Group4

Figure A.1: Venn diagram showing the targeted studies. Green is the primary target, blue is only
targeted if needed.

61

Study Selection Process
We have chosen two different sets of criteria for us to use when reading and evaluating the
collected studies. The first set is to ensure that the studies are of interest and relevance.
These are called the inclusion criteria. The second set is the quality criteria, which is
designed to ensure a high academic quality in the studies. A study can be rated either one
point, half a point or zero points on the criteria.

IC1 The study’s main concern is Combinatorial Optimization Problems.

IC2 The study is a primary study presenting empirical results.

IC1 and IC2 are the most important inclusion criteria, and will therefor need to be at
least partly fulfilled. IC3 and IC4 are less important, and one of these can be unfulfilled.

IC3 The study focuses on finding an optimal subset of a given set.

IC4 The study proposes a general solution.

In addition a full score on the two first quality criteria are mandatory for inclusion.

QC1 Is there is a clear statement of the aim of the research?

QC2 Is the study put into context of other studies and research?

Quality Assessment
To assess the quality of the research related to our problem we will score each collected
study on ten different questions. This will be done by both researchers in unison after
thoroughly reading all articles.

QC1 Is there is a clear statement of the aim of the research?

QC2 Is the study put into context of other studies and research?

QC3 Are system or algorithmic design decisions justified?

QC4 Is the test data set reproducible?

QC5 Is the study algorithm reproducible?

QC6 Is the experimental procedure thoroughly explained and reproducible?

QC7 Is it clearly stated in the study which other algorithms the study’s algorithm(s) have
been compared with?

QC8 Are the performance metrics used in the study explained and justified?

QC9 Are the test results thoroughly analysed?

QC10 Does the test evidence support the findings presented?

62

Data extraction
During the data extraction, we will collect this information from each paper. The extracted
data will be stored in a spreadsheet document for later usage.

• Author

• Title

• Year of publication

• Type of article

• Aims

• Type of COP

• Algorithm type

• Experimental design

• Performance metric used

• Conclusion

Data Analysis
After the data collection step we will analyze our findings with respect to our research
questions. The basis for this discussion will be the collected data and the quality assess-
ment. This process will be undertaken by both researchers together.

Dissemination
The results from this review will be used in our master’s thesis, where we will propose and
implement a solution for building decks in Magic: The Gathering. A chapter in our thesis
will detail the process of the literature review, our findings, our analysis and a summary.

63

64

Appendix B
Opponent Decks

These were the decks used in the fitness evaluation.

B.1 GB

1x Aid from the Cowl
1x Caught in the Brights
1x Conviction
1x Cowl Prowler
1x Daring Demolition
1x Dhund Operative
8x Forest
1x Fretwork Colony
1x Gifted Aetherborn
1x Irontread Crusher
1x Lawless Broker
1x Lifecraft Cavalry
1x Maulfist Revolutionary

1x Narnam Renegade
1x Night Market Aeronaut
1x Peema Outrider
2x Plains
1x Prophetic Prism
1x Renegade Rallier
1x Revoke Privileges
1x Rishkar’s Expertise
1x Scrapheap Scrounger
7x Swamp
1x Thopter Arrest
2x Unbridled Growth

B.2 UWg

1x Aether Inspector
1x Aether Swooper
2x Aethertide Whale
1x Airdrop Aeronauts
1x Bastion Mastodon
1x Caught in the Brights
1x Chief of the Foundry
1x Consulate Skygate

1x Dawnfeather Eagle
3x Forest
1x Fumigate
1x Hinterland Drake
7x Island
1x Leave in the Dust
1x Master Trinketeer
7x Plains

65

1x Renegade Map
1x Restoration Specialist
1x Revoke Privileges
1x Rishkar, Peema Renegade
1x Rogue Refiner

1x Thopter Arrest

1x Treasure Keeper

1x Whirlermaker

1x Wind-Kin Raiders

B.3 RG

1x Attune with Aether
1x Blossoming Defense
1x Brazen Scourge
1x Chandra’s Pyrohelix
1x Cultivator of Blades
1x Elegant Edgecrafters
1x Fairgrounds Trumpeter
1x Fateful Showdown
1x Fleetwheel Cruiser
8x Forest
1x Highspire Artisan
8x Mountain

1x Oviya Pashiri, Sage Lifecrafter
1x Renegade Freighter
1x Shock
1x Sky Skiff
2x Spireside Infiltrator
1x Thriving Rhino
2x Voltaic Brawler
1x Wayward Giant
2x Welding Sparks
1x Whirlermaker
1x Wild Wanderer

B.4 GBw

1x Appetite for the Unnatural
1x Battle at the Bridge
1x Caught in the Brights
1x Countless Gears Renegade
1x Daring Demolition
1x Druid of the Cowl
1x Elegant Edgecrafters
1x Fatal Push
7x Forest
1x Gifted Aetherborn
1x Lifecraft Cavalry
1x Maulfist Squad
1x Nissa, Vital Force

1x Pacification Array
4x Plains
1x Prakhata Pillar-Bug
1x Prophetic Prism
1x Revoke Privileges
1x Scrounging Bandar
1x Silkweaver Elite
6x Swamp
1x Thopter Arrest
1x Thriving Rhino
1x Tidy Conclusion
1x Unbridled Growth
1x Wispweaver Angel

B.5 UR

2x Aether Meltdown
1x Aethersquall Ancient
2x Bastion Mastodon
2x Chandra’s Pyrohelix

1x Gearseeker Serpent
2x Glassblower’s Puzzleknot
1x Glimmer of Genius
1x Hightide Hermit

66

1x Insidious Will
10x Island
1x Long-Finned Skywhale
1x Malfunction
2x Minister of Inquiries
7x Mountain

1x Padeem, Consul of Innovation
1x Skyship Stalker
1x Tezzeret’s Ambition
1x Thriving Turtle
1x Weldfast Monitor
1x Welding Sparks

B.6 RW

1x Bomat Bazaar Barge
2x Brazen Scourge
1x Chief of the Foundry
1x Combustible Gearhulk
1x Consul’s Shieldguard
1x Fleetwheel Cruiser
1x Fragmentize
3x Gearshift Ace
1x Glint-Sleeve Artisan
1x Inventor’s Apprentice
9x Mountain

8x Plains
1x Propeller Pioneer
1x Renegade Freighter
1x Revoke Privileges
1x Scrapheap Scrounger
1x Sky Skiff
1x Skyship Stalker
1x Thriving Grubs
1x Veteran Motorist
1x Visionary Augmenter
1x Weldfast Monitor

67

68

Appendix C
Experiment Sealed Pools

C.1 Experiment 1

1x Accomplished Automaton
1x Aether Poisoner
1x Aether Swooper
1x Aether Theorist
1x Aethersphere Harvester
1x Aethertorch Renegade
1x Alley Evasion
2x Audacious Infiltrator
1x Augmenting Automaton
1x Bastion Inventor
1x Caught in the Brights
2x Chandra’s Revolution
1x Chandra, Torch of Defiance
1x Commencement of Festivities
1x Consulate Turret
1x Countless Gears Renegade
1x Cruel Finality
1x Curio Vendor
1x Daredevil Dragster
1x Daring Demolition
1x Dawnfeather Eagle
1x Deft Dismissal
2x Dispersal Technician
1x Druid of the Cowl
1x Efficient Construction
1x Elegant Edgecrafters

1x Embraal Gear-Smasher
1x Enraged Giant
1x Failed Inspection
2x Fen Hauler
2x Filigree Crawler
1x Filigree Familiar
1x Fortuitous Find
1x Foundry Assembler
1x Freejam Regent
1x Glint-Sleeve Artisan
1x Gonti’s Machinations
1x Hidden Stockpile
1x Highspire Artisan
1x Hijack
1x Hinterland Drake
1x Implement of Combustion
2x Implement of Examination
1x Indomitable Creativity
1x Invigorated Rampage
1x Kari Zev’s Expertise
1x Kari Zev, Skyship Raider
1x Lost Legacy
1x Maulfist Squad
2x Negate
1x Night Market Lookout
1x Ovalchase Daredevil

69

1x Reckless Fireweaver
1x Renegade Freighter
1x Renegade Rallier
2x Renegade’s Getaway
1x Reservoir Walker
1x Resourceful Return
1x Revoke Privileges
1x Scrapper Champion
1x Sequestered Stash
1x Shock
1x Silkweaver Elite
1x Take into Custody

1x Thriving Rats
1x Thriving Rhino
1x Unlicensed Disintegration
1x Vedalken Blademaster
1x Vengeful Rebel
2x Verdant Automaton
1x Weldfast Wingsmith
1x Wily Bandar
2x Wind-Kin Raiders
1x Workshop Assistant
1x Wrangle

C.2 Experiment 2

1x Aerial Modification
1x Aether Poisoner
1x Aether Theorist
1x AEther Tradewinds
1x Aethertorch Renegade
2x Alley Strangler
2x Audacious Infiltrator
1x Aviary Mechanic
1x Barricade Breaker
1x Bomat Bazaar Barge
1x Call for Unity
2x Caught in the Brights
1x Chandra’s Revolution
1x Cogwork Assembler
1x Consulate Crackdown
1x Consulate Turret
1x Countless Gears Renegade
1x Daring Demolition
2x Dawnfeather Eagle
1x Defiant Salvager
1x Dispersal Technician
1x Dukhara Scavenger
1x Eddytrail Hawk
1x Electrostatic Pummeler
1x Embraal Gear-Smasher
1x Engineered Might
1x Fen Hauler
1x Filigree Familiar
1x Fireforger’s Puzzleknot

1x Foundry Screecher
1x Fourth Bridge Prowler
1x Frontline Rebel
1x Ghirapur Osprey
1x Herald of Anguish
1x Highspire Artisan
1x Hinterland Drake
1x Hungry Flames
1x Impeccable Timing
1x Implement of Ferocity
1x Implement of Malice
1x Inventor’s Goggles
1x Invigorated Rampage
2x Irontread Crusher
1x Kujar Seedsculptor
1x Live Fast
1x Make Obsolete
1x Mobile Garrison
1x Narnam Renegade
3x Negate
1x Night Market Aeronaut
1x Nimble Innovator
1x Ornamental Courage
1x Peema Aether-Seer
1x Planar Bridge
1x Prey Upon
1x Prophetic Prism
1x Renegade Map
1x Revolutionary Rebuff

70

1x Rishkar’s Expertise
1x Saheeli’s Artistry
1x Salivating Gremlins
1x Salvage Scuttler
1x Shipwreck Moray
2x Silkweaver Elite
1x Skywhaler’s Shot
1x Spire Patrol
1x Take into Custody
1x Unbridled Growth

1x Universal Solvent
1x Untethered Express
1x Vedalken Blademaster
1x Watchful Automaton
1x Welder Automaton
1x Weldfast Monitor
1x Welding Sparks
1x Wind-Kin Raiders
1x Winding Constrictor

71

72

Appendix D
Expert decks

These are the decks created by the expert from the two sealed pools used for Experiment
1 and Experiment 2.

D.1 Experiment 1

1x Accomplished Automaton
1x Aether Poisoner
1x Aethersphere Harvester
1x Aethertorch Renegade
1x Augmenting Automaton
2x Chandra’s Revolution
1x Chandra, Torch of Defiance
1x Daring Demolition
1x Enraged Giant
1x Filigree Familiar
1x Freejam Regent
1x Implement of Combustion

1x Kari Zev, Skyship Raider
1x Maulfist Squad
9x Mountain
1x Ovalchase Daredevil
1x Reckless Fireweaver
1x Renegade Freighter
1x Scrapper Champion
1x Shock
8x Swamp
1x Thriving Rats
1x Unlicensed Disintegration
1x Vengeful Rebel

D.2 Experiment 2

1x Aether Poisoner
1x Aether Theorist
1x AEther Tradewinds
1x Barricade Breaker
1x Bomat Bazaar Barge
1x Cogwork Assembler

1x Daring Demolition
1x Fen Hauler
1x Filigree Familiar
1x Herald of Anguish
1x Hinterland Drake
1x Implement of Malice

73

1x Inventor’s Goggles
8x Island
1x Live Fast
1x Make Obsolete
1x Negate
1x Nimble Innovator
1x Prophetic Prism

1x Renegade Map
1x Saheeli’s Artistry
8x Swamp
1x Universal Solvent
1x Untethered Express
1x Weldfast Monitor
1x Wind-Kin Raiders

74

	Abstract
	Norwegian abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Motivation
	Goals
	Contributions
	Structure

	Background
	Summary of gameplay
	 Competitive MTG
	Constructed
	Limited
	Automatic deckbuilding in competitive play

	Building a better deck builder
	Problem generalization
	 Problem Analysis
	 A combinatorial optimization problem

	Systematic Literature Review
	Introduction
	Motivation

	The review process
	ST1 - Defining the research questions
	ST2 - The systematic literature review protocol
	ST3 - Literature search
	ST4 - Filter on inclusion criteria
	ST5 - Filter on quality criteria
	ST6 - Data Collection
	ST7 - Quality assessment
	ST8 - Analysis
	ST9 - Dissemination

	Analysis
	RQ1: What is state of the art on deck-building systems in Magic: The Gathering?
	RQ2: What is the strength of the evidence in support of the different solutions?
	RQ3: How can our findings be applied when creating a system for programmatic deckbuilding?
	Conclusion

	Challenges met
	Summary

	Designing a deckbuilder
	Proposal
	Requirements
	Genetic Algorithms
	Fitness evaluation
	Selection
	Mutation
	Crossover

	Design and Implementation
	Genetic algorithm
	Card pool
	Chromosome representation
	Crossover
	Mutation
	Fitness Function
	Selection
	Termination strategy
	Logging and visualization

	Experiments
	Introduction
	Testing Strategy
	Planned tests
	Deviation from the plan

	Experiments
	Experiment 1
	Experiment 2

	Discussion
	Results
	Experiment 1
	Experiment 2
	General analysis

	The proposed solution
	Conclusion

	Summary and further work
	Summary
	Further work

	Bibliography
	SLR Protocol
	Opponent Decks
	GB
	UWg
	RG
	GBw
	UR
	RW

	Experiment Sealed Pools
	Experiment 1
	Experiment 2

	Expert decks
	Experiment 1
	Experiment 2

