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Abstract

This thesis presents some of the main findings from twenty-five research arti-
cles. These papers may roughly be categorized into three fields: i) Proximity
structures of superconductors and ferromagnets, ii) Interplay between ferro-
magnetism, noncentrosymmetricity, and superconductivity in bulk materials,
and iii) Superconducting proximity-effect in graphene. In all of these cases,
emphasis is placed on the thermodynamic properties and the transport prop-
erties of the systems. We address in particular how the spin-polarization of
ferromagnetic elements may combine with the dissipationless flow of electric
current offered by superconducting elements, and also how useful information
about the superconducting state is revealed through characteristic fingerprints
in the thermodynamic and transport properties of the systems under consider-
ation.
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Chapter 1

Introduction

This thesis is mainly devoted to a study of superconducting and ferromagnetic
order, both individually and with respect to how they influence each other.
Traditionally, superconductivity and ferromagnetism have been considered as
antagonists. In the conventional Bardeen-Cooper-Schrieffer (BCS) paradigm,
the main constituent of the superconducting condensate is a pair of electrons
bound together by an attractive potential, known as a Cooper pair. In the orig-
inal BCS-theory [1], the electrons comprising the Cooper pair have opposite
spin and momenta, thus residing in a spinless singlet state1. In a ferromagnet,
on the other hand, the Coulumb repulsion and the Pauli principle conspire to
yield an effective interaction between the spins of electrons, which under ap-
propriate circumstances leads to a ferromagnetic state. In this ordered state,
the majority of electrons have spins pointing in one direction of space while the
minority of electrons have spins pointing in the opposite direction, resulting in a
net magnetization of the sample. So when considering the spinless structure of
the Cooper pair in BCS theory and the fact that superconductors tend to expel
all magnetic fields inside of them2, it is little wonder that superconducting and
ferromagnetic order have been considered as incompatible orders over the years.

However, the simple picture sketched above is by no means complete and should
be supplemented with important ingredients. For instance, there is no funda-
mental symmetry restriction which demands that the Cooper pair should exist
in a spinless singlet state. In fact, so-called spin-triplet pairing is fully consis-
tent with fermion statistics, since it is the total wavefunction of the Cooper pair
which must be antisymmetric under an exchange of particle coordinates. Once
we allow the Cooper pair to consist of two electrons with spins pointing in the
same direction, the idea of combining superconductivity and ferromagnetism
immediately becomes more plausible. Spin-triplet superconductors are, how-
ever, still considered as rarities. In fact, there exists only a handful of materials
where the experimental data point strongly towards a spin-triplet state. Among

1The spin-singlet symmetry prescribes that the spin-part of a two-electron wavefunction
should be antisymmetric under an exchange of the spin-coordinates for the electrons, while a
spin-triplet wavefunction should be symmetric under the same exchange.

2There are exceptions to this, e.g. in the vortex state of a superconductor or in a thin-film
geometry where the Meissner effect is suppressed.
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2 Chapter 1. Introduction

these materials, one finds a series of Uranium-based heavy-fermion compounds
(UGe2 [2], URhGe [3], UCoGe [4], and UIr [5]). These all have in common a
highly exotic property, namely that they seem to undergo a phase transition
into a state which is both superconducting and ferromagnetic at very low tem-
peratures of order 1 K. The exact nature of this coexistent state is still under
intense investigation. Questions that remain to be answered are whether the
two orders coexist in a spatially homogeneous manner, if they entwine each
other in a helical pattern, or if they coexist in a spontaneous vortex phase, just
to mention a few. In any case, it is clear that the experimental unveiling of
materials where superconductivity and ferromagnetism coexist challenges our
very understanding of how superconductivity is formed and in particular its
interplay with ferromagnetic order.

A popular approach in the study of the interplay between superconducting and
ferromagnetic order have in recent years been the fabrication of artificially cre-
ated superconductor/ferromagnet (S/F) multilayers. In this scenario, the two
orders influence each other through electron tunneling via an interface sepa-
rating the two layers. By applying voltage differences and passing currents
through such heterostructures, one may systematically probe the influence of
the two orders on physically interesting properties such as the spin-polarization
of the current and the resistance of the junction. In fact, the properties of spin-
polarization and electrical resistance are of paramount importance in terms
of achieving actual technological applications. This is perfectly exemplified
through the giant magnetoresistance effect (GMR) [6, 7]. In short, this effect
causes the electrical resistance of a ferromagnet/normal/ferromagnet junction
to be altered considerably simply by switching the magnetization direction of
one ferromagnetic layer. The discoverers of this effect earned the 2007 Nobel
Prize, and the GMR technology is today used extensively in the read heads in
modern hard drives and magnetic sensors.

So what can the interplay between superconductivity and ferromagnetism offer
in terms of functional devices? One example is the F/S/F spin-valve, which con-
stitutes the superconducting analogue of the conventional spin-valve setup. In
this system, the critical temperature at which superconductivity is established
depends on the relative orientation of the magnetizations in the ferromagnetic
layers. As a practical consequence, it is thus possible to alternate between the
non-superconducting and the superconducting state by controlling the magne-
tization direction of one of the ferromagnetic layers: the whole system acts as a
spin-switch which turns on and off superconductivity. Another example is the
S/F/S junction, through which a dissipationless current may flow up to a criti-
cal magnitude of the current. By tailoring the parameters of the junction (such
as width, temperature, etc.), it is possible to obtain quantum ground states
which are degenerate. This is of interest because it effectively renders the junc-
tion a qubit. The distinction between a qubit and a classical bit, is that while
the classical bit is always exclusively in one of two possible states, the qubit
may be in both simultaneously in the sense that it has a finite probability to be
in either one of them at any time. The implementation of qubits in a quantum
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computer would speed up certain computational tasks greatly in comparison
with the classical bit [8], a fact suggesting that such S/F/S junctions could be
useful in this context.

Clearly, the aspect of a spin-polarization offered by ferromagnets combined
with the dissipationless flow of a current offered by superconductors, could of-
fer opportunities in terms of obtaining functional devices in low-temperature
nanotechnology. The situation becomes even more exciting when considering
the fact that these two properties may as of recently actually be combined
with electrons that behave relativistically in a condensed-matter system, namely
graphene [9, 10]. In undoped graphene, the low-energy electrons to a very good
approximation behave like massless Dirac fermions, which is distinct from the
behavior of electrons in conventional metallic systems. The fact that experi-
mentalists recently have succeeded in inducing superconducting correlations in
graphene opens up a vista of new physics.

The motivation for the topic of this thesis is thus twofold. From the fundamental
physics point of view, the study of how superconductivity and ferromagnetism
interact with each other under various circumstances simply offers a very rich
arena to explore. In terms of practical applications, the combination of spin-
polarization and a dissipationless flow of a current suggests exciting prospects
in low-temperature nanotechnology.

The publications included in this thesis fall into categories that may be divided
roughly into three main groups. In what follows, we will treat each of these
subcategories separately for clarity. In each case, some introductory concepts
of the relevant field are presented, followed by some of the main research results
obtained in the publications included in this thesis. The publications themselves
contain the full calculations and details, and are included at the end of the thesis.
In what follows, we will use units such that � = c = kB = 1.
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Chapter 2

Manifestations of the
proximity effect in hybrid
structures with
superconductors and
ferromagnets

In this chapter, we investigate various effects that may arise in F/S heterostruc-
tures and discuss the concept of odd-frequency pairing. Papers IV, V, VIII, XI,
XII, XV, XVI, XVIII, XX, XXII, XXIII, and XXIV fall into this subcategory.

Ferromagnetism and superconductivity appear to be two antagonistic long-
range orders at first glance, at least in the conventional picture. The usual
argument for this is that the Zeeman-energy associated with ferromagnetism is
unfavorable to a spin-singlet symmetry of the Cooper pairs. Putting aside the
scenario of triplet superconductors for the moment, this argumentation holds
well when considering uniform and homogeneous coexistence of ferromagnetism
and superconductivity. Thus, spatially homogeneous coexistence of ferromag-
netism and usual BCS-superconductivity is strictly prohibited in a bulk material
[11].

However, it is still possible to probe how these long-range orders affect each
other by setting up a proximity structure consisting of a ferromagnetic and
superconducting layer in close contact. Experimentally, these are usually sepa-
rated by a thin insulating layer. A plethora of interesting phenomena occur in
such a proximity F/S layer, of which some may even hold potential for future
technological applications. Below, we consider the basic physics in a F/S layer
and give a brief review of the most important of the effects that arise in such
heterostructures. Thereafter, we briefly touch upon some of the main research
results presented in the publications contained in this thesis. As section 2.1 will
introduce several concepts which are also of relevance for chapters 3 and 4, it
will be more comprehensive than the corresponding sections 3.1 and 4.1.

5
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Chapter 2. Manifestations of the proximity effect in hybrid structures

with superconductors and ferromagnets

2.1 Fundamental concepts

2.1.1 Proximity effect and Andreev reflection

In the context of superconducting heterostructures, the proximity effect de-
notes physical phenomena arising when a nonsuperconducting material, such
as a paramagnetic metal or a ferromagnet, is placed in contact with a super-
conductor. In this scenario, Cooper pairs enter the normal metal while elec-
tronic excitations leak into the superconducting region. As a result, one may
observe both a decrease of the critical temperature Tc for superconductivity in
the superconducting region and an induction of superconducting correlations
in the normal region. For instance, it is the proximity effect which renders
possible the flow of a Josephson current between two superconductors sepa-
rated by a normal metal of finite width. Also, the superconducting correlations
in the normal part are manifested in the density of states, where a so-called
minigap is induced in the diffusive regime. The minigap amounts to a substan-
tial suppression of the density of states over an energy interval dictated by the
Thouless energy εTh, which is the governing energy scale for the proximity ef-
fect in normal/superconductor (N/S) junctions. The Thouless energy is defined
as εTh = D/d2, where D is the diffusion constant of the non-superconducting
region while d is its width.

A key aspect in understanding low-energy quantum transport at the interface of
a non-superconducting and superconducting material, e.g. a N/S interface, is
the process of Andreev reflection. Although the existence of a gap in the energy
spectrum of a superconductor implies that no quasiparticle states may persist
inside the superconductor for energies below that gap, physical transport of
charge and spin is still possible at a N/S interface in this energy-regime if the
incoming electron is reflected as a hole with opposite charge. The remaining
charge is then transferred to the superconductor in the form of a Cooper pair
at Fermi level.

2.1.2 Non-monotonous decay of superconductivity

While in an N/S junction the order parameter decays monotonously upon pen-
etrating the normal region, the presence of an exchange splitting h between
the majority and minority spin energy bands in a ferromagnet gives rise to a
damped oscillatory decay of the superconducting order parameter in an F/S
junction (see Fig. 2.1). This may be understood physically by realizing that
the Cooper pair entering the ferromagnetic region obtains a finite center-of-
mass momentum due to the exchange splitting. The majority-spin electron
experiences a reduction in energy by h, while the minority spin electron gains
an energy h, thus leading to a center-of-mass momentum q = 2h/vF . In ad-
dition to the decaying behavior of the superconducting order parameter, the
scattering potential at the interface between the F and S regions may lead to
a suppression of the order parameter magnitude-wise in the vicinity of the in-
terface. For low-transparency interfaces (high barrier resistances), it is usually
a good approximation to neglect this effect. As we shall see in the following
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Figure 2.1: The characteristic spatial dependence of the superconducting order pa-
rameter in a (a) N/S and (b) F/S junction.

sections, the finite center-of-mass momentum acquired by the Cooper pair has
a number of implications for experimentally observable quantities.

2.1.3 0-π oscillations of critical current

In a superconducting Josephson junction, two bulk superconductors are con-
nected via a weak link to support a dissipationless flow of electrical current as
long as there is a phase difference Δφ = φL − φR between the order parame-
ters Δj = Δ0,jeiφj , j = L,R in each superconducting bank. The relationship
between the magnitude of the current that flows through the junction and the
corresponding phase difference between the superconducting banks is known
as the current-phase relationship (see Ref. [12] for a detailed review). The
current-phase relationship is under many circumstances given as I = Ic sin Δφ,
where Ic is the critical (maximum) value of the current. However, it may in
general include contributions from higher harmonics. In order to explain the
concept of 0-π oscillations, let us nevertheless proceed with the sinusoidal form
I = Ic sin Δφ for the sake of clarity. The energy ground-state E of the Josephson
junction is related to the phase difference as follows [13]:

E =
Ic

2e
(1 − cos Δφ), (2.1)

giving the sinusoidal current-phase relationship I = (2e)∂E/∂Δφ = Ic sin Δφ.
From the above equation, we see that the minimum energy is obtained at
Δφ = 0 when Ic > 0. However, the minimum energy of the junction is ob-
tained at Δφ = π when Ic < 0. The constant Ic, and in particular its sign,
depends in general on the parameters of the junction, such as width, tempera-
ture, barrier transparency, etc. This means that it is possible to manipulate the
preferred ground-state of the system if one may control the sign of Ic by alter-
ing for instance the width d of the junction. As a result, one should observe an
oscillatory behavior of the critical current when plotted against a parameter in
the system that may provoke a 0-π transition. Precisely such behavior was ob-
served by Ryazanov et al. [14], and later by several other groups. It should also
be mentioned that the current-phase relationship acquires a substantial contri-
bution from higher harmonics than sin Δφ when the interface transparency is
high [15, 16], which has some interesting effects for the ground-state properties
of the system [17].
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with superconductors and ferromagnets

2.1.4 Spin-dependent interfacial phase-shifts

An intrinsic property of F/S interfaces is that the particles partaking in the scat-
tering processes should undergo spin-dependent interfacial phase-shifts (spin-
DIPS) upon transmission and reflection at the interface. This is a result of the
energy-split majority and minority spin bands in the F region. Nevertheless,
these phase-shifts have not received much attention in the literature, and non-
magnetic boundary conditions [18, 19] have in the vast majority of works been
used to characterize F/S interfaces [20, 13]. However, the presence of spin-DIPS
may have a strong influence on the system, even qualitatively. The easiest way
to capture the effect of spin-DIPS is to start with a Blonder-Tinkham-Klapwijk
(BTK) [21] theory for an N/S junction and incorporate a barrier potential at
the interface which depends on the spin of the incident electrons, i.e. a poten-
tial Vσ = V0 + σVM , where VM is the magnetic part of the barrier potential.
In this scenario, two effects come into play. First, the transmission amplitudes
for spin-↑ and spin-↓ particles are no longer degenerate, but one of the spin
species are favored tunneling-wise. Secondly, the scattered particles pick up
phase-shifts at the interface due to the exchange splitting near the interface.
These phase-shifts may actually induce triplet correlations [22]. To see this,
consider a singlet correlation function in the superconductor:

|ψ〉 = |↑〉k|↓〉−k − |↓〉k|↑〉−k. (2.2)

Upon scattering at the interface, the spins acquire different phase shifts accord-
ing to:

|↑〉−k = eiθ↑ |↑〉k, |↓〉−k = eiθ↓ | ↓〉k, (2.3)

which transforms Eq. (2.2) into

|ψ〉 = − cos(Δθ)
(
|↑〉k|↓〉−k − |↓〉k|↑〉−k

)
− i sin(Δθ)

(
|↑〉k|↓〉−k + |↓〉k|↑〉−k

)
,

(2.4)

where Δθ = θ↑ − θ↓. As seen, the spin-dependent phase-shifts at the interface
induce the Sz = 0 triplet component which contributes to the total wavefunc-
tion |ψ〉 as long as Δθ �= 0. If there are also spin-flip scattering processes
at the interface of the type |↑〉k → |↓〉k and |↓〉k → |↑〉k, equal-spin pairing
Sz = ±1 components may be generated. Here, we have sketched the situation
for a normal/superconductor junction with an explicitly magnetic interface.
For a ferromagnet/superconductor junction, however, the barrier potential at
the interface should still be modelled as spin-dependent even if the material
constituting the barrier is non-magnetic, due to the close proximity of the F
region.

2.1.5 Odd-frequency pairing

The presence of superconducting correlations are in general represented by a
non-zero expectation value for the anomalous Green’s function

Fα1α2(x1, x2) = −iT{〈ψα1(x1)ψα2(x2)〉}, (2.5)
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with T as the time-ordering operator while xj = (rj , tj) are the space- and
time-coordinates for particle j while αj is the spin-coordinate. This corre-
lator must satisfy the Pauli principle at equal times t1 = t2, meaning that
a sign change is due for r1 ↔ r2, α1 ↔ α2. This leads to a finite number
of possibilities for the allowed symmetries of the space-, time- and spin-part
of the Green’s function. In the conventional BCS-case, the correlator is odd
with respect to spin such that Fα1α2(r1, r2, t) = −Fα2α1(r1, r2, t). This is
known as an even-frequency, spin-singlet, even-parity symmetry. The wording
stems from the Fourier-transformed and mixed representation [23, 24], where
frequency (or energy) is the Fourier-transform of the relative time-coordinate
and the momentum is the Fourier-transform of the relative space-coordinate.
In fact, in this Fourier-transformed and mixed representation, the condition
Fα1α2(ε, k) = −Fα2α1(−ε,−k) must be satisfied in general. As seen, this opens
up the possibility that the anomalous Green’s function, and hence the supercon-
ducting order parameter, is odd in frequency while even in spin and momentum.

Such an odd-frequency pairing state was proposed by Berezinskii in 1974 [25],
who argued that it could be formed due to retarded paramagnon exchange
in the context of 3He, although it was later experimentally established that
this was not the case. However, it was realized in 2001 by Bergeret et al.
[26, 27] that the odd-frequency pairing state could be obtained by means of the
proximity effect between a ferromagnet and a superconductor. Very recently,
it was argued by Tanaka et al. [28] that odd-frequency pairing is actually
generated whenever time-reversal symmetry or translational symmetry in space
is broken in a superconductor. As a consequence, odd-frequency pairing should
be generated under very general conditions even in N/S junctions in the absence
of any exchange field.

2.1.6 Quasiclassical theory

The quasiclassical theory of superconductivity has proven to be a highly use-
ful tool to study the proximity effect and transport properties of F/S hybrid
structures. The central quantity in the quasiclassical theory of superconductiv-
ity is the quasiclassical Green’s functions ǧ(pF, r; ε, t), which depends on the
momentum at Fermi level pF, the spatial coordinate r, the energy measured
from the chemical potential ε, and time t. For a detailed introduction to this
theory, see e.g. Refs. [23, 24]. The quasiclassical Green’s functions ǧ(pF, r; ε, t)
is obtained from the Gor’kov Green’s functions Ǧ(p, r; ε, t) by integrating out
the dependence on kinetic energy, assuming that Ǧ is strongly peaked at Fermi
level,

ǧ(pF, r; ε, t) =
i
π

∫
dξpǦ(p, r; ε, t). (2.6)

This is typically applicable to superconducting systems where the characteristic
length scale of the perturbations present, such as mean-free path and magnetic
coherence length, is much larger than the Fermi wavelength. Also, the corre-
sponding characteristic energies of such phenomena must be much smaller than
the Fermi energy εF. The quasiclassical Green’s functions may be divided into
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an advanced (A), retarded (R), and Keldysh (K) component, each of which has
a 4× 4 matrix structure in the combined particle-hole and spin space. One has
that

ǧ =
(

ĝR ĝK

0 ĝA

)
, (2.7)

where the elements of ǧ(pF, r; ε, t) read

ĝR,A =

(
gR,A fR,A

−f̃
R,A −g̃R,A

)
, ĝK =

(
gK fK

f̃
K

g̃K

)
. (2.8)

The quantities g and f are 2 × 2 spin matrices, with the structure

g =
(

g↑↑ g↑↓
g↓↑ g↓↓

)
. (2.9)

Due to internal symmetry relations between these Green’s functions, all of these
quantities are not independent. In particular, the tilde-operation is defined as

f̃(pF, r; ε, t) = [f(−pF, r;−ε, t)]∗. (2.10)

The quasiclassical Green’s functions ǧ(pF, r; ε, t) may be determined by solving
the Eilenberger [29] equation, which is derived from the Gor’kov equation at
the price of losing information about the physics at length scales comparable
to the Fermi wavelength. It reads:

[ερ̂3 − Σ̂, ǧ] + ivF∇ǧ = 0, (2.11)

where Σ̂ contains the self-energies in the system such as impurity scattering, su-
perconducting order parameter, and exchange fields. Above, we have assumed
that there is no explicit time-dependence in the problem. The operation ρ̂3ǧ in-
side the commutator should be understood ρ̂3ǧ ≡ diag{ρ̂3, ρ̂3}ǧ. Pauli-matrices
in particle-hole×spin (Nambu) space are denoted as ρ̂i, while Pauli-matrices in
spin-space are written as τ i. The Green’s functions also satisfy the normaliza-
tion condition

ǧ ⊗ ǧ = 1̌. (2.12)

The self-energies entering Eq. (2.11) should be solved in a self-consistent man-
ner. For instance, a weak-coupling s-wave superconducting order parameter is
obtained by

Δ(r; t) = −λ

4

∫ ωc

−ωc

dε〈fK
↑↓(pF, r; ε, t)〉p̂F

, (2.13)

where λ is the coupling constant and ωc is the cut-off energy, which may be
eliminated in favor of the transition temperature. The notation 〈. . .〉 is to be
understood as an angular averaging over the Fermi surface. In the special case
of an equilibrium situation, one may express the Keldysh component in terms
of the retarded and advanced Green’s function by means of the relation

ĝK = (ĝR − ĝA) tanh(βε/2), (2.14)
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where β = T−1 is inverse temperature. In nonequilibrium situations, one must
derive kinetic equations for nonequilbrium distribution functions in order to
specify the Keldysh part.

In the dirty limit, the scattering time due to impurities satisfies ζτ � 1, where τ
is the impurity scattering time while ζ is the energy scale of any other self-energy
in the problem. The Eilenberger equation is then reduced to the Usadel equation
[30], which may be derived by expanding the Green’s function in spherical
harmonics and averaging the Eilenberger equation over the Fermi surface. The
Usadel equation reads

D∇(ǧs∇ǧs) + i[ερ̂3 − Σs, ǧs] = 0, (2.15)

where the ’s’ subscript indicates that the Green’s function and self-energy has
been averaged over the Fermi surface, thus rendering them independent of the
direction of the momentum pF. The diffusion constant is given by D = v2

Fτ/3.
Although the Usadel equation in general requires a numerical solution, an an-
alytical approach is permissable under certain conditions. In the case of a
weak proximity effect, one may effectively linearize Eq. (2.15). This is a valid
treatment for low transparency interfaces or close to Tc. In this case, Eq.
(2.15) is expanded around the bulk solution. Also, it should be noted that the
Green’s function ǧs (hereafter dropping the subscript ’s’) may be conveniently
parametrized to facilitate both analytical and numerical calculations. For in-
stance, the Green’s function in a S/F bilayer with a homogeneous magnetization
may be parametrized as

ĝj =

⎛
⎜⎜⎝

c↑,j 0 0 s↑,j
0 c↓,j s↓,j 0
0 −s↓,j −c↓,j 0

−s↑,j 0 0 −c↑,j

⎞
⎟⎟⎠ , j = {S, F} (2.16)

where we have introduced sσ,j = sinh(θσ,j) and cσ,j = cosh(θσ,j). Note that
(ĝj)2 = 1̂ is satisfied. The parameter θσ,j is a measure of the proximity ef-
fect, and vanishes in the ferromagnetic region in the absence of a proximity
effect. In the superconducting region, the bulk solution for a conventional s-
wave BCS superconductor reads cσ = cosh(θBCS), sσ = σ sinh(θBCS), where
θBCS = atanh(Δ/ε).

The above equations suffice to completely describe for instance a bulk supercon-
ducting structure, but must be supplemented with boundary conditions when
treating heterostructures such as F/S junctions. These boundary conditions
take different forms depending on the physical properties of the interface, and
we proceed to describe possible scenarios in this respect. Transport across in-
terfaces in heterostructures may in general be characterized according to three
particular properties: i) the transmission of the interface, ii) the resistivity
of the compounds separated by the interface, and iii) whether the interface is
spin-active or not. Let us clarify the distinction between the two first prop-
erties. The transmission of the barrier determines the likelihood of electron
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transport to occur across the interface. On the other hand, the resistivities
of the compounds separated by the interface are in principle unrelated to the
transmissivity of the interface, and one may have for instance a tunneling con-
tact with electrodes attached to it that have either a large or small resistance.

Zaitsev [31] derived boundary conditions for a clean N/S interface, while Kupri-
anov and Lukichev (KL) [18] worked out simplified boundary conditions in the
dirty limit, valid for atomically sharp interfaces in the tunneling regime with a
low barrier transparency. In a heterostructure with a region 1 located in the
half-space x < 0 and a region 2 located in the half-space x > 0, the KL bound-
ary conditions may be expressed as follows for the retarded part of the Green’s
function:

2d1γ1(ĝ1∂xĝ1)
∣∣∣
x=0

= [ĝ1, ĝ2]
∣∣∣
x=0

,

2d2γ2(ĝ2∂xĝ2)
∣∣∣
x=0

= −[ĝ2, ĝ1]
∣∣∣
x=0

. (2.17)

The parameter γj models the interfacial transmission properties, and is given
by γj = RI/Rj where RI is the interface resistance while Rj is the resistance in
region j. Also, dj is the width of region j. In the case of an arbitrary interface
transparency, the most compact way of writing the boundary conditions for the
Green’s functions for non-magnetic interface was introduced by Nazarov [19]:

γ1d1

2
ĝ1∂xĝ1

∣∣∣∣∣
x=0

=
[ĝ1, ĝ2]

4 + T ({ĝ1, ĝ2} − 2)

∣∣∣∣∣
x=0

, (2.18)

and similarly for ĝ2. We have here assumed that all N transmission chan-
nels at the interface are characterized by the same transmission probability, i.e.
TN = T . As seen, this reduces to the KL boundary condition in the tunneling
limit T → 0.

The third property determines to what degree the interface discriminates be-
tween incoming quasiparticles with different spins. In all the preceding refer-
ences, a non-magnetic (spin-inactive) interface was assumed. The generalized
boundary conditions for magnetically active interfaces have also been derived
[32] and further studied in [33]. As a discussion of these boundary conditions
requires an introduction of much extra notation, we refrain from this here and
instead refer the reader to a detailed discussion in [33]. In Sec. 2.2.2, we will
focus in particular on the spin-dependent phase shifts (see Sec. 2.1.4) that come
into play when a magnetic barrier is present, which will be shown to have an ap-
preciable effect on the physics when the term describing these phase-shifts in the
boundary conditions is comparable in magnitude to the tunneling conductance
1/RI . In Sec. 2.2.1, we will use Nazarov’s non-magnetic boundary conditions,
thus implicitly assuming that the contribution from the spin-dependent phase
shifts is much smaller than the tunneling conductance, as may be appropriate
for a relatively weak ferromagnet.
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Let us make a final remark concerning the treatment of interfaces in the qua-
siclassical theory of superconductivity. We previously stated that the present
theory is valid as long as characteristic energies of various self-energies and
perturbations in the system are much smaller than the Fermi energy. At first
glance, this might seem to be irreconcilable with the presence of interfaces,
which represent strong perturbations varying on atomic length scales. How-
ever, this problem may be overcome by including the interfaces as boundary
conditions for the Green’s functions rather than directly in the Eilenberger
equation.

2.2 Research highlights

2.2.1 Numerical study of odd-frequency pairing in F/S bilayers

Upon establishing that odd-frequency pairing is ubiquitous in superconducting
heterostructures, the natural question becomes: how may the odd-frequency
pairing state be detected? To address this question thoroughly, we employ a
numerical study using quasiclassical theory of the proximity effect in a F/S
bilayer. In our study, we take into account realistic effects which are often ne-
glected in the literature, namely a non-ideal interface region (finite interface
transparency), magnetic impurities in the samples, and the effect of spin-orbit
coupling. Also, we do not restrict ourselves to the weak proximity effect regime.

Let us consider here a situation where the F region is located in the space
x ∈ [0, d], while the S region occupies the space x > d. The main ingredients
in the calculation are the Usadel equation and the boundary conditions for it.
For majority and minority spin (σ =↑, ↓= ±1) in the ferromagnet, the Usadel
equation reads:

D∂2
xθσ + 2i(ε + σh) sinh θσ − σSxy

2τsf
sinh(θ↑ − θ↓)

− Sz

4τsf
sinh 2θσ − 1

2τso
sinh(θ↑ + θ↓) = 0, (2.19)

where we have made use of Eqs. (2.15) and (2.16). Here, D is the diffusion
constant, ε is the quasiparticle energy measured from Fermi level, h is the ex-
change field, τsf denotes the spin-flip scattering time, τso denotes the spin-orbit
scattering time, while the coefficients Sxy and Sz determine the anisotropy of
the magnetic scattering. The parameters θσ are related to the Green’s function
ĝF in the ferromagnet as measures of the proximity effect (θσ = 0 in the absence
of a proximity effect) [16].

To model the interface regions, we employ Nazarov’s boundary condition which
is valid in the diffusive regime for an interface region of arbitrary conductance
(transparency). At x = {0, d}, it reads

γL,Rd

2
ĝF ∂xĝF

∣∣∣∣∣
x={0,d}

= ∓ [ĝF , ĝL,R]
4 + T ({ĝF , ĝL,R} − 2)

∣∣∣∣∣
x={0,d}

, (2.20)
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where [. . .] and {. . .} denote the commutator and anticommutator, respectively,
and ĝL,R denotes the Green’s function on the left and right side of the ferromag-
net. The parameter γL,R = RL,R

B /RF denotes the ratio between the resistance
in the left/right barrier region RL,R

B and the resistance in the F region RF . We
have conventionally introduced the parameter T , which is the transmissivity
of the interface [19]. Giving an expression for T in terms of microscopic pa-
rameters of the interface is not very practical, and we will therefore use T as
a phenomenological parameter to characterize the transparency of the inter-
face. Here, T = 0 corresponds to zero transmission of quasiparticles incident on
the superconducting interface, and T = 1 corresponds to perfect transmission.
Note that we here do not consider the influence of spin-DIPS on the spectra,
assuming that the phase-shifts are neglible compared to the conductance of the
interface.

For later use, we define the superconducting coherence length ξ =
√

D/Δ. As a
measure of the strength of the spin-flip and spin-orbit scattering, which increases
with decreasing spin relaxation time, we introduce gsf = τ−1

sf and gso = τ−1
so .

Also note that Sz = Sxy = 1 for isotropic spin-flip scattering, while Sz = 3 and
Sxy = 0 for uniaxial spin-flip scattering along the z-direction. For each case,
the dimensionless coefficient g represents the scattering strength divided on the
Thouless energy, i.e. when studying the effect of spin-orbit coupling we have
g = gso/εT . The spin-resolved and normalized DOS is finally obtained as

N↑ = Re{cosh θ↑}, N↓ = Re{cosh θ↓}. (2.21)

Furthermore, we define the total DOS as N =
∑

σ Nσ/2. We have then ob-
tained two coupled nonlinear second order differential equations supplemented
with boundary conditions which may be solved numerically.

As an example of the results attainable in our formalism, consider Fig. 2.2,
where the local density of states (LDOS) is plotted for the case h � Δ, but still
considering a relatively weak ferromagnet. For h/Δ = 50 (lower row), the prox-
imity is quite weak such that neither magnetic impurity nor spin-orbit scattering
influence the LDOS much at all. For h/Δ = 15, the distinction between their
influences can be seen more clearly. Setting g = 0, the LDOS is suppressed at
subgap energies as might be expected due to the induced minigap from the su-
perconducting correlations. Increasing the scattering rate g, the LDOS evolves
qualitatively different upon comparing the magnetic impurity scattering with
the spin-orbit scattering. In the former case, it enhances the subgap energy
LDOS while in the latter case it completely suppresses it. As we shall see be-
low, this effect pertains to the symmetry of the singlet and triplet components
of the proximity-induced superconducting anomalous Green’s functions, defined
as:

fs(ε, x) = [sinh θ↑(ε, x) − sinh θ↓(ε, x)]/2,

ft(ε, x) = [sinh θ↑(ε, x) + sinh θ↓(ε, x)]/2. (2.22)

Since we are considering the diffusive limit, the Green’s functions must have
even parity symmetry, since the frequent impurity scattering would destroy any
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Figure 2.2: Local density of states at x = 0 for h/Δ = 15 (upper row) and h/Δ = 50
(lower row). Here, we have fixed d/ξ = 0.1 and T = 0.5 and study the
role of different types of spin-dependent scattering.

odd parity component due to the isotropization. The Pauli principle then dic-
tates that the spin-singlet component must have an even-frequency symmetry,
just as for conventional BCS superconductors. In this case, it is known that
the superconducting correlations tend to suppress the LDOS by inducing an
energy gap. In contrast, the triplet component has an odd-frequency symmetry
in the diffusive limit, and its tendency is opposite: it enhances the LDOS at
low energies, since it is gapless there. Bearing this in mind, it is instructive
to consider the Usadel equations in the ferromagnetic region in limiting cases.
From Eq. (2.19), we obtain several important properties:

• In the presence of uniaxial spin-flip scattering (Sz = 3, Sxy = 0), by taking
the limit of τsf → 0 we get θ↑ = θ↓ = 0. Then both singlet and triplet
components are suppressed. This is also the case for isotropic spin-flip
scattering (Sz = Sxy = 1).

• With in-plane spin-flip scattering (Sz = 0), we get θ↑ = θ↓ when taking
the limit τsf → 0. Then, the singlet component should vanish as seen from
definition in Eq. (2.22).

• In the presence of pure spin-orbit scattering (Sz = Sxy = 0), by taking
limit of τso → 0 we get θ↑ = −θ↓. Then, the triplet component should
vanish as seen from Eq. (2.22).

Therefore, we find that uniaxial and isotropic spin-flip scattering is harmful
to both singlet and triplet components while in-plane spin-flip scattering and
spin-orbit scattering are detrimental to the singlet and triplet components, re-
spectively. The physical manifestation of this is in the form of either a gap
structure in the LDOS (induced by the singlet component) or a peak structure
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(induced by the triplet component).

The above analysis emphasizes the importance of distinguishing between differ-
ent types of spin-dependent scattering in terms of understanding the behavior
of the DOS in a ferromagnet/superconductor bilayer. In particular, we have
shown that the effect of spin-orbit scattering may differ fundamentally from
spin-flip scattering (originating e.g. from magnetic impurities), and that this is
manifested in the interplay between the singlet and triplet anomalous Green’s
function in the ferromagnetic layer. If the former dominates, the LDOS is
suppressed, while if the latter dominates the LDOS is enhanced. The optimal
conditions for generation of a strong odd-frequency proximity-amplitude in a
F/S bilayer would then be to have an in-plane anisotropy for the magnetic
impurity scattering and weak spin-orbit coupling.

2.2.2 Pairing symmetry transition induced by a spin-active in-
terface in superconducting junctions

As shown in the previous sections, odd-frequency pairing is an exotic type of
pairing state which should be generated whenever time-reversal symmetry or
translational symmetry in space is broken. There are, however, two main dif-
ficulties associated with the detection of the odd-frequency state. One is that
the odd-frequency state induced in S/F bilayers has a short penetration depth
into the ferromagnetic region. It is limited by the magnetic coherence length
ξF , which is much smaller than the superconducting coherence length ξS [20].
Another problem is that these odd-frequency correlations are often masked by
the simultaneous presence of even-frequency correlations in the same material.
Clear-cut signatures of the odd-frequency correlations are therefore only acces-
sible in a limited parameter regime, as seen in the previous section.

In the majority of works on superconducting proximity-structures, the diffusive
limit and spin-inactive interfaces have been considered [18]. For a non-magnetic
bilayer, a minigap appears in the density of states of the normal metal. It scales
with the Thouless energy of the normal layer and with the transmission prob-
ability of the interface. For a spin-active interface, the transmission properties
of spin-↑ and spin-↓ electrons into a ferromagnetic metal are different, and this
gives rise to both spin-dependent conductivities and spin-dependent phase shifts
at the interface [32, 33, 34, 35, 36]. Here, we show that a spin-active interface in
an S|N bilayer produces clear signatures of purely odd-frequency triplet pairing
amplitudes that can be tested experimentally.

Let us consider the system shown in Fig. 2.3. The superconductor is conven-
tional (even-frequency s-wave) while the interface is magnetic. We find that
there is a dramatic change in the nature of proximity correlations when the
spin-dependent phase shifts exceed the tunneling probability of the interface.
The spin-active interface in a superconductor/normal metal (S|N) bilayer causes
the even-frequency correlations to vanish at zero excitation energy (Fermi level),
while odd-frequency correlations appear. At the same time, the minigap, one of
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the hallmarks of the conventional proximity effect, is replaced by a low-energy
band with enhanced density of states. We focus on the density of states (DOS)
in the normal region, which can be probed by tunneling experiments. Since the
exchange field is absent in the normal metal, our findings suggest that it should
be possible to detect the odd-frequency amplitude without any interfering effects
of even-frequency correlations. This resolves the two main difficulties associated
with the experimental detection of odd-frequency correlations mentioned above.

We adopt the quasiclassical theory of superconductivity [23, 24], where infor-
mation about the physical properties of the system is embedded in the Green’s
function. For an equilibrium situation, it suffices to consider the retarded part
of the Green’s function, here denoted ĝ. Due to the symmetry properties of ĝ,
one may parametrize it conveniently in the normal (N) region by a parameter
θσ, which allows for both singlet and triplet correlations [16]. In the supercon-
ducting (S) region, we employ the bulk solution ĝS = c · τ3 ⊗ σ0 + s · τ1 ⊗ (iσ2),
c = cosh(θ), s = sinh(θ), θ = atanh(Δ/ε), τi and σi being Pauli matrices in
particle-hole and spin space, respectively.

We use the formalism described in Ref. [16], and consider the diffusive limit.
Then, the orbital symmetry for all proximity amplitudes is reduced to s-wave
and hence the singlet component always has an even-frequency symmetry while
the triplet component has an odd-frequency symmetry. The Green’s functions
are subject to boundary conditions, which assume at the S|N interface in the
tunneling limit the form [33, 36]: 2γdĝN∂xĝN = [ĝS , ĝN ]+i(Gφ/GT )[τ0⊗σ3, ĝN ],
and at the outer interface read ∂xĝN = 0̂. Here, γ = RB/RN where RB (RN )
is the resistance of the barrier (normal region), and d is the width of the nor-
mal region, while GT is the junction conductance in the normal-state. The
boundary condition above contains an additional term Gφ compared to the
usual non-magnetic boundary conditions in Ref. [18]. This term is due to spin-
dependent phase shifts of quasiparticles being reflected at the interface. Gφ may
be non-zero even if the transmission GT → 0, corresponding to a ferromagnetic
insulator [33]. We define the superconducting coherence length ξS =

√
D/Δ

and Thouless energy εTh = D/d2, where D is the diffusion constant, and assume
that the inelastic scattering length, lin, is sufficiently large, such that d � lin.

The Usadel [30] equation reads D∂2
xθσ+2iε sinh θσ = 0, with boundary condition

γd∂xθσ = (csσ − σscσ) + iσ(Gφ/GT )sσ at x = 0 and ∂xθσ = 0 at x = d. Here,

Superconductor
Magnetic interface

Normal metal
STM-tip

Figure 2.3: Proposed experimental setup for observation of the odd-frequency com-
ponent in a diffusive normal metal layer|superconductor junction.
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Figure 2.4: The singlet and triplet proximity amplitudes induced in the normal metal
are shown for Gφ/GT < 1 [in a) and c)] and Gφ/GT > 1 [in b) and d)]. In
e), we plot the energy-resolved DOS for several values of Gφ/GT . Finally,
f) shows the zero-energy DOS as a function of GT /Gφ, with the proximity
amplitudes shown in the inset.

cσ = cosh(θσ) and sσ = sinh(θσ). At zero energy, we find that the pairing
amplitudes are either purely (odd-frequency) triplet,

fs(0) = 0, ft(0) =
GT · sgn(Gφ)√

G2
φ − G2

T

for |Gφ|/GT > 1, (2.23)

or purely (even-frequency) singlet

fs(0) =
i · GT√
G2

T − G2
φ

, ft(0) = 0 for |Gφ|/GT < 1. (2.24)

Thus, the presence of Gφ induces an odd-frequency component in the normal
layer. The remarkable aspect of Eqs. (2.23) and (2.24) is that they are valid
for any value of the width d below the inelastic scattering length, and for any
interface parameter γ. Thus, the vanishing of the singlet component is a robust
feature in S|N structures with spin-active interfaces, as long as |Gφ|/GT > 1.
Without loss of generality, we focus on positive values of Gφ from now on.

The DOS is given as N(ε)/N0 =
∑

σ Re{cσ}/2, yielding

N(0)/N0 = Re{Gφ/
√

G2
φ − G2

T }. (2.25)

At zero-energy, the DOS thus vanishes as long as Gφ/GT < 1, which means
that the usual minigap in S|N structures survives in this regime. However,
the zero-energy DOS is enhanced for Gφ/GT > 1 since the singlet component
vanishes there.



2.2. Research highlights 19

The full energy-dependence of the DOS may only be obtained numerically. To
model a realistic experimental setup, we fix γ = 10 and d/ξS = 1.0, although
our qualitative results are independent of these particular choices. As a mea-
sure of the relevant energy scale, we define ε0 = εTh/(2γ). The results are
shown in Fig. 2.4 to investigate the effect of the spin-dependent phase shifts.
The low-energy DOS is strongly enhanced due to the odd-frequency amplitude
when Gφ/GT > 1 (Gφ/GT = 1.5 in the figure). Conversely, the DOS develops
a minigap around ε = 0 when Gφ/GT < 1 (Gφ/GT = 0.5 in the figure). The
ratio Gφ/GT depends on the microscopic barrier properties [36]. In the tunnel-
ing limit, one finds that Gφ can be considerably larger than GT . Although not
included here, we underline that performing the same analysis in the ballistic
limit gives the same result: namely, a complete separation between the even-
and odd-frequency proximity amplitudes above a critical value of the interface
resistance. This suggests that the effect predicted here should be quite robust,
as it is occurs both in the clean and dirty limit and is independent of the specific
system size and/or junction conductance.

We suggest the following qualitative explanation for the mechanism behind the
separation between even- and odd-frequency correlations. The superconductor
induces a minigap proportional to GT in the normal metal, while the spin-active
barrier induces an effective exchange field proportional to Gφ. The situation in
the normal metal then resembles that of a thin-film conventional superconduc-
tor in the presence of an in-plane external magnetic field [37], with the role of
the gap and field played by GT and Gφ, respectively. In that case, it is known
that superconductivity is destroyed above the Clogston-Chandrasekhar limit
[38], due to pair-breaking of a spin-singlet Cooper-pair. In the present case, we
observe coexistence of the exchange field and spin-singlet even-frequency super-
conductivity as long as Gφ is below the critical value of Gφ = GT . However, for
Gφ > GT spin-singlet pairing is no longer possible at the chemical potential. It
is then replaced by spin-triplet pairing, which must be odd in frequency due to
the isotropization of the gap in the diffusive limit. Thus, there is a natural sep-
aration between even-frequency and odd-frequency pairing in the normal metal
at a critical value of the effective exchange field Gφ.

The simplest experimental manifestation of the odd-frequency component is
probably a zero-energy peak in the DOS [39, 40, 41]. In S|F layers, where this
phenomenon has been discussed previously, a clear zero-energy peak is unfor-
tunately often masked by the simultaneous presence of singlet correlations fs,
which tend to suppress the DOS at low energies. This is not so in the system
we consider, provided only that GT < |Gφ|. This is ideal for a direct obser-
vation of the odd-frequency component, manifested as a zero-energy peak in
the DOS. The even-frequency correlations vanish completely when the inter-
face transmission is sufficiently low, and the parameter Gφ can be increased
by increasing the magnetic polarization of the barrier separating the supercon-
ducting and normal layers. By fabricating several samples with progressively
increasing strength of magnetic moment of the barrier, one should be able to
observe an abrupt crossover at the zero-energy DOS above a certain strength of
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the magnetic moment. Alternatively, one could alter the interface transmission
by varying the thickness of the insulating region.



Chapter 3

Interplay between
ferromagnetism,
noncentrosymmetricity, and
superconductivity in bulk
materials

In this chapter, we investigate the intrinsic coexistence of ferromagnetism,
noncentrosymmetricity, and superconductivity in bulk materials. The noncen-
trosymmetricity of the crystal structure gives rise to spin-orbit coupling effects,
which have strong impact on the nature of the superconducting state, while
ferromagnetism also places strict restrictions on the possible realizations of su-
perconductivity. Papers I, II, III, VI, XIV, XVII, and XIX are devoted to a
study of these issues.

3.1 Fundamental concepts

3.1.1 Ferromagnetic superconductors

The very idea of a ferromagnetic superconductor may at first sight seem to be a
contradiction in terms. Almost all known superconductors have a spinless sin-
glet Cooper pair symmetry, and the superconducting state is often completely
antagonistic towards any interior magnetic field. Having stated this, however,
one should hasten to add that there are actually circumstances which allow
superconductivity and magnetism to coexist in a stable manner. One of these
circumstances is the mixed state of a type II superconductor [42], where an ap-
plied magnetic field is able to penetrate the superconductor in quantized vortices
upon exceeding a lower critical field Hc1. The vortex consists of a normal core of
size ξ where the superconducting order parameter rapidly falls towards zero in
the center of the core. The magnetic flux, however, is distributed roughly over
a circle centered at the normal core with a radius λ, which may differ greatly

21
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in magnitude from ξ. In this scenario, superconductivity and magnetism may
coexist in a non-uniform manner in between the vortex cores. Another way of
avoiding the problem with the hostile environment for magnetism in a super-
conductor is to use a geometry which suppresses the Meissner effect originating
from the broken gauge symmetry. For instance, it has been shown that in a
thin-film geometry where the thickness t of the superconducting film satisfies
t � ξ, λ, the Meissner effect is so strongly suppressed that the paramagnetic
limitation is the decisive factor in terms of when superconductivity is destroyed
[37]. In this way, one obtains effectively coexistence of spinless singlet supercon-
ductivity and a Zeeman-splitting in the superconductor induced by the external
field.

However, the coexistence of magnetism and spin-triplet superconductivity ap-
pears to be a more promising scenario, since the Cooper pairs may use their
spin degree of freedom to align themselves with a magnetic field. Spin-triplet
superconductors are characterized by a multicomponent order parameter, which
for the simplest case of a p-wave symmetry1 may be expressed in terms of three
independent components of a dk-vector [43]:

dk =
[Δk↓↓ − Δk↑↑

2
,
−i(Δk↓↓ + Δk↑↑)

2
, Δk↑↓

]
. (3.1)

Note that dk transforms like a vector under spin rotations, and that it has an
odd parity with respect to inversion of momentum, k → (−k). In terms of the
components of dk, the order parameter itself is a 2x2 matrix that reads

Δ̂αβ(k) ≡ 〈ck,αck,β〉 = [i(dk · σ̂)σ̂y]αβ , (3.2)

where σ̂ is the vector of Pauli matrices, and {c†k,α, ck,α} are the usual electron
creation-annihilation operators for momentum k and spin α. The supercon-
ducting order parameter is characterized as unitary if the modulus of the gap is
proportional to the unity matrix: (Δ̂ · Δ̂†) ∝ 1̌. Written in terms of the vector
dk, this condition is equivalent to the requirement that 〈Sk〉 = 0, where we
have introduced the net magnetic moment (or spin) of the Cooper pair

〈Sk〉 ≡ i(dk × d∗
k). (3.3)

The unitary triplet state thus has Cooper pairs with zero magnetic moment,
whereas the non-unitary state is characterized by non-zero value of 〈Sk〉 �= 0.
The latter effectively means that time-reversal symmetry is spontaneously bro-
ken in the spin part of the Cooper pairs. It is thus intuitively clear that having
the spin of the Cooper pair aligned with the internal magnetic field of the ferro-
magnet can lower the energy of the resulting coexistence state. Distinguishing
between unitary and non-unitary states in ferromagnetic superconductors is
clearly one of the primary objectives in terms of identifying the correct SC or-
der parameter.

1A p-wave Cooper pair has a total angular momentum of L = 1.
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There are still many unresolved issues regarding the nature of the supercon-
ducting state in ferromagnetic superconductors, such as whether the two orders
coexist uniformly or in a non-uniform way. There does, however, seem to be a
general consensus regarding the pairing symmetry of the Cooper pair: only an
equal spin-pairing triplet state could possibly survive the considerable Zeeman
splitting in these materials, such that the order parameter realized in the fer-
romagnetic superconductors most likely is p-wave. Also, the Ginzburg-Landau
free energy expansion strongly suggests precisely such a non-unitary spin-triplet
state due to the lowest order coupling term γ(dk × dk

∗) · M , which favors a
Cooper pair spin parallel or antiparallel to the bulk magnetization, depending
on the sign of γ. Here dk is a vector describing triplet superconducting pairing
[43], while M is the bulk magnetization.

3.1.2 Noncentrosymmetric superconductors

The orbital symmetry of the superconducting order parameter ultimately re-
flects the environment it resides in, i.e. the crystal lattice of the superconducting
compound. In general, the superconducting order parameter may be expanded
in basis functions for irreducible representations of the crystal point group. In
the case of a crystal with a center of inversion, this categorization leads to a
superconducting order parameter with a definite parity in the quasiparticle ba-
sis that yields a diagonal kinetic energy. If the crystal of the compound lacks
a center of inversion, i.e. it is noncentrosymmetric, this leads to an interesting
singlet-triplet mixing of the superconducting order parameter, such that it lacks
a definite parity in a spin basis. To label the bands split by spin-orbit coupling
(SOC) and ferromagnetism (FM), it is possible to introduce a pseudospin basis
in which the normal-state Hamiltonian is diagonalized. In the original spin ba-
sis, the SC matrix order parameter is characterized, in analogy to the p-wave
state [43], by a vector dk and scalar Δs so that Δ̂αβ(k) = iΔsσ̂y+[i(dk·σ̂)σ̂y]αβ .
Note that, unlike the usual p-wave SC, a singlet component Δs of the gap will
also be present since antisymmetric SOC in general mixes the parity of the or-
der parameter.

CePt3Si was found to be the first superconducting heavy-fermion compound
without a center of inversion in its crystal structure in 2004 [44]. Since then,
the list of noncentrosymmetric superconductors has grown considerably. Due to
the peculiarity with the intrinsic singlet-triplet mixing in noncentrosymmetric
superconductors, they have attracted a lot of interest in recent years in order
to unveil important fingerprints of their unusual pairing symmetry. In this con-
text, transport measurements such as point-contact spectroscopy and Joseph-
son tunneling have traditionally proven themselves as useful tools in order to
probe essential features of the superconducting pairing symmetry. An inter-
esting feature about noncentrosymmetric superconductors is that it has been
predicted that the conductance spectra of a normal metal/noncentrosymmetric
superconductor junction, e.g. a STM-tip tunneling experiment, should exhibit
striking features at voltages equal to the sum and difference between the singlet
and triplet gaps [45, 46]. Other studies have focused on strong spin-currents
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[47] and fractional flux quanta [48] near the interfaces of noncentrosymmetric
superconductors.

3.2 Research highlights

3.2.1 Thermodynamics of ferromagnetic superconductors

Basic model

We write down a mean-field theory Hamiltonian with equal-spin pairing Cooper
pairs and a finite magnetization along the easy-axis similar to the model studied
in Refs. [49, 50], namely

Ĥ =
∑
k

ξk +
INM2

2
− 1

2

∑
kσ

Δ†
kσσbkσσ

+
1
2

∑
kσ

(
ĉ†kσ ĉ−kσ

) (
ξkσ Δkσσ

Δ†
kσσ −ξkσ

) (
ckσ

c†−kσ

)
, (3.4)

where bkσσ = 〈c−kσckσ〉 is the non-zero expectation value of the pair of Bloch
states, I is the exchange coupling, N is the number of lattice sites, M is the
magnetic order parameter, and Δkσ is the superconducting gap for spin species
σ. It is implicit in our notation that ξkσ = εk−σh−EF is measured from Fermi
level, where εk is the band dispersion. For further details, it is also instructive
to consider the Ginzburg-Landau theory for a ferromagnetic superconductor
treated in Ref. [51]. Also, the Bogoliubov-de Gennes eqations for a number
of possible pairing symmetries in a ferromagnetic superconductor were compre-
hensively studied in Ref. [52]. After diagonalizing the Hamiltonian Eq. (3.4),
we arrive at

Ĥ =
1
2

∑
kσ

(ξkσ − Ekσ − Δ†
kσσbkσσ) +

INM2

2
+

∑
kσ

Ekσγ̂†
kσγ̂kσ, (3.5)

where {γ̂kσ, γ̂†
kσ} are new fermion operators and Ekσ =

√
ξ2
kσ + |Δkσσ|2. From

this, one finds that the mean-field equations for the magnetic and supercon-
ducting order parameters become [49]

M = − 1
N

∑
kσ

σξkσ

2Ekσ
tanh(βEkσ/2),

Δkσσ = − 1
N

∑
k′

Vkk′σσ

Δk′σσ

2Ek′σ
tanh(βEk′σ/2). (3.6)

For concreteness, we now consider a specific form of the gaps, assuming that
they have a p-wave symmetry and that they are fixed on the Fermi surface in
the weak-coupling limit. We choose:

Δkσσ = Δk̄F σσ =
Δσ,0√
3/8π

Y σ
l=1(θ, φ), (3.7)
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where k̄F is the normalized Fermi wave-vector, such that the gap only depends
on the direction of the latter. We have introduced the spherical harmonics

Y σ
l=1(θ, φ) = −σ

√
3/8πeiσθ sin φ, (3.8)

such that the gaps in Eq. (3.7) experience a change in sign under inversion of
momentum, i.e. θ → θ + π. We shall consider the case sin φ = 1 which renders
the magnitude of the gaps to be constant, similar to the A2-phase in liquid
3He. The motivation for this is that it seems plausible that a spatially uniform
coexistence of ferromagnetic and superconducting order may only be realized
in thin-film structures where the Meissner (diamagnetic) response of the su-
perconductor is suppressed for in-plane magnetic fields. This enables us to set
sin φ = 1, since the electrons are restricted from moving in the ẑ-direction in a
thin-film structure. In a bulk structure, we expect that a spontaneous vortex
lattice should be the favored thermodynamical state [53]. We remind the reader
that the A1- and A2-phases of liquid 3He are defined as {Δk↑↑ �= 0, Δk↓↓ = 0}
and {Δk↑↑ �= Δk↓↓ �= 0}, respectively.

The pairing potential may now be written as

Vσσ(θ, θ′) = −8πg

3
Y σ(θ)[Y σ(θ′)]∗, (3.9)

and in their integral form, the gap equations read

M = −1
2

∑
σ

σ

∫ ∞

−EF−σIM
dε

εNσ(ε)√
ε2 + Δ2

σ,0

tanh[βEσ(ε)/2],

1 =
g

2

∫ ω0

−ω0

dε
Nσ(ε)
Eσ(ε)

tanh[βEσ(ε)/2], (3.10)

where ω0 is the cut-off frequency for the bosons responsible for the attractive
pairing and g is the strength of the pairing.

Zero temperature case

Consider now T = 0, where we are able to obtain analytical expressions for the
superconductivity order parameters in the problem. Since the superconductiv-
ity gap equation reduces to

1 =
g

2

∫ ω0

−ω0

dε
Nσ(ε)
Eσ(ε)

, (3.11)

one readily finds

Δσ,0 = 2ω0e−1/c
√

1+σM̃ , σ =↑, ↓ (3.12)

where we have defined M̃ = IM/EF , i.e. the exchange energy scaled on the
Fermi energy. Moreover, the weak coupling constant c = gN(0)/2 will be set to
0.2, unless specifically stated otherwise. Moreover, we set ω̃0 = ω0/EF = 0.01
as the typical spectral width of the bosons responsible for the attractive pairing
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Figure 3.1: Superconducting gaps normalized to the Fermi energy (full drawn line:
majority spin, dashed line: minority spin) as a function of the magne-
tization with ω̃0 = 0.01. When the exchange splitting equals the Fermi
energy, the DOS of minority spin fermions is zero at Fermi level, resulting
in a complete suppression of Δ̃↓,0.

potential. From Eq. (3.12), we see that the effect of increasing the magnetiza-
tion is an increase in the gap for majority spin. The important influence of the
magnetization is that it modifies the density of states, which affects the super-
conductivity gaps. For M̃ = 1, i.e. an exchange splitting equal to the Fermi
energy, the minority spin gap is completely suppressed, as shown in Fig. 3.1.
Thus, the presence of magnetization reduces the available phase space for the
minority spin Cooper pairs, suppressing the gap and the critical temperature
compared to the pure BCS case.

Finite temperature case

The critical temperature for the superconductivity order parameter is found by
solving the equation

1 =
g

2

∫ ω0

−ω0

dε
Nσ(ε)

ε
tanh(ε/2Tc,σ), (3.13)

which yields the BCS-like solution

Tc,σ = 1.13ω0e−1/c
√

1+σ ˜M(Tc,σ). (3.14)

Since the temperature at which the transition from paramagnetism to ferro-
magnetism sets in is, in general, much larger than the superconducting phase
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transition, one may to good approximation set M(Tc,σ) = M(0). It is then
evident that the critical temperature depends on the magnetization in the same
manner as the gap itself, and the cutoff-dependence in Eq. (3.12) may be re-
moved in favor of the critical temperature by substituting Eq. (3.14). In order
to solve the coupled gap equations self-consistently at arbitrary temperature, we
considered Eq. (3.10) with the result given in Fig. 3.2 for Ĩ = IN(0) = 1.01.
It is seen that the minority-spin gap is clearly suppressed compared to the
majority-spin gap in the presence of a net magnetization. Also, the graph
shows that the BCS-temperature dependence constitutes an excellent approx-
imation for the decrease of the OPs with temperature. In what follows, we
shall therefore use self-consistently obtained solutions at T = 0 for the OPs
and make use of the BCS temperature-dependence unless specifically stated
otherwise. In general, the critical temperature for the ferromagnetic order pa-
rameter, Tc,M exceeds the superconducting phase transition temperatures Tc,σ

by several orders of magnitude. However, for Ĩ very close to one, we are able
to make these transition temperatures comparable in magnitude. In the exper-
imentally discovered ferromagnetic superconductors UGe2 [2] and URhGe [3],
one finds that Tc,M is approximately fifty times higher than the temperature at
which superconductivity arises.

Comparison of free energies

Although a non-trivial solution of M exists, care must be exercised before
concluding that this is the energetically preferred configuration of the system.
Specifically, it may in theory be possible that the systems prefers the M = 0 so-
lution regardless of the value of Ĩ, corresponding to a unitary superconducting
state with Δ↑,0 = Δ↓,0. It is therefore necessary to compare the free energies of
the M = 0 and M �= 0 cases at values of Ĩ where the latter is a possible solution,
and also study their temperature dependence. In the general case, the analyti-
cal expression for the free energy in the coexistent non-unitary superconducting
phase reads

F/N =
IM2

2
+

∑
σ

Δ2
σ,0

2g
−

∑
σ

∫ ∞

−EF−σIM
dεNσ(ε)

×
[√

ε2 + Δ2
σ,0

2
+

1
β

ln(1 + e−β
q

ε2+Δ2
σ,0)

]
. (3.15)

We obtain a dimensionless measure of the free energy by multiplying with I/E2
F ,

and denote FNU = FI/(NE2
F ). Note that the free energies of the unitary state,

pure ferromagnetic state, and paramagnetic state are obtained as follows:

FU = lim
M→0

FNU, FPM = lim
M→0,Δσ,0→0

FNU, FFM = lim
Δσ,0→0

FNU. (3.16)

In Fig. 3.3, we plot the difference between the unitary and non-unitary so-
lution at zero temperature, ΔF = FU − FNU, which clearly shows how the
system favors the non-unitary solution with spontaneous magnetization as Ĩ
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Figure 3.2: Self-consistently solved order parameters as a function of temperature for
Ĩ = 1.01. Note that the temperature axis is logarithmic, such that the
transition between the paramagnetic and ferromagnetic phase is much
higher than the superconducting phase transitions. However, we are
able to tune Ĩ such that Tc,M and Tc,σ become comparable. We have
also plotted the gaps with self-consistently solved values at T = 0 and
then applying a BCS-temperature dependence (solid black lines), which
yield excellent consistency with the solution that does not assume a BCS-
temperature dependence.

increases. As a result, we suggest that the coexistent phase of ferromagnetism
and superconductivity should be realized at sufficiently low temperatures when-
ever a magnetic exchange energy is present. For consistency, we also verified
that FNU < FFM at T = 0 since the system otherwise would prefer to leave
superconductivity out of the picture and stay purely ferromagnetic.

Specific heat

We next consider some experimental signatures that could be expected in the
different possible phases of a FMSC. To illustrate how the superconductivity
pairing symmetry leaves important fingerprints in the heat capacity, we solved
self-consistently for the specific heat capacity using two values of Ĩ correspond-
ing to a strong (M̃ � 0.5) and weak (M̃ � 0.1) exchange splitting. Recall that
in general, a higher value of the exchange coupling Ĩ favors a stronger magne-
tization. At Ĩ = 1.01, the discontinuity is clearly pronounced for T = Tc,↑, but
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Figure 3.3: Comparison between the free energy for the non-unitary and unitary su-
perconducting state at zero temperature. It is seen that these values are
equal for Ĩ = 1 (and for Ĩ < 1), while the non-unitary state is energet-
ically favored for increasing ferromagnetic exchange energy. Thus, the
coexistent phase should be realized at sufficiently low temperatures in
the presence of a ferromagnetic exchange energy.

it is hardly discernable at T = Tc,↓. However, for Ĩ = 1.0005 where the super-
conductivity transition temperatures for majority and minority spins become
comparable, a clear double-peak signature is revealed in the heat capacity. We
thus propose that this particular feature should serve as unambigous evidence
of a superconducting pairing corresponding to the A2-phase of liquid 3He in
ferromagnetic superconductors, where both spin species are paired.

A classic feature of the BCS-theory of superconductivity was the prediction
that the jump in the heat capacity at Tc normalized on the normal-state value
was a universal number, namely(ΔCV

CV

)∣∣∣
T=Tc

� 1.43. (3.17)

In the presence of a net magnetization, one would expect that the universality
of this ratio would break down and depend on the strength of the exchange
energy. This is due to the fact that the discontinuity in the specific heat at the
superconducting transition is dominated by the majority-spin carriers, while
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Ĩ = 1.01 Ĩ = 1.005
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Figure 3.4: Specific heat capacity as a function of temperature for two values of Ĩ, cor-
responding to a strong exchange splitting (M̃ � 0.5) and a weak exchange
splitting (M̃ � 0.1). A double-peak signature is clearly visible when the
transition temperatures for the majority and minority spin bands are
comparable.

the total specific heat to a larger extent has contributions from both minority-
spin and majority spin carriers. To investigate this statement quantitatively,
we consider the jump in CV at T = Tc,↑ since no analytical approach is possible
at T = Tc,↓. We find that the normal (ferromagnetic) state heat capacity reads

CFM
V =

π2Tc,↑
3

∑
σ

Nσ(0), (3.18)

where Nσ(0) is the spin-resolved DOS at Fermi level, while the difference be-
tween the heat capacity in the coexistent state and the ferromagnetic state at
T = Tc,↑ reads

ΔCV =
1.742Δ2

↑,0(0)N↑(0)
2Tc,↑

. (3.19)

Since the zero-temperature value for the gap is Δ↑,0(0) = 1.76Tc,↑, one arrives
at (ΔCV

CV

)∣∣∣
T=Tc,↑

= 1.43
1

1 +
√

1−M̃
1+M̃

. (3.20)

The above equation reduces to the BCS-limit for complete spin-polarization
M̃ = 1 (zero DOS for spin-↓ fermions at Fermi level). As anticipated, the jump
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in CV depends on the exchange energy, as illustrated in Fig. 3.5. Of course,
in the unitary state M̃ = 0 the jump also reduces to the BCS value although
this is not seen from Eq. (3.20). The reason for this is that we have implicitly
assumed that M̃ �= 0 in the derivation of Eq. (3.20), taking Tc,↑ > Tc,↓. In the
case where these transition temperatures are equal, the contribution from both
is additive and equal [1.43/2, to be specific, as seen from Eq. (3.20)] and gives
the correct BCS result.

3.2.2 Interplay between spin-orbit coupling, ferromagnetism,
and superconductivity

The heavy-fermion compound UIr stands out even among unconventional super-
conductors, as it may exhibit no less than three broken symmetries under high
pressure: simultaneous ferromagnetism, superconductivity, and noncentrosym-
metricity in its crystal structure. This raises an intriguing question: what
happens when time-reversal symmetry is broken in a crystal that lacks a centre
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Figure 3.5: The discontinuity of the heat capacity at T = Tc,↑ as a function of ex-
change splitting [Eq. (3.20)]. It is seen that the BCS value is recovered
at M̃ = 1. Note that it would also be recovered at M̃ = 0, although this
is not shown explicitely in the figure. The reason for this is that we have
assumed that Tc,↓ �= Tc,↑. We have also plotted the numerical results
(�) for the jump with self-consistently solved OPs, i.e. without assum-
ing BCS temperature dependence, for Ĩ = {1.001, 1.005, 1.01, 1.02, 1.05},
which yield good agreement with the analytical solution Eq. (3.20).
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of inversion which at the same time superconducts? Spontaneous symmetry
breaking in condensed matter systems is conceptually of immense importance,
as it may provide clues for what could be expected in systems belonging to
vastly different areas of physics. The study of a condensed-matter system such
as UIr with multiple broken symmetries is likely to have impact on a number of
disciplines of physics, including such disparate phenomena as mass differences
between elementary particles and extremely dilute ultra-cold atomic gases.

We now study a model system of a non-centrosymmetric superconductor with
substantial spin-orbit coupling, which at the same time exhibits itinerant fer-
romagnetism. The origin of the SOC may be either that the crystal structure
lacks a center of inversion, such as in UIr, or due to a thin-film geometry where
the breakdown of inversion symmetry near the surface induces transverse elec-
trical fields, leading to the well-known Rashba SOC [54]. Our model should
therefore be relevant both to the non-centrosymmetric and centrosymmetric
heavy fermion compounds, since the SOC is considerable in any case due to the
high atomic number. Specifically, materials that exhibit coexistence of SC and
FM order and where SOC is large include UGe2 [2], URhGe [3], UCoGe [4], and
UIr [5]. For this model, we construct a mean-field theory, solve the saddle point
equations for the order parameters and study the effect of spin-orbit coupling
on the superconducting order parameters.

We now proceed to write down the effective Hamiltonian H = HN + HSC for
our system. In the normal state, the Hamiltonian in momentum-space reads
[45]

HN = H0 +
∑
kαβ

[c†kα(εk1̂ − hσ̂z + σ̂ · gk)αβckβ ], (3.21)

where H0 = INM2/2. Above, the dispersion relation εk is measured from
chemical potential μ, and the magnetization M = |M| is taken along the easy-
axis, while h = IM is the exchange splitting of the bands and gk is the SOC
vector. When superconductivity coexists with FM, the SC pairing is generally
believed to be non-unitary [55], characterized by dk × d∗

k �= 0. In such a sce-
nario, the SC order parameter couples to the spontaneous magnetization M
through a term γM · dk × d∗

k in the free energy, where the sign of γ is deter-
mined by the gradient of the DOS at Fermi level [56] and 〈Sk〉 = idk×d∗

k is the
spin associated with the Cooper pair. Thus, for γ < 0 it is expected that a SC
pairing state obeying idk × d∗

k ‖ M is energetically favored, implying that dk

must be complex-valued. Our model captures broken time-reversal symmetry
in addition to antisymmetric SOC. As shown by Anderson [57], the presence
of the latter is detrimental to spin-triplet SC pairing state, unless dk ‖ gk. In
our case, it is obvious that a non-unitary SC pairing state cannot satisfy this
condition since dk is complex, whereas gk must be real for the Hamiltonian to
be hermitian.

The SOC vector reads gk = −g−k, and we introduce gk = gk,x − igk,y for later
use. We consider the SOC in the Rashba form, namely gk = λ(ky,−kx, 0).
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This corresponds to a situation where an asymmetric potential gradient is
present along the z-axis, and is also the scenario realized in noncentrosym-
metric CePt3Si [58]. We have introduced fermion operators {ckσ} in a basis
ϕk = [ck↑, ck↓]T.

Diagonalizing the normal-state Hamiltonian yields the quasiparticle excitations
Ẽkσ = εk−σ

√
h2 + λ2k2, which due to the SOC are characterized by the pseu-

dospin σ = ±1. For later use, we define Nk = [1+λ2k2/(h+
√

h2 + λ2k2)2]−1/2.
The superconducting pairing is now assumed to occur between the excitations
described by ϕ̃k. Due to the presence of antisymmetric spin-orbit coupling, this
automatically leads to a mixed-parity SC state in the original spin basis. To
see this, we introduce

HSC =
1

2N

∑
kk′σ

Vkk′σ c̃†kσ c̃†−kσ c̃−k′σ c̃k′σ, (3.22)

and perform a standard mean-field decoupling, which after an additional di-
agonalization yields the total Hamiltonian in the superconducting state: H =
H0+Σkσ(Ẽkσ−Ekσ−Δ̃kσ b̃†kσ+2η†kσηkσ)/2, where Ekσ = (Ẽ2

kσ+|Δ̃kσ|2)1/2 and
{η†kσ, ηkσ} are new fermion operators. The merit of this procedure is that we
can now obtain simple self-consistency equations for the gaps Δ̃kσ, which may
then be transformed back to the gaps in the original spin-basis ϕk by means
of the unitary transformation Pk. We assume a chiral p-wave symmetry for
the gaps with a corresponding pairing potential Vkk′σ = −gsceiσ(φ−φ′), where
tanφ = kx/ky. The motivation for this is that this choice ensures that the
condition dk ‖ gk is satisfied exactly for h → 0. The condensation energy also
favors a fully gapped Fermi surface, which is the case here. The gaps obtain the
form Δ̃kσ = −σΔ̃σ,0eiσφ and we find a self-consistency equation of the standard
BCS form with a cutoff ω on the pairing-fluctuation spectrum which we do not
specify further. Moreover, Nσ(ε) is the pseudospin-resolved density of states
(DOS) for the Ẽkσ (σ=±) bands of the quasiparticle excitations, where

Nσ(ε) = mV kσ(ε)(2π2)−1/[1 − σmλ2/
√

h2 + λ2k2
σ(ε)],

kσ(ε) = [2(ε + μ)m + 2λ2m2 + 2σ
√

λ4m4 + 2λ2m3(ε + μ) + h2m2]1/2.
(3.23)

Introducing the DOS at the Fermi level for a normal metal N0 = mV
√

2mμ/π2

and defining c = gscN0/2, the analytical solution for the gaps reads

Δ̃σ,0 = 2ωe−1/[cRσ(0)], Rσ(ε) = 2Nσ(ε)/N0. (3.24)

With the analytical solution for Δ̃σ,0 in hand, we may exploit the unitary trans-
formation Pk to express the superconducting gaps in the original spin basis as
follows:

Δk↑ = −eiφ[Δ̃↑,0(N ↑
k)2 + Δ̃↓,0(N ↓

k)2λ2k2
↓(0)Λ2

k↓],

Δk↓ = e−iφ[Δ̃↓,0(N ↓
k)2 + Δ̃↑,0(N ↑

k)2λ2k2
↑(0)Λ2

k↑],

Δk↑↓ = −
∑

σ

Δ̃σ,0(N σ
k )2λ|kσ(0)|Λkσ, σ = ±1, (3.25)



34
Chapter 3. Interplay between ferromagnetism, noncentrosymmetricity,

and superconductivity in bulk materials

Figure 3.6: Self-consistent solution of the order parameters (a-d) as a function of the
FM exchange parameter Ĩ, the ratio between the singlet and triplet gaps
(e) RΔ = Δ↑↓/(Δ↑+Δ↓) and the maximal critical temperature (f) Tc,max

as a function of the FM exchange parameter Ĩ.

where we have defined N σ
k = Nk=kσ(0) and Λkσ = [h+

√
h2 + λ2k2

σ(0)]−1. Note
that in the original spin basis, the superconducting order parameter is in general
a mixture of triplet (Δkσ) and singlet (Δk↑↓) components. The self-consistency
equation for the magnetization is:

h +
Ĩ

4

∑
σ

∫
σdεRσ(ε)hε√

[h2 + λ2k2
σ(ε)](ε2 + Δ̃2

σ,0)
= 0, (3.26)

where the integration is over the bandwidth and Ĩ = IN0. Equations (3.25,
3.26) are the main analytical results of this work.

Let us briefly investigate some important limiting cases of Eq. (3.25). In the
absence of spin-orbit coupling (λ → 0), one finds N σ

k → 1 and Δkσ = Δ̃kσ

while Δk↑↓ = 0, such that we reproduce the results of Refs. [49, 45]. In the
absence of an exchange energy (h → 0), one finds that N σ

k → 1/
√

2 and Δk↑ =
−eiφ(Δ̃↑,0+Δ̃↓,0)/2, Δk↓ = e−iφ(Δ̃↑,0+Δ̃↓,0)/2, and Δk↑↓ = (Δ̃↓,0−Δ̃↑,0)/2. As
demanded by consistency, the triplet gaps are equal in magnitude since there is
no exchange field and the singlet component is nonzero since Δ̃↑,0 �= Δ̃↓,0 in gen-
eral. Finally, Eq. (3.26) reproduces the well-known Stoner criterion Ĩ ≥ 1 for
the onset of FM in the absence of SOC and superconductivity (λ → 0, gsc → 0).

We now focus on the general case in which h �= 0 and λ �= 0. First of all, we
must specify the range of the parameters in the problem that corresponds to a
physically realistic scenario. We allow h to range, in principle, from 0 to μ, the
latter denoting a fully polarized ferromagnet. As a convenient measure of the
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strength of SOC, we introduce the dimensionless quantity αsoc ≡
√

2λ2m/μ
which has a direct physical interpretation: namely, it is the ratio of the SOC
(at EF ) to the Fermi energy μ. The parameter αsoc is allowed to vary from
0 to δ, where δ denotes a fraction of the Fermi energy. We take δ = 0.5 as a
sensible upper limit. Note that generically, the SOC strength at the Fermi level
is different for the two quasiparticle bands, and moreover depends on h. For
a given value of h, one may derive that λ ≤ δμ/[2μm +

√
2m2(h2 + δ2μ2)]1/2

ensures that the spin-orbit energy is less than δ×μ for both quasiparticle bands.

In Fig. 3.6a-d, we present the self-consistent solutions for the order parameters
in Eqs. (3.25) and (3.26) as a function of the FM exchange parameter Ĩ for
several values of αsoc. We have defined Δσ = |Δkσ| and Δ↑↓ = |Δk↑↓|, and
fixed ω/μ = 0.01 and m/μ = 5 × 104 with c = 0.2, which are standard choices.
For αsoc = 0, the onset of FM occurs at Ĩ = 1.0 which lifts the degeneracy of
Δ↑ and Δ↓, while Δ↑↓ is always zero. Upon increasing αsoc, it is interesting
to note that the PM-FM transition occurs at lower values of Ĩ, indicating that
spin-orbit coupling favors ferromagnetic ordering. For αsoc �= 0, it is seen that
Δ↑↓ is also non-zero, although it becomes suppressed at the onset of ferromag-
netism. A common feature for all gaps is that they increase with αsoc in the
absence of ferromagnetism and deep inside the ferromagnetic phase Ĩ ≥ 1.02.
In the intermediate regime, there are crossovers between the gaps for different
values of αsoc due to the different onsets of ferromagnetic order. By comparing
the behaviour between the gaps for increasing Ĩ with αsoc �= 0, one infers that
Δ↓ and Δ↑↓ eventually saturate at a constant non-zero value, while Δ↑ contin-
ues to increase steadily. This is quite different from the case when αsoc = 0,
where the minority spin-gap goes to zero rapidly with increasing Ĩ. This seems
to suggest that the presence of spin-orbit coupling in the system ensures the
survival of the minority-spin gap Δ↓ and the singlet gap Δ↑↓ even though the
FM exchange energy becomes strong.

In Fig. 3.6e and 3.6f, we plot the ratio of the singlet and triplet gaps, defined
as RΔ = Δ↑↓/(Δ↑ + Δ↓), and the maximal critical temperature Tc,max for the
onset of superconductivity. It is seen from the left panel that RΔ increases with
αsoc in the PM regime, suggesting that the singlet component becomes more
prominent in the system as compared to the triplet gaps. However, at the onset
of FM order, RΔ decreases since the singlet component becomes suppressed
by the Zeeman-splitting. In the right panel, one observes that Tc,max increases
both with αsoc and Ĩ. Our findings suggest that the presence of antisymmetric
SOC, originating from e.g. noncentrosymmetricity of the crystal structure, en-
hances both the tendency towards ferromagnetism and the magnitude of the SC
gaps in all spin channels. In the absence of spin-orbit coupling, it was shown in
the previous section that the simultaneous coexistence of FM and non-unitary
triplet superconductivity is the thermodynamically favored state as compared
to the pure normal, FM, or SC state. Since the presence of spin-orbit coupling
is seen to enhance both the FM and SC order parameters, it is reasonable to
expect that the coexistent state is still thermodynamically the most favorable
one even when αsoc �= 0.
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Chapter 4

Superconducting
proximity-effect in graphene

In recent years, a monolayer of graphite, known as graphene, has attracted an
enormous interest from a broad range of physics communities. The interest
pertains to the fact that graphene is a low-dimensional condensed matter sys-
tem which displays highly unusual electronic properties. While the electronic
correlations in pure graphene are in general quite weak (the Coulomb inter-
action may be neglected in many cases), experimentalists have succeeded in
inducing superconducting correlations in graphene by means of the proximity
effect to a host material. In this chapter, we explore the fascinating interplay
between superconductivity, ferromagnetism, and the remarkable properties of
charge carriers in graphene. Papers VII, IX, X, and XIII fall into this subcate-
gory.

4.1 Fundamental concepts

4.1.1 Electronic properties of pure graphene

The most striking and crucial factor that determines the behavior of the elec-
trons in graphene is the low-energy band dispersion. In undoped graphene, the
Fermi surface reduces to six points in the Brillouin zone, all of which display a
conical ”valley” structure for the band dispersion. Only two of these six point
are inequivalent, and they are conventionally referred to as Dirac points and
dubbed K and K ′. The band dispersion of graphene was first calculated by
Wallace [59], and reads

E = ±γ0

[
1 + 4 cos

(√3kxa

2

)
cos

(kya

2

)
+ 4 cos2

(kya

2

)]1/2
, (4.1)

where γ0 � 2.5 eV, and the ± sign refers to the anti-bonding/bonding π-orbital.
The remaining three valence electrons are in hybridized sp2 σ-bonds. The en-
ergy dispersion in the Brillouin zone is plotted in Fig. 4.1, which reveals the
conical structure of the conduction and valence bands at the six Fermi points.

37
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The cosine-like conduction and valence bands are made up by a mixture of the
energy bands from the sublattices in graphene, which are linear near the Fermi
level. This gives rise to the conical energy dispersion at the Dirac points K and
K ′.

Figure 4.1: a) The energy dispersion for graphene in the Brillouin zone. The upper
band is the antibonding π-orbital, while the lower band is the bonding
π-orbital. It is seen that the bands touch at Fermi level (EF = 0) at six
discrete points, which constitutes the effective Fermi surface. b) Contour
plot of the dispersion relation, clearly showing the hexagonal structure of
the Fermi points. The center of each drop-like structure represents either
K or K ′.

The linear energy dispersion relationship near the Dirac points K and K ′ has
paramount consequences for the charge-carriers: it renders them massless and
makes the Fermi-velocity energy-independent. Due to the low density of states
in undoped graphene, it is possible to alter the position of the Fermi level
externally by means of a local gate voltage, which induces an electric field-
effect. We underline here that by undoped graphene, we have in mind a Fermi
level which is close the the charge neutrality point, while with doped graphene
we mean a situation where the Fermi level is raised by either chemical doping
or an electric field-effect, thus creating a finite Fermi surface. The magnitude
of spin-orbit coupling in graphene is weak due to the low atomic number of
carbon (Z = 6), and Coulomb repulsion may also be neglected compared to
the kinetic energy. This might seem paradoxical in light of the low density
of states, since a standard Thomas-Fermi argument would imply an extremely
poor screening of the Coulomb repulsion. The resolution to this problem is
found by considering the renormalization group (RG) properties of the Fermi
velocity graphene [60, 61]. The importance of Coulomb interaction in graphene
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is governed by the parameter [62]:

λ =
Ne2

16εvF
, (4.2)

where N is the spin-degeneracy factor, ε is the dielectric constant in vacuum,
while vF is the Fermi velocity. Whenever λ � 1, the Coulomb interactions
may be disregarded. In the low-energy regime, a RG analysis reveals that the
Fermi velocity in graphene is renormalized in a fashion that makes it formally
diverge logarithmically close to the Dirac points, thus leading to a vanishing
of the interaction parameter, λ → 0. So even if the Coulomb interaction in
graphene is not screened as in conventional metallic systems, the Coulomb
interaction essentially self-destructs since it adds a self-energy correction to
the renormalized Fermi velocity which makes it diverge. In practice, the Fermi
velocity in graphene in the low-energy regime is of course limited and given by
vF � 106 m/s.

4.1.2 Proximity-induced correlations in graphene and charge
inhomogeneities

The proximity effect exploits the spatial vicinity of a host material with certain
desirable properties to a compound in which one wishes to induce these prop-
erties. In this way, Heersche et al. [63] deposited superconducting leads on top
of a graphene sheet to induce superconductivity, and were able to measure a
Josephson current between the leads. Prior to this experiment, Beenakker [64]
had discovered some properties of Andreev reflection in graphene which were
quite distinct from conventional metallic systems, while Titov and Beenakker
[65] correctly had predicted a non-vanishing Josephson current in graphene even
at the charge neutrality point. Recently, it was also proposed [66, 67, 68] that
ferromagnetic correlations could be induced in graphene. In particular by means
of depositing a magnetic insulator on top of a graphene sheet, the resulting ex-
change splitting in graphene was estimated to h � 5 meV [68].

In an idealized model of graphene the chemical potential is taken to be spatially
constant, which usually makes analytical considerations tractable. However,
intrinsic disorder effects in graphene will alter this physical picture. By means
of scanning single electron transistor techniques, it was shown in Ref. [69] that
the carrier density landscape of graphene is subject to charge inhomogeneities
in form of electron-hole puddles, as shown in Fig. 4.2. This observation is of
importance with regard to the transport characteristics of graphene close to
the Dirac point [70]. In doped graphene, where a finite Fermi surface arises,
one would expect that the inhomogeneities should play a smaller role than in
undoped graphene where the Fermi level lies at the charge neutrality point.
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Figure 4.2: Scanning single electron transistor image of the charge inhomogeneities
in a graphene sheet, manifested through the separation of charge into
electron-hole puddles. Shown is a contour plot of the carrier density in
the xy-plane of the graphene sheet. The image is taken from Ref. [69].

4.2 Research highlights

4.2.1 Conductance spectra of N/S graphene junctions

Graphene N/S interfaces contain a new phenomenology compared to their
metallic counterpart, namely the possibility of specular Andreev-reflection (AR)
[64]. In the process of normal AR, an incident electron from the N side is re-
flected as a hole which retraces the trajectory of the electron. In specular AR,
the reflected hole follows the trajectory which a normally reflected electron
would have. Depending on whether the graphene is doped or not, specular and
normal AR will compete with each other, also depending on the position of the
Fermi level with respect to the gap.

To illustrate the new physics at hand, consider a graphene sheet in which super-
conductivity is induced at x > w, while the graphene sheet is normal for x < w.
To model the presence of a barrier region, we allow a gate voltage to alter the
Fermi level in the region 0 < x < w. In order to treat the scattering processes
at the interfaces of the N/I/S junction, we make use of the full Bogoliubov-de
Gennes (BdG) equation for the 2D sheet of graphene in the xy-plane, assuming
that the clean limit is reached. These equations read

(
Ȟ − εF1̌ Δk1̌

Δ†
k1̌ εF1̌ − Ť ȞŤ −1

)
Ψ = εΨ, (4.3)
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where ε is the excitation energy, and Ψ is the wave-function. We use .̌.. for 4×4
matrices, .̂.. for 2×2 matrices, and boldface notation for three-dimensional row
vectors. Neglecting the decay of the order parameter in the vicinity of the inter-
face, we may write for the spin-singlet order parameter Δk = Δ(θ)eiϑΘ(x−w),
where Θ(x) is the Heaviside step function, while ϑ is the phase correspond-
ing the globally broken U(1) symmetry in the superconductor. We consider the
weak-coupling limit with the momentum k fixed on the Fermi surface, such that
Δk only has an angular dependence θ = atan(ky/kx). Note that in contrast to
previous work, we allow for the possibility of unconventional superconductivity
in the graphene layer since Δk now may be anisotropic.

Postulating a spin-singlet even parity order parameter, the condition Δ(θ) =
Δ(π + θ) must be fulfilled. The single-particle Hamiltonian is given by Ȟ =
diag(Ĥ+, Ĥ−), Ĥ± = −ivF(σ̂x∂x ± σ̂y∂y). Here, vF is the energy-independent
Fermi velocity for graphene, while σ̂i denotes the Pauli matrices. For later use,
we also define the Pauli matrix vector σ̂ = (σ̂x, σ̂y, σ̂z). These Pauli matri-
ces operate on the sublattice space of the honeycomb structure, corresponding
to the A and B atoms, while the ± sign refers to the two so-called valleys of
K and K ′ in the Brillouin zone. The spin indices may be suppressed since
the Hamiltonian is time-reversal invariant. In addition to the spin degeneracy,
there is also a valley degeneracy, which effectively allows one to consider either
one of the Ĥ± set. We choose Ĥ+, and consider an incident electron from the
normal side of the junction (x < 0) with energy E. For positive excitation
energies ε > 0, the eigenvectors and corresponding momentum of the particles
read ψe

+ = [1, eiθ, 0, 0]Teipe cos θx, pe = (ε + εF)/vF, for a right-moving electron
at angle of incidence θ, while a left-moving electron is described by the sub-
stitution θ → π − θ. If Andreev-reflection takes place, a left-moving hole with
energy ε and angle of reflection θA is generated with belonging wave-function
ψh− = [0, 0, 1, e−iθA ]Te−iph cos θAx, ph = (ε − εF)/vF, where the superscript e
(h) denotes an electron-like (hole-like) excitation. Since translational invari-
ance in the ŷ-direction holds, the corresponding component of momentum is
conserved. This condition allows for determination of the Andreev-reflection
angle θA through ph sin θA = pe sin θ. One thus infers that there is no Andreev-
reflection (θA = ±π/2), and consequently no subgap conductance, for angles of
incidence above the critical angle θc = asin[|ε − εF|/(ε + εF)].

On the superconducting side of the system (x > w), the possible wavefunctions
for transmission of a right-moving quasiparticle with a given excitation energy
ε > 0 reads

Ψe
+ = [u(θ+), u(θ+)eiθ+

, v(θ+)e−iφ+
, v(θ+)ei(θ+−φ+)]Teiqe cos θ+x,

qe = (ε′F +
√

ε2 − Δ2)/vF,

Ψh
− = [v(θ−), v(θ−)eiθ− , u(θ−)e−iφ−

, u(θ−)ei(θ−−φ−)]Teiqh cos θ−x,

qh = (ε′F −
√

ε2 − Δ2)/vF. (4.4)

The coherence factors are given by u(θ) = [12(1 +
√

ε2 − |Δ(θ)|2/ε)]1/2, v(θ) =
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[12(1 −
√

ε2 − |Δ(θ)|2/ε)]1/2. Above, we have defined θ+ = θe
S, θ− = π − θh

S,
and eiφ±

= eiϑΔ(θ±)/|Δ(θ±)|. The transmission angles θ
(i)
S for the electron-like

(ELQ) and hole-like (HLQ) quasiparticles are given by q(i) sin θ
(i)
S = pe sin θ,

i=e,h. Also, ε′F is the Fermi level in the superconducting region, and the corre-
sponding Fermi wavelength is λ′ = vF /ε′F. Note that for subgap energies ε < Δ,
there is a small imaginary contribution to the wavevector, which leads to expo-
nential damping of the wavefunctions inside the superconductor. For clarity, we
have omitted a common phase factor eikyy which corresponds to the conserved
momentum in the ŷ-direction. A possible Fermi vector mismatch (FVM) be-
tween the normal and superconducting region is accounted for by allowing for
ε′F �= εF. The case ε′F � εF corresponds to a heavily doped superconducting re-
gion. Since we are using a mean-field approach to describe the superconducting
part of the Hamiltonian, it is implicitly understood that phase-fluctuations of
the order parameter must be small. This amounts to imposing the restriction
[71] ξ/λ′ � 1, or equivalently, ε′F � Δ.

Considering here values of the Fermi level far away from the neutrality point,
the conductance of the N/I/S junction is given by [21]

G(eV ) = GN

∫ π/2

−π/2
dθ cos θ[1 − |r(eV, θ)|2 + P |rA(−eV, θ)|2], (4.5)

where r and rA are the reflection coefficients for normal and Andreev reflection,
respectively, P = Re{cos θA}/ cos θ, while GN =

∫ π/2
−π/2 dθ cos θ[4 cos2 θ/(4 cos2 θ+

Z2)] is a renormalization constant corresponding to the N/N metallic conduc-
tance [72]. In this case, we have zero intrinsic barrier such that Z = 0. The
reflection and transmission coefficients constitute a unitary scattering matrix,
a property that essentially expresses a conservation of probability. In deriv-
ing the conductance, we have ensured that the scattering coefficients have
been normalized by the incoming current through the factor P . In order to
obtain these coefficients, we make use of the boundary conditions ψ|x=0 =
ψ̃I|x=0, ψ̃I|x=w = ΨS|x=w, where we have defined the wavefunction in the in-
sulating region ψ̃I = t̃1ψ̃

e
+ + t̃2ψ̃

e− + t̃3ψ̃
h
+ + t̃4ψ̃

h−. The wavefunctions ψ̃ differ
from ψ in that the Fermi energy is greatly shifted by means of e.g. an external
potential, such that εF → εF−V0 where V0 is the barrier (equivalent to the role
of Z in Ref. [21]). The coefficients r and rA may now be obtained by using the
boundary conditions.

In the thin-barrier limit defined as w → 0 and V0 → ∞ with s-wave pairing, Ref.
[73] reported a π-periodicity of the conductance with respect to the parameter
χ = V0d/vF. In the present study, we do not restrict ourselves to isotropic
pairing, nor to the thin-barrier limit, and show that new physics emerges from
the presence of a finite-width barrier. We measure the width w of region I in
units of λF and the potential barrier V0 in units of εF. The linear dispersion
approximation is valid up to � 1 eV [59], and we set εF/Δ = 100. In the doped
case (referring here to a strong FVM between the N and S region), we set
ε′F = 10εF, and we also fix V0 = 10εF in order to operate within the regime of
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validity of the linear dispersion approximation. In the undoped case (referring
here to the absence of a FVM between the N and S regions), we have ε′F = εF.
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Figure 4.3: Tunneling conductance of N/I/S graphene junction for both s-wave and d-
wave pairing in the undoped and doped case (see main text for parameter
values). It is seen that for increasing w, a novel oscillatory behavior of
the conductance as a function of voltage is present in all cases.

Consider Fig. 4.3 where we plot the normalized tunneling conductance in the
two cases of s-wave and d-wave pairing, for both doped and undoped graphene.
The most striking new feature compared to the thin-barrier limit is the strong
oscillation of the conductance as a function of eV . We also include the thin-
barrier limit with χ = 0 and χ = π to illustrate the π-periodicity in this limit.
For subgap energies, we regain the N/S conductance for undoped graphene
when χ = 0, with nearly perfect Andreev reflection. To model the d-wave pair-
ing, we have used the dx2−y2 model Δ(θ) = Δ cos(2θ − 2α) with α = π/4. The
parameter α effectively models different orientations of the gap in k-space with
regard to the interface, and α = π/4 corresponds to perfect formation of ZES in
N/S metallic junctions. For α = 0, the d-wave spectra are essentially identical
to the s-wave case, since the condition for formation of zero-energy states (ZES)
is not fulfilled in this case [74, 75]. It is seen that in all cases shown in Fig. 4.3
the conductance exhibits a novel oscillatory behavior as a function of applied
bias voltage eV as the width w of the insulating region becomes much larger
than the Fermi wavelength, i.e. w � λF.

The oscillatory behavior of the conductance may be understood as follows.
Non-relativistic free electrons with energy ε impinging upon a potential bar-
rier V0 are described by an exponentially decreasing non-oscillatory wavefunc-
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tion eikx inside the barrier region if ε < V0, since the dispersion essentially is
k ∼

√
ε − V0. Relativistic free electrons, on the other hand, have a dispersion

k ∼ (ε − V0), such that the corresponding wavefunctions do not decay inside
the barrier region. Instead, the transmittance of the junction will display an
oscillatory behavior as a function of the energy of incidence ε. In general, a
kinetic energy given by ∼ kα will lead to a complex momentum k ∼ (ε−V0)1/α

inside the tunneling region, and hence damped oscillatory behavior of the wave
function. Relativistic massless fermions are unique in the sense that only in this
case (α = 1) is the momentum purely real. Hence, the undamped oscillatory
behavior at sub-gap energies appears as a direct manifestation of the relativistic
low-energy Dirac fermions in the problem. This observation is also linked to
the so-called Klein paradox which occurs for electrons with such a relativistic
dispersion relation, which has been theoretically studied in normal graphene
[76].

4.2.2 Josephson current in S/F/S graphene junctions

Currently, it is of considerable interest, and potentially of technological im-
portance, to investigate how the unusual low-energy electronic properties of
graphene manifest themselves in heterostructures where proximity effects are
prominent. In particular, potential for future applications in devices seems
plausible if such proximity-structures would combine two major functionalities
in materials science, namely magnetism and superconductivity.

Figure 4.4: The Andreev bound state ε+ [Eq. (2.20)] for Δφ = π/2.

Here, we investigate the interplay between proximity-induced superconductivity
and ferromagnetism in a graphene layer, resulting in an unusual behavior of the
supercurrent through the system. Our main results are: i) The current-phase
relationship deviates strongly from sinusoidal behavior, indicating a significant
contribution from higher harmonics and ii) the critical current at the 0-π tran-
sition is finite and has a much larger value than the one observed in metallic
systems. The latter result suggests a very efficient performance of the device as
a supercurrent switch.



4.2. Research highlights 45

Figure 4.5: The Andreev bound state ε− [Eq. (2.20)] for Δφ = π/2.

We envisage an experimental setup where superconductivity is induced in two
parts of the graphene region by means of conventional superconductors, such
as Nb or Al, in close proximity. Between the superconducting regions, an ex-
change splitting is induced in the graphene layer by means of e.g. a magnetic
insulating material. Instead of using a magnetic insulator such as EuO, where
one in principle could tune the magnetization in the proximity layer with an ex-
ternal magnetic field, one also could envision using a multiferroic (e.g. BiFeO3)
or piezomagnetic material (e.g. FexNiyBz) in close proximity to the graphene
layer. Both of these classes of materials would offer the opportunity of tuning
the exchange field in the material by some external control parameter – electric
field due to the magnetoelectric coupling in the former case, and pressure in
the latter. Upon modifying the exchange field in the proximity layer of the
material, it is reasonable to assume that the proximity-induced exchange field
in graphene would also be altered. Materials in which the magnetoelectric cou-
pling is substantial are currently attracting much interest due to their potential
for novel technological applications [77]. In order to control the local Fermi level
in the ferromagnetic (F) region, one could possibly use a normal gate on top
of the magnetic insulator to create a tunable barrier [68]. The superconduct-
ing (S) regions are assumed to be heavily doped, such that the Fermi energy
satisfies εF � Δ, while the F region is taken be undoped, i.e. ε′F � 0. More-
over, we assume sharp edges for the region separating the F and S graphene
regions, and focus on the short-junction regime which is experimentally feasible.

Let us now present our results in detail. The F region separating the super-
conductors is taken to be undoped, such that the effective Fermi level is σh for
spin-σ electrons. The regions S must be strongly doped to justify the mean-
field treatment of superconductivity. We assume that this is comparable to the
estimated exchange-splitting in the F region [68, 67]. Thus, we take εF � h
to obtain analytically tractable results. To construct the scattering states that
carry the supercurrent across the F region, we write down the Bogoliubov-de
Gennes equations [64] in the presence of an exchange field h. The Bogoliubov-de
Gennes equation essentially describes the eigenstates of quasiparticles in each
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of the graphene regions and their belonging eigenvalues ε. It may be obtained
by diagonalizing the full Hamiltonian, and constitutes the foundation for con-
structing the scattering states which are involved in the transport formalism we
here use. For the spin-species σ, one finds that(

H0 − σh(x) σΔ(x)
σΔ∗(x) −H0 − σh(x)

) (
uσ

v−σ

)
= ε

(
uσ

v−σ

)
. (4.6)

Here, we have made use of the valley degeneracy and defined H0 = vFp · σ,
where p is the momentum vector in the graphene plane and σ is a vector of Pauli
matrices. The superconducting order parameter Δ(x) couples electron- and
hole-excitations in the two valleys located at the two inequivalent corners of the
hexagonal Brillouin zone. The uσ spinor describes the electron-like part of the
total wavefunction ψσ = (uσ, v−σ)T, and in this case reads uσ = (ψσ

A,+, ψσ
B,+)T

while v−σ = T uσ. Here, T denotes the transpose while T is the time-reversal
operator. To capture the essential physics, we write Δ(x) = Δ0eiφL,R in the left
and right S region and Δ(x) = 0 otherwise. Similarly, we set h(x) = h in the F
region and h = 0 otherwise. The Josephson current is computed via the usual
energy-current relation summed over projections of all paths perpendicular to
the tunneling barrier [78]

IJ(Δφ) = −2e

�

∑
i

∫ π/2

−π/2

dγ cos γ

f−1[εi(Δφ)]
dεi(Δφ)

dΔφ
, (4.7)

where εi(Δφ) are the Andreev bound states carrying the current in the F re-
gion, and Δφ = φR − φL is the macroscopic phase difference between the su-
perconductors. The integration over angles γ takes into account all possible
trajectories and f(x) is the Fermi-Dirac distribution function. We define the
critical supercurrent as Ic = |max{IJ(Δφ)}| and introduce I0 = 2eΔ0. The
procedure for obtaining εi(Δφ) is the same as in Ref. [65]. Let us introduce
a parameter P = hd/vF which captures the effect of both the exchange field
h and the length d of the junction. To understand the nature of the Andreev
bound states, consider Figs. 4.4 and 4.5 for a representative plot of ε±(Δφ),
using Δφ = π/2. As is seen from both plots, the bound state energies exhibit a
strong oscillatory dependence on the parameter P . This indicates that similar
oscillatory behavior may be expected in the supercurrent itself. Interestingly,
the oscillations seen in Figs. 4.4 and 4.5 are not damped with increasing P .
This directly reflects the Dirac-cone linear dispersion of the graphene electrons
and is reminiscent of the weak damping of conductance oscillations at subgap
energies in graphene-superconductor junctions [79, 76].

The current-phase relationship for the S/F/S graphene junction is shown in
Fig. 4.6. With increasing P , the critical current gets suppressed and finally
the sign of the current is changed. Remarkably, the critical current never goes
to zero. An interesting feature of the plot in Fig. 4.6a) is that the disconti-
nuity at Δφ = π for P = 0 is split for increasing P . The discontinuity of the
current-phase relation originates with a crossing of Andreev levels in the normal
graphene (F graphene with h = 0) region at Δφ = π. For Δφ ∈ [0, π), only the
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Figure 4.6: a) Current-phase relationship in the S/F/S graphene junction with un-
doped F region. We have fixed εF = h and set ε′F = 0. We have used
values of P in the interval [0.0, 1.2] in steps of 0.2. b) Current-phase rela-
tionship in the S/F/S graphene junction with doped F region. We have
set εF/Δ0 = 10, ε′F/Δ0 = 15, d/ξ = 0.05 and vary h/Δ0 in the range
[0, 5] in steps of 1.

0-mode Andreev bound state carries the current. For Δφ ∈ (π, 2π], the π-mode
Andreev bound state carries the current, such that there is an abrupt crossover
exactly at Δφ = π. The situation changes when h �= 0, since the spin-splitting
doubles the number of Andreev bound states. Consequently, the crossover be-
tween different modes may occur at Δφ �= π, as a result of the superharmonic
current-phase relationship. We have checked explicitly that the strong devia-
tion from a sinusoidal current-phase relationship persists for larger d that do
not satisfy d/ξ � 1. However, in this case one should strictly speaking also
include the contribution to the current from the continuum of supergap states
[78]. This requires a separate study, and we here focus on the short-junction
regime.

To show that the splitting of this discontinuity originates with the presence of
an exchange field which separates the spin-↑ and spin-↓ bands, we have also
numerically solved the current-phase relationship for a nonzero Fermi level in
the ferromagnetic region. Although we have obtained analytical results in this
regime, these are somewhat cumbersome and therefore omitted here. The result
is shown in Fig. 4.6b) where we have chosen Δ0 = 1 meV, εF = 10 meV, and
ε′F = 15 meV, and varying h in the range [0, 5] meV. This ensures that there
are no evanescent modes, such that only the Andreev bound states carry the
current. We choose a junction with d/ξ = 0.05, where ξ is the superconducting
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coherence length, since the short junction regime d � ξ is the experimentally
most relevant one. The figures in a) and b) correspond to two quite different
regimes: in a) the exchange field is much larger than the Fermi level while in
b) the exchange field is much smaller than the Fermi level. The trend is never-
theless seen to be the same in both cases, namely a progressive splitting of the
discontinuity located at Δφ = π in the paramagnetic case.

Assuming a heavily doped superconducting region with εF = 10 meV and an
effective gap Δ0 of 1 meV, a mean-field treatment is justified by εF � Δ0.
Moreover, the short-junction regime requires that d � ξ. Using vF � 106 m/s
in graphene, we obtain from ξ = vF /Δ that d � 650 nm is required.

0 1 2 3 4 5
0

0.5

1

1.5

2

P

I c
/
I 0

SS F

d
= hεF

Figure 4.7: The critical supercurrent in a proximity-induced S/F/S graphene junction
for εF = h and ε′F = 0.

This condition has been met in at least two experimental studies of proximity-
induced superconductivity in graphene [63, 80]. The critical supercurrent Ic for
an S/F/S graphene junction for εF = h and ε′F = 0 is shown in Fig. 4.7. The
critical current shows oscillations with respect to P , but decays weakly com-
pared to the metallic case and never reaches Ic = 0 in the relevant regime. For
instance, there is a factor � 100 in reduction of the amplitude of the current
right after the second cusp in the metallic case for h � 10Δ0 (see Fig. 2 in
Ref. [81]) while there is only a factor � 2 in reduction of the amplitude in the
present case. Right at the cusps located at P � {0.8, 2.8, 4.4}, there is a large
residual value of the supercurrent which should be experimentally detectable.
This is very distinct from the usual sinusoidal current-phase relationship for
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the Josephson current, in which the supercurrent vanishes completely at the
0-π transition. The first switch occurs at a value P = hd/vF ≈ 0.8. For an
exchange splitting of h � 10 meV, this requires a junction width d = 50 nm.
Alternatively, employing a junction width of d = 100 nm [63, 80] one would
need an exchange splitting of h � 5 meV [68].

In order to explain the appearance of cusps in the critical current dependent
on exchange field and junction width, it is instructive to draw parallels to the
metallic S/F/S junction and the behavior of the supercurrent. In most ex-
perimental situations, the effective barriers separating the F and S regions are
strong, leading to a current-phase relationship which is very nearly sinusoidal,
i.e. Ic = I0 sin Δφ [15]. By tuning the temperature T and width of the junction
d, one is able to switch the sign of the amplitude I0, which necessarily means
that one must have I0 = 0 at some point. Precisely such behavior has been ob-
served in several experiments [14, 82]. In the present system, the current-phase
relationship deviates strongly from sinusoidal behavior, and contains a signif-
icant contribution from higher harmonics. Tracking the absolute value of the
current with increasing P from Fig. 4.6, it is seen that Ic never becomes zero.
Instead, it has a large residual value at the points where the current changes
sign. While a small, but finite value of the supercurrent at the 0-π transition
also has been observed in metallic S/F/S junctions [83], the magnitude of the
residual value of the supercurrent in the graphene case is huge compared to the
metallic case.
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Chapter 5

Conclusion and outlook

In this thesis, we have investigated how superconductivity and ferromagnetism
affect each other in several contexts. We have considered artificially created
proximity structures of alternating superconducting and ferromagnet layers, as
well as coexistence of the two orders in a bulk material. We have mainly focused
on thermodynamic and transport properties of the systems under consideration.
Some of our main results are listed below.

• We find an abrupt pairing state transition from an even-to odd-frequency
symmetry in a normal metal/superconductor bilayer with a magnetic in-
terface, which occurs both in the diffusive and ballistic limit and indepen-
dently of most junction parameters.

• We have studied how spin-orbit coupling arising out of a noncentrosym-
metric crystal lattice structure influences ferromagnetic and supercon-
ducting order, presenting a self-consistent, analytical solution for the or-
der parameters in the low temperature limit.

• We have studied the transport properties of graphene under the influence
of a superconducting proximity effect, unveiling in particular a highly un-
usual behavior of the supercurrent in an S/F/S graphene heterostructure.

The interplay between ferromagnetism and superconductivity is presently a
hot research field with a lot of activity. We here venture some suggestions for
interesting future directions of research in this field, some of which undoubtedly
will be pursued by the present author.

• In the vast majority of the literature so far, the influence of a current
on the magnetization dynamics in superconducting proximity-structures
has not received much attention. Nevertheless, one would expect some
interesting spin-transfer torque effects to take place in inhomogeneous
ferromagnetic structures. For instance, is it possible to obtain magneti-
zation switching or current-induced domain wall motion by means of a
Josephson current?

• A spontaneous vortex phase is likely to appear in ferromagnetic supercon-
ductors under general circumstances. In what way do the magnetic and
superconducting order parameters coexist in this arrangement?

51
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• The high electron mobilities in graphene and the long spin relaxation
length ∼ 1 μm at room temperature suggests that graphene is very suit-
able for spintronics applications. Is it possible to create superconducting
spin-valves of graphene? How would the non-local processes of crossed
Andreev-reflection and elastic co-tunneling be influenced by the Dirac-
like nature of the charge carriers in graphene?

These and several other interesting venues are likely to be explored within
short. Future challenges also include modelling the interface region between a
ferromagnet and a superconductor in a more realistic manner, as well as tak-
ing into account complicated magnetic textures in the ferromagnetic region.
For instance, inhomogeneous configurations of the magnetization texture (e.g.
domain walls) are likely to have a non-trivial effect on the proximity-induced su-
perconducting correlations. In the context of heavy-fermion compounds, there
is also a need for a theory that may capture the essential effect of the com-
plicated multiband structure near Fermi level which always is present for high
atomic number materials.

In conclusion, while much progress has been made in the field of unusual super-
conducting systems that include ferromagnetic elements, this rapidly evolving
field still offers many unresolved issues which need to be addressed in order to
gain a fuller understanding of the physics at hand.
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We study tunneling currents in a model consisting of two nonunitary ferromagnetic spin-triplet
superconductors separated by a thin insulating layer. We find a novel interplay between ferromagnetism
and superconductivity, manifested in the Josephson effect. This offers the possibility of tuning dissipa-
tionless currents of charge and spin in a well-defined manner by adjusting the magnetization direction on
either side of the junction.

DOI: 10.1103/PhysRevLett.97.147002 PACS numbers: 74.20.Rp, 74.50.+r

The coexistence of ferromagnetism (FM) and supercon-
ductivity (SC) has recently been experimentally confirmed
[1,2]. This offers the possibility of observing new and
interesting physical effects in the transport of spin and
charge. The spin-singlet character of Cooper pairs in con-
ventional superconductors suggests that FM and SC are
mutually excluding properties for a material. Indeed, co-
existence of magnetic order with singlet SC is not pos-
sible for uniform order parameters [3]. On the other
hand, spin-triplet Cooper pairs [4,5] are, in principle, per-
fectly compatible with ferromagnetism. For instance,
odd-in-frequency Sz � 0 spin-triplet superconductivity in
superconductor-ferromagnet structures has been much
studied in the literature [6]. The synthesis of superconduc-
tors exhibiting ferromagnetism, with simultaneously bro-
ken U(1) and O(3) symmetries, is of considerable interest
from a fundamental physics point of view and, moreover,
opens up a vista to a plethora of novel applications. This
has been the subject of theoretical research in, e.g.,
Ref. [7], and has a broad range of possible applications.
Also, focus on hybrid systems of ferromagnets and super-
conductors has arisen from the aspiration of utilizing the
spin of the electron as a binary variable in device applica-
tions. This has led to spin-current-induced magnetization
switching [8], and suggestions have been made for devices
such as spin-torque transistors [9] and spin batteries [10].
Moreover, spin supercurrents have a long tradition in 3He
[11], while recent work has focused on dissipationless spin
currents in unitary spin-triplet superconductors [12].

This Letter addresses the case of two p-wave super-
conductors arising out of a ferromagnetic metallic state,
separated by a tunneling junction. Such states have been
suggested to exist on experimental grounds, in compounds
such as RuSr2GdCu2O8 [13], UGe2 [1], and URhGe [2],
and have been studied theoretically in, e.g., Refs. [14–16].
Coexisting FM and spin-triplet SC have also been pro-
posed to arise out of half-metallic ferromagnetic materials
such as CrO2 and the alloys UNiSn and NiMnSb [17]. We
compute the Josephson contribution to the tunneling cur-
rents, in both the charge and spin channels, within linear
response theory using the Kubo formula. Our assumption is
that the superconducting order is that of spin-triplet pair-

ing, and we consider the analog of the A2 phase in 3He, i.e.,
SC order parameters that satisfy j�k""j � j�k##j � 0 and
�k"# � 0. In terms of the dk-vector formalism [11], we
then have a nonunitary state since the average spin hSki �
idk � d�

k � 1
2 �j�k""j2 � j�k##j2�ẑ of the Cooper pairs is

nonzero. Such a scenario is compatible with uniform FM
and SC, since the electrons responsible for ferromagnetism
below the Curie temperature TM condense into Cooper
pairs with magnetic moments aligned with the magnetiza-
tion below the critical temperature Tc. The choice of such a
nonunitary state is motivated by the fact that there is strong
reason to believe that the correct pairing symmetries in the
ferromagnetic superconductors (FMSC) discovered so far
are nonunitary [15,18,19]. The exchange field will also
give rise to a Zeeman splitting between the " and # con-
duction bands, thus suppressing the SC order parameter
�k"# [2], as illustrated in Fig. 1(b).

Another important issue to address is whether the SC
and FM order parameters coexist uniformly, or if they are
phase-separated. One possibility is that a spontaneously
formed vortex lattice due to the internal magnetization m is
realized in a spin-triplet FMSC [20]. However, there have
also been reports of uniform superconducting phases in
spin-triplet FMSC [21]. A key variable determining
whether a vortex lattice appears or not is the strength of
the internal magnetization m [22]. Current experimental
data on URhGe apparently do not settle this issue unam-
biguously, while uniform coexistence of FM and SC ap-
pears to have been experimentally verified in UGe2 [23].

z

L

R

Tunneling junction

k

εkσ

2ζz

↓ band

↑ band

kF↑kF↓

Fermi level

a) b)

Local xy  plane

idL × d∗
L ẑL

idR ×d∗
R ˆR

Cooper pairs

FIG. 1 (color online). (a) Tunneling of Cooper pairs between
two nonunitary FMSC with noncollinear magnetization.
(b) Band splitting for " and # electrons in the presence of a
magnetization in the ẑ direction, leading to a suppression of
interband pairing.
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Furthermore, a bulk Meissner state in the FMSC
RuSr2GdCu2O8 has been reported in Ref. [24], indicating
the existence of uniform FM and SC as a bulk effect.
Consequently, we will use bulk values for the order pa-
rameters and assume that they coexist uniformly. We em-
phasize that one, in general, should take into account the
possible suppression of the SC order parameter in the
vicinity of the tunneling interface due to the formation of
midgap surface states [25] which occur for certain orien-
tations of the SC gap. The pair-breaking effect of these
states in unconventional superconductors has been studied
in, e.g., Ref. [26]. A sizable formation of such states would
suppress the Josephson current, although it is nonvanishing
in the general case. Also, we use bulk uniform magnetic
order parameters, as in Refs. [27,28]. The latter is justified
on the grounds that a ferromagnet with a planar order
parameter is mathematically isomorphic to an s-wave su-
perconductor, where the use of bulk values for the order
parameter right up to the interface is a good approximation
due to the lack of midgap surface states. Moreover, we
consider thin-film FMSC such that the orbital effect does
not break the Cooper pairs. Our model is illustrated in
Fig. 1(a).

The main result of this Letter is that the Josephson
current in the spin and charge sectors between two non-
unitary FMSC can be controlled by adjusting the relative
magnetization orientation on each side of the junction
provided that spin-triplet Cooper pairs are present. Our
system consists of two FMSC separated by an insulating
layer such that the total Hamiltonian can be written asH �
HL �HR �HT , where L and R represent the individual
FMSC on each side of the tunneling junction, and HT
describes tunneling of particles through the insulating
layer separating the two pieces of bulk material. The
FMSC Hamiltonian is given by [16] HFMSC � H0 �P

k 
y
kAk k, where H0 � JN��0�m2 � 1

2

P
k�"k� �P

k���
y
k��bk��. Here k is the electron momentum, "k� �

"k � ��z, � �" , #� 	1, J is a spin coupling constant,
��0� is the number of nearest lattice neighbors, m �
fmx;my;mzg is the magnetization vector, while �k�� is
the superconducting order parameter and bk�� �
hc�k�ck�i is the two-particle operator expectation value.
The ferromagnetic order parameter is defined by � �
2J��0��mx � imy� and �z � 2J��0�mz. We express the
Hamiltonian in the basis  k � �ck"ck#cy�k"c

y
�k#�T , where

ck� (cyk�) are annihilation (creation) fermion operators.
Note that there is no spin-orbit coupling in our model;
i.e., inversion symmetry is not broken. Consider now the
4� 4 matrix

A k � � 1

2

�"k1� � 
 � idk 
 ��y
�idk 
 ��y�y �"k1� � 
 ��T

 !
(1)

which is valid for a FMSC with arbitrary magnetization. As
explained in the introduction, we will study in detail a
nonunitary equal-spin pairing (ESP) FMSC as illustrated

in Fig. 1(a), i.e., �k"# � �k#" � 0, � � 0 in Eq. (1). Since
the quantization axes of the two FMSC are not aligned, one
needs to include the Wigner d function [29] denoted by
D�0��#� with j � 1=2 to account for the fact that a " spin
on one side of the junction is not the same as a " spin on the
other side of the junction. The spin quantization axes are
taken along the direction of the magnetization on each side,
so that the angle # is defined by mR 
mL � mRmL cos�#�,
where mi � jmij. The tunneling Hamiltonian then reads
HT � P

kp��0D�0��#��Tkpcyk�dp�0 � T�
kpd

y
p�0ck��, where

we neglect the possibility of spin flips in the tunneling
process. The validity of the tunneling Hamiltonian ap-
proach requires that the applied voltage across the junction
is small. Here we will be concerned with the case of zero
bias voltage, so that the tunneling Hamiltonian approach is
appropriate. Note that we distinguish between fermion
operators on each side of the junction corresponding to
ck� and dk�. Furthermore, we write the superconducting
order parameters as �k�� � j�k��jei��k��R���, where R (L)
denotes the bulk superconducting phase on the right (left)
side of the junction, while �k is an internal phase factor
originating from the specific form of the gap in k space that
ensures odd symmetry under inversion of momentum, i.e.,
�k � ��k � �.

For our system, the Hamiltonian takes the form
HFMSC � H0 �HA, HA � P

k�	
y
k�Ak�	k�, where we

have chosen a convenient basis 	y
k� � �cyk�; c�k�� that

block diagonalizes Ak and defined Ak� � 1
4 �2"k��z �

�k����x � i�y� � �y
k����x � i�y��, with Pauli matrices

�i. This Hamiltonian is diagonalized by a 2� 2 spin
generalized unitary matrix Uk�, so that the superconduct-
ing sector is expressed in the diagonal basis ~	y

k� �
	y

k�Uk�  ��y
k�; ��k��. Thus, HA � P

k�
~	y
k�

~Ak�
~	k�,

in which ~Ak� � Uk�Ak�U�1
k� � diag� ~Ek�;� ~Ek��=2, and

~Ek� �
�������������������������������
"2k� � j�k��j2

q
.

In order to find the spin and charge currents over
the junction, consider first the generalized number
operator N�� � P

kc
y
k�ck�. The transport operator in

the interaction picture then reads _N���t� �
�iPkp��D���#�Tkpcyk��t�dp��t�e�iteV � D���#�T�

kp �
dyp��t�ck��t�eiteV�, where eV  
L �
R is an externally
applied potential. The general current across the junction
can be written

I �t� � X
��

���h _N���t�i; � � ��e1;�� (2)

such that the charge current is IC�t� � I0�t� while the spin
current reads IS�t� � �I1�t�; I2�t�; I3�t��. Note that Eq. (2)
contains both the single-particle (sp) and two-particle (tp)
contributions. The concept of a spin current in this context
refers to the rate at which the spin vector S on one side of
the junction changes as a result of tunneling across the
junction, i.e., _S � i�HT;S�. As there is no spin-orbit cou-
pling in our system, this definition of the spin current
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serves well [30]. The spatial components of IS are defined
with respect to the corresponding quantization axis. We
compute the currents by the Kubo formula h _N���t�i �
�iRt�1 dt

0h� _N���t�; HT�t0��i, where the right-hand side is
the statistical expectation value in the unperturbed quan-
tum state, i.e., when the two subsystems are not coupled.
We now focus on the two-particle charge current and ẑ
component of the spin current, such that only � � �
contributes in Eq. (2).

Using linear response theory with the Matsubara formal-
ism, one arrives at h _N���t�itp�2

P
� Imf����eV�e�2iteVg,

where ����eV� is obtained by performing analytical con-
tinuation i!n!eV� i0� (!n�2�nkBT, n � 1; 2; 3; . . . )
on ~����i!n� � �R1=kBT

0 d�ei!n�hT�M�����M���0�i,
where M���t� � P

kpD���#�Tkpcyk��t�dp��t�, while T is
the temperature, and T� denotes the time-ordering operator.
Explicitly, we find

����eV� � �X
kp

�;�	

D2
���#�jTkpj2

��
k���p��

4Ek�Ep�
��

kp���eV�;

(3)

where Ek� �
�������������������������������
�2k� � j�k��j2

q
, �k� � "k� �
R (R ! L

for k ! p), and ��
kp���eV� � limi!n!eV�i0���f�Ek�� �

f��Ep���=�i!� � Ek� � �Ep��; �,  � 	1.
In Eq. (3), we have used that T�k;�p � T�

kp, which
follows from time reversal symmetry, and f�x� is the
Fermi distribution. Note that the chemical potential has
been included in the excitation energies Ek�. In general,
Eq. (3) will give rise to a term proportional to cos��L�� �
�R���, the quasiparticle interference term, in addition to
sin��L�� � �R���, identified as the Josephson current. In
the following, we shall focus on the latter, while a com-
prehensive treatment of all terms will be given in Ref. [31].
Consider now the case of zero externally applied voltage
(eV � 0). From Eq. (2), we see that the Josephson charge
current becomes

ICJ � e
X

kp��

�1� �� cos#� cos��p � �k� sin��L��

� �R���jTkpj2j�k��jj�p��jF��kp =�Ek�Ep��; (4)

with F��kp � P
	�f�	Ek�� � f�Ep���=�Ek� � Ep��, while

the expression for ISJ;z is equal except for a factor ���=e�
inside the summation. Observing that Eq. (4) may be cast
into the form IJ � I0 � Im cos�#�, we have thus found a
Josephson current, for both spin and charge, that can be
tuned in a well-defined manner by adjusting the relative
orientation # of the magnetization vectors (for correspond-
ing results in spin-singlet superconductors with helimag-
netic order, see Refs. [28,32]). Below, we discuss the
detection of such an effect.

In the limit where one of the superconducting order
parameters vanishes internally on both sides, i.e., the
equivalent of an A1 phase, we see that the interplay be-

tween # and ��� remains, as only one term contributes to
the spin sum over f�;�g. In this case, the charge and spin
currents go as cos2�#=2� sin����, where ����  �L�� �
�R�� and �q��, with � � f"; #g, q � fk;pg, is the surviving
order parameter. For collinear magnetization (# � 0), an
ordinary Josephson effect driven by the superconducting
phase occurs. Interestingly, one is able to tune this current
to zero for mL k �mR (# � �).

Another result that can be extracted from Eq. (4) is a
persistent spin-Josephson current even if the magnetiza-
tions on each side of the junction are of equal magnitude
and collinear (# � 0). This is quite different from the
Josephson-like spin current recently considered in ferro-
magnetic metal junctions [27,28]. There, a twist in the
magnetization across the junction is required to drive the
spin-Josephson effect. In this Letter, however, we have
found a persistent spin current in the two-particle channel
even for collinear magnetization.

In the special case of eV � 0 and equal SC phases on
each side of the junction, i.e., �L�� � �R��, Eq. (4) reduces
to the form ISJ;z � J0sin2�#=2� sin��L## � �R""� while ICJ � 0.
This means that a two-particle spin current without any
charge current can arise for noncollinear magnetizations on
each side of the junction in the absence of an externally
applied voltage and with equal SC phases �L�� � �R��; see,
however, Ref. [33].

It is well known that, for tunneling currents flowing
in the presence of a magnetic field that is perpendicular
to the tunneling direction, the resulting flux threading the
junction leads to a Fraunhofer-like variation in the dc
Josephson effect, given by a multiplicative factor
sin���=�0�=���=�0� in the critical current. Here �0 �
�@=e is the elementary flux quantum, and � is the total
flux threading the junction due to a magnetic field.
However, this is not an issue in the present case, since
the magnetization is assumed to be oriented according to
Fig. 1(a). Since the motion of the Cooper pairs is also
restricted by the thin-film structure, there is no orbital
effect from such a magnetization.

Note that the interplay between ferromagnetism and
superconductivity is manifest in the charge as well as
spin currents, the former being readily measurable. Since
the critical Josephson currents depend on the relative mag-
netization orientation, one is able to tune these currents in a
well-defined manner by varying #. This can be done by
applying an external magnetic field in the plane of the
FMSC. In the presence of a rotating magnetic moment
on either side of the junction, the Josephson currents will
thus vary according to Eq. (4). Depending on the relative
magnitudes of I0 and Im, the sign of the critical current may
change. Note that such a variation of the magnetization
vectors must take place in an adiabatic manner so that the
systems can be considered to be in, or near, equilibrium at
all times. Our predictions can thus be verified by measuring
the critical current at eV � 0 for different angles # and
comparing the results with our theory. Recently, it has been
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reported that a spin-triplet supercurrent, induced by
Josephson tunneling between two s-wave superconductors
across a ferromagnetic metallic contact, can be controlled
by varying the magnetization of the ferromagnetic contact
[34]. Moreover, detection of induced spin currents are
challenging, although recent studies suggest feasible meth-
ods of measuring such quantities [35]. Observation of
macroscopic spin currents in superconductors may also
be possible via angle resolved photoemission experiments
with circularly polarized photons [36] or in spin-resolved
neutron scattering experiments [37].

We briefly mention our results in the single-particle
channel, where we find that the charge current and the ẑ
component of the spin current both vanish for eV � 0; see
Ref. [31] for details. They are nonzero for eV � 0 even if
the magnetization vectors are collinear. We stress that
the finding of a nonpersistent ẑ component of the
spin current does not conflict with the results of
Refs. [27,28], as their ẑ direction corresponds to a vector
in the xy plane in our system. For �k�� ! 0, ISsp�t� �
2
P

kp
P
��� D���#�D���#�jTkpj2 Imf����

1;1
����eV�g,

and the component of the spin current parallel to mL �mR

is seen to vanish for # � f0; �g at eV � 0 in agreement
with Refs. [27,28].

We reemphasize that the above ideas should be experi-
mentally realizable by, e.g., utilizing various geometries in
order to vary the demagnetization fields. One may also use
exchange biasing to an antiferromagnet to achieve non-
collinearity [38]. We have found an interplay between FM
and SC in the Josephson channel for charge and spin
currents when considering nonunitary spin-triplet ESP
FMSC with coexisting and uniform ferromagnetic and
superconducting order.
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A system exhibiting multiple simultaneously broken symmetries offers the opportunity to influence physical
phenomena such as tunneling currents by means of external control parameters. In this paper, we consider the
broken SU�2� �internal spin� symmetry of ferromagnetic systems coexisting with �i� the broken U�1� symmetry
of superconductors and �ii� the broken spatial inversion symmetry induced by a Rashba term in a spin-orbit
coupling Hamiltonian. In order to study the effect of these broken symmetries, we consider tunneling currents
that arise in two different systems; tunneling junctions consisting of nonunitary spin-triplet ferromagnetic
superconductors and junctions consisting of ferromagnets with spin-orbit coupling. In the former case, we
consider different pairing symmetries in a model where ferromagnetism and superconductivity coexist uni-
formly. An interplay between the relative magnetization orientation on each side of the junction and the
superconducting phase difference is found, similarly to that found in earlier studies on spin-singlet supercon-
ductivity coexisting with spiral magnetism. This interplay gives rise to persistent spin- and charge-currents in
the absence of an electrostatic voltage that can be controlled by adjusting the relative magnetization orientation
on each side of the junction. In the second system, we study transport of spin in a system consisting of two
ferromagnets with spin-orbit coupling separated by an insulating tunneling junction. A persistent spin-current
across the junction is found, which can be controlled in a well-defined manner by external magnetic and
electric fields. The behavior of this spin-current for important geometries and limits is studied.

DOI: 10.1103/PhysRevB.75.024508 PACS number�s�: 74.20.Rp, 74.50.�r

I. INTRODUCTION

Due to the increasing interest in the field of spintronics in
recent years,1 the idea of utilizing the spin degree of freedom
in electronic devices has triggered an extensive response in
many scientific communities. The spin-Hall effect is argu-
ably the research area which has received the most focus in
this context, with substantial effort being put into theoretical
considerations2 as well as experimental observations.3 In
spintronics, a main goal is to make use of the spin degree of
freedom rather than electrical charge, investigations of
mechanisms that offer ways of controlling spin-currents are
of great interest. The study of systems with multiple broken
symmetries is highly relevant in this context, since such sys-
tems promise rich physics with the opportunity to learn if the
tunneling currents can be influenced by means of external
control parameters such as electric and/or magnetic fields.
Here, we will focus on two specific systems: ferromagnetism
coexisting with superconductivity, which we shall refer to as
ferromagnetic superconductors �FMSC�, and systems where
ferromagnetism and spin-orbit coupling are present �FMSO�.
In terms of broken symmetries, we will then study the bro-
ken SU�2� �internal spin� symmetry of ferromagnetic sys-
tems coexisting with the broken U�1� symmetry of supercon-
ductors and also consider ferromagnets with broken
inversion �spatial� symmetry induced by a Rashba term in a
spin-orbit coupling Hamiltonian.

The coexistence of ferromagnetism �FM� and supercon-
ductivity �SC� has a short history in experimental physics,4–6

although a theoretical proposition of this phenomenon was
offered as early as 1957 by Ginzburg.7 Spin-singlet super-
conductivity originating with BCS theory seems to be ruled
out as a plausible pairing mechanism for a ferromagnetic

superconductor,8 at least with regard to uniform coexistence
of the FM and SC order parameters � and �, respectively. It
could be achieved for a superconductor taking up a so-called
Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state.9 However,
it seems likely that the coexistence of FM and SC call for10,11

p-wave spin-triplet Cooper pairs which have a nonzero mag-
netic moment. This type of pairing has been observed in
superfluid 3He, and is perfectly compatible with FM order.
Spin-triplet superconductivity has, moreover, been experi-
mentally verified12,13 in Sr2RuO4, and the study of such a
pairing in a FMSC could unveil interesting effects with re-
spect to quantum transport. The concept of simultaneously
broken U�1� and SU�2� symmetries are of great interest from
a fundamental physics point of view, and could be suggestive
to a range of novel applications. This topic has been the
subject of theoretical research in, e.g., Refs. 14–16.

In this paper, we follow up Ref. 17 with a more compre-
hensive study of the tunneling currents between two p-wave
FMSC separated by an insulating junction; RuSr2GdCu2O8,
UGe2, and URhGe have been proposed as candidates for
such unconventional superconductors.4–6 In our model, we
assume uniform coexistence of the FM and SC order param-
eters and that superconductivity arises from the same elec-
trons that are responsible for the magnetism. As argued in
Ref. 5, this can be understood most naturally as a spin-triplet
rather than spin-singlet pairing phenomenon. Furthermore, it
seems that SC in the metallic compounds mentioned above
always coexists with the FM order and is enhanced by it;18

the experiments conducted on the compounds UGe2 and
URhGe do not give any evidence for the existence of a stan-
dard normal-to-superconducting phase transition in a zero
external magnetic field, but instead indicate a phase corre-
sponding to a mixed state of FM and SC. We provide de-
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tailed calculations for single-particle and Josephson �two-
particle� tunneling between two nonunitary equal-spin
pairing �ESP� FMSC. We examine both the charge- and spin-
sector in detail within linear response theory using the Kubo
formula. We find that the supercurrent of spin and charge
may be controlled by adjusting the misorientation of the ex-
change fields on both sides of the junction. Such an effect
was first discovered by Kulic and Kulic,19 who derived an
expression for the Josephson current over a junction separat-
ing two BCS superconductors with spiral magnetic order. It
was found that the supercurrent could be controlled by ad-
justing the relative orientation of the exchange field on both
sides of the junction, a finding that quite remarkably sug-
gested a way of tuning a supercurrent in a well-defined man-
ner from, e.g., as 0- to �-junction. Later investigations made
by Eremin, Nogueira, and Tarento20 considered a similar sys-
tem as Kulic and Kulic,19 namely two Fulde-Ferrel-Larkin-
Ovchinnikov �FFLO� superconductors9 coexisting with heli-
magnetic order. Recently, the same opportunity was found to
exist in a FMSC/I/FMSC junction as shown by Grønsleth et
al.17

In the case of a system where both ferromagnetism and
spin-orbit coupling are present, it is clear that these are
physical properties of a system that crucially influence the
behavior of spins present in that system. For instance, the
presence of spin-orbit coupling is highly important when
considering ferromagnetic semiconductors.21,22 Such materi-
als have been proposed as devices for obtaining controllable
spin injection and manipulating single electron spins by
means of external electrical fields, making them a central
topic of semiconductor spintronics.23 In ferromagnetic met-
als, spin-orbit coupling is ordinarily significantly smaller
than for semiconductors due to the band structure. However,
the presence of a spin-orbit coupling in ferromagnets could
lead to new effects in terms of quantum transport.

Studies of tunneling between ferromagnets have uncov-
ered interesting physical effects.24–26 Nogueira et al.
predicted24 that a dissipationless spin-current should be es-
tablished across the junction of two Heisenberg ferromag-
nets, and that the spin-current was maximal in the special
case of tunneling between planar ferromagnets. Also, there
has been investigations of what kind of impact spin-orbit
coupling constitutes on tunneling currents in various con-
texts, e.g., for noncentrosymmetric superconductors27 and
two-dimensional electron gases coupled to ferromagnets.28

Broken time reversal- and inversion-symmetry are interest-
ing properties of a system with regard to quantum transport
of spin and charge, and the exploitment of such asymmetries
has given rise to several devices in recent years. For instance,
the broken O�3� symmetry exhibited by ferromagnets has a
broad range of possible applications. This has led to spin-
current-induced magnetization switching,29 and suggestions
have been made for more exotic devices such as spin-torque
transistors30 and spin-batteries.31 It has also led to investiga-
tions into such phenomena as spin-Hall effect in paramag-
netic metals,32 spin-pumping from ferromagnets into metals,
enhanced damping of spins when spins are pumped from one
ferromagnet to another through a metallic sample,33 and the
mentioned spin Josephson effects in ferromagnet/
ferromagnet tunneling junctions.24

Here, we study the spin-current that arises over a tunnel-
ing junction separating two ferromagnetic metals with sub-
stantial spin-orbit coupling. It is found that the total current
consists of three terms; one due to a twist in magnetization
across the junction �in agreement with the result of Ref. 24�,
one term originating from the spin-orbit interactions in the
system, and finally an interesting mixed term that stems from
an interplay between the ferromagnetism and spin-orbit cou-
pling. After deriving the expression for the spin-current be-
tween Heisenberg ferromagnets with substantial spin-orbit
coupling, we consider important tunneling geometries and
physical limits of our generally valid results. Finally, we
make suggestions concerning the detection of the predicted
spin-current. Our results indicate how spin transport between
systems exhibiting both magnetism and spin-orbit coupling
can be controlled by external fields, and should therefore be
of considerable interest in terms of spintronics.

This paper is organized as follows. In Sec. II, we consider
transport between spin-triplet ferromagnetic superconduct-
ors, while a study of transport between ferromagnets with
spin-orbit coupling is given in Sec. III. A discussion of our
results is provided in Sec. IV, with emphasis on how the
effects predicted in this paper could be tested in an experi-
mental setup. Finally, we give concluding remarks in Sec. V.

II. FERROMAGNETIC SUPERCONDUCTORS

A. Coexistence of ferromagnetism and superconductivity

An important issue to address concerning FMSC is
whether the SC and FM order parameters coexist uniformly
or if they are phase-separated. One possibility34 is that a
spontaneously formed vortex lattice due to the internal mag-
netization m is realized in a spin-triplet FMSC, while there
also have been studies of Meissner �uniform� SC phases in
spin-triplet FMSC.18 As argued in Ref. 35, a key variable
with respect to whether a vortice lattice appears or not is the
strength of the internal magnetization m. Reference 36 sug-
gested that vortices arise if 4�m�Hc1, where Hc1 is the
lower critical field. When considering a weak FM state co-
existing with SC, a scenario which seems to be the case for
URhGe, the domain structure in the absence of an external
field is thus vortex-free. Current experimental data concern-
ing URhGe are not strong enough to unambiguously settle
this question, while evidence for uniform coexistence of FM
and SC has been indicated37 in UGe2. Furthermore, a bulk
Meissner state in the FMSC RuSr2GdCu2O8 has been re-
ported in Ref. 38, hence suggesting the existence of uniform
FM and SC as a bulk effect. In our study, we shall conse-
quently take the order parameters as coexisting homoge-
neously and use their bulk values, as justified by the argu-
mentation above. However, we emphasize that one in general
should take into account the possible suppression of the SC
order parameter in the vicinity of the tunneling interface due
to the formation of midgap surface states39 which occur for
certain orientations of the SC gap. The pair-breaking effect
of these states in unconventional superconductors has been
studied in, e.g., Refs. 40–42 and we discuss this in more
detail in Sec. IV. A sizeable formation of such states would
suppress the Josephson current, although it is nonvanishing
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in the general case. Also, we use bulk uniform magnetic
order parameters, as in Ref. 24. The latter is justified on the
grounds that a ferromagnet with a planar order parameter is
mathematically isomorphic to an s-wave superconductor,
where the use of bulk values for the order parameter right up
to the interface is a good approximation due to the lack of
midgap surface states.

It is generally believed that the same electrons that are
responsible for itinerant FM also participate in the formation
of Cooper pairs below the SC critical temperature.6 As a
consequence, uniform coexistence of spin-singlet SC and
FM can be discarded since s-wave Cooper pairs carry a total
spin of zero, although spatially modulated order parameters
could allow for magnetic s-wave superconductors.19,20 How-
ever, spin-triplet Cooper pairs are in principle perfectly com-
patible with FM order since they can carry a net magnetic
moment. To see this, consider the dk-vector formalism43

which is convenient when dealing with spin-triplet supercon-
ductors, regardless of whether they are magnetic or not. For
a complete and rigorous treatment of the dk-vector order
parameter, see, e.g., Ref. 44. The spin dependence of triplet
pairing can be represented by a 2�2 matrix

�̂k = ��k↑↑ �k↑↓
�k↓↑ �k↓↓

� = �− dx�k� + idy�k� dz�k�
dz�k� dx�k� + idy�k�

�
= idk · �̂�̂y , �1�

where �k	
 represent the SC gap parameters for different
triplet pairings, �̂= ��̂x , �̂y , �̂z� where �̂i are the Pauli matri-
ces, and dk= �dx�k� ,dy�k� ,dz�k�� is given by

dk = ��k↓↓ − �k↑↑
2

, − i
��k↓↓ + �k↑↑�

2
,�k↑↓� . �2�

Note that dk transforms like a vector under spin rotations and
that �k↑↓=�k↓↑ for triplet pairing since it is of no signifi-
cance which electron in the Cooper pair has spin up or down.
This is because the spin-part of the two-particle wave func-
tion is symmetric under exchange of particles, as opposed to
spin-singlet SC, where the gap changes sign when the spin
indices are exchanged. Spin-triplet SC states are classified as
unitary if idk�dk

* =0 and nonunitary if the equality sign does
not hold. Since the average spin of a dk-state is given by44

�Sk	 = idk � dk
* , �3�

it is clear that we must have a nonunitary dk in a model
where FM and SC coexist uniformly. Indeed, there is strong
reason to believe that the correct pairing symmetries in the
discovered FMSC constitute nonunitary states.11,45,46 As a
consequence, one can rule out, for instance, a state where
only �k↑↓�0 since it would imply �Sk	=0 according to Eq.
�3�. In the most general case where all SC gaps are included,
�↑↓ would be suppressed in the presence of a Zeeman-
splitting between the ↑, ↓ conduction bands;6 see Fig. 1.

However, such a splitting between energy bands need not
be present and one could in theory then consider a d-vector
where


�k↑↑
 = 
�k↓↓
 � 0 �k↑↓ � 0, �4�

such that �Sk	 lies in the local xy-plane. This scenario would
be equivalent to an A2-phase as is seen when performing a
spin rotation on the gap parameters into a quantization axis
lying in the xy-plane. Denoting up- and down-spins with
respect to the new quantization axis � and �, respectively,
the transformation yields

��k↑↑
�k↑↓
�k↓↓

� =
1

2� 1 2ei� e2i�

− e−i� 0 ei�

e−2i� − 2e−i� 1
���̃k++

�̃k+−

�̃k−−

� , �5�

where � is the azimuthal angle as shown in Fig. 2.
When introducing the conditions in Eq. �4�, it is readily

seen that �̃k+−=0 while 
�̃k++
� 
�̃k−−
�0, thus correspond-
ing to an A2-phase. Consequently, the entire span of physi-
cally possible pairing symmetries in a FMSC can be reduced
to the equivalence of an A1- or A2-phase in 3He by a change
of spin-basis. The definitions of A-, A1-, and A2-phases in
3He are as follows: an A-phase corresponds to a pairing sym-
metry such that 
�k↑↑
= 
�k↓↓
�0, an A1-phase has only one
gap �k���0 while �k,−�,−�=0, and an A2-phase satisfies

FIG. 1. Band-splitting for ↑, ↓ electrons in the presence of a
magnetization in the ẑ-direction. Interband pairing gives rise to a
net Cooper pair momentum in the presence of a band-splitting, thus
suppressing the �k↑↓ order parameter.

FIG. 2. Change of spin-basis for the superconducting gaps. The
new quantization axis is represented by the dotted arrow.
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�k↑↑
� 
�k↓↓
�0. In this case, �k	
 represents the super-
fluid gap for the fermionic 3He-atoms, and �k↑↓=0 for all
Ai-phases.

The resulting spin of the Cooper pair is then in general
given by

�Sk	 = �1/2��
�k↑↑
2 − 
�k↓↓
2�ẑ . �6�

In the following, we shall accordingly consider tunneling
between nonunitary ESP FMSC in an A1- or A2-phase.
Moreover, we consider thin film FMSC, ensuring that no
accumulation of charge at the surface will take place due to
an orbital effect. Our system can be thought to have arisen by
first cooling down a sample below the Curie temperature TM
such that FM order is introduced. At further cooling below
the critical temperature Tc, the same electrons that give rise
to FM condense into Cooper pairs with a net magnetic mo-
ment parallel to the original direction of magnetization. Our
model is shown in Fig. 3.

B. The Hamiltonian

The system consists of two FMSC separated by an insu-
lating layer such that the total Hamiltonian can be written
as47 H=HL+HR+HT, where L and R represents the indi-
vidual FMSC on each side of the tunneling junction, and HT
describes tunneling of particles through the insulating layer
separating the two pieces of bulk material. Using mean-field
theory, one finds that the individual FMSC are described by
a Hamiltonian similar to the one used in Ref. 48,

HFMSC = H0 + 
k

k
†Âkk,

H0 = JN��0�m2 +
1

2
k�

�k� + 
k	


�k	

† bk	
. �7�

Here, k is the electron momentum and we have introduced

�k� = �k − ��z, � = ↑,↓ = ± 1. �8�

Furthermore, J is a spin coupling constant, ��k� is a geo-
metrical structure factor which for k=0 reduces to the num-
ber of nearest lattice neighbors ��0�, m= �mx ,my ,mz� is the
magnetization vector, while �k	
 is the superconducting or-
der parameter and bk	
= �c−k
ck		 denotes the two-particle

operator expectation value. The ferromagnetic order param-
eters are given by

� = 2J��0��mx − imy�, �z = 2J��0�mz. �9�

The interesting physics of the FMSC/FMSC junction lies in

the matrix Âk to be given below. Above, we used a basis

k = �ck↑ck↓c−k↑
† c−k↓

† �T, �10�

where ck� �ck�
† � are annihilation �creation� fermion operators.

Note that we have not incorporated any spin-orbit coupling
of the type �E�p� · �̂ in the Hamiltonian described in Eq.
�7� such that spatial inversion symmetry is not broken, i.e.,
we consider centrosymmetric FMSC.

Consider now the matrix

Âk = −
1

2�
− �k↑ � �k↑↑ �k↑↓
�† − �k↓ �k↓↑ �k↓↓

�k↑↑
† �k↓↑

† �k↑ − �†

�k↑↓
† �k↓↓

† − � �k↓
� , �11�

which is valid for a FMSC with arbitrary magnetization. As
explained in the previous sections, we will study in detail
tunneling between nonunitary ESP FMSC, i.e., �k↑↓=�k↓↑
=0, �=0 in Eq. �11�. We take the quantization axis on each
side of the junction to coincide with the magnetization direc-
tion. One then needs to include the Wigner d-function49 de-

noted by D̂
���
�j� ��� with j=1/2 to account for the fact that a ↑

spin on one side of the junction is not the same as a ↑ spin on
the other side of the junction, since the magnetization vectors
point can point in different directions. The angle � is conse-
quently defined by

mR · mL = mRmL cos���, mi = 
mi
 . �12�

Specifically, we have that

D̂�1/2���� = �cos��/2� − sin��/2�
sin��/2� cos��/2�

� �13�

such that a spin-rotated fermion operator is given by

d̃p� = 
��

D̂���
�1/2����dp��. �14�

The tunneling Hamiltonian then reads

HT = 
kp���

D̂���
�1/2�����Tkpck�

† dp�� + Tkp
* dp��

† ck�� , �15�

where we neglect the possibility of spin-flips in the tunneling
process. Note that we distinguish between fermion operators
on the right and left side of the junction corresponding to ck�
and dp�, respectively. Demanding that HT is invariant under
time reversal K, one finds that the condition K−1HTK=HT
with

K−1HTK = 
kp���

���D̂���
�1/2�����Tkp

* c−k,−�
† d−p,−��

+ Tkpd−p,−��
† c−k,−�� �16�

dictates that Tkp=T−k,−p
* . Furthermore, we write the super-

FIG. 3. Tunneling between two nonunitary ESP FMSC. The
quantization axis has been taken along the direction of magnetiza-
tion on each side of the junction.
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conducting order parameters as �k��= 
�k��
ei��k+���
R �, where

R �L� denotes the bulk superconducting phase on the right
�left� side of the junction while �k is a general �complex�
internal phase factor originating from the specific form of the
gap in k-space that ensures odd symmetry under inversion of
momentum, i.e., �k=�−k+�.

For our system, Eq. �7� takes the form

HFMSC = H0 + HA, HA = 
k�

�k�
† Âk��k�, �17�

where we have block-diagonalized Âk and chosen a conve-
nient basis �k�

† = �ck�
† ,c−k��, with the definition

Âk� = −
1

2
�− �k� �k��

�k��
† �k�

� . �18�

This Hamiltonian is diagonalized by a 2�2 spin generalized

unitary matrix Ûk�, so that the superconducting sector is ex-
pressed in the diagonal basis

�̃k�
† = �k�

† Ûk� � ��k�
† ,�−k�� . �19�

Thus HA=k��̃k�
† Ã

ˆ
k��̃k�, in which

Ã
ˆ

k� = Ûk�Âk�Ûk�
−1 = diag�Ẽk�,− Ẽk��/2,

Ẽk� = ��k�
2 + 
�k��
2. �20�

The explicit expression for Ûk� is

Ûk� = Nk�� 1
�k��

�k� + Ẽk�

−
�k��

*

�k� + Ẽk�

1 � ,

Nk� =
�k� + Ẽk�

���k� + Ẽk��2 + 
�k��
2
. �21�

We now proceed to investigate the tunneling currents that
can arise across a junction of two such FMSC.

C. Tunneling formalism

Although the treatment in this section is fairly standard, it
comes with a certain extension to the standard cases due to
the coexistence of two simultaneously broken symmetries.
Thus, for completeness, we present it here.

In order to find the spin- and charge-current over the junc-
tion, we define the generalized number operator67 by N	


=kck	
† ck
. Consider now the transport operator

Ṅ	
 = i�HT,N	
�

= − i
kp�

�D̂�

�1/2����Tkpck	

† dp� − D̂�	
�1/2����Tkp

* dp�
† ck
� .

�22�

We now write H=H�+HT where H�=HL+HR and Hi=Ki

+�iNi, i=L,R, where �i is the chemical potential on side i
and Ni is the number operator. In the interaction picture, the

time-dependence of Ṅ	
 is then governed by

Ṅ	
�t� = eiH�tṄ	
e−iH�t, �23�

while the time-dependence of the fermion operators reads

ck��t� = eiKRtck�e−iKRt. �24�

Effectively, one can write

KR = H0 + 
k�

Ek��k�
† �k�, �25�

where the chemical potential is now included in the quasi-
particle excitation energies Ek� according to

Ek� = ��k�
2 + 
�k��
2 �26�

with �k�=�k�−�R, and correspondingly for the left side.
Consequently, we are able to write down

Ṅ	
�t� = − i
kp�

�D̂�

�1/2����Tkpck	

† �t�dp��t�e−iteV − D̂�	
�1/2����

�Tkp
* dp�

† �t�ck
�t�eiteV� , �27�

where eV��L−�R is the externally applied potential.
Within linear response theory, we can identify a general cur-
rent

I�t� = 
	


�̂	
�Ṅ	
�t�	, �̂ = �− e1̂,�̂� , �28�

such that the charge-current is IC�t�= I0�t� while the spin-

current reads IS�t�= �I1�t� , I2�t� , I3�t��. In Eq. �28�, 1̂ denotes
the 2�2 identity matrix. Explicitly, we have

IC�t� = Isp
C �t� + Itp

C�t� = − e
	

�Ṅ		�t�	 ,

IS�t� = Isp
S �t� + Itp

S �t� = 
	


�̂	
�Ṅ	
�t�	 , �29�

where the subscripts sp and tp denote the single-particle and
two-particle contribution to the currents, respectively. As re-
cently pointed out by the authors of Ref. 50, defining a spin-
current is not as straightforward as defining a charge-current.
Specifically, the conventional definition of a spin-current
given as spin multiplied with velocity suffers from severe
flaws in systems where spin is not a conserved quantity. In
this paper, we define the spin-current across the junction as
IS�t�= �dS�t� /dt	 where dS /dt= i�HT ,S�. It is then clear that
the concept of a spin-current in this context refers to the rate
at which the spin-vector S on one side of the junction
changes as a result of tunneling across the junction. The
spatial components of IS are defined with respect to the cor-
responding quantization axis. In this way, we avoid non-
physical interpretations of the spin-current in terms of real
spin transport as we only calculate the contribution to dS /dt
from the tunneling Hamiltonian instead of the entire Hamil-
tonian H. Should we have chosen the latter approach, one
would in general run the risk of obtaining a nonzero spin-
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current due to, e.g., local spin-flip processes which are obvi-
ously not relevant in terms of real spin transport across the
junction. However, in our system such spin-flip processes are
absent.

The tunneling currents are calculated in the linear re-
sponse regime by using the Kubo formula,

�Ṅ	
�t�	 = − i�
−�

t

dt���Ṅ	
�t�,HT�t���	 , �30�

where the right-hand side is the statistical expectation value
in the unperturbed quantum state, i.e., when the two sub-
systems are not coupled. This expression includes both
single-particle and two-particle contributions to the current.
Details of the calculations are found in Appendix A 1.

We now consider the cases of an A2- and A1-phase at
zero external potential, giving special attention to the charge-
current and ẑ-component of the spin-current in the Josephson
channel.

D. Two-particle currents

For an A2-phase in the case of zero externally applied
voltage �eV=0�, Eqs. �29� and �A13� generate a quasiparticle
interference term Iqi, in addition to a term IJ identified as the
Josephson current. Thus the total two-particle currents of
charge and spin can be written as Itp�,z�

C�S� = Iqi�,z�
C�S� + IJ�,z�

C�S� where

Iqi�,z�
C�S� = 

kp
IC�S�����

L − �		
R ,��pk� ,

IJ�,z�
C�S� = 

kp
IC�S����pk,���

L − �		
R � �31�

with the definitions

IC��1,�2� =
e

2
�	

�1 + �	 cos����
Tkp
2

�k		

�p��


Ek	Ep�

� cos��1�sin��2�Fkp	�,

IS��1,�2� = −
1

2
�	

	�1 + �	 cos����
Tkp
2

�k		

�p��


Ek	Ep�

� cos��1�sin��2�Fkp	�, �32�

where we have introduced ��pk ��p−�k and

Fkp	� = 
±

f�±Ek	� − f�Ep��
Ek	 � Ep�

. �33�

Above, f�x� is the Fermi distribution. Thus we have found a
two-particle current, for both spin and charge, that can be
tuned in a well-defined manner by adjusting the relative ori-
entation � of the magnetization vectors.68 We will discuss
the detection of such an effect later in this paper. Note that
the k-dependent symmetry factor �k enters the above expres-
sions, thus giving rise to an extra contribution to the two-
particle current besides the ordinary Josephson effect. This is
due to the fact that we included it in the SC gaps as a factor
ei�k which in general is complex. However, this specific form

may for certain models, depending on the Fermi surface in
question, be reduced to a real function, i.e., ei�k→cos �k, in
which case the quasiparticle interference term becomes zero.
Hence in most of the remaining discussion we will focus on
the Josephson part of the two-particle current.

The A1-phase with only one SC order parameter �k		,
	� �↑ , ↓ � also corresponds to a nonunitary state dk accord-
ing to Eq. �3�, and is thus compatible with coexistence of FM
and SC. In this case, we readily see that Eq. �32� reduces to

Itp
C = e cos2��/2�X	

Itp,z
S = − 	 cos2��/2�X	

	 � �↑ ,↓� , �34�

where we have defined the quantity

X	 = 
kp


Tkp
2

�k		�p	


Ek	Ep	
Fkp		�sin ��		 cos ��pk

+ cos ��		 sin ��pk� , �35�

with ��		��		
L −�		

R , and �k		 is the surviving order pa-
rameter. As expected, the spin-current changes sign depend-
ing on whether it is the �k↑↑ or �k↓↓ order parameter that is
present.

For collinear magnetization ��=0�, an ordinary Joseph-
son effect occurs with the superconducting phase difference
as the driving force. Interestingly, one is able to tune both the
spin- and charge-current to zero in the A1-phase when mL �

−mR ��=��. It follows from Eq. �34� that the spin- and
charge-current only differ by a constant prefactor

Itp
C/Itp,z

S = − 	e, 	 = ± 1. �36�

It is then reasonable to draw the conclusion that we are deal-
ing with a completely spin-polarized current such that both
Itp

C and Itp,z
S must vanish simultaneously at �=�.

Another result that can be extracted from Eqs. �32� and
�34� is a persistent nonzero dc spin-Josephson current even if
the magnetizations on each side of the junction are of equal
magnitude and collinear ��=0�. This is quite different from
the spin-Josephson effect recently considered in ferromag-
netic metal junctions.24 In that case, a twist in the magneti-
zation across the junction is required to drive the spin-
Josephson effect.

Note that in the common approximation Tkp=T, i.e., the
tunneling probability is independent of the electron magni-
tude and direction of electron momentum, the two-particle
current predicted above is identically equal to zero. Of
course, such a crude approximation does not correspond to
the correct physical picture �see e.g., Ref. 51�, and in general
one cannot neglect the directional dependence of the tunnel-
ing matrix element. This demonstrates that we are dealing
with a more subtle effect than what could be unveiled when
applying the approximation of a constant tunneling matrix
element.

An interesting situation arises in the case of zero exter-
nally applied voltage and identical superconductors on each
side of the junction with SC phase differences ����=0. In
this case, we find that IJ

C=0 while
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IJ,z
S = − 2

kp

Tkp
2 sin2��/2�
�k↑↑�p↓↓
Fkp↑↓

�sin��↓
L − �↑

R�/�Ek↑Ep↓� �37�

when eV=0, ����=0. Thus we have found a dissipationless
spin-current in the two-particle channel without an externally
applied voltage and without a SC phase difference. This ef-
fect is present as long as � is not 0 or �, corresponding to
parallel or antiparallel magnetization on each side of the
junction. It is seen from Eq. �37� that the spin-current is
driven by an interband phase difference on each side of the
junction. A necessary condition for this effect to occur is that
no interband Josephson coupling is present, i.e., electrons in
the two energy-bands Ek↑ and Ek↓ do not communicate with
each other. To understand why a Josephson coupling would
destroy the above effect, consider the free energy density for
a p-wave FMSC first proposed in Ref. 10, given by

F = F� − �J cos��↑↑ − �↓↓� �38�

in the presence of a Josephson coupling. In Eq. �38�, �J
determines the strength of the interaction while F� contains
the SC and FM contribution to the free energy density in
addition to the coupling terms between the SC and FM order
parameters. Consequently, the phase difference �↑↑−�↓↓ is
locked to 0 or � in order to minimize F, depending on
sgn��J�. Considering Eq. �37�, we see that IJ,z

S =0 in this case,
since the argument of the last sine is zero. Mechanisms that
would induce a Josephson coupling include magnetic impu-
rities causing inelastic spin-flip scattering between the
energy-bands and spin-orbit coupling. Recently, the authors
of Ref. 50 proposed that p-wave SC arising out of a FM
metal state could be explained by the Berry curvature field
that is present in ferromagnets with spin-orbit coupling. It is
clear that in the case where spin-orbit coupling is included in
the problem, spin-flip scattering processes occur between the
energy bands such that the ↑ and ↓ spins cannot be consid-
ered as two independent species any more. The SC phases
will then be locked to each other with a relative phase of 0 or
�. However, note that in the general case, Eq. �32� produces
a nonzero charge- and spin-current even if the spin-up and
spin-down phases are locked to each other.

E. Single-particle currents

In the single-particle channel, we find that the charge and
spin-currents read

Isp
C = − e

	

�Ṅ		�t�	sp,

Isp,z
S = 

	

	�Ṅ		�t�	sp, �39�

as seen from Eq. �29�. From Eq. �A1�, we then extract the
proper expectation value, which is found to be

�Ṅ		�t�	sp = 4�
kp�

�1 + �	 cos����
Tkp	
2Nk	
2 Np�

2

� ��f�Ek	� − f�Ep������− eV + Ek	 − Ep��

−

�k		�p��
2

��k	 + Ek	�2��p� + Ep��2��− eV − Ep� + Ek	��
+ �1 − f�Ek	� − f�Ep���� 
�k		
2

��k	 + Ek	�2��− eV

− Ek	 − Ep�� −

�p��
2

��p� + Ep��2��− eV + Ek	

+ Ep���� . �40�

The currents in Eq. �39� are thus seen to require an ap-
plied voltage in order to flow in the tunneling junction.
Clearly, this is because the Cooper pairs need to be split up
in order for a single-particle current to exist, such that both
spin- and charge-currents vanish at eV=0.

In Ref. 24, the presence of a persistent spin-current in the
single-particle channel for FM/FM junctions with a twist in
magnetization across the junction was predicted. For consis-
tency, our results must confirm this prediction for the single-
particle current in the limit where SC is lost, i.e., �k��→0.
Note that the ẑ-direction in Ref. 24 corresponds to a vector in
our local xy-plane since the present quantization axis lies
parallel with the magnetization direction. Upon calculating
the x- and y-components of the single-particle spin-current
for our system in the limit where SC is lost, i.e., �k��→0, a
persistent spin Josephson-like current proportional to sin���
is identified. More precisely,

Isp
S �t� = 2

kp

	
�

D̂�	
�1/2����D̂�


�1/2����
Tkp
2

�Im��̂
	�
�
1,1�− eV�� �41�

when �q��=0 �see Appendix for details�. In agreement with
Ref. 24, the component of the spin-current parallel to mL
�mR is seen to vanish for �= �0,�� at eV=0.

III. FERROMAGNETS WITH SPIN-ORBIT COUPLING

A. Coexistence of ferromagnetism and spin-orbit
coupling

In a system where time-reversal and spatial inversion
symmetry are simultaneously broken, it is clear that spins are
heavily affected by these properties. There is currently much
focus on ferromagnetic semiconductors where spin-orbit
coupling plays a crucial role with regard to transport
properties.21,22 In fact, there has in recent years been much
progress in the semiconductor research community where the
spin-Hall effect in particular has received much attention.23

With the discovery52 of hole-mediated ferromagnetic order in
�In,Mn�As, extensive research on III-V host materials was
triggered. Moreover, it is clear that properties such as ferro-
magnetic transition temperatures in excess of 100 K53 and
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long spin-coherence times54 in GaAs have strongly contrib-
uted to opening up a vista plethora for information process-
ing and storage technologies in these new magnetic
mediums.55

Generally, spin-orbit coupling �SOC� can be roughly di-
vided into two categories—intrinsic and extrinsic. Intrinsic
SOC is found in materials with a noncentrosymmetric crystal
symmetry, i.e., where inversion symmetry is broken, whereas
extrinsic SOC is due to asymmetries caused by impurities,
local confinements of electrons, or externally applied electri-
cal fields.

In the present paper, we investigate the tunneling current
of spin between two ferromagnetic metals with spin-orbit
coupling induced by an external electric field. This way, we
will have two externally controllable parameters; the magne-
tization m and the electrical field E. The case of tunneling
between two noncentrosymmetric superconductors with sig-
nificant spin-orbit coupling, but no ferromagnetism, has pre-
viously been considered in Ref. 56.

B. The Hamiltonian

Our system consists of two Heisenberg ferromagnets with
substantial spin-orbit coupling, separated by a thin insulating
barrier which is assumed to be spin-inactive. This is shown
in Fig. 4. We now operate with only one quantization axis,
such that a proper tunneling Hamiltonian for this purpose is

HT = 
kp�

�Tkpck�
† dp� + H.c.� , �42�

where �ck�
† ,ck�� and �dk�

† ,dk�� are creation and annihilation
operators for an electron with momentum k and spin � on
the right and left side of the junction, respectively, while Tkp
is the spin-independent tunneling matrix element. In k-space,
the Hamiltonian describing the ferromagnetism reads

HFM = 
k�

�kck�
† ck� − JN

k
��k�Sk · S−k �43�

in which �k is the kinetic energy of the electrons, J is the
ferromagnetic coupling constant, N is the number of particles
in the system, while Sk= �1/2�	
ck	

† �̂	
ck
 is the spin op-
erator. As we later adopt the mean-field approximation, m
= �mx ,my ,mz� will denote the magnetization of the system.

The spin-orbit interactions are accounted for by a Rashba
Hamiltonian

HS-O = − 
k

�k
†����V � k� · �̂��k, �44�

where �k= �ck↑ ,ck↓�T, E=−�V is the electrical field felt by
the electrons and �̂= ��̂1 , �̂2 , �̂3� in which �̂i are Pauli ma-
trices, while the parameter � is material-dependent. From
now on, the notation ��E�k��Bk= �Bk,x ,Bk,y ,Bk,z� will be
used. In general, the electromagnetic potential V consists of
two parts Vint and Vext �see, e.g., Ref. 23 for a detailed dis-
cussion of the spin-orbit Hamiltonian�. The crystal potential
of the material is represented by Vint, and only gives rise to a
spin-orbit coupling if inversion symmetry is broken in the
crystal structure. Asymmetries such as impurities and local
confinements of electrons are included in Vext, as well as any
external electrical field. Note that any lack of crystal inver-
sion symmetry results in a so-called Dresselhaus term in the
Hamiltonian, which is present in the absence of any impuri-
ties and confinement potentials. In the following, we focus
on the spin-orbit coupling resulting from Vext, thus consider-
ing any symmetry-breaking electrical field that arises from
charged impurities or which is applied externally. In the case
where the crystal structure does not respect inversion sym-
metry, a Dresselhaus term57 can be easily included in the
Hamiltonian by performing the substitution

�E � k� · �̂ → ��E � k� + D�k�� · �̂ , �45�

where D�k�=−D�−k�.
We now proceed to calculate the spin-current that is gen-

erated across the junction as a result of tunneling. Note that
in our model, the magnetization vector and electrical field
are allowed to point in arbitrary directions. In this way, the
obtained result for the spin-current will be generally valid
and special cases, e.g., thin films, are easily obtained by tak-
ing the appropriate limits in the final result. It should be
mentioned that the effective magnetic field from the spin-
orbit interactions might influence the direction of the magne-
tization in the ferromagnet. This is, however, not the main
focus of our work, and we leave this question open for study.
Our emphasis in the present paper concerns the derivation of
general results onto which specific restrictions may be ap-
plied as they seem appropriate.

In the mean-field approximation, the Hamiltonian for the
right side of the junction can be written as H=HFM+HS−O,
which in a compact form yields

HR = H0 + 
k

�k
†� �k↑ − �R + Bk,−

− �R
† + Bk,+ �k↓

��k, �46�

where �k���k−���z,R−Bk,z� and H0 is an irrelevant con-
stant. The FM order parameters are �R=2J��0��mR,x

−imR,y� and �z,R=2J��0�mR,z and Bk,± �Bk,x±iBk,y. For con-
venience, we from now on write �= 
� 
ei� and Bk,±
= 
Bk,± 
e�i�k. The Hamiltonian for the left side of the junc-
tion is obtained from Eq. �46� simply by doing the replace-
ments k→p and R→L.

FIG. 4. Our model consisting of two ferromagnetic metals with
spin-orbit coupling separated by a thin insulating barrier. The mag-
netization m and electrical field E are allowed to point in any di-
rection so that our results are generally valid, while special cases
such as planar magnetization, etc. are easily obtained by applying
the proper limits to the general expressions.
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C. Tunneling formalism

In order to obtain the expressions for the spin- and
charge-tunneling currents, it is necessary to calculate the
Green functions. These are given by the matrix

Ĝk�i�n� = �− i�n1̂ + Âk�−1, �47�

where Âk is the matrix in Eq. �46�. Explicitly, we have that

Ĝk�i�n� = �Gk
↑↑�i�n� Fk

↓↑�i�n�
Fk
↑↓�i�n� Gk

↓↓�i�n�
� . �48�

Above, �n=2�n+1�� /
 ,n=0,1 ,2. . . is the fermionic Mat-
subara frequency and 
 denotes inverse temperature. Intro-
ducing

Xk�i�n� = ��k↑ − i�n���k↓ − i�n� − 
�R − Bk,−
2, �49�

the normal and anomalous Green functions are

Gk
���i�n� = ��k,−� − i�n�/Xk�i�n� ,

Fk
↓↑�i�n� = Fk

↑↓,†�i�n� = ��R − Bk,−�/Xk�i�n� . �50�

The expression for IS�t� is established by first considering
the generalized number operator N	
=kck	

† ck
. This opera-

tor changes with time due to tunneling according to Ṅ	


= i�HT ,N	
�, which in the interaction picture representation

becomes Ṅ	
�t�=−ikp�Tkpck	
† dp
eiteV−H.c.�. The voltage

drop across the junction is given by the difference in chemi-
cal potential on each side, i.e., eV=�R−�L. In the lineawr
response regime, the spin-current across the junction is

IS�t� =
1

2
	


�̂	
�Ṅ	
�t�	 , �51�

where the expectation value of the time derivative of the
transport operator is calculated by means of the Kubo for-
mula Eq. �30�. Details will be given in Appendix A 2.

D. Single-particle currents

At eV=0, it is readily seen from the discussion in Appen-
dix A 2 that the charge-current vanishes. Consider now the
z-component of the spin-current in particular, which can be
written as Iz

S=Im���−eV��. The Matsubara function
��−eV� is found by performing analytical continuation

i�̃�→−eV+ i0+ on �̃�i�̃��, where

�̃�i�̃�� =
1





i�m,kp

�

�„Gk
���i�m�Gp

���i�m − i�̃��

+ Fk
−�,��i�m�Fp

�,−��i�m − i�̃��… . �52�

Here, �̃�=2�� /
, �=0,1 ,2 , . . . is the bosonic Matsubara
frequency. Inserting the Green functions from Eq. �50� into
Eq. �52�, one finds that a persistent spin-current is estab-
lished across the tunneling junction. For zero applied volt-
age, we obtain

Iz
S = 

kp


Tkp
2Jkp

2�k�p
�
�R�L
sin �� + 
Bk,−Bp,−
sin ��kp

− 
Bk,−�L
sin��k − �L� − 
Bp,−�R
sin��R − �p�� ,

�53a�

Jkp = 
	=±


=±

	
�n��k + 	�k� − n��p + 
�p�
��k + 	�k� − ��p + 
�p� � . �53b�

In Eqs. �53�, ��kp ��k−�p, ����R−�L, while

�k
2 = ��z,R − Bk,z�2 + 
�R − Bk,−
2 �54�

and n��� denotes the Fermi distribution. In the above expres-
sions, we have implicitly associated the right side R with the
momentum label k and L with p for more concise notation,
such that, e.g., Bk,z �Bk,z

R . Defining �i=2J��0�mi, we see that
Eq. �54� can be written as

�k = 
�R − Bk
 . �55�

The spin-current described in Eq. �53� can be controlled
by adjusting the relative orientation of the magnetization
vectors on each side of the junction, i.e., ��, and also re-
sponds to a change in direction of the applied electric fields.
The presence of an external magnetic field Hi would control
the orientation of the internal magnetization mi. Alterna-
tively, one may also use exchange biasing to an antiferro-
magnet in order to lock the magnetization direction. Conse-
quently, the spin-current can be manipulated by the external
control parameters �Hi ,Ei� in a well-defined manner. This
observation is highly suggestive in terms of novel nanotech-
nological devices.

We stress that Eq. �53� is nonzero in the general case,
since �k�−�−k and �−k=�k+�. Moreover, Eq. �53� is valid
for any orientation of both m and E on each side of the
junction, and a number of interesting special cases can now
easily be considered simply by applying the appropriate lim-
its to this general expression.

E. Special limits

Consider first the limit where ferromagnetism is absent,
such that the tunneling occurs between two bulk materials
with spin-orbit coupling. Applying m→0 to Eq. �53�, it is
readily seen that the spin-current vanishes for any orientation
of the electrical fields. Intuitively, one can understand this by
considering the band structure of the quasiparticles with en-
ergy Ek�=�k+��k and the corresponding density of states
N�Ek�� when only spin-orbit coupling is present, as shown in
Fig. 5. Since the density of states is equal for ↑ and ↓ spins,69

one type of spin is not preferred compared to the other with
regard to tunneling, resulting in a net spin-current of zero.
Formally, the vanishing of the spin-current can be under-
stood by replacing the momentum summation with integra-
tion over energy, i.e., kp→��dERdELNR�ER�NL�EL�. When
m→0, Eq. �53� dictates that

TUNNELING CURRENTS IN FERROMAGNETIC SYSTEMS… PHYSICAL REVIEW B 75, 024508 �2007�

024508-9



Iz
S � 

	=±


=±

	
� � dER,	dEL,
NR
	�ER,	�NL


�EL,
�

� �n�ER,	� − n�EL,
�
ER,	 − EL,


� . �56�

Since the density of states for the ↑- and ↓-populations are
equal in the individual subsystems, i.e., N↑�E�=N↓�E�
�N�E�, the integrand of Eq. �56� becomes spin-independent
such that the summation over 	 and 
 yields zero. Thus no
spin-current will exist at eV=0 over a tunneling barrier sepa-
rating two systems with spin-orbit coupling alone. In the
general case where both ferromagnetism and spin-orbit cou-
pling are present, the density of states at, say, Fermi level are
different, leading to a persistent spin-current across the junc-
tion due to the difference between N↑�E� and N↓�E�.

We now consider a special case where the bulk structures
indicated in Fig. 4 are reduced to two thin-film ferromagnets
in the presence of electrical fields that are perpendicular to
each other, say EL= �EL ,0 ,0� and ER= �0,ER,0�, as shown

in Figs. 6�a� and 6�b�. In this case, we have chosen an in-
plane magnetization for each of the thin films. Solving spe-
cifically for Fig. 6�a�, it is seen that mL= �0,mL,y ,mL,z� and
mR= �mR,x ,0 ,mR,z�. Furthermore, assume that the electrons
are restricted from moving in the “thin” dimension, i.e., p
= �0, py , pz� and k= �kx ,0 ,kz�. In this case, Eq. �53� reduces to
the form

Iz
S = I0 sgn�mL,y� + 

kp
I1,kp sgn�pz� , �57�

where the constants above are

I0 = 
kp


Tkp
2Jkp�
�R�L
 − ER
kz�L
�
2
�R + Bk

�L + Bp


,

I1,kp =

Tkp
2JkpEL�ER
kzpz
 − 
pz�R
�

2
�R + Bk

�L + Bp

, �58�

with

�L = 2J��0��0,mL,y,mL,z�, Bp = �LEL�0,− pz,py� ,

FIG. 5. Schematic illustration of the energy-bands for �a� a system with spin-orbit coupling, �b� a system with ferromagnetic ordering,
and �c� a system exhibiting both of the aforementioned properties. The dotted line corresponds to quasiparticles with �=↓, while the full
drawn line designates �=↑. Since the density of states N��Ek�� is proportional to ��Ek� /�k�−1, we see that a difference between N↑�Ek�� and
N↓�Ek�� is zero at Fermi level in �a�, while the density of states differ for the ↑- and ↓-populations in �b� and �c�. Thus a persistent
spin-current will only occur for tunneling between systems corresponding to �b� and �c�.

FIG. 6. Tunneling between
planar ferromagnets in the pres-
ence of externally applied electri-
cal fields EL and ER that destroy
inversion symmetry and induce a
spin-orbit coupling.
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�R = 2J��0��mR,x,0,mR,z�, Bk = �RER�ky,0,− kx� ,

�59�

such that I1,kp� I1,−k,−p. Likewise, for the setup sketched in
Fig. 6�b�, one obtains

Iz
S = 

kp


Tkp
2Jkp

2
�R + ER�ky − ikx�
2
�L + EL�py − ipx�
2

� �
�R�L
sin �� + 
EREL�ky
2 + kx

2��py
2 + px

2�
sin ��kp

− ER
�L
�ky
2 + kx

2�sin��k − �L� − EL
�R
�py
2 + px

2�

�sin��R − �p�� , �60�

where �q obeys

tan �q = −
qx

qy
, q = k,p . �61�

From these observations, we can draw the following con-
clusions: whereas the spin-current is zero for the system in
Figs. 6�a� and 6�b� if only spin-orbit coupling is considered,
it is nonzero when only ferromagnetism is taken into ac-
count. However, in the general case where both ferromag-
netism and spin-orbit coupling are included, an additional
term in the spin-current is induced compared to the pure
ferromagnetic case. Accordingly, there is an interplay be-
tween the magnetic order and the Rashba-interaction that
produces a spin-current which is more than just the sum of
the individual contributions.

IV. DISCUSSION OF RESULTS

Having presented the general results for tunneling cur-
rents between systems with multiple broken symmetries in
the preceding sections, we now focus on detection and ex-
perimental issues concerning verification of our predictions.

Consider first the system consisting of two ferromagnetic
superconductors separated by a thin, insulating barrier. It is
well-known that for tunneling currents flowing between two
s-wave SC in the presence of a magnetic field that is perpen-
dicular to the tunneling direction, the resulting flux threading
the junction leads to a Fraunhofer-like variation in the DC
Josephson effect, given by a multiplicative factor

DF��� =
sin���/�0�

���/�0�
�62�

in the critical current. Here, �0=�� /e is the elementary flux
quantum, and � is the total flux threading the junction due to
a magnetic field. Consequently, the presence of magnetic flux
in the tunneling junction of two s-wave SC threatens to nul-
lify the total Josephson current. In the present case of two
p-wave FMSC, this is not an issue since we have assumed
uniform coexistence of the SC and FM order parameters
which is plausible for a weak intrinsic magnetization. The
effect of an external magnetic field H would then simply be
to rotate the internal magnetization as dictated by the term
−H ·m in the free energy F �see, e.g., Ref. 18�. Thus there is
no diffraction pattern present for the tunneling-currents be-
tween two nonunitary ESP FMSC, regardless of how the

internal magnetization is oriented. Since the motion of the
Cooper-pairs is also restricted by the thin-film structure,
there is no orbital effect from such a magnetization.

Note that the interplay between ferromagnetism and su-
perconductivity is manifest in the charge-as well as spin-
currents, the former being readily measurable. Detection of
the induced spin-currents would be challenging, although re-
cent studies suggest feasible methods of measuring such
quantities.58 We comment more on this later in this section.
First, we address the issue of how boundary effects affect the
order parameters. Studies40–42 have shown that interfaces/
surfaces may have a pair-breaking effect on unconventional
SC order parameters. This is highly relevant in tunneling
junction experiments as in the present case. The suppression
of the order parameter is caused by a formation of so-called
midgap surface states �also known as zero-energy states�39

which occurs for certain orientations of the k-dependent SC
gaps that satisfy a resonance condition. Note that this is not
the case for conventional s-wave superconductors since the
gap is isotropic in that case. This pair-breaking surface effect
was studied specifically for p-wave order parameters in Refs.
40 and 41, and it was found that the component of the order
parameter that experiences a sign change under the transfor-
mation k�→−k�, where k� is the component of momentum
perpendicular to the tunneling junction, was suppressed in
the vicinity of the junction. By vicinity of the junction, we
here mean a distance comparable to the coherence length,
typically of order 1–10 nm. Thus depending on the explicit
form of the superconducting gaps in the FMSC, these could
be subject to a reduction close to the junction, which in turn
would reduce the magnitude of the Josephson effect we pre-
dict. Nevertheless, the latter is nonvanishing in the general
case.

Since the critical Josephson currents depend on the rela-
tive magnetization orientation, one is able to tune these cur-
rents in a well-defined manner by varying �. This can be
done by applying an external magnetic field in the plane of
the FMSC. In the presence of a rotating magnetic moment on
either side of the junction, the Josephson currents will thus
vary according to Eq. �32�, which may be cast into the form
IJ

C= I0+ Im cos���. Depending on the relative magnitudes of
I0 and Im, the sign of the critical current may change. Note
that such a variation of the magnetization vectors must take
place in an adiabatic manner so that the systems can be con-
sidered to be in, or near, equilibrium at all times. Our pre-
dictions can thus be verified by measuring the critical current
at eV=0 for different angles � and compare the results with
our theory. Recently, it has been reported that a spin-triplet
supercurrent, induced by Josephson tunneling between two
s-wave superconductors across a ferromagnetic metallic con-
tact, can be controlled by varying the magnetization of the
ferromagnetic contact.59 Moreover, concerning the spin-
Josephson current we propose, detection of induced spin-
currents are challenging, although recent studies suggest fea-
sible methods of measuring such quantities.58 Observation of
macroscopic spin-currents in superconductors may also be
possible via angle resolved photoemission experiments with
circularly polarized photons60 or in spin-resolved neutron
scattering experiments.32

We reemphasize that the above ideas should be experi-
mentally realizable by, e.g., utilizing various geometries in
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order to vary the demagnetization fields. Alternatively, one
may use exchange biasing to an antiferromagnet. Such tech-
niques of achieving noncollinearity are routinely used in
ferromagnet-normal metal structures.61

With regard to the predicted dc spin-current in for a sys-
tem consisting of two ferromagnetic metals with spin-orbit
coupling, we here suggest how this effect could be probed
for in an experimental setup. For instance, the authors of Ref.
62 propose a spin-mechanical device which exploits nano-
mechanical torque for detection and control of a spin-current.
Similarly, a setup coupling the electron spin to the mechani-
cal motion of a nanomechanical system is proposed in Ref.
58. The latter method employs the strain-induced spin-orbit
interaction of electrons in a narrow gap semiconductor. In
Ref. 63, it was demonstrated that a steady-state magnetic-
moment current, i.e., spin-current, will induce a static elec-
tric field. This fact may be suggestive in terms of
detection64,65 and could be useful to observe the effects pre-
dicted in this paper.

V. SUMMARY

In summary, we have considered supercurrents of spin
and charge that exist in FMSC/FMSC and FMSO/FMSO
tunneling junctions. In the former case, we have found an
interplay between the relative magnetization orientation on
each side of the junction and the SC phase difference when
considering tunneling between two nonunitary ESP FMSC
with coexisting and uniform FM and SC order. This interplay
is present in the Josephson channel, offering the opportunity
to tune dissipationless currents of spin and charge in a well-
defined manner by adjusting the relative magnetization ori-
entation on each side of the junction. As a special case, we
considered the case where the SC phase difference is zero,
and found that a dissipationless spin-current without charge-
current would be established across the junction. Suggestions
concerning the detection of the effects we predict have been
made.

Moreover, we have derived an expression for a dissipa-
tionless spin-current that arises in the junction between two
Heisenberg ferromagnets with spin-orbit coupling. We have
shown that the spin-current is driven by terms originating
from both the ferromagnetic phase difference, in agreement
with the result of Ref. 24, and the presence of spin-orbit
coupling itself. In addition, it was found that the simulta-
neous breaking of time-reversal and inversion symmetry fos-
ters an interplay between ferromagnetism and spin-orbit cou-
pling in the spin-current. Availing oneself of external
magnetic and electric fields, our expressions show that the
spin-current can be tuned in a well-defined manner. These
results are of significance in the field of spintronics in terms
of quantum transport, and offer insight into how the spin-
current behaves for nanostructures exhibiting both ferromag-
netism and spin-orbit coupling.
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APPENDIX: DETAILS OF MATSUBARA FORMALISM

1. Ferromagnetic superconductors

Inserting Eq. �27� into Eq. �30�, one finds that

�Ṅ	
�t�	 = �Ṅ	
�t�	sp + �Ṅ	
�t�	tp =

− �
−�

t

dt���M	
�t�,M†�t���	e−ieV�t−t��

− ��M
	
† �t�,M�t���	eieV�t−t��

+ ��M	
�t�,M�t���	e−ieV�t+t��

− ��M
	
† �t�,M†�t���	eieV�t+t��� , �A1�

where the two first terms in Eq. �A1� contribute to the single-
particle current while the two last terms constitute the Jo-
sephson current. Above, we defined

M	
�t� = 
kp�

D̂�

�1/2����Tkpck	

† �t�dp��t� ,

M�t� = 
kp���

D̂���
�1/2����Tkpck�

† �t�dp���t� . �A2�

By observing that �̂	
= ��̂
	�*, we can combine Eqs.
�30�–�42�, �42�–�62�, �A1�, and �A2� to yield

�̂	
�Ṅ	
�t�	sp = 2 Im��̂	
�	
,sp�− eV�� ,

�̂	
�Ṅ	
�t�	tp = 2 Im��̂	
�	
,J�eV�e−2ietV� , �A3�

where the Matsubara functions are obtained by performing
analytical continuation according to

�	
,sp�− eV� = lim
i�̃�→−eV+i0+

�̃	
,sp�i�̃�� ,

�	
,J�eV� = lim
i�̃�→eV+i0+

�̃	
,tp�i�̃�� , �A4�

In Eq. �A4�, �̃�=2�� /
, �=1,2 ,3 , . . . is the bosonic Mat-
subara frequency and

�̃sp,	
�i�̃�� = − �
0




d ei�̃� 
kp�

k�p��1�2

D̂�

�1/2����D̂�1�2

�1/2� ���

� TkpTk�p�
* �T̃�ck	

† � �dp�� �dp��1

† �0�ck��2
�0��	 ,
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�̃tp,	
�i�̃�� = − �
0




d ei�̃� 
kp�

k�p��1�2

D̂�

�1/2����D̂�1�2

�1/2� ���

� TkpTk�p��T̃�ck	
† � �dp�� �ck��2

† �0�dp��1
�0��	 .

�A5�

Here, T̃ denotes the time-ordering operator, and 

=1/kBT is the inverse temperature. Only k�= �−�k ,p�= �−�p
contributes in the single-particle �two-particle� channel,
while the diagonalized basis �̃k� dictates that only �2=	,
�1=� contributes in the spin summation. Making use of the

relation �̃k�
† =�k�

† Ûk�, Eq. �A5� becomes

�̃sp,	
�i�̃�� = �
0




d ei�̃� 
kp�

D̂�

�1/2����D̂�	

�1/2����TkpTkp
*

� �T̃��Û11k	
* �k	

† � � + Û12k	
* �−k	� ��

� �Û11k	�k	�0� + Û12k	�−k	
† �0���	

� �T̃��Û11p��p�� � + Û12p��−p�
† � ��

� �Û11p�
* �k�

† �0� + Û12p�
* �−k��0���	 �A6�

�̃tp,	
�i�̃�� = − �
0




d ei�̃� 
kp�

D̂�

�1/2����D̂�	

�1/2����TkpT−k,−p

� �T̃��Û11k	
* �k�

† � � + Û12k	
* �−k�� ��

� �Û21k	�k��0� + Û22k	�−k�
† �0���	

� �T̃��Û21p�
* �p�

† �0� + Û22p�
* �−p��0��

� �Û11p��p�� � + Û12p��−p�
† � ���	 . �A7�

Since our diagonalized Hamiltonian has the form of a free-
electron gas, i.e.,

HFMSC = H̃0 + 
k�

Ek��k�
† �k� �A8�

with H̃0=H0− �Ek↑+Ek↓�, the product of the new fermion
operators �̃k� in Eq. �A6� yield unperturbed Green’s func-
tions according to

G	�k, −  �� = �T̃�cp	
† � ��ck	� ��	 . �A9�

We then Fourier-transform Eq. �A9� into

G	�k, � =
1




�m

e−i�m G	�p,i�m� , �A10�

where �m= �2m+1�� /
, m=1,2 ,3 , . . . is a fermionic

Matsubara frequency. The frequency summation over m is
evaluated by contour integration as in, i.e., Ref. 66 to yield
the result

1




m

G	�k,i�m�G��p,i�̃� + i�m� =
f�Ek	� − f�Ep��
i�̃� + Ek	 − Ep�

,

1




m

G	�k,i�m�G��p,i�̃� − i�m� =
f�Ep�� − f�− Ek	�
i�̃� − Ek	 − Ep�

,

�A11�

where f�E�=1− f�−E�=1/ �1+e
E� is the Fermi distribution.
It is then a matter of straightforward calculations to obtain
the result

�sp,	
�− eV� = 
kp�

D̂�

�1/2����D̂�	

�1/2����TkpTkp
* Nk	

2 Np�
2

�� 
�k		�p��
2�kp�	
−1,−1�− eV�

��k	 + Ek	���p� + Ep��
+ �kp�	

1,1 �− eV�

+

�p��
2�kp�	

−1,1 �− eV�
�p� + Ep�

+

�k		
2�kp�	

1,−1 �− eV�
�k	 + Ek	

� , �A12�

�tp,	
�eV� = − 
kp�

D̂�

�1/2����D̂�	

�1/2����TkpT−k,−p

�
�k		

* �p��

4Ek	Ep�


�=±1

!=±1

�kp�	
�! �eV� , �A13�

where �kp�	
�! �eV� is obtained by performing analytical con-

tinuation i�̃�→eV+ i0+ on

�̃kp�	
�! �i�̃�� =

��f�Ek	� − f��!Ep���
i�̃� + !Ek	 − �Ep�

; �,! = ± 1. �A14�

We also provide the details of the persistent spin-
supercurrent for ���=0. Writing the Josephson current Eq.
�32� out explicitly, one has that IJ

C=eI+ and IJ
S=−I− where

I± = 
kp


Tkp
2�cos2��/2�

�k↑↑�p↑↑


Ek↑Ep↑
sin ��↑↑Fkp↑↑

+ sin2��/2�

�k↑↑�p↓↓


Ek↑Ep↓
sin��↓↓

L − �↑↑
R �Fkp↑↓

± sin2��/2�

�k↓↓�p↑↑


Ek↓Ep↑
sin��↑↑

L − �↓↓
R �Fkp↓↑

± cos2��/2�

�k↓↓�p↓↓


Ek↓Ep↓
sin ��↓↓Fkp↓↓� . �A15�

The first and fourth term above vanish when ����=0. By
observing that Fkp↑↓=Fpk↓↑, we are then able to rewrite Eq.
�A15� as

TUNNELING CURRENTS IN FERROMAGNETIC SYSTEMS… PHYSICAL REVIEW B 75, 024508 �2007�

024508-13



I± = 
kp


Tkp
2 sin2��/2�

�k↑�p↓

Ek↑Ep↓

Fkp↑↓

��sin��↓
L − �↑

R� ± sin��↑
L − �↓

R��

= e
kp


Tkp
2 sin2��/2�

�k↑�p↓

Ek↑Ep↓

Fkp↑↓

��sin���↓
L � �↓

R − �↑
R ± �↑

L�/2�

�cos���↓
L ± �↓

R − �↑
R � �↑

L�/2�� . �A16�

It is clear that the argument of the sine gives 0 for the
upper sign, such that IJ

C=0. But for the lower sign, the argu-
ment of the cosine is equal to 0, such that Eq. �37� is ob-
tained.

2. Ferromagnets with spin-orbit coupling

The spin-current across the junction can be written as

IS = Im���− eV�� ,

��− eV� = lim
i�̃�→−eV+i0+

�̃�i�̃�� , �A17�

where we have defined the Matsubara function

�̃�i�̃�� = 
kp	
�


Tkp
2�̂	
�
0




d ei�̃� 

��T�ck��0�ck	
† � ��	�T�dp
� �dp�

† �0��	 .

�A18�

In Eq. �A18�, we defined the time-ordering operator T while

 in the upper integration limit is inverse temperature and
�̃�=2n� /
, n=0,1 ,2 , . . . is a bosonic Matsubara frequency.
From the definition of the spin-generalized Green’s function

Gk
	
� −  �� = − �T�ck	� �ck


† � ���	 , �A19�

Eq. �A18� can be written out explicitly to yield

�̃�i�̃�� =
1





kp,m

Tkp
2��̂↑↑�Gk

↑↑�i�m�Gp
↑↑�i�m − i�̃��

+ Gk
↓↑�i�m�Gp

↑↓�i�m − i�̃��� + �̂↑↓�Gk
↑↑�i�m�

�Gp
↓↑�i�m − i�̃�� + Gk

↓↑�i�m�Gp
↓↓�i�m − i�̃���

+ �̂↓↑�Gk
↑↓�i�m�Gp

↑↑�i�m − i�̃�� + Gk
↓↓�i�m�Gp

↑↓�i�m

− i�̃��� + �̂↓↓�Gk
↑↓�i�m�Gp

↓↑�i�m − i�̃��

+ Gk
↓↓�i�m�Gp

↓↓�i�m − i�̃���� . �A20�

We made use of the Fourier-transformations

Gk
	
�i�m� = �

0




d ei�mGk
	
� � ,

Gk
	
� � =

1




m

e−i�m Gk
	
�i�m� �A21�

in writing down Eq. �A20�, where �m=2�m+1�� /
, m
=0,1 ,2 , . . . is a fermionic Matsubara frequency. Having
written down the full expression for the Matsubara function
in Eq. �A20�, one can now easily distinguish between com-
ponents of the spin-current. For instance, only �̂		 will con-
tribute to the ẑ-component of IS, and the corresponding
terms can be read out from Eq. �A20�. From the present
Green functions in Eq. �50�, it is obvious that three types of
frequency summations must be performed, namely

Jkp,r =
1




m
� �m

r

���k↑ − i�m���k↓ − i�m� − yk
2�

�
1

���p↑ − i�m + i�̃����p↓ − i�m + i�̃�� − yp
2�� ,

�A22�

with r an integer. Performing the summation over m using
residue calculus, one finds that

Jkp,r = 
	=±


=±

	


4ykyp
�k	

r n�k	� − �i�̃� + p
�rn�p
�
− i�̃� + k	 − p


�
�A23�

with the definition k	��k+	yk. Separating the general
expression Eq. �A20� into its spatial components �̃

= ��̃x ,�̃y ,�̃z�, the components of the spin-current can be
extracted according to Ii

S=Im��i�−eV��, i=x ,y ,z. Note that
the charge-current in this model, which vanishes for eV=0,
is obtained by the performing the replacement �̂	
→ 1̂	
,
where 1̂ is the 2�2 unit matrix. We find that

�̃x�i�̃�� = 
kp


Tkp
2

4�k�p
�Jkp,0��k↓��L − Bp,−� + ��p↑ + i�̃��

���R − Bk,−� + ��p↓ + i�̃����R
† − Bk,+� + �k↑

���L
† − Bp,−�� − Jkp,1���L − Bp,−� + ��R − Bk,−�

+ ��R
† − Bk,+� + ��L

† − Bp,+��� ,

�̃y�i�̃�� = 
kp

i

Tkp
2

4�k�p
�Jkp,0�− �k↓��L − Bp,−� − ��p↑ + i�̃��

���R − Bk,−� + ��p↓ + i�̃����R
† − Bk,+� + �k↑

���L
† − Bp,−�� − Jkp,1�− ��L − Bp,−� − ��R − Bk,−�

+ ��R
† − Bk,+� + ��L

† − Bp,+��� ,

�̃z�i�̃�� = 
kp


Tkp
2

4�k�p
�Jkp,0��k↓��p↓ + i�̃�� − �k↑��p↑ + i�̃��

+ ��R − Bk,−���L
† − Bp,+� − ��R

† − Bk,+���L − Bp,−��

+ Jkp,1��k↑ − �k↓ + �p↑ − �p↓�� . �A24�
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67 Note that N	
 reduces to the number operator when we sum over
equal spins, i.e., N=�N��.

68 For corresponding results in spin-singlet superconductors with
helimagnetic order, see Refs. 19 and 20.

69 Note that the index 	 on the quasiparticles does not denote the
physical spin of electrons, but is rather to be considered as some
unspecified helicity index. The usage of the word “spin” in this
context then refers to this helicity.
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Recent findings of superconductors that simultaneously exhibit multiple spontaneously broken symmetries,
such as ferromagnetic order or lack of an inversion center and even combinations of such broken symmetries,
have led to much theoretical and experimental research. We consider quantum transport in a junction consisting
of a ferromagnetic metal and a non-unitary ferromagnetic superconductor. It is shown that the conductance
spectra provide detailed information about the superconducting gaps, and are thus helpful in determining the
pairing symmetry of the Cooper pairs in ferromagnetic superconductors.
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I. INTRODUCTION

Spontaneous symmetry breaking in condensed-matter sys-
tems ranks among the most profound emergent phenomena
in many-body physics. Multiple spontaneously broken sym-
metries are not only of interest in terms of studying proper-
ties of specific condensed-matter systems but are also due to
the fact that it may provide clues for what could be expected
in other systems in vastly different areas of physics. An
attempt1 at describing the physics of magnetic spin-singlet
superconductors was made long ago, and the discovery of
ferromagnetic superconductors �FMSCs�,2,3 displaying coex-
isting superconductivity �SC� and ferromagnetism �FM� well
below the Curie temperature, has produced a realization of a
physically rich system that exhibits simultaneously broken
SU�2� and U�1� symmetries. Spontaneous breaking of sym-
metry is responsible for a wide range of physical phenom-
ena, such as the mass differences of elementary particles,
phase transitions in condensed-matter systems, and even
emergent phenomena in biology.4 In many cases, the phe-
nomena can, in fact, be described by the same equations.
Thus, a study of ferromagnetic superconductors is of interest
not only in terms of having an obvious potential for leading
to a different set of devices in, for instance, nanotechnology
and spintronics but also from a fundamental physics point of
view.

A successful model describing an FMSC demands that
two important issues be addressed: �i� the symmetry of the
pairing state and �ii� whether the superconducting and ferro-
magnetic order parameters are coexistent or phase separated
in space-time. Cooper pairs in conventional superconductors
�s wave� are spin singlets. Thus, s-wave pairing and uniform
FM are antagonists.5,6 Spin-triplet Cooper pairs, however,
can carry a net magnetic moment. Such Cooper pairs are
presently the prime candidate for explaining the coexistence
of FM and SC in, e.g., UGe2 and URhGe.2,3 In these mate-
rials, SC occurs deep within the ferromagnetic phase. It is
therefore natural to view the SC pairing as originating with
electrons that also contribute to FM. Thus, the electrons re-

sponsible for FM below the Curie temperature TM condense
into Cooper pairs with magnetic moments aligned along the
magnetization below the critical temperature Tc. While spin-
singlet superconductivity coexisting with uniform ferromag-
netism appears to be unlikely, it could coexist with helically
ordered magnets. Tunneling phenomena in such systems
have indeed been considered theoretically.7,8 This is, how-
ever, physically quite different from the case we will present
in this paper.

Bulk FMSCs are expected to display an unusual feature,
namely, the spontaneous formation of an Abrikosov vortex
lattice.9 Uniform superconducting phases have also been
investigated,10 but in a bulk system it seems reasonable to
assume that this must be associated with a nonuniform mag-
netic state.7,8 A key variable determining whether a vortex
lattice appears or not seems to be the strength of the internal
magnetization m.11 The current experimental data3 available
for URhGe apparently do not settle this issue unambigu-
ously, while uniform coexistence of FM and SC appears to
have been experimentally verified12 in UGe2. Moreover, a
bulk Meissner state in the FMSC RuSr2GdCu2O8 has been
reported.13 No consensus has so far been reached concerning
the correct pairing symmetry for the FMSCs, although theo-
retical considerations strongly suggest that a non-unitary
state is favored.14–16 In terms of the dk-vector formalism �see
below�, this means that the relation i�dk�dk

*��0 is satisfied,
which is equivalent to saying that the Cooper pairs carry a
net spin.17 The study of pairing symmetries in unconven-
tional superconductors has a long tradition18 where tunneling
currents have played a crucial role. For the case of spin-
triplet nonmagnetic superconductors, theoretical studies of
tunneling to a normal metal or ferromagnet have been sug-
gestive in terms of establishing the correct pairing symmetry
for the superconductor.19,20

In this paper, we consider quantum transport between two
thin films of a non-unitary FMSC and an easy-axis ferromag-
net, respectively. We demonstrate how the resulting conduc-
tance spectra can be exploited to obtain useful information
about the superconducting gaps. The SC and FM order pa-
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rameters are assumed not to be phase separated. Moreover,
the choice of a thin-film FMSC is motivated by the fact that
the pair-breaking orbital effect on Cooper pairs with an in-
plane magnetization is suppressed, and that one will avoid
vortices present in the compound if the thickness t of the film
is smaller than the diameter of a vortex,21 t"�0#�0. Here,
�0 is the coherence length �typical size of Cooper pairs�,
while �0 is the penetration depth �typical radius of vortex�. In
the cases2,3 of UGe2 and URhGe, this amounts to t�10 nm,
which is well within reach of current experimental tech-
niques.

This paper is organized as follows. In Sec. II, we establish
the model and formalism which we will apply to the prob-
lem. Results are given in Sec. III, in addition to a discussion
of our findings. Concluding remarks are given in Sec. IV.

II. MODEL AND FORMULATION

Our model is illustrated in Fig. 1, where the supercon-
ducting pairing symmetry is equivalent to that of an A2
phase in 3He �see Ref. 17 and the discussion below Eq. �1��.

The Bogoliubov-de Gennes �BdG� equations for a FMSC
�Ref. 22� may be written in a compact matrix form as

�M̂k �̂k

�̂k
* − M̂k

��uk�

vk�
� = Ek��uk�

vk�
� , �1�

where we have introduced the 2�2 matrices

M̂k = �k1̂ − �̂zUR�L�,

�̂k = ��01̂ + �̂ · dk�i�̂y , �2�

in addition to the vectors

uk� = �uk↑� , uk↓��T,

vk� = �vk↑� , vk↓��T. �3�

Here, �k is a kinetic energy term, �̂= ��̂x , �̂y , �̂z� is a vector
containing the Pauli matrices, and UR�L� describes the mag-
netic exchange energy of right �left� part of the system.
Moreover, the dk vectors are given by

dk =
1

2
��k↓↓ − �k↑↑,− i��k↓↓ + �k↑↑�,2�k↑↓� , �4�

and �0 and �k	
 are the superconducting spin-singlet and
spin-triplet order parameters, respectively. Finally, uk� and

vk� are the wave-function solutions with eigenvalue Ek�. In
the following, we set the k-independent singlet amplitude �0
to zero, as we do not consider the case of coexistent s-wave
SC and FM.16 Also, the opposite-spin triplet pairing giving
rise to the gap �k↑↓ is, in general, believed to be suppressed,
since it requires interband pairing of Zeeman-split electrons.3

Hence, our model is that of a non-unitary spin-triplet state
with equal-spin pairing, i.e., �k↑↓=0 and �k���0, equiva-
lent to the A2 phase in liquid 3He �see, e.g., Ref. 17� with a
nonvanishing magnetic moment associated with the Cooper
pairs.

As indicated in Fig. 1, the reflected and transmitted elec-
tronlike and holelike excitations feel different pairing poten-
tials due to the orbital symmetry of the superconducting
gaps. The angle into which they are scattered depends on the
spin � of the incident electron, since there is a magnetic
exchange energy UR present in the superconducting state. In
the following, we will consider the momentum of the quasi-
particles as fixed on the Fermi surface for spin � so that the
superconducting gaps correspondingly only depend on the
direction of momentum, i.e., �k��→����s

��, where �s
� is de-

fined in Fig. 1. Throughout this paper, we shall insert the
superconducting gap a priori instead of solving it self-
consistently in order to obtain analytical formulas. This is
justified by the fact that detailed calculations taking into ac-
count the modification of the pair potential near the barrier
demonstrate that no new qualitative features appear in the
conductance spectra compared to the case when the gap is
modeled by a step function at the interface.23 However, the
proximity effect at a FM/SC interface may cause two impor-
tant phenomena to occur: �i� induction of a SC order param-
eter �possible mixture of singlet and triplet� in the FM
region24 and �ii� the formation of midgap surface states on
the interface,25 leading to a suppression of the order param-
eter in the vicinity of the interface. The competition and
coexistence of these two phenomena have been studied in
Ref. 26. In this work, we will mainly be concerned with a SC
pairing symmetry analogous to the A2 phase in liquid 3He,
for which the latter of these effects is only present for a
specific trajectory of the incoming electrons. Thus, we be-
lieve that our results capture the essential qualitative features
of the conductance spectra, although a self-consistent ap-
proach would be required in order to obtain the entire pic-
ture.

For the simplest model that illustrates the physics, we
have chosen a two-dimensional FM-FMSC junction with a
barrier modeled by the potential V�r�=V0��z� and supercon-

FIG. 1. �Color online� Model system of an
FM-FMSC interface in a slab geometry in the
clean limit. Retroreflection symmetry is not bro-
ken since the hole carries the same spin as the
incident electron. We have sketched gaps corre-
sponding to the analog �Ref. 17� of the A2 phase
in liquid 3He.
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ducting gaps ����s
� ,r�=����s

��$�z�. Here, ��z� and $�z�
represent the Kronecker delta and Heaviside functions, re-
spectively. Solving the BdG equations and applying the
Blonder-Tinkham-Klapwijk formalism,27 which has proven
to yield good consistency with experimental findings,28 one
finds that our system in Fig. 1 is described by the wave
functions for particles and holes with spin � in the ferromag-
net ��� and FMSC �%�� sides of the barrier. Explicitly, the
total wave function

%tot
� �z� = $�− z���z� + $�z�%��z� �5�

then has the components

��z� = eik� sin �y��1

0
�eik� cos �z + re

��E,���1

0
�e−ik� cos �z

+ rh
��E,���0

1
�eik� cos �z� ,

%��z� = eiq� sin �y�te
��E,��� u���s+

� �
v���s+

� ���
*��s+

� �
�eiq� cos �s

�z

+ th
��E,���v���s−

� �����s−
� �

u���s−
� �

�e−iq� cos �s
�z� , �6�

where �����=����� / 
�����
 and �s+
� =�s

�, �s−
� =�−�s

�. The
wave vectors read

k� = �2m�EF + �UL��1/2,

q� = �2m�EF + �UR��1/2, �7�

while the spin-generalized coherence factors are

u���s±
� � =

1

4
�1 + �1 − �
����s±

� �
/E�2�1/2,

v���s±
� � =

1

4
�1 − �1 − �
����s±

� �
/E�2�1/2. �8�

In writing down Eq. �6�, we have implicitly incorporated
conservation of group velocity and conservation of momen-
tum parallel to the barrier, i.e., k� sin �=q� sin �s

�. As seen
from the expressions of the wave vectors above, we have
taken the effective mass m and Fermi energy EF to be equal
on both sides of the junction. For the spin-unpolarized case,
i.e., normal/nonmagnetic superconductor junction, it suffices
to consider the interfacial parameter Z �given below� to ac-
count for the subgap conductance, since any Fermi wave-
vector mismatch corresponds to an increase in the effective
Z. However, when spin polarization comes into play, it was
shown in Ref. 29 that the subgap conductance could be en-
hanced due to the Fermi wave-vector mismatch. This effect
could not be reproduced by varying Z alone, hence implying
that the effect of different bandwidths due to different Fermi
energies should be taken into account upon comparison be-
tween experimental results and theoretical predictions. In our
model, we do not study the effect of Fermi wave-vector mis-
match, leaving this for future investigations.

III. RESULTS AND DISCUSSION

The normal- and Andreev-reflection coefficients can be
calculated by making use of the boundary conditions

�i� ��0� = %��0� ,

�ii� 2mV0
��0� = �/�z
�%��z� − ��z��
z=0. �9�

Let us introduce Z=2mV0 /kF and

&±
� = q� cos �s

� ± k� cos � ± ikFZ , �10�

while P�
L�R� = �EF+�UL�R�� /2EF denotes the spin polarization

on the left �right� side of the junction. Our calculations then
lead to the explicit expressions for the Andreev- and normal-
reflection coefficients for this FM-FMSC junction, namely,

re
� = − 1 + 2k� cos ��u���s+

� �u���s−
� ��&+

��*

+ v���s−
� �v���s+

� �����s−
� ���

*��s+
� ��&−

��*�/D�,

rh
� = 4k� cos �q� cos �s

�v���s+
� �u���s−

� ���
*��s+

� �/D�, �11�

upon defining the quantity

D� = u���s+
� �u���s−

� �
&+
�
2

− v���s−
� �v���s+

� �����s−
� ���

*��s+
� � � 
&−

�
2. �12�

In the limit of weak FM where all quasiparticle momenta
equal kF, our results are found to be consistent with a spin-
generalized augmentation of the equations in Ref. 31, where
the reflection coefficients for a normal-anisotropic supercon-
ductor junction were derived. Tanaka and Kashiwaya put
forth a natural explanation for the observed zero-bias con-
ductance peaks �ZBCPs� as a result of the different phases
felt by the scattered electronlike and holelike quasiparticles
in the superconductor. In their general form, the coefficients
in Eq. �11� are results that include the effect of magnetism on
the superconducting side of the barrier. As demanded by
consistency, one obtains total reflection 
re

�
2=1 when
��arcsin�q� /k��. Having obtained the above quantities, one
may calculate the conductance G�E� of the setup �in units of
the normal conductance, i.e., �����→0�. We find that it is
given by

G�E� = 
�

G��E��
�

F�, �13�

where we have defined the quantities

G��E� = �
−�/2

�/2

d� cos �g��E,��P�
LP�

R,

g��E,�� = 1 + 
rh
��E,��
2 − 
re

��E,��
2,

F� = �
−�/2

�/2

d� cos �f����P�
LP�

R,

f���� = 1 − 
1 − 2k� cos �/&+
�
2. �14�

We next demonstrate how the conductance spectra yield use-
ful information about the superconducting gaps upon varying
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the relative orientation of the gaps, their magnitude, and the
strength of the magnetic exchange energy on each side of the
junction. To be specific, we first consider the analog of the
A2 phase in liquid 3He, such that the gaps may be written
as30

�↑��s±
� � = − �↑,0ei��s±

� −	�, �↓��s±
� � = �↓,0ei��s±

� −
�, �15�

as illustrated in Fig. 1. We stress that �s±
� is not the global

broken U�1� superconducting phase, but rather an internal
phase originating with the odd symmetry of the p-wave gaps
�see Fig. 1�. The exchange energy of the FMSC will be kept
fixed at UR=0.05EF. In Fig. 2, we have plotted the conduc-
tance spectra for a FM/FMSC junction for three distinct
cases. We have defined the ratio between magnitude of the
superconducting gaps as R�=�↑,0 /�↓,0. Introducing the di-
mensionless barrier strength Z=2mV0 /kF, where kF is the
Fermi momentum, we consider �i� the metallic contact case
with no barrier �Z=0�, �ii� the intermediate case with a mod-
erate barrier �Z=3�, and �iii� the tunneling limit with an in-
sulator in the junction �Z→��. For each case, we have al-
lowed the magnetic exchange energy UL to vary from weak,
favoring ↑-spins �U=0.05EF� to strong, favoring ↑-spins in
one case �U=0.5EF� and ↓-spins in the other case �U=
−0.5EF�. These are shown in descending order in each col-
umn. We have also considered the conductance G�E� for
several values of �	 ,
�. For the gaps chosen above, we find
that the G�E� did not depend on different choices of these
parameters. This can be understood by observing that the
angular averaging over G��E ,�� allows for factors e−i	�
� to
be separated on equal footing as the factor corresponding to
the globally broken U�1� symmetry, whose value does not
affect the conductance spectra. This will, however, not be the
case for other possible triplet symmetries, as discussed be-
low.

An important, and obvious, feature of the conductance
spectra is a characteristic behavior occurring at voltages cor-

responding to E=��,0, �= ↑ ,↓, where peaks are displayed.
This offers the opportunity to utilize the conductance spectra
to reap explicit information on the size of the superconduct-
ing gaps in the FMSC. From Fig. 2, it is seen that the effect
of increasing the exchange energy on the ferromagnetic side
to UL= ±0.5EF is a sharpening of the peaks located at
E=��,0, where � is the spin species energetically favored by
UL. Concomitantly, the peak located at E=�−�,0 is sup-
pressed. Such a response is consistent with what one would
expect, since increased �decreased� spin polarization on the
ferromagnetic side enhances �suppresses� the conductance of
the corresponding spin component. In the tunneling limit
�large Z�, we see that the conductance spectra exhibit sharp
transitions at E=��,0, corresponding to the sudden appear-
ance of a tunneling current as the voltage exceeds the mag-
nitude of the gaps. We have also considered G�E� in the case
of vanishing FM on the left side, i.e., a N/FMSC junction.
The results we find are very similar to the case of weak FM
displayed in the upper row of Fig. 2, and are therefore not
displayed.

For the gaps in Eq. �15�, the conductance was found to be
insensitive to �	 ,
�. However, in general this is different,
and the orientation of the gaps relative to the barrier is es-
sential in determining the conductance spectrum. We illus-
trate this with a somewhat different choice of anisotropic
gaps. When the superconducting gap is oriented in a fashion
that leaves it invariant under inversion of the component of
momentum perpendicular to the junction, kz→−kz in this
case �equivalently, �→�−��, no ZBCP should be expected
as there is no formation of current-carrying zero energy
states.25 However, when the gap changes sign under such an
inversion of momentum, ZBCPs appear.31 Since the
momentum perpendicular to the junction of the holelike ex-
citation in the anisotropic superconductor is reversed com-
pared to the electronlike excitation, a gap that satisfies
����������−�� will cause the hole to feel a pairing poten-
tial different from that of the electronlike excitation. This is

FIG. 2. �Color online� Plot of the conductance G�E� for a FM/FMSC junction in the case of a metallic contact, the tunneling limit, and
an intermediate case. The gaps are given by Eq. �15� in this case, for which G�E� is found to be insensitive to �	 ,
�. In the above, �	 ,
�=0.
The columns for each case provide the spectrum for UL=0.05EF, UL=0.5EF, and UL=−0.5EF, in descending order. For each figure, we have
plotted several ratios between the magnitude of the superconducting gaps. These are given by R�= �2,3 ,4 ,5�, represented by the magenta
�thick, full-drawn�, blue �thick, dashed�, green �thin, full-drawn�, and red lines �thin, dashed�, respectively.
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the fundamental reason for the appearance of a ZBCP. How-
ever, in the present case of p-wave superconducting gaps
analogous to the A2 phase in 3He, both gaps are asymmetric
under the operation �→�−� regardless of the value of
�	 ,
� except for the single value �=0. Therefore, a small
contribution to zero energy current-carrying states, i.e.,
G�0��0, will occur, as shown in Fig. 2. However, this con-
tribution does not lead to a ZBCP, for which all values of �
contribute to the formation of zero energy states due to the
asymmetry of the gaps. In a model where the p-wave gaps
are represented by the odd-symmetry analog of dx2−y2-wave
gaps, i.e.,

�↑��� = �↑,0 cos�� − 	�, �↓��� = �↓,0 cos�� − 
� ,

�16�

the formation of ZBCP will then be predictable from the
orientation of the gaps as these can now display symmetry/
antisymmetry/asymmetry when �→�−�, depending on
�	 ,
� �see Fig. 1�. Indeed, insertion of the above gaps into
our model produces conductance spectra that display a
ZBCP for, e.g., 	=
=0, as can be seen in Fig. 3. In this
case, as in Fig. 2, the conductance spectra also allow for the
magnitude of the superconducting gaps to be read out, al-
though the features are not as clear as those seen in Fig. 2.

From the results of Figs. 2 and 3, it is clear that the con-
ductance spectra G�E� exhibit strong dependence on the ex-
change energy, while the relative orientation of the gaps is
insignificant for the superconducting gaps �Eq. �15��. Thus,
our results will shed light on the magnitude of the various
components of the superconducting gaps and their relative
orientations in k space if the gaps display symmetry/
antisymmetry under �→�−� for some orientation. More-
over, we are dealing with an easily observable effect, since
distinguishing between the peaks occurring for various val-
ues of R� requires a resolution of order O�10−1�↑,0�, which
typically corresponds to 0.1–1 meV. These structures should
be then readily resolved with present-day scanning tunneling
microscopy technology. However, it should be pointed out

that a challenge with respect to tunneling junctions is dealing
with nonidealities at the interface, which may affect the con-
ductance spectrum. Also, the importance of spin-flip pro-
cesses in the vicinity of the interface �if such are indeed
present� has recently been pointed out.32,33 Finally, we stress
the fact that multiple conductance measurements for several
interface orientations are, in general, required to unambigu-
ously determine the pairing symmetry of the superconduct-
ing condensate, a point underlined by recent findings that
show how both chiral p-wave and d-wave pairing may ac-
count for the superconducting properties of strontium
ruthenate.34

IV. CONCLUSION

In summary, we have studied the conductance spectra
G�E� for systems consisting of a ferromagnetic metal sepa-
rated from a non-unitary p-wave FMSC by a thin, insulating
barrier. We have considered the cases of weak, intermediate,
and strong barriers and considered three different strengths
of the ferromagnetic exchange energy. We have considered
two classes of anisotropic spin-triplet superconducting gaps,
with results given in Figs. 2 and 3. Our results show how the
magnitude of the superconducting gaps ��, �= ↑ ,↓ may be
inferred from the conductance spectra. Moreover, the class of
superconducting gaps given in Eq. �15� renders G�E� insen-
sitive to �	 ,
�; the results are shown in Fig. 2 for �	 ,
�
=0. Conversely, for the orientations of the p-wave gaps mod-
eled by Eq. �16�, specific values of �	 ,
� are essential to the
formation of ZBCPs in G�E� in Fig. 3 and the characteristic
behavior at E=��,0, �= ↑ ,↓. These results should provide
useful insights in determining the relative orientation be-
tween the superconducting gaps as well as their magnitude in
ferromagnetic spin-triplet superconductors.
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We present a theoretical study of a ferromagnet–s-wave-superconductor junction to investigate the signa-
tures of induced triplet correlations in the system. We apply the extended Blonder-Tinkham-Klapwijk formal-
ism and allow for an arbitrary magnetization strength and direction of the ferromagnet, a spin-active barrier,
Fermi-vector mismatch, and different effective masses in the two systems. It is found that the phase associated
with the xy components of the magnetization in the ferromagnet couples with the superconducting phase and
induces spin triplet pairing correlations in the superconductor, if the tunneling barrier acts as a spin filter. This
feature leads to an induced spin-triplet pairing correlation in the ferromagnet, along with a spin-triplet electron-
hole coherence due to an interplay between the ferromagnetic and superconducting phases. As our main result,
we investigate the experimental signatures of retrorelection, manifested in the tunneling conductance of a
ferromagnet–s-wave-superconductor junction with a spin-active interface.

DOI: 10.1103/PhysRevB.75.134509 PACS number�s�: 74.20.Rp, 74.20.�z, 74.50.�r

I. INTRODUCTION

The proximity effect1 in a normal/superconductor �N/S�
junction refers to the induced superconducting �SC� correla-
tions between electrons and holes in the normal part of the
system. Even far away from the junction �typically distances
much larger than the superconducting coherence length ��
where the pairing potential is identically equal to zero, these
correlations may persist. Consequently, the proximity effect
is responsible for a plethora of interesting physical phenom-
ena, including the Josephson effect in S/N/S junctions,2 the
spin-valve effect in ferromagnet/superconductor �F/S�
layers,3 and the realization of so-called � junctions, which in
particular have received much attention both theoretically4

and experimentally5 during the past decades. The under-
standing of Andreev-reflection processes6 is crucial when
dealing with the proximity effect in N/S systems. Roughly
speaking, this phenomenon may be thought of as a coher-
ently propagating electron with energy less than the super-
conducting gap � incident from the N side of the barrier
being reflected as coherently propagating hole, while in the
process generating a propagating Cooper pair in the S. Such
processes are highly relevant in the context of transport prop-
erties of N/S heterostructures in the low-energy regime and
have proven to be an effective tool in probing the pairing
symmetry of unconventional SCs �see Ref. 7 and references
therein�.

In recent years, the fabrication of ferromagnet-
superconductor heterostructures has been subject to substan-
tial advances due to the development of techniques in mate-
rial growth and high quality interfaces.8,9 With an increasing
number of recently discovered unconventional superconduct-
ors with exotic pairing symmetries,10–12 there exists an ur-
gent need to refine the traditional methods, such as tunneling
spectroscopy, in order to correctly identify the experimental
signatures which reveal the nature of the pairing potential for
such superconductors. For one thing, this amounts to taking
into account effects which are known to be present in tun-

neling junction experiments and that may significantly influ-
ence the conductance spectra, such as local spin-flip pro-
cesses and the nonideality of the interface.13 Also, with the
aim of producing theoretical tools that may serve as a guide
for identifying the superconducting pairing symmetry,
possible spin-filter effects of interface in ferromagnet-
superconductor heterostructures warrant attention.14

Studies of quantum transport in F/S junctions have a long
tradition for both conventional and unconventional pairing
symmetries in the superconductor.15–17,19 Currently, such sys-
tems have become the subject of much investigation, not
only due to their interesting properties from a fundamental
physics point of view, but also because such heterostructures
may hold great potential for applications in nanotechnologi-
cal devices. An important characteristic of most F/S junc-
tions is that, unlike N/S junctions, retroreflection is absent
for the hole in the F part of the system. This means that the
reflected hole, which carries opposite spin of the original
electron, does not retrace the trajectory of the incoming elec-
tron. The absence of retroreflection is due to the presence of
an exchange interaction. Previous studies of such systems
have primarily focused on a magnetization lying in the plane
of the F/S junction, where in most cases the barrier contains
a pure nonmagnetic scattering potential.15–17 Kashiwaya
et al.19 included the effect of a magnetic scattering potential
in this type of junction—i.e., spin-active barriers—and very
recently, it was suggested by Kastening et al.20 that the pres-
ence of both intrinsic and spin-active scattering potentials in
the barrier of a S/S junction may lead to qualitatively new
effects for the Josephson current. So far, the influence of the
F phase associated with the planar magnetization perpen-
dicular to the interface has been largely unexplored, although
Ref. 20 considers the one-dimensional �1D� case of this situ-
ation.

It is therefore the purpose of this paper to investigate two
interesting features that arise in a F/S junction in the pres-
ence of planar magnetization components: �i� the interplay
between the planar magnetization and the presence of a spin-
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active barrier may restore retroreflection for a given param-
eter range, and �ii� the resulting induced electron-hole pair
correlations exhibit a coupling between � and the S phase �.
Since our findings suggest that the traditional picture of ab-
sent retroreflection does not hold for planar magnetization
with respect to the junction in the presence of a spin-active
barrier, we argue that these results are of major importance in
the study of F/S junctions. The presence of retroreflection in
a F/S junction thus influences the spin-charge dynamics in a
significant way, giving rise to new possibilites of quantum
transport involving charge and spin flow in such a hetero-
structure. Elucidating the consequences of this is of funda-
mental importance. It is also of considerable importance in
device fabrication, since our results imply that the spin-
active properties of a tunneling barrier play a crucial role.

This paper is organized as follows. In Sec. II, we define
the model we study and set up definitions of the scattering
amplitudes to be considered. In Sec. III we investigate what
conditions are necessary for retroreflection to occur. In Sec.
IV, we give our results for the conductance. In Sec. IV A, we
consider the influence of Fermi-vector mismatch on the con-
ductance spectrum G�E�, in Sec. IV B we consider the effect
of exchange energy on G�E�, in Sec. IV C we consider the
effect of differing effective masses across the tunneling junc-
tion on G�E�, and in Sec. IV D we consider the effect on
G�E� of varying the relative strength of magnetic and non-
magnetic scattering potentials in the contact region between
F and S. In Sec. V we provide a discussion of results, includ-
ing a comparison of our results to earlier ones on similar
problems. We highlight what our new findings are compared
to earlier results. Finally, Sec. VI summarizes our results.

II. MODEL AND FORMULATION

We define our model as follows. Consider a 2D F/S junc-
tion as illustrated in Fig. 1. As is seen from the figure, � is
the angle of incidence for electrons with spin � that feel a
barrier strength V��x�= �V0−�Vs���x�, where V0 and Vs are
the nonmagnetic and magnetic scattering potentials, respec-
tively; i.e., the barrier is spin active.19 Physically, this means

that the barrier acts as a spin filter. Furthermore, �A is the
angle of reflection for particles with spin −�. The
Bogoliubov–de Gennes �BdG� equations that describe the
quasiparticle states %�x ,y� with energy eigenvalues E in the
two subsystems are given by

�Ĥ0�x,y� �̂�x�

− �̂†�x� − Ĥ0
T�x,y�

�%�x,y� = E%�x,y� , �1�

where we have defined the single-particle Hamiltonian

Ĥ0�x,y� = − �xy
2 /�2mF$�− x� + 2mS$�x�� − �̂ · M$�− x�

+ diag„V↑�x�,V↓�x�… , �2�

while �̂�x�=i�y
ˆ ��x�. We allow for different effective masses

in the two systems, given by mF and mS. The magnetic ex-
change energy splitting is denoted

M = �Mxy
2 + Mz

2�1/2, �3�

where Mxy
2 =Mx

2+My
2 is the planar contribution of the mag-

netic exchange energy, while 2Mz is the energy splitting be-
tween spin-↑ and spin-↓ bands. The quasiparticle wave vec-
tors are then given by

k� = �2mF�EF + �M� ,

q = �2mSES, �4�

in the F part and S part of the system, respectively, where Ei
is the Fermi energy. We have made use of the standard ap-
proximation Ei��. Moreover, we take the S order param-
eter to be constant up to the junction such that ��� ,x�
=�ei�$�x�. Solving the BdG equations, the wave functions
 on the F side and % on the S side become

�x,y� = eikyy��
s↑a

s↑be−i�

0

0
�eik↑ cos �x +�

− s↓bei�

s↓a

0

0
�eik↓ cos �x

+ re
↑�

a

be−i�

0

0
�e−ik↑Sx + re

↓�
− bei�

a

0

0
�e−ik↓S̃x

+ rh
↑�

0

0

a

bei�
�eik↑Sx + rh

↓�
0

0

− bei�

a
�eik↓S̃x� ,

FIG. 1. �Color online� Schematic overview of the relevant scat-
tering processes that take place at the F/S interface. We take into
account the possibility of retroreflected holes with equal spin as the
incoming electron. This is due to the presence of spin-flip processes
manifested in the form of planar magnetization and a spin-active
barrier.
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%�x,y� = eikyy�te
↑�

u

0

0

ve−i�
�eiq cos �sx + te

↓�
0

u

− ve−i�

0
�eiq cos �sx

+ th
↑�

0

− vei�

u

0
�e−iq cos �sx + th

↓�
vei�

0

0

u
�e−iq cos �sx� .

�5�

The elements entering in the wave functions above describ-
ing the quasiparticles read

a =
1

�1 + �Mxy/�M + Mz��2
, b =

aMxy

M + Mz
, �6�

for the F part, while the superconducting coherence factors
read

u =�1

2
+

�E2 − �2

2E
,

v =�1

2
−

�E2 − �2

2E
. �7�

We denote the F phase by � and S phase by �. Note that
tan �=−My /Mx, such that the physical interpretation of the F
phase is directly related to the direction of the magnetization
in the xy plane characterized by the azimuthal angle. An
incoming electron with spin ↑ is described by �s↑=1,s↓=0�
while a spin-↓ electron is given by �s↑=0,s↓=1�. For conve-

nience, we also introduce S=s↑ cos �+s↓ cos �A and S̃
=s↑ cos �A+s↓ cos �. The boundary conditions for these
wave functions read

F�0,y� = %S�0,y� ,

%S��x,y�
x=0

2mS
−
F��x,y�
x=0

2mF
= V0 − Vs� , �8�

where �= �1,−1,1 ,−1�T and a prime denotes derivation with
respect to x. Translational invariance along the ŷ direction
implies conservation of the momentum ky. This allows us to
determine �s and �A as follows:

�s↑k↑ + s↓k
↓�sin � = q sin �s,

�s↑k↑ + s↓k
↓�sin � = �s↑k↓ + s↓k

↑�sin �A. �9�

III. PRESENCE OF RETROREFLECTION

Several cases may now be studied, such as different ef-
fective masses in the F and S parts, Fermi-vector mismatch,
and the presence of a spin-active barrier. Solving Eq. �8� for
the wave functions in Eqs. �5�, one is able to obtain explicit
expressions for the reflection coefficients of the scattering

problem. This amounts to solving for 16 unknown coeffi-
cients, and their derivation may be found in the Appendix .
While the expressions for their amplitudes are quite cumber-
some, their phase dependences are simple and illustrate the
new physics. In Table I, we provide this phase dependence
for the cases of incoming ↑ and ↓ electrons.36 It is seen that
a coupling between � and � is present in the phase of the
hole with the same spin � as the incident electron. Ordi-
narily, retroreflection is absent in the Andreev-scattering pro-
cess at the F/S junction such that the reflected hole and the
incident electron carry opposite spins. However, it is clear
from Table I that were a hole with spin � to be generated in
the scattering process, it would carry information about both
the F and S phases. We interpret this as induced spin-triplet
pairing correlations in the S part of the system, along with
an electron-hole correlation in the ferromagnet.

Although the phase dependence of the reflection coeffi-
cients displayed in Table I is intriguing, it remains to be
demonstrated that the amplitudes of these coefficients are
nonzero. To illustrate that this is so, consider Fig. 2 where we
have plotted the probability coefficients �that differ from the
reflection coefficients by a prefactor; see Eq. �19�� for normal
incidence �=0; their derivation may be found in the Appen-
dix. In �a�, we have no exchange energy and a purely non-
magnetic interfacial resistance, from which the result of Ref.
22 is reproduced. In �b�, we have allowed for an exchange
energy Mz=0.5EF, which results in a reduction of the
Andreev-reflection amplitude. This is a consequence of the
reduced carrier density of the spin-↓ band due to the pres-
ence of a magnetic exchange energy. In the extreme limit of
a completely spin-polarized ferromagnet, Mz=EF, the subgap
conductance is completely absent since there are no charge
carriers in the spin-↓ band at the Fermi level. In �c�, we also
incorporated the effect of a magnetic scattering potential in
the interfacial resistance, which is seen to slightly reduce the
probability of the Andreev reflection at E=�. The novel fea-
tures of the F/S junction are now presented in �d�. When we
allow for both a magnetic scattering potential and local spin-
flip processes in the form of a planar component of the mag-
netization, it seen that retroreflection is established. In other
words, a new transport channel is opened up for both spin
and charge—namely, reflected holelike excitations with the
same spin as the incoming electron. Note that the inclusion
of this process is absent in most of the literature treating F/S
junctions so far.15,18,19

To investigate how large the magnitude of the retroreflec-
tion coefficient may become, possibly even outgrowing the
probability for “normal” Andreev reflection, we plotted the
case of zero net polarization for several values of Mxy in Fig.
3. It is seen that as Mxy increases, the probability for retrore-

TABLE I. Phase dependence of reflection coefficients. Here, “1”
means that the quantity is real. An interplay between � and � occurs
when retroreflection is present.

Refl. coeff. rh
↑ rh

↓ re
↑ re

↓

Inc. spin ↑ e−i��+�� e−i� 1 e−i�

Inc. spin ↓ e−i� ei��−�� ei� 1
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flection grows and eventually becomes much larger than the
probability for ordinary Andreev reflection. Thus, for a tun-
neling junction with a barrier that discriminates significantly
between spin-↑ and spin-↓ electrons, the presence of spin-flip
processes may induce a substantial modification to the tradi-
tional picture of broken retroreflection.

Having established the presence of retroreflection, the
next step is the consideration of how retroreflection leaves its
signatures in experimentally measurable quantities. In this
paper, we investigate how the presence of retroreflection may
leave an experimental signature manifested in the conduc-
tance spectrum of a F/S junction. Although this shall be our
focus, we note in passing that the reflection coefficients de-

rived in the Appendix may also be used for the purpose of
obtaining the current-voltage characteristics, spin-current,
and spin conductance of the F/S junction. Normally, the
charge and spin current may be written as

jcharge = − e
�

j�, jspin = 
�

�j�, �10�

where j� is the particle current of electrons with spin � over
the interface. However, in the presence of spin-flip scatter-
ing, defining a proper spin current requires a more careful
analysis.21 One can always write down a well-defined spin
current in terms of physical spin transport across the junc-
tion, but it may be very hard to experimentally distinguish
whether the spin accumulation on either side of the interface
should be attributed to physical spin transport or local spin-
flip processes. The latter are present in, e.g., systems with
significant spin-orbit coupling or an in-plane magnetic field
with respect to the quantization axis, which results in scat-
tering between the two spin bands. Accordingly, in this paper
we will concern ourselves with the charge current and the
resulting conductance spectrum.

IV. RESULTS

In our theory, we have included the possibility of having a
spin-active barrier, Fermi-vector mismatch, arbitrary strength
of the exchange energy on the F side, and different effective
masses in the two systems. Thus, we believe our model
should be able to capture many essential and realistic fea-
tures of a F/S junction that pertain to both interfacial prop-
erties, as well as bulk effects on the F and S sides, respec-
tively. Since the case of easy-axis magnetization has been
thoroughly investigated, we shall be mainly concerned with
the presence of retroreflection, which requires both spin-flip
processes and a barrier acting as a spin filter.

The single-particle tunneling conductance may be calcu-
lated by using the Blonder-Tinkham-Klapwijk �BTK�
formalism22 and reads

G�E� = 
�

G��E� ,

G��E� = �
−�/2

�/2

d� cos �P�G��E,�� ,

G��E,�� = GN
−1�1 + Rh

↑�E,�� + Rh
↓�E,�� − Re

↑�E,�� − Re
↓�E,��� ,

GN = �
−�/2

�/2

d� cos �
4 cos2�

4 cos2� + Z2 , �11�

where Z=2mFV /kF and GN is the tunneling conductance for
a N/N junction. Note that the right-hand side �rhs� of the
equation for G��E ,�� appears to be independent of �. How-
ever, it is implicitly understood in this notation that the re-
flection coefficients appearing on the rhs have been solved
for an incoming electron with spin �, and these differ in the
cases �=↑ and �=↓ since the wave function is different �see
Eq. �5��. The different probabilities for having spin injection

FIG. 2. �Color online� Plot of the probability coefficients asso-
ciated with the scattering processes at the interface. For an electron
with incoming spin �, the green �dash-dotted� line corresponds to
normal reflection with spin �, the magenta �dashed� line corre-
sponds to Andreev-reflection of a hole with spin −�, and the blue
�solid� line designates reflection without branch crossing with spin
−�, while the presence of retroreflection—i.e., Andreev reflection
of a hole with spin �—is indicated by the red �dotted� line. Note
from �d� that in order to get retroreflection, both an in-plane mag-
netization and a spin-active barrier are required.

FIG. 3. �Color online� Plot of probability coefficients for Z=1
and RV=0.95 in the absence of any net polarization for several
values of Mxy. It is seen that for increasing Mxy—i.e., larger effect
of spin-flip scattering—the retroreflection process dominates the
“normal” Andreev reflection.
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� in the presence of a net polarization is accounted for by the
factor P�= �1+�MZ /EF� /2. The quantities �Rh

� ,Re
�� are the

probability coefficients for normal and Andreev reflection
and will be derived below. Note that these are not in general
equal to the square amplitude of the scattering coefficients
and, in particular, not so in this case. To see this, consider a
current density of probability Jinc that is incident on the bar-
rier,

Jinc =
1

2mFi
�*� − �*� , �12�

obeying the conservation law

�P

�t
+ � · Jinc = 0. �13�

Here, P= 

2. Consulting Eq. �5� and extracting the part of 
that corresponds to the incident wave function, one readily
obtains

Jinc =
cos �

mF
�s↑k↑ + s↓k

↓�x̂ . �14�

Since probability must be conserved, we have

Jinc = − Jrefl + Jtrans, �15�

where the reflected probability current density reads

Jrefl =
1

2mFi
��e

*�e − H . c . � − �h
*�h − H . c . �� ,

e = re
↑� a

be−i� �e−ik↑Sx + re
↓�− bei�

a
�e−ik↓S̃x,

h = rh
↑� a

bei� �eik↑Sx + rh
↓�− be−i�

a
�eik↓S̃x. �16�

The opposite signs of the electron and hole parts of  enter-
ing Jrefl pertain to the fact that their energy eigenvalues have
opposite signs, as one may infer from the BdG equations that
are used to derive the explicit expression for Jrefl from Eq.
�15�. One finds that

Jrefl = −
1

mF
�k↑S
re

↑
2 + k↑S
rh
↑
2 + k↓S̃
re

↓
2 + k↓S̃
rh
↓
2�x̂ .

�17�

The same procedure may now be applied to Jtrans, such that
Eq. �15� can be written as

1 = 
�

�Re
� + Rh

� + Te
� + Th

�� �18�

upon division with 
Jinc
. From this, one infers that

Re
↑ = 
re

↑
2
k↑S

s↑k
↑ cos � + s↓k

↓ cos �
,

Re
↓ = 
re

↓
2
k↓S̃

s↑k
↑ cos � + s↓k

↓ cos �
,

Rh
↑ = 
rh

↑
2
k↑S

s↑k
↑ cos � + s↓k

↓ cos �
,

Rh
↓ = 
rh

↓
2
k↓S̃

s↑k
↑ cos � + s↓k

↓ cos �
. �19�

The coefficients �Re
� ,Rh

� ,Te
� ,Th

�� have the status of probabil-
ity coefficients for their respective processes and obey the
conservation law, Eq. �18�. Note that in the absence of ex-
change splitting—i.e., F→ N and �A=�—one obtains Ri

�

= 
ri
�
2.

A. Effect of Fermi-vector mismatch

To account for the Fermi-vector mismatch, we introduce a
parameter RE=ES /EF. This allows the Fermi energies in the
F and S regions to be different, which effectively models
unequal carrier densities and bandwidths on each side of the
junction. For ferromagnet/high-Tc-superconductor junctions,
an appropriate choice appears to be18 RE'1. In our study,
however, we will consider values of RE both less than and
greater than unity. To begin with, we fix the strength of the
planar contribution to the exchange energy at Mxy =0.1EF
and set Mz=0, plotting the conductance spectrum for several
values of RE. We fix the ratio RV=Vs /V0=0.5, such that the
conditions for retroreflection are fulfilled. For each figure,
we consider zero �Z=0�, weak �Z=1�, and large �Z=10� in-
terfacial resistance; Z=0 corresponds to the point contact
�also called metallic contact in some of the literature� while
Z→� is equivalent to the tunneling limit. The conductance
spectrum for weak spin-flip scattering �Mxy =0.1EF� and Mz

=0 with RV=0.5 for several values of Z is depicted in Fig. 4.
From Fig. 4, we infer that the conductance behaves in a
monotonic way upon variation of RE and that the conduc-
tance is suppressed with decreasing RE.

Next, we increase the exchange energy to Mxy =0.5EF and
set RV=0.95 such that spin-flip processes become more
dominant and the barrier discriminates strongly between
spin-↑ and spin-↓ electrons. The resulting G�E� is illustrated
in Fig. 5, where it is seen that a nonmonotonic behavior
appears. Specifically, the peak at E=� vanishes for RE �1,
as is most clearly seen for the case of large interfacial resis-
tance.

One of the results of Refs. 17 and 18 was that the effect of
Fermi-vector mismatch yielded an increased subgap conduc-
tance when there was a net spin polarization. As an important
consequence, this finding suggested that the interfacial bar-
rier parameter Z was not sufficient to account for the con-
ductance features in the presence of both spin polarization
and Fermi-vector mismatch, since the increase of subgap
conductance could not be reproduced by varying Z alone. In
Figs. 4 and 5, no such increase in subgap conductance was
found, but these correspond to an unpolarized case since
Mz=0. In order to investigate how the spin-flip scattering
and spin-active barrier affects this particular feature of the
Fermi-vector mismatch, we plot the normal incidence �=0
conductance G�E ,�=0� for the same parameters as Fig. 1 in
Refs. 17 and 18 for the sake of direct comparison. Note that
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due to a different scaling of the conductance to make it di-
mensionless, the quantitative results for G�E ,�=0� are not
the same as the result in Refs. 17 and 18, although the quali-
tative aspect is identical. This is because we scale the con-
ductance on GN given by Eq. �11�. For Z=0, this merely
amounts to a factor of 2. In the upper panel of Fig. 6, we
reproduce Fig. 1�b� of Ref. 18 to illustrate our consistency
with their results. Note that the parameter L0

2 in Ref. 18 is
equivalent to our RE when Rm=1; i.e., the effective masses
are the same. The middle panel now includes spin-flip scat-
tering with Mxy =0.4EF, while Z=0. The lower panel shows
the combined effect of planar magnetization and a spin-
active barrier, resulting in triplet correlations, with Mxy
=0.4EF and �Z=1,RV=0.95�. It is seen that the qualitative
change is most dramatic when the conditions for retroreflec-
tion are fulfilled.

B. Effect of exchange energy

We now proceed to consider how the strength of the ex-
change energy, both planar �Mxy� and easy axis �Mz�, affects
the conductance spectrum. We set the masses and Fermi en-
ergies to be equal in the F and S parts of the system and
study how the angularly averaged G�E� is affected by in-
creasing MZ for a given Mxy. Let us first set Mxy =0.1EF and
RV=0.5, as shown in Fig. 7. In accordance with our previous
observation that Andreev reflection is inhibited by a net po-
larization in the F part of the system, it is seen that the

conductance is suppressed with increasing Mz. However, in
the lower panel of Fig. 7 where the tunneling limit of the
junction is considered, the conductance increases with Mz for
E��.

Increasing the strength of the spin-flip scattering and also
the spin dependence of the barrier, the resulting conductance
spectra are shown in Fig. 8 with Mxy =0.5EF and RV=0.95.
The general effect of optimizing the conditions for the pres-
ence of retroreflection processes seems to be a “smoothing
out” of the conductance: the sharp features at E=� become
blunt, an observation which is most clearly revealed in the
tunneling limit. As an experimental consequence, the nature
of the features at E=� in the case of a high-resistance inter-
face could thus offer information concerning to what degree
retroreflection is present in the system.

C. Effect of different effective masses

To investigate the effect of different effective masses in
the F and S parts of the system, we consider three ratios:
Rm=mS /mF� �0.01,0.1,1�. In Fig. 9, we have plotted the
case of weak spin-flip scattering and a moderate spin depen-
dence of the barrier, while in Fig. 10 we investigate signifi-
cant spin-flip scattering and a strongly spin-dependent inter-
facial resistance. In the first case, decreasing Rm clearly
inhibits the tunneling conductance with no exotic features
present except the usual peak at E=�. In the tunneling limit,

FIG. 4. �Color online� Conductance spectrum for weak spin-flip
scattering �Mxy =0.1EF� and Mz=0 with RV=0.5 for several values
of Z.

FIG. 5. �Color online� Conductance spectrum for strong spin-
flip scattering �Mxy =0.5EF� and Mz=0 with a strongly spin-
dependent barrier �RV=0.95� for several values of Z.
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it is interesting to observe that only in the case Rm=1 is the
maximum of the conductance located at E=�. Upon decreas-
ing Rm, one sees that the characteristic peak of the spectrum
is translated to lower energies and that it becomes less sharp.
There is still a sudden increase of current at E=�, mani-
fested as a jump in the conductance spectrum, but it is less
protruding for lower ratios of Rm than unity.

When the conditions for retroreflection become more pro-
nounced, as is the case in Fig. 10, one may again observe the
general modification of the conductance to a more feature-
less curve in the case of no barrier and a weak barrier �Z
=1�, as was the case in the previous subsection. In the tun-
neling limit, the presence of retroreflection also modifies the
spectra such that the sharp peak is lost at the gap energy,
although the sudden jump due to the initiated flow of current
at E=� is still there.

D. Effect of magnetic and nonmagnetic scattering potentials

In this section, we show that the conductance spectrum
may reveal clear-cut signatures of the presence of retroreflec-
tion as a result of the interplay between V0 and Vs when
Mxy �0. We keep the latter fixed at Mxy =0.5EF and plot

G�E� for Z� �0.1,1 ,5� while varying the strength of the
magnetic scattering potential. From Fig. 11, we see that at
Z=0.1, the presence of retroreflection is very weak and the
conductance spectrum remains virtually unaltered as Vs is
varied. At Z=1, the effect of increasing the strength of the
magnetic potential of the barrier, acting as a spin filter, cor-

FIG. 6. �Color online� Conductance spectrum for zero spin-flip
scattering and purely nonmagnetic scattering potential �upper
panel�, spin-flip scattering and purely nonmagnetic scattering poten-
tial �middle panel�, and spin-flip scattering and mixed magnetic and
nonmagnetic scattering potential �lower panel�. For all panels,
Mz /EF=0.866 for comparison with Ref. 18. The lines are given at
E=1.4 for the upper panel as follows �from top to bottom�: RE

= �1,1 /�2,1 /2 ,1 /4 ,1 /9 ,1 /16�.

FIG. 7. �Color online� Conductance spectra for various nonmag-
netic scattering potentials upon varying the polarization of the fer-
romagnet with Mxy =0.1EF and RV=0.5.

FIG. 8. �Color online� Conductance spectra for various nonmag-
netic scattering potentials upon varying the polarization of the fer-
romagnet with Mxy =0.5EF and RV=0.95.
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responds to a reduction of the conductance peak at E=�.
This is in agreement with our previous observations that the
presence of retroreflection appears to have a smoothing ef-
fect on the conductance spectrum, causing it to soften its
characteristic features. At Z=5, the crossover from a sharp
peak at E=� at small RV to a “waterfall” shape for large RV
is clearly illustrated. We suggest that this signature could be
used as a feature that unveils the presence of retroreflected
holes in the system and thus indicates triplet correlations due

tothe interplay between spin-flip processes and a barrier act-
ing as a spin filter.

To investigate how a net polarization will affect the con-
ductance spectra in this case, consider Fig. 12 which illus-
trates the conductance for the same parameters as in Fig. 11
except that now Mz=0.5EF. In agreement with previous re-
marks, the conductance suffers a general reduction due to the

FIG. 9. �Color online� Conductance spectra for different effec-
tive masses with parameters Mxy =0.1EF and RV=0.5.

FIG. 10. �Color online� Conductance spectra for different effec-
tive masses with parameters Mxy =0.5EF and RV=0.95.

FIG. 11. �Color online� Conductance spectra in the presence of
retroreflection but in the absence of any net polarization. Here,
Mxy =0.5EF while MZ=0.

FIG. 12. �Color online� Conductance spectra in the presence of
retroreflection and a net polarization. Here, Mxy =0.5EF while MZ

=0.5EF.
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net polarization in the upper and lower panels. Apart from
this, the same features as in Fig. 11 are present, with retrore-
flection leaving its fingerprint most obviously in the behavior
of the conductance at E=� in the tunneling limit.

V. DISCUSSION

We have shown that the presence of a spin-active barrier
combined with a planar component of the magnetization in
the F induces new features in the proximity effect in a F/S
junction. Physically, this may be understood by realizing that
only an Sz=0 triplet component is induced for a spin-active
barrier in the absence of spin-flip processes near the junction,
while the equal-spin �Sz= ±1� triplet components are gener-
ated only if a spin-flip potential is also present. On the other
hand, spin-flip processes alone in the absence of a spin-active
barrier would inhibit singlet pairing without generating any
triplet components. An interesting opportunity that arises due
to the restoration of retroreflection is the fact that one may
generate currents with a varying degree of spin polarization
in the F part. In the conventional case, an incident electron
with spin � is reflected as either an electron with spin � or
hole with spin −� in these systems. In the present case, how-
ever, the reflected electrons and holes may carry either ↑ and
↓ spin, depending on parameters such as the magnitude of
the exchange energy and the intrinsic and spin-dependent
barrier strength. In principle, it could be possible to generate
pure spin currents without charge currents and vice versa, as
a result of the additional allowed spin state of the reflected
holes and electrons. It is also intriguing to observe that due
to the coupling between � and �, it may be possible to obtain
a Josephson current in a S/F/S hybrid structure that is sensi-
tive to a rotation of the magnetization in the ferromagnetic
part, which has been recently discussed in Refs. 24 and 25.

It was shown in Ref. 26 that if a local inhomogeneity of
the magnetization in the vicinity of a F/S interface was
present, a spin-triplet component of the S order parameter
will be generated and penetrate into the F much deeper than
the spin-singlet component. In a S/half-metal/S junction, it
has been found that S triplet correlations would be induced
on both sides of the junctions in the presence of spin mixing
and spin-flip scattering at the interfaces27 �see also Ref. 28�.
We have found that spin-triplet pairing correlations may be
induced in the presence of a spin-active barrier—i.e., intrin-
sic spin-mixing at the interface—and a planar magnetization
relative to the quantization axis. It seems reasonable to sug-
gest that these findings are closely related to the conditions
put forward by Ref. 27, since planar magnetization compo-
nents may effectively act as a spin-flip scattering potential.
Our results are thus consistent with the findings of recent
studies, although we have adressed several new aspects of
the scattering problem in the present paper. In particular, we
have found an interplay between the in-plane magnetization
direction and superconducting phase. Moreover, we compute
detailed conductance spectra of the F/S junction under many
different conditions.

One of the important findings of Refs. 17 and 18 was that
a zero-bias conductance peak �ZBCP� would develop under
the right conditions in the F/S junction, and the effect was

attributed to the influence of Fermi-vector mismatch. Usu-
ally, the appearance of a ZBCP is associated with unconven-
tional superconductivity where it may appear due to the dif-
ferent phases felt by the transmitted electronlike and holelike
quasiparticles in the superconductor.23 However, Zutic and
Valls17,18 showed that no unconventional superconductivity
was required to obtain a ZBCP and that the effect of Fermi-
vector mismatch in a F/S junction thus offered a different
mechanism for the formation of a ZBCP than the usual one,
attributed to a k-dependent gap. However, it should be noted
that the ZBCP obtained in Refs. 17 and 18 is not as sharp
��-function like� as the ZBCP depicted in, e.g., Ref. 23,
where unconventional superconductors �high-Tc d wave, to
be specific� were considered.

In the present paper, we consider a more general situation
than Zutic and Valls, allowing for a completely arbitrary
magnetization direction and a spin-active barrier. As we have
shown, this changes the physical picture dramatically and
opens up a new transport channel for both charge and spin—
namely, retroreflected holes. For consistency, we show that
we are able to completely reproduce Fig. 3 of Ref. 18, where
the conductance for normal incidence �=0 is presented �our
Fig. 13�.

In contrast to Zutic and Valls,18 due to the unwieldy ex-
pressions for the reflection coefficients �see the Appendix A�,
we are not able to give analytically the condition that yields
the largest value of the conductance at zero bias �cf. their Eq.
�3.4��. It is thus not straightforward to identify the proper
parameter regime that would yield the maximum value of
G�0�. We therefore leave the question concerning how spin-
flip scattering and a spin-active barrier affect the formation
of a ZBCP in a F/S junction as open.

Scattering on the barrier leads to a suppression of the S
order parameter close �of the order of the coherence length,

FIG. 13. �Color online� In the limit Mxy→0, the formation of a
ZBCP is observed with decreasing RE. This illustrates how the ef-
fect of Fermi-vector mismatch may “mimick” the usual signature of
unconventional superconductivity—namely, the appearance of a
ZBCP for certain crystal orientations. This was first discussed in
Ref. 18, see their Fig. 3. From top to bottom, the curves correspond
to the following pairs of �RE ,Mz /EF�: �1,0�, � 1

�2
, 1

�2
�, � 1

2 ,0.866�,
� 1

4 ,0.968�, � 1
9 ,0.994�, and � 1

16 ,0.998�.
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O���� to the junction. For a weakly polarized ferromagnet,
we expect that inclusion of a spatial variation of the order
parameter does not change our results qualitatively, since it is
well known that the approximation of a constant order pa-
rameter up to the junction is excellent in a N/s-wave super-
conductor junction �see, e.g., Ref. 29�. For a strongly polar-
ized ferromagnet, the superconducting singlet order
parameter may, however, be suppressed significantly in the
vicinity of the gap.27 For unconventional pairing symmetries
�d-wave�, it was shown in Ref. 30 that the effect of taking
into account the suppression of the order parameter in the
presence of Andreev bound surface states remains almost
unchanged around zero bias voltage, although a broadening
of the ZBCP is observed. Since no zero-energy surface states
are present for a pure s-wave singlet component of the su-
perconducting order parameter, we believe that our approxi-
mation of a step function � should be justified.

It is worth noting that a F/S junction as considered here
with a spin-active barrier is in some respects similar to pre-
viously studied F/F/S junctions31 if the magnetization direc-
tions of the two F layers are noncollinear. While Ref. 31
considers the conductance spectrum in the case of collinear
magnetization directions of the F layers, a previous study32

has developed a quite general framework for dealing with
F/S junctions by introducing a phenomenological spin-
mixing angle which describes a spin-active interface. In Ref.
32, the conductance is explicitly calculated for a half-
metallic ferromagnet/s-wave superconductor junction. In the
present paper, we have developed a similar framework for
treating F/S junctions with a spin-active interface, but using
a different formalism. Our theory allows for describing a
very wide range of physical phenomena, such as arbitrary
magnetization strength and direction of the ferromagnet, a
spin-active barrier, Fermi-vector mismatch, and different ef-
fective masses in the two systems. We have explicitly com-
puted the conductance spectra for the metallic case with non-
collinear magnetizations between the F part and the spin-
active barrier in a F/S system. Hence, our work expands on
the results of Refs. 31 and 32, and we reproduce their results
in the appropriate limits.

The similarity of our model with F/F/S junction with non-
collinear magnetizations may be understood by realizing that
using a spin basis that diagonalizes the scattering matrix of
one ferromagnet will cause the magnetization in the other
ferromagnet to effectively look like a spin-flip term and vice
versa. Although this analogy could be of some use for com-
paring the present system under consideration with F/F/S
junctions, it should not be taken too far since in our case we
are dealing with an insulating, very thin barrier with both
magnetic and nonmagnetic scattering potentials as opposed
to a conducting ferromagnetic layer.

Another issue that deserves mentioning is that the mag-
netic field due to the magnetization of the F will penetrate
into the thin-film structure of the S along the plane. An in-
plane magnetic field may actually coexist uniformly33 with
s-wave S in a thin film �in contrast to the bulk case34,35�, and
effects such as orbital pair breaking or formation of vortices
will be prohibited as long as the thickness t of the film is less
than both � and �0. It is also reasonable to neglect any ex-
change interactions in the S since the induced field due to the

magnetization is much smaller �of order O�10−3�� than the
exchange field in the F and can thus be safely neglected.1

Moreover, we stress that the clean limit has been considered
in the present paper, which hopefully provides an initial idea
of the physics that can be expected when the effect of disor-
der is included in the system, although this requires a sepa-
rate analysis.

VI. SUMMARY

In this paper, we have presented a detailed investigation
of the conductance spectra of a F/S junction, expanding pre-
vious work substantially by allowing for a completely arbi-
trary direction of magnetization, which effectively accounts
for spin-flip scattering due to a planar component of the
magnetization and a spin-active barrier. Our procedures
amount to an extension of the BTK formalism along the lines
of several other workers �e.g., Refs. 19 and 23� and have
given us the advantage of obtaining analytical solutions, pri-
marily due to the step-function approximation for the super-
conducting and magnetic order parameters.

From our results, one may infer that several new qualita-
tive features arise due to the presence of spin-flip scattering
and a spin-active barrier. We demonstrate the reentrance of
retroreflection for the Andreev-reflected hole, which is ab-
sent for an easy-axis ferromagnet with a purely nonmagnetic
interfacial scattering potential. This opens up a new transport
channel for both spin and charge, and is interpreted as a
signature of spin-triplet correlations in the system. In this
context, a most interesting interplay between the supercon-
ducting phase � and the planar magnetization orientation
characterized by the azimuthal angle � arises in the phase
coherence of retroreflected holes. This particular feature may
be exploited in terms of a Josephson current in a S/F/S junc-
tion that responds to a rotation of �.

As our main result, we have investigated the influence on
the conductance spectra due to different effective masses,
Fermi-vector mismatch, strength of the exchange energy, and
the influence of varying the relative strength of magnetic and
nonmagnetic scattering in the F/S junction. Our findings are
consistent with those of Ref. 18 with respect to the observa-
tion of an increased subgap conductance for increasing
Fermi-vector mismatch for a large spin polarization. In the
presence of a spin-active barrier, however, this effect van-
ishes. The general influence of retroreflection on the conduc-
tance spectra seems to be a softening of the sharp features
such as peaks and dips at E=�. Also, as a signature which
should be clearly discernable experimentally, a crossover
from peak to “waterfall” shape takes place in the tunneling
limit at the gap energy.

We believe that our angle of approach for treating the F/S
junction in the extended BTK formalism should suffice to
shed light on the rich physics and concomitant important
phenomena that are present in such systems, which is of
particular relevance in the context of spin-polarized tunnel-
ing spectroscopy.
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APPENDIX: DERIVATION OF SCATTERING
COEFFICIENTS

From the boundary conditions, the condition of continuity
of the wave function yields the expressions

s↑a − s↓be−i� + re
↑ − re

↓bei� = te
↑u + th

↓vei�,

s↑be−i� + s↓a + re
↑be−i� + re

↓a = te
↓u − th

↑vei�,

rh
↑a − rh

↓be−i� = − te
↓ve−i� + th

↑u ,

rh
↑bei� + rh

↓a = te
↑ve−i� + th

↓u , �A1�

while the matching of derivatives at x=0 yields

�V0 − Vs��te
↑u + th

↓vei��

=
iq cos �s

2mS
�ute

↑ − vei�th
↓�

−
i

2mF
�cos ��k↑s↑a − k↓s↓bei�� − k↑Sare

↑ + k↓S̃bei�re
↓� ,

�V0 + Vs��te
↓u − th

↑vei��

=
iq cos �s

2mS
�ute

↓ + vei�th
↑� −

i

2mF

��cos ��k↑s↑be−i� + k↓s↓a� − k↑Sbe−i�re
↑ − k↓S̃are

↓� ,

�V0 − Vs��− te
↓ve−i� + th

↑u�

= −
iq cos �s

2mS
�ve−i�te

↓ + uth
↑� −

i

2mF
�k↑Sarh

↑ − k↓S̃be−i�rh
↓� ,

�V0 + Vs��te
↑ve−i� + th

↓u� =
iq cos �s

2mS
�te
↑ve−i� − th

↓u�

−
i

2mF
�k↑Sbei�rh

↑ + k↓S̃arh
↓� .

�A2�

Solving for the transmission coefficients, one is left with the
reduced set of equations

te
↑A1 + te

↓B1ei� + th
↑C1ei��+�� + th

↓D1ei� = X1,

te
↑A2e−i� + te

↓B2 + th
↑C2ei� + th

↓D2ei��−�� = X2,

te
↑A3e−i��+�� + te

↓B3e−i� + th
↑C3 + th

↓D3e−i� = 0,

te
↑A4e−i� + te

↓B4ei��−�� + th
↑C4ei� + th

↓D4 = 0. �A3�

From Eqs. �A3�, one finds that

th
↓ = X1F1e−i� + X2F2ei��−��,

th
↑ = X2R1e−i� + Reth

↓e−i�,

te
↓ = P1th

↑ei� + P2th
↓ei��−��,

te
↑ = − �B4te

↓ei� + C4th
↑ei��+�� + D4th

↓ei��/A4, �A4�

such that the reflection coefficients �rh
� ,re

�� may be obtained
by back-substitution of Eqs. �A4� into Eqs. �A1�. We have
defined the following auxiliary quantities:

X1 =
1

2mF
�k↑cos �s↑a − k↓cos �s↓bei� + k↑Sas↑ − k↓S̃s↓e

i�� ,

�A5�

X2 =
1

2mF
�k↑cos �be−i� + k↓cos �s↓a + k↑Ss↑e

−i� + k↓S̃s↓a� ,

�A6�

F1 = �D1 + C1R2 + P1B1R2 + B1P2 −
A1

A4
�B4P2 + B4P1R2

+ R2C4 + D4��−1

, �A7�

F2 = F1�A1

A4
�B4P1R1 + R1C4� − B1P1R1 − C1R1� , �A8�

R1 = �C2 + B2P1 −
A2

A4
�B4P1 + C4��−1

, �A9�

P1 = �C4A3

A4
− C3���B3 −

A3B4

A4
� , �A10�

R2 = R1�B2P2 + D2 −
A2

A4
�B4P2 + D4�� , �A11�

P2 = �D4A3

A4
− D3���B3 −

A3B4

A4
� , �A12�

in addition to

A1 = i�V0 − Vs�u +
1

2mS
q cos �su +

u

2mF
�k↑Sa2 + k↓S̃b2� ,

A2 =
1

2mF
�k↑S − k↓S̃�abu , �A13�

A3 =
1

2mF
�k↓S̃ − k↑S�abv ,

A4 = i�V0 + Vs�v +
1

2mS
q cos �sv −

v
2mF

�k↑Sb2 + k↓S̃a2� ,

�A14�

B1 =
1

2mF
�k↑S − k↓S̃�abu ,
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B2 = i�V0 + Vs�u +
1

2mS
q cos �su +

u

2mF
�k↑Sa2 + k↓S̃b2� ,

�A15�

B3 = − i�V0 − Vs�v −
1

2mS
q cos �sv +

v
2mF

�k↑Sa2 + k↓S̃b2� ,

B4 = −
1

2mF
�k↓S̃ − k↑S�abv , �A16�

C1 =
1

2mF
�k↓S̃ − k↑S�abv ,

C2 = − i�V0 + Vs�v +
1

2mS
q cos �sv −

v
2mF

�k↑Sb2 + k↓S̃a2� ,

�A17�

C3 = i�V0 − Vs�u −
1

2mS
q cos �su −

u

2mF
�k↑Sa2 + k↓S̃b2� ,

C4 = −
1

2mF
�k↑S − k↓S̃�abu , �A18�

D1 = i�V0 − Vs�v −
1

2mS
q cos �sv +

v
2mF

�k↑Sa2 + k↓S̃b2� ,

D2 =
1

2mF
�k↑S − k↓S̃�abu , �A19�

D3 =
1

2mF
�k↓S̃ − k↑S�abu ,

D4 = i�V0 + Vs�u −
1

2mS
q cos �su −

u

2mF
�k↑Sb2 + k↓S̃a2� .

�A20�
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Paper V
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We study a tunnel junction consisting of two thin-film s-wave superconductors separated by a thin, insulat-
ing barrier in the presence of misaligned in-plane exchange fields. We find an interesting interplay between the
superconducting phase difference and the relative orientation of the exchange fields, manifested in the Joseph-
son current across the junction. Specifically, this may be written IJ

C= �I0+ Im cos ��sin ��, where I0 and Im are
constants, and � is the relative orientation of the exchange fields, while �� is the superconducting phase
difference. Similar results have recently been obtained in other superconductor-insulator-superconductor junc-
tions coexisting with helimagnetic or ferromagnetic order. We calculate the superconducting order parameter
self-consistently, and investigate quantitatively the effect which the misaligned exchange fields constitute on
the Josephson current, to see if Im may have an appreciable effect on the Josephson current. It is found that I0

and Im become comparable in magnitude at sufficiently low temperatures and fields close to the critical value,
in agreement with previous work. From our analytical results, it then follows that the Josephson current in the
present system may be controlled in a well-defined manner by a rotation of the exchange fields on both sides
of the junction. We discuss a possible experimental realization of this proposition.

DOI: 10.1103/PhysRevB.76.064524 PACS number�s�: 74.20.Rp, 74.50.�r, 74.20.�z

I. INTRODUCTION

The study of physical effects that arise due to an interplay
between superconductivity �SC� and ferromagnetism �FM�
has grown considerably over the last decade �see Refs. 1 and
2 and references therein�. Much effort has been devoted to
obtaining a better understanding of the exotic phenomena
that may appear in heterostructures of superconductors and
ferromagnets. To mention a few of these, it is natural to
highlight the study of � junctions, both theoretically3 and
experimentally,4 and the proximity effects giving rise to in-
duced SC correlations in normal metals, half-metals, and FM
metals5,6 as prime examples of the potential that lies within
this field of research. Also, quite recently, the coexistence of
SC and FM in the same material was discovered in7,8 UGe2
and URhGe, and possibly9,10 also in ZrZn2. Such ferromag-
netic superconductors �FMSCs� display simultaneously mul-
tiple broken symmetries �SU�2� and U�1��, an interesting
property that may be exploited in terms of dissipationless
quantum transport of spin and/or charge between such
materials.11–13

Besides the interest have a fundamental physics point of
view, transport properties in SC/FM heterostructures have
currently attracted much attention, since it is hoped that the
new physics that emerges in this type of systems may be
useful for applications in nanotechnology and spintronics.14

The discoveries of unconventional superconductors display-
ing d-wave singlet,15 p-wave triplet,16 and even mixed
singlet-triplet SC pairing symmetries17,18 offer the theoreti-
cian a true goldmine in terms of rich physics and opportuni-
ties to explore. In the present paper, however, we will be
concerned with a system of two thin-film spin-singlet s-wave
superconductors separated by a thin, insulating barrier in the
presence of a misaligned in-plane exchange field. This would
be equivalent to a ferromagnet-superconductor-insulator-

superconductor-ferromagnet �F/S/I/S/F� system assuming
that the S/F bilayer is thin and thus may be represented by a
Bardeen-Cooper-Schrieffer �BCS� superconductor38 in the
presence of a homogeneous magnetic field.19 Indeed, for su-
perconducting films of thickness t"�#�, where � is the
coherence length �average size of the Cooper pairs� and � is
the magnetic field penetration depth, a magnetic field which
is applied in the plane of the film will penetrate it practically
uniformly. In this case, the Meissner effect response of the
superconductor is incomplete, such that the screening cur-
rents are minimal.20 Since orbital effects are suppressed in
such a geometry, the critical field is determined by the para-
magnetic limitation. Such types of systems have been con-
sidered earlier.21–24 Nevertheless, we hope to shed some light
on a matter which has not been investigated extensively in
such systems: manipulating a supercurrent of spin and/or
charge by controlling a misalignment of magnetic fields
present on both sides of the barrier. Such a proposition was
made by Kulic and Kulic11 in 2001 �albeit in a physically
completely different system�, who derived an expression for
the Josephson current over a junction separating two spin-
singlet superconductors with spiral magnetic order. It was
found that the supercurrent could be controlled by adjusting
the relative orientation of the exchange field on both sides of
the junction, a finding that quite remarkably suggested a way
of tuning a supercurrent in a well-defined manner from, e.g.,
a 0 to � junction. However, from an experimental point of
view such states are very hard to realize. Moreover, it is
extremely difficult, if not impossible, to control the magne-
tization misalignment across the tunneling junction for such
a system. Later investigations made by Eremin, Nogueira,
and Tarento12 considered a similar system as Kulic and Ku-
lic: namely, two Fulde-Ferrel-Larkin-Ovchinnikov �FFLO�
superconductors25 coexisting with helimagnetic order.26 Re-
cently, the same effect was found to exist in a FMSC/I/
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FMSC junction as shown by Grønsleth et al.,13 a system
which presumably has a much better potential for being re-
alized.

In the present paper, we show that a similar effect may be
realized by applying misaligned in-plane exchange fields in a
thin-film F/S/I/S/F junction, where S represents an s-wave
thin-film superconductor in an external magnetic field pro-
vided by F �a ferromagnet�. Such a system should be pos-
sible to realize experimentally. We derive the linear-response
expression for the Josephson current within the Matsubara
formalism and solve for the SC order parameter self-
consistently, thereafter providing numerical results for the
supercurrent that arises in the system for arbitrary misalign-
ment of the magnetic field across the junction. We investi-
gate under what experimental conditions the predicted modu-
lation of the total Josepshon current is most easily observed.
We also suggest an experimental setup to test these predic-
tions.

This paper is organized as follows. In Sec. II, we establish
our model and the formulation to be used throughout the
paper and solve for the SC order parameter self-consistently.
The Josephson current is calculated within the tunneling
Hamiltonian formalism in Sec. III. Our main findings for the
numerical values of the parameters that determine the modu-
lation of the Josephson current as a function of the twist in
the orientation of the exchange fields on both sides of the
junction are presented in Sec. IV with a discussion given in
Sec. V. In this section, we also provide a description of a
possible heterostructure for realizing the physical situation
we describe in this paper. Specifically, we suggest how one
may be able to physically misalign an external field across
the tunneling junction �by an arbitrary amount�. Finally, we
summarize our results in Sec. VI and reemphasize what our
findings are compared to previous results.

II. MODEL AND FORMULATION

The total Hamiltonian H for a system consisting of two
superconductors separated by an insulating layer in the pres-
ence of an in-plane exchange field can be written as27 H
=HL+HR+HT, where L and R represent the individual su-
perconductors on each side of the tunneling junction and HT
describes tunneling of particles through the insulating layer
separating the two superconductors. At the level of mean-
field theory the individual superconductors are described by

H = H0 + 
k

�k
†Ak�k, �1�

where H0 is given by

H0 = 
k

�k − 
k

�†bk +

H
2

2�0
,

Ak = ��k − h �ei�

�e−i� − �k − h
� . �2�

Here, k is the electron momentum, �k=�k−�, �=↑, ↓= ±1,
� is the chemical potential �which at T=0 is completely
equivalent to the Fermi energy�, H is the magnetic field, h is

the exchange energy, and �0 is the magnetic permeability,
while �ei� is the superconducting order parameter and bk
= �c−k↓ck↑	 denotes the two-particle operator expectation
value. Equation �2� is valid for an s-wave superconductor
with an in-plane exchange field giving rise to an exchange
interaction. At this point, some comments are in order. We
assume that no vortices are present in the system. This puts
limitations on the dimension of the thin film. Our assumption
of a homogeneous exchange field in the superconductors can
only be justified given that the thickness of the film is
smaller than20 both the penetration depth � and coherence
length �. The physical reason for this is that an externally
applied in-plane magnetic field is found to penetrate the su-
perconductor without creating vortices as long as there is no
room for the vortices, which typically have a diameter of
O���. This amounts to a thickness of order 10 nm, which is
well within reach of current experimental techniques.

Moreover, we will neglect phase fluctuations and ampli-
tude fluctuations in the superconducting order parameter in
this paper. Amplitude fluctuations may safely be
neglected.28,29 In a strong type-II superconductor, neglecting
critical fluctuations �which are transverse phase fluctuations,
or equivalently vortices� is certainly not valid close enough
to the normal-metal–superconductor transition.28,29 In type-II
superconductors, neglect of critical fluctuations is expected
to be reasonable provided we are outside the critical region,
which is expected to be quite narrow around the critical tem-
perature and critical field unless the superconductors are of
the extreme type II.28,29 In deep type-I superconductors, the
mean-field approximation is expected to be excellent in any
case, since the phase transition in such systems is of first
order.30–32

In Eq. �1�, our basis is

�k = �ck↑c−k↓
† �T, �3�

where �ck� ,ck�
† � are annihilation and creation fermion opera-

tors with momentum k and spin �. By diagonalizing Eq. �2�
through Ak= PkDkPk

†, Eq. �1� turns into

H = H0 + 
k

�̃k
†Dk�̃k, �4�

where the diagonal matrix reads Dk=diag�Ek↑ ,Ek↓� and the
basis �̃k consists of new fermion operators according to

�̃k = Pk
†�k = �Ck↑C−k↓

† �T. �5�

Upon defining the auxiliary quantity

Rk =
�

�k + ��k
2 + �2

, �6�

the diagonalization matrix may be written as

Pk = Nk� 1 − Rkei�

Rke−i� 1
� ,

Nk = 1/�1 + Rk
2 . �7�

We find that the energy eigenvalues may be written as
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Ek� = ���k
2 + �2 − h . �8�

Concerning ourselves with s-wave pairing �k-independent
gap�, we note that Ek�=E−k�, which allows us to recast Eq.
�4� into the form

H = H0 − 
k

Ek↓ + 
k�

�Ek�Ck�
† Ck�. �9�

The self-consistent gap equations are derived from the free
energy given by

F = H0 − 
k

Ek↓ −
1




k�

ln�1 + e−
�Ek�� . �10�

yielding the self-consistency equation

g��� � 1 −
c

2
�

−�0

�0

d��1 − f�E↑���� − f�− E↓����
��2 + �2 � = 0,

�11�

where the weak-coupling constant c=VN�0� is set to 0.2
hereafter, while �0 is arbitrarily set to 1% of the Fermi en-
ergy, i.e., � /100, which corresponds to �0 /��70, which
essentially is equivalent to �0 /�→�. ��0 /��10 suffices to
achieve this limit in the quantities we consider in this paper.�
In the limit of zero exchange field, h→0, the well-known
result �see, e.g., Ref. 23� is obtained. The Fermi-Dirac distri-
bution functions entering in Eq. �11� are given as f���
=1/ �1+e
�� where 
 is inverse temperature. We have intro-
duced the usual simplification of a pairing potential that is
attractive in a small energy interval around the Fermi level,

Vkk�	
 = − V for 
�k�k�� − �
 "�0, �12�

with �V�0� and zero otherwise. Here, �0 is a typical fre-
quency cutoff defining the spectral width of the bosons re-
sponsible for the pairing. We do not further specify what
these bosons are. Equation �11� will be the governing equa-
tion for the gap �=��T ,h� at an arbitrary temperature and
arbitrary in-plane exchange field. The orbital effect from the
exchange field in this configuration is suppressed, since the
electrons are restricted from moving in the ẑ direction due to
the thin-film structure.

The order parameter may now be solved for numerically
by integrating the gap equation �11�. Consider first the zero-
temperature case, where we have plotted the dependence of
g��� on h in Fig. 1, such that the possible solutions are
identified by locating the intersection with the dotted line
defined by g���=0. In agreement with previous results,25 we
find that for h /�0"0.5 there is a unique solution of ��0,h�
that satisfies g���0,h��=0, while another solution ��0,h�
"�0 is present for 0.5"h /�0"1.0. However, this has been
found to be unstable, such that we will only consider the
solution for the largest gap.25 In this case, one may simply
write

��0,h� = ��0 if h "�0,

0 if h ��0.
� �13�

In the inset of Fig. 1, we have plotted the field dependence of
the stable solution ��0,h�. As shown, there is a first-order

phase transition at h=�0 whereas the gap remains indepen-
dent on h for h"�0. Consider now the dependence of the
critical temperature as a function of h, illustrated in Fig. 2.
Effectively, the Tc vs h curve gives the phase diagram of a
superconductor with an in-plane exchange field. Note that
although a nonzero solution for � exists under the dotted line
in Fig. 2, one must turn to free energy considerations in order
to determine whether the normal state or superconducting
state is favored. Such a study was undertaken in Ref. 19 �see
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FIG. 1. �Color online� Plot of the function g���0,h�� given by
Eq. �11� to illustrate the possible solutions for the gap, given by
where the curves intersect the dotted line. When h /�0�0.5, there is
more than one solution to the gap equation, but only one of these is
stable. As shown in the inset, where we have plotted the field de-
pendence of this stable solution, a first-order phase transition to the
normal state is present at zero temperature.
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FIG. 2. �Color online� The phase diagram in the h−T plane for
a superconductor in the presence of an exchange field. A nonzero
solution for the gap exists under the dotted line, indicating a pos-
sible SC phase. The exact regime where SC is energetically favored
over the normal state was studied in Ref. 19; see their Fig. 1. Since
the phase transition is first order, note that the ratio ��T ,h� /Tc�h� is
not constant as in the pure BCS case, as shown in the inset.
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their Fig. 1�. The Clogston-Chandrasekhar critical field h
=�0 /�2 at T=0 is also given in the Fig. 2.33,34 In the present
paper, we will be concerned with the field dependence of the
physical quantities and thus choose five representative tem-
peratures �see Table I� at which the SC state is indeed the
thermodynamical state favored, as given by Ref. 19.

Finally, we give a plot of the field dependence of � at
finite temperatures, illustrated in Fig. 3. It is seen that the
phase transition at the critical field remains discontinuous
also at finite temperatures.35–37

III. JOSEPHSON CURRENT

In order to calculate the Josephson charge current over the
junction,38 we make use of the equilibrium Matsubara
Green’s-function formalism at finite temperatures �see, e.g.,
Ref. 39�. Since we are interested in misaligned exchange
fields on both sides of the junction, we will use different
quantization axes on the left and right sides of the barrier. By
including the Wigner d function,40 one may then account for
the fact that an ↑ spin on one side of the junction is not the
same as an ↑ spin on the other side. Defining

D��� = �cos��/2� − sin��/2�
sin��/2� cos��/2�

� , �14�

the tunneling Hamiltonian of the present system may be writ-
ten as

HT = 
kp���

�D�������Tkpck�
† dp�� + H.c. �15�

Above, ck� designates fermion operators on the right side of
the junction, while dp� represents fermion operators on the
left side of the junction, and Tkp is the tunneling probability
amplitude. The Josephson charge current is now defined as

IJ�t� = − e� dNL�t�
dt

 , �16�

where the time derivative of the number operator is given by

dNL�t�
dt

= ieiH�t�Ht,NL�e−iH�t. �17�

We have defined H�=HL+HR and only taken into account
the contribution from the tunneling Hamiltonian to the time
derivative. In this way, the calculated current will only con-
sist of processes corresponding to physical transport across
the junction and not any additional contributions originating
from a lack of particle conservation number on each side of
the junction, respectively. The procedure to obtain I�t� is now
fairly straightforward and may be reviewed in, e.g., Refs.
11–13 and 41. We find that at zero applied voltage, the Jo-
sephson current is time independent and reads

IJ = �I0 + Im cos ��sin �� , �18�

where � is the relative orientation of the exchange fields and
�� is the superconductivity phase difference across the junc-
tion. This establishes a Josephson current which may be con-
trolled through an adiabatic rotation of misaligned exchange
fields in a planar S/I/S system, or equivalently an F/S/I/S/F
layer. While it is not clear how the exchange field could be
experimentally controlled in a well-defined manner in junc-
tions with BCS11 and FFLO12 superconductors coexisting
with helimagnetic order, where this effect has been discussed
previously,11,12 we will proceed to show that experimental
verification of this type of effect should be more feasible in
the present system. The amplitudes entering in Eq. �18� read

I0 = 2eT2
kp

Nk
2RkNp

2RpFkp
+ ,

Im = 2eT2
kp

Nk
2RkNp

2RpFkp
− , �19�

where T= 
Tkp
 is the tunneling amplitude �see discussion be-
low� and

Fkp
± = 

	


	
� f�Ek�� − f�Ep
�
Ek	 − Ep


±
1 − f�Ek	� − f�Ep
�

Ek	 + Ep

� .

�20�

Note that when the exchange field vanishes, we have that
Fkp

− =0, such that Im=0. In general; therefore, for weak ex-

TABLE I. Critical field at the five representative temperatures
we will study �Ref. 19�.

Temperature T /�0 Critical field hc /�0

0.001 0.70

0.1 0.68

0.2 0.65

0.3 0.52

0.4 0.35

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h/Δ0

Δ
(T

,h
)/

Δ
0

1st order phase
transitions

T/Δ0 = 0.001
T/Δ0 = 0.1
T/Δ0 = 0.2
T/Δ0 = 0.3
T/Δ0 = 0.4

FIG. 3. �Color online� Field dependence h of the superconduct-
ing order parameter �=��T ,h� at finite temperatures. The sudden
end of the curves clearly shows the sharp drop in the gap, indicating
a discontinuous nature of the normal metal-superconductor phase
transition.
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change fields we expect that Im# I0. Hence, an appreciable
amount of modulation of the total Josephson current IJ by a
twist in the magnetization across the junction will require a
certain amount of fine-tuning. We will detail this below.

IV. RESULTS

We now consider the Josephson current as a function of
both temperature and twist in the exchange fields upon inser-
tion of the self-consistent solutions of 
��T ,h�
 into the ex-
pression for the Josephson current, Eq. �18�. To this end, we
replace summation over momenta by integration over ener-
gies by means of the formula

1

N

k
Fk =� � d� d( N��,(�F��,(� , �21�

where �d( corresponds to an angular integration over a con-
stant sheet of energy � in momentum space, N�� ,(� is the
angularly resolved density of states, and F�� ,(�
=F�k�� ,(�� is an arbitrary function. In general, it is neces-
sary to specify the nature of the tunneling matrix element in
some detail, since the crude approximation 
Tkp
2=T 2 may
lead to unphysical results.42 A plausible conjecture for the
tunneling matrix element should incorporate two key ele-
ments: �i� quasiparticles moving perpendicularly towards the
junction should have a higher probability of tunneling than
quasiparticles moving parallel to it, and �ii� the direction of
momentum should be conserved in the tunneling-process;
i.e., a right-moving quasiparticle on the left side of the junc-
tion should only tunnel into a right-moving quasiparticle on
the right side of the junction and vice versa. However, due to
the isotropic gap in the present system, taking into account
explicitly the angular dependence of the tunneling probabil-
ity merely corresponds to a numerical prefactor. For aniso-
tropic superconductors with k-dependent gaps, such an ap-
proximation is clearly not valid. Similarly to Ref. 43, one
should then make the ansatz


Tkp
2 = T 2 sin �R sin �L$�sgn�sin �R�sgn�sin �L�� ,

�22�

where T is a real constant and the angles entering in Eq. �22�
define the trajectories of the quasiparticles involved in tun-
neling; see Fig. 4.

Having stated this, we are now able to investigate quan-
titatively how the Josephson charge current in our system
depends on the relative orientation of the exchange fields on
both sides of the junction. The misalignment � of the ex-
change fields enters the expression for the Josephson charge
current through Eq. �18�, which accounts for the qualitative
behavior. Converting the summation to integration as de-
scribed above, we obtain

I0 = 2eT 2�N�0��2��T,h�2�
−�0

�0 �
−�0

�0

F+��1,�2�

� !
i=1,2

��1 +
���T,h��2

��i + ��i
2 + ���T,h��2�2�−1

�
d�i

�i + ��i
2 + ���T,h�2�

� , �23�

while Im is given by the above expression by performing the
substitution F+��1 ,�2�→F−��1 ,�2�. However, it is obvious
that if I0) Im, the effect of rotating � will be very small. For
the purpose of obtaining a Josephson current which may be
controlled by rotating the exchange fields, we are interested
in obtaining Im as large as possible. To see if this is possible,
we need to investigate under what circumstances varying �
will have an appreciable effect on the total Josephson cur-
rent. Earlier works19,24 have considered similar systems as
the one considered in this paper, but restricted the exchange
field orientations to be either parallel or antiparallel. Hence,
our work represents a considerable extension of these results.
Furthermore, we explicitly compute the relative magnitude
between the term Im, which provides the possibility of con-
trolling IJ by rotating �, and the “intrinsic” Josephson term
I0. Consider Fig. 5 for a plot of I0 /2e�N�0��2T 2�2 and
Im /2e�N�0��2T 2�2 and Fig. 6 for the total Josephson current
IJ, as a function of h /�0 for several values of T /�0. From
Fig. 5, it is seen that Im is nonzero only when h→hc for any
temperature. This suggests that the Josephson current will
only respond to a rotation of the exchange fields through the
Im cos � term at very low temperatures and fields close to
their critical values. Specifically, for the parallel and antipar-
allel configurations, this statement is consistent with the find-
ings of Refs. 19 and 24. In general, however, we have here
shown that an adiabatic rotation of � may offer a well-
defined mechanism of tuning the magnitude of the Josephson
current, as shown in Fig. 7. One infers that the increase of IJ
may be as large as 20%. Note that the formal logarithmic
divergence of the current in Fig. 6 for h→�0 when T→0

Tunneling barrier

x̂

ẑ

ŷϑR

ϑL

FIG. 4. �Color online� The tunneling scenario illustrated for two
quasiparticles approaching the barrier separating the superconduct-
ors. For incoming momenta with a large component perpendicular
to the barrier �green�, tunneling occurs with greater probability than
for incoming momenta with a small component perpendicular to the
barrier �red�. The sign of the component of momentum perpendicu-
lar to the barrier must be preserved in the process. For s-wave
superconductors, the tunneling matrix element may be approxi-
mated by a constant, while it may not for anisotropic
superconductors.
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may be removed by considering higher orders of the tunnel-
ing matrix probability.24 Practically speaking, this divergence
is clearly not of any concern since the critical field is deter-
mined by Table I, which states that hc /�0→1/�2 as T→0.

V. DISCUSSION

A possible realization of the system proposed in the
present paper could be achieved by either applying external
magnetic fields to a thin-film S/I/S structure or by consider-
ing two thin S/F bilayers with misaligned magnetization ori-
entations separated by a thin, insulating barrier �see Fig. 8�.
In such a geometry, the influence of the FM layers is non

local in the superconductor, such that the exchange field may
be considered homogeneous.6 Another important point con-
cerns the thickness of the superconducting films, which
would need to fulfill d"�#� in order for the exchange field
to penetrate the film uniformly �note that the screening cur-
rents giving rise to the Meissner effect are suppressed in this
geometry�,20 although making the film too thin could give
rise to problems with Tc being too small.44 Moreover, it is
likely that the Josephson current would display a Fraunhofer
diffraction pattern if one cannot find a way of avoiding mag-
netic flux from the FM layers to penetrate the barrier. In this
respect, the antiparallel alignment of the exchange fields is
probably the most promising, since the flux penetration of
the barrier could be expected to cancel out. Applying a field
perpendicular to the stack would not give rise to a Fraun-
hofer diffraction pattern, but since the demagnetization factor
n in such a geometry is close to 1, the critical field would be
very small.44 Recall that the relation between an applied field
Ha and the field set up by the superconductor Hi may be
written as45
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(0
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2
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2
π

2

T/Δ0 = 0.001

I0

Im

T/Δ0 = 0.1

T/Δ0 = 0.2
T/Δ0 = 0.3
T/Δ0 = 0.4

FIG. 5. �Color online� Plot of the components I0 and Im as a
function of exchange field h for several temperatures T. It is seen
that Im becomes nonzero only as h increases towards �0, such that
the Josephson current is only sensitive to a rotation of the misori-
entation of the exchange fields in this regime.
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0

0.5

1

1.5

2

2.5

h/Δ0

I J
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T/Δ0 = 0.2

T/Δ0 = 0.4
T/Δ0 = 0.3

FIG. 6. �Color online� Plot of the total Josephson current in the
parallel IJ�0� and antiparallel IJ��� configurations of the exchange
fields on both sides of the junction. It is seen that the Josephson
current is actually enhanced with increasing field strength for the
antiparallel configuration for low enough temperatures, in agree-
ment with the result of Refs. 19 and 24.
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Adiabatic rotation of ϕ tunes IJ

FIG. 7. �Color online� Plot of the total Josephson charge current
at T /�0=0.001 as a function of h up to the critical field hc=0.7�0 in
the presence of an adiabatic rotation of �, ranging from �=0 to �
=� in steps of 0.1� from bottom to top.

Thin-film superconductor

Ferromagnetic layer

Thin, insulating barrier IJ(ϕ)

Ferromagnetic layer

Thin-film superconductor

ϕ
mtop

mbottom

FIG. 8. �Color online� Suggested experimental setup for achiev-
ing homogeneous exchange fields in the superconductor. The anti-
parallel alignment of the exchange fields is probably the most viable
to realize in order to avoid the Fraunhofer diffraction of the result-
ing Josephson current.
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Hi =
1

1 − n
Ha. �24�

In the present paper, we have studied the tunneling limit
equivalent to a low-transparency barrier. The effect of in-
creasing the transparency of the barrier was treated within
the Blonder-Tinkham-Klapwijk-formalism46 in Ref. 19,
where it was found that IJ was no longer enhanced by in-
creasing h, regardless of whether the orientation of the ex-
change fields was parallel or antiparallel. In the high-
transparency case, IJ actually decreased more rapidly as a
function of h when �=� compared to �=0. This shows that
the Josephson current would still be sensitive to a rotation of
�, although now the �=0 configuration would correspond to
the largest critical current.

If an experimental setup as suggested here could be real-
ized, the effect of the interplay between � and �� in IJ may
be observed in the following manner. For a superconductor/
superconductor junction, the critical Josephson current is de-
tected through the emission of microwave radiation with a
power determined by the magnitude of the current and by the
rate of change of the relative orientation between the ex-
change fields on both sides of the junction. This is the mag-
netic analogy of supplying an electrostatic potential to main-
tain an ac Josephson effect in the charge channel. In this way,
one maintains the ac oscillations in the Josephson current by
rotating the exchange fields, even in the absence of an elec-
trostatic voltage. Hence, a feasible experimental verification
of the effect we predict in this paper would be the detection
of microwave radiation associated with an ac Josephson ef-
fect originating with a rotating magnetic field such that the
misalignment angle varies with time. Note that rotating the
fields on both sides of the junction with equal frequencies
gives no ac effect.

We close by reemphasizing that the above ideas should be
experimentally realizable by, e.g., utilizing various geom-
etries in order to vary the demagnetization fields. Alterna-
tively, one may use exchange biasing to an antiferromagnet
by depositing an antiferromagnetic layer on top of the whole
structure shown in Fig. 8. Techniques of achieving noncol-
linearity are routinely used in ferromagnet–normal-metal
structures.47

VI. SUMMARY

In this paper, we have studied the Josephson charge cur-
rent that arises over a junction separating two thin-film

s-wave singlet superconductors in the presence of misaligned
in-plane exchange fields. A possible realization of such a
system is visualized in Fig. 8, where the idea is that a thin
S/F layer may be considered as a superconductor with a ho-
mogeneous exchange field present.20 The analytical solution
within the Matsubara formalism reveals an interplay between
the misorientation of the exchange fields, described by the
angle �, and the SC phase difference �� through the relation
IJ= �I0+ Im cos ��sin ��, where I0 and Im are real constants.
Using a self-consistently obtained solution of the SC order
parameter, we obtain a numerical plot of the Josephson cur-
rent for arbitrary exchange fields and temperatures. Specifi-
cally, we examine the magnitude of I0 and Im in order to
investigate whether the Im term may contribute significantly
to IJ or not. While previous works have considered only the
parallel ��=0� or antiparallel ��=�� configurations of the
fields, our results show that the Josephson current will re-
spond to any rotation of the orientation of the fields through
the term Im cos �. Consequently, we have analytically and
numerically made an important distinction between the con-
tributions to IJ that stem from an “intrinsic” Josephson term
I0 and the term Im that allows for a manipulation of the
Josephson current through a tuning of �. This clarifies ex-
actly how IJ depends on the field orientations in any configu-
ration. We find that I0 and Im become comparable only for
values of the exchange field close to the critical value. In this
case, the Josephson charge current may be enhanced by the
presence of the exchange fields and controlled in a well-
defined manner by adiabatically rotating the field directions
on each side of the junction.

ACKNOWLEDGMENTS

J.L. gratefully acknowledges G. Burnell for very helpful
comments with regard to experimental considerations and E.
K. Dahl for clarifying an important point concerning the
superconducting-normal phase transition. This work was
supported by the Norwegian Research Council Grants No.
157798/432 and No. 158547/431 �NANOMAT�, and Grant
No. 167498/V30 �STORFORSK�. The authors acknowledge
the Center for Advanced Study at the Norwegian Academy
of Science and Letters for their hospitality.

1 F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys.
77, 1321 �2005�.

2 A. I. Buzdin, Rev. Mod. Phys. 77, 935 �2005�.
3 L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, Pis’ma Zh.

Eksp. Teor. Fiz. 25, 314 �1977� �JETP Lett. 25, 290 �1977��; A.
V. Andreev, A. I. Buzdin, and R. M. Osgood, Phys. Rev. B 43,
10124 �1991�; F. S. Bergeret, A. F. Volkov, and K. B. Efetov,
ibid. 64, 134506 �2001�.

4 V. V. Ryazanov, V. A. Oboznov, A. Y. Rusanov, A. V. Veretenni-
kov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427

�2001�; A. Bauer, J. Bentner, M. Aprili, M. L. Della-Rocca, M.
Reinwald, W. Wegscheider, and C. Strunk, ibid. 92, 217001
�2004�.

5 M. Eschrig, J. Kopu, J. C. Cuevas, and G. Schön, Phys. Rev. Lett.
90, 137003 �2003�.

6 F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett.
86, 4096 �2001�.

7 D. Aoki, Nature �London� 413, 613 �2001�.
8 S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Gorsche, R. K. W.

Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian,

JOSEPHSON EFFECT IN THIN-FILM… PHYSICAL REVIEW B 76, 064524 �2007�

064524-7



P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braith-
waite, and J. Flouquet, Nature �London� 406, 587 �2000�.

9 C. Pfleiderer, M. Uhlarz, S. M. Hayden, R. Vollmer, H. v. Löh-
neysen, N. R. Bernhoeft, and G. G. Lonzarich, Nature �London�
412, 58 �2001�.

10 E. A. Yelland, S. M. Hayden, S. J. C. Yates, C. Pfleiderer, M.
Uhlarz, R. Vollmer, H. v. Löhneysen, N. R. Bernhoeft, R. P.
Smith, S. S. Saxena, and N. Kimura, Phys. Rev. B 72, 214523
�2005�.

11 M. L. Kulic, C. R. Phys. 7, 4 �2006�; M. L. Kulic and I. M. Kulic,
Phys. Rev. B 63, 104503 �2001�.

12 I. Eremin, F. S. Nogueira, and R.-J. Tarento, Phys. Rev. B 73,
054507 �2006�.

13 M. S. Grønsleth, J. Linder, J.-M. Børven, and A. Sudbø, Phys.
Rev. Lett. 97, 147002 �2006�.

14 I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
�2004�.

15 D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 �1995�.
16 A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 �2003�.
17 L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004

�2001�; M. Eschrig, J. Ferrer, and M. Fogelström, Phys. Rev. B
63, 220509�R� �2001�.

18 E. Bauer, G. Hilscher, H. Michor, Ch. Paul, E. W. Scheidt, A.
Gribanov, Yu. Seropegin, H. Noel, M. Sigrist, and P. Rogl, Phys.
Rev. Lett. 92, 027003 �2004�.

19 X. Li, Z. Zheng, D. Y. Xing, G. Sun, and Z. Dong, Phys. Rev. B
65, 134507 �2002�.

20 R. Meservey and P. M. Tedrow, Phys. Rep. 238, 173 �1994�.
21 V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 �1963�.
22 M. D. Fiske, Rev. Mod. Phys. 36, 221 �1964�.
23 K. K. Likharev, Rev. Mod. Phys. 51, 101 �1979�.
24 F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett.

86, 3140 �2001�.
25 P. Fulde and R. A. Ferrel, Phys. Rev. 135, A550 �1964�; A. I.

Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136
�1964� �Sov. Phys. JETP 20, 762 �1965��.

26 E. I. Blount and C. M. Varma, Phys. Rev. Lett. 42, 1079 �1979�;
43, 1843 �1979�.

27 M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev. Lett.
8, 316 �1962�.

28 Z. Tesanovic, Phys. Rev. B 59, 6449 �1999�.
29 A. K. Nguyen and A. Sudbø, Europhys. Lett. 46, 780 �1999�;

Phys. Rev. B 60, 15307 �1999�.
30 B. I. Halperin, T. C. Lubensky, and S. K. Ma, Phys. Rev. Lett. 32,

292 �1974�.
31 J. Bartholomew, Phys. Rev. B 28, 5378 �1983�.
32 S. Mo, J. Hove, and A. Sudbø, Phys. Rev. B 65, 104501 �2002�.
33 A. M. Clogston, Phys. Rev. Lett. 9, 266 �1962�.
34 B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 �1962�.
35 G. Sarma, J. Phys. Chem. Solids 24, 1029 �1963�.
36 K. Maki and T. Tsuneto, Prog. Theor. Phys. 31, 945 �1964�.
37 K. Maki, Prog. Theor. Phys. 32, 29 �1964�.
38 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,

1175 �1957�.
39 G. D. Mahan, Many-Particle Physics, 3rd ed. �Kluwer Academic,

Dordrecht, 2000�, Chaps. 8 and 10.
40 E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quan-

tenmechanik der Atomspektren �Frieder. Vieweg, Braunschweig,
1931�.

41 J. Linder, M. S. Grønsleth, and A. Sudbø, Phys. Rev. B 75,
024508 �2007�.

42 C. Bruder, A. van Otterlo, and G. T. Zimanyi, Phys. Rev. B 51,
12904�R� �1995�.

43 K. Børkje and A. Sudbø, Phys. Rev. B 74, 054506 �2006�.
44 G. Burnell �private communication�.
45 K. Fossheim and A. Sudbø, Superconductivity: Physics and Ap-

plications �Wiley, New York, 2004�.
46 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B

25, 4515 �1982�.
47 J. Bass and W. P. Pratt, Jr., J. Magn. Magn. Mater. 200, 274

�1999�.

J. LINDER AND A. SUDBØ PHYSICAL REVIEW B 76, 064524 �2007�

064524-8



Paper VI

Quantum transport in noncentrosymmetric superconductors and
thermodynamics of ferromagnetic superconductors.

Physical Review B 76, 054511 (2007).





Quantum transport in noncentrosymmetric superconductors and thermodynamics
of ferromagnetic superconductors

J. Linder1 and A. Sudbø1,2

1Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
2Centre for Advanced Study, Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway

�Received 23 February 2007; revised manuscript received 21 May 2007; published 13 August 2007�

Motivated by recent findings of unconventional superconductors exhibiting multiple broken symmetries, we
consider a general Hamiltonian describing coexistence of itinerant ferromagnetism, spin-orbit coupling, and
mixed spin-singlet and spin-triplet superconducting pairing in the context of mean-field theory. The Hamil-
tonian is diagonalized and exact eigenvalues are obtained, thus allowing us to write down the coupled gap
equations for the different order parameters. Our results may then be applied to any model describing coex-
istence of any combination of these three phenomena. As a specific application of our results, we consider
tunneling between a normal metal and a noncentrosymmetric superconductor with mixed singlet and triplet
gaps. The conductance spectrum reveals information about these gaps in addition to how the influence of
spin-orbit coupling is manifested. Explicitly, we find well-pronounced peaks and bumps in the spectrum at
voltages corresponding to the sum and the difference of the magnitude of the singlet and triplet components.
Our results may thus be helpful in determining the relative sizes of the singlet and triplet gaps in noncen-
trosymmetric superconductors. We also consider the coexistence of itinerant ferromagnetism and triplet super-
conductivity as a model for recently discovered ferromagnetic superconductors. The coupled gap equations are
solved self-consistently, and we study the conditions necessary to obtain the coexistent regime of ferromag-
netism and superconductivity. Analytical expressions are presented for the order parameters, and we provide an
analysis of the free energy to identify the preferred system state. It is found that the uniform coexistence of
ferromagnetism and superconductivity is energetically favored compared to both the purely ferromagnetic state
and the unitary superconducting state with zero magnetization. Moreover, we make specific predictions con-
cerning the heat capacity for a ferromagnetic superconductor. In particular, we report a nonuniversal relative
jump in the specific heat, depending on the magnetization of the system, at the uppermost superconducting
phase transition. We propose that this may be exploited to obtain information about the superconducting
pairing symmetry realized in ferromagnetic superconductors, in addition to the magnitude of the exchange
splitting between majority- and minority-spin bands.

DOI: 10.1103/PhysRevB.76.054511 PACS number�s�: 74.20.Rp

I. INTRODUCTION

Recent findings of superconductors that simultaneously
exhibit multiple spontaneously broken symmetries, such as
ferromagnetic order or lack of an inversion center1–3 and
even combinations of such broken symmetries,4 have led to
much theoretical and experimental research.5–7 The symme-
try of the superconducting gap in these and other unconven-
tional superconductors is presently a matter of intense
investigation.8–12 Multiple spontaneously broken symmetries
are of interest not only in terms of studying the properties of
specific condensed matter systems but also due to the fact
that it may provide clues for what could be expected in other
systems in vastly different areas of physics. Topics such as
mass differences of elementary particles and emergent phe-
nomena in biology are caused by spontaneously broken
symmetries,13 and in many cases, the phenomena may even
be described by the same type of equations. In this paper, we
will address the issue of competition and coexistence be-
tween three phenomena giving rise to broken symmetries
which are highly relevant in condensed-matter physics: fer-
romagnetism, superconductivity, and spin-orbit coupling.

The discovery of superconducting materials that lack a
center of inversion,3,4,9,14,15 such as CePt3Si, UIr, Li2Pd3B,
Li2Pt3B, and Cd2Re2O7, has lately triggered extensive theo-

retical work on these compounds. Properties of a supercon-
ductor without an inversion center were investigated early by
Edelstein,16 while in Ref. 17, it was shown that a two-
dimentional �2D� superconducting system with a significant
spin-orbit coupling induced by the lack of inversion symme-
try would display a mixed singlet-triplet superconducting
state. This means that the superconducting order parameter
would possess the exotic feature of having no definite parity.
Later studies18–20 also investigated specific noncentrosym-
metric superconductors with a model Hamiltonian consisting
of a superposition of spin-orbit and superconducting terms.
In an attempt to determine the correct pairing symmetry of
the superconducting state in such unconventional supercon-
ductors, it was found that the favored triplet pairing state21

for the heavy-fermion material CePt3Si is dk* �ky ,−kx ,0�.
Very recently, however, an experimental study22 of thermal
transport properties in the present compound concluded that
the correct gap function �dk vector� may exhibit nodal lines
in contrast to the point nodes displayed by the dk vector
suggested by Ref. 21. It is therefore of considerable interest
to investigate several specific models for noncentrosymmet-
ric superconductors in order to reveal characteristic features
in physical observables that might be helpful in classifying
the symmetry of the superconducting order parameter.
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In Ref. 23, the authors studied tunneling between a nor-
mal metal and a noncentrosymmetric superconductor consid-
ering the particular form of dk suggested by Ref. 21 in the
limit of weak spin-orbit coupling and in the absence of spin-
singlet pairing. Anderson24 showed that the only stable triplet
pairing states in the presence of a spin-orbit coupling would
have to satisfy dk � gk, where gk=−g−k is the vector function
describing this interaction, such that in CePt3Si, one also has
gk=��ky ,−kx ,0�. Moreover, it was demonstrated by
Samokhin et al.25 that the spin-orbit coupling in this particu-
lar material is significant, i.e., )kBTc, which indicates ad-
mixturing of singlet and triplet Cooper pairs. In the present
paper, we solve the full Bogoliubov–de Gennes �BdG� equa-
tions for a system with spin-orbit coupling including both
spin-singlet and spin-triplet superconducting gaps, studying a
gap vector dk,point* �ky ,−kx ,0� as suggested by Ref. 21. We
then apply this gap vector to what we believe is the simplest
model that captures the essential features that could be ex-
pected to appear in the conductance spectrum of a 2D
normal/CePt3Si junction. Our work then significantly ex-
tends the considerations made in Ref. 23 primarily in that we
present analytical and numerical results that allow for both
triplet and singlet gap components. Also note that a similar
Hamiltonian was studied very recently in Ref. 26, where it
was shown that the presence of a weak external magnetic
field would significantly change the nodal topology of
CePt3Si. With regard to noncentrosymmetricity, we underline
that breaking the symmetry of spatial inversion does not, in
general, give rise to a significant spin-orbit coupling. Also, it
is well known that spin-orbit coupling may be induced in a
centrosymmetric crystal by means of an external symmetry-
breaking electrical field. In the latter case, however, the bro-
ken symmetry is strictly speaking not spontaneous as it cer-
tainly is for, e.g., a crystal lattice undergoing a structural
phase transition which breaks spatial inversion.9

Another interesting scenario in the context of spontane-
ously broken symmetries is the study of superconductors that
exhibit coexistence of ferromagnetic and superconducting or-
der, i.e., systems where two continuous internal symmetries,
SU�2� and U�1�, are simultaneously broken. Due to the pre-
ferred orientation of the spins in a ferromagnetic system,
time-reversal symmetry �or equivalently spinor SU�2� rota-
tional symmetry� is broken such that angular momentum is
no longer a conserved quantity. Similarly, in a superconduct-
ing system, the broken U�1� symmetry breaks the conserva-
tion of particle number. Note that by the terminology broken
symmetry, we are referring to the fact that the wave function
describing the state of the system acquires a complex phase
which characterizes the ground state. In the ferromagnetic
and superconducting systems we will consider in this paper,
superconductivity appears at a lower temperature than the
temperature at which onset of ferromagnetism is found. This
may be simply due to the fact that the energy scales for the
two phenomena are quite different, with the exchange energy
naturally being the largest. It may, however, also be due to
the fact that superconductivity is dependent on ferromag-
netism for its very existence. Such a suggestion has recently
been put forth.27

In the context of ferromagnetic superconductors �FM-
SCs�, it is crucial to address the question of whether the

superconductivity and ferromagnetism order parameters co-
exist uniformly or if they are phase separated. One plausible
scenario28 is that a spontaneously formed vortex lattice due
to the internal magnetization M is realized, but studies of a
uniform superconducting phase in spin-triplet FMSCs29 has
also been conducted. As argued by Mineev in Ref. 30, an
important factor with respect to whether a vortex lattice ap-
pears or not should be the magnitude of the internal magne-
tization M. Specifically, Ref. 31 suggested that vortices may
arise if 4�M�Hc1, where Hc1 is the lower critical field. In
the case of URhGe, a weakly ferromagnetic state coexisting
with superconductivity seems to be realized, and the domain
structure in the absence of an external field is thus vortex-
free. Unfortunately, current experimental data concerning
URhGe are not as of yet strong enough to unambiguously
settle this question. On the other hand, evidence for uniform
coexistence of ferromagnetism and superconductivity has
been indicated32 in UGe2.

Although this is an unsettled issue, it seems natural to
assume that in FMSCs, the electrons involved in the SU�2�
symmetry breaking also participate in the U�1� symmetry
breaking. As a consequence, uniform coexistence of spin-
singlet superconductivity and ferromagnetism can be dis-
carded since s-wave Cooper pairs carry a total spin of zero,
although spatially modulated order parameters could allow
for magnetic s-wave superconductors.33,34 However, spin-
triplet Cooper pairs are, in principle, perfectly compatible
with ferromagnetic order since they can carry a net magnetic
moment. There is strong reason to believe that the correct
pairing symmetries in the discovered FMSCs constitute non-
unitary states.35,36 Spin-triplet superconductors have a multi-
component order parameter dk, which for a given spin basis
reads

dk = ��k↓↓ − �k↑↑
2

,
− i��k↓ + �k↑↑�

2
,�k↑↓� . �1�

Note that dk transforms like a vector under spin rotations.
The superconducting order parameter is characterized as
nonunitary if i�dk�dk

*��0, which effectively means that
time-reversal symmetry is broken in the spin part of the Coo-
per pairs, since the average spin of Cooper pairs is given as
�Sk	= i�dk�dk

*�. Note that time-reversal symmetry may be
broken in the orbital part �angular momentum� of the Cooper
pair wave function even if the state is unitary. In the general
case where all superconducting �SC� gaps are included, it is
generally argued that �k↑↓ would be suppressed in the pres-
ence of a Zeeman splitting between the ↑, ↓ conduction
bands. Distinguishing between unitary and nonunitary states
in FMSCs is clearly one of the primary objectives in terms of
identifying the correct order parameter. Studies of quantum
transport in junctions involving FMSCs have explicitly
shown that the conductance spectrum should be helpful in
revealing the correct pairing symmetry.37,38 Hence, an itiner-
ant electron model of ferromagnetism augmented by a suit-
able pairing kernel should be a reasonable starting point for
describing such systems.

Although we have mentioned two specific examples of
systems exhibiting multiple broken symmetries, our aim with
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this paper is to construct a solid starting point for consider-
ation of a condensed-matter system exhibiting any combina-
tion of the broken symmetries resulting from superconduc-
tivity, ferromagnetism, and/or spin-orbit coupling. By
applying the appropriate limits to our theory, one may then
obtain special cases such as FMSCs or noncentrosymmetric
superconductors with significant spin-orbit coupling.

This paper is organized as follows. In Sec. II, we establish
the Hamiltonian accounting for general coexistence of ferro-
magnetism, spin-orbit coupling, and superconductivity. The
diagonalization procedure and coupled gap equations are de-
scribed in Sec. III. Then, we apply our findings to a model of
normal/noncentrosymmetric superconductor junction, calcu-
lating the tunneling conductance spectrum, in Sec. IV, in
addition to a discussion of these results. As a second appli-
cation, we consider a FMSC in Sec. V, solving the coupled
gap equations self-consistently and calculating the free en-
ergy and heat capacity of such a system. Our main conclu-
sions are summarized in Sec. VI. We will use boldface nota-

tion for vectors, ˆ for operators, and ˇ for 2�2 matrices.

II. MODEL FOR COEXISTENCE OF FERROMAGNETISM,
SPIN-ORBIT COUPLING, AND SUPERCONDUCTIVITY

For our model, we will write down a Hamiltonian describ-
ing the kinetic energy, exchange energy, spin-orbit coupling,
and attractive electron-electron interaction, respectively. The
total Hamiltonian can then be written as

Ĥ = Ĥkin + ĤFM + ĤSOC + ĤSC, �2�

where the respective individual terms read

Ĥkin = 
k�

�kĉk�
† ĉk�,

ĤFM = − JN
k

��k�Ŝk · Ŝ−k,

ĤSOC = 
k	


ĉk	
† �gk · �̌�	
ĉk
,

ĤSC =
1

2N


kk�	


�Vkk�	

S + Vkk�	


T �ĉk	
† ĉ−k


† ĉ−k�
ĉk�	. �3�

Above, �k=�k−�, where �k is the dispersion relation for the
free fermions and � is the chemical potential,39 J�0 is a
ferromagnetic coupling parameter, ��k� is a geometrical
structure factor for the lattice, gk is a vector function ac-
counting for the antisymmetric spin-orbit coupling, and
Vkk�	
 is an attractive pair potential. The factor of 1 /2 in

ĤSC is included to obtain more convenient expressions later
on and simply corresponds to a redefinition of Vkk�	


S,T

→ 1
2Vkk�	


S,T . In Eqs. �3�, the spin operators are given by

Ŝk =
1

N

k�

ĉk�	
† �̌	
ĉ�k+k��
. �4�

Moreover, we have explicitly split the attractive pairing po-
tential into a singlet and a triplet part according to Vkk�	


=Vkk�	

S +Vkk�	


T . The symmetry properties of the antisym-
metric spin-orbit coupling and superconductivity terms with
respect to spatial inversion symmetry read

gk = − g−k, Vkk�	

S = V±k±�k�	


S ,

Vkk�	

T = ± ±�V±k±�k�	


T . �5�

In order to find eigenvalues and gap equations for our sys-
tem, we introduce the mean-field approximation for the two-
particle Hamiltonians �ferromagnetic and superconducting

terms�, such that the operators Ŝk and ĉk	
† ĉ−k


† may be written
as a mean-field value plus small fluctuations. We define
�ĉk	

† ĉ−k

† 	=bk	
 and write

Ŝk = �Ŝk	 + ��Ŝk	 ,

ĉk	
† ĉ−k


† = bk	
 + �bk	
. �6�

Inserting Eqs. �6� into Eqs. �3� and discarding all terms of
order O��2�, one obtains in the standard fashion

ĤFM = − 
k	


ĉk	
† �VM · �̌�	
ĉk
 +

INM2

2
,

ĤSC =
1

2 
k	


����k	

S �† + ��k	


T �†�ĉ−k
ĉk	 + ��k	

S + �k	


T �

��ĉk	
† ĉ−k


† − bk	

† �� . �7�

In Eqs. �7�, M= �Mx ,My ,Mz�= �Ŝi	= �Ŝk=0	 denotes the mean
value of the spin operators in real space, interpreted as the
magnetization of the system. We have introduced the vector
describing the magnetic exchange energy VM = IM and the
order parameters �OPs�

V = �VM�x − i�VM�y = I�Mx − iMy�, Vz = IMz, �8�

for ferromagnetism, while the OP for superconductivity is
described by

�k	

S,T =

1

N

k�

Vkk�	

S,T bk�	
,

�k�	

S,T =

1

N

k

Vkk�	

S,T bk	


† . �9�

The quantity I appearing in Eq. �8� is a measure of the
strength of the magnetic exchange coupling. Although we
have derived the ferromagnetic part of our Hamiltonian from
a lattice model �where I=2JN��0��, this generic Hamiltonian
describes a general mean-field model of a system with mag-
netic exchange energy. The Pauli principle places the follow-
ing restrictions upon the superconductivity OPs:

singlet pairing: �k	

S = − �k
	

S , �k	

S = �−k	


S ,

triplet pairing: �k	

T = �k
	

T , �k	

T = − �−k	


T . �10�

In total, we have thus obtained a Hamiltonian Ĥ describing
coexistence of ferromagnetism, spin-orbit coupling, and

QUANTUM TRANSPORT IN NONCENTROSYMMETRIC… PHYSICAL REVIEW B 76, 054511 �2007�

054511-3



superconductivity in the mean-field approximation by adding all of the above terms. For more compact notation, one may
introduce a basis for fermion operators �̂k= �ĉk↑ , ĉk↓ , ĉ−k↑

† , ĉ−k↓
† �T and write

Ĥ = Ĥkin + ĤFM + ĤSOC + ĤSC = H0 +
1

2
k

�̂k
†Ak�̂k, �11�

where we have introduced the quantities

H0 = 
k

�k +
INM2

2
−

N�V + V†�
2

−
1

2 
k	


��k	

S + �k	


T �bk	

† ,

Ak =�
�k↑ + gk,z − V + gk,− �k↑↑

T �k↑↓
S + �k↑↓

T

− V† + gk,+ �k↓ − gk,z − �k↑↓
S + �k↑↓

T �k↓↓
T

��k↑↑
T �† ��k↑↓

T �† − ��k↑↓
S �† − �k↑ + gk,z V† + gk,+

��k↑↓
T �† + ��k↑↓

S �† ��k↓↓
T �† V + gk,− − �k↓ − gk,z

� . �12�

Above, we have defined �k�=�k−�Vz in addition to gk,±
= �gk�x± i�gk�y. The matrix Ak will be central in this work,
and we note that it may be further compactified by introduc-
ing the dk-vector formalism.40 By means of the definitions
dk,0=�k↑↓

S and

dk =
1

2
��k↓↓

T − �k↑↑
T ,− i��k↑↑

T + �k↓↓
T �,2�k↑↓

T � �13�

that transforms like a vector under spin rotations, one may
write

Ak = ��k1̌ − �̌ · �VM − gk� i�d0,k + dk · �̌��̌y

�i�d0,k + dk · �̌��̌y�† − �k1̌ + �VM + gk� · �̌T� ,

�14�

where 1̌ denotes the identity matrix and T designates the
matrix transpose. The rest of this paper will now be devoted

to obtaining the excitation energies for Ĥ by diagonalizing
Ak, writing down the coupled gap equations, and considering
some important special cases.

III. EXCITATION ENERGIES AND GAP EQUATIONS

The characteristic polynomial for a general matrix Ak
with eigenvalues Ek may be written as41

!�Ek� = Ek
4 − �Tr�Ak��Ek

3 + �1

2
�
Ak − I
 + 
Ak + I
� − 1

− det Ak�Ek
2 +

1

2
�
Ak − I
 − 
Ak + I
�Ek + det Ak = 0,

�15�

where I denotes the 4�4 identity matrix. Since Ak in our
case is Hermitian, Tr�Ak�=0, and the polynomial reduces to
a depressed quartic equation. For ease of notation, we intro-
duce the quantity

�k
± �

1

2
�
Ak − I
 ± 
Ak + I
� , �16�

such that Eq. �15� is rewritten as

Ek
4 + ��k

+ − 1 − det Ak�Ek
2 + �k

−Ek + det Ak = 0. �17�

The solutions of Ek can be written as42

2Ek	

= 	ak + 
�− �3��k

+ − 1 − det Ak� + 2yk + 	
2�k

−

ak
��1/2

.

�18�

Here, we have defined the auxiliary quantities

ak = ���k
+ − 1 − det Ak� + 2yk,

yk = −
5��k

+ − 1 − det Ak�
6

− bk,

bk = Rk
1/3, Rk =

Qk

2
+ �Qk

2

4
+

Pk
3

27
,

Qk =
��k

+ − 1 − det Ak�det Ak

3
−

��k
−�2

8
−

��k
+ − 1 − det Ak�3

108
,

�19�

Pk = −
��k

+ − 1 − det Ak�2

12
− det Ak.

In Eq. �18�, �	 ,
� take the values +1 and −1 such that there
exists a total of four solutions for Ek. Also note that any of
the roots in the expressions for bk and Rk will do the job. A
special case of the above solutions, which occurs quite fre-
quently in various contexts, considerably simplifies the ob-
tained eigenvalues: 1

2 �
Ak− I
− 
Ak+ I
�=0. In this case, the
quartic equation reduces to an effective quadratic equation
with the solutions
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2Ek	

= 	�− 2��k

+ − 1 − det Ak�

+ 2
���k
+ − 1 − det Ak�2 − 4 det Ak�1/2. �20�

This is the situation considered in most problems dealing
with superconductors. Having calculated the energy eigen-
values, Eq. �11� may now be diagonalized by writing

Ĥ = H0 +
1

2
k

�̂k
†Ak�̂k = H0 +

1

2
k

��̂k
†Pk��Pk

†AkPk��Pk
†�̂k�

= H0 + 
k

�̂̃k
†Dk�̂̃k, �21�

where Dk=diag�Ek,1 ,Ek,2 ,Ek,3 ,Ek,4� is a diagonal matrix
containing the eigenvalues of Ak. Here, we have defined �see
Eq. �18��

Ek,1 =
1

2
Ek++

,
1

2
Ek,2 = Ek+−

,

Ek,3 =
1

2
Ek−+

,
1

2
Ek,4 = Ek−−

, �22�

thus absorbing the factor 1
2 in front of k into the eigenval-

ues. Above, Pk are the orthonormal diagonalizing matrices
which, by the Hermiticity of Ak, are ensured to be unitary.
We write our new basis of fermion operators as

�̂̃k
† = ��̂k↑

† ,�̂k↓
† ,�̂−k↑,�̂−k↓� . �23�

These operators satisfy the fermion anticommutation rela-
tions, as can be verified by direct insertion. From Eq. �21�,
we may now write

Ĥ = H0 + 
k

��k↑
† �k↑Ek,1 + �k↓

† �k↓Ek,2 + �−k↑�−k↑
† Ek,3

+ �−k↓�−k↓
† Ek,4�

= �H0 + 
k

�Ek,3 + Ek,4�� + 
k

��k↑
† �k↑�Ek,1 − E−k,3�

+ �k↓
† �k↓�Ek,2 − E−k,4�� = H̃0 + 

k
��k↑

† �k↑Ẽk,1

+ �k↓
† �k↓Ẽk,2� , �24�

where we have defined H̃0=H0+k�Ek,3+Ek,4� and Ẽk,1

= �Ek,1−E−k,3�, Ẽk,2= �Ek,2−E−k,4�. Our Hamiltonian now has
the form of a free-fermion theory. It is then readily seen that
the free energy of the system is given by

F = H̃0 −
1




k

�ln�1 + e−
Ẽk,1� + ln�1 + e−
Ẽk,2�� . �25�

From F, the gap equations for the ferromagnetic and super-
conducting OPs V, Vz, and �k	


S,T may be obtained by de-
manding the value of these which corresponds to a minimum
in F. The possible extrema of F are given by the conditions

�F

��k	

S,T = 0,

�F

���k	

S,T �† = 0,

�F

�Vz
= 0,

�F

�V = 0,
�F

�V† = 0. �26�

By first defining the quantity

F�x� = 
k
�nF�Ẽk,1�

�Ẽk,1

�x
e−
Ẽk,1 +

�Ek,3

�x

+ nF�Ẽk,2�
�Ẽk,2

�x
e−
Ẽk,2 +

�Ek,4

�x
� , �27�

where nF�E�=1/ �1+e
E� is the Fermi distribution, the con-
ditions in Eqs. �26� may be evaluated by inserting Eq. �25�.
The extrema of F are thus determined by the following equa-
tions:

− bk	

† + F��k	


S,T � = 0, �28�

− bk	
 + F���k	

S,T �†� = 0, �29�

NVz

2J��0�
+ F�Vz� = 0, �30�

−
N

2
+

NV†

2J��0�
+ F�V� = 0, �31�

−
N

2
+

NV
2J��0�

+ F�V†� = 0. �32�

The challenge then lies in obtaining the derivatives of the
energies Ek,i with respect to the different order parameters.
In the general case described by Eq. �12�, this is a formidable
task. Nevertheless, the above provides a general framework
which may serve as a starting point for any model consider-
ing the coexistence of ferromagnetism, spin-orbit coupling,
and superconductivity. We will apply our findings onto a
specific case which currently is a topic attracting much at-
tention: noncentrosymmetric superconductors with signifi-
cant spin-orbit coupling.

IV. PROBING THE PAIRING SYMMETRY OF
NONCENTROSYMMETRIC SUPERCONDUCTORS

As an application of our model, we consider tunneling
between a normal metal and a noncentrosymmetric super-
conductor treated in the spin-generalized Blonder-Tinkham-
Klapwijk formalism.43,44

A. Model and formulation

The Hamiltonian in the superconducting state using stan-
dard mean-field theory with a spin-orbit coupling may be
written as

Ĥ = H0 +
1

2
k

�̂k
†Mk�̂k, �33�

using a spin basis �̂k= �ĉk↑ , ĉk↓ , ĉ−k↑
† , ĉ−k↓

† �T and with

QUANTUM TRANSPORT IN NONCENTROSYMMETRIC… PHYSICAL REVIEW B 76, 054511 �2007�

054511-5



Mk =�
�k gk,− �k↑↑ �k

gk,+ �k − �k �k↓↓

�k↑↑
† − �k

† − �k gk,+

�k
† �k↓↓

† gk,− − �k

� . �34�

In Eq. �34�, all quantities have been defined in the previous
section. It is usually argued that interband pairing in a non-
centrosymmetric superconductors can be neglected due to a
spin-split Fermi surface in the presence of spin-orbit cou-
pling. This is motivated by realizing that the splitting could
be as large as25 50–200 meV for the noncentrosymmetric
superconductor CePt3Si, thus far greater than the supercon-
ducting critical temperature kBTc �0.06 meV in that com-
pound. Accordingly, one might be tempted to also exclude
the spin-singlet gap in the presence of a strong spin-orbit
coupling motivated on physical grounds by the suppression
of interband pairing due to the spin-split Fermi surfaces.
However, it is necessary to investigate the presence, although
possibly small in magnitude, of a spin-singlet component of
the gap to examine whether the conductance spectrum
changes significantly in any respect compared to the scenario
with exclusively triplet pairing. Another motivation for in-
cluding the singlet gap is that the authors of Ref. 21 demon-
strated that for small spin-orbit coupling, dk � gk yields the
highest TC for CePt3Si. This would thus correspond to a sce-
nario where the triplet gap �k↑↓ is suppressed due to the
above condition, although intraband pairing is not strictly
forbidden as a result of weak spin-orbit coupling, thus allow-
ing for singlet pairing.

Consider now a gap vector exhibiting point nodes. Since
dk, in general, is given by Eq. �1�, the vector characterizing
spin-orbit coupling gk=��ky ,−kx ,0� suggested by Ref. 21 re-
sults in

�k↑↑ = −
�t

2
k

�ky + ikx�, �k↓↓ =

�t

2
k

�ky − ikx� . �35�

Diagonalization of the Hamiltonian in Eq. �33� yields eigen-
values and eigenvectors which are necessary to calculate the
normal- and Andreev-reflection coefficients in a N/CePt3Si
junction. Assuming the simplest form of a s-wave supercon-
ducting gap that obeys the symmetry requirements dictated
by the Pauli principle, namely, an isotropic gap �k=�s, we
find that the eigenvalues of Mk read

Ek	

= 	��� + 

gk
�2 + 
�s + 
�t/2
2. �36�

This is in complete agreement with the result of Ref. 26. We
are here assuming that all gaps have the same phase associ-
ated with the broken U�1� gauge symmetry. In Eq. �36�, 	
=+ ��� refers to electronlike �holelike� excitations, while

=+ ��� denotes the spin-orbit helicity index. The wave
vectors may then be written as

qe
↑ = qh

↑ = �kF
2 + m2�2 − m� ,

qe
↓ = qh

↓ = �kF
2 + m2�2 + m� , �37�

when making the approximation that the magnitude of the
superconducting gaps is small compared to the Fermi energy
� and considering the low-energy transport regime. Here, kF
is the Fermi wave vector.

We now calculate the normal- and Andreev-reflection co-
efficients for an incident electron with spin �, which, in turn,
will allow us to derive the tunneling conductance of the junc-
tion. To do so, we first set up the Bogoliubov–de Gennes
�BdG� equations for the system which read �see the Appen-
dix for a derivation�

�
−

�̂2

2m
− � + V0��x� ��p̂y + ip̂x�$�x� �k↑↑$�x� �s$�x�

��p̂y − ip̂x�$�x� −
�̂2

2m
− � + V0��x� − �s$�x� �k↓↓$�x�

�k↑↑
† $�x� − �s

†$�x� �̂2

2m
+ � − V0��x� ��p̂y − ip̂x�$�x�

�s
†$�x� �k↓↓

† $�x� ��p̂y + ip̂x�$�x� �̂2

2m
+ � − V0��x�

�%�x,y� = E%�x,y� , �38�

where p̂x�y� =−i�̂x�y� and we make use of the following bound-
ary conditions:

�0� = %�0� �continuity of wave function� ,

2mV0�0� = �̂x%�0� − �̂x��0�

− m��%�0� �continuity of flux� . �39�

Note that we have applied the usual step-function approxi-
mation for the order parameters instead of solving for their
spatial dependence self-consistently near the interface, i.e.,
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�k���r�=�k��$�x� and ��r�=�$�x� �we comment further
on this later�. For convenience, we have defined the 4�4
matrix

� =�
0 1 0 0

− 1 0 0 0

0 0 0 1

0 0 − 1 0
� . �40�

The presence of spin-orbit coupling leads to off-diagonal
components in the velocity operator, such that it would be
erroneous to merely match the derivatives of the wave func-
tion in this case.45 The coupled gap equations that arise by
demanding a minimum in the free energy are obtained by
considering Eqs. �27� and �28�. For the sake of obtaining
analytical results, we continue our discussion of the conduc-
tance spectra of noncentrosymmetric superconductors by in-
serting values of the superconductivity gaps a priori instead
of using the self-consistent solutions. This approach does
not, then, account for the entire physical picture but has
proven to yield satisfactory results for many aspects of qua-
siparticle tunneling in the case of, e.g., spin-singlet d-wave
superconductors.43,46 For the simplest model that illustrates
the physics, we have thus chosen a two-dimensional
N/CePt3Si junction with a barrier modeled by V�r�=V0��x�
and superconductivity gaps �k���r�=�k��$�x� ���x� and
$�x� represent the delta and Heaviside functions, respec-
tively�. Consider Fig. 1 for an overview. Choosing a plane-
wave solution %�x ,y�=%�x�eikyy, for �=↑, the wave func-
tion on the normal ��x�� side of the junction reads

�x� =�
eikF cos �x + re

↑e−ikF cos �x

re
↓e−ikF cos �x

rh
↑eikF cos �x

rh
↓eikF cos �x

� . �41�

On the superconducting side �%�x��, the BdG equation may
be written, for our particular choice of gk and gaps in Eq.
�35�, as

�
�k 
gk
ei� − ��t/2�ei� �s


gk
e−i� �k − �s ��t/2�e−i�

− ��t/2�e−i� − �s − �k 
gk
e−i�

�s ��t/2�ei� 
gk
ei� − �k

�%

= E% with tan ���� = 1/tan � . �42�

We are here concerned with positive excitations E+0, as-
suming an incident electron above Fermi level. In this case,
there are four possible solutions for wave vectors k with a
given energy E+0. Consequently, one may verify that the
correct wave function for x�0, which is a linear combina-
tion of these allowed states, reads

%�x� =
te
↑

�2�
u��+�

u��+�e−i���e
↑�

− v��+�e−i���e
↑�

v��+�
�eiqe

↑ cos �e
↑x

+
te
↓

�2�
u��−�

− u��−�e−i���e
↓�

v��−�e−i���e
↓�

v��−�
�eiqe

↓ cos �e
↓x

+
th
↑

�2�
v��+�

v��+�e−i���h
↑�

− u��+�e−i���h
↑�

u��+�
�eiqh

↑ cos �h
↑x

+
th
↓

�2�
v��−�

− v��−�e−i���h
↓�

u��−�e−i���h
↓�

u��−��74�
�eiqh

↓ cos �h
↓x. �43�

We have defined �±=�s± ��t /2�, and the spreading angles in
Eq. �43� are given as sin �e

�= �kF sin �� /q�, �h
�=�−�e

�. This
follows from the fact that translational symmetry is con-
served along the y axis. The coherence factors entering the
wave functions in Eq. �43� are given as

u��� =�1

2
+

�E2 − 
�
2

2E
, v��� =�1

2
−

�E2 − 
�
2

2E
.

�44�

We also define the dimensionless parameters Z=2mV0 /kF
and 
=2m� /kF as measures of the intrinsic barrier strength
and magnitude of the spin-orbit coupling, respectively.

Note that we are using the same effective masses in the
normal part of the system as in the superconducting part. The
mass of the quasiparticles in heavy-fermion materials is, as
the name itself implies, ordinarily much larger than in nor-
mal metals. It was recently shown by Yokoyama et al.47 that
in a two-dimensional electron gas �2DEG�/superconductor
junction where spin-orbit coupling was substantial in the
2DEG, the effect of including a larger effective mass in the
2DEG was equivalent to that caused by an increase of Z.

θθθθ

θθθθ↓↓↓↓eeee

Incoming electron σ

Retroreflected hole (↑, ↓)

Reflected electron (↑, ↓)

ŷ̂ŷŷy

ˆ̂̂̂xxxx

Normal metal Noncentrosymmetric superconductor

Transmitted e-like quasiparticle (σ)

Transmitted e-like quasiparticle (σ)

Transmitted e-like quasiparticle (−σ)

Transmitted e-like quasiparticle (−σ)

θθθθ↑↑↑↑eeee

FIG. 1. �Color online� Schematic illustration of the scattering
processes taking place at the interface of the 2D planar N/CePt3Si
junction. The arrows indicate the direction of group velocity �which
is not equal to the momentum vector for the holes�. Note that the
presence of spin-orbit coupling causes electronlike and holelike ex-
citations on the superconducting side to be spread into different
angles.
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Note that in the presence of a time-reversal breaking mag-
netic field, it was shown in Refs. 48 and 49 that the effect of
Fermi-vector mismatch could not be reproduced simply by
varying the barrier parameter Z. Since there is no time-
reversal breaking field present in this case, however, we here
restrict ourselves to considering equal effective masses in the
two systems. With the above equations, one is able to find
explicit expressions for �re

� ,rh
��. The procedure illustrated

here is identical for incoming electrons with �=↓ when us-
ing

�x� =�
re
↑e−ikF cos �x

eikF cos �x + re
↓e−ikF cos �x

rh
↑eikF cos �x

rh
↓eikF cos �x

� �45�

instead of Eq. �41�. This establishes the framework which
serves as the basis for calculating the conductance spectrum.

B. Conductance spectra for noncentrosymmetric
superconductors

We now proceed to calculate the tunneling conductance
for our setup. Generalizing the theory of Blonder et al.44 one
obtains a conductance G�E ,�� �scaled on the conductance in
a N-N junction� for an incoming electron with angle � to the
junction normal with spin �, where

G�E,�� = 1 + 
	

�
rh
	�E,��
2 − 
re

	�E,��
2� , �46�

and RN-N=�−�/2
�/2 ��4 cos3 �� / �4 cos2 �+Z2��d�. The angularly

averaged conductance reads

G�E� = �RN-N�−1�
−�/2

�/2

G�E,��P���d� , �47�

where P��� is the probability distribution function �P�0�
=1� for incoming electrons at an angle �. This is, in many
cases, set to P���=cos �, but other forms modeling, e.g.,
effective tunneling cones may also be applied. In obtaining
the total conductance, one has to find G�E� for both �=↑ and
�=↓ and then add these contributions. The original deriva-
tion of this specific formula for the tunneling conductance
given in Ref. 48 relies on the relation


rh
��E�
2 = 
rh

��− E�
2 �48�

to hold. This is known to be valid for subgap energies, but
for energies above the gap, the relationship does not hold in
general, a fact which implies that the conductance formula
derived in Ref. 48 is only valid for applied voltages below
the gap, strictly speaking. However, since the probability for
Andreev reflection rapidly diminishes for energies above the
gap �especially for Z�0�, the conductance formula may still
be applied for larger voltages as a reasonable approximation,
even for the high-transparency case of low values for Z.

The explicit analytical expressions for the normal- and
Andreev-reflection probabilities, 
re

�
2 and 
rh
�
2, respectively,

are too large and unwieldy to be of any instructive use. We

shall therefore be content with plotting these expressions to
reveal the physics embedded within them. In most scanning
tunneling microscopy �STM� experiments, a high-
transparency interface is often realized, corresponding to low
Z. Also, since the band splitting 2�kF at the Fermi level may
be of order25 of 100 meV for CePt3Si, a simple analysis re-
lating this to our dimensionless parameter 
 yields that 

�0.05. We therefore plot in Fig. 2 the angularly averaged
�and normalized� conductance spectrum for several values of
barrier strength and singlet/triplet gap ratios, fixing the spin-
orbit coupling parameter at 
=0.05. From Fig. 2, we see that
one may infer the relative size of the singlet and triplet com-
ponents of the gap by the characteristic behavior of G�E� at
voltages corresponding to �s±�t /2. This is in agreement
with what one could expect by studying the form of the
eigenvalues in Eq. �36�, since it is this precise combination
of the gaps that appears in the expression.

In a recent study50 by Iniotakis et al., a normal/
noncentrosymmetric superconductor junction was studied for
low-transparency interfaces, where it was found that zero-
bias anomalies would take place for certain STM measure-
ment orientations if a specific form of the mixed singlet-
triplet order parameter was realized. This may be attributed
to the formation of zero-energy bound states,51 which is pos-
sible when the gap contains nodes. In the present study, we
are using an isotropic spin-singlet gap and also isotropic
p-wave gaps �
�k�� 
 =constant�,52 such one does not expect
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FIG. 2. �Color online� Tunneling conductance for N/CePt3Si
junction with 
=0.05. We study barrier strengths corresponding to
�a� Z=0.1, �b� Z=1, and �c� Z=10. In all cases, we plot the ratios
�t /�s= �3,10� to see how the spectra are affected. It is seen that the
conductance spectra reveal information about the relative size of the
singlet and triplet components of the gaps by characteristic features
located at bias voltages E= 
�s±�t /2
.
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the appearance of a zero-bias conductance peak, in contrast
to Ref. 50. Moreover, we note that the spin-orbit coupling in
the system gives rise to effectively spin-active boundary con-
ditions �see Eq. �39��.53,54

It is also instructive to consider the Andreev-reflection
probabilities explicitly to resolve the spin structure of the
quasiparticle current, as shown in Fig. 3 for an incoming
electron with spin �=↑. It is seen that the spin-↓ coefficient
becomes larger with increasing voltage, such that the spin
polarization of the current will vary with the bias voltage.
The proper definition of a spin current in systems exhibiting
spin-orbit coupling has, however, been shown55 to be more
subtle than applying the usual relations for charge and spin
currents,

jcharge = − e
�

j�, jspin = 
�

�j�, �49�

where j� is the particle current of fermions with spin �.
Therefore, it is fair to claim that it is not obvious how one
might detect such a change in polarization of the quasiparti-
cle current with a change in bias voltage. On the other hand,
the charge current remains unaffected by these consider-
ations, and our results thus indicate that the conductance
spectrum of the charge current in a N/CePt3Si junction may
provide valuable information about the relative size of the
singlet and triplet components of the superconductivity gap.

We now comment on effects that have not been taken
into account in our analysis of this problem. First, the
issue of how boundary effects affect the order parameters
is addressed. Studies56–58 have shown that interfaces and/or
surfaces may have a pair-breaking effect on unconventional
superconductivity order parameters. This is relevant in tun-

neling junction experiments as in the present case. The sup-
pression of the order parameter is caused by a formation of
the so-called midgap surface states �also known as zero-
energy states�,51 which occurs for certain orientations of the
k-dependent superconducting gaps that satisfy a resonance
condition. Note that this is not the case for conventional
s-wave superconductors since the gap is isotropic in that
case. This pair-breaking surface effect was studied specifi-
cally for p-wave order parameters in Refs. 56 and 57, and it
was found that the component of the order parameter that
experiences a sign change under the transformation k�→
−k�, where k� is the component of momentum perpendicu-
lar to the tunneling junction, was suppressed in the vicinity
of the junction. By vicinity of the junction, we mean here a
distance comparable to the coherence length, typically of or-
der of 1–10 nm. Thus, depending on the explicit form of the
superconducting gaps in the noncentrosymmetric supercon-
ductor, these could be suppressed close to the interface.
Moreover, we are dealing with an easily observable effect,
since distinguishing between the peaks occurring for various
values of R� requires a resolution of order O�10−1�↑,0�,
which typically corresponds to 0.1–1 meV. These structures
should readily be resolved with present-day STM technol-
ogy. However, it should be pointed out that a challenge with
respect to tunneling junctions is dealing with nonidealities at
the interface, which may affect the conductance spectrum.

In order to fully consider the possible pair-breaking effect
of the interface in an enhanced model, one would obviously
need to solve the scattering problem self-consistently in or-
der to obtain more precise results for the conductance, espe-
cially in terms of the quantitative aspect. To obtain analytical
results, however, we have inserted the gaps a priori, since we
believe that our model captures essential qualitative features
in a N/CePt3Si junction that could be probed for. This belief
is motivated by studies59 for dx2−y2 superconductors which
show that the conductance shape around zero bias remains
essentially unchanged even if the spatial dependence of the
order parameters is taken into account. The spectra around
the gap edges may be modified in the sense that since the
gap, in general, will be somewhat reduced close the inter-
face, the appearance of characteristic features in the conduc-
tance could occur at lower bias voltages than the bulk value
of the gaps. However, it seems reasonable to hope that our
simple model may be of use in predicting qualitative features
of the conductance spectrum when considering junctions in-
volving noncentrosymmetric superconductors such as
CePt3Si.

V. PROBING THE PAIRING SYMMETRY OF
FERROMAGNETIC SUPERCONDUCTORS

As a second application of our model, we consider a
model of a ferromagnetic superconductor described by uni-
formly coexisting itinerant ferromagnetism and equal-spin
pairing nonunitary spin-triplet superconductivity.

A. Model and formulation

We write down a mean-field theory Hamiltonian with
equal-spin pairing Cooper pairs and a finite magnetization
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FIG. 3. �Color online� Andreev-reflection coefficients for spin-↑
and spin-↓ fermions in the case of incoming �=↑ electrons. It is
seen that the degree of spin polarization of the generated quasipar-
ticle current will vary with the bias voltage. The inset contains a
plot of the sum of reflection coefficients �both normal and An-
dreev�, showing that no transmittance of quasiparticles occurs for
voltages below E= 
�s−�t /2
.
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along the easy axis similar to the model studied in Refs.
60–62, namely,

Ĥ = 
k

�k +
INM2

2
−

1

2
k�

�k��
† bk�� +

1

2
k�

�ĉk�
† ĉ−k��

�� �k� �k��

�k��
† − �k�

�� ĉk�

ĉ−k�
† � , �50�

Applying the diagonalization procedure described in Sec. II,
we arrive at

Ĥ = H0 + 
k�

Ek��̂k�
† �̂k�,

H0 =
1

2
k�

��k� − Ek� − �k��
† bk��� +

INM2

2
, �51�

where ��̂k� , �̂k�
† � are new fermion operators and the eigen-

values read

Ek� = ��k�
2 + 
�k��
2. �52�

Recall that it is implicit in our notation that �k is measured
from the Fermi level. The free energy is obtained by using
the procedure explained in Sec. II, and one obtains

F = H0 −
1




k�

ln�1 + e−
Ek�� , �53�

such that the gap equations for the magnetic and supercon-
ducting order parameters become60

M = −
1

N

k�

��k�

2Ek�
tanh�
Ek�

2
� ,

�k�� = −
1

N

k�

Vkk���
�k���

2Ek��
tanh�
Ek��

2
� . �54�

For concreteness, we now consider a specific form of the
gaps, similar to those studied in Refs. 60 and 62. Assuming
that the gap is fixed on the Fermi surface in the weak-
coupling limit, we write

�k�� = �k̄F��
=

��,0

�3/8�
Yl=1
� ��,�� , �55�

where k̄F is the normalized Fermi wave vector, such that the
gap only depends on the direction of the latter. We have
introduced the spherical harmonics

Yl=1
� ��,�� = − ��3/8�ei�� sin � , �56�

such that the gaps in Eq. �55� experience a change in sign
under inversion of momentum, i.e., �→�+�. We shall con-
sider the case sin �=1 which renders the magnitude of the
gaps to be constant, similar to the A2 phase in liquid 3He.
The motivation for this is that it seems plausible that uniform
coexistence of ferromagnetic and superconducting orders
may only be realized in thin-film structures, where the
Meissner �diamagnetic� response of the superconductor is
suppressed for in-plane magnetic fields. This enables us to

set sin �=1, since the electrons are restricted from moving in
the ẑ direction in a thin-film structure. In a bulk structure, as
considered in Ref. 62, we expect that a spontaneous vortex
lattice should be the favored thermodynamical state.28 The
pairing potential may then, in general, be written as

V����,��� = − 
m

g��
m

3/8�
Y�����Y������*, �57�

which for the chosen gaps reduces to

V����,��� = −
8�g

3
Y�����Y������*. �58�

Conversion to integral gap equations is accomplished by
means of the identity

1

N

k

f��k�� =� d�N���� , �59�

where N���� is the spin-resolved density of states. In three
spatial dimensions, this may be calculated from the disper-
sion relation by using the formula

N���� =
V

�2��3�
�k�=const

dS�k�


�̂k�k�

. �60�

With the dispersion relation �k�=�k−�IM −EF �having set
the chemical potential equal to the Fermi energy, �=EF�, one
obtains

N���� =
mV�2m�� + �IM� + EF

2�2 . �61�

In their integral form, the gap equations read

M = −
1

2
�

��
−EF−�IM

�

d�
�N����

��2 + ��,0
2

tanh�
E����
2

� ,

1 =
g

2
�

−�0

�0

d�
N����
E����

tanh�
E����
2

� . �62�

B. Zero-temperature case

Consider now T=0, where we are able to obtain analytical
expressions for the superconductivity order parameters in the
problem. Since the superconductivity gap equation reduces
to

1 =
g

2
�

−�0

�0

d�
N����
E����

, �63�

one readily finds

��,0 = 2�0e−1/c�1+�M̃, � = ↑,↓ , �64�

where we have defined M̃ = IM /EF, i.e., the exchange energy
scaled on the Fermi energy. Moreover, the weak-coupling
constant c=gN�0� /2 will be set to 0.2 throughout the rest of
this paper, unless specifically stated otherwise. Moreover, we
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set �̃0=�0 /EF=0.01 as the typical spectral width of the
bosons responsible for the attractive pairing potential. From
Eq. �64�, we see that the effect of increasing the magnetiza-
tion is an increase in the gap for majority spin. The important
influence of the magnetization is that it modifies the density

of states, which affects the superconductivity gaps. For M̃
=1, i.e., an exchange splitting equal to the Fermi energy, the

minority-spin gap is completely suppressed, as shown in Fig.
4. Thus, the presence of magnetization reduces the available
phase space for the minority-spin Cooper pairs, suppressing
the gap and the critical temperature compared to the pure
Bardeen-Cooper-Schrieffer �BCS� case.

After the appropriate algebraic manipulations of Eq. �62�,
the self-consistency equation for the magnetization becomes

f�M̃� = M̃ +
Ĩ

4
�

−1−M̃

�

dx�1 + x + M̃��1 − 2$�− �x2 + �̃↑,0
2 �M̃���

x−1�x2 + �̃↑,0
2 �M̃�

−
�1 − 2$�− ��x + 2M̃�2 + �̃↓,0

2 �M̃���

�x + 2M̃�−1��x + 2M̃�2 + �̃↓,0
2 �M̃�

� = 0, �65�

where we have defined the parameter Ĩ= IN�0�, in similarity

to Ref. 60, and introduced �̃�,0�M̃�=��,0 /EF. We have thus
managed to decouple the gap equations completely, such that
one only has to solve Eq. �65� to find the magnetization, and
then plug that value into Eq. �64�. Note that strictly speaking,
one should divide the integral in Eq. �65� into three parts: �
−1−M̃ ,−�0�, ��0 ,��, and �−�0 ,�0�, where the supercon-
ductivity gaps are only nonzero in the latter interval. How-
ever, the error associated with doing the integration numeri-
cally over the entire regime with a finite value for the gaps is
completely negligible. From Eq. �65�, we see that the trivial

solution M̃ =0 is always possible. Interestingly, we find that a
nontrivial solution implying coexistence of ferromagnetism

and superconductivity is only possible when Ĩ�1 �in agree-
ment with Ref. 60�. To illustrate this fact, consider Fig. 5 for

a plot of f�M̃� in Eq. �65� as a function of M̃ for several

values of Ĩ. In fact, it is seen that more than one solution is

possible for any Ĩ�1: the trivial solution M̃ =0 correspond-
ing to a unitary superconducting state and a nontrivial solu-

tion M̃ =M̃0 representing a nonunitary superconducting state.
Recall that in terms of the dk-vector formalism, these classi-
fications are defined as

unitary:dk � dk
* = 0, nonunitary:dk � dk

* � 0. �66�

We will later show that the free energy is minimal in the
nonunitary state, which implies that the coexistence of ferro-
magnetism and superconductivity may indeed be realized in
our model.

The order parameters depend on the parameters �T , Ĩ ,c�.
To illustrate their dependence on Ĩ at T=0, consider Fig. 6. It
is clearly seen that the superconductivity gaps are equal for

Ĩ"1, corresponding to a unitary spin-triplet pairing state.

For Ĩ�1, a spontaneous magnetization arises and the
majority- �minority-� spin gap increases �decreases�. This
corresponds to the coexistent phase of ferromagnetism and
superconductivity. An important point concerning Eq. �65� is
the inclusion of the step-function factors, which are superflu-

ous as long as we are considering the coexistent regime of
ferromagnetism and superconductivity, since their argument
is always negative. However, if one, for instance, were to set
one or both of the superconductivity gaps to zero, the correct
gap equation for the magnetization would not be reproduced
without them. This is due to the loss of generality in taking
the limit tanh�
E��→1 when 
→� in deriving Eq. �65�,
since E��0 is replaced with � when superconductivity is
lost, which can be both larger and smaller than zero when
��,0→0. The present form of Eq. �65� is generally valid for
the purely magnetic and the coexistent A1 and A2 phases of
the ferromagnetic superconductor.

In order to correctly characterize the pairing symmetry of
FMSCs, it is of interest to find clear-cut experimental signa-
tures that distinguish between the possible phases of such an
unconventional superconductors. As we have alluded to, it
seems reasonable to assume that a superconducting phase
analogous to the A1 or A2 phase of 3He may be realized in
FMSCs. We now investigate how the magnetization at T=0

depends on the ferromagnetic exchange energy constant Ĩ in
these possible phases and compare them to the purely ferro-
magnetic case. Our results are shown in Fig. 7, where we

have self-consistently solved for M̃ as a function of Ĩ in three
cases: �1� the purely ferromagnetic phase, �2� the A1 phase
where only spin-↑ fermions are paired, and �3� the A2 phase
where all spin bands participate in the superconducting pair-
ing. It is seen that the magnetization is practically identical in

all phases regardless of the value of Ĩ. Analytically, this may
be understood since the difference �f �see Eq. �65�� between
the gap equation for the magnetization in the purely ferro-
magnetic case and the coexistent state reads

�f = 
�

���
−�0

�0

d�N�����1 −

�


��2 + ��,0
2 �� � 0. �67�

Note that in our results, an enhancement of the magnetiza-
tion below the superconductivity critical temperature is ab-
sent, contrary to the results of Ref. 62, which predicted that
the magnetization should be enhanced in the coexistent
phases compared to the purely ferromagnetic phase. For the
weak-coupling approach applied here, it seems reasonable
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that the presence of superconductivity should not alter the
magnetization much, while superconductivity itself is drasti-
cally modified depending on the strength of the exchange
energy. The result of Ref. 62 may be a consequence of the
fact that they do not set sin �=1 �Eq. �56�� and, conse-
quently, have additional nodes compared to the gaps we are
using.

C. Finite temperature case

The critical temperature for the superconductivity order
parameter is found by solving the equation

1 =
g

2
�

−�0

�0

d�
N����

�
tanh� �

2Tc,�
� , �68�

which yields the BCS-like solution
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FIG. 6. �Color online� Self-consistently solved order parameters

at T=0 as a function of Ĩ. It is seen that the coexistent regime of

ferromagnetism and superconductivity is located at Ĩ�1, where a
spontaneous magnetization arises.
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�the A1 and A2 phases� compared to the purely ferromagnetic case.

It is seen that M̃ is virtually unaltered by the presence of supercon-
ductivity, at least in the weak-coupling approach we have adopted
here �see also Ref. 62�.
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Tc,� = 1.13�0e−1/c�1+�M�Tc,��˜
. �69�

Since the transition temperature for paramagnetism-
ferromagnetism is, in general, much larger than the super-
conducting phase transition, one may, to good approxima-
tion, set M�Tc,��=M�0�. It is then evident that the critical
temperature depends on the magnetization in the same man-
ner as the gap itself, and the cutoff dependence in Eq. �64�
may be removed in favor of the critical temperature by sub-
stituting Eq. �69�. In order to solve the coupled gap equations
self-consistently at arbitrary temperature, we considered Eq.
�62� with the result given in Fig. 8. It is seen that the
minority-spin gap is clearly suppressed compared to the
majority-spin gap in the presence of a net magnetization.
Also, the graph clearly shows that the BCS-temperature de-
pendence constitutes an excellent approximation for the de-
crease of the OPs with temperature. In what follows, we shall
therefore use self-consistently obtained solutions at T=0 for
the OPs and make use of the BCS-temperature dependence
unless specifically stated otherwise. In general, the critical
temperature for the ferromagnetic order parameter Tc,M ex-
ceeds the superconducting phase transition temperatures Tc,�

by several orders of magnitude. However, for Ĩ very close to
1, we are able to make these transition temperatures compa-
rable in magnitude. In the experimentally discovered FMSCs
UGe2 and URhGe, one finds that Tc,M is 50–100 times higher
than the temperature at which superconductivity arises.

To illustrate how the magnetic order parameter depends

on Ĩ, consider Fig. 9 for a plot of the temperature dependence

for several values of Ĩ. The inset shows how the critical
temperature depends on this parameter.

D. Comparison of free energies

Although a nontrivial solution of M exists, care must be
exercised before concluding that this is the preferred ener-
getical configuration of the system. Specifically, it may in
theory be possible that the systems prefers the M =0 solution

regardless of the value of Ĩ, corresponding to a unitary su-
perconducting state with �↑,0=�↓,0. It is therefore necessary
to compare the free energies of the M =0 and M �0 cases at

values of Ĩ where the latter is a possible solution and also
study their temperature dependence. In the general case, the
analytical expression for the free energy in the coexistent
nonunitary superconducting phase reads

F

N
=

IM2

2
+ 

�

��,0
2

2g
− 

�
�

−EF−�IM

�

d�N�������2 + ��,0
2

2

+
1



ln�1 + e−
��2+��,0

2
�� . �70�

Note that the gap should be set to zero in the above equation
everywhere except in the interval �−�0 ,�0�. We obtain a
dimensionless measure of the free energy by multiplying
with I /EF

2 and denote FNU=FI / �NEF
2�. Note that the free en-

ergies of the unitary state, pure ferromagnetic state, and para-
magnetic state are obtained as follows:

FU = lim
M→0

FNU,

FPM = lim
M→0,��,0→0

FNU,

FFM = lim
��,0→0

FNU. �71�
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critical temperature depends on Ĩ.
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In Fig. 10, we plot the difference between the unitary and
nonunitary solutions at zero temperature, �F=FU−FNU,
which clearly shows how the system favors the nonunitary

solution with spontaneous magnetization as Ĩ increases. As a
result, we suggest that the coexistent phase of ferromag-
netism and superconductivity should be realized at suffi-
ciently low temperatures whenever a magnetic exchange en-
ergy is present. For consistency, we also verified that FNU
"FFM at T=0, since the system otherwise would prefer to
leave superconductivity out of the picture and stay purely
ferromagnetic.

We now turn to the temperature dependence of the free

energy at the fixed value of Ĩ=1.01 �the order parameters
were self-consistently solved for this value and plotted in
Fig. 8�. The results are shown in Figs. 11–13. Note that we
now use a different scaling of the free energy, namely, FNU
=F / �NN�0�EF

2�. The well-known result that the free energy
of a purely superconducting state joins the free energy of the
paramagnetic state continuously as the temperature increases
is reproduced in Fig. 11. In Fig. 12, we see that the coexist-
ent phase of ferromagnetism and superconductivity is ener-
getically favored compared to the purely ferromagnetic case,
which is consistent with the experimental fact that a transi-
tion to superconductivity occurs below the Curie temperature
for certain materials.1,2 Finally, in Fig. 13, we have plotted
the energy difference between the unitary and nonunitary
free energies in addition to the difference between the para-
magnetic and ferromagnetic phases. It is seen that the non-
unitary state is energetically preferred over the unitary state,
a statement which, strictly speaking, has only been shown to

hold for our current choice of Ĩ �Ĩ=1.01�, but it seems rea-
sonable to assume that it holds under quite general circum-
stances due to the presence of an exchange energy. At T

=Tc,↑, when all superconductivity is lost, the two curves join
each other smoothly since FNU→FFM and FU→FPM when
T�Tc,↑. Our results then suggest the very real possibility of
a coexistent phase of spin-triplet superconducting pairing
and itinerant ferromagnetism being realized in the experi-
mentally discovered ferromagnetic superconductors, since
we have shown that the coexistent phase is energetically fa-
vored over both the purely magnetic and the nonmagnetic
superconducting state.

E. Specific heat

We next consider some experimental signatures that could
be expected in the different possible phases of a FMSC. Con-
sequently, we have calculated the electronic contribution to
the specific heat of the system by making use of CV=T �S

�T
with

S = − 
k�

�f�Ek��ln�f�Ek��� + �1 − f�Ek���ln�1 − f�Ek����

�72�

as the entropy, leading to

CV =

2

4 
k�

Ek�
2 − 
−1���,0

���,0

�T
− ��k�I

�M

�T
�

cosh2�
Ek�/2�
. �73�

Note that the above equation reduces to the correct
normal-state heat capacity in the limit ���,0 ,M�→0, with

the usual linear T dependence. The term
���,0

�T ensures that the
well-known mean-field BCS discontinuity �strictly speaking
valid only for a type-I superconductor,63 but clearly in-
valid at the transition temperature of a strong type II
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FIG. 11. �Color online� Free energy difference between the para-
magnetic state �FPM� and the unitary superconducting state �FU�. In
consistency with established results �see, e.g., Ref. 68�, the free
energies merge continuously as the temperature gets closer to Tc,U.
In the inset, we have chosen the zero-temperature value of the para-
magnetic free energy as zero, serving as a reference point. We have

solved all order parameters self-consistently for Ĩ=1.01.
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superconductor64–66� at the superconducting critical tempera-
ture is present in the heat capacity, while the presence of
ferromagnetism induces another term proportional to �M

�T .
However, due to our previous argument that Tc,M)Tc,�, this
term may be neglected since the magnetization remains vir-
tually unaltered in the temperature regime around Tc,�. Go-
ing to the integral representation of the equation for the heat
capacity, one thus obtains

CV =

2

4 
�
�

−EF−�IM

�

d�N�����E�
2���

−
���,0

�T
��,0T�cosh−2�
E����

2
� . �74�

Strictly speaking, one should again divide the above integral
into the regions �−EF ,−�0�, ��0 ,��, and �−�0 ,�0�, where
the superconductivity gap should be set to zero in all regions
except the latter. However, since the integrand is strongly
peaked around �=0 �Fermi level�, there is little error made in
using the form of Eq. �74�. In order to obtain the derivatives
of the gap functions with respect to temperature, an analyti-
cal approach is permissible since the gaps have the BCS-
temperature dependence �see Fig. 8�

��,0�T� = ��,0�0�tanh�1.74�Tc,�/T − 1� , �75�

where the superconductivity critical temperature for spin-�
fermions is given by Eq. �69�. To illustrate how the super-

conductivity pairing symmetry leaves important fingerprints
in the heat capacity, we solved Eq. �74� self-consistently for
two values of Ĩ corresponding to strong �M̃ �0.5� and weak

�M̃ �0.1� exchange splittings �Fig. 14�. At Ĩ=1.01, the dis-
continuity is clearly pronounced for T=Tc,↑, but it is hardly
discernible at T=Tc,↓. However, for Ĩ=1.0005 where the su-
perconductivity transition temperatures for majority and mi-
nority spins become comparable, a clear double-peak signa-
ture is revealed in the heat capacity. We thus propose that
this particular feature should serve as unambiguous evidence
of a superconducting pairing corresponding to the A2 phase
of liquid 3He in ferromagnetic superconductors.

An classic feature of the BCS theory of superconductivity
was the prediction that the jump in the heat capacity at Tc
normalized on the normal-state value was a universal num-
ber, namely,

"��CV

CV
�"

T=Tc

� 1.43. �76�

In the presence of a net magnetization, one would expect that
the universality of this ratio would break down and depend
on the strength of the exchange energy. This is due to the fact
that the discontinuity in the specific heat at the superconduct-
ing transition is dominated by the majority-spin carriers,
while the total specific heat to a larger extent has contribu-
tions from both minority-spin and majority-spin carriers. To
investigate this statement quantitatively, we consider the
jump in CV at T=Tc,↑ since no analytical approach is possible
at T=Tc,↓, as seen from Eq. �74�. We find that the normal
�ferromagnetic� state heat capacity reads

CV
FM =

�2Tc,↑
3 

�

N��0� , �77�

where N��0� is the spin-resolved density of states �DOS� at
Fermi level, while the difference between the heat capacity
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FIG. 12. �Color online� Free energy difference between the fer-
romagnetic state �FFM� and the nonunitary superconducting state
�FNU�, which displays coexistence of ferromagnetism and supercon-
ductivity. It is seen that the nonunitary phase is favored compared to
the purely ferromagnetic state. In the inset, we have chosen the
zero-temperature value of the ferromagnetic free energy as zero,
serving as a reference point. We have solved all order parameters

self-consistently for Ĩ=1.01. The curves of this figure and Fig. 13
may be made congruent by a simple scaling of the axes. This is a
consequence of the weak-coupling limit, where superconductivity
sets in at a temperature much smaller than the ferromagnet-
paramagnet transition temperature, such the that magnetic order pa-
rameter across the superconducting transition is essentially a
temperature-independent constant.
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FIG. 13. �Color online� Free energy difference between the uni-
tary and nonunitary states �FU−FNU� as well as the paramagnetic
and ferromagnetic state �FPM−FFM�. At T=Tc,↑, the curves merge
smoothly into each other since all superconductivity is lost. Each
step along the ordinate corresponds to an increment of unit 0.1. We

have solved all order parameters self-consistently for Ĩ=1.01.
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in the coexistent state and in the ferromagnetic state at T
=Tc,↑ reads

�CV =
1.742�↑,0

2 �0�N↑�0�
2Tc,↑

. �78�

Since the zero-temperature value for the gap is �↑,0�0�
=1.76Tc,↑, one arrives at

"��CV

CV
�"

T=Tc,↑

= 1.43
1

1 +�1 − M̃

1 + M̃

. �79�

The above equation reduces to the BCS limit for complete

spin polarization M̃ =1 �zero DOS for spin-↓ fermions at
Fermi level�. This is due to, as noted above, the larger extent
to which majority-spin carriers dominate the jump in specific
heat compared to the total specific heat. As anticipated, the
jump in CV depends on the exchange energy, as illustrated in

Fig. 15. Of course, in the unitary state M̃ =0, the jump also
reduces to the BCS value although this is not seen from Eq.
�79�. The reason for this is that we have implicitly assumed

that M̃ �0 in the derivation of Eq. �79�, taking Tc,↑�Tc,↓. In
the case where these transition temperatures are equal, the
contribution from both is additive and equal �1.43/2, to be
specificc, as seen from Eq. �79�� and gives the correct BCS
result.

Our study of CV then offers two interesting opportunities:
�i� the presence or absence of a double-peak signature in the
heat capacity reveals information about the superconductiv-
ity pairing symmetry realized in the FMSC, and �ii� the nor-
malized value of the discontinuous jump at Tc,↑ contains in-
formation about the exchange splitting between the majority-
and minority-spin carrier bands.

VI. SUMMARY

In summary, we have derived a general Hamiltonian de-
scribing coexistence of itinerant ferromagnetism, spin-orbit
coupling, and mixed spin-singlet and spin-triplet supercon-
ducting pairing using mean-field theory. Exact eigenvalues
and coupled gap equations for the different order parameters
have been obtained. Our results may serve as a starting point
for any model describing coexistence of any combination of
these three phenomena simply by applying the appropriate
limit.

As a specific application of our results, we have studied
quantum transport between a normal metal and a supercon-
ductor lacking an inversion center with mixed singlet and
triplet gaps. We find that there are pronounced peaks and
bumps in the conductance spectrum at voltages correspond-
ing to the sum and difference of the magnitude of the singlet
and triplet gaps. Consequently, our results may be helpful in
obtaining information about the size of the relative contribu-
tion of different pairing symmetries.

Moreover, we considered a system where itinerant ferro-
magnetism uniformly coexists with spin-triplet superconduc-
tivity as a second application of our theory. We solved the
coupled gap equations numerically and presented analytical
expressions for the order parameters and their dependences
on quantities such as exchange energy and temperature. It
was found that the coexistent regime of ferromagnetism and
superconductivity may indeed be realized, since it is ener-
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FIG. 14. �Color online� Specific heat capacity as a function of

temperature for two values of Ĩ, corresponding to a strong exchange

splitting �M̃ �0.5� and a weak exchange splitting �M̃ �0.1�. A
double-peak signature is clearly visible when the transition tem-
peratures for the majority- and minority-spin bands are comparable.
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FIG. 15. �Color online� The discontinuity of the heat capacity at
T=Tc,↑ as a function of exchange splitting �Eq. �79��. It is seen that

the BCS value is recovered at M̃ =1. Note that it would also be

recovered at M̃ =0, although this is not shown explicitly in the
figure. The reason for this is that we have assumed that Tc,↓�Tc,↑.
We have also plotted the numerical results ��� for the jump with
self-consistently solved OPs, i.e., without assuming BCS-

temperature dependence, for Ĩ= �1.001,1.005,1.01,1.02,1.05�,
which yields good agreement with the analytical solution �Eq. �79��.
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getically favored compared to a unitary superconducting
state �M =0� and a purely ferromagnetic state. In order to
make contact with the experimental situation, we studied the
heat capacity and found interesting signatures in the spec-
trum that may be used in order to obtain information about
both the superconductivity pairing symmetry present in the
system and the magnitude of the exchange energy.
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APPENDIX: BOGOLIUBOV–DE GENNES EQUATIONS
FOR SYSTEMS EXHIBITING COEXISTENCE OF

FERROMAGNETISM, SPIN-ORBIT COUPLING, AND
SUPERCONDUCTIVITY

1. Derivation

We start out with a real-space Hamiltonian described by
fermionic field operators �†��r , t� with a general attractive
pairing kernel V	
�
r−r�
�, namely,

Ĥ = 
	


� dr	
†�r,t��−

�̂r
2

2m
− � + �V + 	Vs���x��

+ �− VM + g�p̂�� · �̌	


†�r,t� +

1

2
	


� � drdr�

�V	
�
r − r�
�	
†�r,t�


†�r��
�r��	�r,t� . �A1�

Here, V0 accounts for a nonmagnetic scattering potential as-
sociated with a barrier located at x=0, while Vs is the mag-
netic scattering potential, i.e., the barrier is spin active.
Moreover, VM is the magnetic exchange energy vector,
g�p̂�=−g�−p̂� is a term describing an antisymmetric spin-

orbit coupling energy �p̂=−i�̂r�, and �̌ is the vector of Pauli
matrices. We now introduce the mean-field approximation

	
†�r,t�


†�r�� = �	
†�r,t�


†�r�,t�	 + �	

† , �A2�

where the last term describes the fluctuations around the av-
erage field, and also define the superconducting order param-
eter

�	
�r,r�� = V	
�
r − r�
��
�r�,t�	�r,t�	 . �A3�

Above, we have explicitly made the superconductivity order
parameter time independent, which effectively amounts to
saying that it does not depend on energy �the weak-coupling
limit�. This provides us with

Ĥ = 
	


� dr	
†�r,t��−

�̂r
2

2m
− � + �V + 	Vs���x�

+ �− VM + g�p̂�� · �̌�
	




†�r,t�

+
1

2
	


� � drdr���	

† �r,r��
�r�,t�	�r,t�

+ �	
�r,r��	
†�r,t�


†�r�,t� − V	
�
r − r�
�

��	
†�r,t�


†�r�,t�	�
�r�,t�	�r,t�	� . �A4�

The time-dependent field operators �r , t�=eiĤt�r�e−iĤt

obey the Heisenberg equations of motion,

i�t	�r,t� = �	�r,t�,Ĥ�

= 


� dr���r − r��Ĥ	


0 �r�,p̂�
�r�,t�

+ 


� dr��	
�r,r��


†�r�,t� ,

i�t	
†�r,t� = �	

†�r,t�,Ĥ�

= 


� dr���r − r���− Ĥ0�r�,− p̂��	


T 

†�r�,t�

+ 


� dr��	


† �r,r��
�r�,t� . �A5�

For convenience, we have defined

Ĥ	

0 �r,p̂� = �−

�̂r
2

2m
− � + �V + 	Vs���x��

+ �− VM + g�p̂�� · �̌	
. �A6�

The above equations may be comprised in compact matrix
form,

i�t%�r,t� =� dr�H�r,r��%�r�,t� ,

%�r,t� = �↑�r,t�,↓�r,t�,↑
†�r,t�,↓

†�r,t��T,

H�r,r�� = �Ĥ0�r�,p̂��rr� �̂�r,r��

�̂†�r,r�� �− Ĥ0�r�,− p̂��T�rr�

� ,

�A7�

with ��r−r��=�rr�, and where we have defined

�̂�r,r�� = ��↑↑�r,r�� �↑↓�r,r��
�↓↑�r,r�� �↓↓�r,r��

� . �A8�

Note that �↑↓�r ,r�� is, in general, a superposition of triplet
�T� and singlet �S� components that satisfies

�↑↓�r,r�� = �↑↓
T �r,r�� + �↑↓

S �r,r�� ,
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�↑↓
T �r,r�� = �↓↑

T �r,r�� ,

�↑↓
S �r,r�� = − �↓↑

S �r,r�� . �A9�

Regarding %�r , t� as a c number and assuming a stationary
solution %�r , t�=%�r�e−iEt, with E as the wave function en-
ergy, it suffices to solve the equation

E%�r� =� dr�H�r,r��%�r�� . �A10�

By considering a plane-wave solution of %�r� and dividing
out the fast oscillations on an atomic scale �see, e.g., Ref.
67�, one is left with the most familiar form of the BdG equa-
tions appearing in the literature, namely,

�Ĥ0�r,p̂� �̂�k,r�

�̂†�k,r� �− Ĥ0�r,− p̂��T
�%�r� = E%�r� , �A11�

where the quasiparticle momentum k is the Fourier trans-
form of the relative coordinate s= �r−r�� /2, i.e.,

F�f�k�� =� dsf�s�e−ik·s. �A12�

This is usually assumed to be fixed on the Fermi surface,
such that only the directional dependence of k enters in Eq.

�A11�, k→kFk̂.

2. Boundary conditions

We proceed to provide a general approach in order to
obtain the correct boundary conditions at the interface for the
wave functions. Continuity of the wave function itself is as-
sumed in this context. Consider our Eq. �38� which describes

the Hamiltonian for the N/CePt3Si junction. The first row of
the equation explicitly reads

�−
1

2m
� �2

�x2 +
�2

�y2� − � + V0��x��↑�x,y�

+ �� �

�x
− i

�

�y
�$�x�↓�x,y� + �k↑↑$�x�↑

†�x,y�

+ �$�− x�↓
†�x,y� = E↑�x,y� . �A13�

If we now integrate the above equation over a an interval
�, ,−,� along the x̂ axis and apply the limit ,→0+, one ob-
tains

lim
,→0+

�−
1

2m
�↑��,,y� − ↑��− ,,y�� + V0↑�0,y�

+ ��
−,

,

dx�$�x�↓�x,y���� = 0, �A14�

where � denotes derivation with respect to x. The last term
yields 1

2�↓�, ,0� �since $�0�= 1
2 �, such that the boundary

condition for derivative of the ↑�x ,y� component becomes

lim
,→0+

��↑��,,y� − ↑��− ,,y�� − m�↓�,,0�� = 2mV0↑�0,y� .

�A15�

It is seen that the presence of spin-orbit coupling and the
delta-function barrier leads to a discontinuity of the deriva-
tive of the wave-function. A similar procedure may be ap-
plied to the other components of %�x ,y�, and this method
can also be extended to include different effective masses on
each side of the junction modeled by a simple step function
$�x�.
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Erratum: Quantum transport in noncentrosymmetric superconductors and thermodynamics
of ferromagnetic superconductors [Phys. Rev. B 76, 054511 (2007)]

J. Linder and A. Sudbø
�Received 8 January 2008; published 20 February 2008�

DOI: 10.1103/PhysRevB.77.069902 PACS number�s�: 74.20.Rp, 99.10.Cd

There are some typos in Ref. 1 that we here correct. These typos do not alter our conclusions or results in any way.
�1� In the sentence before Eq. �6� and in Eq. �6� itself, bk	
 and �bk	
 should be conjugated, i.e., replaced with bk	


†

and �bk	

† . Also, �k�	


S,T in Eq. �9� should be conjugated, i.e., ��k�	

S,T �†.

�2� In Eq. �61�, a parenthesis has been misplaced. The equation should read

N���� =
mV�2m�� + �IM + EF�

2�2 . �1�

�3� In the first column of page 14, EF
2 should be replaced with Tc,↑

2 , i.e., the scaling should be FNU=F / �NN�0�Tc,↑
2 �.

�4� In the last line of Eq. �A5�, the + sign in front of 
 should be a − sign.

�5� In Eq. �27�, the factors e−
Ẽk,1 and e−
Ẽk,2 should be removed.

�6� In Eq. �A7�, �̂†�r ,r�� should be replaced with −�̂*�r ,r��.
�7� In Eq. �A6� the right-hand side should read

�−
�̂r

2

2m
− � + �V + 	Vs���x�+ �− VM + g�p̂��·�̌�

	


.
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Dirac Fermions and Conductance Oscillations in s- and d-Wave
Superconductor-Graphene Junctions

J. Linder and A. Sudbø
Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

(Received 1 June 2007; published 1 October 2007)

We investigate quantum transport in a normal-superconductor graphene heterostructure, including the
possibility of an anisotropic pairing potential in the superconducting region. We find that under certain
circumstances, the conductance displays an undamped, oscillatory behavior as a function of applied bias
voltage. Also, we investigate how the conductance spectra are affected by a d-wave pairing symmetry.
These results combine unusual features of the electronic structure of graphene with the unconventional
pairing symmetry found for instance in high-Tc superconductors.
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Graphene is a monatomic layer of graphite with a honey-
comb lattice structure [1]. The electronic properties of
graphene display several intriguing features, such as a
six-point Fermi surface and Dirac-like low-energy energy
dispersion around the Fermi points. Condensed matter
systems with such ‘‘relativistic’’ electronic structure prop-
erties constitute fascinating examples of low-energy emer-
gent symmetries (in this case Lorentz invariance). Another
example where precisely this occurs is in one-dimensional
interacting fermion systems, where phenomena like break-
down of Fermi-liquid theory and spin-charge separation
take place. Graphene features certain similarities to, but
also important differences from, the nodal Dirac fermions
emerging in the low-energy sector of the pseudogap phase
of d-wave superconductors such as the high-Tc cuprates.
When Lorentz invariance emerges in the low-energy sector
of higher-dimensional condensed matter systems, it is
bound to attract much interest from a fundamental physics
point of view.

Various aspects of resonant tunneling phenomena in
N=N and N=I=N graphene structures have recently been
investigated (N denotes normal metal and I denotes insu-
lator) [2]. Although superconductivity does not appear
intrinsically in graphene, it may nonetheless be induced
by means of the proximity effect [3]. Motivated by this, the
authors of Refs. [4,5] considered quantum transport inN=S
and N=I=S graphene junctions (S denotes superconductor)
for the case where the pairing potential is isotropic, leading
to s-wave superconductivity. However, the hexagonal sym-
metry of the graphene lattice also admits unconventional
order parameters such as p-wave or d-wave. The possible
pairing symmetries on a hexagonal lattice up to f-wave
pairing (l � 3) was given in Ref. [6]. Interestingly, among
the allowed order parameters, one finds the dx2�y2 symme-
try, which is believed to be the dominant pairing symmetry
in high-Tc superconductors. Consequently, it should be
possible to induce superconductivity with nodes in the
gap in graphene by manufacturing heterostructures of gra-
phene and unconventional superconductors. It is of interest

to investigate how this would affect coherent quantum
transport in junctions with normal and superconducting
graphene. In particular, it is essential to study possible
zero-energy states (ZES) at the interface of such a junction.
Such states are known to give rise to zero-bias conductance
peaks (ZBCPs) in metallic N=S junctions [7] and will
influence the conductance spectra of N=I=S junctions.

In this Letter, we take into account the possibility of an
anisotropic pairing potential induced in graphene and study
coherent quantum transport in both N=S and N=I=S junc-
tions. In addition, we show that in the latter structure, novel
conductance oscillations as a function of bias voltage are
present both for s-wave and d-wave symmetry of the
superconducting condensate due to the presence of low-
energy ‘‘relativistic’’ nodal fermions on the N side. The
period of the oscillations decreases with increasing width
w of the insulating region and persists even if the Fermi
energy in I is strongly shifted. This contrasts sharply to
metallic N=I=S junctions, where the presence of a poten-
tial barrier causes the transmittance of the junction to go to
zero with increasing w. The feature of conductance oscil-
lations is thus unique to N=I=S junctions with low-energy
Dirac-fermion excitations. Moreover, we contrast the N=S
or N=I=S conductance spectra for the cases where s-wave
and dx2�y2-wave superconductors constitute the S side. The
former has no nodes in the gap and lacks Andreev bound
states. The latter has line nodes that always cross the Fermi
surface in the gap, and thus also features, in addition to
Andreev bound states, nodal relativistic low-energy Dirac
fermions. The quantum transport properties in a hetero-
structure of two such widely disparate systems, both fea-
turing a particular intriguing emergent low-energy
symmetry, are of considerable importance.

The Brillouin zone of graphene is hexagonal and the
energy bands touch the Fermi level at the edges of this
zone, amounting to six discrete points. Out of these only
two are inequivalent, denoted K and K0 and referred to as
Dirac points. The energy dispersion in the Brillouin zone
was calculated within a tight-binding model [8], revealing

PRL 99, 147001 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
5 OCTOBER 2007

0031-9007=07=99(14)=147001(4) 147001-1 © 2007 The American Physical Society



a conical structure of the conduction and valence bands
close to the six Fermi points, giving rise to an essentially
linear dispersion. Graphene N=S interfaces contain a new
phenomenology compared to their metallic counterpart,
namely, the possibility of specular Andreev reflection
(AR) [4]. In the process of normal AR, an incident electron
from the N side is reflected as a hole which retraces the
trajectory of the electron. In specular AR, the reflected hole
follows the trajectory which a normally reflected electron
would have. Depending on whether the graphene is doped
or not, specular and normal AR will compete with each
other, also depending on the position of the Fermi level
with respect to the gap.

In order to treat the scattering processes at the interfaces
of the N=I=S junction, we make use of the full
Bogoliubov–de Gennes equation for the 2D sheet of gra-
phene in the xy plane, assuming the clean limit. These
equations read

�H � EF �1 �k
�1

�y
k
�1 EF �1� �T �H �T

�1

 !
� � E�; (1)

where E is the excitation energy, and � is the wave
function. We use �. . . for 4� 4 matrices, ^. . . for 2� 2
matrices, and boldface notation for three-dimensional
row vectors. Assuming that the superconducting region is
located at x > 0 and neglecting the decay of the order
parameter in the vicinity of the interface [9], we may write
for the spin-singlet order parameter �k � ����ei#��x�,
where ��x� is the Heaviside step function, while # is the
phase corresponding to the globally brokenU�1� symmetry
in the superconductor. We consider the weak-coupling
limit with the momentum k fixed on the Fermi surface,
such that �k only has an angular dependence � �
atan�ky=kx�. Note that in contrast to previous work, we
allow for the possibility of unconventional superconduc-
tivity in the graphene layer since �k now may be
anisotropic.

Postulating a spin-singlet even parity order parame-
ter, the condition ���� � ���� �� must be fulfilled.
The single-particle Hamiltonian is given by �H �
diag�Ĥ�; Ĥ��, Ĥ	 � �ivF��̂x@x 	 �̂y@y�. Here, vF is
the energy-independent Fermi velocity for graphene, while
�̂i denotes the Pauli matrices. For later use, we also define
the Pauli matrix vector �̂ � ��̂x; �̂y; �̂z�. These Pauli ma-
trices operate on the sublattice space of the honeycomb
structure, corresponding to the A and B atoms, while the 	
sign refers to the two so-called valleys of K and K0 in the
Brillouin zone. The spin indices may be suppressed since
the Hamiltonian is time-reversal invariant. In addition to
the spin degeneracy, there is also a valley degeneracy,
which effectively allows one to consider either one of the
Ĥ	 set. We choose Ĥ�, and consider an incident electron
from the normal side of the junction �x < 0� with energy E.
For positive excitation energies E> 0, the eigenvectors
and corresponding momentum of the particles read  e� �

�1; ei�; 0; 0�Teipe cos�x, pe � �E� EF�=vF, for a right-
moving electron at angle of incidence �, while a left-
moving electron is described by the substitution �!
�� �. If Andreev reflection takes place, a left-moving
hole with energy (�E) and angle of reflection �A is gen-
erated with belonging wave function  h� �
�0; 0; 1; e�i�A�Te�iph cos�Ax, ph � �E� EF�=vF, where the
superscript e (h) denotes an electronlike (holelike) excita-
tion. Since translational invariance in the ŷ direction holds,
the corresponding component of momentum is conserved.
This condition allows for determination of the Andreev-
reflection angle �A through ph sin�A � pe sin�. One thus
infers that there is no Andreev reflection (�A � 	�=2),
and consequently no subgap conductance, for angles of
incidence above the critical angle �c � asin�jE�
EFj=�E� EF��.

On the superconducting side of the system (x > w), the
possible wave functions for transmission of a right-moving
quasiparticle with a given excitation energy E> 0 read
�e� � �u����;u����ei�� ;v����e�i	�

;v����ei����	���T �
eiq

e cos��x, qe � �E0
F �

������������������
E2 � �2

p
�=vF, and �h���v����;

v����ei�� ;u����e�i	�
;u����ei����	���T�eiqh cos��x, qh�

�E0
F�

�����������������
E2��2

p
�=vF. The coherence factors are given

by u��� � f12 �1�
���������������������������
E2 � j����j2p

=E�g1=2, v��� � f12 �
�1� ���������������������������

E2 � j����j2p
=E�g1=2. Above, we have defined �� �

�eS, �� � �� �hS, and ei	
	 � ei#���	�=j���	�j. The

transmission angles ��i�S for the electronlike and holelike
quasiparticles are given by q�i� sin��i�S � pe sin�, i � e, h.
Note that for subgap energies E< �, there is a small
imaginary contribution to the wave vector, which leads to
exponential damping of the wave functions inside the
superconductor. For clarity, we have omitted a common
phase factor eikyy, which corresponds to the conserved
momentum in the ŷ direction. A possible Fermi vector
mismatch (FVM) between the normal and superconducting
region is accounted for by allowing for E0

F � EF. The case
E0
F � EF corresponds to a heavily doped superconducting

region, while E0
F � EF describes undoped graphene. Since

we are using a mean-field approach to describe the super-
conducting part of the Hamiltonian, it is implicitly under-
stood that phase fluctuations of the order parameter must
be small. This amounts to imposing the restriction [10]
�=�0

F � 1, or equivalently, E0
F � �, where � is the super-

conducting coherence length.
The conductance of the N=I=S junction is given

by [11] G�eV� � GN
R�c��c d� cos��1� jr�eV; ��j2 �

PjrA��eV; ��j2�, where r and rA are the reflection
coefficients for normal and Andreev reflection, re-
spectively, P � jphj cos�A=�jpej cos��, while GN �R�=2
��=2 d� cos��4cos2�=�4cos2�� Z2�� is a renormaliza-

tion constant corresponding to the N=N metallic conduc-
tance [12]. In this case, we have zero intrinsic barrier such
that Z � 0. We will apply the usual approximation
jrA��eV; ��j ’ jrA�eV; ��j, which holds for subgap ener-
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gies. Although it is not valid for energies above the gap,
this is of little consequence for the final result, since
Andreev reflection is suppressed for eV > �. The re-
flection and transmission coefficients constitute a unitary
scattering matrix, a property that essentially expresses a
conservation of probability. In deriving the conductance,
we have ensured that the scattering coefficients have been
normalized by the incoming current through the factor P.
In order to obtain these coefficients, we make use of the
boundary conditions  jx�0 � ~ Ijx�0; ~ Ijx�w � �Sjx�w,
where we have defined the wave function in the insulating
region ~ I � ~t1 ~ 

e� � ~t2 ~ 
e� � ~t3 ~ 

h� � ~t4 ~ 
h�. The wave

functions ~ differ from  in that the Fermi energy is
greatly shifted by means of, e.g., an external potential,
such that EF ! EF � V0, where V0 is the barrier (equiva-
lent to the role of Z in Ref. [11]). The coefficients r and rA
may now be obtained by using the boundary conditions,
but we leave the explicit calculations and somewhat cum-
bersome analytical results for a forthcoming paper.

Consider first a N=I=S graphene junction. In the thin-
barrier limit defined as w! 0 and V0 ! 1 with s-wave
pairing, Ref. [5] reported a � periodicity of the conduc-
tance with respect to the parameter � � V0w=vF. In the
present study, we do not restrict ourselves to isotropic
pairing, nor to the thin-barrier limit, and show that new
physics emerges from the presence of a finite-width barrier.
We measure the width w of region I in units of �F and the
potential barrier V0 in units of EF. The linear dispersion
approximation is valid up to ’ 1 eV [8], and we will
consider typical Fermi energies in graphene of EF �
100 meV in the undoped case and a gap � � 1 meV [1].
In the doped case, we set E0

F � 10EF, and we also fix V0 �
10EF in order to operate within the regime of validity of
the linear dispersion approximation. The undoped situation
originally refers to the case where the Fermi level is located
at the Dirac point, although real experimental graphene

samples will have free carriers, such that EF is pushed
upwards. The doped case denotes a large FVM between the
N and S region which may be induced by chemical doping
or by a gate voltage.

Consider Fig. 1, where we plot the normalized tunneling
conductance in the two cases of s-wave and d-wave pair-
ing, for both doped and undoped graphene. The most
striking new feature compared to the thin-barrier limit is
the strong oscillations in the conductance as a function of
eV. We also include the thin-barrier limit with � � 0 and
� � � to illustrate the � periodicity in this limit. For
subgap energies, we regain the N=S conductance for un-
doped graphene when � � 0, with nearly perfect Andreev
reflection. To model the d-wave pairing, we have used the
dx2�y2 model ���� � �cos�2�� 2��, with � � �=4. The
parameter � effectively models different orientations of
the gap in k space with regard to the interface, and � �
�=4 corresponds to perfect formation of ZES in N=S
metallic junctions. For � � 0, the d-wave spectra are
essentially identical to the s-wave case, since the condition
for formation of ZES is not fulfilled in this case [7]. It is
seen that in all cases shown in Fig. 1 the conductance
exhibits a novel oscillatory behavior as a function of
applied bias voltage eV as the width w of the insulating
region becomes much larger than the Fermi wavelength,
i.e., w� �F.

The oscillatory behavior of the conductance may be
understood as follows. Nonrelativistic free electrons with
energy E impinging upon a potential barrier V0 are de-
scribed by an exponentially decreasing nonoscillatory
wave function eikx inside the barrier region if E< V0, since
the dispersion essentially is k� ���������������

E� V0

p
. Relativistic free

electrons, on the other hand, have a dispersion k� �E�
V0�, such that the corresponding wave functions do not
decay inside the barrier region. Instead, the transmittance
of the junction will display an oscillatory behavior as a
function of the energy of incidence E. In general, a kinetic
energy given by �k� will lead to a complex momentum
k� �E� V0�1=� inside the tunneling region and hence
damped oscillatory behavior of the wave function.
Relativistic massless fermions are unique in the sense
that only in this case (� � 1) is the momentum purely
real. Hence, the undamped oscillatory behavior at subgap
energies appears as a direct manifestation of the relativistic
low-energy Dirac fermions in the problem. This observa-
tion is also linked to the so-called Klein paradox which
occurs for electrons with such a relativistic dispersion
relation, which has been theoretically studied in normal
graphene [2].

We next discuss why the illustrated conductance spectra
are different for s-wave and d-wave symmetry, in addition
to comparing the doped and undoped case. The doping
level may be considered as an effective FVM, acting as a
source of normal reflection in the scattering processes. This
is why the subgap conductance at thin-barrier limit is
reduced in the doped case. Moving away from the thin-

FIG. 1 (color online). Tunneling conductance of N=I=S gra-
phene junction for both s-wave and d-wave pairing in the
undoped and doped case (see main text for parameter values).
It is seen that for increasing w, a novel oscillatory behavior of the
conductance as a function of voltage is present in all cases.
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barrier limit, it is seen that oscillations emerge in the
conductance spectra. For s-wave pairing, the amplitude
of the oscillations is larger in the doped case than in the
undoped case, and the period of oscillations remains the
same. This period depends onw, while the amplitude of the
oscillations is governed by the wave vectors in the regions I
and S. The maximum value of the oscillations occurs when
2w equals an integer number of wavelengths, correspond-
ing to a constructive interference between the scattered
waves. Physically, the amplitude dependence of the oscil-
lations on doping originates with the fact that doping
effectively acts as an increase in barrier strength. By mak-
ing V0 larger, one introduces a stronger source of normal
reflection. When the resonance condition for the oscilla-
tions is not met, the barrier reflects the incoming particles
more efficiently. This is also the reason why increasing V0

directly and increasing E0
F has the same effect on the

spectra.
We now turn to the difference between the s wave and d

wave for the undoped case. It is seen that the conductance
is reduced in the d-wave case compared to the s-wave case.
One may understand the reduction in subgap conductance
in the undoped case as a consequence of tunneling into the
nodes of the gap, which is not present in the s-wave case.
Hence, Andreev reflection which significantly contributes
to the conductance is reduced in the d-wave case compared
to the s-wave case. Moreover, we see that a ZBCP is
formed in the doped case, equivalent to a stronger barrier,
and this is interpreted as the usual formation of ZES
leading to a transmission at zero bias with a sharp drop
for increasing voltage.

Finally, we briefly investigate how the conductance
spectra of a N=S graphene junction (without the insulating
region) change when going from a s-wave to a d-wave
order parameter in the superconducting part of the system.
Consider Fig. 2 for the case of doped graphene, where we
plot the conductance to see how it evolves upon a rotation
of the gap. The behavior is quite distinct from that encoun-
tered in a N=S metallic junction. From Fig. 2, we see that
the peak of the conductance shifts from eV � � to pro-
gressively lower values as � increases from 0 to �=4, but

only for � very close to �=4 is a ZBCP present. This is
different from what is observed in metallic N=S junctions,
where the formation of a ZBCP starts immediately as one
moves away from � � 0 in the presence of a FVM, corre-
sponding to the doped case here. In Fig. 2 the conductance
spectra actually mimics a lower value of the gap than what
is the case if one were to infer the gap magnitude from the
position of the singularity in the spectra. This should be an
easily observable feature in experiments and provides a
direct way of testing our theory. For undoped graphene, we
found very little difference in the conductance spectra upon
varying �. The inset of Fig. 2 illustrates the undoped case
for � � �=4, where the deviation from perfect Andreev
reflection for eV < � is due to tunneling into the nodes of
the gap.

In summary, we have studied coherent quantum trans-
port in N=S and N=I=S graphene junctions, investigating
also the role of d-wave pairing symmetry on the tunnel-
ing conductance. We report a new oscillatory behavior of
the conductance as a function of bias voltage for insulat-
ing regions that satisfy w� �F, which is present both for
s- and d-wave pairing. In the latter case, we have also
studied the conductance of a N=S junction and find very
distinct behavior from metallic N=S junctions: a rotation of
� is accompanied by a progressive shift of the peak in the
conductance. All of our predictions should be easily ex-
perimentally observable.
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We study the proximity-induced superconducting correlations as well as the local density of states of a
ferromagnet, in a ferromagnet/s-wave superconductor heterostructure. We include the effects of spin-flip scat-
tering, nonideal interfaces, and the presence of impurities in the sample. We employ the quasiclassical theory
of superconductivity, solving the Usadel equation with emphasis on obtaining transparent analytical results. As
our main result, we report that in a certain parameter regime the spatial oscillations of the anomalous �super-
conducting� part of the Green’s function induced in the ferromagnet by the proximity effect from the s-wave
superconductor, are damped out due to the presence of spin-flip processes. As a consequence, spin-flip scat-
tering may under certain conditions actually enhance the local density of states due to the oscillatory behavior
of the latter in ferromagnet/superconductor structures. We also conjecture that the damping could be mani-
fested in the behavior of the critical temperature �Tc� of the s-wave superconductor in contact with the
ferromagnet. More specifically, we argue that the nonmonotonic decrease of Tc in ferromagnet/s-wave super-
conductor junctions without magnetic impurities is altered to a monotonic, nonoscillatory decrease when the
condition 1�16 sf

2 h2 is fulfilled, where  sf is the spin-flip relaxation time and h is the exchange field.

DOI: 10.1103/PhysRevB.76.214508 PACS number�s�: 74.20.Rp, 74.50.�r, 74.70.Kn

I. INTRODUCTION

Proximity structures consisting of ferromagnetic and su-
perconducting materials offer a synthesis between two im-
portant physical phenomena that may hold the potential for
future applications in nanotechnology: spin-polarization and
dissipationless flow of a current. Ferromagnetism is antago-
nistic to conventional superconductors, since the exchange
field acts as a depairing agent for spin-singlet Cooper pairs.
However, the proximity effect does not merely suppress the
spin-singlet superconducting order parameter, but may also
induce long-ranged spin-triplet correlations under certain
circumstances.1 Much effort has been invested over the last
decade to unveil various physical phenomena that occur in
ferromagnet/superconductor �F /S� heterostructures.2–6

Among the highlights of such phenomena, it is natural to
mention the � state that is realized in S /F /S structures,
which has been studied intensively both theoretically7–10 and
experimentally.11,12 In this state, the superconducting order
parameters differ in sign in contrast to the usual 0 state in
S /N /S structure. The transition from a 0 to � state may be
controlled by the width of the ferromagnet separating the
superconductors, thus offering a way of manipulating the
Josephson supercurrent that occurs in such systems. Another
way of obtaining a � state makes use of misaligned ex-
change fields in S /F heterostructures. This opportunity arises
in a variety of systems, ranging from superconductors with
spiral magnetic order,13–15 thin S /F bilayers,16–19 and so-
called ferromagnetic superconductors20,21 where ferromag-
netic and superconducting order seem to coexist uniformly.
The latter is most often interpreted as evidence for triplet
pairing in the superconducting sector.

Although various theoretical idealizations allow for a
relatively simple approach to F /S heterostructures in the
quasiclassical framework, the presence of factors such as
nonideal interfaces and both magnetic and nonmagnetic im-
purities should be taken into account to obtain more precise

agreement between theory and experiment. A particularly in-
teresting feature in such hybrid structures is the generation of
a spin-triplet superconducting component in the ferromagnet
which survives even in the dirty limit due to a special sym-
metry property which was first suggested by Berezinskii et
al.,22 and later predicted to occur in F /S junctions by23,24

Bergeret et al. This issue has been the subject of intense
investigations during the past decade �see, for instance, Refs.
1 and 2, and references therein�. In particular, the role of
triplet pairing in superconductor/half-metal/superconductor
structures has received much attention lately,25–28 much due
to the experimental verification of a Josephson current in
such a setup.29

With regard to F /S junctions, two recent publications
have addressed some aspects of how spin-flip processes af-
fect the critical temperature30 and the density of states.31

Here, we will consider two different geometries to study the
impact of spin-flip scattering and nonideal interfaces in het-
erostructures involving ferromagnets and superconductors.
The geometry of the systems we study are given in Fig. 1. In
the top figure, we consider a dirty ferromagnet of width d
sandwiched between a ferromagnetic and superconducting
reservoir, where the Green’s functions are assumed to be in
their bulk form. In the bottom figure, the ferromagnetic res-
ervoir is replaced with vacuum, effectively leading to a F /S
junction.

In this paper, we study the influence of magnetic impuri-
ties and nonideal interfaces on the spatial and energy depen-
dence of the anomalous �superconducting� part of the quasi-
classical Green’s functions induced in the ferromagnet by the
proximity effect from the s-wave superconductor. In particu-
lar, we investigate how this is manifested in the local density
of states �LDOS�. We present analytical results that may elu-
cidate features obtained numerically in Ref. 31. In agreement
with Ref. 30, we find that spin-flip processes alter the decay
and oscillation length of the anomalous Green’s function in
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the ferromagnet. Our main result is that under certain condi-
tions, the usual oscillations of the Green’s function in F/S
junctions without magnetic impurities vanish completely
when the condition 1�16 sf

2 h2 is fulfilled, where  sf is the
spin-flip relaxation time and h is the exchange field. Defining
-=1 / sf, an equivalent statement is to say that the oscilla-
tions vanish when the energy associated with spin-flip scat-
tering exceeds a critical value -c=4h. As a direct conse-
quence, the spin-flip scattering may actually enhance the
LDOS due to the oscillations of the anomalous Green’s func-
tion in the ferromagnet. A detailed study is performed con-
cerning how the length scales associated with the decay and
the oscillations of the Green’s function are affected by mag-
netic impurities. This is important in the context of under-
standing the behavior of, for instance, the Josephson current
in S/F/S structures, since spin-flip scattering will always be
present to some degree in real samples. Including such ef-
fects will presumably yield a more satisfactory quantitative
agreement with experimental data.

We organize this paper as follows. In Sec. II, we establish
the theoretical framework we will use to treat the F /S hybrid
structure. Namely, we employ the Keldysh formalism in the
quasiclassical approximation to study the Usadel equation
with appropriate boundary conditions at the interfaces. In
Sec. III, we present our results for the spatial and energy
dependence of the anomalous Green’s function in the dirty
ferromagnet, as well as results for the local density of states,
both without �for reference� and with spin-flip scattering. We
also discuss how the decay length and oscillation length
scales of the Green’s function are affected by the spin-flip
scattering, providing transparent analytical results. In Secs.
IV and V, we discuss and summarize the main results of the

paper. We will use boldface notation for three-vectors, . . .ˇ for

8�8 matrices, . . .ˆ for 4�4 matrices, and . . . for 2�2 matri-
ces.

II. THEORETICAL FORMULATION

A. Quasiclassical theory

The central quantity in the quasiclassical theory of super-
conductivity is the quasiclassical Green’s functions
ǧ�pF ,R ;� , t�, which depends on the momentum at Fermi
level pF, the spatial coordinate R, energy measured from the
chemical potential �, and time t. A considerable literature
covers the Keldysh formalism and nonequilibrium Green’s
functions.32–36 Here we only briefly sketch the theoretical
structure, for the sake of readability and for establishing no-
tation. The quasiclassical Green’s functions ǧ�pF ,R ;� , t� is

obtained from the Gor’kov Green’s functions Ǧ�p ,R ;� , t� by
integrating out the dependence on kinetic energy, assuming

that Ǧ is strongly peaked at the Fermi level,

ǧ�pF,R;�,t� =
i

�
� d�pǦ�p,R;�,t� . �1�

The above is typically applicable to superconducting systems
where the characteristic length scale of the perturbations
present, such as mean-free path and magnetic coherence
length, is much smaller than the Fermi wavelength. Also, the
corresponding characteristic energies of such phenomena
must be much smaller than the Fermi energy �F. The quasi-
classical Green’s functions may be divided into an advanced
�A�, retarded �R�, and Keldysh �K� component, each of
which has a 4�4 matrix structure in the combined particle-
hole and spin space. One has that

ǧ = �ĝR ĝK

0 ĝA � , �2�

where the elements of ǧ�pF ,R ;� , t� read

ĝR,A = � gR,A fR,A

− f̃R,A − g̃R,A�, ĝK = �gK fK

f̃K g̃K� . �3�

The quantities g and f are 2�2 spin matrices, with the struc-
ture

g = �g↑↑ g↑↓
g↓↑ g↓↓

� . �4�

Due to internal symmetry relations between these Green’s
functions, all of these quantities are not independent. In par-
ticular, the tilde operation is defined as

f̃�pF,R;�,t� = f�− pF,R;− �,t�*. �5�

The quasiclassical Green’s functions g�pF ,R ;� , t� may be
determined by solving the Eilenberger37 equation

��!̂3 − .̂, ǧ�� + ivF�ǧ = 0, �6�

where .̂ contains the self-energies in the system such as
impurity scattering, superconducting order parameter, and
exchange fields. The star product � is noncommutative and
is defined in Appendix A. When there is no explicit time
dependence in the problem, the star product reduces to nor-
mal multiplication. This is the case we will consider through-

Ferromagnetic reservoir Superconducting reservoir

x = 0 x = d

Dirty ferromagnet

ĝĝF ĝS

Vaccum Superconducting reservoir

x = 0 x = d

Dirty ferromagnet

ĝĝV ĝS

FIG. 1. �Color online� The figure shows geometries that will be
considered in this paper. In the top figure, we consider a F /F /S
junction consisting of a dirty ferromagnet sandwiched between a
ferromagnetic and superconducting reservoir where the Green’s
functions are described by their bulk values. In the bottom figure,
we consider a F /S junction consisting of a dirty ferromagnet con-
nected to a superconducting reservoir.
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out the paper. The operation !̂3ǧ inside the commutator
should be understood as !̂3ǧ�diag�!̂3 , !̂3�ǧ. Pauli matrices
in particle hole�spin �Nambu� space are denoted as !̂i,
while Pauli matrices in spin space are written as  i. The
Green’s functions also satisfy the normalization condition

ǧ � ǧ = 1̌. �7�

The self-energies entering Eq. �6� must be solved in a self-
consistent manner. For instance, a weak-coupling s-wave su-
perconducting order parameter is obtained by

��R;t� = −
�

4
�

−�c

�c

d��f↑↓
K �pF,R;�,t�	p̂F

, �8�

where �c is the cutoff energy, which may be eliminated in
favor of the transition temperature. The notation �. . .	 is to be
understood as an angular averaging over the Fermi surface.
Once ǧ�pF ,R ;, , t� has been determined, physical quantities
of interest may be calculated, such as the electrical current

j�R;t� =
NFevF

4
� d� Tr��!̂3eFĝK	p̂F

� , �9�

where NF is the density of states �DOS� per spin at Fermi
level. Equation �9� also includes the contribution to charge
transport for holes, thus including processes such as Andreev
reflection. In the special case of an equilibrium situation, one
may express the Keldysh component in terms of the retarded
and advanced Green’s function by means of the relation

ĝK = �ĝR − ĝA�tanh�
�/2� , �10�

where 
=T−1 is inverse temperature. In nonequilibrium situ-
ations, one must derive kinetic equations for nonequilibrium
distribution functions in order to specify the Keldysh part.38

The above equations suffice to completely describe for
instance a single superconducting structure, but must be
supplemented with boundary conditions when treating het-
erostructures such as F /S junctions. These boundary condi-
tions take different forms depending on the physical proper-
ties of the interface, and we proceed to describe possible
scenarios in this respect. Transport across interfaces in het-
erostructures may in general be characterized according to
three particular properties: �i� the transmission of the inter-
face, �ii� the resistivity of the compounds separated by the
interface, and �iii� whether the interface is spin active or not.
Let us clarify the distinction between the two first properties.
The transmission of the barrier �assuming for simplicity a
single open transport channel� determines whether one is
dealing with a point contact or tunneling contact, which dif-
fer in terms of the likelihood of electron transport to occur
across the interface. In the Blonder-Tinkham-Klapwijk
language,39 the point contact corresponds to low values of Z
while the tunneling limit is obtained for high values of Z. On
the other hand, the resistivity of the compounds separated by
the interface is unrelated to the transmissivity of the inter-
face, and one may have, for instance, a tunneling contact
with electrodes attached to it that have either a large or small
resistance.

The third property determines to what degree the interface
discriminates between incoming quasiparticles with different
spins. Zaitsev40 derived boundary conditions for a clean N /S
interface, while Kuprianov and Lukichev �KL�41 worked out
simplified boundary conditions in the dirty limit, valid for
atomically sharp interfaces in the tunneling regime with a
low barrier transparency. Although the KL boundary condi-
tions are, strictly speaking, not valid for high transparency of
the barrier, they may be used for qualitative predictions in
that regime under certain conditions.42 The most compact
way of writing the boundary conditions for the Green’s func-
tions for arbitrary interfaces was introduced by Nazarov.43 In
all the preceding references, a nonmagnetic �spin-inactive�
interface was assumed. The generalized boundary conditions
for magnetically active interfaces have also been derived.44

Let us make a final remark concerning the treatment of in-
terfaces in the quasiclassical theory of superconductivity. We
previously stated that the present theory is valid as long as
characteristic energies of various self-energies and perturba-
tions in the system are much smaller than the Fermi energy.
At first glance, this might seem to be unreconcilable with the
presence of interfaces, which represent strong perturbations
varying on atomic length scales, clearly in stark contradic-
tion to the regime of validity of quasiclassical theory. How-
ever, this problem may be overcome by including the inter-
faces as boundary conditions for the Green’s functions rather
than directly in the Eilenberger equation.

The KL boundary conditions may be applied for a dirty
junction in the tunneling limit when the transparency of the
interface is low, in correspondence with our assumption of a
weak proximity effect. For the retarded part of the Green’s
function, they read


2d��ĝ�xĝ�
x=0 = 
 − �ĝ, ĝF�V��
x=0,


2d��ĝ�xĝ�
x=d = 
�ĝ, ĝS�
x=d, �11�

where F�V� corresponds to the F /F /S �F /S� case of Fig. 1.
The parameter � models the interfacial transmission proper-
ties, and is given by �=RI /RF, where RI is the interface
resistance per unit area, while RF is the equivalent in the
dirty ferromagnet. In this work, � holds the status of a varia-
tional parameter. A low transparency of the interface
amounts to the regime �)1. As previously mentioned,
qualitative predictions may still be obtained using the linear-
ized Usadel equations for ��1, and even the quantitative
aspects of the exact numerical solution may in some cases be
very well modeled by this approximation.45 Under the as-
sumption of a weak proximity effect, we will neglect the
depletion of the superconducting order parameter near the
interface in order to facilitate the calculations and for the
sake of obtaining analytical results. Moreover, we will use
the bulk solution of the Green’s function in the supercon-
ductor. This approximation is valid when the superconduct-
ing region is much less disordered than the ferromagnet.1

B. Green’s functions

We will consider the dirty limit of the Eilenberger equa-
tion, Eq. �6�, which leads to the Usadel equation.46 This will
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be an appropriate starting point for diffusive systems where
the scattering time due to impurities satisfies X #1, where X
is the energy scale of any other self-energy in the problem.
For strong ferromagnets where h becomes comparable to �F,
the stated inequality may, strictly speaking, not be valid for
X=h. Hence, we will restrict ourselves to the regime h#�F.
Below, we will mostly concern ourselves with the retarded
part of ǧ�pF ,R ;� , t�, since the advanced component may be
found via the relation

ĝA = − �!̂3ĝR!̂3�†. �12�

The Keldysh component is calculated by means of Eq. �10�
in a situation of local thermal equilibrium. For a nonequilib-
rium situation, the Keldysh component is found by

ĝK = ĝRF̂ − F̂ĝA, �13�

where F̂ is a matrix distribution function to be determined
from kinetic equations, while Eq. �12� still holds. Equation
�13� follows from the normalization condition of the Green’s
function, and the distribution function may be chosen as di-
agonal without any loss of generality. In general, we may
write

F̂ = Fl1̂ + Ft!̂3, �14�

where comparison with Eq. �10� shows that in a thermal
equilibrium one has Fl=tanh�
� /2�, Ft=0.

By isotropizing the Green’s function due to the assumed
frequent impurity scattering, it is rendered independent of
pF. This isotropic �in momentum space� Green’s function
satisfies the Usadel equation in the ferromagnet as follows:

D��ǧ � ǧ� + i��!̂3 + M̂ − �̌sf, ǧ� = 0. �15�

Above, the exchange energy h is accounted for by the matrix

M̂ =diag�h 3 ,h 3�, assuming a magnetization in the z direc-
tion, while the spin-flip self-energy reads

�̌�R;�� = −
i

8 sf


i

	̂iǧ�R;��	̂i, �16�

where  sf is the spin-flip scattering time. We have defined the
matrices 	̂i=diag� i , i

T�. The diffusion constant is given by
D=vF

2 /3. Although the Usadel equation, in general, requires
a numerical solution, an analytical approach is permissible
under certain conditions. In the case of a weak proximity
effect, one may effectively linearize Eq. �15�. This is a valid
treatment for low transparency interfaces or close to Tc. In
this case, Eq. �15� is expanded around the bulk solution. To
be definite, let us consider the retarded part of Eq. �15� which
has the same form, namely,

D��ĝR�ĝR� + i�� ̂3 + M̂ − �̂sf, ĝ
R� = 0, �17�

where �̂sf is obtained from �̌sf simply by letting ǧ→ ĝR.
Omitting the superscript on the Green’s function, we may

expand it around the bulk solution ĝ0 as ĝ� ĝ0+ f̂ , where
ĝ0=diag�1,−1� and

f̂ = � 0 f�R;��

− �f�R;− ���* 0
� ,

f�R;�� = � f↑↑�R;�� f↑↓
t �R;�� + �t→s�

f↑↓
t �R;�� − �t→s� f↓↓�R;��

� . �18�

One may now multiply out the matrix equation, Eq. �17�,
only keeping the lowest order terms in the anomalous
Green’s functions f	
�R ;��. For more compact notation, we
define the quantities

f	

i � f	


i �R;��, �	,
� = ↑,↓ and f t�s� � f↑↓
t�s�, i = s,t .

�19�

We will proceed to consider the two distinct cases illustrated
in Fig. 1. The Green’s functions in the different reservoirs
read

ĝV = 0̂, ĝF = �1 0

0 1
�, ĝS = � 1c i 2s

i 2s − 1c
� , �20�

where we have defined c�cosh���, s�sinh��� with �
�atanh�
� 
 /��. Note that we have set the superconducting
phase equal to zero, thus considering a gauge where the gap
is a purely real quantity.

C. Odd-frequency pairing

Before moving on to the graphical presentation of our
results, let us comment on the presence of the Sz=0 triplet
component of the anomalous Green’s function in the ferro-
magnet. It is well known that even in the absence of spin-flip
processes � sf→� �, the triplet component is generated in the
ferromagnet due to the presence of the exchange field h. We
will later investigate how the magnitude of this triplet com-
ponent is affected by including spin-flip processes. Also, it is
of interest to investigate the symmetry properties of the sin-
glet and triplet component. Since we are considering the iso-
tropic part �with respect to momentum� of the Green’s func-
tion due to the angular averaging in the dirty limit, one
would naively expect that only the singlet component should
be present. This is because the singlet anomalous Green’s
function is usually taken to be even under inversion of mo-
mentum, while the triplet components are taken to be odd
under inversion of momentum. Recall that inversion of mo-
mentum amounts to an exchange of spatial coordinates for
the field operators, since p is the Fourier transform of the
relative coordinate r�r1−r2. However, another possibility
exists that permits the presence of triplet correlations in the
ferromagnet, namely, a sign shift under inversion of energy.
This type of pairing has been dubbed odd-frequency pairing
in the literature, interpreting energy as a real frequency. Re-
call that inversion of energy is equivalent to an exchange of
time coordinates for the field operators, since � is the Fourier
transform of the relative time coordinate t� t1− t2. For a de-
tailed discussion of even- and odd-frequency pairing, the
reader may consult Appendix B.

Let us in passing show that the singlet component is even
in frequency, while the triplet component is odd in fre-
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quency, by using the definition in Eq. �B16�. To do this, we
must first find the advanced Green’s function fA by exploit-
ing Eq. �12�. Direct matrix multiplication leads to

ĝA =�
− 1 0 0 − f−

R�− ��
0 − 1 − f+

R�− ��
0 �f−

R����* 1 0

�f+
R����* 0 0 1

� .

�21�

From this, one infers that fs
A���= fs

R�−�� �even-frequency
pairing� and f t

A���=−f t
R�−�� �odd-frequency pairing�. We

have included this short paragraph on even- and odd-
frequency pairing to emphasize that although even-frequency
triplet correlations are destroyed in the dirty limit due to the
isotropization stemming from impurity scattering, odd-
frequency triplet correlations may persist since these do not
vanish under angular averaging. Also, it is important to un-
derstand that the triplet pairing we are discussing in the
present paper is then quite different from the triplet pairing
in, for instance, Sr2RuO4. In the latter case, the triplet pairing
is odd in momentum and therefore even in frequency.47 As a
consequence, superconductivity is highly sensitive to impu-
rity scattering in Sr2RuO4 and only observed in very clean
samples.

In the problem under consideration, the two important
energies are the exchange energy h and the BCS gap 
�
.
Associated with these energies are two typical length scales:
the correlation length in the ferromagnet �F=�D /h and the
superconducting coherence length �S=�D / �2�Tc�, where the
critical temperature in a weak-coupling superconductor is
given by 
� 
 �1.76Tc. One may think of �F as the penetra-
tion depth of the superconducting condensate into the dirty
ferromagnet. In an experimental situation, one usually has
h) 
�
 even for relatively weak ferromagnets, such that �F
#�S. For the quasiclassical treatment to be valid, one must
then have 
� 
 #h#�F. For a Fermi energy of 1 eV, it would
then be reasonable to consider h in the neighborhood of
30 meV and 
�
 around 1 meV. The effect of D and d may
be accounted for in the single parameter �T=D /d2, named
the Thouless energy. This is the relevant energy scale for the
proximity effect in the case of highly transparent interfaces.
In the following, we will, unless specifically stated other-
wise, fix h / 
� 
 =30 to operate within the allowed boundaries
of our approximations. Since one is often interested in inves-
tigating how various physical properties behave as a function
of the thickness d of the ferromagnetic layer, it is useful to
note that for d /�S=x, one finds

�T =
2�
�

1.76x2 . �22�

III. RESULTS

We now provide the main results of this paper, namely, a
study of how the triplet correlations and LDOS are affected
by spin-flip scattering in a F /S and F /F /S junction. When
including scattering upon magnetic impurities in the sample,
Eq. �15� yields the differential equations

D�x
2�f t ± fs� + 2i�� ± h��f t ± fs� −

1

2 sf
�f t ± 3fs� = 0,

D�x
2f� + �2i� −

1

2 sf
� f� = 0. �23�

Note that we have here assumed an isotropic spin-flip disor-
der, in contrast to the uniaxial disorder considered in Refs.
30 and 48. We comment more on this in Sec. IV. Spin-flip
processes in combination with a spatially homogeneous ex-
change field do not lead to equal-spin correlations in the
ferromagnet, although the inclusion of a spin-active barrier
will generate these components.27,49 Therefore, for the
present case of a nonmagnetic interface, we have that f�=0.
For the Sz=0 triplet and singlet Green’s functions, the gen-
eral solution of Eq. �23� reads

f t = c1e−q+x + c2eq−x + c3eq+x + c4e−q−x,

fs =
i

4 sfh
�c1/−e−q+x + c2/+eq−x + c3/−eq+x + c4/+e−q−x� ,

�24�

where we have defined

q± = �− �4i sf� − 2 ± �1 − 16 sf
2 h2�/�2D sf��1/2,

/± = 1 ± �1 − 16 sf
2 h2. �25�

The coefficients �ci� will be determined from the boundary
conditions of the F /S and F /F /S junctions. These are given
by Eq. �11�, which may be written in terms of the f± func-
tions. For the F /S junction, we have


�i� �xf±
x=0 = 0,


�ii� d��xf±
x=d = 
 ± s − cf±
x=d. �26�

Above, s=cosh���, s=sinh���, and �=arctanh�
�
 /��. In the
F /F /S case, the condition �ii� is still valid while �i� must be
replaced with


�i� d��xf±
x=0 = 
f±
x=0. �27�

Note that it is implicit here that f±= f±
R. The resulting analyti-

cal expressions or �ci� read as follows:

c4 =
− 2s�1 + X−/X+�
Y− − Y+X−/X+

, c3 = �2s − c4Y+�/X+,

c2 = Rc4, c1 = L2c2 + L3c3 + L4c4. �28�

For convenience, we have defined the following quantities:

A± = 1 ± i/−/�4 sfh�, B± = 1 ± i/+/�4 sfh� ,

L2 =
B+� + q−�
A+�q+ − �

, L3 =
 + q+

q+ − 
,
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L4 =
B+� − q−�
A+�q+ − �

, R =
q− − 

q− + 
, �29�

in addition to

X± = A±�eq+d�2c + 2�dq+� + e−q+dL3�2c − 2�dq+�� ,

Y± = B±�eq−dR�2c + 2�dq−� + e−q−d�2c − 2�dq−��

+ A±e−q+d�L4 + L2R��2c − 2�dq+� . �30�

In the F /S case, =0, while = �−�d�−1 in the F /F /S case.
The knowledge of these coefficients completely determines
the spatial and energy dependence of the anomalous Green’s
functions everywhere in the dirty ferromagnet. When apply-
ing the limit  sf→�, by making use of

A± → 2�±,+, B± → 2�±,−, q± → ik±, �31�

one regains well-known results for the scenario without spin-
flip scattering. Also, it is worth noting that the triplet com-
ponent vanishes for h=0, even in the presence of spin-flip
scattering. Having calculated the Green’s functions, we may
now study the effect of spin-flip scattering on the LDOS. The
spin-resolved LDOS is given by

N��R;�� = NF,� Re��1 + �f t��� + �fs����

� �f t�− �� − �fs�− ���*�1/2�, � = ↑,↓ = ± 1.

�32�

Above, NF,� is the DOS at Fermi level for spin species �
�NF=�NF,��. The deviation �N from the bulk DOS inside
the dirty ferromagnet may be defined as

�N � 
�

�N��R;�� − NF,��/NF,�. �33�

We also define the normalized LDOS as N
=�N��R ;�� / �2NF,��, such that in the absence of a proxim-
ity effect, N=1. The oscillations of the LDOS in a F /S junc-
tion was first reported by Buzdin,50 and led to observable
effects such as the nonmonotonic dependence of the critical
temperature on the length d of a F /S bilayer51–53 and the
�-phase structures that occur in F /S hybrid systems.11

Consider first Fig. 2 for a plot of the correction �N to the
LDOS as a function of position in the dirty ferromagnet.
Although the maximum amplitude of �N is suppressed with
increasing spin-flip scattering -=1 / sf, an interesting feature
is that the magnitude of the correction �
�N 
 � is in some
regions actually enhanced due to spin-flip scattering. This
seems to be a result of the oscillatory behavior of the LDOS.
In a N /S junction, where there is no oscillatory behavior of
the LDOS, spin-flip scattering would simply cause a reduc-
tion of the correction �N. Thus, the role of spin-flip scatter-
ing in a F /S junction is more subtle than in a N /S junction
where it simply amounts to a suppression of the LDOS.

It might seem counterintuitive that increasing spin-flip
scattering should increase the correction to the LDOS, since
the anomalous Green’s functions should be suppressed for
large -. We suggest the following resolvement of this phe-
nomena. It is clear that the LDOS displays an oscillatory
behavior due to the presence of an exchange field, both with

and without the spin-flip scattering. However, in the presence
of spin-flip processes, the period of these oscillations is
modified. From Fig. 2, it is seen that the peak of the correc-
tion to �N is suppressed with increasing -. But even though
this peak becomes smaller, the different periods of oscillation
allows 
�N�-1�
 to outgrow 
�N�-2�
 at certain distances from
the interface, even for -1�-2. This is a subtle feature unique
for F /S interfaces in the presence of spin-flip processes as
compared to N /S junctions.

It is interesting to investigate the role of spin-flip scatter-
ing with regard to the decay and oscillating lengths further.
Very recently, some aspects of this topic were addressed in
Ref. 54. We here examine in detail some features that occur
when spin-flip scattering is included in a F /S junction,
among them the vanishing of the characteristic oscillations

of the anomalous Green’s function f̂ in a certain parameter
regime. Consider first the case without spin-flip scattering,
effectively letting  sf→�. From our previous equations, it is
clear that if we write

k± = �2i�� ± h�/D = k1,± + ik2,±, �34�

then the real quantities k1,± and k2,± correspond to the oscil-
lating part and decaying part of f±, respectively. We ignore
the � term since we consider the regime h)�, and write

k1,± 
 =1 /�osc, 
k2,± 
 =1 /�dec. One readily obtains

�dec = �osc = �F. �35�

In other words, we recover the well-known fact that the os-
cillating and decaying length scales of the superconducting
condensate in the absence of spin-flip scattering are equal.2

Consider now a finite value of  sf, where we obtain
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FIG. 2. �Color online� Spatial variation of the deviation from the
LDOS ��N� for a F /S junction in the presence of spin-flip scatter-
ing. We have chosen �T / 
� 
 =1 and �=5. The qualitative features
are the same for the F /F /S junctions for this particular set of pa-
rameters. It is seen that for a given energy, increasing spin-flip
scattering -=1 / sf will increase the oscillation length and reduce
the amplitude of the Green’s function.
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q± =�2 � �1 − 16 sf
2 h2

2D sf
. �36�

We have neglected the energy term, assuming � sf#1. In
this case, writing q±=q1,±+ iq2,± means that q1,± and q2,± are
associated with the decay and oscillating length, respectively.
We may now distinguish between two cases. If the inequality

1 � 16 sf
2 h2 �37�

is satisfied, then q± is purely real. In this case, there are no
oscillations of the anomalous Green’s function in the ferro-
magnet. Since we assumed that � sf#1, this means that the
exchange field should be sufficiently weak for the vanishing
of oscillations to take place. For instance, given a spin-flip
energy of - / 
� 
 =20 one would need h / 
� 
 "5 for the os-
cillations to disappear. If the spin-flip energy becomes very
large, then the oscillations would vanish even for moderate
exchange fields. This prediction should have easily observ-
able experimental consequences, manifested for instance in
the behavior of the critical temperature as a function of junc-
tion width d, given that the required parameter regime may
be experimentally realized. We comment further on this later
in this paper.

In the case where 1"16 sf
2 h2, q± is no longer purely real,

and oscillations are again present in f±. It is instructive to
consider a plot of �osc and �dec as a function of spin-flip
scattering to see how the oscillation and decay length are
affected by these processes. This is done in Fig. 3, where the
divergence of the oscillation length is clearly seen at the
critical value -c=4h. Note that as -→0, �osc and �dec be-
come equal, as previously stated. When Eq. �37� is satisfied,
the decay length is different for the up and down spins. This
may be seen by introducing �dec

± =1 /q± as defined by Eq.
�36�. Our results for -"-c are consistent with Ref. 30, who
reported that increased spin-flip scattering should increase
the oscillation length and reduce the decay length. Let us
consider how this effect is manifested in the LDOS, a di-
rectly measurable experimental quantity. In Fig. 3�b�, we plot
the spatial correction to the LDOS for h / 
� 
 =5 for several
values of the spin-flip energy. As seen, the oscillations vanish
as - increases, and are completely absent when Eq. �37� is
satisfied. The effect we predict should thus be measurable via
scanning-tunneling microscopy �STM� measurements, by
probing the LDOS.

We next consider a surface plot of the correction to the
LDOS in the �x ,�� plane for a set of parameters that should
correspond to an experimentally feasible F /S junction. We
set h / 
� 
 =30 and - / 
� 
 =0.3. We use the analytical results
for the F /S case, since the difference from a F /F /S junction
is small in the low transparency regime. As seen in Fig. 4,
the LDOS peaks at x=d with an amplitude that increases
with energy. This peak vanishes upon increasing the spin-flip
scattering parameter -, corresponding to the effect we
predict—namely, that the oscillations seen in the LDOS of a
F /S junction vanish above a critical value of the spin-flip
scattering energy.

IV. DISCUSSION

In F /S junctions without magnetic impurities, it is well
known that the critical temperature of the superconductor
exhibits a nonmonotonic dependence on the thickness of the
ferromagnet layer d �for an extensive treatment of this topic,
see the review by Buzdin2�. The physical reason for the
damped, oscillatory behavior of Tc in such systems is not
completely understood. It seems reasonable to attribute this
characteristic feature to the oscillatory behavior of the
Green’s functions in the ferromagnet, since this nonmono-

FIG. 3. �Color online� �a� Plot of the characteristic decay and
oscillation lengths ��x� of the anomalous Green’s function in the
presence of spin-flip scattering with h / 
� 
 =5. �b� Spatial variation
of the deviation from the LDOS ��N� for a F /S junction in the
presence of spin-flip scattering. We have chosen �T / 
� 
 =1, �=5,
and h / 
� 
 =10. The quasiparticle energy has been set to � / 
� 

=0.5, but the qualitative behavior is identical for all �" 
�
. As
shown in �b�, there are no oscillations of the Green’s function in the
ferromagnet in the parameter range - /h�4 �-=1 / sf�. Inclusion of
the energy contribution � brings small corrections to this result, but
as seen from the figure the condition Eq. �37� is a very good ap-
proximation. This behavior is to be contrasted with the usual oscil-
lations in F /S junctions as obtained without spin-flip scattering.
Note that in �a�, �osc formally diverges near -=-c, which separates
the two parameter regimes where oscillations occur and where they
do not occur.
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tonic behavior of Tc is not observed in N /S junctions.55

However, the transparency of the barrier may also play a key
role in the manifestation of oscillations in Tc, as argued in,
for instance, Ref. 56–58. In another experiment, a purely
monotonic decay of Tc as a function of d was observed in a
Pb /Ni junction.59 Even though the physical picture is not

fully resolved, it is highly plausible that the oscillations of f̂
are intimately linked to the behavior of Tc. In this paper, we
have shown that the presence of spin-flip scattering may sig-

nificantly change the qualitative behavior of f̂ in the ferro-
magnet. Specifically, the oscillations vanish at a critical value
-c=4h. Under the assumption that the characteristic behavior

of f̂ strongly influences the fashion in which Tc decays, it is
then clear that one should observe a transition from a non-
monotonic �damped, oscillating� to a pure monotonic
�damped� decay of Tc upon increasing the concentration of
magnetic impurities in a sample. Our finding offers a new,
possible explanation for the experiments where a monotonic
decay of Tc was observed, namely, that the concentration of
magnetic impurities was such that the critical value -c was
exceeded.

In this paper, we have assumed an isotropic spin-flip dis-
order, in contrast to the uniaxial magnetic disorder consid-
ered in Refs. 30 and 48. This leads to somewhat different
equations for the proximity-induced anomalous Green’s
function in the ferromagnet. Since we have considered a
strongly uniaxial exchange field, it is implicitly assumed that
the presence of spin-flip scattering in the plane perpendicular
to the exchange field still allows for the uniaxial field to be
accommodated. In the case of strong uniaxial anisotropy, the
first of the Usadel equations, Eq. �23�, is replaced by48

D�x
2�f t ± fs� + 2i�� ± h��f t ± fs� −

1

2 sf
�f t ± fs� = 0. �38�

Note how the factor 3 in the last term in Eq. �23� now is
replaced by unity. Following the same line of reasoning that
led to Eq. �36�, we now obtain

q± = �1 � 4i sfh

2D sf
. �39�

This quantity is always complex, and hence we always ob-
tain �damped� oscillations and never a complete suppression
of the oscillations. Thus, the model with isotropic scattering
and strongly uniaxially anisotropic scattering are qualita-
tively different. The model with isotropic scattering, Eq.
�23�, is expected to be most relevant for a weak exchange
field, while the model, Eq. �40�, is expected to be most rel-
evant for strong uniaxial anisotropy.48 Clearly, it would also
be interesting to investigate a model which interpolates be-
tween these two limits, in order to investigate at what maxi-
mum anisotropy in the scattering a complete suppression of
oscillations can occur. One may consider this situation
crudely by the following Usadel equation:

D�x
2�f t ± fs� + 2i�� ± h��f t ± fs� −

1

2 sf
�f t ± 
fs� = 0,

�40�

where we have introduced the parameter 
 to account for the
uniaxial �
=1� and the isotropic �
=3� case. Again, follow-
ing the line of reasoning that led to Eq. �36�, we now find

q± =��1 + 
�/2 � ��
 − 1�2/4 − 16 sf
2 h2

2D sf
. �41�

From this simple analysis, one would tentatively conclude
that the case of strong uniaxial anisotropy is special, in that
it is the only case where one cannot possibly obtain
�
−1�2 /4−16 sf

2 h2=0 for any finite  sf and h, which is the
requirement for suppression of oscillations. For all other val-
ues of 
, it would be possible to obtain a real q and hence
complete suppression of oscillations. Clearly, this matter
warrants further and detailed investigations.

In recent publications,60,61 Crouzy et al. considered the
interesting problem of a Josephson current in a S /F /F� /S
structure with noncollinear magnetizations in the ferromag-
netic regions. It was shown that the misorientation angle be-
tween the ferromagnetic layers could be used to progres-
sively shift the junction between a 0 and a � state. In
deriving their results, effects such as spin-flip scattering and
nonideal interfaces were omitted for simplicity. Our analyti-
cal results account for both of these effects, and may thus be
useful to obtain a quantitatively better agreement for the Jo-
sephson effect with experimental data by including these
phenomena in S /F /F� /S structures. Work in this direction is
now in progress.62

V. SUMMARY

In conclusion, we have investigated the role of spin-flip
scattering and nonideal interfaces in dirty ferromagnet/
superconductor �F /S� junctions. Our analytical results may
serve as a basis for calculating other physical quantities of
interest in F /S multilayers, such as the Josephson current.
The main result of this paper is that we show analytically
how the well-known oscillations of the anomalous Green’s

FIG. 4. �Color online� Correction to the LDOS ��N� for - /h
=0.01 �-=1 / sf�. Surface plot of the deviation from the LDOS in
the �x ,�� plane for a junction of width d=2�S and with transparency
parameter �=5 and exchange field h / 
� 
 =30. The most protruding
feature is the peak emerging in the LDOS right at the F /S interface,
followed by a dip structure at low energies.
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function induced in the ferromagnet by the superconductor in
F /S structures without magnetic impurities vanish com-
pletely above a critical value for the energy associated with
spin-flip scattering, -. More precisely, we find that the oscil-
lations are absent when the condition -c�4h is fulfilled,
where h is the exchange field. We have argued that this might
be experimentally observable through a transition from a
nonmonotonic �damped, oscillating� to a monotonic
�damped� decrease of the critical temperature of the junction
as a function of the thickness of the ferromagnet layer. As
another consequence, we find that increasing spin-flip scat-
tering may actually enhance the local density of states
�LDOS� under certain conditions. This is a quite subtle effect
that might seem counterintuitive at first glance. However, it
may be understood by realizing that the anomalous Green’s
functions display an oscillatory behavior in the presence of
an exchange field. The period of these oscillations is modi-
fied in the presence of spin-flip scattering. This means that
although the amplitude of the oscillations decreases for in-
creasing spin-flip scattering, the correction to the LDOS may
in certain spatial intervals actually be greater for large spin-
flip scattering than for weak spin-flip scattering. This finding
may be of importance in order to correctly interpret LDOS
spectra as obtained from, e.g., scanning-tunneling micros-
copy measurements.
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APPENDIX A: DEFINING THE STAR PRODUCT

We here define the star product which enters the Eilen-
berger equation, Eq. �6�. For any two functions A and B, we
have

A � B = ei��TA
��B

−��A
�TB

�/2AB , �A1�

where the differentiation operators denote derivation with re-
spect to the variables T and � in the mixed representation.
Note that if there is no explicit time dependence in the prob-
lem, the star product reduces to regular multiplication.

APPENDIX B: EVEN- AND ODD-FREQUENCY PAIRING

Consider the anomalous Green’s function with time-
ordering operator T,

f	
�r1,r2;t1,t2� = − iT��	�r1;t1�
�r2;t2�	� , �B1�

which in the mixed representation may be written as

f	
�r1,r2;t1,t2� = f	
�R,r;T,t� . �B2�

The Pauli principle introduces restrictions on this correlation
function for equal times t1= t2= t�, namely,

f	
�r1,r2;t�� = − f
	�r2,r1;t�� . �B3�

This follows directly from the anticommutation relation for
the field operators in Eq. �B1�, and reflects the fact that the
fermionic two-particle anomalous Green’s function must be
antisymmetric under exchange of particle coordinates. As-
sume now for ease of notation that there is no explicit time
dependence in the problem and that the system is homoge-
neous, which allows us to discard the dependence on the
center-of-mass coordinates R and T. The following argumen-
tation is valid even if this simplification may not be per-
formed, and the equations then hold for each set of points
�R ,T�. By a Fourier transform, we now obtain

f	
�p;t� =� dr e−iprf	
�r;t� . �B4�

The Pauli-limitation equation �B3� then reads f	
�p ;0�
= f
	�−p ;0�, since equal times give t=0. This seems to indi-
cate that the Green’s function must be odd under inversion of
momentum or exchange of spin coordinates. However, an-
other possibility exists, as may be seen by Fourier transform-
ing

f	
�p;�� =� dtei�t f	
�p;t� . �B5�

In terms of the momentum- and energy-dependent Green’s
functions, the Pauli principle now dictates that

� d�f	
�p;�� = −� d�f
	�− p,�� . �B6�

This gives us two possibilities that are still perfectly compat-
ible with the equal-time restriction: either f	
�p ;��
=−f
	�−p ;�� or f	
�p ;��=−f
	�−p ;−��. This is summa-
rized in the equation

f	
�p;�� = − f
	�− p;− �� , �B7�

which contains all possible symmetry classifications for the
Green’s functions that are compatible with the Pauli prin-
ciple. These are listed in Table I. Let us also make contact
with the Matsubara formalism, where the anomalous Green’s
function is defined as

TABLE I. Symmetry classifications of the anomalous Green’s
function that are compatible with the Pauli principle. The “even”
and “odd” terminology in the notation here points to the symmetry
under a sign shift in energy, while “singlet” and “triplet” denotes
the symmetry under exchange of spins. With these two properties in
hand, the symmetry classification of momentum is given from the
requirement that the entire function must be antisymmetric.

Spin Momentum Energy Notation

Odd Even Even Even singlet

Even Odd Even Even triplet

Even Even Odd Odd triplet

Odd Odd Odd Odd singlet
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f	

M �r1,r2; 1, 2� = − T��	�r1; 1�
�r2; 2�	� , �B8�

and after a Fourier transformation to the mixed representa-
tion satisfies

f	

M �p;i�n� = �

0




d ei�n f	

M �p; � ,

f	

M �p; � =

1





n

e−i�n f	

M �p;i�n� , �B9�

with  as a complex time, 
 as inverse temperature, and
frequencies �n= �2n+1�� /
. In this technique, one may ap-
ply the same procedure as for the real-time Green’s functions
and arrive at


n

�f	

M �p;i�n� + f
	

M �− p;i�n�� = 0, �B10�

which also leads to the requirement that

f	

M �p;i�n� = − f
	

M �− p;− i�n� . �B11�

The real-time retarded and advanced Green’s functions may
be obtained from the Matsubara Green’s function by analyti-
cal continuation as follows ��→0�:

lim
i�n→�±i�

f	

M �p;i�n� = f	


R�A��p;�� . �B12�

From Eq. �B7�, one infers that a triplet correlation may be
even under momentum inversion if it is odd under energy
inversion. This scenario has been dubbed odd-frequency pair-

ing in the literature. The Pauli principle can also be ex-
pressed by the retarded and advanced anomalous Green’s
functions by using Eq. �B11�. To see this, we perform an
analytical continuation on the right-hand side of Eq. �B11�,
yielding

lim
i�n→�+i�

f	

M �p;i�n� = f	


M �p;� + i�� = f	

R �p;�� ,

�B13�

while the same operation on the left-hand side produces

lim
i�n→�+i�

�− f
	
M �− p;− i�n�� = − f
	

M �p;− � − i��

= − f
	
A �− p;− �� . �B14�

Equating the two sides, we finally arrive at

f	

R �p;�� = − f
	

A �− p;− �� . �B15�

Actually, this information is embedded already in the defini-
tions of the retarded and advanced Green’s functions, and
Eq. �B15� may be verified by direct Fourier transformation
without going via Eq. �B11�. It is also worth underscoring
that the Matsubara technique is only valid for equilibrium
situations, while the Keldysh formalism and the correspond-
ing Green’s function is viable also for nonequilibrium situa-
tions. The distinction between odd- and even-frequency cor-
relations for the retarded and advanced Green’s functions is
now as follows:

Odd frequency: f	

R �p;�� = − f	


A �p;− �� ,

Even frequency: f	

R �p;�� = f	


A �p;− �� . �B16�
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We investigate the conductance spectra of a normal-superconductor graphene junction using the extended
Blonder-Tinkham-Klapwijk formalism, considering pairing potentials that are both conventional �isotropic
s-wave� and unconventional �anisotropic d-wave�. In particular, we study the full crossover from normal to
specular Andreev reflection without restricting ourselves to special limits and approximations, thus expanding
results obtained in previous work. In addition, we investigate in detail how the conductance spectra are affected
if it is possible to induce an unconventional pairing symmetry in graphene—for instance, a d-wave order
parameter. We also discuss the recently reported conductance oscillations that take place in normal-
superconductor graphene junctions, providing both analytical and numerical results.
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I. INTRODUCTION

A key issue in understanding low-energy quantum trans-
port at the interface of a nonsuperconducting and supercon-
ducting material—e.g., a normal-superconductor �N-S�
interface—is the process of Andreev reflection. Although the
existence of a gap in the energy spectrum of a supercon-
ductor implies that no quasiparticle states may persist inside
the superconductor for energies below that gap, physical
transport of charge and spin is still possible at a N-S inter-
face in this energy regime if the incoming electron is re-
flected as a hole with opposite charge. The remaining charge
is transferred to the superconductor in the form of a Cooper
pair at the Fermi level. The study of Andreev reflection and
its signatures in experimentally observable quantities such as
single-particle tunneling and the Josephson current has a
long history �see, e.g., Ref. 1 and references therein�. Only
recently, however, has this field of research been the subject
of investigation in graphene N-S interfaces.2,3

Graphene is a monoatomic layer of graphite with a hon-
eycomb lattice structure, as shown in Fig. 1, and its recent
experimental fabrication4,5 has triggered a huge response in
both the theoretical and experimental community over the
last two years. The electronic properties of graphene display
several intriguing features, such as the six-point Fermi sur-
face and a Dirac-like energy dispersion, effectively leading
to an energy-independent velocity and zero effective mass at
the Fermi level. This obviously attracts the interest of the
theorist, but graphene may also hold potential for technologi-
cal applications due to its unique combination of a very ro-
bust carbon-based structural texture and its peculiar elec-
tronic features.

Condensed matter systems with such “relativistic” elec-
tronic structure properties as graphene constitute fascinating
examples of low-energy emergent symmetries—in this case,
Lorentz invariance. At half-filling, the Fermi level of
graphene is exactly zero which renders the Fermi surface to
be reduced to six single points due to the linear intersection
of the energy bands �see Figs. 3 and 4 below�. The linear
dispersion relation is a decent approximation even for Fermi
levels as high as 1 eV, such that the fermions in graphene

behave like they are massless in the low-energy regime. The
fact that the fermions around the Fermi level obey a Dirac-
like equation at half-filling introduces Lorentz invariance as
an emergent symmetry in the low-energy sector. Another ex-
ample where Lorentz invariance appears for low-energy ex-
citations is in one-dimensional interacting fermion systems,
where phenomena like the breakdown of Fermi-liquid theory
and spin-charge separation take place. When Lorentz invari-
ance emerges in the low-energy sector of higher-dimensional
condensed matter systems, it is bound to attract much inter-
est from a fundamental physics point of view. Another inter-
esting feature of graphene are the nodal fermions that are
present at the Fermi level at half-filling. When moving away
from half-filling by doping, the excitations at the Fermi level
are no longer nodal. The nodal fermions of graphene hold
certain similarities to, but also important differences from,
the nodal Dirac fermions appearing in the low-energy sector
of the pseudogap phase of d-wave superconductors such as
the high-Tc cuprates. In contrast to graphene, the nodal fer-
mions in the high-Tc cuprates track the Fermi level when
these systems are doped and thus represent a more robust
feature than in graphene. For an illustration of the latter sce-
nario, consider Fig. 2 which contains a sketch of the Fermi
surface in the cuprates when including terms up to next-
nearest-neighbor hopping. The nodal lines of the dx2−y2 gap
intersect the Fermi surface at exactly four points, which per-

A-lattice
B-lattice

a) b)

Γ

K
K �

a
a

FIG. 1. �Color online� �a� Sketch of a real-space lattice of
graphene, consisting of two hexagonal sublattices A and B. The
interatomic distance a is equal between all lattice points. �b�
k-space �momentum-space� lattice of graphene, including the hex-
agonal Brillouin zone. Only two inequivalent points exist on the BZ
boundary, termed K and K�.
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mits the existence of nodal fermions at those points in k
space. However, in contrast to graphene, doping the system
will in this case simply move the position of the Fermi arc
with respect to the nodal line of the superconducting gap,
such that the nodal fermions persist in the system.6 Nonethe-
less, the existence of the Dirac cones in graphene represents
an important example of emergent nontrivial symmetries at
long distances and low energies in higher- �more than one�
dimensional systems.

Although superconductivity does not appear intrinsically
in graphene, it may be induced by means of the proximity
effect by placing a superconducting metal electrode near a
graphene layer.7–11 Recent theoretical work2,12 have consid-
ered coherent quantum transport in N-S and normal-
insulator-superconductor �N-I-S� graphene junctions in the
case where the pairing potential is isotropic—i.e., s-wave
superconductivity. However, the hexagonal symmetry of the
graphene lattice permits, in principle, for unconventional or-
der parameters such as p-wave or d-wave parameters �char-
acterized by a nonzero angular momentum of the Cooper
pair�. A complete classification of the possible pairing sym-
metries on a hexagonal lattice up to f-wave pairing �l=3�
was given by Mazin and Johannes,13 with the result given in
Table I. We underline that the notation “insulator” in this
context refers to a normal segment of graphene in which one
experimentally induces an effective potential V0. As we shall
see, such a potential has a dramatically different impact upon
the transport properties in graphene as compared to the me-
tallic counterpart.

The intrinsic spin-orbit coupling in graphene is very
weak, as dictated by the low value of the carbon atomic
number, such that we will neglect it in this work. We will
also disregard the electrostatic repulsion as mediated by the
vector potential A. At first sight, this might seem as an un-
physical oversimplification since there is no metallic screen-
ing of the Coulomb interaction in graphene. In an ordinary
metal, the renormalized Coulomb potential reads V�r�
=V0�r�e−r/�, where ���N�EF��−1/2 is the Thomas-Fermi

screening length and N�EF� is the density of states �DOS� at
the Fermi level. Since pure graphene has zero DOS at Fermi
level, one might quite reasonably suspect that the screening
of charge vanishes, and it might seem paradoxical that Cou-
lomb interactions can be neglected. The resolution to this is
found by realizing that one may disregard the Coulomb in-
teraction if it is weak compared to the kinetic energy in the
problem. Due to the linear dispersion, the kinetic energy is
governed by the Fermi velocity vF which formally diverges
near Fermi level. The divergence is logarithmic and precisely
due to the Coulomb interaction.14,15 The limiting velocity in
graphene �due to, e.g., umklapp processes� is nevertheless of
order O�106� m /s; see, e.g., Ref. 16. This is roughly 100
times larger than in a normal metal, and it is thus safe to
neglect the Coulomb interaction compared to the kinetic en-
ergy in graphene. In graphene, the Coulomb interaction self-
destructs.

In this work, we will study in detail how an anisotropic
order parameter induced in graphene will affect quantum
transport in a N-S and N-I-S junction, extending the result of
Ref. 17. In equivalent metallic junctions, it is well known18

that the zero bias conductance peak �ZBCP� is an experimen-
tal signature of anisotropic superconductivity in clean super-
conductors with nodes in the gap. This is a consequence of
bound surface states with zero energy at the interface that
form due to a constructive phase interference between
electron like and hole like transmissions into the
superconductor.19 In graphene junctions with superconduct-
ors, as we shall see, a new phenomenology comes into play
with regard to the scattering processes that take place at the
N-S interface. It is therefore desirable to clarify how aniso-
tropic superconductivity is manifested in the conductance
spectra of such a junction and in particular if the same con-
dition for formation of a ZBCP holds for graphene junctions
as well. As first shown in Ref. 17, we will demonstrate that
in N-I-S graphene junctions, novel conductance oscillations
as a function of bias voltage are present both for s-wave and

TABLE I. List of all superconducting pairing states allowed for
a hexagonal lattice up to d-wave pairing, adapted from Ref. 13. An
orbital angular momentum quantum number l=0,1 ,2 is denoted
s , p ,d wave, respectively. For the triplet states �p wave�, the order
parameter has multiple components and is conveniently represented
as a vector dk.

Pairing Type Pairing Type

1 s �ky ,−kx ,0� p

kx
2+ky

2 s �0,0 ,kz� p

kz
2 s �kx ,ky ,0� p

�0,0 ,kx� p �kx0 iky , 0 ikx−ky ,0� p

�0,0 ,ky� p �kx0 iky�2 d

�0,0 ,kx0 iky� p kxkz d

�kz ,0 ,0� p kykz d

�0,kz ,0� p �kx0 iky�kz d

�kz , 0 ikz ,0� p kx
2−ky

2 d

�ky ,kx ,0� p kxky d

�kx ,−ky ,0� p

+

−

+

−

Nodal fermionsFermi surface

FIG. 2. �Color online� Sketch of the Fermi surface and aniso-
tropic d-wave gap as believed to be present in high-Tc cuprate su-
perconductors. The nodal fermions reside at the intersection of the
nodal lines of the gap and the Fermi surface.
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d-wave symmetries of the superconducting condensate due
to the presence of low-energy “relativistic” nodal fermions
on the N side. The period of the oscillations decreases with
increasing width w of the insulating region and persists even
if the Fermi energy in I is strongly shifted. This contrasts
sharply with metallic N-I-S junctions, where the presence of
a potential barrier causes the transmittance of the junction to
go to zero with increasing w. The feature of conductance
oscillations is thus unique to N-I-S junctions with low-
energy Dirac-fermion excitations. Moreover, we contrast the
N-S or N-I-S conductance spectra for the cases where s-wave
and dx2−y2-wave superconductors constitute the S side. The
former has no nodes in the gap and lacks Andreev bound
states. The latter has line nodes that always cross the Fermi
surface in the gap and thus features in addition to Andreev
bound states, also nodal relativistic low-energy Dirac fermi-
ons. The quantum transport properties in a heterostructure of
two such widely disparate systems, both featuring a particu-
lar intriguing emergent low-energy symmetry, is of consider-
able importance.

This paper is organized as follows. In Sec. II, we establish
the theoretical framework which we shall adopt in our treat-
ment of the N-S graphene junction. The results are given in
Sec. III, where we in particular treat the role of the barrier
strength and doping with respect to how the conductance is
influenced by these quantities. In addition, we investigate the
role of a possible unconventional pairing symmetry induced
in graphene. A discussion of our findings is given in Sec. V,
and we summarize in Sec. VI. We will use a caret for 4�4
matrices and an inverted caret for 2�2 matrices, with bold-
face notation for three-dimensional row vectors.

II. THEORETICAL FORMULATION

A. General considerations

The Brillouin zone of graphene is hexagonal and the en-
ergy bands touch the Fermi level at the edges of this zone,
amounting to six discrete points. Out of these, only two are

inequivalent, which are conventionally dubbed K and K� and
referred to as Dirac points. The band dispersion of graphene
was first calculated by Wallace20 and reads approximately

E = 0 �0�1 + 4 cos��3kxa

2
�cos� kya

2
� + 4 cos2� kya

2
��1/2

,

�1�

where �0 �2.5 eV and the 0 sign refers to the antibonding-
bonding � orbital. The remaining three valence electrons are
in hybridized sp2 � bonds. The energy dispersion in the Bril-
louin zone is plotted in Fig. 3, which reveals the conical
structure of the conduction and valence bands at the six
Fermi points. The cosinelike conduction and valence bands
are made up by a mixture of the energy bands from the A and
B sublattices in graphene �Fig. 1�, which are linear near the
Fermi level. This gives rise to the conical energy dispersion
at the Dirac points K and K�.

In order to introduce the new phenomenology of scatter-
ing processes in N-S graphene junctions, it is instructive to
compare it with the metallic N-S junction. This is done in
Fig. 4. In the metallic case, an incident electron with energy
E"� measured from the Fermi energy EF cannot transmit-
ted into the superconductor since there are no available qua-
siparticle states. Instead, it is reflected as a hole, represented
as a quasiparticle with energy E in the holelike band, such
that the leftover charge 2e is transferred into the supercon-
ductor as a Cooper pair at Fermi level. The hole has negative
mass, energy, wave vector, and charge compared to the elec-
tron which is absent. Strictly speaking, only at E=0 are the
wave vectors exactly related through ke=kh since one in gen-
eral has

ke = �2m�EF + E�, kh = �2m�EF − E� . �2�

At finite energies, the electron-hole coherence will therefore
be lost after the hole has propagated a distance L�1 /E. At
energies E�� above the gap, Andreev reflection is severly

FIG. 3. �Color online� �a� The energy dispersion for graphene in the Brillouin zone. The upper band is the antibonding � orbital, while
the lower band is the bonding � orbital. It is seen that the bands touch at Fermi level �EF=0� at six discrete points, which constitutes the
effective Fermi surface. �b� Contour plot of the dispersion relation, clearly showing the hexagonal structure of the Fermi points. The center
of each red droplike structure represents either K or K�.
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suppressed since direct tunneling into quasiparticle states is
now possible.

In graphene, a new phenomenology of Andreev reflection
is at hand due to the band structure which effectively looks
like that of a zero-gap semiconductor �see also Ref. 3�. Since
the conduction and valence bands touch at the Fermi energy
EF=0, one may distinguish between three important cases:
�i� undoped graphene with EF=0, �ii� doped graphene with

EF�0, and �iii� heavily doped graphene with EF�0. These
different scenarios are shown in Fig. 4.

In undoped graphene, with EF��, an incident electron
with energy E is denied access as a quasiparticle into the
superconductor, and physical transport across the junction is
thus manifested through reflection as a hole. When Andreev
reflection takes place, the transmitted Cooper pair is located
at the Fermi level of the superconductor. Energy conserva-
tion then demands that the missing electron in the normal
region that is reflected as a hole must be located at −E due to
the energy conservation—i.e., in the valence band. This is
different from normal Andreev reflection, since in that case
both the electron and hole belong to the same band �conduc-
tion�. For specular Andreev reflection, however, they belong
to different bands. The use of the term “specular” in order to
characterize this type of Andreev reflection originates with
the fact that the group velocity vg and momentum k have the
same sign for a valence band hole, while in contrast vg and k
have opposite signs for a conduction band hole. To see this,
consider first a usual metallic parabolic dispersion E
=k2 /2m−EF for the electrons, such that one readily infers
from vg=�kE that vg=k /m. Therefore, a hole created at a
given energy E will have vg=−k /m, since holes have oppo-
site group velocities of the electrons for a given wave vector
k. For normal Andreev reflection, the holes are located in the
conduction band and therefore satisfy vg �−k.

In the case of specular Andreev reflection for undoped
graphene �EF=0�, a hole is generated in the valence band.
Since in the valence band, the electronic dispersion reads E
=−vF 
k
, the group velocity of electrons is opposite to their
momentum. Conversely, the group velocity for valence holes
is parallell to their momentum. This is the mechanism behind
specular Andreev reflection. In doped graphene �EF�0�, the
Andreev reflection can be normal or specular, depending on
the energy of the incoming electron, as sketched in Fig. 4. In
heavily doped graphene, �EF���, only normal Andreev re-
flection �AR� is present for subgap energies since the dis-
tance from Fermi level to the valence band is too large for
specular AR to occur. In the regime EF� �0,��, one has
either normal or specular Andreev reflection, depending on
the incident electron energy E.

We also comment on the effect of Fermi vector mismatch
�FVM�. Blonder and Tinkham21 showed that in a metallic
N-S junction, a FVM would act as a source for normal re-
flection, such that one could effectively account for it simply
by choosing a higher value for the barrier strength Z. Inter-
estingly, in a ferromagnet-superconductor junction the effect
of a FVM could not be reproduced by simply shifting Z to a
higher value, as discussed by Zutic and Valls.22 In the ab-
sence of an exchange energy, however, the effect of FVM
can be thought of as a reduction of the Fermi surface that
participates in the scattering processes, as illustrated in Fig.
5. One may parametrize the FVM by the parameter /
=kF /qF where kF �qF� is the Fermi momentum in the normal
�superconducting� part of the system. In particular, it is seen
that for /�1, there is only a possible transmission of quasi-
particles �although these decay exponentially� up to a critical
angle less than � /2.23

Having established the states that participate in the scat-
tering at the interface, we now turn to equations that describe
these quasiparticle states.
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FIG. 4. �Color online� Graphical illustration of the different
scattering processes that may take place at a �i� metallic and �ii�
graphene N-S junction. While the Andreev reflected hole in case �i�
retraces the trajectory of the incoming electron, the hole in case �ii�
may be specularly reflected. This peculiar property is a result of the
existence of two bands �conduction and valence� close to the Fermi
energy in graphene. In the low-energy transport regime—i.e., qua-
siparticle energies E of order O���—retroreflection dominates if
EF��, while specular reflection dominates if EF��.

JACOB LINDER AND ASLE SUDBØ PHYSICAL REVIEW B 77, 064507 �2008�

064507-4



B. Scattering processes

Consider the case of zero external magnetic field.
The full Bogoliubov–de Gennes �BdG� equation for
the two-dimensional �2D� sheet graphene normal–
s-wave-superconductor junction in the xy plane then reads2,3

�Ȟ − EF1̌ �k1̌

�k
†1̌ EF1̌ − ŤȞŤ−1

��u

v
� = E�u

v
� , �3�

where E is the excitation energy and �u ,v� denoting the elec-
tronlike and holelike exictations described by the wave func-
tion. Assuming that the superconducting region is located at
x�0 and neglecting the decay of the order parameter in the
vicinity of the interface,24 we may write for the spin-singlet
order parameter

�k = ����ei�$�x� , �4�

where $�x� is the Heaviside step function and � is the phase
corresponding the globally broken U�1� symmetry in the su-
perconductor, while �=arctan�ky /kx� is the angle on the
Fermi surface in reciprocal space �we have adopted the
weak-coupling approximation with k fixed on the Fermi sur-
face�. Note that in contrast to previous work, we allow for
the possibility of unconventional superconductivity in the
graphene layer since �k now may be anisotropic. We have
applied weak-coupling limit, the momentum k is fixed on the

Fermi surface, such that �k only has an angular dependence.
Since we employ a spin-singlet even-parity order parameter,
the condition ����=���+�� must be fulfilled. The single-
particle Hamiltonian is given by

Ȟ = �Ĥ+ 0

0 Ĥ−

�, Ĥ0 = − ivF��̂x�x 0 �̂y�y� . �5�

Here, vF is the energy-independent Fermi velocity for
graphene, while �̂i denotes the Pauli matrices. For later use,
we also define the Pauli matrix vector �̂= ��̂x , �̂y , �̂z�. These
Pauli matrices operate on the sublattice space of the honey-
comb structure, corresponding to the A and B atoms, while
the 0 sign refers to the two so-called valleys of K and K� in
the Brillouin zone. The Dirac points earn their sobriquet as
valleys from the geometrical resemblance of the band disper-
sion to the aforementioned. The spin indices may be sup-
pressed since the Hamiltonian is time-reversal invariant. In
addition to the spin degeneracy, there is also a valley degen-
eracy, which effectively allows one to consider either the one

of the Ĥ0 set. Therefore, the 8-matrix BdG equation �3� re-
duces to a �4�4�-matrix BdG equation: namely,

�Ĥ0 − EF1̂ �k1̂

�k
†1̂ EF1̂ − Ĥ0

��u

v
� = E�u

v
� , �6�

where have explicitly used that ŤȞ= ȞŤ. Let us then con-

sider Ĥ+, such that one may write

�p · �̂ − EF1̂ �k1̂

�k
†1̂ EF1̂ − p · �̂

��u

v
� = E�u

v
� . �7�

In the above Hamiltonian, we have only included diagonal

terms in the gap matrix—i.e., �̂k=�k1̂. This corresponds to
exclusively intraband pairing on each of the sublattices A and
B. In recent work by Black-Schaffer and Doniach,25 it was
shown that by postulating interband spin-singlet hopping be-
tween the sublattices, one could achieve dominant d-wave
pairing in intrinsic graphene. While an on-site attractive po-
tential is sufficient to achieve s-wave pairing, leading to a
diagonal gap matrix, nearest-neighbor interactions couple the
two sublattices and should yield off-diagonal elements in the
gap matrix. In this work, we restrict ourselves to anisotropic
superconducting pairing with diagonal elements in the gap
matrix, although one would have to take into account off-
diagonal elements as well for a completely general treatment.
We comment more on this later.

Consider an incident electron from the normal side of the
junction �x"0� with energy E. For positive excitation ener-
gies E�0, the eigenvectors and corresponding momentum
of the particles read

+
e = �1,ei�,0,0�Teipe cos �x, pe = �E + EF�/vF, �8�

for a right-moving electron at angle of incidence � �see Fig.
6�, while a left-moving electron is described by the substitu-
tion �→�−�. If Andreev reflection takes place, a left-
moving hole is generated with an energy E, angle of reflec-
tion �A, and corresponding wave function

θS

θS

θN

κ < 1

κ = 1

κ > 1

θN

θS

θN θS

θS

θN

FIG. 5. �Color online� The effective impedance caused by FVM
illustrated schematically for all possible cases of smaller, equal, and
larger Fermi velocity in the normal part of the system. Except for
the case when the Fermi velocities are identical in the normal and
superconducting parts of the system �/=1�, parts of the Fermi sur-
face does not participate in the scattering processes, resulting in a
reduction in conductance. For instance, when /"1, total reflection
occurs at angles �N�asin�/�, such that FVM effectively acts as a
source of normal reflection �Ref. 23�.
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−
h = �0,0,1,e−i�A�Te−iph cos �Ax, ph = �E − EF�/vF, �9�

where the superscript “e” “�h�” denotes an electronlike �hole-
like� excitation. Since translational invariance in the ŷ direc-
tion holds, the corresponding component of momentum is
conserved. This condition allows for determination of the
Andreev reflection angle �A through ph sin �A= pe sin �.
From this equation, one infers that there is no Andreev re-
flection ��A= 0� /2�, and consequently no subgap conduc-
tance, for angles of incidence above the critical angle

�c = asin� 
E − EF

E + EF

� . �10�

On the superconducting side of the system �x�w�, the pos-
sible wave functions for transmission of a right-moving qua-
siparticle with a given excitation energy E�0 read

%+
e = „u��+�,u��+�ei�+

,v��+�e−i�+
,v��+�ei��+−�+�…T

�eiqe cos �+x, qe = �EF� + �E2 − 
���+�
2�/vF,

%−
h = „v��−�,v��−�ei�−

,u��−�e−i�−
,u��−�ei��−−�−�…T

�eiqh cos �−x, qh = �EF� − �E2 − 
���−�
2�/vF. �11�

The coherence factors are, as usual, given by26

u��� =�1

2
�1 +

�E2 − 
����
2

E
� ,

v��� =�1

2
�1 −

�E2 − 
����
2

E
� . �12�

Above, we have defined �+=�S
e , �−=�−�S

h, and ei�0

=ei����0� / 
���0�
. The transmission angles �S
�i� for the elec-

tronlike �ELQ� and holelike �HLQ� quasiparticles are given
by q�i� sin �S

�i� = pe sin �, i=e ,h. Note that for subgap energies
E"�, there is a small imaginary contribution to the wave
vector, which leads to exponentional damping of the wave
functions inside the superconductor. The physical reason for
this is that there can be no transmission of quasiparticles into
the superconductor for subgap energies. Note that for all
wave functions listed in the equations above, we have for
clarity not included a common phase factor eikyy which cor-
responds to the conserved momentum in the ŷ direction. A
possible FVM between the normal and superconducting re-
gions is accounted for by allowing for EF��EF.The case
EF��� corresponds to a heavily doped superconducting re-
gion. It is also straightforward to obtain the eigenfunctions
for the case when the gap matrix consists of off-diagonal
elements, as opposed to the gap matrix treated here with
diagonal elements. In particular, for

�̂k = � 0 ����ei�

����ei� 0
� , �13�

the eigenfunctions may be obtained from Eq. �14� simply by
switching the phase factors as follows:

%+
e = „u��+�,u��+�ei�+

,v��+�ei��+−�+�,v��+�e−i�+…T

�eiqe cos �+x, qe = �EF� + �E2 − 
���+�
2�/vF,

%−
h = „v��−�,v��−�ei�−

,u��−�ei��−−�−�,u��−�e−i�−…T

�eiqh cos �−x, qh = �EF� − �E2 − 
���−�
2�/vF. �14�

At this stage, it is appropriate to insert the restriction
which will be used throughout the rest of this paper: namely,
��EF�. Since we are using a mean-field approach to de-
scribe the superconducting part of the Hamiltonian, it is im-
plicitly understood that phase fluctuations of the order pa-
rameter must be small.39 For this criterion to be fulfilled, the
superconducting coherence length � must be large compared
to some characteristic length scale of the system.27 Follow-
ing Ref. 27, the critical temperature TK at which long-range
phase fluctuations of the order parameter destroy the order-
ing when approaching the critical temperature Tc from below
is given by

TK = Tc
MF�1 − 
 
� , �15�

where 
 
 ��D, D is the dimensionality of the system, and
Tc

MF is the critical temperature predicted by mean-field
theory. �For an extensive treatment of the effect of phase
fluctuations in extreme type-II superconductors, see Ref. 28.�
Thus, only for 
 
 �1 is mean-field theory a viable option
for describing superconductivity in the system, correspond-
ing to a large coherence length �. Notice that the Ginzburg
temperature TG, which describes the regime where amplitude
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FIG. 6. �Color online� The scattering processes taking place at a
N-S or N-I-S graphene junction. In the former case, the insulating
region is completely absent, and only the six depicted processes
take place. Note that only normal Andreev reflection or specular
Andreev reflection takes place at any given energy E, never both.
For a N-I-S graphene junction, there are transmitted and reflected

electrons and holes in the insulating region corresponding to ̃I, not
shown in the above figure.
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fluctuations of the order parameter become important �T
�TG�, satisfies Tc

MF�TG�TK. A natural choice of character-
istic length scale for the system in the normal state is obvi-
ously the Fermi wavelength �F�=2�vF� /EF�, such that the cri-
terion for validity of mean-field theory reads � /�F��1, or
equivalently, EF���.

The relevant scattering processes at the N-S graphene in-
terface are shown in Fig. 6, in the two cases of zero barrier
and an insulating region of width w. In the former case, the
boundary conditions dictate that 
x=0=%
x=0, where

 = +
e + r−

e + rA−
h ,

% = te%+
e + th%−

h , �16�

while in the latter case, one must match the wave functions
at both interfaces:


x=0 = ̃I
x=0, ̃I
x=w = %S
x=w, �17�

where we have defined the wave function in the insulating
region

̃I = t̃1̃+
e + t̃2̃−

e + t̃3̃+
h + t̃4̃−

h . �18�

The wave functions ̃ differ from  in that the Fermi energy
is shifted by means of, e.g., an external potential V0, such
that EF→EF−V0. Also, note that the trajectories of the qua-

siparticles in the insulating region, defined by the angles �̃

and �̃A, differ by the same substitution, meaning

sin �̃/sin � = �E + EF�/�E + EF − V0� ,

sin �̃A/sin � = �E + EF�/�E − EF + V0� . �19�

Finally, note that the subscript 0 on the wave functions in
the normal region indicates the direction of their group ve-
locity, which in general is different from the direction of
momentum, as discussed previously. Consequently, although
the Andreev-reflected hole wave function carries a subscript
“−” above, one should keep in mind that for normal Andreev
reflection, the direction of momentum is opposite to the
group velocity for the hole.

Before we go on to presenting results, we make one con-
ceptual remark. The proximity effect means that an otherwise
normal system becomes superconducting by virtue of having
the superconducting wave function from a nearby supercon-
ductor leak into the normal system, thus making it supercon-
ducting in some region. This is a result of a boundary con-
dition imposed on the normal system from the proximate
host superconductor. The resulting wave function in the
proximity region of the normal system is then a BCS-type
wave function. Such a wave function unquestionably de-
scribes a system with a gapped Fermi surface �possibly with
nodes on the Fermi surface�. It matters not by what micro-
scopic mechanism such a state was established, as long as it
is there. The effective interaction giving rise to proximity-
induced superconductivity in graphene close to the surface in
contact with an intrinsically superconducting host system is
obtained by considering the complete superconductor-

graphene system and integrating out the electrons on the su-
perconducting side. The electrons in graphene then experi-
ence an effective attractive interaction �eff giving rise to a
gap by virtue of hopping into and out of the superconducting
side. We thus have, by such tunneling processes, �eff�0
even if �=0. Here, � is the electron-electron coupling con-
stant giving rise to superconductivity in graphene per se.
Since graphene intrinsically is a normal system and is well
approximated by noninteracting electrons, this coupling con-
stant vanishes, �=0. The relationship between the gap in the
normal region � and �f f	 is thus �=�eff�f f	, and this gives a
nonzero gap in the vicinity of the proximate host supercon-
ductor. Here, f are fermion annhilation operators and �f f	
thus represents the pair amplitude induced in the normal
graphene region. The proximity-induced gap vanishes rap-
idly as one goes away from the surface and into the bulk of
graphene, since �eff vanishes rapidly as we move away from
the proximate host superconductor. It would in principle be
incorrect to assert that in the proximity region of graphene,
we could have a nonzero anomalous Green’s function �f f	,
but no gap �, by using a self-consistency relation of the type
�=��f f	 with �=0.29 Such a self-consistency relation does
not exist in a normal system which does not superconduct by
itself. However, in a situation where the intrinsic �=0, it
could well turn out to be the case that �eff is small, leading to
a gap which is very small.24 In our paper, we have a thin film
graphene system with a bulk superconductor in contact with
the film, deposited on top of the film. If the thickness of the
graphene film is smaller than the coherence length of the
bulk superconductor, one obtains a proximity-induced super-
conducting gap throughout the film. This is similar to
the situation realized in a planar superconductor/two-
dimensional electron gas junction.30,31 As we shall see, our
results are quite sensitive to the presence of even a small
induced gap in graphene.

III. CONDUCTANCE SPECTRA

In what follows, we describe how the conductance spectra
of an N-S and N-I-S graphene junction may be obtained.
According to the Blonder-Tinkham-Klapwijk �BTK�
formalism,32 the normalized conductance is given by

G�eV� =
1

GN
�

−�/2

�/2

d� cos ��1 − 
r�eV,��
2

+
Re ei�A

cos �

rA�− eV,��
2� , �20�

where r and rA are the reflection coefficients for normal and
Andreev reflection,40 respectively, while GN is a renormal-
ization constant corresponding to the N-N metallic
conductance,23

GN = �
−�/2

�/2

d� cos �
4 cos2 �

4 cos2 � + Z2 . �21�

In this case, we have a zero intrinsic barrier such that Z=0.
We will apply the usual approximation 
rA�−eV ,�� 
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= 
rA�eV ,��
, which may be shown to hold for a quite general
parameter regime. For perfect normal reflection �
r
2=1�,
there is no conductance, while for perfect Andreev reflection
�
rA
2=1�, the conductance is doubled compared to the N-N
case. In order to obtain these coefficients, we make use of the
boundary conditions described in the previous section. The
analytical solution and behavior of the conductance differs in
the N-S and N-I-S cases, and we proceed with a separate
treatment of these scenarios.

A. N-S junction

Solving the boundary conditions for the wave functions at
the interface leads to the analytical expressions for the reflec-
tion coefficients:

r =
2 cos ���+v��+�v��−�ei��−−�+� − �−u��+�u��−��

v��+�v��−�ei��−−�+�Y− − u��+�u��−�Y+
− 1,

rA =
2e−i�+

cos ���+u��−�v��+� − �−u��−�v��+��
v��+�v��−�ei��−−�+�Y− − u��+�u��−�Y+

, �22�

where we have defined the auxiliary quantities �0=ei�0

−e−i�A and Y0=���ei�0+e−i��. The interplay between the
different phases felt by the ELQ and HLQ in the supercon-
ductor in the case of an anisotropic order parameter enters
above through the factor ei��−−�+�. It remains, however, to be
clarified how this interplay manifests itself in the tunneling
conductance. Before investigating this in more detail, let us
briefly consider the isotropic s-wave case first—i.e., ����
=�—such that ei��−−�+� =1.

1. Conventional s-wave pairing

For conventional superconducting pairing, Eq. �22� re-
duces to

r =
2 cos ���+v2 − �−u2�

v2Y− − u2Y+
− 1,

rA =
2 cos �uv�ei�+

− ei�−
�

v2Y− − u2Y+
. �23�

This case was first studied by Beenakker.2 For consistency
and completeness, we reproduce the results of Ref. 2 �see
Fig. 7�a��. We point out that Eqs. �23� are valid for any
parameter range and not restricted to the heavily doped case
treated in Ref. 2. To illustrate the difference, we consider the
regime EF�=EF shown in Fig. 7�b�. In this case, the standard
situation of perfect Andreev reflection for subgap energies is
recovered, with a sharp drop at the gap edge corresponding
to the onset of quasiparticle transmittance into the supercon-
ductor.

2. Anisotropic d-wave pairing

To treat an unconventional superconducting order param-
eter, we must revert to the general expressions in Eq. �22�. In
order to account for the effect of an anisotropic gap, we

choose the dx2−y2 gap from Table I, which in the weak-
coupling approximation �
k 
 =kF� reads ����=� cos�2�
−2	�. Here, 	 models the relative orientation of the gap in k
space with respect to the interface normal as illustrated in
Fig. 8.

We now proceed to investigate how the conductance spec-
tra of a N-S graphene junction change when going from a
s-wave to a d-wave order parameter in the superconducting
part of the system. Consider Fig. 9 for the case of heavily
doped graphene, where the orientation of the gap is such that
the condition for perfect formation of zero energy states in a
metallic N-S junction is fulfilled—i.e., ����=−���−��. As
shown by Tanaka and Kashiwaya,19 this gives rise to a qua-
siparticle interference between the ELQ and HLQ since they
feel different phases of the pairing potentials due to their
different trajectories of transmittance into the supercon-
ductor. This results in a bound surface states with zero
energy18 close to the N-S interface. For the N-S graphene
junction studied here, the explicit barrier potential is zero,
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FIG. 7. �Color online� Conductance spectra for graphene in �a�
with EF� /�=103 and in �b� with EF�=EF. The spectra in �a� are
identical to the result of Ref. 2. In �b�, the subgap conductance is
always close to 2GN, but becomes more constant for increasing EF

since �c→� /2. We have plotted the ratios �50,100,1000� of EF /�
in �b�, from bottom to top.
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FIG. 8. �Color online� Sketch of a 2D N-S graphene junction
with an anisotropic superconductor. The orientation of the gap in k
space is modeled by the angle 	.
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while the FVM effectively acts as source of normal reflec-
tion. From Fig. 9, one may infer that a peak at zero bias is
present in the presence of FVM, although the ZBCP does not
increase in magnitude with increasing FVM. We will later
study how the presence of an intrinsic barrier in the form of
a thin, insulating region separating the normal and supercon-
ducting part affects the ZBCP.

Next, we plot the conductance spectra for doped graphene
to see how they evolve upon a rotation of the gap. The be-
havior is quite distinct from that encountered in a N-S me-
tallic junction. From Fig. 10�a�, we see that the peak of the
conductance shifts from eV=� to progressively lower values
as 	 increases from 0 to � /4. In this respect, the conduc-
tance spectra actually mimicks a lower value of the gap than
what is the case, if one were to infer the gap magnitude from
the position of the singularity in the spectra. For a given

FVM, determining the magnitude of the gap by the usual
method of locating the characteristic feature in the conduc-
tance spectra is not as straight forward in N-S graphene junc-
tions as in the metallic case. Indeed, multiple measurements
with several different interface orientations would in general
be required to obtain the correct value of the gap. This
should be an unambigously observable feature in experi-
ments and provides a direct way of testing our theory. Fi-
nally, we consider graphene in Fig. 10�b� with EF=EF� for a
d-wave order parameter. Upon varying 	 from 0 to � /4,
there is now little distinction between different angles of ori-
entation. The conductance spectra are in this case very re-
semblant to the metallic N-S case for zero barrier.19

B. N-I-S junction

We now consider the conductance of an N-I-S graphene
junction, where I denotes an “insulating” �see Introduction�
region modeled by a very large energy potential for the qua-
siparticles. Solving the boundary conditions introduced in
Sec. II, we obtain analytical expression for r and rA, which is
all that is required in order to calculate the conductance.
However, these expressions are unwieldy and the reader may
consult the Appendix for their explicit form. In the follow-
ing, we will not work exclusively in the thin-barrier limit d
→0,V0→� as in Ref. 12. Some aspects of including an
insulation region of arbitrary width and strength were very
recently discussed in Ref. 33, albeit only in the case of iso-
tropic s-wave pairing. We now treat the two cases of s-wave
and d-wave pairing separately.

1. Conventional s-wave pairing

This case was first studied by Bhattacharjee and
Sengupta.12 First, we briefly show that we are able to repro-
duce the qualitative findings of Ref. 12. As shown in the
Appendix, it is convenient to introduce the parameter �
=V0w /vF in the thin-barrier limit. In this case, the reflection
coefficients r and rA exhibit an interesting oscillating behav-
ior as a function of �. To see this, consider Fig. 11 where we
have plotted the voltage dependence of the normalized con-
ductance for several values of �. For �=0, we reproduce the
result of Fig. 7�b�. This is reasonable since the conductance
of an N-I-S junction with �=0—i.e., zero width—should be
the same as a N-S junction. The � periodicity is reflected in
that the curves for �=0 and �=� are identical. For ��n�,
n=0,1 ,2 , . . ., there is a source of normal reflection at the
interfaces due to the insulating region, and consequently the
subgap conductance is reduced from its ballistic value 2GN.
Even in the presence of a FVM, EF��EF, the spectra of Fig.
11 retain their � periodicity. However, the FVM acts as a
source of normal reflection such that one does not have
nearly perfect Andreev reflection at subgap energies.

Our results differ slightly from those reported in Ref. 12.
Although we obtain qualitatively exactly the same depen-
dence on � of the conductance, it is seen by comparing our
Fig. 11 with Fig. 1 of Ref. 12 that our curves are phase
shifted by � /2 in � in comparison. As a consequence, we
regain the N-S conductance result when �=0 instead of �
=� /2 as reported in Ref. 12. Physically, this seems to be
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FIG. 9. �Color online� Conductance spectra for doped graphene
in with EF�=104� for a d-wave order parameter with orientation
angle 	=� /4. A ZBCP is present for large FVM and becomes
unobservable narrow for EF /�"10. For 	=0, the conductance
spectra are essentially identical to those in Fig. 7.
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FIG. 10. �Color online� Conductance spectra for �a� doped
graphene in with EF�=104� for a d-wave order parameter and �b�
undoped graphene with EF=EF�. In both cases, we have set EF /�
=100 and investigate how the conductance spectra evolves upon
rotating 	 from 0 to � /4 in steps of � /20. In �a�, it is seen that the
peak of the conductance shifts from eV=� to progressively lower
values as 	 increases. This is in contrast to metallic N-S junctions.
In �b�, we plot the conductance for 	=� /4. We find virtually no
difference between various orientations of the gap in this case, and
the spectra are quite similar to the metallic N-S case with zero
barrier.
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more reasonable since �=0 corresponds to the case of an
absent barrier, a situation where there is no source of normal
reflection besides the condition that momentum in the direc-
tion parallell to the barrier must be conserved. We have also
verified that our �=0 result coincides with the results ob-
tained using the full expressions �see the Appendix� without
assuming a thin-barrier limit when we let both w and V0 go
to zero. We believe that this minor discrepancy between our
results and the results of Ref. 12 stems from a sign error in
their Eq. �5� and also in their expression for kb�kb�� in the text
above Eq. �5�.

To unveil the periodicity even more clear, consider Fig.
12 for a plot of the zero-bias conductance as a function of �.
The cases EF�=EF and EF��EF display a striking difference.
The qualitative shape of the curves is equal, but the ampli-
tude is diminished with increasing FVM. This may in simi-
larity to the above discussion be attributed to the increased
normal reflection that takes place at zero bias voltage, thus
reducing the conductance.

2. Anisotropic d-wave pairing

We now contrast the s-wave case with an anisotropic pair-
ing potential to see how the spectra are altered. Consider first

Fig. 13 for a plot of the tunneling conductance in the un-
doped case. We consider the two angles 	=0 and 	=� /4 as
representatives for the two types of qualitative behavior that
may be expected in a d-wave superconductor–normal-
graphene junction. The latter corresponds to perfect forma-
tion of zero energy states �ZES� in the metallic counterpart
junction. From the spectra, one infers that for 	=0, tunneling
into the nodes of the superconducting gap destroys the nearly
perfect Andreev reflection for subgap energies obtained in
Fig. 11. When 	=� /4, one observes the formation of a
ZBCP which peaks at twice the normal-state conductance. It
is also interesting to note that the zero bias conductance re-
mains unchanged upon increasing �. Therefore, the equiva-
lent of Fig. 12 in the present d-wave case is G�0��2GN,
regardless of �.

Introducing a FVM between the superconducting and nor-
mal parts of the system, the spectra are rendered less sensi-
tive to any increase in �, as seen in Fig. 14. For 	=0, the
spectra are essentially identical to the doped s-wave case.
For 	=� /4, it is seen that the formation of a ZBCP becomes
even more protruding and that the zero bias conductance is
still insensitive to any increase in �. Therefore, one is led to
conclude that the normalized zero bias conductance
G�0� /GN in the 	=� /4 d-wave case is constantly equal to
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FIG. 11. �Color online� Conductance spectra for a N-I-S
graphene junction with EF� /�=EF /�=100, using s-wave pairing.
We reproduce the same results as Ref. 12 with a � periodicity in the
parameter �. However, we obtain a phase shift of � /2 in � com-
pared to their results. We believe that this difference pertains to a
minor sign error in the wave functions used in Ref. 12.
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FIG. 13. �Color online� Conductance spectra for a N-I-S
graphene junction with EF� /�=EF /�=100, using d-wave pairing.
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nearly 2, regardless of � and the magnitude of the FVM.

IV. CONDUCTANCE-OSCILLATIONS

In this section, we investigate a feature of the conductance
spectra that is in common for both the s-wave and d-wave
cases: an oscillatory behavior as a function of applied bias
voltage. Consider first a N-I-S graphene junction. In the thin-
barrier limit defined as w→0 and V0→� with s-wave pair-
ing, Ref. 12 reported a � periodicity of the conductance with
respect to the parameter �=V0w /vF, as discussed in the pre-
vious section. We now show that by not restricting ourselves
to the thin-barrier limit, new physics emerges from the pres-
ence of a finite-width doped region separating the N and S.
We measure the width w of region I in units of �F� and the
potential barrier V0 in units of EF�. The linear dispersion ap-
proximation is valid20 up to �1 eV, and we will consider
Fermi energies in graphene4 ranging from the undoped case
EF �0 meV to EF �100 meV in the doped case, setting the
gap value to �=1 meV. Owing to the restriction of EF���,
we fix EF�=100�, and also set V0=500� in order to model
the effective potential in the region I.

Consider Fig. 15 where we plot the normalized tunneling
conductance in case of s-wave pairing, for both a doped and
undoped normal part of the system. The most striking new
feature compared to the thin-barrier limit is the strong oscil-
lations in the conductance as a function of eV. For subgap
energies, we regain the N-S conductance for undoped
graphene when �=0, with nearly perfect Andreev reflection.
The same oscillations are seen in the d-wave pairing case,
shown in Fig. 16. To model the d-wave pairing, we have
used the dx2−y2 model ����=� cos�2�−2	� with 	=� /4.
The parameter 	 effectively models different orientations of
the gap in k space with regard to the interface, and 	=� /4

corresponds to perfect formation of ZES in N-S metallic
junctions. For 	=0, the d-wave spectra are essentially iden-
tical to the s-wave case, since the condition for formation of
ZES is not fulfilled in this case.19 It is seen that in all cases
shown in Figs. 15 and 16 the conductance exhibits a novel
oscillatory behavior as a function of applied bias voltage eV
as the width w of the insulating region becomes much larger
than the Fermi wavelength—i.e., w��F�.

The oscillatory behavior of the conductance may be un-
derstood as follows. Nonrelativistic free electrons with en-
ergy E impinging upon a potential barrier V0 are described
by an exponentially decreasing nonoscillatory wave function
eikx inside the insulating region if E"V0, since the dispersion
essentially is k��E−V0. Relativistic free electrons, on the
other hand, have a dispersion k��E−V0�, such that the cor-
responding wave functions do not decay inside the insulating
region. Instead, the transmittance of the junction will display
an oscillatory behavior as a function of the energy of inci-
dence E. In general, a kinetic energy given by �k	 will lead
to a complex momentum k��E−V0�1/	 inside the tunneling
region and hence damped oscillatory behavior of the wave
function. Relativistic massless fermions are unique in the
sense that only in this case �	=1� is the momentum purely
real. Hence, the undamped oscillatory behavior at subgap
energies appears as a direct manifestation of the relativistic
low-energy Dirac fermions in the problem. This observation
is also linked to the so-called Klein paradox which occurs for
electrons with such a relativistic dispersion relation, which
has been theoretically studied in normal graphene.34

We next discuss why the illustrated conductance spectra
are different for s-wave and d-wave symmetries, in addition
to comparing the doped and undoped case. The difference in
doping level between the superconducting and normal part of
the system may be considered as an effective FVM, acting as
a source of normal reflection in the scattering processes. This
is why the subgap conductance at thin barrier limit is re-
duced when EF��EF. Moving away from the thin-barrier
limit, it is seen that oscillations emerge in the conductance
spectra. For s-wave pairing, the amplitude of the oscillations
is larger for EF��EF than for the case of no FVM, but the
period of oscillations remains the same. This period depends
on w, while the amplitude of the oscillations is governed by
the wave vectors in the regions I and S. The maximum value
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FIG. 15. �Color online� Tunneling conductance of a N-I-S
graphene junction for s-wave pairing in the undoped and doped
cases �see main text for parameter values�. We have fixed V0 /�
=500 and EF� /�=100. It is seen that for increasing w, a novel os-
cillatory behavior of the conductance as a function of voltage is
present in all cases.
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FIG. 16. �Color online� Same as Fig. 15, but now for d-wave
pairing with 	=� /4. We have fixed V0 /�=500 and EF� /�=100.
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of the oscillations occurs when 2w equals an integer number
of wavelengths, corresponding to a constructive interference
between the scattered waves. Physically, the amplitude de-
pendence of the oscillations on the doping level originates
with the fact that any FVM effectively acts as an increase in
barrier strength. By making V0 larger, one introduces a stron-
ger source of normal reflection. When the resonance condi-
tion for the oscillations is not met, the incoming particles are
reflected more efficiently. This is also the reason why in-
creasing V0 directly and increasing the FVM has the same
effect on the spectra.

We now turn to the difference between the s-wave and
d-wave symmetries. It is seen that the conductance is re-
duced in the d-wave case compared to the s-wave case and is
actually nearly constant for EF=0. One may understand the
reduction in subgap conductance in the undoped case as a
consequence of tunneling into the nodes of the gap, which is
not present in the s-wave case. Hence, Andreev reflection,
which significantly contributes to the conductance, is re-
duced in the d-wave case compared to the s-wave case.
Moreover, we see that a ZBCP is formed when EF��EF,
equivalent to a stronger barrier, and this is interpreted as the
usual formation of ZES leading to a transmission at zero bias
with a sharp drop for increasing voltage.

V. DISCUSSION

By means of the proximity effect, Heersche et al. success-
fully induced superconductivity �see also Ref. 35� in a
graphene layer.7 This achievement opens up a vista of new,
exciting physics due to the combination of the peculiar elec-
tronic features of graphene and the many interesting proper-
ties of superconductivity. For our theory to be properly tested
experimentally, it is necessary to create N-S and N-I-S
graphene junctions. Junctions involving normal graphene
with insulating regions have recently been experimentally
realized.4,5 In our work, we have discussed novel conduc-
tance oscillations in a N-I-S graphene junction that arise
when moving away from the thin-barrier limit discussed in
Ref. 12. While reaching the thin-barrier limit might pose
some difficulties from an experimental point of view, our
predictions are manifested when using wide barriers, which
should be technically easier to realize. In order to reach the
doped regime, this could be achieved by either chemical
doping or using a gate voltage to raise the Fermi level in the
superconducting region.34,36 The relevant magnitudes for the
various physical quantities present in such an experimental
setup has been discussed in the main text of this paper.

It is also worth mentioning that since we have assumed a
homogeneous chemical potential in each of the normal, in-
sulating, and superconducting regions, the experimental real-
ization of the predicted effects require charge homogeneity
of the graphene samples. This is a challenging criterion,
since electron-hole puddles in graphene imaged by scanning
single-electron transistors37 suggest that such charge inho-
mogeneities probably play an important role in limiting the
transport characteristics of graphene.38 In addition, we have
neglected the spatial variation of the superconducting gap
near the N-S interfaces. The suppression of the order param-

eter is expected to least pronounced when there is a large
FVM between the two regions. However, the qualitative re-
sults presented in this work are most likely unaffected by
taken into account the reduction of the gap near the interface.

VI. SUMMARY

In summary, we have studied coherent quantum transport
in normal-superconductor �N-S� and normal-insulator-
superconductor �N-I-S� graphene junctions, investigating
also the role of d-wave pairing symmetry on the tunneling
conductance. We elaborate on the results obtained in Ref. 17:
namely, a new oscillatory behavior of the conductance as a
function of bias voltage for insulating regions that satisfy
w��F�, which is present both for s- and d-wave pairing. This
is a unique manifestion of the Dirac-like fermions in the
problem. In the d-wave case, we have studied the conduc-
tance of N-S and N-I-S junctions in order to make predic-
tions of what could be expected in experiments, providing
both analytical and numerical results. We find very distinct
behavior from metallic N-S junctions in the presence of a
FVM: a rotation of 	 is accompanied by a progressive shift
of the peak in the conductance, without any formation of a
ZBCP except for 	=� /4. All of our predictions should be
easily experimentally observable, which constitutes a direct
way of testing our theory.
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APPENDIX: NORMAL- AND ANDREEV-REFLECTION
COEFFICIENTS FOR N-I-S JUNCTIONS

Solving the boundary conditions, Eqs. �17�, we obtain the
following expressions for the normal-reflection coefficient r
and the Andreev-reflection coefficient rA:

r = te�A + C� + th�B + D� − 1,

rA = te�A� + C�� + th�B� + D�� , �A1�

where the transmission coefficients read

te = 2 cos ��e−i�A�B� + D�� − �B�e−i�̃A − D�ei�̃A��!−1,

th = te�ei�A�A�e−i�̃A − C�ei�̃A� − A� − C��

��B� + D� − ei�A�B�e−i�̃A − D�ei�̃A��−1, �A2�

with the definition
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! = �e−i�A�B� + D�� − �B�e−i�̃A − D�ei�̃A���e−i��A + C�

+ �Aei�̃ − Ce−i�̃�� − ��De−i�̃ − Bei�̃� − e−i��B + D��

� ��A�e−i�̃A − C�ei�̃A� − e−i�A�A� + C��� . �A3�

We have defined the auxiliary quantities

A = u+ei�q+−p+��1 − �ei�̃ − ei�+
��2 cos �̃�−1� ,

B = v−ei�q−−p+��1 − �ei�̃ − ei�−
��2 cos �̃�−1� ,

C = u+ei�p++q+��ei�̃ − ei�+
��2 cos �̃�−1,

D = v−ei�p++q−��ei�̃ − ei�−
��2 cos �̃�−1, �A4�

and similarly introduced

A� = v+ei�q++p−−�+��1 + �ei�+
− e−i�̃A��2 cos �̃A�−1� ,

B� = u−ei�q−+p−−�−��1 + �ei�−
− e−i�̃A��2 cos �̃A�−1� ,

C� = v+ei�q+−p−−�+��e−i�̃A − ei�+
��2 cos �̃A�−1,

D� = u−ei�q−−p−−�−��e−i�̃A − ei�−
��2 cos �̃A�−1. �A5�

For more compact notation, we have finally defined

q+ = qe cos �+w, q− = qh cos �−w ,

p+ = p̃e cos �̃w, p− = p̃h cos �̃Aw . �A6�

In the thin-barrier limit defined as w→0 and V0→�, one
may set

�̃→ 0, �̃A → 0, q0 → 0, p0 → � � , �A7�

where �=V0w /vF.
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conductance displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of the
superconducting graphene, it exhibits an unusual oscillatory dependence on the potential height or the length
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The recent progress in practical fabrication techniques for
a monatomic layer of graphite, called graphene, has allowed
for experimental studies of this system, which in turn has
triggered a tremendous interest.1–7 Graphene is a two-
dimensional system of carbon atoms, and the low-energy
electrons in graphene are governed by the Dirac equation. Up
to now, intensive studies on graphene have been conducted,
for instance, quantum Hall effect,6,8,9 minimum conduc-
tivity,7 and bipolar supercurrent.10

From an applied physics point of view, graphene is also
an important material. Graphene exhibits high mobility and
carrier density controllable by gate voltage, which makes it
well suited for achieving device applications.5,6,11,12 In order
to apply graphene to electric devices, it is an important issue
to clarify characteristics of transport phenomena such as
charge5–7 and heat13–16 transports in graphene.

In conventional normal metal/superconductor junctions, it
is known that electric and thermal conductances reflect the
magnitude or symmetry of the gap of the superconductor.17,18

While the conductance in normal/superconductor graphene
junction has been studied by several authors,19–21 the thermal
conductance in this junction has not yet been investigated—
only the thermal conductance along the boundaries in a
superconductor/normal/superconductor graphene junction
has been treated previously.22 Therefore, the study of the
thermal conductance in normal/superconductor graphene
junction will complement the study of the electrical conduc-
tance in this junction.

In this Brief Report, we study heat transport in normal/
superconducting graphene junctions. We find that the thermal
conductance has an exponential dependence on temperature,
which reflects the s-wave symmetry of the superconducting
graphene. However, it displays an oscillatory dependence on
the potential height or the length of the barrier region. This
oscillatory dependence stems from the linear dispersion rela-
tion in graphene and differs in an essential way from the
result in the conventional normal metal/superconductor
junctions.17,18,29

We briefly present the formalism to be used in this Brief
Report by following Ref. 21. Consider a two dimensional
normal/insulating/superconducting graphene junction23

where the superconducting �normal� region is located in the
semi-infinite regions x�L �x"0�. The proposed experimen-
tal setup of our model is shown in Fig. 1. By exploiting the

valley degeneracy,24 the Bogoliubov–de Gennes equation for
the junction in the xy plane reads

�H − EF1̂ �1̂

�†1̂ EF1̂ − H
��u

v
� = E�u

v
� , �1�

with H=vF�kx�x+ky�y� and Fermi energy EF. The supercon-
ducting order parameter reads

� = ��T�ei�$�x − L� , �2�

where $�x� is the Heaviside step function, while � is the
phase corresponding to the globally broken U�1� symmetry
in the superconductor. Also, vF �106 m /s is the energy-
independent Fermi velocity for graphene, �i �i=x ,y� denotes
the Pauli matrices, E is the excitation energy, and u and v
denote the electronlike and holelike excitations, respectively,
described by the wave function. The Pauli matrices operate
on the two triangular sublattice spaces of the honeycomb
structure, corresponding to the A and B atoms. The linear
dispersion relation is a reasonable approximation even for
Fermi levels as high as 1 eV,25 such that the fermions in
graphene behave like massless Dirac fermions in the low-
energy regime.

Let us consider an incident electron from the normal side
of the junction �x"0� with energy E. For positive excitation
energies E�0, the eigenvectors and corresponding momen-
tum of the particles read

+
e = �1,ei�,0,0�Teipe cos �x, pe = �E + EF�/vF, �3�

for a right-moving electron at angle of incidence �, while a
left-moving electron is described by the substitution �→�

Superconducting electrode

Graphene layer

Top gate

Bottom gate

Voltage U

Heat current

FIG. 1. �Color online� The proposed experimental setup to mea-
sure heat transport by Dirac fermions in a graphene normal/
superconductor proximity structure. The top and bottom gates allow
for the chemical potential in the middle region to be adjusted.
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−�. The superscript T denotes the transpose. If Andreev re-
flection takes place, a left-moving hole with energy E and
angle of reflection �A is generated with the corresponding
wave function,

−
h = �0,0,1,e−i�A�Te−iph cos �Ax, ph = �E − EF�/vF, �4�

where the superscript e �h� denotes an electronlike �holelike�
excitation. Since translational invariance in the y direction
holds, the corresponding component of momentum is con-
served. This condition allows for the determination of the
Andreev-reflection angle �A via ph sin �A= pe sin �. From this
equation, one infers that there is no Andreev reflection ��A
= 0� /2� for angles of incidence above the critical angle,

�c = sin−1�
E − EF
/�E + EF�� . �5�

On the superconducting side of the system �x�L�, the pos-
sible wave functions for transmission of a right-moving qua-
siparticle with a given excitation energy E�0 read

%+
e = �u,uei�+

,ve−i�,vei��+−���Teiqe cos �+x,

qe = �EF� + �E2 − �2�/vF, �6�

%−
h = �v,vei�−

,ue−i�,uei��−−���Teiqh cos �−x,

qh = �EF� − �E2 − �2�/vF, �7�

where EF� is the Fermi energy in the superconducting side.
The coherence factors are given by26

u =�1

2
�1 +

�E2 − 
�
2

E
� , �8�

v =�1

2
�1 −

�E2 − 
�
2

E
� . �9�

Above, we have defined �+=�S
e and �−=�−�S

h. The transmis-
sion angles �S

�i� for the electronlike and holelike quasiparti-
cles are given by q�i� sin �S

�i� = pe sin �, i=e, h. Note that in all
the wave functions listed above, for clarity, we have not in-
cluded a common phase factor eikyy, which corresponds to
the conserved momentum in the y direction.

It is appropriate to insert the restriction which will be used
throughout this Brief Report, namely, �#EF� . Since we are
using a mean-field approach to describe the superconducting
part of the Hamiltonian, phase fluctuations of the order pa-
rameter have to be small.27

We define the wave functions in the normal, insulating,

and superconducting regions by , ̃I, and %, respectively,
with

 = +
e + r−

e + rA−
h , �10�

̃I = t̃1̃+
e + t̃2̃−

e + t̃3̃+
h + t̃4̃−

h , �11�

% = te%+
e + th%−

h . �12�

The wave functions ̃ differ from  in that the Fermi energy
is shifted by an external potential, such that EF→EF−U,

where U is the barrier height. Also, note that the trajectories
of the quasiparticles in the insulating region, which are de-

fined by the angles �̃ and �̃A, differ by the same substitution,

sin �̃/sin � = �E + EF�/�E + EF − U� , �13�

sin �̃A/sin � = �E + EF�/�E − EF + U� . �14�

Note that the subscript 0 on the wave functions indicates the
direction of momentum, which is, in general, different from
the group velocity direction.

By matching the wave functions at both interfaces,



x=0= 
̃I
x=0 and 
̃I
x=L= 
%
x=L,28 we obtain the following
expressions for the normal reflection coefficient r and the
Andreev-reflection coefficient rA �Ref. 21�:

r = te�A + C� + th�B + D� − 1, �15�

rA = te�A� + C�� + th�B� + D�� , �16�

where the transmission coefficients read

te = 2 cos ��e−i�A�B� + D�� − �B�e−i�̃A − D�ei�̃A��!−1,

�17�

th = te�ei�A�A�e−i�̃A − C�ei�̃A� − A� − C��

��B� + D� − ei�A�B�e−i�̃A − D�ei�̃A��−1, �18�

! = �e−i�A�B� + D�� − �B�e−i�̃A − D�ei�̃A���e−i��A + C�

+ �Aei�̃ − Ce−i�̃�� − ��De−i�̃ − Bei�̃� − e−i��B + D��

��A�e−i�̃A − C�ei�̃A − e−i�A�A� + C��� , �19�

and we have introduced the auxiliary quantities,

A = uei�q+−p+��1 − �ei�̃ − ei�+
��2 cos �̃�−1� ,

B = vei�q−−p+��1 − �ei�̃ − ei�−
��2 cos �̃�−1� ,

C = uei�p++q+��ei�̃ − ei�+
��2 cos �̃�−1,

D = vei�p++q−��ei�̃ − ei�−
��2 cos �̃�−1, �20�

A� = vei�q++p−−���1 + �ei�+
− e−i�̃A��2 cos �̃A�−1� ,

B� = uei�q−+p−−���1 + �ei�−
− e−i�̃A��2 cos �̃A�−1� ,

C� = vei�q+−p−−���e−i�̃A − ei�+
��2 cos �̃A�−1,

D� = uei�q−−p−−���e−i�̃A − ei�−
��2 cos �̃A�−1. �21�

Here, we have defined

q+ = qe cos �+L, q− = qh cos �−L ,

p+ = p̃e cos �̃L, p− = p̃h cos �̃AL . �22�

In the thin-barrier limit defined as L→0 and U→�, one gets
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�̃→ 0, �̃A → 0, q0 → 0, p0 → � � , �23�

with �=LU /vF. This indicates that thermal conductance is �
periodic with respect to � in this limit.

Finally, the normalized thermal conductance is given
by17,29

/ = �
0

� �
−�/2

�/2

dEd� cos ��1 − 
r�E,��
2 − Re� cos �A

cos �
�

�
rA�E,��
2� E2

�0T2 cosh2� E

2T
� , �24�

with the gap at zero temperature, �0 ���0�.
We next present our results for the normalized thermal

conductance. Figure 2�a� shows thermal conductance as a
function of T /TC for various kFL with U /EF=10 and EF
=EF� =100�0. Here, TC is the transition temperature and kF
�EF /vF. From Fig. 2�a�, an exponential dependence of the
thermal conductance on temperature is seen, which is similar
to the conventional normal metal/superconductor junctions.17

This exponential dependence reflects the s-wave symmetry
of the superconducting graphene. However, the length
dependence of the thermal conductance is nonmonotonic
�oscillatory� and thus essentially different from the mono-
tonic dependence in the conventional normal metal/
superconductor junctions.17,18,29 A similar plot for EF=10�0
is shown in Fig. 2�b�. We also find an exponential tempera-
ture dependence, but the dependence on L gets weaker.
Therefore, the magnitude of the oscillation with respect to
kFL gets reduced with the increase of the Fermi wave vector
mismatch.

Figure 3�a� depicts thermal conductance as a function of
U /EF for various lengths kFL with T /TC=0.5 and EF=EF�

=100�0. An oscillatory dependence of the thermal conduc-
tance on U /EF is seen. The period decreases with kFL. Fig-
ure 3�b� displays thermal conductances as a function of kFL
for various U /EF with T /TC=0.5 and EF=EF� =100�0. We
also find an oscillatory dependence on kFL. The period also
decreases with U /EF. These features stem from the � peri-
odicity of the thermal conductance with respect to �
=kFLU /EF in the limit of U)EF and kFL#1 similar to the
junction conductance.20,21,30 In other words, the damped os-
cillatory behavior of the thermal conductance is a direct
manifestation of the relativistic low-energy Dirac fermions
because this feature cannot be seen in the conventional nor-
mal metal/superconductor junctions.17,18,29 Also, the presence
of the insulating region is essential for the oscillatory
behavior20,21 since no such oscillation is seen without the
insulating region.19

We have neglected the spatial variation of the supercon-
ducting gap near the interface. The suppression of the order
parameter near the interface is expected to be least pro-
nounced when the sharp edge criteria are satisfied and there
is a large Fermi-vector mismatch. In the present case, this is
precisely the case, whence we do not expect our qualitative
results to be affected by taking into account the reduction of
the gap near the interface. Finally, we have assumed that
there is no lattice mismatch at the interfaces and that these
are smooth and impurity-free.4 A more refined picture could
be obtained by using more realistic models of the variation
of the chemical potential, i.e., a continuous slope instead of a
steplike variation.

In summary, we have studied heat transport in normal/
superconducting graphene junctions. We found that the
thermal conductance has an exponential dependence on tem-
perature, which reflects the s-wave symmetry of the super-
conducting graphene but oscillatory dependence on the po-

FIG. 2. �Color online� Thermal conductance as a function of
T /TC for various kFL with U /EF=10 and EF� =100�0 at EF

=100�0 in �a� and EF=10�0 in �b�.

FIG. 3. �Color online� �a� Thermal conductance as a function of
U /EF for various kFL with T /TC=0.5 and EF=EF� =100�0. �b�
Thermal conductance as a function of kFL for various U /EF with
T /TC=0.5 and EF=EF� =100�0.
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tential height or the length of the barrier region. This
oscillatory dependence stems from the relativistic dispersion
in graphene, which is essentially different from the result in
the conventional normal metal/superconductor junctions.
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Recent experimental results indicate the possible realization of a bulk odd-frequency superconducting state
in the compounds CeCu2Si2 and CeRhIn5. Motivated by this, we present a study of the quantum transport
properties of a normal metal/odd-frequency superconductor junction in a search for probes to unveil the
odd-frequency symmetry. From the Eliashberg equations, we perform a quasiclassical approximation to ac-
count for the transport formalism of an odd-frequency superconductor with the Keldysh formalism. Specifi-
cally, we consider the tunneling charge conductance and the tunneling thermal conductance. We qualitatively
find distinct behavior in the odd-frequency case compared to the conventional even-frequency case in both the
electrical and thermal current. This serves as a useful tool to identify the possible existence of a bulk odd-
frequency superconducting state.

DOI: 10.1103/PhysRevB.77.174505 PACS number�s�: 74.45.�c, 74.20.Rp, 74.50.�r

I. INTRODUCTION

The symmetries of the superconducting order parameter
with respect to orbital, time, and spin space are governed by
the Pauli principle. A wave function describing two elec-
tronic states must be totally antisymmetric under the ex-
change of the particle coordinates. This leads to a finite num-
ber of allowed combinations for the symmetries of the wave
function. In a wide variety of superconductors ranging from
those described with Bardeen–Cooper–Schrieffer and/or
Eliashberg theory via spin-triplet superconductivity in 3He to
strong-coupling superconductivity in high-Tc cuprates, the
wave function of Cooper pairs is even in the frequency do-
main. For such even-frequency pairing, the wave function
may be even or odd in space depending on whether the Coo-
per pairs form spin singlets or triplets. However, more exotic
types of pairings than what is found in this wide range of
materials are, in principle, permitted.

Recently, it was predicted that in a ferromagnet/
superconductor structure, a so-called odd-frequency pairing
could take place.1 Thus, the Cooper-pair wave function is
symmetric under the exchange of spatial and spin coordi-
nates but antisymmetric under the exchange of time coor-
dinates. This state was proposed to exist by Berezinskii2

a few decades earlier in the context of liquid 3He, and
a strong experimental evidence for odd-frequency pairing
now exists.3 The study of such pairing in ferromagnet/
conventional superconductor junctions has been addressed
by a number of authors over the past few years.4 Further-
more, it was very recently predicted5–7 that due to a spatial
variation of the pair potential near a normal/superconductor
�N/S� junction, the odd-frequency pairing state can be in-
duced even in a conventional ballistic N/S system without
spin-triplet ordering. The generation of different symmetry
components and their effect on electrical transport in a
normal/superconductor interface has also been studied in the
diffusive limit8 in the context of the proximity effect in un-
conventional superconductors.9,10

An issue that arises in the context of the odd-frequency
pairing state is if it can be realized in a bulk superconductor,

i.e., without a proximity effect. There have been several
theoretical proposals for this in strongly correlated systems
up until now.11,12 To explore an odd-frequency pairing state
in the heavy-fermion superconductors is an interesting
topic, and an assessment of the experimental properties
of CeCu2Si2 and CeRhIn5 concluded that an odd fre-
quency pairing may be realized in these heavy-fermion
compounds.13

However, only a very limited amount of studies have ad-
dressed the issue of identifying the odd-frequency pairing
state in a bulk superconductor so far.11,14,15 Hence, further
clear-cut predictions are needed.

In this paper, we present the quantum transport properties
of a normal metal/odd-frequency superconductor junction in
the clean limit. We calculate the electrical and thermal con-
ductances within the Blonder–Tinkham–Klapwijk �BTK�
framework16 by taking into account the anisotropy of the pair
potential.17 Our starting point is the Eliashberg equations that
take into account the frequency dependence of the pair po-
tential. This constitutes a wide range of experimental predic-
tions, which are routinely used to characterize superconduct-
ing states.18–21 Our main result is that the odd-frequency
symmetry affects the charge �thermal� transport in an essen-
tial manner at low energies �temperatures�. This provides a
useful tool in identifying this highly unusual superconduct-
ing state.

To elucidate the physics in a transparent manner, we em-
ploy a simple two-dimensional calculation in the clean limit.
We approximate the superconducting gap with a step func-
tion in space, which, in the isotropic even-parity s-wave
case, should be an excellent approximation for low-
transmission barriers. Since the low-transmission case is
probably the most realistic scenario experimentally, we re-
strict our attention to this. In the anisotropic even-parity and
odd-parity cases �corresponding, e.g., to the high-Tc super-
conductors and Sr2RuO4�, the gap may undergo a severe
depletion near the barrier even for low-transmission inter-
faces due to the formation of zero-energy states.22 The
method used in this paper may still capture qualitative fea-
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tures of the transport properties even in those cases, just as in
the case of the d-wave superconductors.17 Our results are, in
fact, consistent with recent findings5 including a self-
consistent solution of the spatial variation of the supercon-
ducting gap near the interface.

We will use boldface notation for three vectors, . . .ˆ for 4
�4 matrices, and . . . for 2�2 matrices. Pauli matrices in
particle-hole�spin �Nambu� space are denoted as !̂i, while
Pauli matrices in spin space are written as  � i.

II. THEORETICAL FORMULATION

A. Equations for odd-frequency superconductivity

The frequency dependence of the superconducting order
parameter may be naturally taken into account in the ap-
proach developed by Eliashberg,23 where details of the
electron-boson interaction are seriously taken. This contrasts
with the usual weak-coupling picture where the pairing in-
teraction is taken to be constant. For our purposes, the fol-
lowing Hamiltonian is an appropriate starting point:

Ĥ = 
	
� dr	�r�†Hf�r�	�r� +� drb†�r�Hb�r�b�r�

+ 
	
� � drdr�V�r − r��	

†�r�	�r��b�r� + b†�r�� , �1�

where Hf is the Hamiltonian for free fermions, which we
assume may be written as Hf�r�=− 1

2m ��−ieA�2−�, while Hb
is the Hamiltonian for free bosons. Above, 	 denotes the spin
index, while  and b are fermion and boson operators, re-
spectively. Introducing the Fourier transformation b�r�
= 1

N qbqe−iq·r, where Bq=bq+b−q
† , we obtain the Heisenberg

equations of motion,

i�t	�r,t� = Hf�r�	�r,t� + 
q

��r,t,q�	�r� ,

i�t	
†�r,t� = − Hf

��r�	
†�r,t� − 

q
��r,t,q�	

†�r� , �2�

where ��r , t ,q��VqBq�t�e−iq·r and Vq is the Fourier trans-
form of V�r−r��. Note that V is not the effective pairing
potential between electrons. Having obtained the time de-
rivatives of the fermion operators, we may now calculate the
equation of motion for Green’s functions. This procedure is
standard and covered, e.g., in Refs. 24–27. Explicitly taking
into account the effect of the electron-boson interactions in
the Hamiltonian naturally includes a frequency dependence
of the effective electron-electron interaction,23 which is ob-
tained by integrating out the bosonic degrees of freedom in
the partition function. The effective electron-electron interac-
tion mediated by a boson excitation may, in general, be writ-
ten as

V�q,(� =
2
Vq
2�q

(2 − �q
2 , �3�

where q=k−k� and (=�−�� are the momentum and en-
ergy transfers, respectively, of the interaction process.

Above, �q is the frequency of the boson propagator. Note
that the pairing potential in Eq. �3� is even in (, i.e.,
V�q ,(�=V�q ,−(�. The self-consistency equation for the or-
der parameter quite generally has the following structure:11

��k,�� � 
k���

V�k − k�,� − �����k�,���
�k�

2 + ��2 , �4�

which may be rewritten as

��k,− �� � 
k���

V�k − k�,� − �����k�,− ���
�k�

2 + ��2 �5�

by exploiting V�q ,(�=V�q ,−(�. The above equations show
that both ��k ,��=��k ,−�� and ��k ,��=−��k ,−�� are
possible solutions of the gap equation. Therefore, although
the pairing interaction is even in frequency, the gap �, in
principle, may both be even and odd in frequency. In fact, in
general, it is a superposition of even- and odd-frequency
components.11,28 However, assuming that the energy transfer
is small compared to the term containing the momenta in Eq.
�3�, 
(
� 
�q
, one obtains a part of the pairing potential
which is linear in � and �� and one that is quadratic in the
same quantities.11 The former part is the necessary ingredient
to obtain a superconducting order parameter that is odd in
frequency. It is also possible to adopt a purely phenomeno-
logical approach to an odd-frequency superconductor by as-
suming the frequency dependence of the gap a priori.29

Let us now consider the structure of Green’s function ma-
trix for an odd-frequency superconductor. It is instructive to
briefly mention the result for an ordinary BCS supercon-
ductor, which has an even frequency-singlet-even �ESE� par-
ity symmetry. In the BCS case, one obtains

�i
�

�t1
!̂3 − �̂ − �̂�r1��ĜR�1,2� = ��1 − 2�1̌ . �6�

Assuming a homogeneous and isotropic system where
Green’s function only depends on the relative coordinates t

= t1− t2 and r=r1−r2 and where �̂�r1�= �̂ is a constant, one

may Fourier transform Eq. �6� according to ĜR�p ,��
=��dre−iprdtei�tĜR�r , t�, where � and p is the quasiparticle
energy measured from the Fermi level and the momentum,
respectively. We then obtain

��!̂3 − �̂p − �̂�ĜR�p,�� = 1̂, �7�

which, upon matrix inversion, yields the well-known BCS
solution. The quasiclassical Green’s functions ǧ�pF ,r ;� , t� is

obtained from the Gor’kov Green’s functions Ǧ�p ,r ;� , t� by
integrating out the dependence on kinetic energy, assuming

that Ǧ is strongly peaked at the Fermi level,

ǧ�pF,r;�,t� =
i

�
� d�pǦ�p,r;�,t� . �8�

The above assumption is typically applicable to supercon-
ducting systems where the characteristic length scale of the
perturbations present, namely, superconducting coherence
length, is much larger than the Fermi wavelength. The cor-
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responding characteristic energies of such phenomena must
be much smaller than the Fermi energy �F. The quasiclassi-
cal Green’s functions may be divided into advanced �A�, re-
tarded �R�, and Keldysh �K� components, each of which has
a 4�4 matrix structure in the combined particle-hole and
spin spaces. One has

ǧ = �ĝR ĝK

0 ĝA � , �9�

where the elements of ǧ�pF ,r ;� , t� read

ĝR,A = � g�
R,A f�

R,A

− f�̃
R,A − g�̃

R,A�, ĝK = �g�
K f�

K

f�̃
K g�̃

K� . �10�

The quantities g� and f� are 2�2 spin matrices, with the struc-
ture

g� = �g↑↑ g↑↓
g↓↑ g↓↓

� . �11�

Due to internal symmetry relations between these Green’s
functions, all of these quantities are not independent. In par-
ticular, the tilde operation is defined as

f̃�pF,r;�,t� = f�− pF,r;− �,t��. �12�

For a bulk s-wave superconductor, the retarded part may be
expressed in terms of the normal and anomalous Green’s
functions g and f as follows:

ĝR = � g1� fi 2ei�

fi 2e−i� − g1�
� , �13�

Here, � is the globally broken U�1� phase associated with
the spontaneous symmetry breaking of the superconducting
state. In the odd-frequency case, however, one finally arrives
at

��!̂3 − �̂p − �̂����ĜR�p,�� = 1̂, �14�

where now �̂��� is the odd-frequency gap matrix. Note that
Eq. �14� is equivalent to the well-known Eliashberg equation.
The structure of the Green’s function for an odd-frequency
superconductor may be different from Eq. �13� depending on
the spin symmetry. For instance, the bulk Green’s function
matrix for an odd-frequency spin-triplet even-parity super-
conductor has the following structure:

ĝR = � g1� f 1ei�

− f 1e−i� − g1�
� . �15�

Performing a quasiclassical approximation on Eq. �14� yields
the Eilenberger equation, which reduces to the Usadel equa-
tion in the dirty limit. Note that for both even- and odd-
frequency superconducting order parameters, the pairing in-
teraction itself is always even in the frequency coordinate.

A quite general formalism for treating quantum transport
in the nonuniform superconducting systems, e.g., normal/
superconductor heterostructures, was developed by Tanaka
et al.30 For instance, the conductance spectra of a normal/
superconductor junction may be obtained along the lines of

Refs. 30 and 31 by numerically solving the Usadel equation
using Nazarov’s generalized boundary conditions.10 Interest-
ingly, taking the limit Rd→0 and �→0 in this formalism,
where Rd represents the resistance of the normal metal region
and � is a measure of the proximity effect, leads to the well-
known expression for the conductance obtained in the BTK
formalism.16 This may be specifically seen for the electrical
conductance by consulting Eqs. �15� and �16� in Ref. 30, and
for the thermal conductance in Eq. �19� of Ref. 31. There-
fore, since the above treatment of the Eliashberg equation
shows that the odd-frequency dependence of the gap may be
taken into account simply by substituting �→����, quantum
transport for an odd-frequency superconductor can be treated
in the BTK formalism by performing the same substitution.
However, the derivation of the Bogolioubov–de Gennes
equation for odd-frequency superconductivity is challenging
since it is not obvious how to take into account the strong
retardation effects of the pairing potential.

B. Transport formalism

We adopt the Keldysh formalism by using Nazarov’s gen-
eralized boundary conditions10 to obtain the electrical and
thermal conductance for odd-frequency superconductors. We
assume, without loss of generality, that the gap ��� ,�� has
an opposite-spin pairing symmetry in both the singlet and
triplet cases. To encompass accessible experimental tech-
niques, we will focus on two experimentally accessible quan-
tities that encode how the odd-frequency pairing symmetry is
manifested in transport properties: namely, the normalized
charge conductance G�eV� for T=0 and the thermal conduc-
tance /�T�. The procedure for obtaining these quantities is
treated in detail in Refs. 30–32. In the limit of zero resistance
in the normal part and vanishing proximity effect, one finds

G =
1

GN
�

−�/2

�/2

d� cos �-+�eV,�� ,

/ = �
−�/2

�/2 �
−�

�

d�d�
�2
2-−�eV,��

4�0 cosh2�
���cos ��−1 , �16�

where GN is the normal-state conductance and we have de-
fined

-	��,�� = 1 + 	" 4(−(̃+e−i�+

(+(−�4 − Z�
2 � + Z�

2 (̃+(̃−ei��−−�+�
"2

− " 2�(+(−�2 + Z�� − Z�(̃+(̃−ei��−−�+��

(+(−�4 − Z�
2 � + Z�

2 (̃+(̃−ei��−−�+�
− 1"2

.

�17�

Above, we have introduced �+=�, �−=�−�, and (0

=��1+sign��� /g0� /2, where sign���→−sign��� for (→(̃.
The phase of the superconducting gap is contained in the
factor ei�0=ei���0� = f0 / 
f0
. The quantities g0 and f0 are
the asymptotic values of the normal and anomalous Green’s
functions of the odd-frequency superconductor in a gauge
where the superconducting order parameter is real: g0
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=� /��2− 
��� ,�0�
2 and f0=��� ,�0� /�
��� ,�0�
2−�2.
We have introduced Z�=−iZ /cos �, where Z denotes the
strength of the scattering potential near the barrier. In what
follows, we fix Z=3, which corresponds to a typical low-
transparency barrier, which is experimentally realistic. Note
that in the expression for /, we have considered the linear
response regime for a small temperature gradient in the sys-
tem and introduced 
=1 /T, where T is the temperature of
the reservoirs.

III. RESULTS AND DISCUSSION

Depending on the symmetries with respect to the sign
inversion of frequency and momentum corresponding to �
→ �−�� and �→�+�, the gap may be classified, as seen in
Table I. In each case, we will model the gap ��� ,� ,T�, as
illustrated in Table I. In the angular dependence of the odd-
parity gaps, 	 denotes the misorientation angle between the
antinodes and the interface normal �see Fig. 1�. The motiva-
tion for modeling the frequency dependence of the supercon-
ducting gap, as we have done in Table I, is that it features the
low-energy behavior, of the proximity-induced odd-
frequency gap in dirty ferromagnet/superconductor
structures33 and that it exhibits a similar energy dependence
to the gap seen in strongly correlated electron systems con-
sidered in Ref. 13.

Recently, it was demonstrated that the odd-frequency
pairing is quite generally induced near the normal/
superconductor interface by a fully self-consistent calcula-
tion of the superconducting correlations.5 In an even-
frequency-triplet-odd parity �ETO� superconductor with 	
=0 corresponding to the perfect formation of zero-energy
states, an odd-frequency-triplet-even parity �OTE� pairing is

induced near the surface. Thus, the formation of zero-energy
states may be reinterpreted as a manifestation of the odd-
frequency superconductivity near the interface. The odd-
frequency symmetry may permit the existence of gapless
single-particle excitations at the Fermi level. On the other
hand, when the nodal direction is parallel to the interface
normal �	=� /2�, only the even-frequency states exist at the
interface.

In a similar manner, the odd-frequency-singlet-odd parity
�OSO� pairing state can be induced near the interface of a
clean normal/superconductor junction when the supercon-
ductor has an ESE symmetry. One may also apply this dis-
cussion to bulk odd-frequency superconducting states. In this
scenario, the ETO �ESE� pairing can be induced at the inter-
face for an OTE �OSO� bulk superconductor.5 This should
have clear observable consequences for the quantum trans-
port properties of a normal/odd-frequency superconductor
junction. We now proceed to investigate this in further detail.

Consider first the left column of Fig. 2 where we have
plotted G as a function of bias voltage for the even-parity
symmetries. In the even-frequency case, the usual singularity
at eV=A0�0 is present. In the odd-frequency case, we see a
qualitatively different behavior of the conductance. First of
all, G at low bias voltage is greatly enhanced compared to
the even-frequency case for A0"1, and the formation of a
zero-bias conductance peak is clearly seen at A0=1. For A0
�1, the conductance is similar to the even-frequency case
for a reduced value of the gap. This may be understood as

Odd frequency-singlet-odd parity

Odd frequency-triplet-even parityEven frequency-singlet-even parity

Even frequency-triplet-odd parity
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FIG. 1. �Color online� Overview of the different symmetry
states will be considered in the superconducting part of the clean
two-dimensional normal/superconductor junction.

TABLE I. Overview of the specific gap forms will be considered
in this paper. We model the temperature dependence of A�T� with
A�T�=A0 tanh�1.74�Tc /T−1� and Tc=�0 /1.76.

Symmetry Specific gap form ��� ,� ,T�

ESE A�T��0

OTE A�T�� / �1+ �� /�0�2�
OSO A�T�� cos��−	� / �1+ �� /�0�2�
ETO A�T��0 cos��−	� / �1+ �� /�0�2�
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follows. For A0"1, the inequality ������ is satisfied for all
� with our choice of gaps �Table I�. This corresponds to
gapless superconductivity. For A0�1, the gap becomes
larger than � below a certain �finite� value of �, which is
similar to the BCS gap.

The middle and right columns of Fig. 2 shows G as a
function of bias voltage for the odd-parity symmetries. In the
OSO case, a gaplike structure is seen at 	=0. This is because
ESE pairing is induced near the interface due to the sign
change of the pair potential.5 This ESE pairing is responsible
for the gaplike structure of the conductance spectra, which is
similar to the ESE case in Fig. 2. In contrast, OSO pairing
remains near the interface at 	=� /2. Thus, a zero-bias con-
ductance peak is seen. On the other hand, in the ETO case at
	=0, a zero-bias conductance peak appears due to the in-
duced OTE pairing near the interface,5 which is similar to the
OTE case in Fig. 2. At 	=� /2, ETO pairing survives near
the interface, and hence, the even frequency character of the
pair amplitude results in a V-like shape of the spectra. Inter-
estingly, OSO and ETO cases have the opposite tendency
although their � dependencies are the same. Furthermore,
the sign change of the gap produces a qualitative difference
in the spectra between OTE and OSO with 	=0 junctions.
Thus, G is phase sensitive not only in the even-frequency
superconductor junctions17 but also in odd-frequency super-
conductor junctions.

Next, we investigate the thermal conductance /, as shown
in Fig. 3. The left column corresponds to the even, parity
case, where the usual exponential dependence on T is recov-
ered for the ESE case.34 In the OTE case, / mimics the ESE
case for A0�1 as it does for the charge conductance. Other-
wise, power-law dependence with exponent of �1 is ob-
served due to the node of the gap at zero energy. Thus, the
nodes in the frequency domain of an isotropic odd-frequency
superconductor cause / to behave as it does in an anisotropic
even-frequency superconductor. In the middle and right col-
umns of Fig. 3, we give / in the odd-parity case. The well-
known result of the exponential dependence for 	=0 is re-
covered in the ETO case. The OSO case again displays
power-law behavior that is similar to the OTE case for A0
"1. However, the exponential dependence again occurs for

A0�1 in the OSO case with 	=0. When 	=� /2, there is an
exclusively power-law dependence with exponent of �1.
While the OTE case only has nodes in energy, the OSO case
has both nodes in energy and in k space, but this does not
appear to influence the exponent of the power-law depen-
dence.

IV. SUMMARY

In summary, we have studied quantum transport in a nor-
mal metal/superconductor junction, by considering how a
bulk odd-frequency symmetry in the superconductor is mani-
fested in the electrical and thermal conductances of the junc-
tion. The odd-frequency symmetry is found to qualitatively
display distinct behavior from the even-frequency case. This
reflects the fact that the electrical conductance is sensitive to
the presence of odd-frequency pairing at the interface,
whereas the low temperature behavior of the thermal conduc-
tance reflects the node of the gap in the frequency domain.
Moreover, one may distinguish the even- and odd-parity
cases for an odd-frequency symmetry �OTE and OSO, re-
spectively� by means of their different characteristic tunnel-
ing spectra. Our predictions should be useful for a wide
range of experimental techniques and are thus a helpful tool
in identifying the possible existence of the bulk odd-
frequency superconductors with CeCu2Si2 and CeRhIn5,
which currently present themselves as the most promising
candidates.
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Superconducting order parameters that are odd under exchange of time coordinates of the electrons consti-
tuting a Cooper pair are potentially of great importance both conceptually and technologically. Recent experi-
ments report that such an odd-frequency superconducting bulk state may be realized in certain heavy-fermion
compounds. While the Josephson current normally only flows between superconductors with the same sym-
metries with respect to frequency, we demonstrate that an exchange field may induce a current between
diffusive even- and odd-frequency superconductors. This suggests a way to identify the possible existence of
bulk odd-frequency superconductors.
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I. INTRODUCTION

The prevalent symmetry in known superconductors may
be described as odd under exchange of spin coordinates and
even under an exchange of spatial coordinates or an ex-
change of time coordinates of the electrons constituting the
Cooper pair. The latter condition corresponds to a sign
change in frequency after Fourier transforming the time vari-
ables to a frequency representation. This symmetry may
compactly be expressed as an even-frequency singlet even-
parity superconducting state �hereafter referred to as the
even-frequency state�.

However, other types of pairing are also permitted.
Among these is the so-called odd-frequency pairing state.1

Such a state is potentially of great importance, both from a
conceptual as well as a technological point of view. From a
conceptual point of view, phase transitions involving pairing
of fermions form centerpieces of physics in such widely dis-
parate subdisciplines such as cosmology, astrophysics, phys-
ics of condensed matter, physics of extremely dilute ultracold
atomic gases, and physics of extremely compressed quantum
liquids. Extending the possible pairing states compatible
with the Pauli principle will likely have impact on all of
these disciplines and hence deserves attention. From a tech-
nological point of view, an odd-frequency pairing state
would be a candidate for a robust superconducting pairing
state capable of coexisting with ferromagnetism.2 Such a ma-
terial would be extremely important, since it would combine
two functionalities of major importance, namely, magnetism
and superconductivity.

The hope of experimentally detecting this type of pairing
was raised by the prediction that an odd-frequency triplet
even-parity �hereafter simply denoted as odd-frequency�
pairing should be induced by the proximity effect in diffusive
ferromagnet/conventional superconductor junctions.3 Re-
cently, odd-frequency states due to the proximity effect have
been confirmed in experiments of diffusive ferromagnet/
conventional superconductor junctions.4 To date, no bulk
odd-frequency superconductor has been unambiguously
identified.

Currently, the heavy-fermion compounds CeCu2Si2 and
CeRhIn5 seem to be the most promising candidates for the

realization of a bulk odd-frequency state.5 It has also recently
been argued6 that this type of pairing could be realized in
NaxCoO2, which is motivated by the band-structure calcu-
lations and the robustness of its superconductivity against
impurities. However, the experimental reports on the Knight-
shift data have shown evidence of both singlet7 and triplet8

pairings. To resolve the pairing issue, it would be desirable
to make clear-cut theoretical predictions for experimen-
tally measurable quantities that may distinguish the odd-
frequency symmetry from the conventional even-frequency
symmetry. Motivated by this, the conductance of a normal
metal �N�/odd-frequency junction was very recently studied
in both the diffusive9 and clean10 regimes.

It is well known that the Josephson current between su-
perconductors with different symmetries is in general
inhibited.11 However, it was very recently shown that in
the clean limit, such a Josephson coupling may be estab-
lished between such superconductors by means of surface-
induced pairing components of different symmetry than the
bulk state in each superconductor.12 In the dirty limit,
it has been demonstrated that in the case of an s-wave
even- or odd-frequency bulk superconductor, the proximity-
induced pairing component in the N will have the same
symmetry.13 These results are valid in the absence of an ex-
change field. Due to the above mentioned properties, one
would consequently expect that both the even- and odd-
frequency symmetries are induced in the normal part of an
even-frequency/N/odd-frequency junction. While this is true,
the Josephson current is found to vanish in such a setup. If
the N is replaced with a diffusive ferromagnet �F�, the pair-
ing components in the F will have the same symmetries as in
the N case. Surprisingly, the Josephson current is not absent
in this case.

In this paper, we report that a Josephson current may flow
in a diffusive even-frequency/F/odd-frequency junction and
argue that this should serve as a smoking gun to reveal the
odd-frequency symmetry in a bulk superconductor. We also
study the dependence of the Josephson current on the tem-
perature and width of the F and show that 0-� transitions
take place. In the following, we will use boldface notation

for three vectors, . . .ˇ for 8�8 matrices, . . .ˆ for 4�4 matrices,
and . . . for 2�2 matrices.
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II. THEORETICAL FRAMEWORK

In order to address this problem, we employ the quasi-
classical theory of superconductivity by using the Keldysh
formalism. The quasiclassical Green’s functions may be di-
vided into an advanced �A�, a retarded �R�, and a Keldysh
�K� component, each of which has a 4�4 matrix structure in
the combined particle hole and spin space. In thermal equi-
librium, it suffices to consider the retarded component since
the advanced component is obtained by ĝA=−�!̂3ĝR!̂3�†,
while the Keldysh component is given by ĝK= �ĝR

− ĝA�tanh�
� /2�, where 
 is inverse temperature. The Pauli
matrices in particle hole�spin �Nambu� space are denoted
as !̂i, while the Pauli matrices in spin space are written as  � i,
where i=1,2 ,3. As shown in Ref. 13, the symmetry of the
anomalous Green’s function induced in the N through the
proximity effect by an odd-frequency superconductor is also
odd-frequency and similarly for an even-frequency supercon-
ductor. We may write the retarded Green’s function in the
superconductors as

ĝodd/even
R = � c1� se0i� 1/se0i�i 2

− se�i� 1/se�i�i 2 − c1�
� �1�

for an odd-frequency triplet even-parity s-wave
symmetry/even-frequency singlet even-parity s-wave sym-
metry. Above, we have defined

c � cosh���, s � sinh���, � � arctanh�����/�� , �2�

where � is the quasiparticle energy measured from the Fermi
level, while � is the superconducting phase associated with
the broken U�1� symmetry. The 0 sign refers to the right and
left sides of the F �Fig. 1�. The retarded Green’s function in
the F satisfies the Usadel equation,14

D � �ĝR � ĝR� + i�� ̂3 + M̂, ĝR� = 0,

M̂ = h�cos � 3 + sin � 2 0�

0� �cos � 3 + sin � 2�T� , �3�

where D is the diffusion constant, h is the exchange field,
and T denotes the matrix transpose. An analytical of this
equation is permissible when it may be linearized, which
corresponds to a weak-proximity effect. This may be ob-

tained in two limiting cases: �1� if the barriers have low
transparency or �2� if the transmission is perfect �ideal inter-
faces� and the temperature in the superconducting reservoir
is close to Tc, such that 
�
 is small. Here, we will mainly
focus on the low-transparency case,15 since it might be dif-
ficult to experimentally realize small and highly transparent
junctions for observing the Josephson current. In this case,
we make use of the standard Kupriyanov–Lukichev bound-
ary conditions,16

2�d�ĝ�xĝ� = 
0�ĝ, ĝR�L��0���
x=d,0, �4�

where � is a measure of the barrier strength and ĝR�L� denotes
the Green’s function in the superconductor on the right �x
=d� or left �x=0� side of the F, respectively. Defining the
vector anomalous Green’s function,

f = �f↓ − f↑,− i�f↑ + f↓�,2f t�/2. �5�

and the matrix anomalous Green’s function in spin space,

f� = �fs + f ·  ��i 2 = � f↑ f t + fs

f t − fs f↓
� , �6�

the linearized Green’s function in the F reads in total

ĝR = � 1� f����
− �f��− ���� − 1�

� . �7�

Note that Eq. �7� contains both equal-spin- and opposite-
spin-pairing triplet components in general. In the special
cases of �=0 and �=�, the equal-spin-pairing components
f� ��= ↑ ,↓� vanish.

III. RESULTS

We now provide the analytical results for the Josephson
current in an even-frequency/F/odd-frequency junction. To
begin with, we will consider the case �=0 to emphasize our
main result: namely, a field-induced Josephson effect. We
will then investigate the effect of a change in orientation of
the magnetization in the ferromagnetic layer. Changing the
orientation, i.e., �, in an even-frequency/F/even-frequency
junction has no effect since the order parameters in the su-
perconductors in that case are isotropic. However, for an
odd-frequency triplet superconductor, the order parameter
has a direction in spin space. Here, we consider an opposite-
spin-pairing Sz=0 order parameter without loss of generality
and then proceed to vary the orientation of the exchange
field.

A. Field-induced Josephson current

For �=0, one readily finds that f�=0. The linearized ver-
sion of equation Eq. �3� is then given by

D�x
2f0 + 2i�� 0 h�f0 = 0, �8�

with the general solution

f0�x� = A0eik0x + B0e−ik0x,

ẑ

h
φ

d

ǧodd/even(+χ)ǧodd/even(−χ) x̂

ǧ

ŷ

FIG. 1. �Color online� A diffusive metal, which may be either
normal or ferromagnetic �with exchange field h� of width d, sepa-
rates two superconductors with a phase difference 2�, thus consti-
tuting a Josephson current. The individual superconductors have
either an even-frequency or odd-frequency bulk symmetry. The ex-
change field may have any orientation in the yz plane, which is
characterized by the angle �.
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k0 = �2i�� 0 h�/D , �9�

with the definition f0= f t0 fs. Employing the boundary con-
ditions, one finds that the anomalous Green’s function reads

f0 =
B0�cL + !0� � sLe−i�

�!0 − cL�e−ik0x + B0e−ik0x, �10�

where we have introduced the auxiliary quantity

B0 = �sRei� 0 sLei�k0d−���!0 + cR�/�!0 − cL��

��eik0d�!0 + cL��!0 + cR�/�!0 − cL�

− e−ik0d�!0 − cR��−1. �11�

Moreover, we have introduced !0=�dik0 while the sub-
scripts L and R denote the left and right superconductors for
the coefficients c and s. Once ĝR has been obtained, the Jo-
sephson current may be calculated by the formula

j�x� = − �NFeDx̂/4�� d� Tr�!̂3�ǧ�xǧ�K�

= − �NFeDx̂/2��
−�

�

d� Re�M+��� + M−���� � tanh�
�/2� ,

�12�

with the definition

M0��� = �f0�− �����xf���� − f0����x�f��− ����. �13�

The normalized current density is defined as

I���/I0 = 4
j�x,��
/�NFeD�0
2� , �14�

which is independent of x for x� �0,d�, and the critical cur-
rent is given by Ic= I��

4 �.
At this point, we are in a position to compare the results

for the even- and odd-frequency case against each other to
investigate how the different symmetry properties alter the
Josephson current. Similarly to Ref. 13, we will model the
odd-frequency gap by

���� = �/�1 + ��/�0�n� , �15�

where n=2,4 ,8 , . . ., which exhibits the low-energy behavior
considered in Ref. 9. We specifically choose n=2 and
underline that none of our qualitative conclusions are altered
by choosing n=4,8. It is natural to begin looking for
signatures of the odd-frequency symmetry as probed
by the Josephson current in the simplest case of an
even-frequency/N/odd-frequency junction. The proximity-
induced anomalous Green’s function in the N will have a
contribution from both the even- and odd-frequency
symmetries.13 However, we find that no Josephson current
may flow in such a setup.

This may be understood by considering the boundary
conditions at each interface �see Fig. 2�. At the
even-frequency/N interface, the odd-frequency triplet com-
ponent of the proximity-induced Green’s function is absent
since penetration into the even-frequency superconductor is
prohibited. Similarly, at the N/odd-frequency interface, the
even-frequency singlet component of the Green’s function
vanishes for the same reason.

Therefore, the Josephson current is zero in this type of
junction since the current-carrying Green’s function in the N
induced by the left superconductor is absent at the right su-
perconductor, and vice versa. This is a direct result of the
different symmetries of the even- and odd-frequency super-
conductors. The Josephson current can be divided into the
individual contributions from fs and f t �cross terms vanish�,
and for each component, the coherence is lost since the even-
and odd-frequency pairings cannot reach the opposite inter-
face.

Analytically, one can confirm from Eqs. �10� and �11�
that the Green’s functions providing the critical current
�at �=� /4� satisfy f0���=if0

� �−�� for any x in the
even-frequency/N/odd-frequency case, which upon insertion
in Eq. �13� yields j�x�=0. In even-frequency/N/even-
frequency and odd-frequency/N/odd-frequency junctions,
one can in a similar manner confirm that A���=A��−��e−ikd

and B���=B��−��eikd, which leads to a finite value of the
Josephson current. This may be seen, for instance, at x
=d /2 upon substitution into Eq. �13�, where f0���= f0

� �−��
and �xf0���=−�xf0

� �−��.
If we instead consider an even-frequency/

F/odd-frequency junction, the proximity-induced anomalous
Green’s function in the F will have the same symmetries as
in the N case. Remarkably, we find that in this case, however,
a Josephson current is allowed to flow through the system.
The reason for why a Josephson current is present when the
N is replaced with a F is that the exchange field allows for
both the singlet and triplet components to be induced
throughout the F due to the mixing of singlet and triplet
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FIG. 2. �Color online� Plot of the singlet fs �thick, blue lines�
and triplet f t �thin, red lines� anomalous Green’s function induced in
a N �upper panels� and F �lower panel� in proximity with an even-
frequency and/or odd-frequency superconductors by using �=� /4
and � /�0=0.1. The solid lines are the real parts of the anomalous
Green’s functions, while the dashed lines are the imaginary parts.
To ensure that fs,t#1, we take d /�=50 in the N case and d /�=2,
h /�0=50 in the F case. Here, �=�D / �2�Tc� is the superconducting
coherence length. While a Josephson current flows when the sym-
metries of the superconductors are equal in the N case, it vanishes
when the superconductors have different symmetries. This is be-
cause the triplet and singlet components are absent at the interface
of the even- and odd-frequency superconductors, respectively. Re-
placing the N with a F establishes a Josephson coupling between
superconductors with different symmetries.
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components by breaking the symmetry in spin space, regard-
less of the internal symmetry of the superconductors,17,18 as
shown in Fig. 2. As a result, we suggest that as a way to
unambiguously identify an odd-frequency superconductor, a
coupling through a N to an ordinary even-frequency super-
conductor should not yield any Josephson current while re-
placing the N with an F should allow for the current to flow.
One could argue that this is precisely the case also for even-
frequency triplet odd-parity superconductors.18 This symme-
try is nevertheless easily distinguished from an odd-
frequency s-wave symmetry since the former is highly
sensitive to impurities while the latter does not suffer from
this drawback.

We have investigated the behavior of the critical current
when coupling an even- and odd-frequency superconductor
through a F, and the results are shown in Fig. 3 for a repre-
sentative choice of parameters. To make the numerical cal-
culations stable, we have added a small imaginary number19

in the quasiparticle energy, �→�+ i�, with �=0.01�0, and
we fix �=5 �also for Fig. 2�. One observes the well-known
0-� transitions20 upon increasing with the width d of the F
�Fig. 3�a��. Similarly, we also find that 0-� oscillations occur
as a function of temperature. The current-phase relationship
is sinusoidal as usual in the linearized treatment. The width
of the junction is measured in units of the superconducting
coherence length21 �=�D / �2�Tc�.

As a further probe of the odd-frequency symmetry in a
bulk superconductor, we investigate the local density of
states �LDOS� in the F. The LDOS is altered from its
normal-state value due to the proximity-induced anomalous
Green’s function in the F. Consider Fig. 3�b� for a plot of the
deviation �N from the normal-state LDOS in an
even-frequency/F/odd-frequency junction. The deviation is
given by the formula

�N��� = 
�=0

�Re��1 + f�����f−��− ����� − 1�/2 �16�

under the assumption of a weak-proximity effect. As is seen,
the LDOS is enhanced at �=0 due to the presence of odd-
frequency pairs,13,22 and the usual peak arises at �=�0.
While the odd-frequency/F/odd-frequency case exhibits the
first property, and the even-frequency/F/even-frequency case
the latter, the even-frequency/F/odd-frequency junction is
characterized by the fact that both of these features appear in
�N. This could serve as an identifier of the odd-frequency
symmetry in conjunction with the other properties we have
analyzed here.

It is interesting to observe the field dependence of the
critical current in an even-frequency/F/odd-frequency junc-
tion, as shown in Fig. 4. To gain access to the regime of a
very weak or absent exchange field, we must choose the
width d sufficiently large to ensure a weak-proximity effect.
In Fig. 4, we plot the current as a function of h for several
values of d /�. One observes that the critical current exactly
goes to zero at h=0, while a current is induced for nonzero
values of h. A maximum peak appears for very weak ex-
change fields, and the critical current oscillates with increas-
ing field strength. Although the short-junction regime is not
accessible for very weak exchange fields due to the linear-
ized treatment, it follows from our analytical expressions that
the current is absent for any choice of d as long as h=0.

B. Case with 	Å0

We now proceed to consider the effect of rotating the
exchange field in the ferromagnetic region. In effect, we al-
low for ��0. Now, the equal-spin-pairing components f�
are, in general, nonzero, and we find the following four
coupled, linearized Usadel equations:14
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FIG. 3. �Color online� �a� The critical current ��=� /4� as a
function of d /� for T /Tc=0.001. �b� Deviation from the LDOS at
x=d /2 for an even-frequency/F/odd-frequency junction with �
=� /4 and h /�0=50. The zero-energy peak is clearly discernible,
which originates with the odd-frequency pairs.
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D�x
2f0 + 2i�� + h cos ��f0 0 h sin ��f↑ + f↓� = 0,

D�x
2f� + 2i�f� − 2h sin �fs = 0, � = ↑,↓ . �17�

The general solution for the anomalous Green’s functions
may be compactly written as

f0�x� = A�x��a↑ + a↓� + B�x��b↑ + b↓� + c5R+
0�x� + c6P+

0�x�

+ c7R−
0�x� + c8P−

0�x� ,

f� = a� cos L0x + b� sin L0x + c5�i sin L+x sin ��

+ c6�i cos L+x sin �� + c7�− i sin L−x sin ��

+ c8�− i cos L−x sin ��,� = ↑,↓ . �18�

In the above, �a� ,b� ,c5 ,c6 ,c7 ,c8� are unknown coefficients
to be determined from the boundary conditions in the prob-
lem. Also, we have introduced the following auxiliary quan-
tities:

A�x� =
i cos L0x sin �

2 cos �
, B�x� =

i sin L0x sin �

2 cos �
,

R0
	 �x� = sin L0x�0cos � + 	�, 	 =0 1,

P0
	 �x� = cos L0x�0cos � + 	�, 	 =0 1,

L0 = �1 + i�� �

D
, L0 = �i 0 1��h 0 �

D
. �19�

When the left superconductor has an even-frequency symme-
try and the right superconductor has an odd-frequency sym-
metry, the boundary conditions yield at x=0,

2�d�xf0 = 2f0cL � 2sLe−i�,

2�d�xf� = 2f�cL, �20�

while at x=d, one obtains

2�d�xf0 = 2sRei� − 2f0cR,

2�d�xf� = − 2f�cR. �21�

The presence of equal-spin-pairing components slightly
modifies expressions �12� and �16� for the density of states
and the Josephson current, respectively. We now obtain

�N��� = 
�

�N���� − 1�/2,

N���� = Re��1 + f����f�
��− �� + �f t���+ �fs����

��f t
��− �� − �fs

��− ����1/2� �22�

for the density of states, while the Josephson current is cal-
culated according to

j�x� = − �NFeDx̂/2��
−�

�

d� Re�M+��� + M−���+ M↑���

+ M↓���� � tanh�
�/2� , �23�

with the definition ��= ↑ ,↓�

M���� = �f��− �����xf���� − f�����x�f��− ����. �24�

Let us first address the issue of how the zero-energy peak
in the DOS treated earlier is affected by a rotation of the
exchange field. In Fig. 5, we plot the deviation �N�0� from
the normal-state zero-energy DOS as a function of the mis-
orientation � for d /�=2 and h /�0=30. As � is increased, it
is seen that �N�0� rapidly grows. As it becomes comparable
to the normal-state DOS in magnitude, the linearized treat-
ment of the Usadel equations14 becomes less accurate, which
was denoted by the symbols in Fig. 5. Nevertheless, the trend
seems clear: the zero-energy DOS reaches a maximum at
�=� /2. Also, we have demonstrated �not shown� that the
characteristics in Fig. 3�b� remain the same for all �. In
particular, the zero-energy peak is not destroyed by changing
�.

Examining the magnitude of the anomalous Green’s func-
tion numerically, we find that the weak-proximity effect as-
sumption 
f 
#1 becomes poor for energies close to zero
when � is close to � /2. Therefore, this parameter regime is
strictly speaking inaccessible within our linearized treatment.
Note that no such problem occurs when �=0. However, we
will assume that the linearized treatment is still qualitatively
correct when � is close to � /2 in order to investigate how
the critical current depends on the orientation of the ex-
change field orientation.

In Fig. 6, we plot the variation of the critical Josephson
current as a function of the orientation � of the exchange
field. If the two superconductors have conventional even-
frequency symmetry, the Josephson current is completely in-
sensitive to the orientation of the exchange field. This is
reasonable, since the superconducting order parameter in this
case is spin singlet and has no orientation in spin space. Note
that a magnetic flux threading a Josephson junction, in gen-
eral, gives rise to a Fraunhofer modulation of the current as a
function of the flux. Here, we neglect this modification by
assuming that the flux constituted by the ferromagnetic re-
gion is sufficiently weak compared to the elementary flux
quantum. This is the case for either a small enough surface
area or weak enough magnetization �the energy exchange
splitting may still be significant�.
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FIG. 5. �Color online� Plot of the deviation from the normal-
state zero-energy density of states in the middle of the ferromag-
netic region �x /d=0.5�. The symbols denote approximately the re-
gion where the linearized treatment becomes less accurate, i.e., the
anomalous Green’s functions f no longer satisfy 
f 
#1.
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The situation is quite different when one of the supercon-
ductors has an odd-frequency symmetry. In this case, the
Josephson current is sensitive to the orientation � of the
exchange field and displays the behavior shown in Fig. 6.
The reason for this is that the order parameter in the odd-
frequency triplet case has a direction in spin space, here
which is chosen as opposite-spin pairing �along the ẑ axis�.
For �=0, the Cooper pairs are opposite-spin paired relative
to the exchange field, while for �=� /2, the Cooper pairs are
equal-spin paired relative to the exchange field. Tuning the
relative orientation of the exchange field and the supercon-
ducting order parameter in the odd-frequency supercon-
ductor is thus seen to lead to the possibility of controlling the
magnitude of the Josephson current. In an experimental situ-
ation, only the orientation of the exchange field is probably
alterable. In Fig. 7, we show the current-phase relationship
for an even-frequency/F/odd-frequency Josephson junction
for several values of � to show that although it remains
sinusoidal, it is shifted from �sin � to �sin��+	����,
where 	��� is nonzero for h�0.

Interestingly, for �=� /2, the current completely van-
ishes, as seen in Fig. 6, but it is nonzero otherwise. This can
be understood by studying the contribution to the Josephson

current from each of the components of the anomalous
Green’s functions. One may rewrite Eq. �23� as

j = jt + js + jESP, �25�

where �jt , js , jESP� represent the contribution to the Josephson
current from the Sz=0 triplet, the singlet, and the equal-spin-
pairing anomalous Green’s functions, respectively. These are
defined as

jt = − M0�
−�

�

d� Re�2Mt����tanh�
�/2� ,

js = M0�
−�

�

d� Re�2Ms����tanh�
�/2� ,

jESP = − M0�
−�

�

d� Re�M↑��� + M↓����tanh�
�/2� ,

�26�

with the definition M0=NFeD /2 and

Mj��� = �f j�− �����xf j��� − f j����x�f j�− ����, j = �t,s� .

�27�

Now, we get �xMt=�x�Ms−M��=0��= ↑ ,↓� for �=� /2
from Eq. �17�. With Eq. �20�, we have Mt=0 and similar
Ms−M�=0 by virtue of Eq. �21� and the fact that cL,R���
=cL,R

� �−��. Therefore, the total Josephson current j becomes
zero for �=� /2. In fact, an equivalent analytical approach is
viable to show that the current vanishes in the case h=0. In
that case, one finds that �xMt=�xMs=0 and Mt=0 at x=0 and
Ms=0 at x=d by means of the boundary conditions and the
Usadel equation.14

At this point, it is important to underline that although the
magnitude of the Josephson current in an
even-frequency/F/odd-frequency Josephson junction de-
pends on the orientation of the exchange field, our main mes-
sage is that no current can flow in the absence of a field
while the presence of an exchange field in general induces a
current except for the special case where the exchange field
is parallel to the spin of the Cooper pair, �=� /2.

IV. DISCUSSION

In our calculations, we have neglected the spatial varia-
tion of the pairing potential near the interfaces. This is per-
missible for either low-transmission interfaces or if the su-
perconducting region is much less disordered than the F.2

Also, we have considered nonmagnetic interfaces, which are
routinely used in experiments. Including spin-flip scattering
in the normal region is not expected to alter our qualitative
conclusions since spin-flip scattering alone cannot induce
triplet pairing in a normal metal in proximity to an even-
frequency superconductor in the diffusive limit.23 Our choice
of studying the diffusive limit ensures that one may disregard
the generation of possible odd-parity symmetry components
of the superconducting gap,13 which could have caused am-
biguities in the interpretation of experimental results ob-
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FIG. 6. �Color online� Plot of the modulation of the Josephson
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tained in our proposed setup. We expect that the predicted
effect could be experimentally observed in disordered
superconductor/ferromagnet/superconductor junctions by us-
ing superconductors with different symmetries with respect
to frequency. The junction widths need to be a few coherence
lengths, which is well within reach with present-day technol-
ogy.

V. SUMMARY

In summary, we have proposed a method of identifying
highly unusual superconducting states with the conceptually
and technologically important property that the order param-
eter is odd under exchange of time coordinates of the elec-
trons constituting a Cooper pair. Remarkably, we find that an
exchange field quite generally induces a Josephson effect
between even- and odd-frequency superconductors. This
constitutes a clear-cut experimental test for such an unusual
superconducting state. Since our qualitative findings rely on
symmetry consideration alone, they are expected to be quite
robust.
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APPENDIX A: JOSEPHSON CURRENT WITH SPIN-
DEPENDENT SCATTERING

Here, we provide some additional details of our calcula-
tions and also outline how spin-dependent scattering may be
taken into account in the analytical expressions. We employ
the linearized Usadel equations14 under the assumption of a
weak-proximity effect. This assumption is justified in the
low-transparency regime �tunneling limit�, where the deple-
tion of the superconducting order parameter near the inter-
face may also be disregarded. In the superconducting reser-
voirs, we employ the bulk solution that reads

ĝSC =�
cj 0 0 sje

i�j

0 cj 	 jsje
i�j 0

0 − 	 jsje
−i�j − cj 0

− sje
−i�j 0 0 − cj

� , �A1�

where cj =cosh � j, sj =sinh � j, � j =arctanh�� j��� /��, and j
=L ,R denotes the left and right superconducting regions.
Here, � j denotes the broken U�1� phase in superconductor j,
and we use the convention �R=−�L ��. For an odd-
frequency superconductor on side j, we have 	 j =1 while
for an even-frequency superconductor on side j, one has 	 j
=−1.

The Kupriyanov–Lukichev16 boundary conditions now
read

2�dĝ�xĝ = − 
�ĝ, ĝL�
x=0,

2�dĝ�xĝ = 
�ĝ, ĝR�
x=d. �A2�

In the normal region, we may write the Green’s function as

ĝR = � 1� f t
R��� 1 + fs

R���i 2

− �f t
R�− �� 1 + fs

R�− ��i 2�� − 1�
� ,

�A3�

where the subscripts t and s denote the triplet and singlet
parts of the anomalous Green’s function. Note that the triplet
part is odd in frequency. In the following, we will consider
an exchange field h � ẑ, i.e., perpendicular to the spin of the
Cooper pair, such that there are no equal-spin-pairing com-
ponents f� ��= ↑ ,↓� of the anomalous Green’s function. In-
troducing f0= f t0 fs, we may write the boundary conditions
more explicitly. At x=0, one obtains

2�d�xf+ = 2f+cL − 2sLe−i�,

2�d�xf− = 2f−cL − 2	LsLe−i�, �A4�

while the same procedure at x=d yields

2�d�xf+ = 2sRei� − 2f+cR,

2�d�xf− = 2	RsRei� − 2f−cR. �A5�

The linearized Usadel equations14 in the normal region may
be formally obtained by assuming that 
f0
#1,24–26

�x
2f t 0 �x

2fs + A0f t 0 B0fs = 0, �A6�

where we have introduced

A0 =
1

D
�2i�� 0 h� − gso −

gsfSz

2
� ,

B0 =
1

D
�2i�� 0 h� −

gsf�2Sxy + Sz�
2

� . �A7�

It is possible to find a general analytical solution for the
functions �f t , fs�, and this can be written as

f t = c1e−k−x + c2ek−x + c3e−k+x + c4ek+x,

fs =
c1S−e−k−x + c2S−ek−x + c3S+e−k+x + c4S+ek+x

2�B− − B+�
, �A8�

where �ci� are constants to be determined from boundary
conditions �A4� and �A5�. Also, we have defined the auxil-
iary quantities,

k0 =
1

2
��− A+ − A− − B+ − B−� 0 R ,

S0 = �A+ + A− − B+ − B−� 0 R ,

R = ��A+ + A−�2 + �B+ + B−�2 − 4�A+B− + A−B+�

+ 2�A+ − A−��B+ − B−��1/2. �A9�

First, we note that
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f0 = c1e−k−x�1 0 L−� + c2ek−x�1 0 L−� + c3e−k+x�1 0 L+�

+ c4ek+x�1 0 L+� , �A10�

with the definition L0= iDS0 / �8h�. We also introduce

�L0 = � 1 for +

	L for −
� �A11�

and similarly for L→R. After lengthy calculations, we fi-
nally arrive at an explicit expression for the coefficients �ci�,

c4 =
G+E−/E+ − G−

F− − F+E−/E+
, c3 = − �G+ + c4F+�/E+, c2 = Y0 + Y3c3

+ Y4c4, c1 = X0 + X2c2 + X3c3 + X4c4. �A12�

We have defined the auxiliary quantities,

P =
1 − L−

1 + L−
, X0 =

�L+sLe−i�

�1 + L−��cL + �dk−�
, X2 =

�dk− − cL

�dk− + cL
,

X3 = −
�1 + L+��cL + �dk+�
�1 + L−��cL + �dk−�

, X4 =
�1 + L+���dk+ − cL�
�1 + L−���dk− + cL�

,

�A13�

Y0 =
sLe−i��P�L+ − �L−�

�cL − �dk−��P�1 + L−� − �1 − L−��
,

Y3 =
�1 − L+��cL + �dk+� − �1 + L+��PcL + P�dk+�

�cL − �dk−��P�1 + L−� − �1 − L−��
,

Y4 =
�1 − L+��cL − �dk+� − �1 + L+��PcL − P�dk+�

�cL − �dk−��P�1 + L−� − �1 − L−��
,

�A14�

E0 = 2e−k+d�1 0 L+��cR − �dk+� + 2�1 0 L−��Y3ek−d�cR

+ �dk−� + �X2Y3 + X3�e−k−d�cR − �dk−�� ,

F0 = 2ek+d�1 0 L+��cR + �dk+� + 2�1 0 L−��Y4ek−d�cR

+ �dk−� + �X2Y4 + X4�e−k−d�cR − �dk−�� ,

G0 = − 2�R0sRei� + 2�1 0 L−��Y0ek−d�cR + �dk−� + �X2Y0

+ X0�e−k−d�cR − �dk−�� . �A15�

The above equations may be considerably simplified by con-
sidering only uniaxial spin-flip scattering. Setting the planar
spin-flip and spin-orbit scattering rates to infinity, corre-
sponding to the absence of such scattering processes, we
obtain the anomalous Green’s function as

f0 = c10eik0x + c20e−ik0x, k0 = �4i�� 0 h� − 3gsf

2D
,

�A16�

with the coefficients �!�=i�dk� , �=0�

c2� =
�L�sLe−i�eik�d�!� + cR� + �R�sRei��!� − cL�

eik�d�!� + cL��!� + cR� − e−ik�d�!� − cR��!� − cL�
,

c1� =
c2��!� + cL� − �L�sLe−i�

!� − cL
, � = 0 . �A17�

Once ĝR has been obtained, the Josephson current may be
calculated according to the formulas in the main text.

APPENDIX B: PAULI MATRICES

In this paper, the Pauli matrices used are defined as

 1 = �0 1

1 0
�,  2 = �0 − i

i 0
�,  3 = �1 0

0 − 1
� ,

1 = �1 0

0 1
�, 1̂ = �1� 0�

0� 1�
�,  ̂i = � i 0�

0�  i
� ,

!̂1 = � 0�  1

 1 0�
�, !̂2 = � 0� − i 1

i 1 0�
�, !̂3 = �1� 0�

0� − 1�
� .
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We study the supercurrent in a superconductor/ferromagnet/superconductor graphene junction. In
contrast to its metallic counterpart, the oscillating critical current in our setup decays only weakly
upon increasing the exchange field and junction width. We find an unusually large residual value of the
supercurrent at the oscillatory cusps due to a strong deviation from a sinusoidal current-phase relationship.
Our findings suggest a very efficient device for dissipationless supercurrent switching.
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Graphene is a condensed matter system displaying an
emergent low-energy ‘‘relativistic’’ electronic structure.
For undoped graphene, the Fermi level reduces to six
points, giving rise to nodal fermions at the edges of the
Brillouin zone. Currently, it is of considerable interest, and
potentially of great technological importance, to investi-
gate how such unusual low-energy electronic structures
manifest themselves in heterostructures where proximity
effects are prominent. In particular, the potential for
future applications in devices seems plausible if such
proximity structures would combine two major function-
alities in materials science: namely, magnetism and
superconductivity.

Recently, there have been several experimental reports
on proximity-induced superconductivity in graphene [1,2].
A measurable supercurrent was observed between regions
of graphene under the influence of proximity-induced
superconductivity in these works. Because of the massless
nature and energy-independent velocity of the charge car-
riers, graphene offers a unique environment for the mani-
festation of a Josephson effect. Unusual behavior for the
supercurrent in a superconductor/normal/superconductor
(S/N/S) graphene setup has been predicted, including an
anomalous scaling behavior with the length of the normal
region in the undoped case [3] and an oscillatory behavior
as a function of the gate voltage in the normal region [4].

Interestingly, it has also been shown [5,6] that ferromag-
netic correlations may be induced in graphene nanoribbons
by means of external electrical fields. A suggestion for a
more conventional magnetic proximity effect has also been
put forth [7,8], by means of exploiting a magnetic gate in
contact with a graphene layer. The accompanying ex-
change splitting between the spin- " and spin- # electrons
in graphene has been estimated [7] to lie around 5 meV for
the magnetic insulator EuO. Precise estimates of the
proximity-induced exchange splitting are difficult in this
case, due to the strong effect of the proximity layer on the
magnetization in EuO [9]. Nevertheless, it is known that
the magnetization in the proximity EuO layer is tunable
[10]. In applications, this is a great advantage, since it, in

principle, offers the possibility of a tunable proximity-
induced magnetization in graphene. Moreover, recent ex-
periments on spin injection in a graphene layer show a
rather long spin relaxation length �1 
m at room tem-
perature. This indicates that graphene is a promising ma-
terial for spin transport [7,11].

The following question arises naturally: Do novel physi-
cal effects arise due to the peculiar electronic properties of
graphene and simultaneously the interplay between ferro-
magnetic and superconducting correlations? The wide
range of exotic phenomena that originate from the mutual
interplay between magnetic and superconducting order
include 0-� transitions [12,13], odd-frequency pairing
[14], and even the intrinsic coexistence of ferromagnetism
and superconductivity in the same material [15,16]. In
particular, from the viewpoint of applications, the possi-
bility of altering the fundamental Josephson current-phase
relationship in a controlled fashion may bring about po-
tential implications for their use in superconducting elec-
tronics as well as in (quantum) logic circuits based on
superconductors [17].

In this Letter, we investigate the interplay between
proximity-induced superconductivity and ferromagnetism
in a graphene layer, resulting in an unusual behavior of the
supercurrent through the system. The main results are that
(i) the current-phase relationship deviates strongly from
sinusoidal behavior, indicating a significant contribution
from higher harmonics, and (ii) the critical current at the
0-� transition is finite and has a much larger value than the
one observed in metallic systems. The latter result suggests
a very efficient performance of the device as a supercurrent
switch.

We envisage an experimental setup where superconduc-
tivity is induced in two parts of the graphene region by
means of conventional superconductors, such as Nb or Al,
in close proximity. Between the superconducting regions,
an exchange splitting is induced in the graphene layer by
means of, e.g., a magnetic insulating material. Instead of
using a magnetic insulator such as EuO, where one, in
principle, could tune the magnetization in the proximity
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layer with an external magnetic field, one also could envi-
sion using a multiferroic (e.g., BiFeO3) or piezomagnetic
material (e.g., FexNiyBz) in close proximity to the gra-
phene layer. Both of these classes of materials would offer
the opportunity of tuning the exchange field in the material
by some external control parameter—the electric field due
to the magnetoelectric coupling in the former case and
pressure in the latter. Upon modifying the exchange field
in the proximity layer of the material, it is reasonable to
assume that the proximity-induced exchange field in gra-
phene would also be altered. Materials in which the mag-
netoelectric coupling is substantial are currently attracting
much interest due to their potential for novel technological
applications [18]. In order to control the local Fermi level
in the ferromagnetic (F) region, one could possibly use a
normal gate on top of the magnetic insulator to create a
tunable barrier [7]. The S regions are assumed to be heavily
doped, such that the Fermi energy satisfies "F � �, while
the F region is taken be undoped, i.e., "0F ’ 0. Moreover,
we assume sharp edges for the region separating the F and
S graphene regions and focus on the short-junction regime,
which is experimentally feasible.

We will proceed to show that the Josephson current in an
S/F/S graphene junction displays a strong oscillatory, non-
monotonic dependence on both the exchange field h and
the width d of the junction. Most interestingly, we find a
large residual value of the supercurrent at the cusps of these
oscillations. This indicates a sign reversal of the current,
and the considerable residual value of the supercurrent at
these cusps suggests a very efficient device for dissipation-
less supercurrent switching. We now present our results in
detail.

The F region separating the superconductors is taken to
be undoped, such that the effective Fermi level is �h for
spin-� electrons. The regions S must be strongly doped to
justify the mean-field treatment of superconductivity. We
assume that this is comparable to the estimated exchange
splitting in the F region [7,8]. Thus, we take "F ’ h to
obtain analytically tractable results. To construct the scat-
tering states that carry the supercurrent across the F region,
we write down the Bogoliubov–de Gennes equations [19]
in the presence of an exchange field h. The Bogoliubov–
de Gennes equation essentially describes the eigenstates of
quasiparticles in each of the graphene regions and their
eigenvalues ". It may be obtained by diagonalizing the full
Hamiltonian and constitutes the foundation for construct-
ing the scattering states which are involved in the transport
formalism we use here. For the spin species �, one finds
that

H0 � �h�x� ���x�
����x� �H0 � �h�x�

� �
u�

v��
� �

� "
u�

v��
� �

: (1)

Here we have made use of the valley degeneracy and
defined H0 � vFp 
 �, where p is the momentum vector
in the graphene plane and � is a vector of Pauli matrices.

The superconducting order parameter ��x� couples elec-
tron and hole excitations in the two valleys located at the
two inequivalent corners of the hexagonal Brillouin zone.
The u� spinor describes the electronlike part of the total
wave function  � � �u�; v���T and in this case reads
u� � � �A;�;  �B;��T, while v�� � T u�. Here T denotes
the transpose, while T is the time-reversal operator. To
capture the essential physics, we write ��x� � �0e

i	L;R in
the left and right S regions and ��x� � 0 otherwise.
Similarly, we set h�x� � h in the F region and h � 0
otherwise. The Josephson current is computed via the usual
energy-current relation summed over projections of all
paths perpendicular to the tunneling barrier [20]

IJ��	� � � 2e
@

X
i

Z �=2

��=2
d� cos�

f�1�"i��	��
d"i��	�
d�	

; (2)

where "i��	� are the Andreev bound states carrying the
current in the F region and �	 � 	R �	L is the macro-
scopic phase difference between the superconductors. The
integration over angles � takes into account all possible
trajectories, and f�x� is the Fermi-Dirac distribution func-
tion. We define the critical supercurrent as Ic �
jmaxfIJ��	�gj and introduce I0 � 2e�0. The procedure
for obtaining "i��	� is the same as in Ref. [3], and the
details will be given elsewhere; here we give the main
results. By introducing T��;P��4sin2�sin2�Pcos���
cos4� and ���; P� � �2sin2�P cos�� � cos2�� �
cos2� cos�	� cos4�� 4sin2�sin2�P cos��, we find
that the allowed bound states have energies 	"���	�
(� � 	), with

"���	� � �0������������������
2T��; P�p ��f���; P�2 � 4T��; P�

� �cos2�cos2��	=2� � sin2�P cos���2g1=2
����; P��1=2: (3)

The parameter P � hd=vF captures the effect of both the
exchange field h and the length d of the junction. To
understand the nature of these bound states, consider
Fig. 1 for a representative plot of "	��	�, using

FIG. 1 (color online). Contour plot of the Andreev bound
states in the ferromagnetic region carrying the current between
the superconductors.
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�	 � �=2. As is seen from both plots, the bound state
energies exhibit a strong oscillatory dependence on the
parameter P. This indicates that similar oscillatory behav-
ior may be expected in the supercurrent itself.
Interestingly, the oscillations seen in Fig. 1 are not damped
with increasing P. This directly reflects the Dirac-cone
linear dispersion of the graphene electrons and is reminis-
cent of the weak damping of conductance oscillations at
subgap energies in graphene-superconductor junctions
[21,22].

Inserting the derivative of Eq. (3) into Eq. (2) provides
the supercurrent. The current-phase relationship for the S/
F/S graphene junction is shown in Fig. 2. With increasing
P, the critical current gets suppressed, and finally the sign
of the current is changed. Remarkably, the critical current
never goes to zero. An interesting feature of the plot in
Fig. 2(a) is that the discontinuity at �	 � � for P � 0 is
split for increasing P. The discontinuity of the current-
phase relation originates with a crossing of Andreev levels
in the normal graphene (F graphene with h � 0) region at
�	 � �. For �	 2 �0; ��, only the 0-mode Andreev
bound state carries the current. For �	 2 ��; 2��, the
�-mode Andreev bound state carries the current, such
that there is an abrupt crossover exactly at �	 � �. The
situation changes when h � 0, since the spin splitting
doubles the number of Andreev bound states. Con-
sequently, the crossover between different modes may
occur at �	 � �, as a result of the superharmonic
current-phase relationship. We have checked explicitly
that the strong deviation from a sinusoidal current-phase
relationship persists for larger d that do not satisfy d=��
1. However, in this case one should strictly speaking also
include the contribution to the current from the continuum
of supergap states [20]. This requires a separate study, and
we focus here on the short-junction regime.

To show that the splitting of this discontinuity originates
with the presence of an exchange field which separates the
spin- " and spin- # bands, we have also numerically solved
the current-phase relationship for a nonzero Fermi level in
the ferromagnetic region. Although we have obtained ana-
lytical results in this regime, these are somewhat cumber-
some and therefore are omitted here. The result is shown in
Fig. 2(b), where we have chosen �0 � 1 meV, "F �
10 meV, "0F � 15 meV, and varying h in the range
�0; 5� meV. This ensures that there are no evanescent
modes, such that only the Andreev bound states carry the
current. We choose a junction with d=� � 0:05, where � is
the superconducting coherence length, since the short-
junction regime d� � is the experimentally most relevant
one. The figures in (a) and (b) correspond to two quite
different regimes: In (a) the exchange field is much larger
than the Fermi level, while in (b) the exchange field is
much smaller than the Fermi level. The trend is never-
theless seen to be the same in both cases, namely, a pro-
gressive splitting of the discontinuity located at �	 � � in
the paramagnetic case.

By assuming a heavily doped superconducting region
with "F � 10 meV and an effective gap �0 of 1 meV, a
mean-field treatment is justified by "F � �0. Moreover,
the short-junction regime requires that d� �. By using
vF ’ 106 m=s in graphene, we obtain from � � vF=� that
d� 650 nm is required. This condition has been met in at
least two experimental studies of proximity-induced super-
conductivity in graphene [1,2]. The critical supercurrent Ic
for an S/F/S graphene junction for "F � h and "0F � 0 is
shown in Fig. 3. The critical current shows oscillations with
respect to P but decays weakly compared to the metallic
case and never reaches Ic � 0 in the relevant regime. For
instance, there is a factor ’ 100 in reduction of the ampli-
tude of the current right after the second cusp in the
metallic case for h ’ 10�0 (see Fig. 2 in Ref. [23]), while
there is only a factor ’ 2 in reduction of the amplitude in
the present case. Right at the cusps located at P ’
f0:8; 2:8; 4:4g, there is a large residual value of the super-
current which should be experimentally detectable. This is
very distinct from the usual sinusoidal current-phase rela-

0 1
−2

−1

0

1

2

0 1 2

FIG. 2 (color online). (a) Current-phase relationship in the S/F/
S graphene junction with an undoped F region. We have fixed
"F � h and set "0F � 0. We have used values of P in the interval
[0.0, 1.2] in steps of 0.2. (b) Current-phase relationship in the S/
F/S graphene junction with a doped F region. We have set
"F=�0 � 10, "0F=�0 � 15, and d=� � 0:05 and vary h=�0 in
the range [0, 5] in steps of 1.
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FIG. 3 (color online). The critical supercurrent in a proximity-
induced S/F/S graphene junction for "F � h and "0F � 0.
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tionship for the Josephson current in which the supercur-
rent vanishes completely at the 0-� transition. The first
switch occurs at a value P � hd=vF � 0:8. For an ex-
change splitting of h ’ 10 meV, this requires a junction
width d � 50 nm. Alternatively, by employing a junction
width of d � 100 nm [1,2], one would need an exchange
splitting of h ’ 5 meV [7].

In order to explain the appearance of cusps in the critical
current dependent on the exchange field and junction
width, it is instructive to draw parallels to the metallic
S/F/S junction and the behavior of the supercurrent. In
most experimental situations, the effective barriers sepa-
rating the F and S regions are strong, leading to a current-
phase relationship which is very nearly sinusoidal, i.e.,
Ic � I0 sin�	 [24]. By tuning the temperature T and width
of the junction d, one is able to switch the sign of the
amplitude I0, which necessarily means that one must have
I0 � 0 at some point. Precisely such behavior has been
observed in several experiments [12,25]. In the present
system, the current-phase relationship deviates strongly
from sinusoidal behavior and contains a significant contri-
bution from higher harmonics. By tracking the absolute
value of the current with increasing P from Fig. 2, it is seen
that Ic never becomes zero. Instead, it has a large residual
value at the points where the current changes sign. While a
small but finite value of the supercurrent at the 0-� tran-
sition also has been observed in metallic S/F/S junctions
[26], the magnitude of the residual value of the super-
current in the graphene case is huge compared to the
metallic case. The relation between higher harmonics and
a finite critical current at the 0-� transition has been
discussed previously for ballistic Josephson S/F/S junc-
tions with a scatterer in the F region [27].

Since we have assumed a homogeneous chemical po-
tential in each of the S and F graphene regions, the experi-
mental observation of the predicted effects requires charge
homogeneity of the graphene samples. This is a challenge,
since electron-hole puddles in graphene imaged by a scan-
ning single electron transistor device [28] suggest that such
charge inhomogeneities play an important role in limiting
the transport characteristics of graphene close to the Dirac
point [29]. In doped graphene, as considered here, we
expect that the inhomogeneities should play a smaller
role than in undoped graphene. Although we have ne-
glected the spatial variation of the superconducting gap
near the S/F interfaces, we do not expect our qualitative
results to be affected by taking into account the reduction
of the gap. Also, we have assumed that the junction d is
short enough to neglect the orbital effect that the magnetic
field constitutes on the electrons.

In summary, we have investigated the interplay between
proximity-induced superconductivity and ferromagnetism
in a graphene layer. In contrast to its metallic counterpart,
the oscillating supercurrent in our setup decays only
weakly upon increasing the exchange field and junction

width. We find huge residual values of the supercurrent at
the 0-� transition points where the supercurrent changes
sign. If the exchange splitting could be adjusted by means
of some external source, such as gate voltage or external
electrical fields [5,6,18], these results imply that the super-
current across the junction may be tuned in a controllable
fashion. Specifically, a very efficient supercurrent switch
may be realized by tuning the exchange field infinitesi-
mally near the sign reversal points.
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We construct a mean-field theory for itinerant ferromagnetism coexisting with a nonunitary superconducting
state, where only the majority-spin band is gapped and contains line nodes, while the minority-spin band is
gapless at the Fermi level. Our study is motivated by recent experimental results, which indicate that this may
be the physical situation realized in the heavy-fermion compound UGe2. We investigate the stability of the
mean-field solution of the magnetic and superconducting order parameters. Also, we provide theoretical pre-
dictions for experimentally measurable properties of such a nonunitary superconductor: the specific heat
capacity, the Knight shift, and the tunneling conductance spectra. Our study should be useful for direct
comparison with experimental results and also for further predictions of the physics that may be expected in
ferromagnetic superconductors.
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I. INTRODUCTION

The interplay between ferromagnetic �FM� and supercon-
ducting �SC� long range order microscopically coexisting in
the same material has attracted much interest during the last
decade due to the discovery of superconductivity in ferro-
magnetic metals, UGe2, URhGe, and UCoGe.1–4 One pos-
sible route of investigation of such systems was adopted in
early works,5–7 which assumed a conventional s-wave super-
conducting condensate residing in a ferromagnetic back-
ground caused by localized spins or aligned magnetic impu-
rities. It was shown that below a critical value of the
magnetic coupling, which is comparable to the supercon-
ducting gap � itself, superconductivity and magnetism were
able to coexist. It was also suggested that a finite-momentum
pairing state, known as Fulde–Ferrell–Larkin–Ovchinnikov
�FFLO� phase,8 can appear in the presence of an external
magnetic field or an intrinsic ferromagnetic order, and could
thereby permit a larger threshold of the spin exchange energy
to coexist with superconductivity.

On the other hand, it has been known since the early days
of research on 3He that alternative superconducting states,
other than s wave, can be favored in a ferromagnetic back-
ground. The early theories of an equivalent phenomenon to
occur in the solid state were formulated in the early 1980s,9

despite the absence of any experimental example of a ferro-
magnetic superconductor at the time. With the discovery of
superconductivity in UGe2, especially given that the same
electrons are believed to participate both in ferromagnetism
and SC, this latter scenario had to be taken seriously to ex-
plain the microscopic coexistence between the two phases. In
particular, the very large hyperfine magnetic molecular field
in these materials, measured,10 e.g., with Mössbauer spec-
troscopy, far exceeds the Pauli limit. This excludes any pos-
sibility of singlet-pairing superconductivity.

We should note that although the latter statement is true in
UGe2 and other ferromagnetic superconductors, one may still

ask whether, in principle, a singlet-type superconductivity
can coexist with ferromagnetism. Although some early theo-
retical studies11 indicated that the answer to this question
may be affirmative provided FM is weak, a more careful
analysis concluded12 that the coexistence state of spin-singlet
pairing and ferromagnetism always turns out to be energeti-
cally unfavorable against the nonmagnetic superconducting
state even if a finite-momentum pairing �FFLO� state is con-
sidered. Later, it was proposed13 that the coexistence of me-
tallic ferromagnetism and singlet superconductivity may be
realized assuming that the magnetic instability is due to ki-
netic exchange. However, the coexistence of magnetism and
spin-triplet superconductivity appears to be a more promis-
ing scenario, since the Cooper pairs may use their spin de-
gree of freedom to align themselves with the internal mag-
netic field.

An experimental fact that is even more striking is that in
all ferromagnetic superconductors known to date, the SC
phase is only observed in a small part of the phase diagram
otherwise occupied by ferromagnetism,14 and it is the region
where the magnetism appears to be at its weakest that SC
sets in-on the boundary with paramagnetism when the Curie
temperature is driven to zero �typically by applying pres-
sure�. This immediately raises the question of the micro-
scopic origin of SC pairing, and whether ferromagnetic spin
fluctuations play the role of a “glue” for Cooper pair forma-
tion very much as they do in superfluid 3He. It is equally
interesting what role the zero-temperature pressure-tuned
phase transition plays in the formation of superconductivity
and whether notions involving quantum criticality �provided
the phase transitions are second order� are necessary to ex-
plain the phenomenon.

Although there is no universal answer to this question yet
and the research efforts, both experimental and theoretical,
are focused on this issue, it is interesting to note that in UGe2
the ferromagnetic phase transition as a function of pressure
becomes first order as the “critical pressure” is approached at
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T=0. One cannot therefore straightforwardly apply a theory
of quantum criticality �be it the Hertz–Millis15 theory or one
of its variations� given the absence of the quantum critical
point as such. It is undeniable, however, that the point where
Curie temperature goes to zero is of crucial importance to the
formation of the SC state.

Drawing further parallels between triplet-pairing FM su-
perconductors and the superfluid 3He, one may wonder
whether different symmetries of the SC gap can occur, as is
the case in the different phases16 of 3He. For example, can
the gap symmetry with point or line nodes be realized in the
ferromagnetic superconductors? Very recently, experimental
evidence has appeared, which suggests that the answer is
“yes.” Harada et al.17 reported on 73Ge nuclear-quadrupole-
resonance experiments performed under pressure, in which
the nuclear spin-lattice relaxation rate revealed an unconven-
tional nature of superconductivity implying that the majority-
spin band in UGe2 was gapped with line nodes, while the
minority-spin band remained gapless at the Fermi level.

Motivated by this, we present a mean-field model for co-
existing ferromagnetism and spin-triplet superconductivity
with a SC order parameter that displays line nodes in
majority-spin channel and is gapless for minority spin. We
first study the interplay between the magnetic and supercon-
ducting order parameters, and then proceed to make several
predictions for experimentally relevant quantities: the spe-
cific heat capacity, Knight shift, and tunneling conductance.
Let us briefly summarize our main results. We find that the
low-temperature specific heat capacity CV shows power-law
behavior �to be contrasted with the conventional exponential
decay in the s-wave case�, and that the gapless minority spins
dominate the contribution to CV at low temperatures, giving
rise to a linear T dependence. Also, the relative jump in CV
shows a strong dependence on the exchange splitting in the
system. With regard to the Knight shift, we find that it is
suppressed at T=0 with increasing exchange splitting of the
majority- and minority-spin bands when the external field is
applied perpendicular to the spin of the Cooper pairs in the
system. In general, however, it depends strongly on the ori-
entation of the field with respect to the crystallographic axes
of the compound, indicative of the triplet pairing in the sys-
tem. Finally, the normalized tunneling conductance spectra
show a strong directional dependence with respect to the
orientation of the superconducting order parameter in recip-
rocal space, but change very little upon modifying the ex-
change splitting in the system. Our findings should be useful
for comparison with experimental studies, and could lead to
further insights as regards the nature of the superconducting
order parameter.

This paper is organized as follows. We first describe the
phenomenological framework to be used in this work in Sec.
II. We then present our theoretical model in Sec. III, and
provide the results of the self-consistent mean-field treatment
at both zero and finite temperatures in Sec. IV A. We then
proceed to make predictions for experimentally accessible
quantities in Sec. IV B, using the self-consistently obtained
results from Sec. IV A. We discuss our findings in Sec. VI,
and summarize in Sec. VII. We will use boldface notation for

vectors, . . .ˆ for operators, . . .̌ for 2�2 matrices, and . . .ˆ for
4�4 matrices.

II. PHENOMENOLOGICAL FRAMEWORK

The issue of coexisting ferromagnetism and superconduc-
tivity dates back to half a century ago when the celebrated
FFLO state was predicted8 as a finite-momentum pairing
state with real-space structure of the singlet SC order param-
eter that may develop under certain conditions close to the
critical magnetic field Hc2. The conditions for the FFLO state
are, however, very different from those observed in ferro-
magnetic superconductors such as UGe2. In particular, as has
already been emphasized above, the magnetic molecular
field felt by Cooper pairs inside the ferromagnet is many
times larger10 than the Pauli limiting field necessary to de-
stroy the singlet Cooper pairs. We shall therefore concentrate
on triplet-type superconducting pairing.

Several remarks are in order. We note from the outset that
the ferromagnetism observed in the uranium compounds is
itinerant, Stoner-type in its nature. We shall therefore not
discuss the topic of localized magnetic moments that would
have, among other things, provided a pair-breaking mecha-
nism in accord with the Abrikosov–Gor’kov theory18 of
magnetic scattering. Here, we will assume that the same
electrons involved in the spontaneous SU�2� symmetry
breaking associated with ferromagnetism also participate in
the U�1� gauge symmetry breaking that characterizes a su-
perconductor.

The idea of triplet pairing occurring between the same
electrons that form the Stoner instability at the border of
ferromagnetism goes back to Fay and Appel9 �1980� who
considered the exchange of magnetic spin fluctuations as a
microscopic mechanism for Cooper pairing. More recently,
the problem has been revisited19–23 in the light of experimen-
tal findings in UGe2 and other ferromagnetic superconduct-
ors.

In this paper, we shall take a phenomenological approach
to superconductivity, leaving the intriguing and debated
question of the microscopic mechanism for Cooper pairing
aside. In particular, we shall consider systems where super-
conductivity appears at a lower temperature than the tem-
perature at which onset of ferromagnetism is found. This is
certainly the case experimentally and may be simply due to
the fact that the energy scales for the two phenomena are
quite different, with the exchange energy naturally being the
largest. It may, however, also be due to the fact that super-
conductivity is dependent on ferromagnetism for its very ex-
istence. Such a suggestion has recently been put forth.24

A crucial issue to address in this context is whether su-
perconductivity and ferromagnetism are phase separated
�such as, e.g., solid and liquid phases coexisting at the melt-
ing point� or not. Fairly strong experimental evidence for
non-phase-separated coexistence of ferromagnetism and su-
perconductivity has recently been presented in UGe2.25 How-
ever, even if such non-phase-separated coexistence is estab-
lished, there still remains the issue of whether the
superconducting order parameters exhibits spatial variations,
precisely due to its non-phase-separated coexistence with
ferromagnetic order. One obvious candidate for such spatial
variations26 is a spontaneously formed Abrikosov vortex lat-
tice, induced by the internal magnetization M. As argued in
Ref. 27, an important factor with respect to whether a vortex
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lattice appears or not could be the magnitude of the internal
magnetization M. Specifically, Ref. 28 suggested that vorti-
ces may arise if 4�M�Hc1, where Hc1 is the lower critical
field. It is conceivable that a weak ferromagnetic state coex-
isting with superconductivity may give rise to a domain
structure, in the absence of an external field that is vortex-
free. Therefore, we shall consider the non-phase-separated
coexistence of the FM and SC order parameters from here
on, as have other studies.29 We will also leave the complica-
tions arising from the spatial variation of the superconduct-
ing order parameter originating with a putative spontane-
ously formed Abrikosov vortex lattice in the superconducting
order parameter for future investigations.

Spin-triplet superconductors are characterized by a multi-
component order parameter, which for the simplest case of
the p wave may be expressed in terms of three independent
components of a d vector,

dk = ��k↓↓ − �k↑↑
2

,
− i��k↓↓ + �k↑↑�

2
,�k↑↓� . �1�

Note that dk transforms like a vector under spin rotations. In
terms of the components of dk, the order parameter itself is a
2�2 matrix that reads

�̌	
�k� � �ck,	ck,
	 = �i�dk · ���y�	
, �2�

where � is the vector of Pauli matrices, and ck,	
† ,ck,	 are the

usual electron creation-annihilation operators for momentum
k and spin 	.

The superconducting order parameter is characterized as
unitary if the modulus of the gap is proportional to the unity

matrix: ��̌ · �̌†�* 1̌. Written in terms of the vector dk, this
condition is equivalent to the requirement that �Sk	=0, where
we have introduced the net magnetic moment �or spin� of the
Cooper pair,

�Sk	 � i�dk � dk
�� . �3�

The unitary triplet state thus has Cooper pairs with zero mag-
netic moment, whereas the nonunitary state is characterized
by the nonzero value of �Sk	�0. The latter effectively means
that time-reversal symmetry is spontaneously broken in the
spin part of the Cooper pairs.30 It is thus intuitively clear that
having the spin of the Cooper pair aligned with the internal
magnetic field of the ferromagnet can lower the energy of the
resulting coexistence state. The above argument that the or-
der parameter in the ferromagnetic superconductors must be
nonunitary was put forward by Machida and Ohmi,20 and
others.21,31 Distinguishing between unitary and nonunitary
states in ferromagnetic superconductors is clearly one of the
primary objectives in terms of identifying the correct SC
order parameter. To this end, recent studies have focused on
calculating transport properties of ferromagnetic
superconductors.32–37 There have also been investigations of
identifying spin-triplet pairing in quasi-one-dimensional
�quasi-1D� materials.38–41

Finally, we note that intersubband pairing is expected to
be strongly suppressed in the presence of the Zeeman split-
ting between the ↑ ,↓ conduction subbands. In other words,
only electrons within the same subband will form Cooper

pairs �the so-called equal-spin pairing� and we shall set
�↑↓=0 in what follows. Moreover, the requirement of non-
unitarity of the order parameter is then reduced to the re-
quirement that the vector dk in Eq. �1� should have two
nonzero components, i.e., �↑↑��↓↓, which one would ex-
pect anyway in the presence of the Zeeman splitting between
the two spin subbands. The spin of the Cooper pair is then
�Sz	= 1

2 �
�↑↑
2− 
�↓↓
2� and is aligned along the magnetic field
�with z being the spin quantization axis�.

III. THEORY

We consider a model of a ferromagnetic superconductor
described by uniformly coexisting itinerant ferromagnetism
and nonunitary, spin-triplet superconductivity. We write
down a weak-coupling mean-field theory Hamiltonian with
equal-spin pairing Cooper pairs and a finite magnetization
along the easy-axis similar to the model studied in Refs. 22
and 23, namely,

Ĥ = 
k

�k +
INM2

2
−

1

2
k�

�k��
† bk�� +

1

2
k�

�ĉk�
† ĉ−k��

�� �k� �k��

�k��
† − �k�

�� ĉk�

ĉ−k�
† � , �4�

where bk��= �c−k�ck�	 is the nonzero expectation value of
the pair of Bloch states. Applying a standard diagonalization
procedure, we arrive at

Ĥ = H0 + 
k�

Ek��̂k�
† �̂k�,

H0 =
1

2
k�

��k� − Ek� − �k��
† bk��� +

INM2

2
, �5�

where ��̂k� , �̂k�
† � are new fermion operators and the eigen-

values read

Ek� = ��k�
2 + 
�k��
2. �6�

It is implicit in our notation that �k=�k−EF is measured
from the Fermi level, where �k is the kinetic energy. The free
energy is obtained through

F = H0 −
1




k�

ln�1 + e−
Ek�� , �7�

such that the gap equations for the magnetic and supercon-
ducting order parameters become22

M = −
1

N

k�

��k�

2Ek�
tanh�
Ek�/2� ,

�k�� = −
1

N

k�

Vkk���
�k���

2Ek��
tanh�
Ek��/2� . �8�

Specifically, we now consider a model which should be of
relevance to the ferromagnetic superconductor UGe2, and
possibly also for UCoGe and URhGe. In Ref. 17, it was
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argued that the majority-spin �spin up in our notations� fer-
mions were gapped and that the order parameter displayed
line nodes, while the minority �spin-down� fermions re-
mained gapless at the Fermi level in the heavy-fermion com-
pound UGe2. An obvious mechanism for suppressing the su-
perconducting instability in the minority-spin channel as
compared to the majority-spin channel is the difference in
density of states �DOS� at the Fermi level. Indeed, from Fig.
1 in Ref. 22 �see also Fig. 4 in Ref. 23�, it is seen that the
critical temperature for pairing in the minority-spin subband,
Tc
↓, is predicted to be much smaller than the critical Tc

↑ for the
majority-spin subband, even for quite weak magnetic ex-
change splittings. Given the already quite low critical tem-
perature Tc that is observed experimentally in ferromagnetic
superconductors �Tc21 K�, which we associate with Tc

↑, we
therefore conclude that it might indeed be very hard to ob-
serve experimentally the even smaller gap in the minority-
spin subband. Therefore, it is permissible to only consider
pairing in the majority-spin channel and neglect a small �if
any� pairing between minority-spin electrons. In our notation
this means setting M �0,�k↑�0,�k↓=0.

We stress that the above statement, although intuitively
attractive, may need further justification since we have so far
neglected completely the spin-orbit interaction that is ex-
pected to be strong in uranium based compounds, such as
UGe2, URhGe, and UCoGe. The effect of the latter would be
to provide some effective coupling between majority- and
minority-spin subbands and would probably lead to induced
SC order parameter in minority-spin channel. This issue is
left for future study.42

To model the presence of line nodes in the order param-
eter, we choose

�k↑ = �kF↑↑ = �0 cos � , �9�

where kF is the normalized Fermi wave vector, such that the
gap only depends on the direction of the latter. This is the
weak-coupling approximation. The above gap satisfies the
correct symmetry requirement dictated by the Pauli prin-
ciple, namely a sign change under inversion of momentum,
�→�−�. Here, � is the azimuthal angle in the xy plane. Our
choice of this particular symmetry for the p-wave supercon-
ducting gap is motivated by the experimental results of
Harada et al.17 The cos � dependence is also in accord with
the results of Ref. 43, which showed that the majority band
at the Fermi level for UGe2 is strongly anisotropic with a
small dispersion along the ky direction. We consider here a
situation where the electrons are restricted from moving
along the z axis. The motivation for this is that, strictly
speaking, it seems plausible that uniform coexistence of fer-
romagnetic and superconducting order should only be real-
ized in thin-film structures where the Meissner �diamagnetic�
response of the superconductor is suppressed for in-plane
magnetic fields. The thin-film structure would then also sup-
press the orbital effect of the field. In a bulk structure, as
considered in Ref. 11, we expect that a spontaneous vortex
lattice should be the favored thermodynamical state,26 unless
prohibited by a possible domain structure. Having said that,
we point out that there is no firm experimental evidence for
the presence of such a vortex phase in ferromagnetic super-

conductors such as UGe2, and we therefore do not exclude
some mechanism that would instead stabilize a truly uniform
coexistence of the SC and FM in these materials. It should be
mentioned that uniform coexistence of ferromagnetism and
superconducting order have also been speculated to occur in
quasi-1D and quasi-two-dimensional materials such as
RuSr2GdCu2O8.44 In our model, the pairing potential may be
written as

V��,��� = − g cos � cos ��, �10�

where g is the weak-coupling constant. Conversion to inte-
gral equations is accomplished by means of the identity

1

N

k

f��k�� =� d�N���� , �11�

where N���� is the spin-resolved density of states. In three
spatial dimensions, this may be calculated from the disper-
sion relation by using the formula

N���� =
V

�2��3�
�k�=const

dS�k�


�̂k�k�

. �12�

With the dispersion relation �k�=�k−�IM −EF, one obtains

N���� =
mV�2m�� + �IM + EF�

2�2 . �13�

In their integral form, Eqs. �8� for the order parameters read

M = −
1

4�
�

��
0

2� �
−EF−�IM

�

d�d�
�N����
E���,��

� tanh�
E���,��/2� ,

1 =
g

4�
�

0

2� �
−�0

�0

d�d�
N↑���cos2 �

E↑���
tanh�
E↑��,��/2� .

�14�

For ease of notation, we also define

����� = ��0 cos � if � = ↑
0 if � = ↓ ,

E���,�� = ���2 + �0
2 cos2 � if � = ↑
� if � = ↓

,� �15�

For the following treatment, we define M̃ = IM /EF, i.e., the
exchange energy scaled on the Fermi energy. Moreover, we
set c=gN�0� /2 to a typical value of 0.2 and �̃0=�0 /EF
=0.01 as the typical spectral width of the bosons responsible
for the attractive pairing potential. Finally, we define the pa-

rameter Ĩ= IN�0� as a measure of the magnetic exchange cou-

pling. As discussed below, only for Ĩ�1 will a spontaneous
magnetization appear in our model, in agreement with the
Stoner criterion for itinerant ferromagnetism.
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IV. RESULTS: MEAN-FIELD MODEL FOR COEXISTENCE

A. Zero-temperature case

For zero temperature, the superconducting gap equation
reads

1 =
g

4�
�

0

2� �
−�0

�0

d�d�
N↑���cos2 �

��2 + �0
2 cos2 �

. �16�

Under the assumption that �0)�0, we obtain that

2

c�1 + M̃
= ln�2�0

�0
� −

1

�
�

0

2�

d� cos2 � ln
cos �
 . �17�

which may be solved to yield the zero-temperature gap

�0 = 2.426�0exp�− 2/�c�1 + M̃�� . �18�

By inserting Eq. �18� into the gap equation for the magneti-
zation in Eq. �14�, we have managed to decouple the self-
consistency equations for M and �0. Numerical evaluation
reveals that the gap equation for M is completely unaffected
by the presence of �0, which physically means that the mag-
netization remains unaltered with the onset of superconduc-
tivity. This is reasonable in a model where the energy scale
for the onset of magnetism is vastly different from the energy
scale for superconductivity, such that by the time supercon-
ductivity sets in, the ordering of the spins essentially ex-
hausts the maximum possible magnetization.

The dependence of �0 on Ĩ is shown in Fig. 1. The gap

remains constant for Ĩ� �0,1�, which is a unitary phase. In
the unitary phase, there is no reason for the minority-spin
band to remain ungapped when M =0, and hence we would

expect two gaps �↑=�↓ of equal magnitude for Ĩ"1. Our
model of gapping exclusively for the majority-spin band is

therefore justified only for Ĩ�1, which is the regime we shall
be concerned with throughout this paper. The onset of a

spontaneous magnetization for Ĩ�1 is the well-known

Stoner criterion for an isotropic electron gas, where the spin
susceptibility may be written as45

��q,�� =
�0�q,��

1 − I�0�q,��
,

�0�q,�� = N0�1 −
q2

12kF
2 + i

��

2vF
q
� ,


q
 # 2kF, �# EF. �19�

For a parabolic band, the static susceptibility is maximal for
q=0 where

��q = 0,� = 0� =
N0

1 − IN�0�
=

N0

1 − Ĩ
. �20�

The introduction of a ferromagnetic order is demarcated by

the divergence of the susceptibility for Ĩ=1, which is pre-
cisely Stoner’s criterion for itinerant ferromagnetism. In the
absence of superconductivity, the self-consistency equation
for the magnetization at T=0 reduces to

h = −
Ĩ

3�EF

�

��EF − �h�3/2, �21�

where h= IM is the exchange splitting of the majority and
minority bands. Since the energy scales for the magnetic and
superconducting order parameter differ so greatly in magni-
tude, Eq. �21� is an excellent approximation even in the co-
existent state �we have verified this numerically�.

B. Finite temperature case

The critical temperature for the superconducting order pa-
rameter is obtained in the standard way �setting �0=0 in Eq.
�16�� to yield

Tc = 1.134�0 exp�− 2/�c�1 + M̃�� . �22�

In Fig. 2, we plot the temperature dependence of the self-
consistently obtained solution of �0 and compare it to the
analytical mean-field temperature dependence

�0�T� = �0�0�tanh���Tc/T − 1� . �23�

The BCS result is �=1.74, but we find a better fit for our
numerical results using �=1.70. Throughout the rest of this
paper, we shall therefore make use of Eq. �23� with �
=1.70 to model the temperature dependence of the gap for

Ĩ= �1.01,1.02,1.03�, since the agreement is excellent with
the full numerical solution. As in the zero-temperature case,
we find that the gap equations in Eq. �14� may be completely
decoupled also at finite temperature. We have verified that
the gap equation for the superconducting order parameter has
a unique nontrivial solution, which guarantees that the sys-
tem will prefer to be in the coexistent state of ferromag-
netism and superconductivity.

The phase diagram of the model we are considering may
be obtained numerically and is shown in Fig. 3. As seen, a

0.9811.021.04
0

0.05

0.1

0.15

0.2

Ĩ

Δ
0
/
E

F

×10−4

Numerical
Analytical

FIG. 1. �Color online� The gap dependence on the ferromagnetic

exchange interaction parameter Ĩ= IN�0�. The gap remains constant

for Ĩ� �0,1�, which correspond to a unitary phase. The gap �0 then

starts growing with increasing Ĩ for Ĩ�1.0, announcing the onset of
a spontaneous magnetization. The analytical formula is based on
Eq. �18�.
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quantum phase transition may occur at Ĩ=1.0, separating the
unitary superconducting state �see discussion in an earlier
paragraph� from the ferromagnetic, nonunitary supercon-
ducting state. The critical temperature for the magnetic order
parameter is orders of magnitudes larger than Tc for the su-

perconductivity except for very close to Ĩ=1.0. The increase
in Tc in the nonunitary phase as compared to the unitary
phase is a result of the increase in density of states with
magnetization for the majority spin.

Experimentally, one often maps out the T-p phase dia-
gram, where T is temperature and p is pressure. Note that the

value of Ĩ may be controlled experimentally by adjusting the
pressure on the sample. A change in pressure is accompanied
by a change in the width of the electron bands, and therefore
directly affects the density of states at the Fermi level: in-
creasing the pressure on the samples reduces the density of

states, and hence also the effective coupling constant Ĩ.46 A
notable feature in the phase diagram for UGe2 as determined
experimentally, is that superconductivity only appears in the
ferromagnetic phase, and not in the paramagnetic phase.

V. RESULTS: EXPERIMENTAL PREDICTIONS

We next proceed to using the self-consistently obtained
solutions from the previous section to make predictions for
three experimental quantities that are routinely used to study
superconducting condensates: specific heat, Knight shift, and
tunneling conductance spectra. We first consider the normal-
ized heat capacity, which is defined as

CV =

2

8�
�
�

0

2� �
−EF−�IM

�

d�d�
N����

cosh2�
E���,��/2�

� �E�
2��,�� − T������

������
�T

− ��I
�M

�T
�� . �24�

Since the critical temperature of M is much larger than the
critical temperature for �0 in our model, we may safely ne-
glect �M /�T in the low-temperature regime. Consider Fig. 4
for a plot of the specific heat capacity using three represen-

tative values for Ĩ. The general trend with increasing Ĩ is an
increase in the jump of CV at T=Tc. The physical reason for
this is that the majority-spin carriers will dominate the jump
in specific heat stronger when the exchange splitting between
the bands increases, which is in agreement with the results of
Ref. 23. Analytically, the relative jump in specific heat may
be expressed as
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FIG. 2. �Color online� Self-consistently obtained solution for the
superconducting gap �0 �red symbols� compared to the analytical
expression Eq. �23� with �=1.70 �blue lines�, modeling a BCS-type
temperature dependence.
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"��CV

CV
�"

T=Tc

� �1 + �1 − h/EF

1 + h/EF
�−1

. �25�

It depends on the exchange splitting in the superconductor
since the contribution from the majority-spin carriers will
tend to dominate the specific heat when h increases. The
low-temperature scaling with T bears witness of the line
nodes in the gap and is to be contrasted with the more rap-
idly decaying s-wave case. Also note that the minority-spin
fermions are in the normal state and give a significant con-
tribution to the specific heat in form of a linear T dependence
at low temperatures. If both spin species were gapped with
line nodes, one would expect a T2 dependence of the low
temperature specific heat.

In the experimental study of the heat-capacity in UGe2
conducted in Ref. 47, a peak of the heat-capacity associated
with the superconducting transition was observed in a nar-
row pressure region �p�0.1 GPa around px. Here, px is the
pressure at which the superconducting transition temperature
Tc shows a maximum value. Farther away from px, the heat
capacity anomaly was smeared out. In particular, a substan-
tial residual value of CV /T was observed at T→0. Tateiwa et
al.47 argued that neither the minority-band density of states at
the Fermi level nor the contribution from a self-induced vor-
tex state would be appropriate to describe this residual value.
Instead, it might stem from impurities that induce a finite
density of states at the Fermi level. For an anisotropic super-
conductor such as UGe2, the residual value would be highly
sensitive to such impurities. It is also clear that the observa-
tion of sharp peaks, similar to the ones we obtain in Fig. 4,
depend strongly on the applied pressure on the supercon-
ductor and, in particular, on how close it is to px.

We next consider the spin susceptibility, making use of
the standard formula48

��q,�� = −
1

2
 
k,i�n

Tr�Ĝ�k, i�n�Ĝ�k + q, i� + i�n�� ,

�26�

where Ĝ is the matrix Green’s function in particle hole and
spin space, where �n=2�n+1�� /
 are fermionic Matsubara
frequencies. In the static ��=0� and uniform �q=0� limit,
Eq. �26� reduces to the Knight shift /���0,0�. We define
the normalized Knight shift as

/

/0
=




8�
�
�

0

2� �
−EF−�IM

� d�d�N����
cosh2�
E���,��/2�

. �27�

The Knight shift is a measure of the polarizability of the
conduction electrons in the compound, and serves as a highly
useful probe to distinguish between singlet and triplet super-
conductivity. For a singlet superconductor, the total spin S of
the Cooper pair is zero, and the Knight shift therefore van-
ishes at T=0 since there are no quasiparticle excitations in
the superconductor that may be polarized. The Knight shift
vanishes regardless of the direction in which the external
magnetic field is applied for a singlet superconductor. For a
triplet superconductor, this is quite different. The Knight

shift now may be anisotropic in terms of the direction in
which the magnetic field is applied. By means of the
dk-vector formalism �see Eq. �1��, one may infer that the
Knight shift is unaltered even for T"Tc when dk�H but is
altered according to Eq. �27� when dk � H. This is valid as
long as the dk remains “pinned” in the material due to, e.g.,
spin-orbit coupling, and hence does not rotate with H. Oth-
erwise, the Knight shift would remain unaltered in any direc-
tion. Therefore, an anisotropic Knight shift is a strong signa-
ture of a vector character of the superconducting order
parameter, and hence of a spin-triplet superconducting state.

In Fig. 5, we plot the Knight shift for several values of Ĩ.

It is interesting to note that /�0� is reduced with increasing Ĩ.
Physically, this may be understood by realizing that the den-
sity of states of ungapped minority spins at the Fermi level
decreases as the exchange splitting between the majority and
minority bands increases. This results directly in a lower
amount of polarizable quasiparticles, and hence the Knight
shift becomes suppressed. For a fully polarized ferromagnet
�half-metal�, the Knight shift would therefore be identical to
an s-wave singlet superconductor for an applied field satis-
fying H � dk. This fact emphasizes the importance of measur-
ing the spin susceptibility along several directions to identify
the proper spin symmetry of the superconductor.

As a final experimental probe for the interplay between
ferromagnetism and superconductivity, we employ a
Blonder–Tinkham–Klapwijk formalism49 to calculate the
tunneling between a normal metal and a ferromagnetic su-
perconductor in the clean limit, using the self-consistently
obtained values of the order parameters in the problem. From
the results of Ref. 34, we find that the normalized tunneling
conductance may be written as

G

G0
= 

�
�

−�/2

�/2

d� cos ��1 + 
r�
A�eV,��
2 − 
r�

N�eV,��
2� ,

�28�

where G0 is the normal-state conductance. Above, r�
A�eV ,��

and r�
N�eV ,�� designate the Andreev- and normal-reflection

coefficients, respectively, and read
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FIG. 5. �Color online� Knight shift for a ferromagnetic super-
conductor, using self-consistently obtained order parameters, for

three different values of Ĩ. Here, the field is applied H � dk.
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� ��&+
��� + v���s−

� �v���s+
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� ���
���s+

� ��&−
����

u���s+
� �u���s−

� �
&+
�
2 − v���s−

� �v���s+
� �����s−

� ���
���s+

� �
&−
�
2

,

r�
A =

4kF cos �q� cos �s
�v���s+

� �u���s−
� ���

���s+
� �

u���s+
� �u���s−

� �
&+
�
2 − v���s−

� �v���s+
� �����s−

� ���
���s+

� �
&−
�
2

. �29�

We have defined Z=2mV0 /kF as a measure of the barrier
strength, where m is the quasiparticle mass, V0 is the scatter-
ing strength of the barrier, and kF is the Fermi momentum.
Moreover, � is the angle of incidence of incoming electrons
from the normal side and we have implicitly incorporated
conservation of group velocity and conservation of momen-
tum parallel to the barrier, i.e., kF sin �=q� sin �s

�. Finally,
we have introduced

&0
� = q� cos �s

� 0 kF cos � 0 ikFZ �30�

and �����=����� / 
�����
, �s+
� =�s

�, �s−
� =�−�s

�. In the quasi-
classical approximation EF) ��0 ,��, the wave vectors read

kF = �2mEF, q� = �2m�EF + �IM� , �31�

while the spin-generalized coherence factors are

u���s0
� � =

1
�2

�1 + �1 − �
����s0
� �
/E�2�1/2,

v���s0
� � =

1
�2

�1 − �1 − �
����s0
� �
/E�2�1/2. �32�

In Fig. 6, we plot the conductance spectra of a normal/
ferromagnetic superconductor junction. By writing the gap
as �=�0 cos��−	�, we allow for an arbitrary orientation of
the gap with respect to the crystallographic axes. The fea-
tures seen in the conductance spectra are qualitatively differ-
ent for 	=0 and 	=� /2. In the first case, the electronlike
and holelike quasiparticles entering the superconductor expe-
rience a constructive phase interference which gives rise to
the formation of a zero-energy state that is bound to the
surface of the superconductor. The resonance condition for
the formation of such zero-energy states is
����=−���−��,50 and the bound states are manifested as a
giant peak in the zero-bias conductance.51 Note that such
states exist even if the spatial depletion of the superconduct-
ing order parameter is not taken into account, which may be
shown analytically.52 Taking the reduction into account, one
obtains the same qualitative features as the usual step-
function approximation, with the exception of additional,
smaller peaks at finite bias voltages due to nonzero bound
states.53 From Fig. 6, we see that the effect of increasing the
exchange field amounts to sharper features in the conduc-

tance spectra. With increasing Ĩ, the zero-bias conductance
peak becomes larger for 	=0, while the dip structure for 	
=� /2 becomes more pronounced. Physically, this may be
understood by the increased contribution from majority-spin
carriers. The contribution from the minority-spin carriers is

constant for the entire low-energy regime and leads to less
pronounced features in the conductance. The effect of the
barrier strength Z is seen in the left column of Fig. 6. For
	=0, increasing Z leads to a higher peak at zero bias, while
increasing Z suppresses the conductance for 	=� /2.

It is also worth emphasizing the relation between the tun-
neling conductance and the bulk DOS of the superconductor.
As is well known, the conductance of a normal/s-wave su-
perconductor junction in the tunneling limit approaches the
DOS of the bulk superconductor.49 The same argument is
valid for a dx2−y2-wave superconductor.51 One might be
tempted to conclude that the tunneling conductance will al-
ways approach the bulk DOS of the superconductor in the
strong barrier limit as long as there is no formation of zero-
energy states. However, closer examination reveals that this
is not necessarily so.

To illustrate this, we draw upon some results obtained in
Ref. 54. In general, the conductance of an N /S junction in
the tunneling limit may be written as

G�eV� �
�

−�/2

�/2

d�N�N cos �N!S�eV�

�
−�/2

�/2

d�N�N cos �N

, �33�

where �N is the normal-state conductance for a given angle
of incidence �N and !S is the surface DOS for the supercon-
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FIG. 6. �Color online� Plot of the tunneling conductance of a
normal/ferromagnetic superconductor junction for 	=0 and 	
=� /2, using self-consistently obtained solutions at T=0. In the left
column, we fix the tunneling barrier strength Z=2 mV0 /kF=3 and

plot the conductance for several values of the Stoner interaction Ĩ.

In the right column, we fix Ĩ=1.01 and plot the conductance for
several values of Z.
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ductor. In the absence of zero-energy states, the surface DOS
coincides with the bulk DOS of the superconductor, i.e., !S
=!0, where

!0�eV� = �
−�/2

�/2

d�N Re� eV
�eV2 − 
���N�
2� . �34�

An important consequence of the above equation is that the
tunneling conductance may be interpreted as the expectation
value of !S with a weighting factor �N cos �N.

Let us now compare three different superconducting sym-
metries to illustrate the relation between the conductance and
the DOS. We consider an s-wave, dx2−y2-wave, and py-wave
symmetry, none of which feature zero-energy surface states
�Fig. 7�. Naively, one might therefore expect that the conduc-
tance should converge toward !0 in the tunneling limit. How-
ever, it turns out that the weighting factor �N cos �N, which
is peaked around �N=0, plays a major role in this scenario.
In Fig. 8, we plot both the tunneling conductance G�eV� /G0
and the bulk DOS !0 for these three symmetries and fix Z

=20. We regain the well-known results that G�eV� /G0→!0
for large Z in the s wave and dx2−y2 case. However, the con-
ductance and DOS differ in the py-wave case.

The reason for the deviation between G /G0 and !0 in the
py-wave case may be understood by consulting Fig. 7. As
seen, the weighting factor is peaked around normal incidence
�N=0. In the s wave and dx2−y2 case, the gap magnitude is
maximal at �N=0 and replacing the weighting factor in Eq.
�33� with unity has little or no consequence. The situation is
dramatically different in the py-wave case. Now, the gap
magnitude is actually zero for normal incidence, and it is
precisely this contribution that will dominate the integration
over angles in Eq. �33�. Therefore, replacing the weighting
factor with unity, in order to obtain the DOS, has a nontrivial
consequence in the py-wave case. This analysis illustrates
how the conductance and bulk DOS in the absence of zero-
energy states are not always the same in the tunneling limit.
Note that the orientation of the interface with respect to the
symmetry of the order parameter is crucial with regard to the
measured conductance spectra and the surface DOS. For in-
stance, even at 	=� /4 there is an appearance of a large
zero-bias conductance peak for the p-wave pairing consid-
ered here, although the gap orientation does not satisfy the
condition for perfect formation of zero-energy states.

VI. DISCUSSION

We have discussed a mean-field model where itinerant
ferromagnetism coexists with nonunitary, triplet supercon-
ductivity, with a gap that contains line nodes. The precise
symmetry of the order parameter in the ferromagnetic super-
conductors UGe2, URhGe, and UCoGe is still under debate,
although most experimental findings and theoretical consid-
erations strongly point toward the realization of a triplet su-
perconducting order parameter. It is plausible that such a
superconducting order parameter is nonunitary, thus breaking
time-reversal symmetry in the spin channel of the Cooper
pair.

The orbital symmetry of the superconducting order pa-
rameter in ferromagnetic superconductors is a more subtle
issue. In Ref. 23, a mean-field model for isotropic, chiral
p-wave gaps in a background of itinerant ferromagnetism
was constructed. In that work, pairing was assumed to occur
both for majority and minority spins, resulting in, for in-
stance, a double-jump structure in the specific heat capacity.
An isotropic, chiral p-wave order parameter has a constant
magnitude, which is favorable in terms of maximizing the
condensation energy gained in the superconducting state. As-
suming an isotropic density of states at the Fermi level and a
separable pairing potential of the form Vkk�=−g�k�k�, the
condensation energy gained at T=0 in the superconducting
state reads

E = −
N�0��0

2

2
�
�k
2	 , �35�

where �0 is the maximum value of the gap and �. . .	 denotes
the angular average over the Fermi surface. This clearly
shows the advantage of an isotropic gap 
�k
=1. The general

0 1 2 3
0

5

10

15

20

25

s-wave

0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

eV/Δ0

dx2−y2 -wave

0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

py-wave

G/G0
ρ0

FIG. 7. �Color online� Illustration of the different symmetry
states considered here and a qualitative sketch of the weighting
factor �N cos �N.

σN cos θN

θN
π/2−π/2

+ ++

+

−

−

−
θN

s-wave dx2−y2-wave

py-wave

Interface

FIG. 8. �Color online� Plot of the normalized conductance G /G0

and bulk DOS !0 for three different symmetries of the supercon-
ducting state in the tunneling limit. Only in the py-wave case is
there a difference between these two quantities.

COEXISTENCE OF ITINERANT FERROMAGNETISM AND A… PHYSICAL REVIEW B 77, 184511 �2008�

184511-9



principle is well known: the system prefers to have the Fermi
surface as gapped as possible. However, factors such as spin-
orbit pinning energy and lattice structure may conspire to
prevent a fully isotropic gap. We also note that in our model,
the ferromagnetic ordering enters at a much higher tempera-

ture than the superconducting order unless Ĩ is very close to
unity. This is consistent1,2 with the experimental findings for
the ratio between the critical temperatures for ferromagnetic
and superconducting order, Tc

FM /Tc
SC, except for UCoGe

where the ratio is �3.3

The experiments performed so far are indicative of a
single gap, or at least a strongly suppressed second gap, in
the ferromagnetic superconductors. For instance, no double-
jump features have been observed in the specific heat
capacity1 for UGe2. This warrants the investigation of a
single-gap model, possibly with line nodes as suggested by
Harada et al.17 Theoretically, the absence of the SC gap in
the minority-spin subband can be justified by considering the
effect of Zeeman splitting on the electronic density of states
�see discussion in Sec. III and Ref. 22�. In general, it should
be possible to discern the presence of two gaps by analyzing
specific heat or point-contact spectroscopy measurements,
unless one of the gaps is very small.

Apart from this, another possible scenario, specific to
UGe2, can be invoked to explain the observed gapless behav-
ior in the minority-spin subband. This is the metamagnetic
transition that occurs inside the FM phase of UGe2 and sepa-
rates the two ferromagnetic phases with different values47,55

of magnetization M. The reason this meta-magnetic transi-
tion in UGe2 is of great importance is that the specific heat
measurements clearly indicate47 that the maximum of super-
conducting Tc occurs not at the FM to PM transition, but at
some lower pressure px �12 kbar that coincides precisely
with the metamagnetic transition.17,55

One can think of this transition as a point where the value
of low-temperature magnetization M sustains a jump. While
the microscopic origin of this transition is not known, an idea
has been put forward56 that it may be due to a sharp change
in the DOS due to the existence of a double peak in its
structure close to the Fermi level. What happens according to
this scenario is that applied pressure makes the Fermi level
“sweep through” the double-peak structure in the DOS,
thereby sharply increasing the density of states in the
majority-spin channel. It follows from a simple Stoner insta-
bility argument that such an increase in the DOS would lead

to a larger value of effective interaction Ĩ� IN�0� and thus
higher magnetization M. However, this also means that the
ratio of the DOS in the two spin channels, N↑ /N↓, sharply
increases at the metamagnetic transition. It follows from Eqs.
�16�, �18�, and �22� that the ratio between the SC gaps in the
two spin subbands

�↓
�↑

*
Tc
↓

Tc
↑ =

exp�− 1/gN↓�
exp�− 1/gN↑�

�36�

thus becomes very small, justifying the assumption �↓=0
made in this work.

We note in passing that from an experimental point of
view, a complication with UGe2 is that the superconductivity
does not appear at ambient pressure, in contrast to URhGe
and UCoGe. The necessity of considerable pressure restricts
the use of certain experimental techniques, and this is clearly
a challenge in terms of measuring, for instance, conductance
spectra of UGe2. Another experimental quantity which would
be of high interest to obtain from for instance ab initio cal-
culations, is the thermal expansion coefficient, which may be
directly probed in high-pressure experiments.57

We also underline that in our model the magnetism is
assumed to coexist uniformly with superconductivity. De-
pending on the geometry of the sample, it is likely that the
intrinsic magnetization gives rise to a self-induced vortex
phase. In a thin-film structure where the thickness t is smaller
than the vortex radius �, we expect that ferromagnetism and
superconductivity may be realized in a vortex-free phase,
similarly to a thin-film s-wave superconductor in the pres-
ence of an in-plane magnetic field. Further refinements lead-
ing to a more realistic model of a ferromagnetic supercon-
ductor should include the presence of spin-orbit coupling,
which inevitably is present in heavy-fermion superconduct-
ors, in addition to the presence of vortices. Nevertheless, we
believe that our model should capture important qualitative
features of how the interplay between ferromagnetism and
superconductivity may be manifested in experimentally ac-
cessible quantities. In particular, experiments on transport
properties of ferromagnetic superconductors, such as the Jo-
sephson current and point-contact spectroscopy, would be of
high interest to further illucidate the pairing symmetry real-
ized in ferromagnetic superconductors.

VII. SUMMARY

In conclusion, we have constructed a mean-field theory of
triplet superconductivity in the background of itinerant fer-
romagnetism, where the superconducting order parameter
contains line nodes and the minority-spin band remains un-
gapped at the Fermi level. We have solved the self-consistent
equations for the order parameters in the problem, and find
that ferromagnetism enhances superconductivity, while the
ferromagnetism itself is virtually unaffected by the presence
of superconductivity. We have made several predictions for
experimentally accessible quantities: heat capacity, Knight
shift, and tunneling conductance spectra. Our results may be
helpful in the interpretation of experimental data, and could
provide tools concerning the issue of identifying the pairing
symmetry of ferromagnetic superconductors.
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We present a numerical study of the density of states in a ferromagnet/superconductor junction and the
Josephson current in a superconductor/ferromagnet/superconductor junction in the diffusive limit by solving
the Usadel equation with Nazarov’s boundary conditions. Our calculations are valid for an arbitrary interface
transparency and an arbitrary spin-dependent scattering rate, which allows us to explore the entire proximity-
effect regime. We first investigate how the proximity-induced anomalous Green’s function affects the density
of states in the ferromagnet for three magnitudes of the exchange field h compared to the superconducting gap
�: �i� h2�, �ii� h3�, and �iii� h)�. In each case, we consider the effect of the barrier transparency and
allow for various concentrations of magnetic impurities. We clarify features that may be expected in the
various parameter regimes accessible for the ferromagnetic film, with regard to thickness and exchange field.
In particular, we address how the zero-energy peak and minigap observed in experiments may be understood
in terms of the interplay between the singlet and the triplet anomalous Green’s functions and their dependence
on the concentration of magnetic impurities. Our results should serve as a useful tool for the quantitative
analysis of experimental data. We also investigate the role of the barrier transparency and spin-flip scattering
in a superconductor/ferromagnet/superconductor junction. We suggest that such diffusive Josephson junctions
with large residual values of the supercurrent at the 0-� transition, where the first harmonic term in the current
vanishes, may be used as efficient supercurrent-switching devices. We numerically solve for the Josephson
current in such a junction to clarify to what extent this idea may be realized in an experimental setup. It is also
found that uniaxial spin-flip scattering has a very different effect on the 0-� transition points depending on
whether one considers the width or the temperature dependence of the current. Our theory takes into account
vital elements that are necessary to obtain quantitative predictions of the supercurrent in such junctions.

DOI: 10.1103/PhysRevB.77.174514 PACS number�s�: 74.45.�c, 74.20.Rp, 74.50.�r, 74.70.Kn

I. INTRODUCTION

Proximity structures consisting of ferromagnetic and su-
perconducting materials are nowadays a very active research
field. The interest in this type of systems has grown consid-
erably over the last decade since they offer novel and inter-
esting phenomena to explore from a fundamental physics
point of view. In addition, it is hoped that future applications
in low-temperature nanotechnology may emerge from this
research field. Ferromagnetism is usually considered to be
antagonistic to conventional superconductors since the ex-
change field acts as a depairing agent for spin-singlet Cooper
pairs. However, closer examination reveals that the physical
situation is more subtle than that. The proximity effect on a
superconductor from a ferromagnet does not merely suppress
the spin-singlet superconducting order parameter but may
also under specific circumstances induce exotic features,
such as odd-frequency pairing and long-ranged spin-triplet
correlations.1,2

Various theoretical idealizations allow for a relatively
simple approach to ferromagnet/superconductor �F/S� hetero-
structures within the quasiclassical framework. One of the
most popular approaches in the literature employs the linear-
ized Usadel3 equations with the Kupriyanov–Lukichev
boundary conditions,4 which is a viable method in the case of
a weak proximity effect. This is, for instance, permissible
when the barrier transparency of the F/S interface is low.
Although the linearized treatment clearly represents a special

limit, much useful information has been obtained through
this approach. Among these are the oscillations of the
anomalous Green’s function5,6 for the ferromagnet due to the
fact that the Cooper pair in the ferromagnet acquires a finite
center-of-mass momentum q=2h /vF, where h is the mag-
netic exchange energy and vF is the Fermi velocity.7 Al-
though several other works have also considered various as-
pects of the density of states in both diffusive8–15 and
clean16–18 ferromagnet/superconductor junctions, most of
these rely on simplifying assumptions concerning the inter-
face, that it is either perfectly transparent or strongly insulat-
ing.

From an experimental point of view, there has been sev-
eral investigations of how the spin-splitting in energy level in
a ferromagnet affects the proximity effect when placed in
contact with superconductor.19–22 Very recently, SanGiorgio
et al.23 reported an anomalous double peak structure in the
density of states of a Nb/Ni tunneling junction. They at-
tempted to capture the qualitative features of the unusual
subgap structure of the density of states by using the Usadel
equation but were not able to do so. This clearly warrants
further investigation and serves as a motivation for employ-
ing more sophisticated models of a ferromagnet/
superconductor interface, possibly including a domain struc-
ture in the ferromagnet.

Recently, a full numerical solution of the Usadel equation
was employed by Gusakova et al.24 including scattering on
magnetic impurities but under the simplifying assumption
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that the tunneling limit was reached at the F/S interface. It
would clearly also be of interest to consider higher barrier
transparencies to elucidate how these may influence the
proximity effect. In this case, one should employ Nazarov’s
boundary conditions25 instead of the Kupriyanov–Lukichev
boundary conditions.4 Yokoyama et al.26,27 recently adopted
this approach for the case without any magnetic impurities
present. When comparing the theoretical models against
quantitative aspects of the experimental data, the influence of
magnetic impurities and barrier transparency clearly play a
pivotal role. For instance, as argued in Ref. 28, the predicted
amplitude of the critical current in a diffusive S/F/S junction
is �103 times larger than the actual measured curves. This
may be attributed to the strong suppression of Andreev
bound states due to spin-flip scattering processes, which are
usually not taken into account in the theoretical treatment
�see, however, Ref. 29�. To date, there exists no study of the
density of states in F/S structures that allows access to both
the full range of barrier transparencies and the concentration
of magnetic impurities.

In the present paper, we remedy this by employing a nu-
merical solution of the Usadel equation in the ferromagnetic
region, taking into account an arbitrary concentration of
magnetic impurities as well as an arbitrary barrier transpar-
ency. This permits us to comprehensively study the
local density of states �DOS� in a dirty ferromagnet/
superconductor junction for experimentally realistic param-
eters. We study three cases for the size of the exchange field
h as compared to the superconducting gap �: �i� h2�, �ii�
h3�, and �iii� h)�. In each case, we compare the short-
junction regime to the wide-junction regime to obtain the
energy-resolved DOS. Among other things, we study the
emergence of a zero-energy peak in the spectrum in a certain
parameter range in addition to the transition from minigaps
to peaks in the spectrum for increasing exchange field in the
wide-junction regime. In particular, we investigate the inter-
play between the proximity-induced singlet and triplet
anomalous Green’s functions for the ferromagnet and how
these are affected by spin-dependent scattering. Since our
results take into account an arbitrary proximity effect and an
arbitrary magnetic impurity concentration, they should serve
as a useful tool for performing quantitative analysis of ex-
perimental data. We envision a ferromagnet/superconductor
bilayer, shown in Fig. 1, which is virtually identical to the
experimental setup used in Refs. 20 and 23.

Another interesting issue in the context of ferromagnet-
superconductor is that there have been put forth suggestions
of exploiting superconductor/ferromagnet/superconductor �S/
F/S� Josephson junctions as qubits in quantum computers.
By now, the 0-� oscillations that occur in S/F/S junctions are
also well established both theoretically30–37 and
experimentally.19,20,38–42

As the fundamental understanding of the physics in an
S/F/S junction begins to take shape, the next step to take
should be a more sophisticated modeling of such systems in
order to achieve better quantitative agreement between
theory and experiment. Parameters such as barrier transpar-
ency and magnetic impurities become important in this re-
spect, as they can have crucial impact on the behavior of the
supercurrent in an S/F/S system. To this end, several recent

works investigated some aspects of the supercurrent by in-
cluding magnetic impurities29,43–48 but restricted themselves
to the tunneling limit. Under the opposite simplifying as-
sumption of transparent interfaces, the influence of spin-flip
scattering has also been investigated.49 The Josephson cur-
rent in an S/F/S junction may under these circumstances be
written with a good accuracy as I= I0 sin �, where � is the
macroscopic phase difference. As a direct result, the usual
0-� oscillations observed in S/F/S junctions do not exhibit
any residual value of the supercurrent at the transition points
where the current switches sign.

However, an interesting opportunity presents itself in the
case wherein the current-phase relationship deviates strongly
from its usual sinusoidal behavior. Higher harmonics in the
Josephson current will lead to a finite residual value right at
the cusps of the critical current oscillations with exchange
field or temperature, and these cusps are indicative of a sign
reversal of the supercurrent. This simple observation gives
rise to a very interesting prospect. If the residual value of the
current at the cusps were to be of considerable magnitude,
one could exploit this effect to create a dissipationless cur-
rent switching device. In this case, the direction of the Jo-
sephson current could be instantaneously flipped by some
external control parameter when the system parameters are
such that the junction is very close to the 0-� transition
point.

Such an idea depends, however, on the possibility to ac-
tually obtain a large residual value of the current near the
cusps. Early experiments19,20,39–41 measuring the Josephson
current in diffusive S/F/S systems showed that the critical
current vanishes at these cusps. But recently, Sellier et al.42
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FIG. 1. �Color online� The ferromagnet/superconductor hetero-
structures investigated in this paper. In �a�, a ferromagnet/
superconductor bilayer setup is shown. We model the barrier region
at the normal/ferromagnet interface to be very strong, mimicking a
free edge boundary condition or insulating region. Our proposed
experimental setup is thus equivalent to the ones employed in the
experimental works in Refs. 20 and 23. In �b�, we consider a
superconductor/ferromagnet/superconductor junction. The super-
conductors are treated as reservoirs; thus, they are unaffected by the
proximity effect. We will consider a ferromagnetic layer thickness
ranging from d /�=0.1 to d /�=1.0, where � is the superconducting
coherence length.
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observed a finite, albeit small, supercurrent at the 0-� tran-
sition point where the first harmonic term vanishes.

In Ref. 28, the magnitude of the residual value of the
current at the cusps was investigated by solving the linear-
ized Usadel equation3 using Nazarov’s boundary
conditions.25 However, this calculation was performed as-
suming two limiting circumstances: �i� no magnetic impuri-
ties and �ii� a weak proximity effect. The residual value was
also analyzed in the clean limit in Ref. 50. It is definitely of
much interest to go beyond these approximations and see
how the physical picture is altered. As mentioned previously,
a consequence of �i� is that the theoretically predicted mag-
nitude of the critical current is a factor of 103 larger than the
experimentally measured value. Even though highly valuable
qualitative information may be obtained in approximations
such as �i� and �ii�, the progress on both the theoretical and
experimental side of S/F/S Josephson junctions calls for a
higher accuracy of the quantitative predictions. Obviously,
this is also of paramount importance in the context of dis-
cussing a practical supercurrent-switch device.

We here develop a theory for the supercurrent in an S/F/S
junction which takes into account an arbitrary concentration
of magnetic impurities and an arbitrary transparency of the
interfaces. Both of these are of vital importance in obtaining
quantitative agreement with experimental findings. We nu-
merically solve the Usadel equation and employ Nazarov’s
boundary condition. In the intermediate barrier transparency
regime, we find that a finite but small residual value of the
current is permitted at the 0-� transition points. However,
the effect of spin-flip scattering is very different when com-
paring the width dependence against the temperature depen-
dence of the current. The transition point is much more ro-
bust in the width dependence, although increasing the
concentration of magnetic impurities reduces the residual
value. On the other hand, increasing spin-flip scattering com-
pletely removes the 0-� transition point for the temperature
dependence.

This paper is organized as follows: In Sec. II, we establish
the theoretical framework which will serve as our tool to
obtain both the density of states in the diffusive ferromagnet/
superconductor bilayer and the Josephson current in the dif-
fusive superconductor/ferromagnet/superconductor junction.
In Secs. III and IV, we present and discuss our results. Fi-
nally, we summarize the results in Sec. V.

II. THEORETICAL FORMULATION

The central quantity in the quasiclassical theory of super-
conductivity is the quasiclassical Green’s functions
ǧ�pF ,R ;� , t�, which depends on the momentum at the Fermi
level, pF; the spatial coordinate R; the energy measured from
the chemical potential, �; and time t. A considerable litera-
ture covers the Keldysh formalism and nonequilibrium
Green’s functions.51–56 Here, we only briefly sketch the the-
oretical structure for the sake of readability and for establish-
ing notation. The quasiclassical Green’s functions
ǧ�pF ,R ;� , t� is obtained from the Gor’kov Green’s functions

Ǧ�p ,R ;� , t� by integrating out the dependence on kinetic

energy, assuming that Ǧ is strongly peaked at Fermi level,

ǧ�pF,R;�,t� =
i

�
� d�pǦ�p,R;�,t� . �1�

The above assumption is typically applicable to supercon-
ducting systems wherein the characteristic length scale of the
perturbations present, namely, the superconducting coher-
ence length, is much larger than the Fermi wavelength. The
corresponding characteristic energies of such phenomena
must be much smaller than the Fermi energy �F. The quasi-
classical Green’s functions may be divided into an advanced
�A�, a retarded �R�, and a Keldysh �K� component, each of
which has a 4�4 matrix structure in the combined particle-
hole and spin space. Thus, one has

ǧ = �ĝR ĝK

0 ĝA � , �2�

where the elements of ǧ�pF ,R ;� , t� read

ĝR,A = � g�
R,A f�

R,A

− f�̃
R,A − g�̃

R,A�, ĝK = �g�
K f�

K

f�̃
K g�̃

K� . �3�

The quantities g� and f� are 2�2 spin matrices, with the struc-
ture

g� = �g↑↑ g↑↓
g↓↑ g↓↓

� . �4�

Due to internal symmetry relations between these Green’s
functions, all of these quantities are not independent. In par-
ticular, the tilde operation is defined as

f̃�pF,R;�,t� = f�− pF,R;− �,t��. �5�

The quasiclassical Green’s functions ǧ�pF ,R ;� , t� may be
determined by solving the Eilenberger57 equation

��!̂3 − .̂, ǧ�� + ivF � ǧ = 0, �6�

where .̂ contains the self-energies in the system such as
impurity scattering, superconducting order parameter, and
exchange fields. The star product � is noncommutative and
is defined in the Appendix. When there is no explicit time
dependence in the problem, the star product reduces to nor-
mal multiplication. This is the case we will consider through-
out the paper. The operation !̂3ǧ inside the commutator
should be understood as !̂3ǧ�diag�!̂3 , !̂3�ǧ. Pauli matrices
in particle-hole�spin �Nambu� space are denoted as !̂i,
while Pauli matrices in spin space are written as  � i, all of
which are defined in the Appendix. Green’s functions also
satisfy the normalization condition

ǧ � ǧ = 1̌. �7�

In the special case of an equilibrium situation, one may
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express the Keldysh component in terms of the retarded and
the advanced Green’s function by means of the relation

ĝK = �ĝR − ĝA�tanh�
�/2� , �8�

where 
=T−1 is inverse temperature. In nonequilibrium situ-
ations, one must derive the kinetic equations for nonequil-
brium distribution functions in order to specify the Keldysh
part.58

The above equations suffice to completely describe, for
instance, a single superconducting structure but must be
supplemented by boundary conditions when treating hetero-
structures such as F/S junctions. These boundary conditions
take different forms depending on the physical properties of
the interface. The Kupriyanov–Lukichev4 boundary condi-
tions may be applied for a dirty junction in the tunneling
limit when the transparency of the interface is low, while an
arbitrary interface transparency requires usage of the bound-
ary conditions developed by Nazarov.25 The boundary con-
ditions for a spin-active interface have also been derived.59,60

We will consider the dirty limit of the Eilenberger equa-
tion �Eq. �6��, which leads to the Usadel equation.3 Our mo-
tivation is that this is the experimentally most relevant situ-
ation. This will be an appropriate starting point for diffusive
systems wherein the scattering time  imp due to impurities
satisfies X imp#1, where X is the energy scale of any other
self-energy in the problem. For strong ferromagnets wherein
h becomes comparable to �F, the stated inequality may
strictly speaking not be valid for X=h. Hence, we will re-
strict ourselves to the regime h /�F#1 and assume that32

h imp#1. Below, we will mostly concern ourselves with the
retarded part of ǧ�pF ,R ;� , t� since the advanced component
may be found via the relation

ĝA = − �!̂3ĝR!̂3�†. �9�

By isotropizing Green’s function due to the assumed fre-
quent impurity scattering, it is rendered independent of pF.
This isotropic �in momentum space� Green’s function satis-
fies the Usadel equation in the ferromagnet,

D � �ǧ � ǧ� + i��!̂3 + M̂ − �̌sf − �̌so, ǧ� = 0. �10�

Above, the exchange energy h is accounted for by the matrix

M̂ =diag�h 3 ,h 3�, assuming a magnetization in the z direc-
tion; while the spin-flip self-energy reads

�̌sf�R;�� = −
i

8 sf


i

	̂iǧ�R;��	̂iSi,

�̌so�R;�� = −
i

8 so


i

	̂i!̂3ǧ�R;��!̂3	̂i, �11�

where  sf is the spin-flip scattering time and Si is a spin
expectation value, while  so is the spin-orbit scattering time.
We have defined the matrices 	̂i=diag� i , i

T�. The diffusion
constant is given by D=vF

2 imp /3, where  imp is the impurity
scattering relaxation time. We will here consider either
uniaxial spin-flip scattering, such that S3=1 �ẑ direction� and
zero otherwise, or isotropic spin-flip scattering, where Si=1
for i� �1,2 ,3�. For later use, we denote Sxy �S1=S2 and Sz
=S3.

Let us now consider the retarded part of Eq. �10� which
has the same form, namely,

D � �ĝR � ĝR� + i�� ̂3 + M̂ − �̂sf − �̂so, ĝ
R� = 0. �12�

From now on, we will omit the superscript R of Green’s
function. Moreover, we will find it convenient to parametrize
Green’s function by exploiting the normalization condition.
In an s-wave superconductor �x�d� and a normal metal �x
"0�, we use the bulk solutions

ĝS = � g1� fi 2

fi 2 − g1�
�, ĝN = �1� 0�

0� − 1�
� , �13�

where g�cosh��s�, f �sinh��s�, and �s=atanh�� /��.
Green’s function for the ferromagnet may conveniently be
parametrized as56

ĝF =�
cosh �↑��� 0 0 sinh �↑���

0 cosh �↓��� sinh �↓��� 0

0 − sinh �↓��� − cosh �↓��� 0

− sinh �↑��� 0 0 − cosh �↑���
� , �14�

which satisfies ĝF
2 = 1̂. We have made use of the symmetry

�↑���=�↓
��−�� in obtaining Eq. �14�. Note that for h=0,

�↑���=−�↓��� is satisfied. Note that in Eq. �14�, there is both
a singlet and a triplet component of the anomalous Green’s
function. The triplet component is opposite-spin paired
�Sz=0�, and there are no equal-spin pairing �Sz= 01� com-
ponents in our system since we consider homogeneous mag-
netization and a spin-inactive barrier. The Sz=0 triplet

component nevertheless plays a pivotal role in interpreting
the behavior of the density of states, as we shall see later.
This is because it has a special symmetry property referred to
as odd in frequency, which will be elaborated upon in Sec.
III A 4.

The Usadel equation �Eq. �12�� then yields the following
for the majority and minority spins ��= ↑ , ↓ = 01� in the
ferromagnet:
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D�x
2�� + 2i�� + �h�sinh �� −

�Sxy

2 sf
sinh��↑ − �↓�

−
Sz

4 sf
sinh 2�� −

1

2 so
sinh��↑ + �↓� = 0. �15�

We now use the generalized Nazarov boundary condition
valid for the diffusive regime.25 At x= �0,d�, it reads


2�L,RLĝF�xĝF
x=�0,d� = "� 4 �ĝF, ĝL,R�
4 +  ��ĝF, ĝL,R� − 2�

"
x=�0,d�

,

�16�

where �. . .� and �. . .� denote the commutator and anticommu-
tator, respectively, and ĝL,R�=ĝN,S� denotes Green’s function
for the left and right sides of the ferromagnet. The parameter
�L,R=RB

L,R /RF denotes the ratio between the resistance in the
left/right barrier region, RB

L,R, and the resistance in the F re-
gion, RF. We have conventionally introduced the parameter
 , which is the transmissivity of the interface.25 Giving an
expression for  in terms of microscopic parameters of the
interface is not very practical, and we will therefore use  as
a phenomenological parameter to characterize the transpar-
ency of the interface, in complete analogy with Eq. 36 of
Ref. 25. Here,  =0 corresponds to zero transmission of qua-
siparticles incident on the superconducting interface and  
=1 corresponds to perfect transmission. Below, we will con-
sider two values of  , namely, 0.1, corresponding to low
transmissivity; and  =0.5, corresponding to intermediate
transmissivity. Note that the parameters  and � may be var-
ied independently,61 and one does not in general have �
� −1. The reason for this is that � is related to the constric-
tion area of the junction, which may be altered independently
of the scattering strength proportional to  −1. Inserting Eqs.
�13� and �14� into Eq. �16� yields the boundary conditions

�Ld�x�↑ =
2 sinh �↑

2 −  +  cosh �↑
,

�Ld�x�↓ =
2 sinh �↓

2 −  +  cosh �↓
, �17�

at the normal/ferromagnet �N/F� interface �x=0�, while at the
F/S interface �x=d� we have

�Rd�x�↑ =
2 �cosh �↑f − sinh �↑g�

2 −  +  �cosh �↑g − sinh �↑f�
,

�Rd�x�↓ =
− 2 �cosh �↓f + sinh �↓g�

2 −  +  �cosh �↓g + sinh �↓f�
. �18�

For later use, we define the Thouless energy �T=D /d2. As a
measure of the strength of the spin-flip and spin-orbit scat-
tering, which increases with decreasing spin relaxation time,
we introduce gsf= sf

−1 and gso= so
−1. Also note that Sz=Sxy =1

for isotropic spin-flip scattering, while Sz=3 and Sxy =0 for
uniaxial spin-flip scattering along the z direction. The spin-
resolved and normalized DOS is obtained as

N↑ = Re�cosh �↑�, N↓ = Re�cosh �↓� . �19�

Furthermore, we define the total DOS as N=�N� /2. Equa-
tions �15�, �17�, and �18� now constitute two coupled nonlin-
ear second order differential equations supplemented with
boundary conditions which may be solved numerically.

Before presenting our results for the DOS, we establish
the theoretical framework for our treatment of the Josephson
current in an S/F/S junction with spin-dependent scattering,
following the notation in Ref. 62. The physical system stud-
ied here consists of a junction with two s-wave supercon-
ductors separated by a diffusive ferromagnet with a resis-
tance RF and a length d much larger than the mean free path.
We here consider only uniaxial spin-flip scattering. The in-
terface regions are characterized by a resistance RB. The
transparencies of the junction interfaces are given by T
=4 cos2 � / �4 cos2 �+Z2�, where Z is a measure of the bar-
rier strength, and the barriers themselves are considered to be
spin inactive and modeled by infinitely narrow insulating
barriers U�x�= �ZvF /2����x−d�+��x��. Above, vF is the
Fermi velocity and � is the injection angle measured from
the interface normal to the junction. We employ the quasi-
classical theory of superconductivity51–56 and make use of
the � parametrization58 of Green’s function. The retarded
part ĝR may, due to symmetry requirements, be written as62

g� = sin ��cos  1 + sin  2� + cos � 3. �20�

From the Usadel equation, one obtains

D��x
2� − ��x�2cos � sin �� + 2i�� + �h + i��sin � = 0,

�x�sin2 ���x�� = 0, �21�

for �= ↑ ,↓ spins. Here, D is the diffusion constant, h is the
exchange field, and � is the self-energy associated with
uniaxial spin-flip scattering. We employ the bulk solutions of
Green’s function for the superconducting regions, assuming
that these are much less disordered than the ferromagnetic
layer. To gain access to the full regime of different barrier
transparencies, we again make use of Nazarov’s boundary
conditions,25 which are valid for a nonmagnetic but other-
wise arbitrary contact. These boundary conditions at x
= �0,d� may then in the present case be written as62

L�RB/RF��x� = 0 I0�F cos � cos� � �/2� − G sin �� ,

L�RB/RF�sin ��x = � I0F sin� � �/2� , �22�

where the upper �lower� sign is valid at x=d �x=0�. We have
defined the following quantities:

I0 = �4T/�A0�1 + F2 + G2��	, A0 = �2 − T�

+ 2T�F sin � cos� � �/2� + G cos ��/�1 + F2 + G2� .

�23�

and denoted the phase in the right and left superconductor as
0� /2, giving rise to a total phase difference of �. Above,
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G = �/��2 − �2, F = �/��2 − �2 �24�

denote components of the bulk Green’s function for the su-
perconductor. Equations �21� and �22� constitute two
coupled, second order, nonlinear differential equations with
boundary conditions and may be used to numerically solve
for �=��x ,��. Once ��x ,�� is obtained, the retarded Green’s
function is specified everywhere in the diffusive ferromag-
net. The current density may then be calculated by

j = − �NF
e
D/4��
−�

�

d� Tr�!̂3�ǧ�xǧ�K� , �25�

where NF is the density of states at the Fermi level in the
normal state, 
e
 is the electronic charge, !̂3 is a Pauli matrix
in particle-hole space, ǧ is the full Green’s function in
Keldysh � particle-hole � spin space, and the superscript K
denotes the Keldysh component. The current is obtained by
I= jSA, where SA is the surface area of the junction; and the
critical current is defined as Ic=max�I����. The IcRN product
can now be computed, where RN=2RB+RF. In the actual
calculations and numerical implementation, we employ the
Matsubara representation �→ i� and parametrize the quasi-
classical Green’s functions with the quantity �� as

f� = g���/� = sin �e−i, f−�
� = �−�

� g�/� = sin �ei,

g� = �/��2 + ���−�
� = cos � . �26�

We may now express Eqs. �21� and �22� in terms of the
fermionic frequency �= �2n+1�� /
, where n=0,1 ,2 , . . .,
and Green’s functions in Eq. �26�.

For later purposes, we introduce dimensionless measures
of the Thouless energy and inverse spin-flip scattering life-
time: E=�T /�=D / �d2�� and g=� /�. For simplicity, we will
also neglect the spatial depletion of the superconducting or-
der parameter near the interfaces.

III. RESULTS

We now proceed to present our results for the DOS and
the Josephson current in detail. In Sec. III A we consider a
diffusive ferromagnet/superconductor bilayer, while in Sec.
III B we investigate a diffusive superconductor/ferromagnet/
superconductor junction.

A. Density of states in ferromagnet/superconductor junction

We will divide our results for the DOS into subsections to
clarify the role of the spin-dependent scattering for different
exchange fields and film thicknesses. In the spirit of Ref. 17,
we will consider the cases �i� h2�, �ii� h3�, and �iii� h
)�. For h)�, the proximity effect in the ferromagnet is
weak unless the Thouless energy is very high ��T)��.
Throughout the rest of this paper, we fix �L=100 and �R
=1. This corresponds to a scenario wherein the normal metal
reservoir effectively acts as a very strong insulating barrier,
mimicking a vacuum boundary. Since the resistance of the
N/F interface will constitute the largest contribution to the
total resistance, the conductance of the junction will be

equivalent to the DOS at the N/F interface in the tunneling
limit. We will study an intermediate value  =0.5 of the bar-
rier transparency since this cannot be reached within the
usual approximations of either a fully transparent interface
� =1� or a tunneling barrier � #1�, and contrast this to a
strong barrier  =0.1. These choices for the barrier strength
are experimentally the most relevant ones. For each of cases
�i�–�iii�, we will investigate two different thicknesses of the
ferromagnetic layer, namely, d /�= �0.1,1.0�, corresponding
to �T /�= �100,1�. Here, �=�D /� is the superconducting co-
herence length. We comment further on our choice of param-
eters in Sec. IV. For each type of spin-dependent scattering,
we define the dimensionless parameter g as a measure of the
inverse scattering time. For spin-flip scattering, we have
gso=0 and g=gsf /�T with Sz=3, Sxy =0 in Eq. �15� for the
uniaxial case, while Sz=Sxy =1 in the isotropic case. For spin-
orbit scattering, we have gsf=0 and g=gso /�T. Unless other-
wise specified, the DOS is calculated right at the interface
between the normal metal and the ferromagnet, i.e., x=0 �see
Fig. 1�. This corresponds precisely to the experimental situ-
ation in Ref. 20.

In what follows, we first present our numerical results for
the DOS for cases �i�–�iii� described above. We then inves-
tigate and explain the features seen in each of those cases in
separate subsections. One of the main conclusions in this
section is that the distinction between different types of spin-
dependent scattering, e.g., spin-flip and spin-orbit scattering,
may actually become very important in terms of interpreting
the DOS in a ferromagnet/superconductor bilayer. We relate
this to the behaviors of the proximity-induced anomalous
singlet and triplet Green’s functions in Sec. III A 5.

1. Case (i): h›�

We first consider the case of a very weak exchange field,
h /�=0.5, which splits the DOS for spin-↑ and spin-↓ elec-
trons. A peculiar feature that may arise in a ferromagnet/
superconductor junction is the enhancement of the DOS at
zero energy, manifested as a peak. This issue was addressed
in Refs. 17, 26, and 27 and has also been experimentally
observed in Ref. 20. As seen in Fig. 2, the ferromagnet be-
comes fully proximized by the superconductor in the thin-
layer case d /�=0.1, and the DOS is equivalent to the bulk of
the superconductor �in the absence of spin-dependent scatter-
ing�. In fact, the DOS is virtually unaltered compared with
that in the paramagnetic case for the short-junction regime
regardless of whether we consider the tunneling or interme-
diate transparency case. However, an important distinction
between different types of spin-dependent scattering be-
comes evident in the thin-layer case d /�=0.1. The effect of
spin-flip scattering, whether it is uniaxial or isotropic, is that
the DOS gap closes upon increasing g. However, increasing
the spin-orbit scattering rate does not affect the DOS in any
way. We investigate this issue in more details in Sec. III A 6.

The situation changes dramatically when going to a wider
junction regime, here modeled by d /�=1.0. In the tunneling
limit, a minigaplike structure opens up in the DOS at ener-
gies �= 0h. This can be understood as a result of the ex-
change splitting in the ferromagnet which shifts the energies,
and hence the density of states, for majority and minority
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spins by 0h. Increasing the barrier transparency to  =0.5,
the minigaplike structure is retained and widened, which is
reasonable since the proximity effect becomes larger and the
minigap scales with  . Another feature that is seen in the
d /�=1.0 case is the appearance of a zero-energy peak �ZEP�
in the DOS. The peak protrudes with increasing spin-flip
scattering and is actually split into two in the absence of
magnetic impurities. In Ref. 24, wherein the tunneling limit
was applied to the F/S interface, no zero-energy peak was
found to appear in the spectra. In the clean limit, however, a
zero-energy peak was found to appear in the DOS for a wide
range of parameters.17 Although the appearance of a ZEP has
been investigated in previous works, none of these consid-
ered the effect of spin-dependent scattering. In order to un-
derstand the ZEP feature seen in Fig. 2, we study the depen-
dence of the anomalous Green’s functions on spin-selective
scattering in Sec. III A 5.

2. Case (ii): hœ�

Next, we consider the case h /�=1.5, shown in Fig. 3. As
in the previous case, the DOS is almost unaffected by the
presence of an exchange field in the short-junction regime
d /�=0.1. Also, the gap in the DOS shows a remarkable re-
silience toward increasing the spin-orbit scattering. However,
for d /�=1.0 the DOS is strongly modified and displays two
peaks located at �= 0� and �= 0h. Increasing the concen-
tration of magnetic impurities suppresses these peaks. In the

clean limit, Zareyan et al.17 found a similar development of
the DOS with increasing Thouless energies �see Fig. 4 of
Ref. 17�. Note that the suppression of the proximity-induced
features in the DOS due to the superconductor is now stron-
ger for a given d /� compared to that in the case h"� �Fig.
2�. In general, increasing the value of h leads to a smaller
magnitude of the proximity-induced anomalous Green’s
functions �see also Fig. 7�, which in turn causes the normal-
ized DOS in the ferromagnetic layer to deviate less from
unity.

3. Case (iii): hš�

Finally, we investigate the case h)� in Fig. 4. If the
ferromagnetic layer is an alloy of the type Cu1−xNix, a rea-
sonable value of the exchange field may be found in the
range h=10–50 meV. Here, we consider h /�=15 and
h /�=50. With increasing value of the exchange field, the
proximity effect becomes weaker. Therefore, we restrict our
attention to the short-junction regime �d /�=0.1� with an in-
termediate barrier transparency � =0.5� since the DOS devi-
ates little from unity in the tunneling regime and for wide
ferromagnetic layers.

For h /�=15, the usual peak at �=� is present and a
minigap structure is seen in the absence of spin-flip scatter-
ing. Interestingly, increasing spin-flip scattering not only
closes the minigap but actually causes the DOS to develop a
peak at zero energy. This may be understood by considering
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a subtle interplay between the singlet and triplet components
of the proximity-induced anomalous Green’s function for the
ferromagnetic layer, and we delay a detailed explanation un-
til Sec. III A 5.

For h /�=50, all peaks and minigap features are now ab-
sent for 
�
"� and the only feature remaining in the spec-
trum is a dip at �=�. In this case, the qualitative effect of the
different types of spin-dependent scattering is the same.
Upon increasing d /� even further �d /�)1�, corresponding

to a weaker proximity effect, one finds that the correction to
the DOS oscillates upon increasing the spin-flip scattering
rate, in contrast to the monotonous decay that might have
been expected.14 These oscillations are a result of the modi-
fied oscillation length of the proximity-induced anomalous
Green’s function in the F region.1,2

Also note that although the corrections to the normal-state
DOS diminish rapidly for h)� upon increasing d /�, the
combination of lock-in detection with an ultralow noise
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dc/ac mixer permits the resolution of structures in the DOS
up to a factor of 10−4 smaller than the background
conductance.20

4. Zero-energy peak

It is instructive to consider the development of the zero-
energy peak in the DOS. In Fig. 5, we plot the DOS around
zero energy for d /�=1.0 for increasing values of the ex-
change field h. The gradual formation of a zero-energy peak
is clearly observed, and the peak flattens out when h be-
comes sufficiently large. The physical reason for this is in-
triguing. Yokoyama et al.27 related this phenomenon directly
to the proximity-induced odd-frequency pairing component
of the anomalous Green’s function in the ferromagnet �see
also Refs. 63 and 64�. In these works, it is shown that the
DOS in the ferromagnet is enhanced due to the emergence of
the proximity-induced odd-frequency pairing. Since we are
considering the isotropic part �with respect to momentum� of
Green’s function due to the angular averaging in the dirty
limit, one would perhaps naively expect that only the singlet
component should be present. This is because the singlet
anomalous Green’s function is usually taken to be even un-
der inversion of momentum, while the triplet components are
taken to be odd under inversion of momentum. However,
another possibility exists that allows for the presence of trip-
let correlations in the ferromagnet, involving a change in the
sign of the superconducting order parameter under inversion

of frequency. This type of pairing has been dubbed odd-
frequency pairing in the literature.1 The inversion of fre-
quency is equivalent to an exchange of �relative� time coor-
dinates for the field operators since � is the Fourier transform
of the relative time coordinate t� t1− t2. Note that although
even-frequency triplet correlations are destroyed in the dirty
limit due to the isotropization stemming from impurity scat-
tering, odd-frequency triplet correlations may persist since
these do not vanish under angular averaging.

It remains to be clarified how the ZEP in a ferromagnet/
superconductor junction is affected by spin-dependent scat-
tering. To investigate this, we plot the DOS in Fig. 6 for a
fixed exchange field h /�=0.3, which gives a ZEP in the
absence of spin-dependent scattering, and then successively
increase the scattering rate. It is seen that the effect of in-
creasing the spin-flip scattering rate �both uniaxial and iso-
tropic� is a suppression of the proximity-induced features in
the DOS. Qualitatively, the same occurs upon increasing the
spin-orbit scattering rate �right panel of Fig. 6�, but an inter-
esting difference is that the peak is eventually transformed
into a dip at �=0. Increasing the spin-orbit scattering rate
further �g)1� leads to a fully developed minigap in the
DOS. We propose an explanation of this peculiar phenom-
enon in the following section.

5. Anomalous Green’s functions

In order to understand the interplay between the singlet
and triplet components of the induced superconducting
anomalous Green’s function in the F region with regard to
the zero-energy behavior of the DOS, consider the anoma-
lous Green’s functions defined as

fs��,x� = �sinh �↑��,x� − sinh �↓��,x��/2,

f t��,x� = �sinh �↑��,x� + sinh �↓��,x��/2. �27�

At zero energy �=0, one finds that Re�fs�=Im�f t�=0. The
reader is reminded of the relation between the anomalous
Green’s functions and the DOS, which is a physical observ-
able: the total DOS is given as N=�Re�cosh ��� /2. Also
note that the singlet and triplet components differ not only in
their spin symmetries but also with respect to their energy
dependences �even and odd, respectively�, as noted in Sec.
III A 4.

In Fig. 7, we plot Im�fs� and Re�f t� as measures of the
singlet and triplet proximity-induced Green’s functions for
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the ferromagnet right at the N/F interface �x=0�. We con-
sider the effect of each type of spin-dependent scattering
separately. As seen, the peak in the singlet component occur-
ring at a finite value of h vanishes upon increasing spin-flip
scattering rate, and the decay eventually becomes monoto-
nous for g30.3. However, this is not the case for the triplet
component: the maximum value of 
Re�f t�
 occurs at a finite
value of h even upon increasing the spin-dependent scatter-
ing rate. Therefore, the triplet component may become simi-
lar in magnitude to the singlet component even for weak
exchange fields if the spin-flip scattering rate is sufficiently
large. This explains the appearance of a zero-energy peak in
the plot for d /�=1.0 in Fig. 3 upon increasing g.

Another interesting feature can be observed in Fig. 7.
From the plots, it is seen that the anomalous Green’s func-
tions �both singlet and triplet� for a given exchange field may
actually become larger upon increasing the rate of spin-flip
scattering. This becomes evident at around h /�=0.1 when
comparing the lines for g=0.0 with those for g=0.1. Thus,
we have at hand the opportunity to see an enhanced proxim-
ity effect by spin-flip scattering due to the increased magni-
tude of 
fs,t
 at low values of h. The enhanced proximity
effect actually also becomes very pronounced sin the case of
bulk odd-frequency superconductors.65

From Fig. 7, we may actually also find an explanation for
the remarkable behavior of the DOS upon increasing the
spin-orbit scattering rate in Fig. 6. For concreteness, let us
first focus on the regime h /��0.3 corresponding to Fig. 6.
Let us compare the plots for spin-flip and spin-orbit scatter-
ing. For both uniaxial and isotropic spin-flip scattering, it is

seen that the singlet component does not change much in
magnitude, while the triplet component is suppressed. How-
ever, the singlet and triplet components are still comparable
in magnitude for g=0.5, which accounts for the suppression
of the minigap feature which is due to the singlet component.
The situation is markedly different for the spin-orbit scatter-
ing. Now, the singlet component is actually enhanced in
magnitude �for h /��0.3� while the triplet component is re-
duced very strongly. In fact, the triplet component becomes
essentially zero for very large spin-orbit scattering rates,
while the singlet component may still have a considerable
magnitude. This explains the appearance of a minigap in Fig.
6 upon increasing the spin-orbit scattering rate: the singlet
component, which is responsible for the minigap, increases;
while the triplet component decreases.

The above discussion was restricted to h /��0.3 for con-
creteness, but the results nevertheless allude to a much more
general principle: the spin-orbit scattering is much more det-
rimental for the triplet component than for the singlet com-
ponent. To elucidate this feature, consider Fig. 8, wherein we
compare the proximity-induced singlet and triplet compo-
nents in the ferromagnetic layer. We set d /�=1.0 since for
d /�#1 the singlet component completely dominates the trip-
let component �see Figs. 2 and 3�. Also, we set  =0.5, but we
checked that the qualitative features are identical for lower
barrier transparencies. As seen from Fig. 8, the singlet com-
ponent is much more robust toward increased spin-orbit scat-
tering than the triplet component. The latter only becomes
appreciable in magnitude when the exchange field becomes
of the same order or larger than � when the spin-orbit scat-
tering range is large, g)1. Note that in contrast, both the
singlet and triplet components are strongly reduced with in-
creasing spin-flip scattering.

In the absence of an exchange field, it is clear from Fig. 7
that the singlet component is completely independent of the
rate of spin-orbit scattering. Although we have only shown
this explicitly for �=0, we have numerically confirmed that
the magnitude of the singlet component at h=0 remains un-
changed upon increasing g. On the other hand, the triplet
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component is always zero at h=0 but remains very close to
zero upon increasing the exchange field h for high values of
g. A natural question arises: why is the singlet component
insensitive to spin-orbit scattering while the triplet compo-
nent depends strongly on it?

The answer to this question is illuminated by considering
the Usadel equations in the ferromagnetic region in limiting
cases. From Eq. �15�, we obtain several important properties.

�a� In the presence of uniaxial spin-flip scattering �Sz
=3,Sxy =0�, by taking the limit of  sf→0 we get �↑=�↓=0.
Then both the singlet and the triplet components are sup-
pressed. This is also the case for isotropic spin-flip scattering
�Sz=Sxy =1�.

�b� With in-plane spin-flip scattering �Sz=0�, we get
�↑=�↓ when taking the limit  sf→0. Then, the singlet com-
ponent should vanish, as seen from the definition in Eq. �27�.

�c� In the presence of pure spin-orbit scattering �Sz
=Sxy =0�, by taking limit of  so→0 we get �↑=−�↓. Then, the
triplet component should vanish, as seen from the definition
in Eq. �27�.

Therefore, we find that uniaxial and isotropic spin-flip scat-
tering is harmful to both the singlet and the triplet compo-
nents, while in-plane spin-flip scattering and spin-orbit scat-
tering are detrimental to the singlet and the triplet
components, respectively.

These properties are also obtained by using linearized Us-
adel equations in the ferromagnetic region, which may be
formally obtained from Eq. �15� by letting ��→ f�, with �
=0, and assuming that 
f0
#1 as follows:

�x
2f t 0 �x

2fs + A0f t 0 B0fs = 0, �28�

where we have introduced

A0 =
1

D
�2i�� 0 h� − gso −

gsfSz

2
� ,

B0 =
1

D
�2i�� 0 h� −

gsf�2Sxy + Sz�
2

� . �29�

As seen, the spin-orbit scattering rate enters only in the co-
efficient associated with the triplet component. Notice that in
absence of an exchange field h, which renders f t=0, the lin-
earized Usadel equation is independent of the spin-orbit scat-
tering rate. On a microscopic level, it is clear that the differ-
ent dependences on spin-orbit scattering for the singlet and
the triplet anomalous Green’s functions originates from the

fundamental symmetries of these wave functions. It should
be emphasized that both the singlet and the triplet compo-
nents are strongly affected by magnetic impurities, i.e., spin-
flip scattering, as seen from Eq. �29�.

The above analysis emphasizes the importance of distin-
guishing between different types of spin-dependent scatter-
ing in terms of understanding the behavior of the DOS in a
ferromagnet/superconductor bilayer. In particular, we have
shown that the effect of spin-orbit scattering may differ fun-
damentally from spin-flip scattering �originating, e.g., from
magnetic impurities� and that this is manifested in the inter-
play between the singlet and the triplet anomalous Green’s
functions in the ferromagnetic layer.

6. Minigap and spin-orbit scattering

Finally, we consider the effect of spin-dependent scatter-
ing on the interesting manifestation of the proximity-induced
superconducting correlations in a normal/superconductor
junction: the minigap.66 We first briefly recapitulate the re-
sults in the paramagnetic case. When a normal metal is
placed in close proximity to a superconductor, a minigap �g
opens up in the DOS of the normal metal. This minigap
roughly scales like �g ��T /�R and was originally studied
by McMillan66 in a tunneling model of a normal/
superconductor junction. The minigap is defined as an almost
complete suppression of the quasiparticle DOS in a given
energy interval. The minigap is a consequence of the effec-
tive backscattering that quasiparticles incident on the super-
conducting interface from the normal side experience due to
the presence of impurities. Consequently, the probability for
transmission increases such that the DOS is nonzero for �g
"�"�. For a nearly perfect transparency of the interface,
�g can become close to � in magnitude. For a tunneling
barrier  #1, the minigap becomes very small.

An interesting issue is how the minigap is affected by
spin-dependent scattering. We provide numerical results to
elucidate this question in Fig. 9. As seen from the plots, the
influence of uniaxial spin-flip scattering is a gradual suppres-
sion of the proximity-induced features in the DOS, consistent
with previous results.67–71 The effect of isotropic spin-flip
scattering is virtually identical to the uniaxial case. However,
quite surprisingly, the minigap shows a strong resilience to-
ward increasing spin-orbit scattering, as seen in Fig. 9. In
fact, we find that even upon increasing g to values )�, the
minigap persists in the DOS as long as the exchange field is
absent. Upon increasing the exchange field to values h)�,
the minigap slowly begins to close when the spin-orbit scat-
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tering rate becomes large. This feature may be understood by
again resorting to Fig. 7 and Fig. 8, wherein a detailed study
of the singlet and the triplet components of the anomalous
Green’s function was conducted. In general, the spin-orbit
scattering was shown to be detrimental for the triplet com-
ponent while the singlet component still remained at a con-
siderable magnitude, even for g)1. However, the triplet
component was strengthened upon increasing the exchange
field h, which explains why the minigap would close for
larger values of h upon increasing the scattering rate. This
behavior should be contrasted with that of spin-flip scatter-
ing, whether it is isotropic or uniaxial, which invariably sup-
presses both the singlet and triplet components of the
proximity-induced anomalous Green’s function.

B. Josephson current

Having concluded our study of the DOS in the F/S bi-
layer, we now turn to the supercurrent in an S/F/S junction.
In the following, we fix RB /RF=5, where RB is the resistance
of the barrier at the interfaces and RF is the resistance of the
diffusive ferromagnetic layer. Also, we consider an exchange
field h /�=10, which should correspond to a typical weak
ferromagnetic alloy, such as Cu1−xNix. In the following, we
are particularly interested in examining the possibility of ob-
taining a strong deviation from the usual sinusoidal current-
phase relationship. This may lead to the opportunity of cre-
ating a supercurrent-switching device, which we elaborate on
below. We remind the reader that all the quantities used be-
low were introduced and defined in Sec. II.

Consider first the dependence of the IcRN product on the
normalized junction width d /�, where �=�D /2�Tc is the
superconducting coherence length. We contrast the results
obtained with barriers of intermediate transparency �Z=0.5�
and of low transparency �Z=5.0� as the experimentally most
relevant cases, shown in Fig. 10. As seen, the intermediate
transparency allows for a finite residual value of the super-
current at the 0-� transition point, where the first harmonic
of the current-phase relationship vanishes. The effect of
uniaxial spin-flip scattering is seen to be a reduction of the
residual value of the supercurrent. Even for an intermediate
transparency of the barrier, the residual current is reduced to
immeasurable values for g�5, where g=� /� is a measure
of the uniaxial spin-flip scattering. This issue has not been
addressed previously in the literature and is useful to
complement previous qualitative predictions with a more re-
alistic quantitative analysis. Also, it is seen from Fig. 10 that
the transition points are translated toward higher junction
widths upon increasing g.

We next consider the temperature dependence of the IcRN
product in Fig. 11. In the wide-junction regime E=�T /�
=0.05, the magnitude of IcRN is quite small, and a 0-� tran-
sition occurs for zero spin-flip scattering at T /Tc �0.55.
However, increasing the value of g is seen to vanish the 0-�
transition completely. This behavior is very distinct from the
d /� dependence shown in Fig. 10, wherein increasing spin-
flip scattering reduces the residual value of the supercurrent
at the transition point but does not remove the transition
completely. Consider now a shorter junction here modeled

by E=9.0, corresponding to d /��0.6, for an intermediate
barrier transparency Z=0.5. Close examination of the transi-
tion point where the current changes sign reveals a small but
finite residual value of the supercurrent, in this case for
T /Tc �0.65. At first sight, the effect of increasing g then
appears to amount to a complete removal of the 0-� transi-
tion point, rather than a suppression of the residual value, as
in Fig. 10. However, by increasing g in smaller steps as
shown in Fig. 12�a� with E=10.0, it is seen that the 0-�
transition gradually vanishes. This means that the transition
point when considering the temperature-dependence is much
more sensitive to spin-flip scattering than the width depen-
dence of Fig. 10. It should be noted that the 0-� oscillations
vanish upon increasing g for the particular choice of the
width d �corresponding to a certain E� used here. For another
choice of d, one might expect to have 0-� introduced upon
increasing g. The main point is nevertheless that the tem-
perature dependence of the critical current oscillations ap-
pear to be more sensitive to spin-flip scattering than the
width dependence of the same oscillations is.

The origin of a residual value of the current at the sign-
reversal point is a deviation from a purely sinusoidal current-
phase relationship. To illustrate the strong deviation from a
pure sinusoidal phase dependence for the E=9.0 case, con-
sider Fig. 12�b�. The 0-� transition can clearly be discerned
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from the plot. Right before the transition �T /Tc=0.6�, the
maximum value of the current occurs at a negative value for
IcRN. After the transition �T /Tc=0.7�, the maximum value
occurs for a positive value of IcRN. For comparison, we have
plotted a pure sinusoidal phase dependence. Figure 12�b�
shows that that higher harmonics �in this case, sin�2���
dominate near the sign-reversal point, giving rise to the re-
sidual value of the current.

IV. DISCUSSION

In our calculations, we have neglected the depletion of the
superconducting and magnetic order parameter in the vicin-
ity of the F/S interface. In the low transparency case, this is

permissible.72 In the high transparency case, the depletion
may be substantial. However, the qualitative features ob-
tained in the DOS are known to be the same even if this
depletion is taken into account—the characteristic features
are often simply shifted in energy from the bulk value �

=� to a reduced value �̃"�. Our approximation consisting
of using the bulk Green’s function in the superconducting
regions is well justified also if we assume that the supercon-
ducting region is much less disordered than the ferromag-
netic layer. Also, we have employed an effectively one-
dimensional model to account for the proximity effect. In the
present system, we are concerned with isotropic order pa-
rameters �s-wave superconductivity�, such that performing
the same calculations in two or three dimensions will yield
similar results since the averaging over angles will have vir-
tually no effect.

Let us also comment on our choices of Thouless energy in
the ferromagnetic region. The actual thicknesses employed in
experiments on both F/S bilayers and S/F/S Josephson junc-
tions vary greatly, but may in some cases be as small as
"20 nm.19,20 Now, the typical superconducting coherence
length also varies a lot, ranging from 38 nm in Nb to 1600
nm in Al. Since the coherence length is defined as �
=�D /� with the diffusion constant D in the ferromagnetic
region, we find that if �T /�=x, then the thickness d of the
ferromagnetic region is given as d=� /�x. Assuming a super-
conducting material with �=100 nm, choosing �T /�=0.1
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corresponds to d�315 nm. In order to make contact with
the experimental situations that employ a ferromagnetic layer
thickness of d�20 nm, we would then need a value of x
=25. This is the motivation for our choice of the large Thou-
less energy �T /�=100, corresponding to d /�=0.1.

Finally, we discuss the possible realization of a supercur-
rent switch. The prospect of obtaining a dissipationless
current-switching device relies on the opportunity to achieve
sufficiently large residual values of the supercurrent at the
0-� transition points. As seen from our results, this may be
obtained for the intermediate barrier transparency regime,
which agrees with the qualitative conclusions in Ref. 28.
However, the effect of uniaxial spin-flip scattering has a det-
rimental effect on this residual value. While the width depen-
dence �Fig. 10� shows some resilience toward an increased
concentration of magnetic impurities, the 0-� transition is
highly sensitive to spin-flip scattering in temperature depen-
dence �Fig. 11�. To switch the sign of the current, one has to
increase either the width or the temperature of the junction
by an infinitesimal amount right at the transition point. Since
only the temperature can be manipulated in this way in a
realistic experiment, we arrive at the conclusion that the re-
alization of a current-switch device in diffusive S/F/S junc-
tions relies on samples with a high quality interface and very
low amounts of magnetic impurities.

V. SUMMARY

In conclusion, we have numerically studied the local den-
sity of states in a proximity ferromagnet/superconductor
structure in the dirty limit. Our results take into account an
arbitrary rate of spin-flip scattering and an arbitrary interface
transparency, focusing on a moderately transparent interface.
This regime cannot be reached in the standard limiting cases
of an ideal or tunneling interface. We have studied three
cases for the size of the exchange field h compared to the
superconducting gap �: �i� h2�, �ii� h3�, and �iii� h)�.
In each case, we considered several values of the thickness
of the ferromagnetic layer, barrier transparencies, and also
different types of spin-dependent scattering to obtain the
energy-resolved DOS. In doing so, we have clarified charac-
teristic features that may be expected in the various param-
eter regimes accessible for the ferromagnetic film. Since our
results take into account an arbitrary proximity effect and an
arbitrary magnetic impurity concentration, they should serve
as a useful tool for a quantitative analysis of experimental
data. In particular, we investigated the effect of spin-
dependent scattering on the zero-energy behavior observed
in the DOS, which displayed the full range from a fully
developed minigap to a peak structure. By analyzing in detail
the singlet and the triplet parts of the anomalous Green’s
function, we come to the important conclusion that it is nec-
essary to distinguish between different types of spin-
dependent scattering in order to correctly interpret DOS
measurements in ferromagnet/superconductor bilayers. Spe-

cifically, we find that the effect of spin-flip scattering �both
uniaxial and isotropic� may differ fundamentally from the
effect of spin-orbit scattering. The reason for this is that for
weak exchange fields, the singlet component of the anoma-
lous Green’s function remains essentially unaltered by spin-
orbit scattering, while the triplet component is strongly sup-
pressed.

We have also investigated the supercurrent in diffusive
superconductor/ferromagnet/superconductor junctions, al-
lowing for arbitrary concentration of magnetic impurities and
arbitrary interface transparency. We have investigated the ef-
fect of spin-flip scattering on the residual value of the super-
current at the 0-� transition points and find a much weaker
sensitivity to magnetic impurities in the width dependence
compared with that for the temperature dependence of the
IcRN product. We have proposed that a finite and measurable
residual value of the supercurrent may be obtained in the
intermediate barrier transparency regime, although spin-flip
scattering has a detrimental effect on this residual value. For
samples with high quality interface and very low concentra-
tion of magnetic impurities, the residual value may be ex-
ploited to obtain efficient supercurrent-switching simply by
altering the temperature of the system.
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APPENDIX

We here define the star product which enters the Eilen-
berger equation �Eq. �6��. For any two functions A and B, we
have

A � B = ei��TA
��B

−��A
�TB

�/2AB , �A1�

where the differentiation operators denote derivation with re-
spect to the variables T and � in the mixed representation.
Note that if there is no explicit time dependence in the prob-
lem, the star product reduces to regular multiplication.

The Pauli matrices used in this paper are defined as56

 1 = �0 1

1 0
�,  2 = �0 − i

i 0
�,  3 = �1 0

0 − 1
� ,

1� = �1 0

0 1
�, 1̂ = �1� 0�

0� 1�
�,  ̂i = � i 0�

0�  i
� ,

!̂1 = � 0�  1

 1 0�
�, !̂2 = � 0� − i 1

i 1 0�
�, !̂3 = �1� 0�

0� − 1
� .

�A2�
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We consider a thin-film normal-metal/superconductor junction in the presence of an externally applied
in-plane magnetic field for several symmetries of the superconducting order parameter. For p-wave supercon-
ductors, a strongly spin-polarized current emerges due to an interplay between the nodal structure of the
superconducting order parameter, the existence or nonexistence of zero-energy surface states, and the Zeeman
splitting of the bands which form superconductivity. Thus, the polarization depends strongly on the orbital
symmetry of the superconducting state. Our findings suggest a mechanism for obtaining fully spin-polarized
currents crucially involving zero-energy surface states, not present in s-wave superconductors.
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I. INTRODUCTION

In recent years, spintronics1–4 has grown enormously as a
research field, based on the idea that the electron spin may
form centerpiece in future technological applications. The
main issues in this field are: �i� how may one obtain and
manipulate the spin polarization of an electrical current and
�ii� how may the spin polarization of an electrical current be
detected? Concerning the first issue, suggestions so far �see
Ref. 3 and references therein� have mostly revolved around
the use of semiconducting materials. These materials have
the potential of offering some control over the spin injection
properties via the coupling between the spin degree of free-
dom and the electrons orbital motion. This coupling origi-
nates with the spin-orbit coupling that is present in such
materials. Concerning the second question, detection of a
spin current has been proposed in the form of spin
accumulation5–7 and that a spin current should generate elec-
trical fields.8

In the search for functionalities utilizing ideas involving
the spin of electrons �spintronics�, a subfield known as
superspintronics has emerged from its predecessor. The idea
is to combine the useful properties of superconductors with
spin generation and manipulation.9–13 Most known supercon-
ductors have a spin-singlet symmetry, which means that the
Cooper pair does not carry any net spin. For such supercon-
ductors, one relies mostly on strong magnetic sources such
as half-metallic ferromagnets in concomitance with super-
conductors for obtaining strongly spin-polarized currents.

Recently, however, it was suggested in Ref. 14 that a thin-
film s-wave superconductor subjected to an in-plane mag-
netic field may serve to strongly spin-polarize electrical cur-
rents in the tunneling limit. This actually follows from the
results obtained by Meservey and Tedrow19 who performed
experiments in spin-polarized electron tunneling in thin-film
s-wave superconductors subjected to an in-plane magnetic
field. In Ref. 13, a proposal for an absolute spin-valve effect
was put forward without assuming a thin-film structure of the
spin-singlet superconductor. On the other hand, there now
exist several superconductors exhibiting spin-triplet
superconductivity,15–18 and these systems are less antagonis-
tic toward applied magnetic fields than what their spin-
singlet counterparts are.

An intriguing situation may arise when an in-plane mag-
netic field is applied to a thin-film superconductor. If the
thickness d of the superconducting film satisfies d#�, where
� is the magnetic penetration depth, the field penetrates the
superconducting film homogeneously and induces a Zeeman
splitting of the bands. Experiments on such structures have
clearly revealed a spin-split density of states in the
superconductor,19 and the problem was recently re-examined
in Ref. 14.

A natural question arises in the context of Zeeman-split
superconductors: what is the effect of the orbital symmetry
of the superconducting order parameter on the polarization
of the electrical current? In this work, we show that the or-
bital symmetry of the superconducting state strongly influ-
ences the spin polarization of the electrical current. We con-
sider three different orbital symmetries for the
superconductor and show how the polarization properties of
the current differ greatly in each case, even though the spin
structure is similar for each superconducting state. It follows
from our results that the polarization properties of the current
may be used not only as a tool for obtaining information
about the orbital symmetry of the superconducting state, but
that the spin polarization may be controlled efficiently by a
bias voltage due to an interplay between superconductivity
and magnetism.13,14,19 The physics is that the Zeeman split-
ting of the bands leads to an onset of electrical currents of
majority- and minority-spin species at distinct bias voltages.
This phenomenon combines with a subtle enhancement of
the conductance in a given spin channel, which is determined
by a resonance condition that sensitively depends on the or-
bital symmetry of the superconducting order parameter. In
this context, it will be shown that zero-energy surface states
play a crucial role. We now proceed to present our results in
detail.

II. THEORY

When an in-plane magnetic field is applied to a thin-film
superconductor, there is an upper critical field associated
with a first-order phase transition from the superconducting
to paramagnetic state. The upper critical field may be deter-
mined by considering the argument in Ref. 20 and essentially
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consists of balancing the free energies in the paramagnetic
and superconducting states. Extending this argument to an-
isotropic superconductors, we find that the critical value for
the exchange splitting h in the superconductor reads

hc = �0
��
gk
2	/2, �k = �0gk. �1�

Here, �k is the gap function with its magnitude �0 and �¯	
denotes angular average over the Fermi surface. We have
gk=1 for s-wave superconductors, gk=ei� for chiral p-wave
superconductors, and gk=cos � for px-wave superconductors,
where � is the azimuthal angle. Considering T=0, a self-
consistent solution of the order parameter reveals that the
value of the gap is constant up to h=hc, at which a first-order
phase transition occurs. Therefore, we fix h /�0=0.3 which
satisfies h"hc for all symmetries considered. An important
point in the context of p-wave superconductors is that the
applied field B must be parallel to the dk vector to probe the
Pauli limiting effect. In the present paper, both B and dk are
assumed to lie in the plane of the thin-film superconductor.
Note that the Zeeman-splitting of unconventional supercon-
ductors has been accomplished experimentally; see, e.g.,
Ref. 21 for the d-wave case.

To illustrate the physics in a simple manner, we employ a
two-dimensional calculation in the clean limit using the
framework developed in Ref. 22. Our calculations are done
in the zero-temperature limit, T→0. We consider positive
excitation energies of the incoming electrons from the nor-
mal side, which places the restriction that h"�k in the su-
perconductor. For the s-wave and chiral p-wave symmetries,
this translates to h"�0 which is satisfied for our choice
h /�0=0.3. For the px-wave symmetry, we must have h
"�cos �. Physically, the contribution to the current will be
strongest for normal incidence of the quasiparticles with re-
spect to the tunneling barrier, such that we may, to a good
approximation, introduce an upper cutoff �c in the angular
integration of the current. For �c �75°, h /�k"0.3 is satis-
fied for all angles of incidence in the px-wave case. For the
s-wave and chiral p-wave case, we use �c=� /2.

In this approach, the expression for the spin resolved tun-
neling current may be written as

I	�eV� = I0�
−�c

�c �
−�

�

d�d� cos ��f�� − eV� − f����

� �1 + 
rA
	��,��
2 − 
rN

	��,��
2� , �2�

with 	= ↑ ,↓. The scattering coefficients �rA ,rN� may be ob-
tained by exploiting the boundary conditions of the quasipar-
ticle wave functions at the normal-metal/superconductor
�N/S� interface. In line with Ref. 23, one finds that

ra
	 =

4u−
	v+

	e−i�+

u+
	u−

	�4 − Z�
2� + Z�

2v+
	v−

	ei��−−�+� ,

rn
	 = − 1 +

2�u+
	u−

	�2 + Z�� − Z�v+
	v−

	ei��−−�+��
u+
	u−

	�4 − Z�
2� + Z�

2v+
	v−

	ei��−−�+� , �3�

with the definition Z�=Z0 / �i cos ��, where Z0=2mV0 /kF is a
measure of the strength of the scattering potential at the in-
terface. We have introduced the coherence factors u0

	

=u	�� ,�0� and v0=v	�� ,�0� with �+=�, �−=�−�, and

�u	��,�0��2 = �1

2
+

��� + 	h�2 − 
���,�0�
2

2�� + 	h�
�1/2

, �4�

with �v	�� ,�0��2=1− �u	�� ,�0��2. The phase of the super-
conducting gap is contained in the factor

ei�0 = ei���0� = ���,�0�/
���,�0�
 . �5�

Also, we have made use of the quasiclassical approximation
�F) �� ,�� such that the wave vector k�=kF cos � is the same
on the normal and superconducting side. Moreover, the spin
polarization of the current is given by

P = �I↑ − I↓�/�I↑ + I↓� . �6�

In what follows, we will compare an intermediate transpar-
ency barrier to a low transparency barrier, as these two cases
are the most realistic scenarios experimentally. Note that for
all symmetry states considered here, the spin part of the Coo-
per pair wave function has Sz=0. As we shall see, the spin
polarization is nevertheless strongly affected by the differing
orbital symmetries of the superconducting states.

III. RESULTS

We begin by commenting briefly on the s-wave symmetry,
which was recently treated in Ref. 14 �see Fig. 1�. By in-
creasing the barrier strength Z, a fully spin-polarized current
is generated in the regime 
eV−�0
'h. This may be under-
stood by the fact that the spin-↑ and spin-↓ currents begin to
flow at different voltages, as experimentally verified in Ref.
19. Next, we consider a chiral p-wave symmetry in Fig. 2,
believed to be realized in Sr2RuO4.15 For an intermediate
barrier transparency �Z=0.5�, the polarization is similar to
the s-wave case. Increasing the barrier strength to Z=5.0 and
Z=50, however, the polarization actually becomes domi-
nated by the minority-spin carriers. Before explaining the
physics behind this unusual behavior, we consider the
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FIG. 1. �Color online� Plot of the spin polarization of the tun-
neling current for an s-wave symmetry. In the right panels, the
full-drawn �dashed� line corresponds to majority �minority� spin.
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px-wave symmetry below. The result is shown in Fig. 3, in
which case there is a formation of zero-energy Andreev
bound states near the interface.23,24 Such a pairing symmetry
might be realized in the heavy fermion compound UGe2.18

Zero-energy states are also allowed to form in the chiral
p-wave case, but only for angles of incidence �=0. In the
px-wave case, the effect of zero-energy states may therefore
be expected to be much more pronounced since all quasipar-
ticle trajectories contribute to the formation of these surface
states. Comparing Figs. 2 and 3, one may immediately infer
that this is so. Qualitatively, they are very similar, but the
polarization is in general stronger in the px-wave case for a
given value of Z. The most striking aspect of the polarization
for both the chiral p-wave and px-wave symmetries is that it
is exclusively negative, which means that the minority-spin
carriers dominate the transport for positive voltage. In fact,
the tendency of the polarization with increasing barrier
strength is opposite to the s-wave case: a fully spin-polarized
current consisting of minority-spin carriers is obtained in the

tunneling limit. It is quite remarkable that the polarization
actually favors the minority-spin carriers even though the
majority-spin carriers benefit energetically from the presence
of the exchange field. In order to understand this interesting
behavior, recall that in the absence of a magnetic field there
will be an immediate onset of electrical current at zero bias
due to the formation of zero-energy states at the
interface.23,24 In the present case, the exchange field will split
the spin bands such that the onset of the minority-spin cur-
rent occurs at eV=h instead of eV=0. The majority-spin cur-
rent, on the other hand, will experience the sharp onset of
current flow at eV=−h. Therefore, if the symmetry of the
superconducting order parameter is such that it may accom-
modate zero-energy surface states, the tendency of the polar-
ization will be toward being negative for positive voltages.
Note that the polarization goes to zero at eV=0 for all sym-
metry states considered here. The same tendency was seen
for the chiral p-wave case in Fig. 2.

Tuning the strength of the applied magnetic field permits
full control over the induced exchange energy h. For very
weak exchange energies h /�0#1, a major advantage of us-
ing superconductors with zero-energy states to obtain
strongly polarized currents becomes evident. In Fig. 4, we
compare the s-wave and px-wave symmetries against each
other for Z=50. As seen, the width of the region of full
spin-polarization in the s-wave case is 2h, which becomes
very narrow for decreasing h. In stark contrast, the current
remains almost fully spin-polarized in the px-wave case over
virtually the entire subgap energy regime. Also note that for
h /�0#1, the effective angular integration range includes the
entire half-circle �� �� /2,−� /2� even for the px-wave sym-
metry.

IV. DISCUSSION

Let us now discuss some aspects of our model. When the
magnetic field splits the spin bands in a spin-singlet super-
conductor, the Cooper pair gains a finite center-of-mass mo-
mentum q=2h /vF. This leads to the possibility of a spatially
modulated superconducting order, known as the Fulde-
Ferrel-Larkin-Ovchinnikov �FFLO� phase;25 however this
phase has not been unambiguously observed to date.26
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full-drawn �dashed� line corresponds to majority �minority� spin.
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Tanaka et al.27 recently studied the tunneling conductance for
the FFLO state. Here, we are considering homogeneous co-
existence of the magnetic and superconducting orders which
occur as long as one stays well below the Clogston limit20

�h /�0"1 /�2 for s-wave superconductors�. It is also impor-
tant to emphasize that we here consider electrical transport
parallel to the film of the superconductor, which places re-
strictions on the resistances of the interfaces of our setup in
Fig. 5. Specifically, the bias electrode should be connected to
the edge of the superconducting film as opposed to the nor-
mal situation where the electrode is attached on top of the
film. We not only underline that we have focused mainly on
the tunneling limit �Z)1�, which is experimentally most fea-
sible, but also contrasted this regime with a higher barrier
transparency Z=0.5. The splitting of the zero-energy peak
originating with the surface states in the p-wave case is less
pronounced for low values of Z and thus yields a quantita-
tively reduced polarization compared to Z)1, although the
qualitative tendency is the same.

Although we have focused on the zero-temperature limit
in this work, our results should not be affected by any finite
temperature effects as long as T is not too close to Tc, i.e.,
T /Tc �1. As shown in Fig. 4 of Ref. 14, the finite tempera-
ture merely amounts to a smearing of the polarization curves

for T /Tc#1, while a reduction of the polarization properties
is observed when T becomes similar to Tc in magnitude.
Note that the existence of zero-energy surface states at the
interface of a normal metal and unconventional supercon-
ductor does not depend on the temperature as long as T
"Tc, such that the mechanism here proposed for generation
of a strongly spin-polarized current should be a robust fea-
ture also at finite temperatures.

V. SUMMARY

In summary, we have investigated the tunneling current in
a thin-film normal/superconductor junction in the presence of
an external in-plane magnetic field. We have considered an
s-wave, chiral p-wave, and px-wave symmetries for the su-
perconductor. Remarkably, we find that even though the spin
structure of the superconducting state is similar in all three
cases �Sz=0, opposite-spin pairing�, the spin polarization of
the tunneling current is strongly modified by the orbital sym-
metry of the superconducting state. We find that the spin
polarization may be substantial for tunneling barriers and
that there is an unusual interplay between zero-energy states
and the magnetic field that may result in a fully spin-
polarized current for minority-spin carriers. We have studied
the generation and manipulation of a strongly �and even pos-
sibly fully� spin-polarized current by applying of a weak
static in-plane magnetic field to an N/S junction and then
varying a bias voltage. Clearly, the main challenge in spin-
tronics today is obtaining a clear-cut experimental technique
of measuring the spin polarization of an electrical current.
Our findings suggest an alternative approach to obtain fully
spin-polarized currents which does not rely on strong mag-
netic fields or half-metallic compounds. We have pointed to
two compounds, namely, Sr2RuO4 and UGe2, as promising
spin-triplet superconducting materials where these phenom-
enon should be particularly pronounced.

ACKNOWLEDGMENTS

J.L. and A.S. were supported by the Research Council
of Norway, Grants No. 158518/431 and No. 158547/431
�NANOMAT� and Grant No. 167498/V30 �STORFORSK�.
T.Y. acknowledges support by JSPS.

1 Semiconductor Spintronics and Quantum Computation, edited
by D. D. Awschalom, D. Loss, and N. Samarth �Springer, Berlin,
2002�.

2 Spin Dependent Transport in Magnetic Nanostructures, edited
by S. Maekawa and T. Shinjo �Taylor & Francis, London, 2002�.

3 I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
�2004�.

4 Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin,
Rev. Mod. Phys. 77, 1375 �2005�.

5 J. Martinek, J. Barnas, S. Maekawa, H. Schoeller, and G. Schon,
Phys. Rev. B 66, 014402 �2002�.

6 Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Science 306, 1910 �2004�.

7 J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys.
Rev. Lett. 94, 047204 �2005�.

8 Q. F. Sun, H. Guo, and J. Wang, Phys. Rev. B 69, 054409
�2004�.

9 A. Brataas and Y. Tserkovnyak, Phys. Rev. Lett. 93, 087201
�2004�.

10 I. Eremin, F. S. Nogueira, and R.-J. Tarento, Phys. Rev. B 73,
054507 �2006�.

11 M. S. Grønsleth, J. Linder, J. M. Borven, and A. Sudbo, Phys.

S FN S

External magnetic field

a) b)

Symmetry of the

s-wave chiral p-wave px-wave

superconductor

N N

FIG. 5. �Color online� The experimental setup proposed in this
paper. In �a�, an in-plane magnetic field is applied to the junction. In
�b�, an exchange field is induced by a ferromagnetic film in close
proximity. We will consider three different symmetries of the super-
conducting state, as shown above. In the chiral p-wave case, the gap
has an intrinsic complex angular dependence and a constant mag-
nitude. The system we consider is similar to that of Ref. 14.

LINDER et al. PHYSICAL REVIEW B 78, 014516 �2008�

014516-4



Rev. Lett. 97, 147002 �2006�.
12 T. Champel, T. Löfwander, and M. Eschrig, Phys. Rev. Lett.

100, 077003 �2008�.
13 D. Huertas-Hernando, Yu. V. Nazarov, and W. Belzig, Phys. Rev.

Lett. 88, 047003 �2002�.
14 F. Giazotto and F. Taddei, Phys. Rev. B 77, 132501 �2008�.
15 A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 �2003�.
16 H. Tou, Y. Kitaoka, K. Ishida, K. Asayama, N. Kimura, Y.

Onuki, E. Yamamoto, Y. Haga, and K. Maezawa, Phys. Rev.
Lett. 80, 3129 �1998�.

17 I. J. Lee, S. E. Brown, W. G. Clark, M. J. Strouse, M. J. Naugh-
ton, W. Kang, and P. M. Chaikin, Phys. Rev. Lett. 88, 017004
�2001�.

18 A. Harada, S. Kawasaki, H. Mukuda, Y. Kitaoka, Y. Haga, E.
Yamamoto, Y. Onuki, K. M. Itoh, E. E. Haller, and H. Harima,
Phys. Rev. B 75, 140502�R� �2007�.

19 R. Meservey and P. M. Tedrow, Phys. Rep. 238, 173 �1994�.
20 A. M. Clogston, Phys. Rev. Lett. 9, 266 �1962�; B. S. Chan-

drasekhar, Appl. Phys. Lett. 1, 7 �1962�.
21 M. Covington, M. Aprili, E. Paraoanu, L. H. Greene, F. Xu, J.

Zhu, and C. A. Mirkin, Phys. Rev. Lett. 79, 277 �1997�.
22 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B

25, 4515 �1982�.
23 Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451 �1995�.
24 C.-R. Hu, Phys. Rev. Lett. 72, 1526 �1994�.
25 P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 �1965�; A. I.

Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762
�1964�.

26 Y. Matsuda and H. Shimahara, J. Phys. Soc. Jpn. 76, 051005
�2007�.

27 Y. Tanaka, Y. Asano, M. Ichioka, and S. Kashiwaya, Phys. Rev.
Lett. 98, 077001 �2007�.

STRONGLY SPIN-POLARIZED CURRENT GENERATED IN… PHYSICAL REVIEW B 78, 014516 �2008�

014516-5





Paper XVII

Density of states near a vortex core in ferromagnetic superconductors:
Application to STM measurements.

Physical Review B 78, 064520 (2008).





Density of states near a vortex core in ferromagnetic superconductors:
Application to STM measurements

Jacob Linder,1 Takehito Yokoyama,2 and Asle Sudbø1

1Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
2Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan

�Received 3 June 2008; revised manuscript received 5 August 2008; published 28 August 2008�

We investigate numerically the local density of states �LDOS� in the vicinity of a vortex core in a ferro-
magnetic superconductor. Specifically, we investigate how the LDOS is affected by the relative weight of the
spin bands in terms of the superconducting pairing and we also examine the effect of different pairing sym-
metries for the superconducting order parameter. Our findings are directly related to scanning tunneling mi-
croscopy measurements and may thus be highly useful to clarify details of the superconducting pairing in
recently discovered ferromagnetic superconductors.
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I. INTRODUCTION

Recently, UCoGe was added to the distinguished list of
materials �already featuring UGe2 and URhGe� that appear to
display coexistence between ferromagnetism and
superconductivity.1–3 While ferromagnetism and conven-
tional superconductivity may be shown to be antagonistic in
terms of a bulk coexistent state,4 several studies have pointed
out the possibility of a nonunitary, spin-triplet superconduct-
ing state coexisting with itinerant ferromagnetism.5–10 The
synthesis of two important phenomena in condensed-matter
physics, i.e., ferromagnetism and superconductivity, is not
only interesting from the point of view of basic research but
has also spawned hope of potential applications in low-
temperature nanotechnology.

A number of questions arise concerning the nature of the
coexistence of ferromagnetic and superconducting order. In
particular, it is crucial to address �i� whether the two long-
range orders are phase separated or not, �ii� whether the mi-
croscopic coexistence is spatially homogeneous or not, and
�iii� what the symmetry of the superconducting order param-
eter is. Concerning the first question, the answer clearly ap-
pears to be “yes” since the onset of superconductivity ap-
pears inside the ferromagnetic part of the phase diagram.6

The second question is, however, still open. Some authors
have studied spatially uniform coexistence of ferromagnetic
and superconducting order7–11 while others have pointed out
the intriguing possibility of a spontaneously formed vortex
lattice state12–14 due to the internal field. It has been argued15

that a key factor with regard to whether such a spontaneous
vortex phase appears or not is the magnitude of the internal
magnetization M. Finally, although the issue of pairing sym-
metry raised in the third question has not been established
conclusively, the most likely option appears to be a nonuni-
tary, spin-triplet superconducting state where the spin of the
Cooper pair couples to the bulk magnetization through a
third order term �i�dk�dk

�� ·M in the Ginzburg-Landau free
energy. Several studies16–20 have addressed the means by
which one may identify the pairing symmetry of the super-
conducting order parameter in a ferromagnetic supercon-
ductor �FMSC� mainly focusing on transport properties.

Clearly, it would be highly desirable to clarify experimen-
tal signatures of a possible spontaneous vortex lattice phase

realized in a ferromagnetic superconductor. In this work, we
present numerical results for the local density of states
�LDOS� in the vicinity of a vortex core of a ferromagnetic
superconductor. Our approach is based on the quasiclassical
theory of superconductivity, and takes into account several
crucial factors such as the depletion of the order parameter
near the vortex core in addition to self-consistently obtained
magnetic and superconducting order parameters. Our results
are directly relevant to scanning tunneling microscopy
�STM� measurements,21 and may be useful to clarify signa-
tures of the existence of a spontaneously formed vortex lat-
tice and also the pairing symmetry of the superconducting
order parameter.

This paper is organized as follows. In Sec. II, we establish
the theoretical framework employed in this work. Namely,
we use the quasiclassical approximation and solve the Eilen-
berger equation in the vicinity of the vortex core with appro-
priate boundary conditions. In Sec. III, we present our results
for the spatial and energy dependences of the local density of
states near the vortex core. Specifically, we investigate how
the relative weight of the spin bands in terms of the super-
conducting pairing and different pairing symmetries for the
superconducting order-parameter affect the density of states.
In Secs. IV and V, we discuss and summarize the main re-
sults of the paper. We will use boldface notation for two

vectors: . . .ˆ for 4�4 matrices and . . . for 2�2 matrices.

II. THEORETICAL FRAMEWORK

It is generally believed that the pairing symmetry in fer-
romagnetic superconductors may be classified as a nonuni-
tary, spin-triplet state.5,7,8 Our starting point is the quasiclas-
sical Eilenberger equation22 for such a system, which, in the
clean limit, reads �see Appendix A for details�

ivF · �ĝR + ��!̂3 + M̂ + �̂�pF�, ĝR� = 0, �1�

where � is the quasiparticle energy measured from the Fermi
level, vF is the Fermi velocity, and �. . .� is a commutator. The
exchange field h and the superconducting order parameters

�� are contained in terms of M̂ =h diag� 3 , 3� in addition to
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�̂�pF� = � 0 ��pF�
− ���pF� 0

� ,

��pF� = ��↑�pF� 0

0 �↓�pF� � . �2�

The matrices !̂i and  i are defined in Appendix A. The re-
tarded part of the Green function, ĝR, will have the structure

ĝR = � g�r,pF,�� f�r,pF,��

− f��r,− pF,− �� − g��r,− pF,− �� � ,

and must satisfy the normalization condition �ĝR�2= 1̂. Due to
the internal-symmetry relations between the components of
ĝR, one may parametrize it very conveniently by means of a
so-called Ricatti parametrization.23,24 In the absence of inter-
band scattering, the Eilenberger equation decouples into two
2�2 equations as follows:

ivF · �g� + �� 3 + �h 0 + ���pF�,g�� = 0, �3�

where we have introduced

g� = N��1 − a�b� 2a�

2b� − 1 + a�b�
�, N� = �1 + a�b��−1,

���pF� = � 0 ���pF�
− ��

��pF� 0
� . �4�

Note that the gap matrix in Eq. �4� is a 2�2 matrix in
particle-hole space while the gap matrix in Eq. �2� is a 2
�2 matrix in spin space. From Eq. �3�, one obtains two
decoupled differential equations for a� and b�:

ivF · �a� + 2a�� − a�
2��

��pF� − ���pF� = 0,

ivF · �b� − 2b�� − b�
2���pF� − ��

��pF� = 0. �5�

Note that the above equations do not have any explicit de-
pendence on the exchange splitting h. As we shall see later,
the exchange splitting does however enter implicitly through
the spin-dependent gaps ��. Note that the magnetic vector
potential A may be incorporated above simply by a shift in
the quasiparticle energies: �→�+evF ·A. In a gauge that ren-
ders the superconducting gaps to be real, one finds that eA
→eA−�� /2, where � is the superconducting phase associ-
ated with the broken U�1� symmetry. Therefore, the total
Doppler shift in the quasiparticle energies is �→�
−emvF ·vs, where the gauge-invariant superfluid velocity is
vs= ���−2eA� / �2m�. Below, we keep the distribution of the
superconducting phase in the order parameter and consider
the case with Ginzburg-Landau parameter /)1, for which
the magnetic vector potential A may be neglected. This fol-
lows since we are considering only one single vortex, i.e.,
the zero-field limit, such that only gauge-field fluctuations
around zero could possibly be relevant. However, assuming
that the superconductors are strongly type II with /)1,
gauge-field fluctuations are suppressed.25,26

In order to solve the above Ricatti equations, we follow
closely the procedure of Ref. 23. Let us consider the term

with vF ·� in more detail. Assume that we have a cylindri-
cally symmetric vortex situated at ra=rb=0 with its axis
along ĉ. The position vector in this coordinate system then

reads r=raâ+rbb̂. Assuming that the transport of quasiparti-

cles primarily takes place in the â-b̂ plane, we may define
the Fermi velocity as

vF = vF�cos �â + sin �b̂� � vFv̂ , �6�

and its orthogonal vector as û=−sin �â+cos �b̂. Thus, the
position vector r may also be expressed as r=xv̂+yû, where
we have defined

x = ra cos � + rb sin �, y = − ra sin � + rb cos � . �7�

Using the coordinate system v̂-û, the Ricatti equations may
be rewritten as

ivF�xa� + �2� − ��
�a��a� − �� = 0,

ivF�xb� − �2� + ��b��b� − ��
� = 0, �8�

where a�=a��x ,y� and ��=���x ,y�. The above equations
may be solved by imposing boundary conditions for �a� ,b��
in the bulk of the superconductor. The Ricatti equations with
��0 for a� and b� are stable for integration from x→ �−��
and x→�, respectively �opposite for �"0�.23 The boundary
conditions then read as

a��x → �− ��� = �� − ��2 − 
��
2�/��
� ,

b��x → �� = − �� − ��2 − 
��
2�/��. �9�

The superconducting order parameter �� is now modeled in
the presence of a vortex centered at ra=rb=0. In general, the
superconducting order parameter may be written as27

���r,�,�� = ��,0����,��F�r�eim�, �10�

assuming a vorticity m. Here, �0 is the gap magnitude,
��� ,�� is a symmetry factor for the gap �taking into account
both anisotropicity and frequency dependence�, F�r� models
the spatial depletion of the gap near the vortex core, and
tan �=rb /ra. We will here restrict our attention to an even
frequency, p-wave symmetry, which is believed to be the
most likely candidate for the order parameter in ferromag-
netic superconductors. Assuming that the angular symmetry
is the same for both the majority- and minority-spin gaps,
and considering the usual case of m=1, we explicitly have

���r,�� = ��,0����tanh��x2 + y2

�
� x + iy

�x2 + y2
. �11�

In what follows, we will compare the cases ����=cos � and
����=ei�, and also investigate how the LDOS changes de-
pending on the relative weight of the superconducting insta-
bility in both spin bands. The normalized LDOS for spin
species � is given by

N��r,�� = �
0

2� d�

2�
Re��1 − a�b��/�1 + a�b��� , �12�

and we introduce the total LDOS in the standard way as
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N�r,�� = 
�

N��r,��/2. �13�

To account for a finite quasiparticle lifetime  , we let �→�
+i�, where �� −1. From now on, we fix �=0.1�↑,0 and
comment further upon the role of inelastic scattering in Ap-
pendix B.

Even if the exchange field h is absent from the Eilen-
berger equation, the LDOS is not independent of the value of
h. The reason for this is that the magnitude of the supercon-
ducting gaps depends on the strength of the exchange split-
ting. Following the approach of Refs. 8 and 9, we derive
from a weak-coupling mean-field theory that the self-
consistent solution of bulk superconducting gaps in the T
→0 limit may be written as

��,0/�0 = c exp�− 1/�g�1 + �h/��� , �14�

where the prefactor is equal to c�2.43 for a px-wave sym-
metry �����=cos �� and c=2.00 for a chiral p-wave symme-
try �����=ei��.8,9 Here, g=V0N0 is the weak-coupling con-
stant, which we set to g=0.2, and �0 is the typical frequency
width around Fermi level for the bosons responsible for the
superconducting pairing. Above, V0 is the strength of the
pairing interaction, N0 is the LDOS at Fermi level in the
normal state, and � denotes the Fermi energy. The reader

may consult Appendix C for a derivation of Eq. �14�. We find
that the ratio between the majority- and minority-spin gaps
may be written as

�↑,0

�↓,0
� R�h/�� = exp��1 + h/� − �1 − h/�

g�1 − �h/��2 � , �15�

when assuming that h /�� �0,1� �shown in Fig. 1�. In UGe2,
the energy splitting between the majority- and minority-spin
bands was estimated2 to lay around 70 meV, which yields
R�1.42 when assuming �=1 eV.

III. RESULTS

We begin by plotting the energy-resolved LDOS in the
vortex core �ra=rb=0� for an order parameter that has line
nodes in momentum space. Such an order parameter was
recently proposed to be realized in UGe2 by Harada et al.6

and it was argued that the superconducting pairing only took
place in the majority-spin band. To investigate how the rela-

k

ε

2h

↓-band

↑-band

Fermi level

Vortex λ/ξ � 1

STM-tip

λ

ξ

FIG. 1. �Color online� Schematic of the model.
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tive magnitudes of the majority- and minority-spin gaps �Fig.
2� affect the LDOS in the vortex core, we plot the LDOS for
several values of the ratio h /� in Fig. 3. As usual, the LDOS
is strongly enhanced for subgap values due to the existence
of bound states within the vortex core.28 The presence of two
gaps in the system should manifest itself in the form of non-
monotonous behavior in the subgap spectrum but it is not
possible to discern such behavior unambiguously from Fig.
3. This effect may be masked by strong inelastic scattering,
modeled here by the parameter �, which effectively smears
the LDOS. The effect of increasing the exchange field is seen

to suppress the deviation from the normal-state LDOS. This
may be understood by noting that the minority-spin gap is
strongly reduced with increasing exchange field and that the
corresponding increase in the majority-spin gap is not able to
compensate for the suppressed regime of bound states within
the core.

We next study the chiral p-wave symmetry analogous to
the A2 phase in liquid 3He and plot the energy-resolved
LDOS for several values of h /� in Fig. 4. Although the
qualitative behavior is quite similar to Fig. 3, there are two
important distinctions. First, one notices that the chiral sym-
metry appears to have a much more pronounced influence on
the LDOS quantitatively, yielding a larger zero-energy peak
and larger subgap dips. This is in fact opposite what one
would have expected from tunneling conductance measure-
ments of px-wave and chiral p-wave superconductors, re-
spectively. For such measurements, the zero-energy peak be-
comes much larger in the px-wave case than in the chiral
p-wave case. Second, the subgap features associated with the
presence of two gaps were enhanced in Fig. 4 as compared to
Fig. 3. The nonmonotonous behavior for subgap energies is
present for all curves in Fig. 4 but the features indicative of
multiple gaps are most clearly seen for h /�=0.15, mani-
fested through an additional inflection point before the
normal-state LDOS is recovered. These differences could be
helpful in discriminating between different types of pairing
symmetries in ferromagnetic superconductors.

In order to show more clearly the contribution from each
spin band to the LDOS near the vortex core, consider Fig. 5
where we plot the total LDOS and the contribution from
each spin band for �a� ����=cos � and �b� ����=ei�. The rise
of the LDOS following the gap edge ��,0 of each spin band
occurs at different energies due to the exchange splitting.
This was revealed in the total LDOS as kinks located at two
distinct energies, which offers the opportunity to obtain ex-
plicit information about the relative magnitude of the two
gaps. The qualitative features are the same in Figs. 5�a� and
5�b� but they are quantitatively more pronounced in the chi-
ral p-wave symmetry case. This may be due to the fact that
the chiral p-wave gap has a constant magnitude �
����
=1�
while the px-wave gap varies in magnitude upon traversing
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around the Fermi surface. Therefore, the LDOS is more
strongly affected in the chiral p-wave case.

We now study the resolution of the LDOS in real space
for a fixed energy in Fig. 6. We have chosen R=2, corre-
sponding to h /��0.14, and have also chosen the line node
symmetry ����=cos �. In all cases, the plots in Fig. 6 display
a twofold spatial symmetry, in accordance with the supercon-
ducting order parameter.23,29,30 The zero-energy peak present
for �=0 evolves into a dip structure at the vortex core upon
increasing the quasiparticle energy. The deviation from the
normal-state LDOS is still significant even at distances �2�
away from the vortex core around � /�↑,0=0.5. The qualita-
tive features are the same for the chiral p-wave symmetry in
Fig. 7 although the symmetry is now circular due to the
isotropy of the magnitude of the gap �
����
=1�.

IV. DISCUSSION

In our calculations, we have chosen a real gauge for both
superconducting order parameters ��, where �= ↑ ,↓. If the
two spin bands are completely independent, there is no phase
locking between the order parameters, which fixes the rela-
tive phase ��=�↑−�↓, where �� is phase associated with the
broken U�1� symmetry. The existence of two such phases
would imply that a U�1��U�1� symmetry is broken in a
ferromagnetic superconductor and would in principle allow
for two critical temperatures that may differ in magnitude.
However, if the two spin bands do communicate by means
of, e.g., spin-orbit coupling or impurity scattering, a term of
the form −� cos���� will appear in the free energy describ-
ing the system. This corresponds to a phase locking scenario
where the sign of � determines whether ��=0 or ��=� is
the energetically preferred relative phase. Above, we have
decoupled the two spin bands such that the relative phase of
�↑ and �↓ is of no consequence. Taking into account scatter-
ing between the spin bands would require solving coupled
Ricatti equations and investigating the effect of phase lock-
ing explicitly, which is beyond the scope of this paper.

In Fig. 5, we plotted the relative contribution from the two
spin bands to the LDOS near the vortex core to clarify how

the LDOS may give decisive clues about whether both spin
bands partake in the superconducting pairing or not. In prin-
ciple, it might be possible to probe explicitly the spin-
resolved LDOS by using a strong ferromagnetic STM, and
contrasting parallel and antiparallel relative configurations of
the exchange fields in the FMSC and the ferromagnetic STM
tip. The experimental realization of this particular proposal is
nevertheless probably challenging.

V. SUMMARY

In summary, we have numerically studied the LDOS in
the vicinity of a vortex core in a ferromagnetic supercon-
ductor. Specifically, we have investigated what influence the
exchange field and the symmetry of the superconducting or-
der parameter exhibit on both the spatially resolved and
energy-resolved LDOS. The symmetry of the spatially re-
solved LDOS near the vortex core, as revealed by STM mea-
surements, should give decisive clues about the orbital sym-
metry of the superconducting order parameter23,29,30 while
the energy-resolved LDOS could provide important informa-
tion about the presence of multiple gaps in the system. Our
results should be comparable to experimentally obtained
data, both qualitatively and quantitatively, and may thus be
helpful in clarifying the nature of the superconducting pair-
ing in ferromagnetic superconductors.
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APPENDIX A: MATRICES AND QUASICLASSICAL
THEORY

The matrices used in this paper are defined as31
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FIG. 7. �Color online� Normalized LDOS in the vicinity of the vortex core at three different quasiparticle energies, using R=2 with a
chiral p-wave symmetry �����=ei��. A circular symmetry is observed in agreement with the symmetry of the order parameter.
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1 = �1 0

0 1
�, 1̂ = �1 0

0 1
�,  ̂i = � i 0

0  i
� ,

!̂1 = � 0  1

 1 0
�, !̂2 = � 0 − i 1

i 1 0
�, !̂3 = �1 0

0 − 1
� .

�A1�

Let us briefly sketch the way to obtain the quasiclassical
Eilenberger equations for a nonunitary, spin-triplet supercon-
ducting state coexisting with ferromagnetism. For further
background information on the quasiclassical theory of su-
perconductivity, the reader may consult, e.g., Refs. 32–36 for
nice reviews. We follow here closely the notation of Ref. 31.
Our starting point is the following Hamiltonian:

H = 
	

� dr	

†�r,t��−
�2

2m
1 − h 3�

	



�r,t�

− 
�
� drdr�����r,r���

†�r��
†�r�

+ ��
��r,r����r��a�r�� . �A2�

The Heisenberg equation of motion for the above Hamil-
tonian was obtained in the standard way:

i�t!̂3%�r,t� =� dr�Ĥ�r,r�,t�%�r,t� ,

Ĥ�r,r�,t� = �̂�r���r − r�� − �̂�r,r��, �̂�r� = −
�r

2

2m
1̂ ,

�̂�r,r�� = � 0 ��r,r��
���r,r�� 0

� ,

��r,r�� = diag��↑�r,r��, �↓�r,r��� . �A3�

For simplicity, we consider only the retarded component of
the Green function GR in what follows since the system is
specified exclusively by GR in an equilibrium situation. It is
defined as

G	

R �1,2� = − i$�t1 − t2���	�1�,


†�2��+	 , �A4�

where the notation �Eqs. �1� and �2�� refers to the spatial and
time coordinates: �1���r1 ; t1�. We explicitly write the “+”
sign as a subscript to denote an anticommutator; else it is
implicitly understood that the notation �. . .� denotes a usual
commutator. Similarly, the anomalous Green function is
given by

F	

R �1,2� = − i$�t1 − t2���	�1�,
�2��+	 . �A5�

One may construct 4�4 matrices in combined particle-hole
and spin spaces, known as Nambu space, in the following
manner:

ĜR�1,2� = � GR�1,2� FR�1,2�
�FR�1,2��� �GR�1,2���� . �A6�

Note that G�1,2� is a generalized Gor’kov Green function,
which contains information about processes occurring at
length scales comparable to the Fermi wavelength. Such in-
formation is lost upon applying the quasiclassical approxi-
mation. Using the Heisenberg equation of motion Eq. �A3�,
we obtain

�i�t1
�!̂3ĜR�1,2��ij −� dr�

l

�− i$�t1 − t2��Ĥil�r1,r�,t1�

��!̂3�ll��%l�r�,t1�,% j
†�r2,t2��+	� = �ij��1 − 2� . �A7�

To arrive at Eq. �1�, it is convenient to introduce the mixed
representation that shifts the frame of reference to a center-
of-mass system. We define

R = �r1 + r2�/2, r = r1 − r2,

T = �t1 + t2�/2, t = t1 − t2, �A8�

such that

ĜR�1,2� = ĜR�R +
r

2
,T +

t

2
,R −

r

2
,T −

t

2
� . �A9�

The Fourier transformation of Eq. �A9� yields

ĜR�p,R;T,�� =� dre−ipr� dteit�ĜR�1,2� . �A10�

An exact solution for ĜR�p ,R ;T ,�� is very hard to achieve
but the situation is considerably simplified if one is willing to
neglect all atomic-scale fine-structure effects that are in-

cluded in ĜR. These give rise to a rapidly oscillating part in

the solution for ĜR and rewriting the Green function through
Eq. �A10� allows us to integrate out this unnecessary infor-
mation �at least for our purposes�. This approximation may
be expected to yield satisfactory results if the energy of the
physical quantities involved in the problem, e.g., exchange
field and superconducting order parameter, are much smaller
than the Fermi energy. Assuming that only particles in the
vicinity of Fermi level will take part in physical processes,
one only needs to retain the direction of the momentum at
Fermi level in the p coordinate.

As this Appendix is only meant as background informa-
tion for the Eilenberger equation, we do not show all the
details leading from Eq. �A7� to Eq. �1� here. The calcula-
tions are nevertheless fairly straightforward, and consist of
first switching to a mixed representation, then Fourier trans-
forming the variables, and finally performing the quasiclas-
sical approximation

ĝR =
i

�
� d�pĜR, �p =

p2

2m
. �A11�
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APPENDIX B: INELASTIC SCATTERING

The choice of �=0.1�↑,0 is motivated by the fact that the
zero-energy peaks observed in experiments are usually lim-
ited from above to roughly a factor of five times the normal-
state value of the LDOS, which we reproduce with this par-
ticular choice of �. Choosing � smaller �corresponding to a
longer quasiparticle lifetime since �= −1� causes the zero-
energy peak to grow substantially, as shown in Fig. 8. In
general, the inelastic-scattering rate does not have to be pro-
portional to the gap at all and our choice of �=0.1�↑,0 is
simply chosen to compare the scattering rate against a famil-
iar quantity.

APPENDIX C: DERIVATION OF EQ. (14)

The gap equation may be obtained by starting out with a
Hamiltonian assuming a nonunitary triplet pairing state co-
existing with itinerant ferromagnetism,7,18 namely

Ĥ = 
k

�k +
INM2

2
−

1

2
k�

�k��
† bk��

+
1

2
k�

�ĉk�
† ĉ−k��� �k� �k��

�k��
† − �k�

�� ĉk�

ĉ−k�
† � . �C1�

Here, I is the ferromagnetic exchange coupling constant, N is
the number of lattice sites, M denotes the magnetic order
parameter �dimensionless�, and bk�� is the Cooper pair ex-
pectation value. Diagonalization of this Hamiltonian pro-
duces:

Ĥ = H0 + 
k�

Ek��̂k�
† �̂k�,

H0 =
1

2
k�

��k� − Ek� − �k��
† bk��� +

INM2

2
, �C2�

where ��̂k� , �̂k�
† � are new fermion operators and the eigen-

values read

Ek� = ��k�
2 + 
�k��
2. �C3�

Above, �k is the kinetic energy measured from Fermi level.
By minimizing the free energy, one obtains the gap equation
for the superconducting order parameter:7

�k�� = −
1

N

k�

Vkk���
�k���

2Ek��
tanh�
Ek��/2� . �C4�

Assuming that the gap is fixed on the Fermi surface in the
weak-coupling limit, one may write in general

V����,��� = − V0Y�����Y�������. �C5�

where Y���� are basis functions for the angular dependence
of the interaction. To model px-wave and chiral p-wave pair-
ing, respectively, we use Y����=−�ei�� and Y����=cos �.
Conversion to integral gap equations is accomplished by
means of the identity

1

N

k

f��k�� =
1

4�
� d�d(N����f��,(� , �C6�

where N���� is the spin-resolved density of states. In three
spatial dimensions, this may be calculated from the disper-
sion relation by using the formula

N���� =
V

�2��3�
�k�=const

dS�k�


�̂k�k�

. �C7�

With the dispersion relation �k�=�k−�IM −�, one obtains

N���� =
mV�2m�� + �IM + ��

2�2 . �C8�

In their integral form, the gap equation reads

1 =
V0

4�
�
�

−�0

�0

�� 2�0d�d�
N����Y�����Y�������

E����
tanh�
E����/2� .

�C9�

Consider now T=0, where the integral may be done analyti-
cally to yield

��,0 = c�0e−1/g�1+�M̃, � = ↑,↓ �C10�

where we have defined M̃ = IM /�=h /�, i.e., the exchange
energy scaled by the Fermi energy. Moreover, c is a numeri-
cal prefactor which depends on that symmetry one considers
�px wave or chiral p wave� while g is the weak-coupling
constant. The important influence of the magnetization is that
it modifies the density of states, which affects the supercon-

ductivity gaps. For M̃ =1, i.e., an exchange splitting equal to
the Fermi energy, the minority-spin gap is completely sup-
pressed. Thus, the presence of magnetization reduces the
available phase space for the minority-spin Cooper pairs,
suppressing the gap and the critical temperature compared to
the pure Bardeen-Cooper-Schrieffer case.
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We calculate the Josephson current in a diffusive superconductor/ferromagnet/superconductor junction,
where the ferromagnetic region contains multiple layers �or domains�. In particular, we study a configuration
where there are two layers with an arbitrary relative in-plane magnetization orientation and also include
nonideal interfaces and arbitrary spin-flip scattering. We study the 0-� oscillations of the critical current for
varying junction width d and find that the � state vanishes entirely when the magnetic misorientation angle of
the two layers exceeds a critical angle �c. While �c→� /2 in the limit of high temperatures, we find that �c

becomes smaller than � /2 at low temperatures compared to Tc. 0-� oscillations are also found when varying
the temperature or the misorientation angle for fixed values of d, and we present phase diagrams that show
qualitatively the conditions for the appearance of such oscillations. We also point out how one may obtain
significant enhancement of the critical current in such a system by switching the magnetization for selected
values of the junction width d, and comment on the necessary conditions for establishing a long-range triplet
Josephson effect.

DOI: 10.1103/PhysRevB.78.104509 PACS number�s�: 74.20.Rp, 74.50.�r, 74.70.Kn

I. INTRODUCTION

The topic of superconductor-ferromagnet heterostructures
has been a subject of intense research for several years.1,2

Not only do such systems constitute model systems for in-
vestigating the interplay between two fundamental
condensed-matter phenomena, ferromagnetism �F� and su-
perconductivity �S�, but recent advances in fabrication tech-
niques of such hybrid structures make applications increas-
ingly attainable. Especially S/F based Josephson technology
holds great promise in nanoelectronics, e.g., as a physical
realization of the qubit of quantum computation.3 Another
possible device is in some sense analogous to a spin valve
exhibiting giant magnetoresistance �GMR�, i.e., strongly
suppressing the current for opposite orientation of the
magnetization4 in two F layers separated by a normal metal
�N�. For our object of interest however, superconducting
electrodes are used instead of ferromagnets and N is replaced
with F, in which case the resistance effect of magnetization
switching is known to be reversed compared to the spin
valve.5

The proximity effect between a superconductor and a nor-
mal metal was predicted decades ago6 and has since been
investigated thoroughly both theoretically and experimen-
tally. However, several new and interesting effects were pre-
dicted when the layer of normal metal was replaced with a
ferromagnet due to spin-triplet correlations in the ferromag-
net induced by the exchange field.1,2 Much attention has been
given to superconductor/ferromagnet/superconductor �SFS�
structures, which are studied as a somewhat more exotic
class of Josephson junctions. The most interesting emerging
phenomenon in SFS junctions is the appearance of the so-
called � state,7,8 in which the difference in the superconduct-
ing phase across the junction is � in the ground state, in
contrast to the conventional state with phase difference zero.
The physical result of transitions between these states is usu-
ally a sign change in the critical Josephson current Ic through
the junction, the observable manifestation of which being a

nonmonotonic dependence of Ic on parameters such as tem-
perature and junction width. Been predicted for decades, the
experimental verification of this phenomenon some years
ago9,10 was one of the catalysts of the present activity on the
field. Recently, the effect of magnetic impurities in SFS junc-
tions was also investigated theoretically.11,12

It is well known that in simple S/F structures, the prox-
imity effect will only induce opposite spin pairing �OSP�
triplet correlations �spin projection Sz=0�, and that equal
spin pairing �ESP� triplet correlations �Sz= 01� require inho-
mogeneous magnetization.1 ESP components are in some
contexts referred to as long-range triplet correlation �LRTC�
components and are of special interest because they do not
decay as rapidly in the ferromagnet as the other components,
and may therefore evade the suppression of the supercurrent
for increasing width of the ferromagnet. One way of achiev-
ing this in theory is to let the magnetization in the F layer
have a helical structure.13,14 A similar effect is also found by
considering a superconductor/insulator/superconductor �SIS�
junction where the S electrodes themselves exhibit a spiral
magnetic order coexisting with the superconductivity.15 Yet
another alternative is layered S/F structures16 with noncol-
linear magnetization or simply a SFS structure where F is
replaced with several ferromagnets with different direction
of magnetization.

Recent theoretical studies have been focusing on junc-
tions with two ferromagnets sandwiched between the super-
conducting electrodes. There are two physical realizations of
a system described by such a model. It may either describe a
device with two distinct, consecutively placed F layers �a
SF1F2S junction�, constructed to achieve customized nonho-
mogeneous magnetization. Several works5,17–22 have consid-
ered the Josephson current in such heterostructures. On the
other hand, the model may describe the more realistic experi-
mental situation of one ferromagnetic layer with several
magnetic domains. Some models of the latter kind have in-
cluded two or more in-plane magnetic domains,23,24 and al-
though this certainly is an interesting framework for under-
standing real heterostructures, the present paper considers the
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two layers placed consecutively as a SF1F2S structure. The
main motivation for this choice is that this configuration al-
lows for much easier experimental control of the magnetiza-
tion. The misorientation angle may be tuned by applying an
external weak magnetic field to the interface between the
ferromagnets if the magnetization axis is pinned in one layer
while in the other one there is an in-plane easy axis.18 To
accomplish this experimentally, one would probably need
some interlayer between the ferromagnetic films to avoid a
locking between the corresponding magnetizations due to the
interfilm exchange coupling.

Calculations on the models referred to here have predicted
0-� transitions upon varying the strength of the magnetic
exchange field, the junction width, or the temperature, de-
pending on the relative orientation of the magnetization in
the two F layers.5,17–22 For antiparallel magnetization, it is
reported that the 0-� oscillations will vanish, rendering the �
state impossible.25 An enhancement of the critical current for
the antiparallel orientation by increasing the exchange field
was first reported by Bergeret et al.5 and shortly after elabo-
rated upon by others.26,27 Much of the work has however
been limited to the case of collinear magnetization,25,27 but
recently also SF1F2S systems with arbitrary misorientation
angle for the magnetization have been analyzed.17,18,28 In
particular, Crouzy et al.28 have shown how the � state of
such a junction is suppressed for increasing misorientation
angles, vanishing at a critical angle �c=� /2 when the tem-
perature is close to the critical temperature, i.e., T /Tc �1.
One recent article29 has even studied a corresponding ferro-
magnetic trilayer structure, but focused chiefly on the LRTC
contribution to the Josephson current in such a structure. It
should be noted that while the majority of the work in this
field is carried out in the dirty limit, considering diffusive
F/S systems, several of the relevant papers17,18,29,30 study bal-
listic junctions as well.

Reference 28 points out the necessity of including addi-
tional effects to get a more accurate description of such sys-
tems. The present article may thus be viewed as an extension
of their work by studying a SF1F2S junction with noncol-
linear domains where nonideal interfaces and magnetic im-
purities are also taken into consideration. For the latter, we
will study the special cases where isotropic or uniaxial spin-
flip scattering is present. Consequently, there are three ques-
tions addressed in this work which were not treated in Ref.
28: �i� how does spin-flip scattering influence the 0-� oscil-
lations?; �ii� Do nonideal interfaces change the qualitative
behavior of the system?; and �iii� How does the Josephson
current for such a system depend on the temperature? The
possibility of investigating the latter point is present in our
model, as opposed to Ref. 28, which was restricted to tem-
peratures close to Tc. The reason for this is that the regime of
weak proximity effect is only attainable either if the S/F
transparency is low or when transparency is high under the
extra restriction that T�Tc, so that it is guaranteed that the
influence of superconductivity is weak in either case.

For concreteness, we consider a diffusive Josephson junc-
tion with two ferromagnetic layers with arbitrary in-plane
relative orientation of the magnetization, as shown in Fig. 1.
Although we focus on this picture of distinct, controllable
layers, the physically similar situation of magnetic domains

will also be commented upon. The superconducting elec-
trodes are two similar s-wave superconductors, and the inter-
faces between the superconductors and the ferromagnet are
assumed to have low transparency.

This paper is organized as follows: In Sec. II we will
briefly sketch the theoretical framework and go on to obtain
a solution for the proximity-induced anomalous Green’s
function in the ferromagnetic region of our SF1F2S system,
from which an expression for the Josephson current can be
calculated. In Sec. III we present the dependence of the Jo-
sephson current on the various parameters, analyze the re-
sulting 0-� oscillations in the junction, and construct a cor-
responding phase diagram. We discuss the applicability of
our findings in Sec. IV and furthermore present a discussion
of the absence of the long-range Josephson effect in such
SF1F2S systems. A summary and some final remarks are
given in Sec. V. We will use boldface notation for three vec-

tors, . . .ˆ for 4�4 matrices, and . . . for 2�2 matrices.

II. THEORETICAL FORMULATION

We address this problem by means of the Usadel equation
in the quasiclassical approximation. This corresponds to in-
tegrating out the dependence on the kinetic energy of the
Gor’kov Green’s function, obtaining thus the quasiclassical
Green’s function ĝ as the object used to describe our system.
This approximation is valid as long as all relevant energy
scales are much smaller than the Fermi energy �F, and cor-
respondingly that all relevant length scales are much larger
than the Fermi wavelength. The latter condition is reconciled
with the presence of sharp interfaces in our model by intro-
ducing appropriate boundary conditions, as discussed below.
The approach is based on the Keldysh formalism for non-
equilibrium superconductors, which is convenient to work in
also in the present limiting case of equilibrium. Here one
operates with 8�8 matrix Green’s functions, in which the
retarded Green’s function ĝR, the advanced Green’s function
ĝA, and the Keldysh Green’s function ĝK are 4�4 matrix
components. As both the advanced and the Keldysh compo-
nent of the matrix can easily be expressed by the retarded

x = d2x = −d1 x = 0

ĝS(+χ)ĝS(−χ) ĝF1
ĝF2

φ

ĥ1 ẑ

ŷ

x̂

ĥ2

FIG. 1. �Color online� The experimental setup proposed in this
paper. Two s-wave superconductors are separated by two ferromag-
netic layers with an arbitrary relative orientation of the magnetiza-
tions. The ferromagnetic regions may model a domain structure of a
single ferromagnetic layer or correspond directly to two distinctly
deposited magnetic layers. This is similar to the setup considered in
Ref. 28.
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component in our case, it will be implicitly assumed in the
following that the Green’s function under consideration is
the retarded component ĝR.

We will desist from further discussion of quasiclassical
theory and instead refer the reader to the considerable litera-
ture that covers the Keldysh formalism and nonequilibrium
Green’s functions.31–35 We go on to write up the matrix struc-
ture of our quasiclassical Green’s functions. In the bulk su-
perconductors, the Green’s function reads31

ĝS = � 1�c i 2se0i�

i 2se�i� − 1�c
� , �1�

where c�cosh���, s�sinh���, and ��atanh��0 /��, with �0
denoting the amplitude of the superconducting gap. The dif-
ferent signs of the phase � above correspond to the left
�lower sign� and right �upper sign� superconducting banks,
respectively. When not being in proximity to a supercon-
ductor, the Green’s function for a bulk ferromagnet reads

ĝF,0 = �1� 0

0 − 1�
� . �2�

When being influenced by a superconductor, off-diagonal el-
ements are introduced to this Green’s function, and for weak

proximity effect it is changed to ĝF � ĝF,0+ f̂ . This perturba-
tion can be expressed as31

f̂ = � 0 f����
− �f��− ���� 0

� , �3�

where the constituting anomalous Green’s function can be
written as a matrix in spin space on the form36

f� = � f↑ f t + fs

f t − fs f↓
� . �4�

Here, fs denotes the singlet component, f t the OSP triplet
component, and f↑ and f↓ the ESP triplet components, and it
is these anomalous Green’s function that the Usadel equation
is to be solved for.

In our calculations, we will account for the possibility of
both uniaxial and isotropic spin-flip scatterings by the pa-
rameter �xy and �z as follows:

Uniaxial spin-flip:�xy = 0, �z = 3,

Isotropic spin-flip:�xy = 1, �z = 1. �5�

The spin-relaxation time for spin-flip scattering will be de-
noted  sf and is to be considered as a phenomenological pa-
rameter in our approach.

In the ferromagnetic regions F1 and F2, the linearized
Usadel37 equations take the form

D�x
2�f t 0 fs� + 2i�� 0 h cos ���f t 0 fs�

−
1

2 sf
��zf t 0 3fs� 0 h sin ��f↑ + f↓� = 0,

D�x
2f� + �2i� −

�xy

2 sf
� f� − 2h sin �fs = 0; � = ↑,↓ , �6�

with �=0 in F1. Equation �6� constitute a set of coupled,
second-order, linear differential equations. Although an ex-
plicit analytical solution may be obtained for �fs , f t , f�� by
solving Eq. �6� brute force for nonzero �, the resulting ex-
pressions are very large and cumbersome. We therefore pro-
ceed via an alternative but equivalent route. By a change of
spin basis to a quantization axis which is aligned to the ex-
change field in F2, one obtains the equations

D�x
2�f t� 0 fs� + 2i�� 0 h��f t� 0 fs� −

1

2 sf
��zf t� 0 3fs� = 0,

D�x
2f�� + �2i� −

�xy

2 sf
� f�� = 0. �7�

The superscript � denotes the new spin basis and the s-wave
component transforms as a scalar under spin rotations fs�
= fs. The general analytical solution for these equations in the
case of isotropic spin-flip scattering was obtained in Ref. 38.
In the present case, we obtain

f t� = c1e−q−x + c2eq−x + c3eq+x + c4e−q+x,

fs =
i

8 sfh
�c1/+e−q−x + c2/+eq−x + c3/−eq+x + c4/−e−q+x� ,

f�� = A�eikx + B�e−ikx, �8�

where we have defined

q0 = �− D sf�0p − 3 − �z + 8i sf��/�2D sf� ,

/0 = 3 − �z 0 p, p = ��3 − �z�2 − 64 sf
2 h2,

k = ��2i� − �xy/�2 sf��/D . �9�

Taking �z=�xy =1, the above expressions reduce to those of
Ref. 38. Once the �fs� , f t� , f��� have been obtained, one may
transform them back to the original quantization axis �ẑ. If
we write

f = �fs + f · ��i 2, �10�

one may from Eq. �4� identify the vector anomalous Green’s
function

f = �f↓ − f↑, − i�f↑ + f↓�, 2f t�/2. �11�

This is equivalent to the dk-vector formalism described in,
for instance, Ref. 36. For future use, we define f0= f t0 fs.
Finally, the transformation to the new spin basis is �see also
Fig. 2�

�f��T = �1 0 0

0 cos � − sin �

0 sin � cos �
��f�T. �12�

In general, the linearization of the Usadel equation is a valid
approximation in the case of a weak proximity effect. This
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may be obtained in two limiting cases: �i� the barriers have
low transparency or �ii� the transparency is perfect �ideal
interfaces� and the temperature in the superconducting reser-
voir is close to Tc, such that �0 is small. An analytical ap-
proach is permissible in both scenarios, with differing
boundary conditions. In case �i�, the standard Kupriyanov-
Lukichev �K-L� boundary conditions39 are usually employed
in the literature, while case �ii� implies continuity of the
Green’s function and its derivative. In an experimental situ-
ation, the barrier region can hardly be considered as fully
transparent, such that the K-L boundary conditions are more
realistic than continuity of the Green’s function and its de-
rivative. We will therefore employ the K-L boundary condi-
tions in this paper.40

To obtain the anomalous Green’s function, we must
supplement the general solution in Eq. �8� with the K-L
boundary conditions at three interfaces. At the S /Fi inter-
faces located at x=−d1 and x=d2, one obtains

2�d1ĝF1
�xĝF1


x=−d1
= �ĝS�− ��, ĝF1

�
x=−d1
,

2�d2ĝF2
�xĝF2


x=d2
= �ĝF2

, ĝS����
x=d2
. �13�

We have defined the parameter

� =
RB

RF
, �14�

where RB is the resistance of the barrier region and RF is the
resistance of in the diffusive ferromagnetic regions �assumed
to be the same for both F1 and F2�. For the F1 /F2 interface,
which denotes the separation of the ferromagnetic layers, we

assume the resistance to be much smaller than at the S /Fi
interfaces. Therefore, we model this by continuity of the
Green’s function and its derivative

gF1
= gF2


x=0, �xgF1
= �xgF2


x=0. �15�

Let us comment briefly on the case where F1 and F2 are two
domains of a single layer. A domain-wall resistance may
quite generally be defined as Rw=R−R0, where R and R0 are
the electrical resistances with and without a domain wall
�i.e., homogeneous magnetization�, respectively. When the
width of the domain wall increases, Rw→0 and vanishes all
together when the width of the domain wall is much larger
than the Fermi wavelength.41 In the present paper, we con-
sider an abrupt change in magnetization at the interface of
the two domains, corresponding to a very thin domain wall,
such that one would in general expect a finite contribution to
the resistance of the junction. To reduce the number of pa-
rameters in the problem, however, we assume that this resis-
tance is much smaller than at the S/F interfaces and effec-
tively set it to zero. In the case where F1 and F2 are separate
ferromagnetic layers, one may neglect the resistance at the
interface between them by assuming a good electrical con-
tact achieved during deposition of the layers.

The �f20 , f2�� anomalous Green’s functions are related to
a set of anomalous Green’s functions in a rotated basis
�f20� , f2�� � via

f2↑ =
1

2
�cos ��f2↓� + f2↑� � + 2i sin �f2,t� + f2↑� − f2↓� � ,

f2↓ =
1

2
�cos ��f2↓� + f2↑� � + 2i sin �f2,t� − f2↑� + f2↓� � ,

f2,t = cos �f2,t� +
i sin �

2
�f2↓� + f2↑� � , �16�

where �f20� , f2�� � have the general form as shown in Eq. �8�.
The complete anomalous Green’s functions in the regions F1
may be written as

f10 = b1e−q−xL+
0�0� + b2eq−xL+

0�0� + b3eq+xL−
0�0�

+ b4e−q+xL−
0�0� ,

f1� = A�eikx + B�e−ikx, �17�

while in F2 one finds

f20 = c1e−q−xL+
0��� + c2eq−xL+

0��� + c3eq+xL−
0��� + c4e−q+xL−

0��� +
i sin �

2
��C↑ + C↓�eikx + �D↑ + D↓�e−ikx� ,

f2� =
1

2
�eikx�cos ��C↑ + C↓� + ��C↑ − C↓�� + e−ikx�cos ��D↑ + D↓� + ��D↑ − D↓�� + 2i sin ��c1e−q−x + c2eq−x + c3eq+x + c4e−q+x�� .

�18�

ẑ

x̂ ŷ

φf

f �

h

FIG. 2. �Color online� The change of spin basis from a quanti-
zation axis �ẑ to a quantization axis �h.
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Above, we have defined L0
0����=cos �0�i/0 / �8 sfh�. Note

that Eq. �18� reduces to exactly the same form as Eq. �17� for
�=0 �parallel magnetization�, as demanded by consistency.
The remaining task is to determine the 16 unknown coeffi-
cients �bi� , �ci� , �A� ,B� ,C� ,D��. For clarity, we write out the
boundary conditions explicitly. At x=−d1, one has ��
= ↑ ,↓�,

�d1�xf10 = cf10 � se−i�, �d1�xf1� = cf1�, �19�

while at x=d2 we find

�d2�xf20 = 0 sei� − cf20, �d2�xf2� = − cf2�. �20�

Finally, at x=0 one obtains

f10 = f20, �xf10 = �xf20,

f1� = f2�, �xf1� = �xf2�. �21�

Inserting Eqs. �17� and �18� into Eqs. �19�–�21� yields a set
of linear equations which may be represented by a 16�16
matrix, and the solution for the 16 coefficients is found nu-
merically. Once the anomalous Green’s functions have been
obtained, one may calculate physical quantities of interest. In
the present paper, we will be concerned with the Josephson
current

j�x� = − �NFeDx̂/4�� d� Tr�!̂3�ĝR�xĝ
K − ĝK�xĝ

A��

= − �NFeDx̂/2��
−�

�

d� Re�M+���

+ M−���M↑��� + M↓���� � tanh�
�/2� , �22�

with the definitions ��= ↑ ,↓�,

M���� = �f��− �����xf���� − f�����x�f��− ����,

M0��� = �f0�− �����xf���� − f0����x�f��− ����. �23�

The matrix !̂3 in the first line of Eq. �22� is defined by !̂3
=diag�1,1 ,−1 ,−1�. The normalized current is defined as

I���/I0 = 4
j�x,��
/�NFeD�0
2� , �24�

which is independent of x for x� �−d1 ,d2� �due to conserva-
tion of electrical current�. The maximal supercurrent the sys-
tem can support, known as the critical current, is given by
Ic= I��

4 � in the case of a sinusoidal current-phase relation.
Before proceeding to disseminate our results, we briefly

remind the reader �see, e.g., Refs. 2 and 42� of the qualitative
physics that distinguishes S/F proximity structures from S/N
systems, and thus gives rise to, e.g., 0-� oscillations of the
critical current �which will be discussed in detail for our
system in Sec. III�. The fundamental difference between the
proximity effect in a S/N structure as compared to a S/F
structure is that the Cooper pair wave function acquires a
finite center-of-mass momentum in the latter case due to the
Zeeman-energy splitting between the ↑ and ↓ spins constitut-
ing the Cooper pair. The finite center-of-mass momentum of
the Cooper pair implies that the condensate wave function in
the ferromagnetic region displays oscillations in space, per-

mitting it to change sign upon penetrating deeper into the
ferromagnetic region. Quite generally, one may write that the
Cooper pair wave function �order parameter� as %=%0e−ksx

in a S/N structure while %=%0 cos�kf ,1x�e−kf ,2x in a S/F
structure, where �ks ,kf ,1 ,kf ,2� are wave vectors related to the
decay and oscillation lengths of the proximity-induced con-
densate in the nonsuperconducting region.

The fact that the proximity-induced superconducting or-
der parameter oscillates in the ferromagnetic region suggests
that the energetically most favorable �ground-state� phase
difference between the superconducting reservoirs might not
always be zero, as in an S/N/S junction. For a very thin
ferromagnetic layer, % does not change much and there is no
reason for why there should be an abrupt discontinuity in the
phase at one of the F/S interfaces—hence, the system is in
the 0 state. If the thickness of the ferromagnetic layer is
comparable to the oscillation length of % ��1 /kf ,1 in our
notation above�, then % may cross zero in the middle of the
ferromagnetic region and display antisymmetric behavior.
This is accompanied with a shift of sign of the order param-
eter in the, say, right bulk superconductor as compared to the
left bulk superconductor. Under such circumstances, the en-
ergetically most favorable configuration corresponds to a
phase difference of � between the superconductors, since
�=�0 in one of the superconductors and �=−�0=�0ei� in
the other superconductor.

This is related to 0-� oscillations of the critical current as
follows. The energy of the Josephson junction may in the
tunneling limit be well approximated by

�J � IJ,0�1 − cos 2�� , �25�

where I0 contains the magnitude and sign of the critical cur-
rent while 2� is the phase difference between the supercon-
ductors. Now, IJ,0 is closely related to the proximity-induced
condensate wave function % in the ferromagnetic region and
may change sign depending on, for instance, the width of the
ferromagnetic layer. Depending on its sign, the ground-state
configuration corresponds to either 2�=0 or 2�=�, and the
critical current supported by the system will change sign
depending on which of these phases the system is in �al-
though the critical current itself is given by 2�=� /2�.

III. RESULTS

Unless otherwise stated, we will fix h /�0=10 and �=5 to
model a realistic experimental setup with weak ferromagnets
�the exchange field was estimated to 5–10 meV in Ref. 43.�
The particular choice of � is motivated by the fact that we
expect the resistance of the barrier region to exceed the bulk
resistance of the ferromagnets, and in addition to a low trans-
parency of the S/F interfaces this clearly suggests that �
)1. This will ensure a weak proximity effect, as explained
in Sec. II. In order to reduce the number of free parameters
further, we in general set the widths of region F1 and F2 to be
equal d1=d2 �d. The superconducting coherence length �

=�D /�0 will be used as the unit in which the widths are
measured. Where spin-flip scattering is included, we will use
the parameter g=1 / � sf�0� as a measure of the strength of
this effect.
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We have numerically confirmed that the system follows a
sinusoidal current-phase relation regardless of the direction
of magnetization and all other variable parameters of our
system. This allows us to focus on the state that supports the
critical current, namely, �=� /4. A sinusoidal current-phase
relation is moreover what should be expected for such sys-
tems with weak proximity effect44 and where the bulk super-
conductors have the same symmetry.45 We have also con-
firmed that the assumption of weak proximity effects holds
by assuring that the value of the anomalous Green’s function
always obey 
fs,t,�
#1 for the parameter range we consider.
To make the computation of the solutions to the Usadel equa-
tion numerically stable, we furthermore add a small imagi-
nary term i� to the excitation energy �, where the value �
=10−3 has been used. This can be motivated as a way to
account for inelastic-scattering processes,46 interpreting the
term as the inverse �positive� quasiparticle lifetime.

A. Zero temperature

First, we will consider the case where the temperature is
fixed to zero unless otherwise stated, i.e., the calculations are
made with T /Tc=0.001. The critical current as a function of
the junction width d is shown in Fig. 3 for uniaxial spin-flip
scattering. Considering first the parallel case �=0, the well-
known 0-� oscillations are reproduced, where the current
change sign for certain values of d. It should however be
noted that we have chosen to always plot the critical current
as a positive quantity, as defined by Eq. �24�, because this is
what is most commonly measured in experiments.2,9 We
have confirmed that the oscillations are almost exactly peri-
odic for the parameter range considered here. Increasing the
effect of spin-flip scattering tends to move the transition
points between the 0 state and the � state toward higher
values of d. Throughout our investigations, we find no sig-
nificant difference between isotropic and uniaxial spin-flip
scatterings for the width dependence of the critical current.
Thus, we consider only uniaxial spin-flip scattering when-
ever the role of magnetic impurities is studied.

The subplots of Fig. 3 show how increasing the relative
angle of magnetization to �=� /4 shifts the first transition
points to the right and the second to the left, reducing the
width region in which the system is in the � state. For �
=� /2, the oscillations have ceased entirely, leaving the junc-
tion in the 0 state for all values of d. These effects are shown
more clearly in Fig. 4, which also shows that the oscillations
do not return for �� �� /2,��. This can be expressed as a
critical misorientation angle �c2� /2 over which the � state
is not realizable, which is in agreement with the findings of
Ref. 28. Reference 28 claims that �c �� /2 independent of
parameters as long as the system is near the critical tempera-
ture T /Tc �1. We find �c to have a somewhat lower value
�c �0.46�"� /2 in the present case of T /Tc#1, but we
will show in Sec. III B how this value approaches � /2 for
increasing temperatures and how it changes for other values
of the exchange field than our particular choice of h /�0
=10. In light of the discussion concerning the qualitative
physics involved in a S/F/S proximity structure, it seems
reasonable to suggest that the vanishing of the 0-� transi-

tions are directly linked to a strong modification of the
Cooper-pair wave-function oscillation length inside the fer-
romagnet, which renders the � state inaccessible. Possible
explanations will be discussed further in Sec. IV.

As stated in the introduction, several works have con-
trasted the cases of parallel and antiparallel orientations,
while the intermediate angles have not been studied thor-
oughly �see, however, Refs. 18 and 28�. We seek to remedy
this by first presenting in Fig. 5 the dependence of the critical
current on the misorientation angle. The three junction
widths d /�= �1.0,1.25,1.5� are chosen somewhat arbitrarily
from the available range of values, but illustrate adequately
the conditions for appearance of 0-� oscillations. First, we
confirm the obvious fact that the critical current should be
symmetric with respect to �=�. Therefore we will from now
on only consider the interval �� �0,��, the maximum of the
misorientation angle being the antiparallel orientation. Next,
we see that no 0-� oscillations appear upon varying the mis-
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FIG. 3. �Color online� Plot of the width dependence of the criti-
cal current for several values of the spin-flip scattering rate, which
is here taken to be uniaxial in spin space. We have defined the
dimensionless parameter g=1 / � sf�0� as a measure of the spin-flip
scattering rate. At d /�=1.0, the system is in the 0 state.
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orientation angle for d /�=1.0 fixed, which agrees with the
observation from the previous figures that the junction ap-
pears to be in the 0 state for all angles at this junction width.
For d /�= �1.25,1.5� however, the junction starts out in the �
state for the parallel orientation, and we can see that a tran-
sition takes place to the 0 state for some angle �"� /2. This
is in agreement with the result of Ref. 18 that a nonmono-
tonic dependence of the critical current on � occurs when the
� state is the equilibrium state of the junction for �=0, and
a similar statement was also made in Ref. 17.

A small effect of spin-flip scattering which may be men-
tioned here is that for ��0 it may give the appearance of an
effectively lowered misorientation angle with regard to the
shift in the d values for 0-� crossover. As a result, for angles
just above the critical angle, an increase of g may trigger the
transition from complete absence of the � state to 0-� oscil-
lations.

The evolution of the critical current for variable d and �
described in the previous paragraphs can be condensed to the
phase diagram shown in Fig. 6. If only the sign of the Jo-
sephson current is of interest, each of the plots of Ic�d� may
be thought of as a horizontal sweep through the phase dia-
gram for some fixed �, while every plot of Ic��� is repre-
sented by a vertical sweep for some fixed d. As seen, the �
state becomes impossible above a critical angle �c for the
present case of T→0. We will contrast this with the finite-
temperature case in Sec. III B.

B. Finite temperature

We proceed by considering the dependence of the Joseph-
son current on the temperature. The superconducting elec-
trodes were assumed to be conventional superconductors un-
affected by the ferromagnetic layers, so the standard BCS
temperature dependence of the superconducting gap will be
employed

��T� = �0 tanh�1.74�Tc/T − 1� . �26�

To illustrate how the critical angle �c for 0-� oscillations
depends upon increasing the temperature, including also the
dependence on the exchange field, we plot in Fig. 7 the criti-

cal angle as a function of the exchange splitting h for several
values of T. As seen, �c remains less than � /2 up to h /�0
�100 in the T→0 limit. However, increasing the tempera-
ture only slightly to T /Tc=0.2, we see that �c rapidly ap-
proaches � /2. The trend is the same upon increasing the
temperature even further, indicating the limit of �c=� /2 for
arbitrarily high values of h as T�Tc. We conclude therefore
that the critical angle above which 0-� oscillations cease to
exist is equal to � /2 as long as the temperature is high
�T /Tc �1�. However, for low temperatures and weak ex-
change fields, we find that �c deviates noticeably from � /2.

Also by varying the temperature parameter 0-� oscilla-
tions may be found in the system, as shown in Fig. 8. This
follows as a natural result if the critical values of junction
width at which 0-� transitions were found in Sec. III A are
temperature dependent. One difference from the plots of Ic as
a function of d is the existence of no more than one transition
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FIG. 4. �Color online� Plot of the width dependence of the criti-
cal current for several values of the misorientation angle �, with
spin-flip scattering turned off for simplicity �g=0�.
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FIG. 5. �Color online� Plot of how the critical current is affected
by a change in the relative orientation � of the magnetizations for
several values of the spin-flip scattering rate, which is here taken to
be uniaxial in spin space.
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point �for each value of g� before the Josephson current nec-
essarily vanishes at T=Tc. For increasing �, this transition
point moves leftwards until vanishing at T=0 at some critical
angle. By considering the dependence on misorientation
angle more carefully, we found that this critical angle, over
which the 0-� oscillations disappear for Ic as a function of T,
differs from the corresponding critical angle for Ic as a func-
tion of d. This may be explained by going back to the phase
diagram in Fig. 6 and noticing that �for T /Tc �0� the maxi-
mum � for the � phase region corresponds to a junction
width d /��1.35 �up to periodicity�. For any other junction
width, e.g., d /�=1.25 as used in the figures, the � state will
be unrealizable at T=0 for even lower values of �. This
results in the inequality that �c for thermally induced oscil-
lations is always less than or equal to �c for width-induced
oscillations.

Another point on which the thermally induced 0-� oscil-
lations differ from those obtained by varying the junction
width or the misorientation angle is the remarkably stronger
dependence on the spin-flip scattering rate. Increasing g
shifts the transition point significantly to the left and further-
more strongly influence the ratios Ic�g�0� / Ic�0�. Similar
findings were reported in Ref. 47.

So far, we have not considered the dependence of the
critical current on the misorientation angle while simulta-
neously going away from the limiting case of T=0. In prin-
ciple the phase diagrams presented might readily be general-

ized to a three-dimensional d-�-T phase diagram, but we
justify the omittance of this by arguing that the phase dia-
gram of the system does not contain many interesting new
features not already contained in the two-dimensional projec-
tion presented here. However, as is clearly visible in the
phase diagram for T /Tc=0.5 as shown in Fig. 9, the critical
angle is exactly �c=� /2, in full agreement with the analysis
done in Ref. 28. Another development as T increases is the �
region obtaining a more symmetric shape, also this in agree-
ment with Ref. 28.

C. Enhancement effect

As was seen in Fig. 5, there is a significant difference
between the current in the parallel configuration �=0 and the
antiparallel �=�. The ratio between these two critical cur-
rents Ic��=�� / Ic��=0� is plotted as a function of the junc-
tion width in Fig. 10. The fact that one always observes 0-�
oscillations for varying d in the parallel case, but never in the
antiparallel, leads to a divergence of the ratio at certain val-
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FIG. 6. Phase diagram of the Josephson junction for zero tem-
perature, showing the regions occupied by the 0 state and the �
state in width-misorientation parameter space. For the region given
by �� �� /2,3� /2�, the � state is completely absent. We have set
the spin-flip scattering strength to zero g=0.
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FIG. 7. �Color online� Plot of the critical angle �c at which the
0-� oscillations disappear, as a function of the exchange splitting h,
for a number of temperatures. Spin-flip scattering is neglected for
simplicity g=0.
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ues of the junction width, since Ic�0� drops to zero at this
transition point while Ic��� remains finite for all values of d.
We note also that one will always have Ic���� Ic�0�, but the
critical current is a monotonously increasing function of �
up to �=� only in the case that the system is in the 0 state
for �=0.

This enhancement of the Josephson current by switching
the direction of magnetization may possibly be utilized in a
device for controlling the magnitude of the current, if the
junction is tuned to the vicinity of a transition point. A simi-
lar effect was mentioned by Golubov et al.26 who considered
the exchange field h as the variable parameter, but to our
knowledge it has not yet been pointed out how this effect
may be applied by tuning the junction width or the tempera-
ture.

IV. DISCUSSION

Above, we have neglected the spatial depletion of the
superconducting order parameter near the S/F interfaces.
This approximation is expected to be excellent in the case of

a low-transparency interface.48 Moreover, it is well known
that a magnetic-flux threading in a Josephson junction in
general gives rise to a Fraunhofer modulation of the current
as a function of the flux.49 We here neglect this modification
by assuming that the flux constituted by the ferromagnetic
region is sufficiently weak compared to the elementary flux
quantum. This is the case for either a small enough surface
area or weak enough magnetization, but neither of these pre-
clude the possibility of having an appreciable energy ex-
change splitting between the majority and minority-spin
bands.

In the limit of antiparallel orientation, the � state will
become disallowed because the effect of the ferromagnetic
layers cancels, effectively giving a S/N/S junction. However,
remembering the symmetry requirements around �=� and
the possibility that also partial cancellation is sufficient to
render the sign change in IJ,0 impossible, we realize that 0-�
oscillations may vanish for two intermediate angles �
= 0�c with 0"�c"�. The partial cancellation of the ex-
change fields commences at �1� /2, which may provide a
clue as to why the critical angle is always in the vicinity of
�=� /2 as seen in Fig. 7. Note that although the 0-� oscil-
lations vanish above the critical angle �c, it is evident from,
e.g., Fig. 3 that the critical current does not decay monoto-
nously even for ���c as it would have in an S/N/S junc-
tion.

One interesting observation in our study is that although
the critical angle varies, we never find �c�� /2. This means
that any choice of parameters that brings us away from the
limit considered in Ref. 28 seems to lower �c but never
increase it. A conjecture which may shed some more light on
this phenomenon is that the magnetization component of the
F2 layer perpendicular to the magnetization of the F1 layer
can be viewed as an additional effective spin-flip scattering
effect. It is known38 that sufficiently strong spin-flip scatter-
ing may remove the oscillations in the anomalous Green’s
function entirely, thereby inhibiting 0-� oscillations. This ef-
fect will be at its strongest for �→� /2, which may account
for the somewhat surprising fact that �c always remains
close to �=� /2. Combined with the effective cancellation of
the magnetization described in the previous paragraph, this
also serves as a possible explanation why the � state is for-
bidden for the orientations � /2"�"�. To gain further un-
derstanding of the phase diagram of multilayer SFS junc-
tions, we suggest to extend the study to a trilayer model
similar as that studied in Ref. 29, but where the three layers
have equal thicknesses. If one fixes the middle layer and
varies the orientation of the leftmost and rightmost layers,
the possible existence and value of a critical misorientation
angle would give some hints to the origin of this phenom-
enon also in our bilayer system.

Finally, we would like to present a decomposition of the
current to serve as the basis for a discussion on the long-
range contributions to the Josephson current. It can be shown
easily from the formula for the Josephson current in Eq. �22�
that one may rewrite M++M−=Mt−Ms, where Ms and Mt
are expressed exclusively by the components fs and f t of the
Green’s function, respectively. It can furthermore be shown
that for the ESP components one gets M↑=M↓� M�. One
may in this manner decompose the current as
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FIG. 9. Phase diagram of the Josephson junction for temperature
T /Tc=0.5 showing the occupation of the 0 state and the � state in
width-misorientation parameter space in a similar manner as Fig. 6
does for zero temperature. For the region given by �
� �� /2,3� /2�, the � state is completely absent. We have here set
the spin-flip scattering strength to zero g=0.
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FIG. 10. �Color online� Plot of the ratio between the critical
current in the antiparallel �Ic��=��� and parallel �Ic��=0�� orien-
tations as a function of width d. We have set g=0, but the behavior
is qualitatively identical for g�0.
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Ic/I0 = �Ic,s + Ic,t + Ic,��/I0

= �
−�

�

d� Re��− Ms���� + �Mt����

+ �2M������ � tanh�
�/2� . �27�

While the total current is easily shown in our framework to
be constant throughout the junction, the separate components
given above need not be, and the spatial dependence of each
contribution is plotted in Fig. 11 for selected parameter val-
ues. For parallel orientation, one naturally finds that the ESP
correlations do not contribute to the current at all. For �
=� /2, where the ESP contribution is naively expected to be
at its maximum, we find that the OSP triplet contribution
however, is exactly zero throughout F2. That Mt and 2M�

seem to change roles at x=0 can be explained in a natural
way by remembering that ultimately, the quantization axis
was taken to be �ẑ for all x. For a quantization axis �ŷ,
however, the components considered as ESP in the former
case would here correspond to OSP components, having spin
projection Sy =0.

The above argument may be used to clarify a point re-
garding the contribution to the current from LRTC. Refer-
ence 29 claims that a long-range component of the critical
current does not appear in a SF1F2S structure even with non-

collinear magnetizations, which seems at odds with our ob-
servation in Fig. 11 of a nonzero ESP component to the
current in F2. It is however important to maintain the distinc-
tion between the ESP contribution to the current and a LRTC
contribution. As explained in the case of �=� /2, the total
triplet contribution is equal for the two magnetic layers, but
appears as an ESP component in F2 only because of the
choice of quantization axis. Therefore, the ESP contribution
in F2 is equivalent to the OSP contribution in F1 and thus
cannot be regarded as a true long-range component. A long-
range Josephson effect is defined by the absence of the ex-
change field in the exponent for the relevant Green’s func-
tions, making its decay length in a ferromagnet comparable
to that of a normal metal. Inspecting Eqs. �18� and �9�, we
see that this certainly is not the case for �=� /2.

The discussion concerning the different contributions to
the Josephson current may also hold an important clue con-
cerning the 0-� oscillations. When inspecting the symmetry
components separately, we observed that there can be 0-�
oscillations of both the singlet and the triplet components
simultaneously. If this is generally the case, one idea is to
investigate for which parameters these two contributions act
constructively and for which they act destructively. In this
way the relative interplay of the different symmetry compo-
nents of Ic may offer an explanation of the behavior of the
critical angle �c for which the 0-� oscillations of the total
critical current disappear.

V. SUMMARY

In conclusion, we have investigated the 0-� oscillations
of the critical current in a diffusive SF1F2S Josephson junc-
tion with noncollinear magnetization, where the effects of
noncollinearity and spin-flip scattering have been studied in
particular. The introduction of spin-flip scattering does not
change the Josephson current dramatically, so the phase dia-
grams presented above for zero spin-flip scattering would
therefore not be qualitatively changed much by setting g
�0. Also, comparing isotropic and uniaxial spin-flip scatter-
ings, we found that the effect of these was very similar both
qualitatively and quantitatively.

Oscillations of the critical current for varying junction
width disappear when the relative angle of magnetization
passes a critical value �c, making the � state unattainable
regardless of choice of the other parameters. This critical
angle equals � /2 in the limit of relatively high temperatures
�T /Tc �1�, but is lowered below � /2 when the temperature
is low and the exchange field is small simultaneously. These
dependencies on the various parameters can rather easily be
read out of phase diagrams of the kind we have presented. A
straightforward analytical approach to the behavior of the
critical angle is challenging due to the many variables in our
system, but we have discussed several ways by which its
origin can be better understood.

With regard to the effect of finite interface transparencies,
we have not found any signs throughout our investigations
implying that the results of Ref. 28 change in any significant
way. Our mapping of the relevant parameter regimes does
however serve as a starting point for looking for new inter-

−1 −0.5 0 0.5 1
−5

0

5

10

15

20

x 10
−6

x/d

I c
,(

x
)/

I 0

(−Ms)

Mt

2Mσ

−1 −0.5 0 0.5 1
−5

0

5

10

15

20
x 10

−6

x/d

I c
,(

x
)/

I 0

φ = π/2

φ = 0

FIG. 11. �Color online� Spatial dependence through the ferro-
magnet for the separate contributions to the critical current, as de-
composed in Eq. �27�. Ic,�x� refers to Ic,s, Ic,t, and Ic,�, with contri-
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2M����, respectively. The current was evaluated for a junction
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esting effects that may appear upon varying the parameters
kept fixed in our case, i.e., the transparency � and the ex-
change field h in particular. A natural course for a continua-
tion of this work would be expanding the system from a
bilayer ferromagnet to a trilayer, similar to the Josephson
junction considered in Ref. 29, where the relevant parameter
regime for a significant LRTC contribution to the Josephson
current was found. It might be interesting to see how LRTC
manifests in our framework of symmetry components to

Ic and to investigate for what region in parameter space the �
state can be realized in such a system.
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Motivated by the recent discoveries of ferromagnetic and noncentrosymmetric superconductors, we present
a mean-field theory for a superconductor that both lacks inversion symmetry and displays ferromagnetism, a
scenario which is believed to be realized in UIr. We study the interplay between the order parameters to clarify
how superconductivity is affected by the presence of ferromagnetism and spin-orbit coupling. One of our key
findings is that the spin-orbit coupling seems to enhance both ferromagnetism and superconductivity in all spin
channels. We discuss our results in the context of the heavy fermion superconductor UIr and analyze possible
symmetries of the order parameter by the group theory method.
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In the past decade, a number of superconductors have
been discovered that are called “unconventional” as they fall
outside the Bardeen-Cooper-Schrieffer �BCS� paradigm of
electron-phonon mediated pairing with an isotropic gap. Of
those, UPt3 �Ref. 1� and Sr2RuO4 �Ref. 2� were the com-
pounds to have been confirmed as triplet p-wave supercon-
ductors. More recently, a ferromagnetic �FM� superconductor
was discovered in UGe2 under pressure,3 where the presence
of an internal FM moment strongly suggests that only the
equal-spin triplet pairing survives. In this latter example both
the time-reversal and the gauge symmetry due to SC order
are spontaneously broken, which made UGe2, as well as its
cousins URhGe �Ref. 4� and UCoGe �Ref. 5� an exciting
avenue for theoretical and experimental research.

For spin-triplet pairing, Anderson noticed6 that inversion
symmetry is required to obtain a pair of degenerate states
ck

†
0	 and c−k
† 
0	 capable of forming a Cooper pair. It was

therefore surprising that superconductivity was discovered in
the heavy fermion compound CePt3Si which lacks inversion
symmetry.7 It soon became clear, however, that in the case of
a noncentrosymmetric crystal, the spin-orbit coupling �SOC�
mixes different spin states, so that the division into triplet
and singlet symmetry of the SC order parameter becomes
meaningless. A bulk of theoretical work exists that has pro-
vided a symmetry-based phenomenology to explain this in
details.8–12 The symmetry of the superconducting �SC� gap in
this and other unconventional superconductors is presently a
matter of intense investigation.13–16

An intriguing question is what happens if time-reversal
symmetry is broken in a crystal that lacks a center of inver-
sion. Can such a material become a superconductor? This
question was answered affirmatively when superconductivity
was discovered in the noncentrosymmetric ferromagnetic
compound UIr under pressure.17 The symmetry of the SC
order parameter and its connection to FM nevertheless re-
mains unclear, which motivates the present study. Spontane-
ous symmetry breaking in condensed-matter systems is con-
ceptually of immense importance, as it may provide clues for
what could be expected in systems belonging to vastly dif-
ferent areas of physics. The study of a condensed-matter sys-
tem such as UIr with multiple broken symmetries is likely to

have impact on a number of disciplines of physics, including
such disparate phenomena as mass differences between el-
ementary particles and extremely dilute ultracold atomic
gases.

In this Brief Report, we study a model system of a non-
centrosymmetric superconductor with substantial spin-orbit
coupling, which at the same time exhibits itinerant ferromag-
netism. The origin of the SOC may be either that the crystal
structure lacks a center of inversion, such as in UIr, or due to
a thin-film geometry where the breakdown of inversion sym-
metry near the surface induces transverse electrical fields,
leading to the well-known Rashba SOC.18 Our model should
therefore be relevant both to the noncentrosymmetric and
centrosymmetric heavy fermion compounds, since the SOC
is considerable in any case due to the high atomic number.
Specifically, materials that exhibit coexistence of SC and FM
order and where SOC is large include UGe2,3 URhGe,4

UCoGe,5 and UIr.17 For this model, we construct a mean-
field theory, solve the saddle-point equations for the order
parameters, and study the effect of spin-orbit coupling on the
superconducting order parameters. Finally, we discuss appli-
cation of this model to the case of UIr.

To label the SOC+FM split bands, it is possible to intro-
duce a pseudospin basis in which the normal-state Hamil-
tonian is diagonalized. In the original spin basis, the SC ma-
trix order parameter is characterized, in analogy to the
p-wave state,19 by a vector dk and a scalar �s so that
�	
�k�= i�s�y + ��idk ·���y�	
. Note that, unlike the usual
p-wave SC, a singlet component of the gap will also be
present since antisymmetric SOC in general mixes the parity
of the order parameter.

We now proceed to write down the effective Hamiltonian

Ĥ= ĤN+ ĤSC for our system. In the normal state, the Hamil-
tonian in momentum-space reads20

ĤN = H0 + 
k	


�ck	
† ��k1̂ − h�̂z + �̂ · gk�	
ck
� , �1�

where H0= INM2 /2. Above, the dispersion relation �k is
measured from chemical potential �, and the magnetization
M = 
M
 is taken along the easy axis, while h= IM is the
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exchange splitting of the bands and gk is the SOC vector.
When superconductivity coexists with FM, the SC pairing is
generally believed to be nonunitary,21 characterized by
dk�dk

� �0. In such a scenario, the SC order parameter
couples to the spontaneous magnetization M through a term
�M ·dk�dk

� in the free energy, where the sign of � is deter-
mined by the gradient of the DOS at Fermi level22 and
�Sk	= idk�dk

� is the spin associated with the Cooper pair.
Thus, for �"0 it is expected that a SC pairing state obeying
idk�dk

� � M is energetically favored, implying that dk must
be complex valued. Our model captures broken time-reversal
symmetry in addition to antisymmetric SOC. As shown by
Anderson,6 the presence of the latter is detrimental to spin-
triplet SC pairing state, unless dk � gk. In our case, it is obvi-
ous that a nonunitary SC pairing state cannot satisfy this
condition since dk is complex, whereas gk must be real for
the Hamiltonian to be Hermitian.

The SOC vector reads gk=−g−k, and we introduce
gk=gk,x− igk,y for later use. We consider the SOC in the
Rashba form, namely gk=��ky ,−kx ,0�. This corresponds to a
situation where an asymmetric potential gradient is present
along the ẑ axis, and is also the scenario realized in noncen-
trosymmetric CePt3Si.11 We have introduced fermion opera-
tors �ĉk�� in a basis �̂k= �ck↑ ,ck↓�T.

Diagonalizing the normal-state Hamiltonian yields the

quasiparticle excitations Ẽk�=�k−��h2+�2k2, which due to
the SOC are characterized by the pseudospin �= 01. For
later use, we define Nk= �1+�2k2 / �h+�h2+�2k2�2�−1/2. The
superconducting pairing is now assumed to occur between
the excitations described by �̂̃k. Due to the presence of anti-
symmetric spin-orbit coupling, this automatically leads to a
mixed-parity SC state in the original spin basis. To see this,
we introduce

ĤSC =
1

2N


kk��

Vkk��c̃k�
† c̃−k�

† c̃−k��c̃k��, �2�

and perform a standard mean-field decoupling, which after
an additional diagonalization yields the total Hamiltonian in

the superconducting state: Ĥ=H0+.k��Ẽk�−Ek�− �̃k�b̃k�
†

+2�k�
† �k�� /2, where Ek�= �Ẽk�

2 + 
�̃k�
2�1/2 and ��k�
† ,�k��

are fermion operators in the new basis. The merit of this
procedure is that we can now obtain simple self-consistency

equations for the gaps �̃k�, which may then be transformed
back to the gaps in the original spin-basis �̂k by means of the
unitary transformation Pk. We assume a chiral p-wave sym-
metry for the gaps with a corresponding pairing potential
Vkk��=−gsce

i���−���, where tan �=kx /ky. The motivation for
this is that this choice ensures that the condition dk � gk is
satisfied exactly for h→0, and corresponds to a fully gapped
Fermi surface which favors the condensation energy. The

gaps obtain the form �̃k�=−��̃�,0ei�� and we find a self-
consistency equation of the standard BCS form with a cutoff
� on the pairing-fluctuation spectrum which we do not
specify further. Moreover, N���� is the pseudospin-resolved

density of states �DOS� for the Ẽk� ��=0� bands of the
quasiparticle excitations.23 Introducing the total DOS at the

Fermi level for a normal metal N0=mV�2m� /�2 and defin-
ing
c=gscN0 /2, the analytical solution for the gaps reads

�̃�,0=2� exp�−1 / �cR��0���, R����=2N���� /N0. With the

analytical solution for �̃�,0 in hand, we may exploit the uni-
tary transformation Pk to express the superconducting gaps
in the original spin basis as follows:

�k↑ = − ei���̃↑,0�Nk
↑�2 + �̃↓,0�Nk

↓�2�2k↓
2�0��k↓

2 � ,

�k↓ = e−i���̃↓,0�Nk
↓�2 + �̃↑,0�Nk

↑�2�2k↑
2�0��k↑

2 � ,

�k↑↓ = − 
�

�̃�,0�Nk
��2�
k��0�
�k�, � = 0 1, �3�

where we have defined Nk
�=Nk=k��0� and

�k�= �h+�h2+�2k�
2�0��−1. Note that in the original spin ba-

sis, the superconducting order parameter is in general a mix-
ture of triplet ��k�� and singlet ��k↑↓� components. The self-
consistency equation for the magnetization is

h +
Ĩ

4
�
� �d�R����h�

��h2 + �2k�
2������2 + �̃�,0

2 �
= 0, �4�

where the integration is over the bandwidth and Ĩ= IN0.
Equations �3� and �4� are the main analytical results of this
work.

Let us briefly investigate some important limiting cases of
Eq. �3�. In the absence of spin-orbit coupling ��→0�, one

finds Nk
�→1 and �k�= �̃k� while �k↑↓=0, such that we re-

produce the results of Refs. 20 and 24. In the absence of an
exchange energy �h→0�, one finds that Nk

�→1 /�2 and

�k↑=−ei���̃↑,0+ �̃↓,0� /2, �k↓=e−i���̃↑,0+ �̃↓,0� /2, and �k↑↓
= ��̃↓,0− �̃↑,0� /2. As demanded by consistency, the triplet
gaps are equal in magnitude since there is no exchange field

and the singlet component is nonzero since �̃↑,0� �̃↓,0 in
general. Finally, Eq. �4� reproduces the well-known Stoner

criterion Ĩ11 for the onset of FM in the absence of SOC and
superconductivity ��→0,gsc→0�.

We now focus on the general case in which h�0 and �
�0. First of all, we must specify the range of the parameters
in the problem that corresponds to a physically realistic sce-
nario. We allow h to range, in principle, from 0 to �, the
latter denoting a fully polarized ferromagnet. As a conve-
nient measure of the strength of SOC, we introduce the di-
mensionless quantity 	soc��2�2m /� which has a direct
physical interpretation; namely, it is the ratio of the SOC �at
EF� to the Fermi energy �. The parameter 	soc is allowed to
vary from 0 to �, where � denotes a fraction of the Fermi
energy. We take �=0.5 as a sensible upper limit. Note that
generically, the SOC strength at the Fermi level is different
for the two quasiparticle bands, and moreover depends on h.
For a given value of h, one may derive that
�'�� / �2�m+�2m2�h2+�2�2��1/2 ensures that the spin-
orbit energy is less than ��� for both quasiparticle bands.

In Figs. 1�a�–1�d�, we present the self-consistent solutions
for the order parameters in Eqs. �3� and �4� as a function of
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the FM exchange parameter Ĩ for several values of 	soc. We
have defined ��= 
�k�
 and �↑↓= 
�k↑↓
, and fixed � /�
=0.01 and m /�=5�104 with c=0.2, which are standard

choices. For 	soc=0, the onset of FM occurs at Ĩ=1.0 which
lifts the degeneracy of �↑ and �↓, while �↑↓ is always zero.
Upon increasing 	soc, it is interesting to note that the PM-FM

transition occurs at lower values of Ĩ, indicating that spin-
orbit coupling favors ferromagnetic ordering. For 	soc�0, it
is seen that �↑↓ is also nonzero, although it becomes sup-
pressed at the onset of ferromagnetism. A common feature
for all gaps is that they increase with 	soc in the absence of

ferromagnetism and deep inside the ferromagnetic phase Ĩ
11.02. In the intermediate regime, there are crossovers be-
tween the gaps for different values of 	soc due to the different
onsets of ferromagnetic order. By comparing the behavior

between the gaps for increasing Ĩ with 	soc�0, one infers
that �↓ and �↑↓ eventually saturate at a constant nonzero
value, while �↑ continues to increase steadily. This is quite
different from the case when 	soc=0, where the minority

spin-gap goes to zero rapidly with increasing Ĩ. This seems to
suggest that the presence of spin-orbit coupling in the system
ensures the survival of the minority-spin gap �↓ and the sin-
glet gap �↑↓ even though the FM exchange energy becomes
strong.

In Figs. 1�e� and 1�f�, we plot the ratio of the singlet and
triplet gaps, defined as R�=�↑↓ / ��↑+�↓�, and the maximal
critical temperature Tc,max for the onset of superconductivity.
It is seen from the left panel that R� increases with 	soc in the
PM regime, suggesting that the singlet component becomes
more prominent in the system as compared to the triplet
gaps. However, at the onset of FM order, R� decreases since
the singlet component becomes suppressed by the Zeeman
splitting. In the right panel, one observes that Tc,max increases

both with 	soc and Ĩ. Our findings suggest that the presence
of antisymmetric SOC, originating from, e.g., noncentrosym-
metricity of the crystal structure, enhances both the tendency
toward ferromagnetism and the magnitude of the SC gaps in
all spin channels. In the absence of spin-orbit coupling, it

was shown in Ref. 20 that the simultaneous coexistence of
FM and nonunitary triplet superconductivity is the thermo-
dynamically favored state as compared to the pure normal,
FM, or SC state. Since the presence of spin-orbit coupling is
seen to enhance both the FM and SC order parameters, it is
reasonable to expect that the coexistent state is still thermo-
dynamically the most favorable one even when 	soc�0.

Out of the known noncentrosymmetric superconductors,
UIr is the only compound that is also a ferromagnet. This
material, which is ferromagnetic at ambient pressure, devel-
ops superconductivity in a narrow pressure region around
P�2.6 GPa right next to the FM-PM quantum phase tran-
sition, with a maximum SC transition temperature TSC
�0.14 K.17 At this pressure, the saturated magnetic moment
was measured to be 0.07�B per U atom, and such a small
value clearly indicates the itinerant character of the ferro-
magnetism, presumably due to 5f electrons of uranium. UIr
crystallizes in the monoclinic structure �space group P21�
which lacks inversion symmetry, and the FM moment is

Ising-like, oriented along the �101̄� direction in the �ac�
plane.

Given the proximity of the SC state in UIr to the PM
transition, one may probably consider the magnetization h as
a perturbation on top of the SOC-split bands. Neglecting the
effect of the former, it is known12 that even in the case of
noncentrosymmetric superconductors �and h=0�, the band
energies still satisfy the relation �
�k�=�
�−k� due to the
time-reversal symmetry of the single-electron Hamiltonian.
As a consequence, the SC order parameter on the 
th sheet
of the Fermi surface transforms according to one of the irre-
ducible representations of the normal state point group. In
the case of UIr, the point group C2 has two one-dimensional
irreducible representations, denoted A and B. Then the SC
order parameter is an odd function ��−k�=−��k� given by25

�

A,B�k�* t�k��


A,B�k�, where t�k� is an odd phase factor26

and the basis functions �A,B are even in k. Denoting the
rotation axis of the C2 group as z �this actually corresponds
to b axis in case of UIr�, the even functions �A and
�B can then be cast in the following form:
�A�k�= �kz

2+C�u1�k�, and �B�k�=kz�kxu2�k�+kyu3�k��,

0

2

4

6

8
x 10

−4

Δ
↑/

μ

0

2

4

6
x 10

−4

Δ
↓/

μ

0

2

4

6
x 10

−4

Δ
↑↓

/
μ

0.98 1 1.02
0

0.2

0.4

0.6

0.8

Ĩ
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FIG. 1. �Color online� Self-
consistent solution of the order
parameters ��a�–�d�� as a function

of the FM exchange parameter Ĩ,
the ratio between the singlet and
triplet gaps �e� R�=�↑↓ / ��↑+�↓�,
and the maximal critical tempera-
ture �f� Tc,max as a function of the

FM exchange parameter Ĩ.
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where C is some constant and �ui�k�� are arbitrary even func-
tions of kx, ky, kz. Function �A generically has no nodes,
whereas �B has two point nodes at the poles �kx=ky =0� and
a line of nodes at the equator. The symmetry argument does
not allow one to determine which pairing channel is realized,
however, the experimental observation of the strong pair-
breaking effect due to disorder17 indicates that the gap must
be anisotropic, possibly favoring the gap with the nodes such
as �B�k�.

One way of experimentally probing the symmetry of the
superconducting order parameter in UIr would be by means
of transport properties such as Josephson tunneling or point-
contact spectroscopy. In particular, it has recently been
shown that the presence of multiple gaps in superconductors
with broken inversion symmetry should manifest itself
through clear signatures at bias voltages corresponding to the
sum and difference of the singlet and triplet
components.20,27,28 We expect similar behavior in the present
case, at least when the ferromagnetism is weak, and point-
contact spectroscopy data could then be compared with the
predictions for R� in Fig. 1�e�. Alternatively, it should be
possible to directly probe the spin texture of the supercon-
ducting order parameter by studying the effect of an exter-
nally applied magnetic field when the paramagnetic limita-

tion dominates, e.g., in a thin-film structure, where the
orbital mechanism of destroying superconductivity is
suppressed.29

In summary, we have developed a mean-field model for a
superconductor lacking inversion symmetry and displaying
itinerant ferromagnetism. Specifically, we have investigated
the interplay between ferromagnetism and asymmetric spin-
orbit coupling and how these affect superconducting order,
which in general is a mixture of a singlet and triplet compo-
nents. Our main results are the analytical expression Eqs. �3�
and �4� and the belonging discussion. We find that spin-orbit
coupling may enhance superconductivity in both the singlet
and triplet channels in addition to favoring the Stoner crite-
rion for the ferromagnetic instability. We have applied these
considerations to the heavy fermion superconductor UIr, to-
gether with group-theoretical analysis of the symmetry of the
SC order parameter.
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We construct a theory for low-energy quantum transport in normal 
superconductor junctions involving the
recently discovered iron-based high-Tc superconductors. We properly take into account both Andreev bound
surface states and the complex Fermi-surface topology in our approach and investigate the signatures of the
possible order-parameter symmetries for the FeAs lattice. Our results could be helpful in determining the
symmetry of the superconducting state in the iron-pnicitide superconductors.
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I. INTRODUCTION

Very recently, a family of iron-based superconductors
with high transition temperatures was discovered with a con-
comitant avalanche of both experimental and theoretical
activities.1–12 The highest Tc measured so far in this class of
materials is 55 K, and many experimental reports indicate
signatures of unconventional superconducting pairing. How-
ever, it remains to be clarified what the exact symmetry is for
both the orbital and spin parts of the Cooper pair wave
function—there has, for instance, been reports of both
nodal11 and fully gapped10 order parameters �OPs� in the
literature up to now.

Probing the low-energy quantum transport properties of
superconducting materials has proven itself as a highly use-
ful tool to access information about the symmetry of the
superconducting OP.13 The conductance spectra of
normal 
superconductor �N 
S� junctions often contain impor-
tant and clear signatures of the orbital structure of the OP.
For instance, when the OP contains nodes in the tunneling
direction with a sign change across the nodes on each side of
the Fermi surface, the conductance will display a large zero-
bias conductance peak �ZBCP� due to the presence of An-
dreev surface bound states.14

Two recent studies10,11 utilized the method of point-
contact spectroscopy in order to study the symmetry of the
superconducting OP in LaFeAsO0.9F0.1−� and
SmFeAsO0.85F0.15, respectively. The findings were in stark
contrast. Namely, the large ZBCP found in LaFeAsO0.9F0.1−�
gave evidence of a nodal order parameter, while the data of
SmFeAsO0.85F0.15 clearly indicated a nodeless OP. In both
these studies, the Blonder-Tinkham-Klapwijk15 �BTK�
framework was used to analyze the data theoretically using
the extension to anisotropic pairing by Tanaka and
Kashiwaya.16 In this model, one considers a cylindrical or
spherical Fermi surface with a free-electron dispersion rela-
tion, which does not account for the nontrivial multiband
Fermi-surface topology and dispersion relation in the iron
pnicitides. One might argue that the extended BTK model
nevertheless may suffice to describe the transport properties
of these materials qualitatively, but this statement clearly
warrants a detailed investigation.

In this Rapid Communication, we construct a theory of
low-energy quantum transport properties of the iron-based
high-Tc superconductors by considering a N 
S junction rel-

evant for point-contact spectroscopy and scanning-tunneling-
microscopy measurements. In doing so, we model fairly ac-
curately the Fermi-surface topology and the associated
quasiparticle dispersions in order to see how this affects the
results as compared with the usual BTK paradigm. We con-
sider several possible OP symmetries which may be realized
in the iron pnicitides. We organize this work as follows. In
Sec. II, we introduce the theoretical framework which is used
to obtain the tunneling conductance. In Sec. III, we present
our main results and a discussion of these. Finally, we sum-
marize in Sec. IV.

II. THEORY

We adopt the minimal two-band model derived in Ref. 8
�Fig. 1�a��, in which the normal-state Hamiltonian reads

HN = 
k�

�k�
† �,kx − � ,kxy

,kxy ,ky − �
��k�, �1�

where the fermion basis �k�= �dkx� ,dky��T contains the an-
nihilation operators for electrons in the dxz and dyz orbitals
with spin � and wave vector k, respectively. We have also
defined ,kx=−2t1cx−2t2cy −4t3cxcy, ,kxy =−4t4sxsy, and
,ky =−2t2cx−2t1cy −4t3cxcy, with cj =cos�kja�, sj =sin�kja�, j
=x ,y, and a the lattice constant. By diagonalizing the above
Hamiltonian, one obtains

−
+−
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FIG. 1. �Color online� �a� Illustration of the two-dimensional
FeAs plane with the dxz and dyz orbitals and hopping between them,
as proposed in Ref. 8. �b� Sketch of the Fermi-surface topology for
the long-lived quasiparticle excitations in a minimal two-band
model �see main text for parameter values�.
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HN = 
k�

�̃k�
† diag�(k

+,(k
−��̃k�,

(k
0 = �,kx + ,ky�/2 − �0 ��,kx − ,ky�2/4 + ,kxy

2 , �2�

where the new basis �̃k�= ��k�
+ ,�k�

− �T consists of new fer-
mion quasiparticle operators in the bands + and − which are
hybrids of the dxz and dyz orbitals. The Fermi-surface topol-
ogy is given by (k

0=0 and gives an electronlike band �+�
and holelike band �−� shown in Fig. 1�b� for the choice t1
=−1, t2=1.3, t3= t4=−0.85, and �=1.54, all measured in
units of 
t1
. Our choice of parameter set is motivated by the
fact that it reproduces the same Fermi-surface structure as
the local-density approximation �LDA� band-structure
calculations,17 and it was also employed in Refs. 18 and 19.
The new fermion operators are related to the old basis �k�
by

�k = ,kxy/��,kx − ,ky�/2 + ��,kx − ,ky�2/4 + ,kxy
2 � ,

�k�
† Pk = �̃k�

† , Pk = �1 + �k
2�−1/2 � � 1 − �k

�k 1
� . �3�

We now introduce a superconducting pairing between the
long-lived quasiparticles �k�

� , with �=0, which then auto-
matically accounts for both interband and intraband pairings
in the original fermion basis �k,

HSC = 
k�

��k
���k↑

� �†��−k↓
� �† + H.c.� . �4�

In this way, we may diagonalize the total Hamiltonian H
=HN+HSC by introducing a final fermion basis �k

�

= �ck↑
� ,c−k↓

� �T describing the quasiparticle excitations in the
superconducting state. After discarding unimportant con-
stants, we find that

H = 
k��

�Ek
��ck�

� �†ck�
� , Ek

� = ��(k
��2 + 
�k

�
2�1/2. �5�

This result is formally identical to a two-band supercon-
ductor with gaps �k

� and normal-state dispersions (k
�, with

�=0. The belonging wave functions which describe the qua-
siparticle excitations read

%k
� = ��uk

�,vk
�e−i�k

�

�Tei�k�·r,�vk
�ei�k

�

,uk
��Te−i�k�·r� ,

�uk
��2 = 1 − �vk

��2 =
1

2
�1 + �E2 − 
�k

�
2/E� , �6�

for quasiparticles with positive excitation energies E10.
Here, k� denotes the Fermi momentum for band � while

ei�k
�

=�k
� / 
�k

�
.
We have now effectively described the superconducting

state as a two-band model with gaps �k
0 and normal-state

dispersions (k
0. This has allowed us to obtain a simple form

for the wave functions in Eq. �6� that are to be used in the
scattering problem below. The trade off for this advantage,
however, is that the k dependence of the gap functions �k

0 in
general will become quite complicated. To see this, we may
transform Eq. �4� back to the original fermion basis �k by

means of our expression for Pk in Eq. �3� to find that

HSC = 
k

��kxdkx↑
† d−kx↓

† + �kydky↑
† d−ky↓

†

+ �kxy�dkx↑
† d−ky↓

† − dky↑
† d−kx↓

† � + H.c.� , �7�

where �kx and �ky are the intraorbital gaps while �kxy is the
interorbital gap. They are defined as

�kx = ��k
+ + �k

2�k
−�/�k

+, �ky = ��k
− + �k

2�k
+�/�k

+,

�kxy = �k��k
+ − �k

−�/�k
+, �k

0 = �1 0 �k
2� . �8�

We see that the interorbital pairing vanishes in the case
where �k

+=�k
−. However, we emphasize that our model ac-

counts for interorbital pairing �kxy in the original fermion
basis and that �kxy �0 whenever �k

+��k
−. We do not con-

sider any interband pairing in the new diagonalized fermion
basis. Assuming spin-singlet and even-frequency pairing,
there are three possible s-wave symmetries ��0 ,�0�cx+cy� ,
�0cxcy� and two possible d-wave symmetries
��0�cx−cy� ,�0sxsy� for the superconducting order parameters
�kx and �ky in terms of the square lattice harmonics. The
gaps in the 0 quasiparticle hybridized bands are then ob-
tained as �k

+= ��kx−�k
2�ky� /�k

− and �k
−= ��ky −�k

2�kx� /�k
−.

Note that the extended s-wave symmetry �cxcy changes sign
on the electron and hole Fermi surfaces, similar to the s0
scenario suggested in Refs. 5 and 19.

III. RESULTS AND DISCUSSION

We are now in a position to evaluate the conductance of
the system. The presence of a Fermi-vector mismatch be-
tween the normal and superconducting sides of the junction
is assumed to be manifested through an effective decrease in
the junction transmission. Since the Fermi velocity may be
different in the two bands with normal-state dispersions (k

0,
we allow different barrier parameters Z0 in the two bands.
For a specified pairing symmetry, there are then four fitting
parameters present: the barrier strength Z� and gap magni-
tude �0

� for band �=0. By generalizing the results of Refs.
15 and 16 to a two-band model which also takes into account
the nontrivial Fermi-surface topology in Fig. 1�a�, we obtain
the following expression for the normalized tunneling con-
ductance: G�eV� /G0=�,ky

f�ky��S
��eV� / �2f�ky��N

��, where
�N

� = �1+ �Z��2�−1 and

�S
��eV� = ��N

��1 + �N
� 
-+

��k,eV�
2 + ��N
� − 1�

� 
-+
��k,eV�-−

��k,eV�
2��/�
1 + ��N
� − 1�

� -+
��k,eV�-−

��k,eV�!��k�
2� ,

-0
� �k,eV� =

eV − ��eV�2 − 
��0�kx,ky�
2


���0�kx,ky�

,

!��k� =
���− �kx,ky������kx,ky���


���− �kx,ky�����kx,ky�

, �9�

where f�ky�=cos�kya /2� is a weighting function that models
the directional dependence of the incoming quasiparticles.
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The strategy is now to sum the conductance over the allowed
values ky � �−� /a ,� /a� for the electronlike ��=1� and hole-
like ��=−1� Fermi surfaces and solve for kx from Eq. �2� by
(k

�=0 for a given ky. In what follows, we choose an equal
value for the barrier transparencies Z+=Z− �Z and gap mag-
nitudes �0

+=�0
− ��0 in the two bands for simplicity and add

a small imaginary number � to the quasiparticle energy to
model inelastic scattering eV→eV+ i�, where � /�0=10−2.

As in Ref. 18, we choose �0=0.1. Clearly, it is possible to
study a rich variety of interplays between the two quasipar-
ticle bands in terms of different symmetries for the dxz and
dyz orbitals and with different gap magnitudes. Here, how-
ever, our main aim is to investigate how the conductance
spectra are influenced by the nontrivial Fermi-surface topol-
ogy and dispersion relations and see how this compares with
the cylindrical/spherical Fermi surface and free-particle dis-
persion scenario employed in the usual BTK paradigm. In
particular, this is relevant to the interpretation of the point-
contact spectroscopy measurements of Refs. 10 and 11.
There is, however, an important caveat with regard to which
conclusion one may draw with regard to the symmetry of the
superconducting OP from the tunneling data of Refs. 10 and
11. In these works, polycrystalline samples were used, while
the orbital/nodal structure of the OP can only be convinc-
ingly probed in single-crystal specimens. This is because
tunneling into polycrystalline samples may lead to intrinsic
averaging effects which distort the contribution from aniso-
tropic OPs.

In Fig. 2, we plot the conductance for tunneling along the
�100� direction for several OP symmetries. As seen, the
dxy-wave case stands out from the rest as it features a con-
siderable ZBCP. Comparing with the experimental data of
Ref. 11, we would conclude that a nodal d-wave OP is likely
to be realized in LaFeAsO0.9F0.1−�. The results of Ref. 10
seem to be most consistent with either s-wave or extended
s-wave pairing, as only one gap is seen in the spectra. For the
s-wave and dxy-wave cases, the standard BTK approach ap-
pears to suffice in order to qualitatively say something about
the OP symmetry. However, the results are quite different
from the usual BTK approach when considering the ex-
tended s-wave and dx2−y2-wave symmetries. More specifi-
cally, we find satellite features at subgap energies, including
sharp peaks. These features most likely pertain to the specific

band structure which we consider here �see Fig. 1� and are
thus not possible to capture within the conventional BTK
treatment with the cylindrical Fermi-surface approximation.
In fact, the density of states �DOS� in our minimal two-band
model is a highly nonmonotonic function of energy and con-
tains two Van Hove singularities.8,17

Let us also consider the case where there is one fully
gapped OP and one nodal OP to see what fingerprints this
combination leaves in the conductance spectra. In Fig. 3, we
plot the conductance for the case where �kx is fully gapped,
while �ky has a nodal symmetry. For concreteness, we con-
sider s-wave+dxy-wave pairing and dx2−y2-wave+dxy-wave
pairing in Figs. 3�a� and 3�b�, respectively. As seen, the nodal
OP gives rise to a ZBCP while there are several satellite
features in addition to the large coherence peak at the gap
edge. The plots are qualitatively similar regardless of
whether the fully gapped OP is s wave or dx2−y2 wave, while
the features in the conductance are qualitatively more pro-
nounced in the s-wave case due to the better gapping of the
Fermi surface. Finally, we consider the evolution of the con-

0 1 2
0

0.5

1

1.5

2

2.5

3
G

(e
V

)/
G

0

s-wave: Δ = Δ0

0 1 2

s-wave: Δ = Δ0(cx + cy)

0 1 2
eV/Δ0

s-wave: Δ = Δ0cxcy

0 1 2

d-wave: Δ = Δ0(cx − cy)

0 1

d-wave: Δ = Δ0sxsy

0.5
1.0
2.0
3.0

Z

FIG. 2. �Color online� Plot of the conductance spectra for tunneling along the �100� axis in an iron-pnicitide N 
S junction for several
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ductance spectra upon changing the doping level �. The
Fermi-surface topology evolves with a change in � as shown
in Fig. 3�c�; the electron pockets increase in size while the
hole pockets decrease in size upon increasing �. To see how
the subgap features obtained in Fig. 2 evolve upon modify-
ing �, consider Fig. 3�d� where we provide results for the
cx+cy symmetry with Z=3. As seen, the satellite features
shown in Fig. 2 are still present and qualitatively the same,
but they are shifted to different bias voltages.

IV. SUMMARY

In summary, we have developed a theory for Andreev
reflection in the iron-based high-Tc superconductors. Starting
with a tight-binding model on a square lattice to model the
puckered FeAs planes, we have investigated several OP sym-
metries and the resulting conductance spectra. Fully taking
into account the Fermi-surface topology and the quasiparticle
dispersion relation, we have investigated scenarios where the

symmetry of the superconducting OP in both bands is the
same and where it is different, i.e., one is fully gapped and
the other is nodal. We find that the standard BTK formalism
should give qualitatively correct results for the case where
the OP symmetries on both bands are either isotropic s wave
or d wave. However, the results differ considerably for the
extended s-wave symmetries, as we find satellite features at
subgap energies which are absent within the usual BTK
treatment. Our results may be useful in the context of ana-
lyzing quantum transport data of tunneling in
normal 
superconductor junctions involving the iron
pnicitides.
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We consider different effects that arise when time-reversal symmetry breaking superconductors are subjected
to an external magnetic field, thus rendering the superconductor to be in the mixed state. We focus in particular
on two time-reversal symmetry breaking order parameters which are believed to be realized in actual materials:
p+ ip� wave and d+ is or d+ id� wave. The first-order parameter is relevant for Sr2RuO4, while the latter order
parameters have been suggested to exist near surfaces in some of the high-Tc cuprates. We investigate the
interplay between surface states and vortex states in the presence of an external magnetic field and their
influence on both the tunneling conductance and the local density of states. Our findings may be helpful to
experimentally identify the symmetry of unconventional time-reversal symmetry breaking superconducting
states.

DOI: 10.1103/PhysRevB.79.054508 PACS number�s�: 74.45.�c, 74.20.Rp, 74.25.�q

I. INTRODUCTION

Recently, considerable attention has been devoted to the
chiral superconducting phase which is believed to be realized
in the p-wave triplet superconductor1 Sr2RuO4. The chiral
state of a p-wave superconductor corresponds to a nonzero
projection lz= 01 of the Cooper pairs angular momentum l
along the z axis, and thus breaks time-reversal symmetry
�TRS�. The spatially homogeneous triplet order parameter

�OP� �̂=�0�d · �̂�i�̂y is described by the vector1 d�p�
= �0,0 , px+ i�py�, which depends on the direction of electron
momentum p. Here �0 is the bulk value of the order param-
eter, �̂= ��̂x , �̂y , �̂z� is the vector of Pauli matrices of conven-
tional spin operators, and �= 01 corresponds to the two pos-
sible values of chirality. Also, chiral superconducting states
can be associated with an admixture of two order parameters
corresponding to different irreducible representations of
crystal point group. Different order parameter components
can naturally coexist in the vicinity of interfaces between
superconductors and surfaces due to the broken symmetry of
the crystal group.2–5 Among the possibilities of subdominant
order parameter symmetries,2 there are states which break
time-reversal symmetry.3–5 The coexistence of order param-
eters shows up in the local density of states,6–9 as well as in
the generation of spontaneous currents flowing along the sur-
faces in the time-reversal symmetry breaking cases.7,8

Time-reversal symmetry breaking order parameters have
been proposed to exist near surfaces10 and within vortex
cores11 in high-Tc superconductors. This proposal stems from
the observation of a split zero-bias conductance peak in the
absence of any applied magnetic field. In this case, it has
been suggested that the relevant order parameter is either d
+ is or d+ id� wave. The gap may then be written as �
=�0g��p�+ i�s or �=�0g��p�+ i�dg1��p�, respectively,
where �0 is an amplitude of the main component and the
admixture of another pairing symmetry is denoted by the
amplitudes �s and �d. Here, �p is a polar angle in momen-
tum space p= p�cos �p , sin �p�; g��p�=cos�2�p+	� and

g1��p�=sin�2�p+	�, where 	 /2 is an angle measuring the
disorientation of crystalline symmetry axes and coordinate
axes. One obtains dx2−y2-wave symmetry of the main order-
parameter component for 	=0 and dxy-wave pairing for 	
=� /2. While the experimental data so far clearly indicate an
order parameter which breaks time-reversal symmetry, the
question of whether the symmetry is d+ is or d+ id� wave
remains unsolved. Clearly, experimental signatures that may
distinguish these two types of pairings would be highly de-
sirable.

One of the important features of unconventional super-
conductors is the possibility for the existence of surface An-
dreev bound states.12–14 They occur in the vicinity of the
scattering interface between a superconductor and an insula-
tor if the incident and reflected quasiparticles �QPs� with
different momentum directions see different phases of the
order parameter. The consequence of the Andreev bound-
state formation is an increase in the local density of states
�DOS� �LDOS� at the surface resulting in zero-bias conduc-
tance peak anomaly observed15 in tunneling spectroscopy of
high-Tc cuprates with d-wave symmetry of superconducting
pairing as well as in the p-wave triplet superconductor
Sr2RuO4.16 Also, the Andreev bound states determine the
anomalous low-temperature behavior of the London penetra-
tion length17 and the Josephson critical current in d-wave18

and chiral superconductors.19

Under the influence of an applied magnetic field, screen-
ing currents and vortices may be generated in a supercon-
ductor. As a result, the spectrum of surface states acquires a
Doppler shift, leading to a splitting of the zero-bias conduc-
tance peak.10 Abrikosov vortices located near a supercon-
ducting surface generate an essentially inhomogeneous su-
perfluid velocity field, which leads to a nontrivial electronic
structure of the surface-bound states.20–22 Also, it was
recently22 proposed that the same Doppler-shift effect should
lead to a chirality-selective influence of the magnetic field on
the surface states in a p-wave chiral superconductor with
broken time-reversal invariance. The quasiparticle DOS near
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a flat surface was shown to depend on the orientation of
magnetic field with respect to the chirality as well as on the
vorticity in the case where the Abrikosov vortex is pinned
near the surface of superconductor. Additionally, in super-
conductors featuring gap nodes, such as in the case in pure
dx2−y2-symmetric superconducting cuprates, a vanishing pair
potential in nodal directions results in important ramifica-
tions for the physics of the system.11,23–26

To understand the effect of an externally applied magnetic
field on the surface DOS, let us consider a spectrum of An-
dreev bound states near a flat surface of a time-reversal sym-
metry breaking superconductor occupying the half-space x
�0. Below, we focus on the p+ ip-, dxy + is-, and dxy
+ idx2−y2-wave cases for concreteness. We consider a model
situation assuming spatially homogeneous gap function, hav-
ing the following form in momentum space:

� = �0ei��p �1�

for p+ ip-wave,

� = �0 sin�2�p� + i�s �2�

for dxy + is-wave, and

� = �0 sin�2�p� + i�d cos�2�p� �3�

for dxy + idx2−y2-wave superconductors.
Assuming that the QPs are specularly reflected at the

surface of the superconductor within a Doppler-shift
approach,27 the spectrum of the surface states can be ex-
pressed as follows:19,28 �a=�a0+,D, where �a0 is a position
of energy level in zero magnetic field and ,D=�kFvs is the
Doppler-shift energy which is determined by a local field of
superfluid velocity. The superfluid velocity vs near a surface
has only a tangential component, directed along the y axis
vs= �0,vsy ,0�, and can be related to the density of supercur-
rent flowing along the surface js=envs, where e is the elec-
tron charge and n is the concentration of Cooper pairs. The
magnetic field is screened in a superconductor at the London
length � as follows: B=He−x/�, where H is the value of mag-
netic field outside the superconductor. Therefore, the super-
fluid velocity is vsy =−�2e /mc��H.

If the magnetic field is absent, the spectrum of surface
states is given by12,29

�0a = ��0ky/kF �4�

for a chiral p wave,

�a0 = �s sgn�ky� �5�

for a dxy + is wave, and

�a0 = �d sgn�ky�cos�2�p� �6�

for a dxy + idx2−y2 wave. Here ky is the projection of QP mo-
mentum along the surface. The above spectra may be for-
mally obtained by solving13

���p�

�a0 − i�
���p�
2 − �a0
2

=
��� − �p�

�a0 + i�
��� − �p�
2 − �a0
2

. �7�

In the dx2−y2 + is-wave case, one finds that �a0

=��0
2 cos2�2�p�+�s

2, from which one infers that there are no

subgap surface states. This is qualitatively different from the
dxy + is-wave case. The interesting effects occur in the latter
case, so we focus on the dxy + is�d�-wave symmetry in the
following, corresponding to 	=� /2.

The transformation of these spectra due to the Doppler-
shift effect is shown in Fig. 1. To be definite we assume that
�s�0, �d�0, and �=1. Considering the DOS at Fermi
level, �= 
��a /�ky
�=0

−1 , in a chiral p-wave superconductor one
can see that its dependence on the magnetic field is mono-
tonic: it either increases or decreases for different field direc-
tions �see Fig. 1�a�� as discussed in Ref. 22.

Another behavior of the DOS occurs in the case of a d
+ is-wave superconductor. From Fig. 1�b� it follows that for a
certain field direction there are no states at the Fermi level
�=0 �red dashed lines in Fig. 1�b��. For the opposite field
direction �blue dashed-dotted lines in Fig. 1�b��, intersections
of spectral branches with the Fermi level appear when the
superfluid velocity is large enough, 
vsy
��s / pF, so that the
value of momentum projection at the intersection point is
smaller than the Fermi momentum 
ky

�
"kF. Thus, one can
expect that the DOS at the Fermi level should be zero when
H"H�, where H� is the magnetic field value providing the
condition 
vsy
= 
�s
 / pF to be fulfilled.

On the contrary, in the d+ id-wave case the DOS at the
Fermi level is nonzero even in the absence of a magnetic
field. As can be seen from Fig. 1�c� �black solid lines� the
spectral branches intersect the level �=0 at ky

�= 0kF /�2.
The transformation of the spectrum due to the magnetic field
of different directions is shown in Fig. 1�c� by red dashed
lines �H�0� and by blue dashed-dotted lines �H"0�. Then,
it can be easily seen that for H�0 the coordinates of the
intersection points ky

� shift toward 0kF and for a certain
value of the magnetic field H�H� the DOS at the Fermi
level �=0 disappears.

In the presence of an Abrikosov vortex near the surface of
chiral superconductor a nontrivial structure of the local den-
sity of states distribution appears which depends on the vor-

FIG. 1. �Color online� Plot of the surface states spectrum for �a�
chiral p+ ip-wave, �b� d+ is-wave, and �c� d+ id-wave supercon-
ductors. Spectrum in zero magnetic field is shown by solid lines.
Blue �dash-dotted� and red �dotted� lines correspond to the spec-
trum transformation due to magnetic field directed along and oppo-
site the z axis correspondingly.
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tex orientation.22 Along with the Doppler-shift effect,22 an
important modification of the quasiparticle spectrum and the
DOS can be obtained due to the overlapping of the surface
states and the low-energy QP states localized within the vor-
tex core found in the pioneering work by Caroli, de Gennes,
and Matricon �CdGM�.30 It was shown that QP states with
energy lower than the bulk superconducting gap value � are
localized within the vortex core at the characteristic scale of
the order of coherence length � and have a discrete spectrum
�v��� as a function of the quantized �half-integer� angular
momentum �. At small energies 
�
#� the spectrum for a
vortex with vorticity M is given by

�v��� � − M�� , �8�

where kF= pF /� and ���0 /kF�. For most of superconduct-
ing materials, including Sr2RuO4, the interlevel spacing � is
much less than the superconducting gap � since kF�)1.
Therefore, the CdGM spectrum may be considered as a con-
tinuous function of the impact parameter of the quasiclassi-
cal trajectory b=−� /kF and the direction of QP momentum
�p as in the following form:

�v�b,�p� � M��b/�� . �9�

In the case of a chiral p-wave superconductor, the spectrum
of vortex core states differs from the CdGM result and is
given by Eq. �8� with integer �. For the d+ is- and
d+ id-wave superconductors the quasiclassical spectrum of
vortex core states is given by Eq. �9� with ���p�
=��0

2g2��p�+�s
2 and ���p�=��0

2g2��p�+�d
2g1

2��p�. The dis-
crete spectrum is obtained by applying the Bohr-Sommerfeld
quantization rule to the canonical variables �=−kFb and
�p.23,31 It should be noted that when the superconducting
order parameter contains nodes, the quasiclassical expression
�9� is invalid near the nodal directions since energy states
near the vortex core are not truly localized but rather “leak”
out through the gap nodes.11,23–26 This is not the case for us
since we consider superconducting order parameters which
are gapped over the entire Fermi surface.

To study the interaction between vortex and surface states,
let us consider an example of vortex positioned near a flat
surface of chiral p+ ip-wave superconductor. Comparing the
energies of surface �a �4� and vortex �v �9� states one can see
that for certain QP trajectories the condition of resonance
�a=�v is realized. Thus the spectrum transformation in such
almost degenerate two-level system is given by a secular
equation

�� − �a��� − �v� = J2. �10�

Since we consider a low-energy spectrum 
�
#�0, the tra-
jectories should pass close to the vortex center for the spec-
trum modification �10� to be effective. Then, the interaction
of surface and vortex states is determined by the overlap
integral J�� exp�−ã /��, where ã=a /cos �p and a is the dis-
tance from the vortex to the surface. Taking a certain point at
the surface �see point A in Fig. 2�a�� of the superconductor
one can obtain a relation between the angles and impact pa-
rameters of trajectories passing through this point as follows:
b= ã sin��−�p�. Thus the energy of vortex core states can be
written as �v=M�ã /���0 sin��−�p�. Then, from Eq. �10� we

obtain the spectrum transformation shown qualitatively in
Fig. 2 for the particular case of �=0. It is easy to see that for
equal values of vorticity and chirality �Fig. 2�b�� there ap-
pears a minigap in quasiparticle spectrum near the Fermi
level and therefore the zero-energy DOS is suppressed. On
the other hand, in the case of opposite vorticity and chirality
�Fig. 2�c�� there is no minigap and the DOS is not sup-
pressed.

In d+ is- and d+ id-wave superconductors, the interaction
between vortex and surface states can also lead to noticeable
effects, which will be discussed later in the present paper.
Recently, it was pointed out that tunneling of quasiparticles
into vortex core states leads to a resonant enhancement of
subgap conductance of normal-metal/superconductor �N/S�
junction.32 In the case of chiral superconductors, such a tun-
neling effect can lead to either stimulation or suppression of
conductance, depending on the direction of vorticity. We will
show that if vortices are located far from the N/S interface,
the conductance follows the behavior expected from the
Doppler-shift approach. On the other hand, when the dis-
tance from the vortex to the interface becomes comparable
with coherence length � the tunneling into vortex core states
comes into play, leading to the peculiar nonmonotonic con-
ductance dependence on the vortex coordinate with respect
to the superconducting surface.

This paper is organized as follows. In Sec. II, we give an
overview of the theoretical framework which is employed in
this work, namely, a Bogoliubov approach and a quasiclassi-
cal Eilenberger approach. In Sec. III, we present our main
results for the influence of magnetic field on bound surface
states spectra and local density of states near the surface. We
discuss the transformation of surface states in the Meissner
state of superconductor as well as the effects of interplay
between surface and vortex core states. We give our conclu-
sions in Sec. IV.

FIG. 2. �a� Sketch of QP trajectories forming surface and vortex
states and qualitative plot of spectrum transformation due to the
interaction of surface and vortex states in the case of a chiral
p-wave superconductor; vorticity and chirality have �b� equal and
�c� opposite values.
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II. THEORETICAL APPROACH

Our further considerations are based on the
Bogoliubov–de Gennes �BdG� equations for particlelike �u�
and holelike �v� parts of the wave function, which have the
following form:

−
1

2m
�p̂ −

e

c
A�2

u + �̂v = �� + �F�u ,

1

2m
�p̂ +

e

c
A�2

v + �̂†u = �� − �F�v . �11�

Here �̂ is the gap operator, A is the vector potential, pˆ
=−i�� /�x ,� /�y�, and r= �x ,y� is the radius vector in the plane
perpendicular to the anisotropy plane. Hereafter we assume
the Fermi surface to be cylindrical along the z axis and con-
sider a motion of QPs only in xy plane.

In the case of unconventional superconductors, the gap

potential �̂ is a nonlocal operator, so the BdG system effec-
tively becomes a very complicated integrodifferential equa-
tion. Another complexity arises from the broken spatial in-
variance of the superconducting gap in the presence of
vortices near the N/S interface. A simplification can be ob-
tained if one considers a quasiclassical approximation, as-
suming that the wavelength of quasiparticles is much smaller
than the superconducting coherence length �see, e.g., Ref.
33�. Within such an approximation, QPs move along linear
trajectories, i.e., straight lines along the direction of QP mo-
mentum n=kFkF

−1= �cos �p , sin �p�. Generally, the quasiclas-
sical form of the wave function can be constructed as fol-
lows: �u ,v�=eikF·r�U ,V�, where (U�r� ,V�r�) is a slowly
varying envelope function. Then system �11� reduces to a
system of first-order differential equations along the linear
trajectories defined by the direction of the QP momentum
n=kFkF

−1= �cos �p , sin �p�. Introducing the coordinate along
trajectory x�= �n ·r�=r cos��p−��, we arrive at the following
form of the quasiclassical equations:

�− i�vF�x� + vF ·
e

c
A�U + �V = �U ,

�i�vF�x� + vF ·
e

c
A�V + �†U = �V , �12�

where the Fermi velocity is vF=n�kF /m. The pairing poten-
tial in Eq. �12� may generally be written as

��r,�p� = ���p�%�r� , �13�

where ���p� describes the orbital symmetry of the supercon-
ducting order parameter in momentum space, while %�r�
describes its spatial dependence both magnitudewise and
phasewise.

The LDOS can be expressed through the eigenfunctions
of the BdG equation �11� in the following form:34

N��,r� = 
n


un�r�
2��� − �n� , �14�

where un�r� is electron component of quasiparticle eigen-
function corresponding to an energy level �n. The eigenfunc-

tion has to be normalized; ��−�
� 
un�r�
2+ 
vn�r�
2d2r=1.

We will also later employ the quasiclassical Eilenberger
approach to study the spatially resolved DOS. Let us here
sketch the framework of the treatment which makes use of
the Eilenberger equation, following the notation of Refs. 35
and 36. It is now convenient to solve the Eilenberger equa-
tion along trajectories along the Fermi momentum and to
introduce a Ricatti parametrization for the Green’s
function.36 In this way, one obtains20

�vF�x�a�x�� + �2�̃n + �†a�x���a�x�� − � = 0,

�vF�x�b�x�� − �2�̃n + �b�x���b�x�� + �† = 0, �15�

where i�̃n= i�n+mvF ·vs is a Doppler-shifted Matsubara fre-
quency and

vs =
1

2m
�� � � −

2e

c
A�

is a gauge-invariant superfluid velocity where ��r� is a gap
function phase; %�r�= 
%
ei�. The LDOS may be expressed
through the scalar coherence functions a and b as follows:20

N��� = �
0

2� d�

2�
Re�1 − ab

1 + ab
�

i�n→�+i�

, �16�

where � is the quasiparticle energy measured from Fermi
level and � is a scattering parameter which accounts for in-
elastic scattering.

To investigate the transport properties of N/S junction, we
employ an approach similar to what was used in work by
Blonder et al.37 The expression for the dimensionless zero-
bias conductance of the N/S junction measured in terms of
the conductance quantum e2 /�� can be written as follows:

G =
GSh

2
�

−�/2

�/2

�1 − Rn��0� + Ra��0��cos �0d�0, �17�

where Rn��0� and Ra��0� are the probabilities of normal and
Andreev reflections respectively, �0 is the incident angle,
kF=kF�cos �0 , sin �0�, characterizing the propagation direc-
tion of quasiparticles coming from the normal-metal region.
The Sharvin conductance GSh=kFLy /� equals the total num-
ber of propagating modes determined by the channel width
Ly.

The problem of quasiparticle scattering at the N/S inter-
face is formulated within the BdG theory �11�.38 An interfa-
cial barrier separating the N and S regions can be modeled
by repulsive delta function potential W�x�=W0��x� param-
etrized by a dimensionless barrier strength Z=W0 /�vF. The
boundary conditions at the N/S interface then read39

�f�0�� = 0, ��xf�0�� = 2kFZf�0� , �18�

where f = �u ,v� and �f�x��= f�x+0�− f�x−0�.
Considering a zero-bias problem we will have to analyze

only zero-energy excitations with �=0. For wave functions
in S region corresponding to subgap quasiparticles, the fol-
lowing representation can be used: �U ,V�
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=e��ei��+��/2 ,e−i��+��/2�, where �=��s ,b� and �=��s ,b� are
real-valued functions. Then, the quasiclassical equation �12�
can be written as follows:

�x�� + 2
�
cos � + 2,D = 0,

�x�� + 2
�
sin � = 0. �19�

where ,D�r�=�kFvs is the Doppler-shift energy. For wave
functions decaying at the different ends of trajectory
�U ,V��x�= 0��=0 from Eq. �19� we obtain

��x� = 0�� = 0�/2. �20�

The boundary conditions �18� model the specularly re-
flecting N/S interface, coupling the waves with wave vectors
kF=kF�cos �0 , sin �0� and kF� =kF�cos��−�0� , sin��−�0��.
Therefore if the incident electron wave is ui=eikF·r, then the
reflected electron ur and hole vr waves will have the form

ur = Ure
ikF� ·r, vr = Vre

ikF·r,

where Ur and Vr are the envelope functions. Thus, each point
�0,y� at the N/S interface lies on the intersection of two
quasiclassical trajectories characterized by the angles �p=�0
and �p=�−�0. Let us denote the distribution of phases ��x��
along these trajectories as �+�x�� and �−�x�� correspondingly.
Using the boundary conditions we obtain the following ex-
pression for the conductance:32

G =
N0

2
�

−Ly/2

Ly/2 �
−�/2

�/2

g�y,�0�cos �0d�0dy , �21�

where g�y ,�0� is given by

g�y,�0� =
2

�Z̃4 + Z̃2�
1 − ei!
2 + 1
�22�

with Z̃=Z /cos �0 and !�y ,�0�=�−−�+ is determined by the
difference of phases �−�x�� and �+�x�� at the intersection
point �0,y�. To evaluate the conductance, one needs to find
the factor ei! in Eq. �22� and then the reflection probabilities
by solving numerically Eq. �19� with the boundary condi-
tions in Eq. �20�.

III. RESULTS

To illustrate the basic effect of how the interplay between
the Doppler shift and the time-reversal symmetry breaking of
the superconducting order parameter is manifested, we con-
sider a situation where an external magnetic field is applied
near the surface of the superconductor along the ẑ axis, thus
inducing a vector potential A in the superconductor which
drives the shielding supercurrent. In order to proceed analyti-
cally, we make the simplifying assumption that the superfluid
velocity field is nearly homogeneous and that the spatial
variation in the superconducting order parameter near the
interface is small. Choosing a real gauge, we then find that
the Ricatti functions a and b in Eq. �15� may be written
as20,22

a��� = s�������, b��� = s�������� ,

s��� = 1/��̃n��� + ���̃n����2 + 
����
2� , �23�

where �̃n depends on � through the Doppler shift. To evalu-
ate the LDOS in Eq. �16� at the surface, we need to take into
account proper boundary conditions at x=0. Assuming an
impenetrable surface with perfect reflection, these boundary
conditions read

asurface��� = a�� − ��, bsurface��� = b��� . �24�

Inserting these into the expression for the LDOS, we obtain

N��� = 2 Re�� 1

1 + a�� − ��b��� �i�n→�+i�

− 1. �25�

�¯	 denotes angular averaging, which we restrict to angles
−� /2'�'� /2 due to the surface. It may be shown that, for
a chiral p-wave superconductor,22 the zero-energy DOS at
the surface reads

N�0� = 1 +
�kFvsy

�0
+ ¯ , �26�

while for pure s- or d-wave superconductors one finds

N�0� = C1 + C2vsy
2 + ¯ , �27�

where C1 and C2 are arbitrary constants. From numerical
investigations of Eq. �25� at �=0, we find that the zero-
energy DOS may quite generally be written as

N�0� = C1 + C2vsy + ¯ �28�

whenever the superconducting order parameters �i� break
time-reversal symmetry and �ii� support the presence of sub-
gap surface-bound states. This is the case both for the px
+ ipy-wave pairing which is believed to be realized in
Sr2RuO4, as well as the d+ is-wave and d+ id-wave pairings
that are relevant for the cuprates. In particular, tunneling
spectroscopy measurements have indicated the presence of
such a time-reversal symmetry breaking order parameter
near surfaces by a split zero-bias conductance peak that was
observed in the absence of an external field in several
experiments.10

In Ref. 35, it was pointed out that the neglect of the gra-
dient term in the Eilenberger equation is expected to be a
reasonable approximation as long as the Doppler-shift energy
mvF ·vs is small compared to the local gap energy ����. This
approximation would then fail close to the vortex core or gap
nodes of ����. Nevertheless, in the model case of spatially
homogeneous gap function and superfluid velocity field, the
gradient terms in the —Eilenberger equation can be ne-
glected in the whole range of Doppler-shift energies. How-
ever considering a model situation the above discussion nev-
ertheless serves to illustrate our main qualitative argument,
namely, that chirality-sensitive effects should be expected in
superconductors with order parameters that �i� break time-
reversal symmetry and �ii� support the presence of subgap
surface-bound states. We now proceed to discuss the cases of
px+ ipy-wave and d+ is�d�-wave pairings in more detail since
these are relevant to actual materials.
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A. Surface states in p+ ip and d+ is(d) superconductors under
the influence of magnetic field

In Fig. 3, we show numerical plots of the surface LDOS
given by Eq. �25� for the chiral p-wave �Fig. 3�a��,
d+ is-wave �Fig. 3�b��, and d+ id-wave �Fig. 3�c�� cases in a
wide domain of superfluid velocities. The structure of gap
functions is chosen in the form of Eqs. �1�–�3� and the pa-
rameter characterizing inelastic scattering in Eq. �16� is cho-
sen as �=0.1�0. We introduce the following notations for the
different critical velocities: vc=�0 /�kF, vcs= 
�s
 /�kF and
vcd= 
�d
 /�kF.

As seen, the surface LDOS has sharp peaks at a certain
value of the superfluid velocity in all cases. We will show
below that peaked structure of LDOS is provided by bound
surface states. Another contribution to the LDOS comes from
the delocalized states corresponding to the continuous part of
QP spectrum. A delocalized state with zero energy �=0 ex-
ists provided that �i� 
vsy
�vc in case of chiral p-wave su-
perconductor and �ii� 
vsy
�vcs and �iii� 
vsy
�vcd in cases of
d+ is-wave and d+ id-wave superconductors correspond-
ingly. Condition �i� is unlikely to be realized because it
means that the superfluid velocity is larger than the critical
depairing value. Conditions �ii� and �iii� can be realized be-
cause the values vcs and vcd can be well below the critical
depairing velocity if the amplitude of additional order-
parameter components is small enough.

To analyze the contribution to LDOS provided by the
bound surface states we will consider the domain of low

energies 
�
#�0. By neglecting small deviations of the elec-
tron and hole momenta, the normalized wave function of QP
localized near the boundary can be written as

�u

v
� = �1

i
�� 2

�̃
cos �p

eikyy sin�kxx�e−x/��̃ cos �p�,

where �kx ,ky�=kF�cos �p , sin �p�. This wave-function decay
in the superconducting side x�0 at a characteristic localiza-

tion scale �̃ is given by �̃=�vF /�0 for chiral p wave and �̃
=�vF / 
�0 sin�2�p�
 for d+ is- and d+ id-wave superconduct-
ors correspondingly with gap functions given by Eqs. �2� and
�3�. The spectrum of the Andreev bound states, shifted by the
superfluid velocity, is given by

�a = ��0ky/kF + �vsyky �29�

for the p-wave case,

�a = �s sgn�ky� + �vsyky �30�

for d+ is-wave case, and

�a = �d sgn�ky�cos�2�p� + �vsyky �31�

for d+ id-wave case. Consequently, the contribution from
Andreev bound states to the zero-energy LDOS at the sur-
face of a chiral p-wave superconductor is given by

Na = N0
1


vsy/vc + �

,

where N0=m /2��2 is the normal-metal LDOS per one spin
direction. For a chiral d+ is superconductor, the behavior of
the LDOS is more complicated. Assuming that �s�0, we
obtain that the LDOS is zero for vsy�−�s /�kF. Otherwise, it
is given by

Na = 4N0
vcsvc

vsy
2 .

On the contrary, for the d+ id case the LDOS is zero if vsy
��d /�kF �for �d�0� and otherwise it is given by

Na = N0
�0


�d
�1 +
vcd

�vsy
2 + 8vcd

2 � .

It can be seen that these contributions to LDOS have
peaks at vsy =vc for p-wave case. For d+ is-wave and
d+ id-wave superconductors the peaks are positioned at vsy
=−sgn��s�vcs and vsy =sgn��d�vcd correspondingly. Even
though the position of the peaks are different, the dependen-
cies of the surface LDOS on the superfluid velocity �and
consequently on magnetic field� are very similar for d+ is-
and d+ id-wave superconductors. Therefore, it might be dif-
ficult to distinguish which case is realized experimentally.

On the other hand the considered model with a spatially
homogeneous gap function %�r�=1 is adequate only when
the applied magnetic field is not too large. When the mag-
netic field is large enough, it breaks the Meissner state and
generates vortices near the surface of superconductor. There-
fore, we investigate the influence of vortices on the LDOS
distribution near a superconducting surface as well as on the

FIG. 3. Plot of the normalized zero-energy LDOS N�0� for
�a� p-wave superconductor with �=1, �b� d+ is-wave case with �s

=0.4�0, and �c� d+ id-wave case with �d=0.4�0. Dashed lines are
guides for eyes. The vertical ones denote positions of LDOS peaks
and the horizontal ones correspond to the level of normal-metal
DOS N0.
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conductance of normal-metal/superconducting junctions. We
will show that vortices have different effects on the conduc-
tance in d+ is and d+ id cases.

B. Interplay between vortex and surface states in chiral
superconductors

A chirality-sensitive LDOS transformation due to vortices
situated near the surface of a chiral p-wave superconductor
was considered in Ref. 22. It was shown that depending on
the chirality and vorticity values, the surface LDOS near is
either enhanced or suppressed upon decreasing the distance
from the vortex to the surface. In the case of d+ is�d� super-
conductors the transformation of LDOS profile is also sensi-
tive to the value of vorticity. Similar behavior is expected for
a conductance of normal-metal/chiral superconductor junc-
tion in the presence of vortices.

To investigate the influence of a single vortex on the
LDOS profile and conductance, we assume that at x�0 �su-
perconducting region� the coordinate dependence of the or-
der parameter may be written as follows:

%�r� = ei�. �32�

Here, we consider a model situation where the magnitude of
the order parameter is constant. The phase distribution ��r�
consists of a singular part �v�r�=arg�r−rv� and a regular

part �r�r� determined by the particular metastable vortex
lattice configuration realizing near the boundary. We assume
that the regular part of the phase distribution is �r�r�
=−arg�r−rav� corresponding to the image vortex situated at
the point rav= �−2a ,0 ,0� behind the N/S interface.

1. p+ ip wave

In Fig. 4 we show the LDOS profile near the surface of a
chiral p-wave superconductor in the presence of a single vor-
tex positioned at some distance a from the surface. When the
vortex is positioned far from the surface a12� the LDOS
profile follows the behavior, as expected from the picture of
local Doppler shift.22 Depending on the relative values of
vorticity and chirality, the surface LDOS is either increased
�Fig. 4�a�� or decreased �Fig. 4�b��. An analytical estimate
with the help of spectrum �33� yields the following estima-
tion of the amplitude of LDOS peak in Fig. 4�a�: �N /N0
= �1+M�a�−1. At smaller distances a'2�, the behavior of
LDOS changes drastically. In the case of opposite vorticity
and chirality, the surface LDOS grows at a'2�, obviously
due to the overlapping with the peak of vortex core states. In
the case of equal vorticity and chirality the same overlapping
occurs, but on the contrary it leads to reduction in DOS, as it
was discussed in Sec. I. The peak of the LDOS at the surface
discussed in Ref. 22 transforms into a dip-and-peak structure
as the vortex comes close to the surface.

FIG. 4. �Color online� Plot of the normalized zero-energy LDOS N�0� in the presence of a vortex near the surface of a chiral p-wave
superconductor. �a� and �c� correspond to equal vorticity and chirality and �b� and �d� correspond to opposite vorticity and chirality. The
distance from vortex to the surface is a=2� for �a� and �b� and a=� for �c� and �d�.
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This is illustrated in Fig. 5�a�, where we plot the LDOS at
the surface point �0,0�, which is the nearest point to the vor-
tex in Fig. 4. At large distances a)� the LDOS is a mono-
tonic function of a, either increasing or decreasing depending
on the relation between vorticity and chirality. At smaller
distances a'2�, the extremum of LDOS appears. In the case
of opposite vorticity and chirality �lower curve in Fig. 5�a��,
the surface LDOS grows at a'2� due to the overlapping
with the peak of vortex core states. In the case of equal
vorticity and chirality �upper curve in Fig. 5�a�� the same
overlapping leads to reduction in LDOS.

To investigate the influence of vortices on the transport
properties of normal-metal/chiral p-wave superconductor
junction we solve the generic problem of the influence of a
single vortex near the N/S surface on the zero-bias conduc-
tance of the junction. A numerical plot of the conductance G
as a function of a distance of vortex to the junction interface
is shown by the solid lines in Fig. 5�b� for equal �upper
curve� and opposite �lower curve� values of chirality and
vorticity. The conductance is normalized to the value of
Sharvin conductance GSh=kFLy /�.

At large distances a)� an analytical estimation of con-
ductance can be obtained by using a local Doppler-shift ap-
proximation on the quasiparticle spectrum. Indeed, the modi-
fication of the surface states energy due to a supercurrent
flowing along the boundary of superconductor can be written
as

�a � ���0 + �vsykF�ky/kF, �33�

where ky is the quasiparticle momentum along the surface,
�= 01 is the chirality value, and vsy = �M� /m�a / �y2+a2� is
the projection on the surface plane of superfluid velocity
generated by the vortex and image antivortex, where M is the
vorticity value and m is the electron mass. It follows from
Eq. �33� that the Doppler-shift effect leads to a change in the
slope of anomalous branch. It is easy to obtain that in this
case the function g�y ,�0� in expression �22� takes the follow-
ing form:

g�y,�0� =
2

4�Z̃4 + Z̃2���a/�0�2 + 1
. �34�

The straightforward integration in Eq. �21� yields G=G0
+�G, where G0=GSh�� /Z2� is the conductance without vor-
tex and

�G/GSh = 0
2��

Z2Ly
arctan�Ly/2a� �35�

is the vortex-induced conductance shift, where the upper
�lower� sign corresponds to equal �opposite� vorticity and
chirality.

At distances smaller than 2�, an extremum of the conduc-
tance appears. Upon placing the vortex closer to the surface,
an opposite effect occurs: one obtains a conductance sup-
pression instead of enhancement and vice versa. The origin
of the conductance extremum is a tunneling of quasiparticles
into the vortex core states or, in other words, the overlapping
of vortex and surface-bound states. Comparing Figs. 5�a� and
5�b� one can see that the conductance in general follows the
behavior of the surface DOS.

2. d+ is and d+ id waves

In chiral d+ is and d+ id superconductors the LDOS trans-
formation appears to also be vorticity sensitive. In Fig. 6 we
show the profile of zero-energy LDOS in the case where the
vortex is placed at a distance of a=2� from a flat boundary
of a d+ is-wave superconductor characterized by a gap func-
tion in momentum space given by Eq. �2�. In this section, we
use the notation �=�vF /�0.

One can see that for one sign of vorticity the surface
LDOS shows two peaks which are symmetric with respect to
the vortex position. As we have shown above, the large peaks
in surface LDOS appear when the energy coincides with the
position of bound-state level. For a different sign of the vor-
ticity, there are no surface states at the Fermi level and the
LDOS along the surface is a flat function. A nonzero level of
LDOS in this case is provided by inelastic scattering which
leads to the smearing of the QP energy levels. Applying a
local Doppler-shift approach, which holds if the distance
from vortex to surface is rather large �a)��, one can inter-
pret the results shown in Fig. 6.

The coordinates y� of surface LDOS peaks can be esti-
mated from the relation vsy =�s / pF, where vsy
= �M� /m�a / �y2+a2� is the projection on the surface plane of
superfluid velocity generated by the vortex with vorticity M
and image antivortex. It can be seen that for a����0 / 
�s
�
the peak is situated at y�=0, i.e., at the surface point nearest
to the vortex. Otherwise, we obtain y�

= 0a�1− �a /���
�s
 /�0�. Comparing this estimation with the
numerical results in Fig. 6, one observes a minor difference.
For example, it follows from the estimation that the LDOS
peaks should be positioned at y�= 02.4� for �s=0.2�0, but
in Fig. 6 they are located at y�= 02.0�. This discrepancy can
be attributed to the complex shift of the energy �→�+ i� due
to the effective scattering parameter �=0.1�0 which was

FIG. 5. �a� Plot of the normalized zero-energy LDOS at the
point on the surface which is closest to the vortex core. Different
curves correspond to different vorticities. �b� Plot of the vortex-
induced conductance in chiral p+ ip-wave superconductor for equal
and opposite values of vorticity and chirality. The strength of inter-
face barrier is Z=5. Large-distance asymptotes for N and G are
shown by dash lines.
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used in the numerical calculations. If we increase the dis-
tance from vortex to surface, a, the LDOS peaks will merge
when a����0 / 
�s
� �see Fig. 6�.

In Fig. 7, we show the LDOS profile modulated by a
vortex placed at a distance of a=2� from a flat boundary of
d+ id superconductor. The structure of the gap function was
chosen in the form �3�. Applying the approach based on the
local Doppler shift we obtain the similar expression for the
coordinates of the peaks of surface LDOS: y�

= 0a�1− �a /���
�d
 /�0�. For the particular values of param-
eters �d=0.2�0 and a=2� this estimation yields y�= 02.4�,
which is much less than obtained from numerical plot in Fig.
7 �y� � 04��. This discrepancy can also be attributed to the
effect of inelastic scattering, which appears to have a larger
effect in d+ id-wave case than in discussed above d+ is-wave
case.

A numerical plot of the N/S junction conductance as a
function of distance from vortex to surface is shown in Fig. 8
for the d+ is and d+ id cases. The conductance is normalized
to the Sharvin conductance GSh=kFLy /�. Comparing Figs.
8�a� and 8�b� one can see that the conductance behavior is
qualitatively different for s- and d-wave symmetries of the
additional gap function component. For d+ is wave, the con-
ductance has a sharp peak for one vortex orientation �upper
curve in Fig. 8�a�� and it is a flat function of a for another
vortex orientation �lower curve in Fig. 8�a��. The origin of
the conductance enhancement is a formation of Andreev

bound states at the Fermi level which are localized near the
superconducting surface. As was discussed in Sec. I �see Fig.
1�b��, the zero-energy Andreev bound states can appear only
for a certain direction of superfluid velocity flowing along
the superconducting surface and if the value of the superfluid
velocity is larger than a critical value 
vsy
� 
�s
 /�kF. For a
high interface barrier Z)1, applying the approximate ana-
lytical expression �35�, we find that a sharp increase in con-
ductance in Fig. 8�a� can be described by the following ex-
pression:

G/GSh =
16�

3Z2

�

Ly

�0


�s

�1 −

a

a��3/2
+ �Z−4,

where a�=���0 / 
�s
� and ��1. Otherwise, if a�a� the con-
ductance is much smaller since Z)1,

G/GSh � ��0

�s
�2 4

3Z4 .

When the distance a is decreased further, the conductance is
suppressed �see Fig. 8�a�, upper curve�. The decrease in con-
ductance can be attributed to the gap at the Fermi level
which appears due to the interaction of vortex and surface
states in a similar way as for the p+ ip-wave case discussed
in Sec. III B 1.

FIG. 6. �Color online� Plot of the normalized zero-energy LDOS profile N�0� in the presence of vortex near the surface of chiral d
+ is-wave superconductor with �s=0.2�0. �a�–�d� correspond to different vortex orientations with respect to the z axis. The distance from
vortex to the surface is a=4� for �a� and �b� and a=2� for �c� and �d�.
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In a d+ id-wave superconductor, zero-energy Andreev
bound states may exist even in the absence of vortex. An
asymptotic value of the conductance G0 at a)� can be ob-
tained using expression �35� as follows:

G0/GSh = � �0


�d
� �

2�2Z2
.

When the vortex approaches the superconducting surface,
the conductance is either suppressed �lower curve in Fig.
8�b�� or slightly enhanced �upper curve in Fig. 8�b��. This
behavior can be understood by again using the Eq. �35� with
the Doppler-shifted spectrum of Andreev bound states �6�.
The decrease �increase� in conductance corresponds to the
transformation of spectrum shown qualitatively in Fig. 1�c�
by dashed �dashed-dotted� lines. It is possible to obtain an
analytical expression for the vortex-induced conductance
shift at a)� in the following form:

�G/GSh = 0
�

2Z2��0

�d
�2 �

Ly
arctan� Ly

2a
� ,

where the upper and lower signs correspond to the different
vortex orientations. As the vortex approaches the surface fur-
ther, there appears an extremum of the conductance. Such
behavior can be explained by a conductance enhancement
due to the tunneling of QP into the vortex core states dis-
cussed in Ref. 32. A sharp decrease in the upper curve in Fig.
8�b� can be attributed to the opening of an energy gap at the

FIG. 7. �Color online� Plot of the normalized zero-energy LDOS profile N�0� in the presence of vortex near the surface of chiral d
+ id-wave superconductor with �d=0.2�0 �a�–�d� correspond to different vortex orientations with respect to the z axis. The distance from
vortex to the surface is a=4� for �a� and �b� and a=2� for �c� and �d�.

FIG. 8. Plots of the vortex-induced conductance in cases of
�a� chiral d+ is superconductor for �s=0.2�0 and �b� d+ id super-
conductor for �d=0.2�0. The strength of interface barrier is Z=5.
Different curves on each plot correspond to different vortex orien-
tations with respect to the z axis.
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Fermi level due to the interaction of vortex and surface
states.

IV. SUMMARY

In summary, we have investigated how the tunneling con-
ductance and the local density of states �LDOS� in supercon-
ductors are affected by the influence of an external magnetic
field when the superconducting OP breaks TRS. This is di-
rectly relevant for both Sr2RuO4, where chiral p+ ip-wave
pairing is believed to be realized, and for the high-Tc cu-
prates, where a d+ is- or d+ id-wave OP has been suggested
to exist near surfaces. In addition to breaking TRS, all of
these OPs feature surface-bound zero-energy states at sur-
faces under appropriate circumstances �e.g., a dominant
d-wave OP in the d+ is-wave case�.

We have shown how the Doppler shift conspires with an
interaction of vortex and surface states to produce a consid-
erable qualitative modification of both the tunneling conduc-
tance and the LDOS. When the vortex is located at distances
well above a coherence length � from the surface, the Dop-
pler shift produces an enhancement or suppression of the
LDOS depending on the relative sign of the vorticity and the
chirality of the superconducting OP. This effect may be di-
rectly probed by first applying an external magnetic field in a
direction while measuring the LDOS and then reversing the

field direction and measuring again. When the vortex is lo-
cated very close to the surface �a distance on the order of � or
smaller�, there is an overlap between the vortex and surface
states which effectively causes a dramatic change in the tun-
neling conductance and LDOS. This effect is also sensitive
to the relative signs of the vorticity and the chirality of the
superconducting OP. The overlap between these two sets of
states results in either a strongly enhanced or suppressed tun-
neling conductance/LDOS at zero-bias voltage/zero energy.

We have demonstrated the aforementioned effects both
qualitatively and quantitatively for p+ ip-, d+ is-, and
d+ id-wave symmetries. Experimentally, the distance from
the surface to the closest vortex can be altered by modifying
the field strength. All of our predictions should be possible to
test experimentally with present-day techniques.
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We present an analytical study of the proximity effect in ferromagnet/superconductor �F/S� heterostructures,
allowing for an arbitrary magnetic exchange energy as well as arbitrary impurity and spin-flip scattering rates
within a quasiclassical approach. While previous studies mainly have focused on the clean or dirty limits, our
results grant access to the regime of intermediate impurity concentrations, thus allowing us to probe the
crossover from the clean to the dirty limit. We find that in the crossover regime, all possible symmetry
correlations of the proximity-induced anomalous Green’s function are induced in the ferromagnet. We also
point out that the local density of states oscillates spatially not only for an F/S bilayer but also for a normal/
superconductor �N/S� bilayer in the diffusive limit, a fact which appears to have gone unnoticed in the
literature. Within the weak proximity-effect regime, we present compact analytical expressions valid for arbi-
trary exchange fields and impurity-scattering rates for �i� the local density of states in an F/S bilayer, �ii� the
Josephson current in an S/F/S junction, and �iii� the critical temperature in an F/S/F multilayer. For all cases,
we study in particular the crossover regime between diffusive and ballistic motion. Our results may be useful
for analyzing experimental data in cases when the dirty limit is not fully reached, thus invalidating the use of
the Usadel equation.
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I. INTRODUCTION

The interest in ferromagnet/superconductor �F/S� hetero-
structures has increased much during the last decade.1–3 This
may probably be attributed to advances in experimental
fabrication/deposition techniques as well as intriguing theo-
retical predictions. The main hope is that future devices and
applications will rely on manipulation of not only the elec-
tron charge but also its spin. Based on this idea, a new re-
search area known as superspintronics has emerged, aiming
at utilization of charge and spin transport in ferromagnet/
superconductor heterostructures. For instance, several au-
thors have investigated the possibility of dissipationless
currents of spin and charge in magnetically ordered
superconductors.4–11 A large number of other studies related
to spin degrees of freedom in superconducting systems has
also appeared in the literature.12–15

A considerable amount of attention has been devoted to
the arguably simplest experimental laboratory where the in-
terplay between ferromagnetism and superconductivity may
be studied, namely a F/S bilayer. The two long-range-order
phenomena mix close to the interface, giving rise to interest-
ing effects both from a basic physics perspective and in
terms of potential applications. These effects include induc-
tion of unusual superconducting symmetry correlations and a
highly nonmonotonic behavior of various physical quantities
on the size of the system. The latter is a result of the non-
uniform superconducting correlations that are induced in the
ferromagnetic layer by means of the proximity effect.

As a natural extension of the F/S bilayer, there has also
been much focus on S/F/S systems and F/S/F systems, where
the influence of ferromagnetism on the Josephson current
and the critical temperature has been studied, respectively.
The large majority of works related to these systems as-
sumed that the diffusive limit was reached. In this case, elas-

tic scattering on impurities renders the Green’s function to be
isotropic in space while it may still retain a complicated spin
structure. From an experimental point of view, the diffusive
regime is certainly relevant but there are nevertheless some
complications. One point bears upon the theoretical frame-
work used to study the physics in the diffusive regime. The
quasiclassical Usadel16 equation is widely employed to study
the proximity effect in F/S heterostructures and is valid un-
der two main assumptions. First, the Fermi energy is much
larger than any other energy scale and the essential physics is
governed by fermions at Fermi level, and second, the inverse
impurity-scattering rate is much larger than any other energy
scale except for the Fermi energy. For strong ferromagnets
such as Co or Ni, the second condition may be violated. In
that case, one must revert to the more general Eilenberger17

equation, which is only subject to the first condition.
The Eilenberger equation is more complicated to solve

analytically than the Usadel equation, although some special
limits permit fairly simple analytical expressions. Let h de-
note the exchange energy of the ferromagnet while  imp de-
notes the inverse impurity-scattering rate. The Usadel equa-
tion is then obtained from the Eilenberger equation by
demanding h imp#1, while the case of a strong and clean
ferromagnet is obtained in the limit h imp)1. We assume
that h)� is fulfilled. In Ref. 18, some aspects of the density
of states �DOS� in F/S heterostructures were considered to
leading order in the parameter �h imp�−1, corresponding to a
strong ferromagnet which falls outside the range of applica-
bility of the Usadel equation. In Ref. 19, the Josephson cur-
rent in an S/F/S structure was also investigated for the case
of a strong ferromagnet, h imp)1. Some authors have also
considered F/S heterostructures where the impurity-
scattering rate was disregarded or assumed to be small, cor-
responding to the ballistic regime.20–27

Although the agreement between theory and experiment
in this research area has proven to be satisfactory in many
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cases, there are still discrepancies to be accounted for. For
instance, the Usadel equation has failed to account quantita-
tively for the critical temperature in F/S/F spin valves. Fur-
thermore, anomalous features in the DOS for a very thin F/S
bilayer that could not be accounted for, even qualitatively,
were reported in Ref. 28. Moreover, the Usadel equation ap-
proach fails from the start when addressing systems with
strong ferromagnets.

All of this points to the need of taking the role of impurity
scattering more seriously. In this paper, we aim at doing
precisely so by solving the Eilenberger equation analytically
and studying the crossover regime between ballistic and dif-
fusive motion �see Fig. 1�. To illustrate how various physical
quantities behave in this crossover regime, we study �i� the
local density of states �LDOS� in an F/S bilayer, �ii� the
Josephson current in an S/F/S junction, and �iii� the critical
temperature in an F/S/F multilayer for arbitrary values of h
and  �within the quasiclassical approach�. In each case, we
present compact analytical formula to facilitate comparison
to experimental data in cases where the diffusive limit may
not be fully warranted or where strong ferromagnets are in-
volved.

This paper is organized as follows. In Sec. II, we establish
the theoretical framework which is employed in this work. In
Sec. III, we present our main results with their corresponding
discussions: the DOS of an F/S bilayer in Sec. III B, the
Josephson current in an S/F/S multilayer in Sec. III C, and
finally the critical temperature in an F/S/F multilayer in Sec.
III D. Equations �25�, �32�, and �37� are the main analytical
results of this work. We conclude in Sec. IV. Below, we will
use boldface notation for vectors, . . . for 2�2 matrices, and

. . .ˆ for 4�4 matrices. The reader may consult the Appendix

for a definition of the generalized Pauli matrices we employ
in this paper.

II. THEORETICAL FORMULATION

The Eilenberger equation reads17

ivF · �ĝ + ��!̂3 + M̂ − V̂imp − Ŝflip + �̂, ĝ� = 0, �1�

where ĝ� ĝR�R ,� ,pF� is the retarded part of the Green’s
function. Here, � is the quasiparticle energy, R is the center-
of-mass coordinate, and pF �vF� is the Fermi momentum �ve-
locity� vector. The self-energies that enter Eq. �1� are the

magnetic exchange energy M̂ =h diag� 3 , 3�, the impurity

scattering V̂imp=−�i / �2 imp���ĝ	, the �uniaxial� spin-flip scat-

tering Ŝflip=−�i / �2 flip��!̂3�ĝ	!̂3, and the superconducting or-
der parameter

�̂ = � 0� i 2�

i 2�
� 0�

� .

All matrices used above �!̂i , i� are defined in the Appendix
�Eq. �A1��. The brackets �. . .	 denote an angular average over
the Fermi surface. Also, h is the exchange splitting while
 imp�flip� is the scattering time associated with impurity �spin-
flip� scattering. We may conveniently rewrite Eq. �1� as

ivF · �g� + ��� + �h� 3 + ��� +
i

2 imp
�g�	

+
i

2 sf
 3�g�	 3,g�� = 0, � = ↑,↓ = 0 1 �2�

where the superconducting order-parameter matrix �� reads

�� = � 0 �

− �� 0
�, � = �0ei�, �3�

upon letting � denote the phase corresponding to the globally
broken U�1� symmetry in the superconducting state. The
brackets �. . .	 denote angular averaging over the Fermi sur-
face. We employ the Ricatti parametrization29 of the Green’s
function

g� = N��1 − a�b� 2a�

2b� − 1 + a�b�
�, N� = �1 + a�b��−1.

�4�

Here, a� and b� are two unknown functions used to param-
etrize the Green’s functions. They will be determined by
solving the Eilenberger equation with appropriate boundary
conditions. A general treatment of the Eilenberger equation
calls for a numerical solution. In the case of a weak proxim-
ity effect, however, the Eilenberger equation may be linear-
ized in the anomalous part of the Green’s function which
permits an analytical approach. The assumption of a weak
proximity effect corresponds mathematically to a scenario
where higher-order terms of �a� ,b�� are disregarded in the
Eilenberger equation, i.e., one assumes that 
a�
#1 and

b�
#1. In an experimental situation, a weak proximity ef-
fect in F/S heterostructures may be expected whenever the

Ballistic regime

Diffusive regime

Intermediate regime

Bulk s-wave
superconductor

Ferromagnetic layer

x = 0 x = d

Electronic motion

Impurities

FIG. 1. �Color online� Overview of the superconductor/
ferromagnet heterostructure that we study in this paper. We take
into account an arbitrary strength of the exchange field as well as an
arbitrary rate of nonmagnetic and magnetic scatterings within a
quasiclassical approach.
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tunneling limit is reached and the number of conducting
channels at the interface is low. Also, assuming a supercon-
ducting reservoir, the proximity effect becomes weaker in
magnitude upon increasing the thickness of the ferromag-
netic layer.

The spatial depletion of the superconducting order param-
eter near the S/F interface will be disregarded. This is an
excellent approximation in the corresponding low-
transparency regime, which will be considered throughout
this paper except for Sec. III D, where this issue is discussed
further. At the S/F interface �x=0� we use the boundary con-
ditions of Zaitsev.30 Define the symmetric and antisymmetric
parts of the Green’s function as

S�,i =
1

2
�g�,i

+ + g�,i
−�, A�,i =

1

2
�g�,i

+ − g�,i
−� , �5�

where the 0 superscript on the Green’s function denotes
right-going/left-going quasiparticle excitations and the sub-
script i denotes the ferromagnetic or superconducting region.
The first of the boundary conditions of Zaitsev30 demands
continuity of the antisymmetric part A�,i of the Green’s func-
tion. The second one relates the Green’s functions in the
ferromagnetic and superconducting regions to the interface
transparency. We obtain

A�,F�R�1 − A�,F
2� +

T
4

�S�,S − S�,F�2� =
T
4

�S�,F,S�,S�−,

�6�

where R and T are the reflection and transmission coeffi-
cients satisfying R+T=1, and �. . .�− denotes a commutator.
High- and low-transparency interfaces correspond to T�1
and T#1, respectively. Although Eq. �6� is expressed rather
compactly, a general solution for arbitrary T and R is very
hard to obtain. In the experimentally relevant situation, one
may assume that T#R. For a low-transparency barrier and a
weak proximity effect, Eq. �6� simplifies greatly to

A�,F
x=0 = ��S�,F,S�,S�−
x=0, �7�

where �=T / �4R� is a measure of the barrier transparency. At
the end of the ferromagnetic layer, we demand A�,F 
x=d=0� .

We consider here an effective one-dimensional calcula-
tion, which should provide sound results due to the isotropic
nature of the ferromagnetic and superconducting order pa-
rameters. We do not expect any qualitative differences from a
two-dimensional or three-dimensional model, since the su-
perconducting gap and the magnetic exchange field do not
depend on the quasiparticle momenta and there are no
surface-bound states31 at the interfaces of the systems we
consider. Thus, it should be possible to capture the essential
physics by studying an effective one-dimensional model,
which permits us to proceed analytically. This point of view
is supported by the fact that, as seen later in this work, we
reproduce in limiting cases previous results obtained in the
literature which employed a two-dimensional calculation.

Under the assumption of a weak proximity effect, the
Eilenberger equations in the ferromagnetic region take the
form

	ivF�xa� + 2a��� + �h� +
i

2 imp
�a�

	 − a�
−	� +

i

2 sf
�3a�

	 + a�
−	�

= 0,

	ivF�xb� − 2b��� + �h� −
i

2 imp
�b�

	 − b�
−	� −

i

2 sf
�3b�

	 + b�
−	�

= 0, �8�

where 	=0 denotes right- and left-going quasiparticles, re-
spectively. It is necessary to take into account the direction
of the quasiparticles at Fermi level due to the term vF ·�ĝ in
Eq. �1�. Thus, � denotes the spin direction while 	 denotes
the direction of motion in a�

	 and likewise for b�
	. The impu-

rity and spin-flip scattering self-energies enter Eq. �8� by

means of the matrices V̂imp and Ŝflip in Eq. �1�, which both
depend on the Fermi-surface averaged Green’s function. For
a weak proximity effect, we have

�g�	 = � 1 a�
+ + a�

−

b�
+ + b�

− − 1
� . �9�

For a bulk ferromagnet, the solution is a�
0=b�

0=0.
In Ref. 18, the DOS in a S/F bilayer was studied by ne-

glecting both spin-flip scattering � sf→�� and the coupling
term between the right- and left-going excitations in Eq. �8�.
In this case, one finds that Eq. �8� reduces to

0ivF�xa�
0 + �2�� + �h� +

i

2 imp
�a�

0 = 0,

0ivF�xb�
0 − �2�� + �h� +

i

2 imp
�b�

0 = 0. �10�

The decaying solution for x→� of the above equations reads

a�
+ = ka� exp�− /�x/l�, b�

− = kb� exp�− /x/l� ,

/� = 1 − 2i�� + �h� imp, l = vF imp, �11�

while a�
− =b�

+ =0. Above, ka� and kb� are constants to be de-
termined from the boundary condition at x=0, and the struc-
ture of the Green’s function becomes

S�,F = � 1 a�
+

b�
− − 1

�, A�,F = � 0 a�
+

− b�
− 0

� . �12�

This shows how the decay length of the proximity-induced
anomalous Green’s function in the ferromagnet is governed
by the mean-free path l and that it is independent of the
exchange field in this main approximation. We now present a
more rigorous solution by fully taking into account the cou-
pling term in Eq. �8�. To solve this problem, we note that Eq.
�8� may be written as a matrix differential equation,
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�xa� = Ma�a�, a� = �a�
+a�

−�T,

Ma� =
1

vF
� r� g

− g − r�
� , �13�

where T denotes matrix transpose, and we have defined the
auxiliary quantities

r� = 2i�� + �h� − �gimp + 3gsf�/2,

g = �gimp − gsf�/2, gimp�sf� �  imp�sf�
−1 . �14�

Diagonalizing M� according to D�= P�
−1M�P�, we obtain

the trivial set of decoupled differential equations

�xã� = D�ã�, ã� = P�
−1a�. �15�

From the above, we find that

ã�
0 = Ca,�

0 e0��x, �� = vF
−1�r�

2 − g2, �16�

while the diagonalization matrix P� reads

P� = �p1� p2�

p2� p1�
�, G� = g/�vF�� + r�� ,

p1� = N�, p2� = − N�G�, N� = �1 + 
G�
2�−1/2. �17�

In the superconducting region, we employ the bulk solu-
tion under the assumption that the interface transparency is
low and that the ferromagnetic layer is much more disor-
dered than the superconductor.1 In this main approximation,
we may employ the bulk solution of the Green’s function in
the superconductor

g�
0 = � c��� �s���

− �s��� − c���
�

with the definitions c���=cosh���, s���=sinh���, and �
=atanh�� /��. Once the expression for the Green’s function
in the ferromagnet has been obtained, one may calculate
various physical quantities of interest. By approximating
S�,F � 3 in Eq. �7� in accordance with a weak proximity
effect, we obtain, for the case where the impurity-scattering
coupling between the Ricatti equations is ignored,

g�,F
0 =  3 + 2��s���exp�− /�x/l�� 1 0 i 2� , �18�

which is precisely the result of Ref. 18 for two semi-infinite
superconducting and ferromagnetic layers in contact. When
the coupling is properly taken into account, in addition to the
vacuum boundary condition at x=d, we find that

g�,F
0 = � 1 2a�

0

2b�
0 − 1

� ,

upon defining

a�
0 = p�

0C1����� + p�
�C2����� ,

b�
0 = p�

0C1��− ��� + p�
�C2��− ��� ,

C1� =
2��s���e��x

p�
+ − p�

− �1 −
e��d

2 sinh���d�� ,

C2� = −
��s���e���d−x�

�p�
+ − p�

−�sinh���d�
, �19�

and p�
0= p1,2�. Note that in the diffusive limit where

gimp) �h ,� ,�0 ,gsf�, one would expect that the distinction be-
tween right-going and left-going particles is removed such
that g�,F

+=g�,F
−. This is easily shown by exploiting

lim
gimp)�h,�,�0,gsf�

�vF�� + r�� = − gimp/2, �20�

as seen from the previous equations. We also want to com-
pare the results for gimp) �h ,� ,�0 ,gsf� with those obtained
when using the linearized Usadel equation. The Usadel equa-
tion in a diffusive ferromagnet then reads

D�x
2f0 + 2i�� + igsf 0 h�f0 = 0, �21�

where f0= f t0 fs and f t is the odd-frequency triplet anoma-
lous Green’s function while fs is the even-frequency singlet
anomalous Green’s function �both are isotropic in momen-
tum space�. We obtain that the only physically acceptable
�decaying for x→�� solution is

f+ = f0eik+x if � � 0, f− = f0e−ik−x if � " 0,

k0 = �2i�� + igsf 0 h�/D , �22�

where f0 is a constant to be determined from the boundary
conditions. Above, D is the diffusion constant. For consis-
tency, we should be able to obtain the same decaying solu-
tion from Eq. �19� when gimp) �h ,� ,�0 ,gsf�. Focusing on
the wave vector, we see that in this limit

�� → vF
−1�− 2i�� + �h�gimp + 2gimpgsf

= �− 2i�� + �h + igsf�/D , �23�

where D=vF
2 imp is the diffusion constant in one dimension

�in three dimensions, D=vF
2 imp /3�. Equation �23� is then

consistent with the form of Eq. �22�.
With a complete description of the behavior of the

Green’s function in the ferromagnetic region, we now inves-
tigate the influence of the proximity effect on the LDOS and
also study the singlet and triplet superconducting order pa-
rameters induced in the ferromagnet. The normalized LDOS
as obtained from the solution of the Eilenberger equation
may be written as

N��,x� =
1

2
�

�Re�1 + 4a���,x�b���,x��	 �24�

for a weak proximity effect. In the normal state, the normal-
ized DOS is N0=1. Inserting the expressions for a�

0 and b�
0

into the above equation yields
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N�x,�� = 1 − Re�
�

2�2s2���
sinh���d��1 + G��2�1 + G�

2

− 2G��2 sinh���d − 2��x� +
cosh�2��x�
sinh���d� ��� .

�25�

Equation �25� is the first of our three main analytical results
in this work. Within the weak proximity-effect regime, it
provides a general expression for the DOS, taking into ac-
count an arbitrary exchange field and impurity-scattering
rate. As seen, the correction to the normal-state DOS N0=1
is zero for a vanishing interface transparency ��=0�. While
the weak proximity restriction only allows access to varia-
tions from the normal state of DOS of around 10%, this
seems to be sufficient for the experimentally relevant situa-
tion. For instance, the deviation from the normal-state DOS
due to the superconducting proximity effect was of the order
of 1% in Ref. 32.

In order to study the superconducting correlations inside
the ferromagnetic region, first note that the full structure of
the retarded Green’s function is

ĝR = � g� f�

− f�̃ − g�̃
� , �26�

where the spin structure reads

f� = � f↑↑ f↑↓
f↓↑ f↓↓

� , �27�

and we have defined f	
= f	
�pF ,� ,x� and

f̃�pF ,� ,x�= f�−pF ,−� ,x��. From the Ricatti parametrization,
we may define the different symmetry components of the
anomalous Green’s functions as follows:

fESE = 
�

��a�
+ + a�

−�, fOSO = 
�

��a�
+ − a�

−� ,

fETO = 
�

�a�
+ − a�

−�, fOTE = 
�

�a�
+ + a�

−� . �28�

Here, the abbreviations are explained in Table I. Note that in
the general case of finite h and  imp, all possible symmetry
components of the anomalous Green’s function are induced
in the nonsuperconducting region. In the case of h=0, one
may confirm from Eq. �19� that a�

0→�a0, where a0 is in-
dependent of �, such that fOTE= fETO=0. Physically, the in-
duction of other symmetry components than fESE, corre-
sponding to the bulk superconductor, may be explained as
follows.33,34 In a normal �N�-metal/superconductor junction,
the translational symmetry is broken at the interface separat-
ing the two regions. This causes even-parity and odd-parity
components of the Green’s function to mix near the inter-
face. Since the Pauli principle must be satisfied at all times,
a change in the parity symmetry of the Green’s function must
be accompanied by a change in either spin or frequency sym-
metry. In the absence of an exchange field, nothing breaks
the spin symmetry, such that only the frequency symmetry
may be altered indirectly by the broken translational symme-
try. However, if the spin symmetry is also broken by replac-
ing the normal metal with a ferromagnet, the spin symmetry
of the Green’s function may also be altered. These consider-
ations are summarized in Table I. The possibility of a bulk
odd-frequency superconducting state was discussed in Refs.
35 and 36, and there has very recently been some predictions
made concerning characteristic transport properties of such a
bulk odd-frequency superconducting state.33,37–39

III. RESULTS AND DISCUSSION

A. Anomalous Green’s functions

The linearized Eilenberger equations allow us to study the
direct crossover from the diffusive to the ballistic regime of
quasiparticle transport, and hence dependence of the differ-
ent symmetry components on the impurity scattering. In the
experimental situation, one usually probes the DOS at the F/I
interface x=d, although in principle it is possible to obtain a
spatially resolved DOS in the entire ferromagnetic region by
using local scanning tunneling microscopy �STM� measure-
ments. Let us first focus on x=d and consider the ballistic
limit, in which case simple and transparent analytical expres-
sions may be obtained from Eq. �28�. In the case h�0, we
obtain

TABLE I. The proximity-induced anomalous Green’s functions in a normal metal, in contact with a
conventional BCS superconductor, which has an even-frequency spin-singlet even-parity symmetry. Below,
the quasiballistic limit regime is characterized by a vanishing or small value of the impurity-scattering rate,
while the diffusive limit is characterized by an impurity-scattering rate which dominates all other energy
scales in the problem �except for the Fermi energy�.

Symmetry
h�0,

quasiballistic
h=0,

quasiballistic
h�0,

diffusive
h=0,

diffusive

Even-frequency spin-singlet even-parity �ESE� � � � �
Odd-frequency spin-singlet odd-parity �OSO� � �
Even-frequency spin-triplet odd-parity �ETO� �
Odd-frequency spin-triplet even-parity �OTE� � �
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fESE = 
�

�− 2�s����/sinh���d�, fOSO = 0,

fETO = 0, fOTE = 
�

�− 2��s����/sinh���d� . �29�

Note that for h=0, �� becomes independent of �, leading to
fOTE=0. At first glance, this appears to be in contradiction to
Table I since the odd-parity components are absent even in
the ballistic limit. However, evaluation of Eq. �28� for x
�d reveals that these components are in general induced as
they should be. It is remarkable that the odd-parity compo-
nents vanish exactly right at the F/I interface. In the presence
of a finite exchange field h�0, however, the odd-frequency
component fOTE survives at x=d, and its influence on physi-
cal quantities such as the DOS may be directly probed there.
These results suggest that in order to investigate the influ-
ence of the odd-frequency superconducting correlations fETO

and fOSO, one would have to measure the DOS also at several
positions in the ferromagnetic region and not only at the F/I
interface. In Fig. 2, we plot the different symmetry compo-
nents of the anomalous Green’s function in the ferromagnet
and their dependence on the impurity level.

B. Density of states

To demonstrate the applicability of Eq. �25�, we
study in particular how the DOS depends on the crossover
from the ballistic �gimp=0� to the diffusive limit
�gimp) �h ,� ,�0 ,gsf��. We will fix �=0.05 and h /�0=15 to
model a realistic experiment, corresponding to a weak ferro-
magnetic alloy such as Cu1−xNix or Pd1−xNix. The setup is
shown in Fig. 3. It is well known that the DOS oscillates in
space upon penetration deeper into the ferromagnetic
region40 due to the presence of an exchange field, a feature
which is robust both in the clean and dirty limits. However,
the energy dependence of the DOS in the presence of an
arbitrary impurity concentration has not received much atten-
tion so far. This is because most works concerned themselves
with the simplified Usadel equation �diffusive limit� or the
Eilenberger equation in the absence of impurities �clean
limit�.

In Ref. 18, corrections to the normal-state DOS as in-
duced by the proximity effect were calculated under the as-
sumption that h imp)1. This case corresponds to a ferro-
magnet where the exchange field is considerably larger than
the self-energy associated with the impurity scattering. This
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FIG. 2. �Color online� Plot of the proximity-induced anomalous
Green’s functions in the middle of the ferromagnetic region
�x /d=0.5� using h /�=15 and � /�0=0.5.
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FIG. 3. �Color online� Setup for our study of the density of
states.
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FIG. 4. �Color online� Plot of the �a� energy-resolved DOS at x=d and �b� spatially resolved DOS at �=0 for several values of the
impurity-scattering rate. Here, the exchange field is set to h /�0=15 and d /�=0.5.
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may describe either a strong ferromagnet �one must still de-
mand h#�F� or a weak ferromagnet with weak impurity
scattering. Neither of these cases is possible to treat with the
Usadel equation. In the present work, however, we do not
impose any restrictions on the parameter h imp, which allows
us to study the full crossover regime. This may be important
in order to obtain a larger degree of consistency between
theory and experimental data in the case when the diffusive
limit is not fully reached.

In Fig. 4�a�, we study the energy-resolved DOS for an
intermediate range of impurity scattering. As a measure of
the junction width, we use the superconducting coherence
length in the clean limit �S=vF /�0. To isolate the role of the
impurity scattering, we fix the junction width at d /�S=0.5.
For a superconductor with vF=105 m /s and �0=1 meV,
this corresponds to d�30 nm, which is experimentally rel-
evant. As seen, the DOS exhibits a slightly oscillating behav-
ior as a function of energy when the impurity-scattering rate
gimp is comparable in magnitude to the superconducting gap.
This effect becomes more obvious for wider junctions
d /�S)1 and is attributed to bound states appearing in the
ferromagnetic film. We discuss this in more detail below. As
gimp increases, however, the DOS becomes featureless for
subgap energies, although one may still observe an alternat-
ing positive and negative correction to the zero-energy DOS
upon increasing gimp. In Fig. 4�b�, we plot the spatially re-
solved DOS at �=0 for various rates of the impurity scatter-
ing including the case when h imp�1. As seen, the oscilla-
tions of the zero-energy DOS are reduced with increasing
impurity scattering. We have also investigated the effect of
spin-flip scattering for an intermediate value of the impurity
concentration. The spin-flip scattering, here taken to be
uniaxial, is pair breaking and thus suppresses the proximity
effect induced by the superconductor. This aspect agrees with
Ref. 41, which found that both the triplet and singlet com-
ponents are suppressed with uniaxial and/or isotropic spin-
flip scattering. For other types of magnetic scattering, such as
planar spin-flip or spin-orbit scattering, the singlet and triplet
components are affected very differently.41

The oscillations of the DOS in S/F junctions are usually
attributed to the oscillating decay of the Cooper pair wave
function in the ferromagnetic region. In an S/N junction, this
decay is monotonous, and hence one would not expect to see
any oscillations in the DOS. However, we underline that the
impurity scattering plays an important role in this respect. In
the ballistic case g→0, the proximity of the superconductor
induces Andreev-bound states with well-defined trajectories
which propagate in the normal part of the system. The sta-
tistical distribution of all possible trajectories is peaked at
given lengths, typically at trajectories corresponding to the
first and second reflection processes at the interface. As a
result, the DOS in a clean S/N junction acquires oscillations
both as a function of energy and coordinate inside the normal
region as seen in Fig. 5 upon averaging over all possible
trajectories. This effect is known as Tomasch oscillations.42

The influence of impurity scattering on the minigap of a N/S
junction was investigated in Ref. 43.

However, there is another point which appears to have
been overlooked in the literature, namely, that the spatial
oscillations of the DOS in a S/N junction at finite energies do
not vanish in the diffusive limit. Hence, the oscillating DOS
as a function of distance penetrated into the nonsupercon-
ducting region is not a feature pertaining uniquely to F/S
junctions, as have been implied in some works.44 To see this,
we plot the spatially resolved DOS both for F/S and N/S
junctions in Fig. 6 in the diffusive regime. The curves are
obtained by using the framework of Ref. 41, and thus corre-
spond to a full numerical solution of the Usadel equation
without restricting ourselves to the weak proximity-effect re-
gime. The oscillations of the DOS in the N/S case may be
understood by noting that the induced superconducting
Green’s function in the normal region has a finite center-of-
mass momentum q=2� /vF. This is typically much smaller
than the center-of-mass momentum acquired in a ferromag-
net, q=2h /vF, which means that the corresponding oscilla-
tion length is much larger but still present. Such spatial os-
cillations of the DOS in N/S junctions can be inferred
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FIG. 5. �Color online� Plot of the �a� energy-resolved DOS at x=d and �b� spatially resolved DOS at � /�0=0.5 for several values of the
impurity-scattering rate. Here, the exchange field is set to zero, corresponding to a normal metal, and d /�=5.0.
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indirectly from the results of Refs. 45 and 46, although they
were not explicitly mentioned there.

Having stated this, it should be noted that the oscillating
nature of the anomalous Green’s function does not necessar-
ily imply that the critical temperature dependence or the Jo-
sephson current in N/S multilayers is nonmonotonuous, e.g.,
displaying 0-� oscillations, since the energy dependence of
the Green’s functions is integrated out when obtaining the
critical temperature or critical current. For an F/S junction,
on the other hand, the Cooper pair wave function may retain
its oscillating character even after the energy integration
since the center-of-mass momentum depends on the ex-
change field h.

C. Josephson current

We now evaluate the Josephson current in an SFS junc-
tion for an arbitrary impurity concentration with a setup as
shown in Fig. 7. Denoting the phase at the left �right� super-
conductor as +� �−��, the total phase difference is given by
�=2�. The current through the junction is evaluated by

IJ =
NFS0evF

4
� d� tanh�
�/2�Tr��!̂3eF�ĝR − ĝA�	� �30�

under the assumption of equilibrium distribution functions.
Here, S0 is the effective area of the contact through which the
current flows, while 
=1 /T is the inverse temperature. Ex-
perimentally, one measures the current that flows through the
junction, corresponding to the x direction here. We employ
the following boundary conditions:

A�,F
x=0 = ��S�,F,S�,S
Left�−
x=0,

A�,F
x=d = − ��S�,F,S�,S
Right�−
x=d, �31�

and approximate S�,F= 3 as in Sec. III B, in accordance with
our assumption of a weak proximity effect. After some cal-
culations, we arrive at the following expression for the Jo-
sephson current:

IJ = 4�2NFS0evFIc sin �, with the definition

Ic = �
−�

�

d�
�

Re� s2����1 − G��tanh�
�/2�
i�1 + G��sinh���d� � . �32�

The reader is reminded of the definitions

G� = g/��r�
2 − g2 + r�� ,

r� = 2i�� + �h� − �gimp + 3gsf�/2,

g = �gimp − gsf�/2, gimp�sf� �  imp�sf�
−1 . �33�

Equation �32� is the second of our three main analytical re-
sults in this work. It is probably the most compact way of
expressing the Josephson current for arbitrary exchange
fields and impurity-scattering rates within the quasiclassical
framework. It is thus suitable both for the case of a weak
ferromagnet �such as the alloy Cu1−xNix� and for strong fer-
romagnets �such as Co or Fe� regardless of whether they are
clean or dirty. In experiments performed with such strong
ferromagnets, where the exchange field may be of the order
of 100 meV �)Tc�, the Usadel equation is not valid at the
same time as the clean limit may not be fully reached. In this
case, one has to use an expression valid for the crossover
regime, which emphasizes the importance of Eq. �32�.

Below, we will study how impurity scattering affects both
the width and temperature dependences of the critical cur-
rent, as well as its corresponding 0-� phase diagram. Berg-
eret et al.19 investigated this in the limiting cases of
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of the DOS are seen at finite energies. We have here fixed d /�=3.0 and  =0.2 using the notation of Ref. 41 �here, �=�D /�0 while  denotes
the barrier transparency�.
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FIG. 7. �Color online� Setup for our study of the Josephson
current.
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h imp#1 and h imp)1, while the majority of studies so far
considered exclusively the limiting case of diffusive motion.
The possibility of 0-� oscillations in clean and strong ferro-
magnets was recently studied in Refs. 47 and 48. We here
pay particular attention to the crossover between the ballistic
and diffusive sector, which has not been investigated previ-
ously. To model inelastic scattering, we add a small imagi-
nary number to the quasiparticle energy �→�+ i�, where
�=10−3.

In Fig. 8, we plot the width dependence of the critical
current for a temperature T /Tc=0.2. As seen, increasing im-
purity scattering suppresses the magnitude of the current and
also reduces the oscillation length losc. The dependence of the
latter on impurity scattering is shown explicitly in Fig. 9.
Using the Usadel equation, it is predicted that the oscillation
length of the critical current in the dirty limit should depend
on the impurity-scattering rate like �hlimp�� imp �for a dis-

cussion of the characteristic decay and oscillation lengths in
the clean and dirty limits, see Table I in Ref. 2�. We obtain a
good fit with this in Fig. 9 when gimp)�. For values of gimp
comparable to �, however, the oscillation length saturates at
a finite value. In the ballistic limit, the oscillation length is
known to depend on the exchange field like 1 /h. We have
also confirmed this for several values of h when gimp��.

Also, one notes from Fig. 8 that the decay length of the
current increases with the concentration of impurities. It
should be noted that the measure � used as a length unit in
this context is independent of the impurity-scattering rate
since we are using �=vF /�0. This way, we ensure that the
effects observed are really due to the increased impurity scat-
tering. If we for instance had used the mean-free path
lmfp=vF imp as a measure for the junction width, the scale
would have been different for each value of gimp in Fig. 8.
We also underline that the dirty limit condition is � / lmfp)1,
while the size d of the sample may be either smaller or larger
than � as long as that condition is fulfilled.

In Fig. 10, we pay particular attention to the case
h imp=1 which is inaccessible in the Usadel framework. As
seen, nothing qualitatively new shows up in the d depen-
dence or the T dependence of the critical current as com-
pared to the diffusive limit, although the decay rate is con-
siderably lower. We also investigate how the 0-� phase
diagram of the Josephson junction is affected by impurity
scattering. This is most conveniently plotted in the d-T plane.
In Fig. 11, one observes several features. First, it is clear that
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FIG. 8. �Color online� Plot of the critical current as a function of
junction width d. We have used T /Tc=0.2.
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the area occupied by the 0 and � phases, respectively, dimin-
ishes with increasing gimp, in agreement with the shortened
oscillation length of Fig. 9. Second, it is seen that thermal
0-� transitions are �practically speaking� impossible to ob-
serve for scattering rates satisfying gimp'h. As the scattering
rate is increased, however, the thermal transitions become
possible when gimp)h or equivalently h imp#1. In this re-
gime, the Usadel equation is valid and we obtain consistency
with previous results. At all scattering rates, the width-
induced transitions are possible.

D. Critical temperature

Finally, we investigate F/S/F layers where the critical tem-
perature of the superconductor is sensitive to the relative

orientation of magnetization of the two F layers. This effect
is usually dubbed to a spin-switch effect in the literature. Our
setup is shown in Fig. 12. Tagirov49 was the first to point out
the interesting opportunity to “activate” superconductivity
simply by means of switching the direction of the magneti-
zation in one of the ferromagnetic layers. Since then, a num-
ber of works have elaborated on the spin-switch effect both
experimentally50–52 and theoretically.40,53–55 In particular, a
convincing numerical approach was developed in Ref. 54. So
far, however, almost all theoretical works focused on the
dirty limit, in which the critical temperature may be conve-
niently calculated by using the Usadel equation in the Mat-
subara frequency representation. Although the obtained re-
sults compare well qualitatively with experimental data, an
unsolved factor so far is the discrepancy of 2 orders of mag-
nitude of the predicted effect. Recently, it was proposed and
investigated56 if an asymmetry in the interface transparencies
of the F/S/F junctions could be responsible for this; in effect
one of the interfaces was much less transparent than the
other. The authors of Ref. 56 concluded that this was not the
case. At present, the single ferromagnet F/S/F devices to
have been examined so far have used strong ferromagnets,
which falls outside the range of applicability of the Usadel
equation.50–52 In light of this, it would be interesting to go
beyond the usual treatment with the Usadel equation and
solve the more general Eilenberger equation to investigate
the role of the impurity scattering.

A general analytical solution for arbitrary proximity effect
and barrier transparency is hardly achievable, as pointed out
previously. Nevertheless, it is reasonable to expect that one
may capture the essential physics in the weak proximity-
effect regime. In order to calculate the critical temperature
for the parallel �P� and antiparallel �AP� alignments, we as-
sume that the temperature is close to Tc, which allows us to
write the Green’s function in the superconductor as follows:

g� = � 1 2a�

2b� − 1
� , �34�

since lim�→0c���=1. For the normal part of the Green’s
function matrix, this means that �1−a�b�� / �1+a�b���1,
while for the anomalous Green’s function one thus has
2a� / �1+a�b���2a�. The self-consistency equation for the
superconducting gap reads in general57

� =
NF�

8
Tr�� !̂1 − i!̂2

2
� ̂3� d��ĝK	�, � � 0, �35�

where � is the attractive interaction and ĝK is the Keldysh
part of the Green’s function. For an equilibrium situation
�ĝK= �ĝR− ĝA�tanh�
� /2�� in the weak proximity-effect re-
gime with a temperature very close to Tc, this reduces to
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� =
NF�

8
� d� tanh� �

2Tc
�

0

�

��a�
0 − �b�

0��� . �36�

Once the anomalous Green’s functions �a�
0 ,b�

0� have been
obtained, one may solve Eq. �37� numerically to obtain Tc in
the P and AP configurations. Using boundary conditions ex-
plained below, we solve for the anomalous Green’s functions
in both the ferromagnetic and superconducting regions and
obtain the following equation determining the critical tem-
perature:

1 − NF��
0

�

d� tanh� �

2Tc
��−1�1 − cos�2�x/vF�

− 
�,0

Re� L�
0e02i�x/vF	

	R�
	�1 − e2	i�dS/vF�

4	
	e2	i�dS/vFL�

	R�
	 �� = 0,

�37�

with the cutoff energy �, 	=0, and finally

L�
0 = e0��

LeftdF − G�
Lefte���

LeftdF,

R�
0 = e0��

RightdF − G�
Righte���

RightdF. �38�

Equation �37� is the third of our three main analytical results
in this work. It gives an expression for the critical tempera-
ture in an F/S/F junction for arbitrary exchange fields and
impurity-scattering rates within the framework of quasiclas-
sical theory in the weak proximity-effect regime.

In order to find �a�
0 ,b�

0�, we must introduce proper
boundary conditions at each of the interfaces in the setup
�Fig. 12�. The left ferromagnet is assumed to occupy the
region −dF"x"0, the superconductor is located at
0"x"dS, while the right ferromagnet occupies the space
dS"x"dS+dF. Thus, the ferromagnetic layers are assumed
to have the same thickness dF while the superconductor has
thickness dS. Due to the complexity of the problem, we will
assume rigid boundary conditions at the superconductor/
ferromagnet interfaces, which amount to continuity of the
Green’s function. Although the low-transparency limit is
probably more realistic, it is reasonable to expect qualita-
tively correct results in this approach. Moreover, since we
already assume a temperature close to Tc, the proximity ef-
fect would be almost completely absent if we �in addition�
incorporated tunneling interfaces. In general, high-
transparency interfaces cause a depletion of the supercon-
ducting order parameter near the interface, which means that
one should �strictly speaking� solve for the spatial depletion
of the gap self-consistently. In our approach, we do not in-
corporate this depletion since we are aiming for analytical
results. A full numerical approach would, however, doubt-
lessly improve the accuracy of the results presented below
but at the prize of losing the analytical information.

At the ends of the ferromagnetic layers, we impose
vacuum boundary conditions. In total, the boundary condi-
tions then read

x = − dF:A�,F
Left = 0� ,

x = 0:g�,F
Left = g�,

x = dS:g� = g�,F
Right,

x = dS + dF:A�,F
Right = 0� . �39�

After straightforward calculations, we obtain an expression
for �a�

0 ,b�
0� in the superconductor. A few comments with

regard to the expression Eq. �37� are in order. First, it should
be noted that the expression for the critical temperature in
Eq. �37� depends on the position x in the superconductor
through the spatial dependence of the anomalous Green’s
function. This dependence is of course artificial and a result
of the approximations we have made in the calculations; in a
real experimental sample, Tc is a property for the entire layer
and does not depend on the position in the superconductor.
The reason why we obtain an artificial x dependence in the
expression for the critical temperature is because we have
neglected the spatial modification of the order parameter � in
the layer. Employing a fully self-consistent calculation
would remove the spatial dependence of Tc in the gap equa-
tion. However, for thin superconducting layers dS /�#1, our
approximation is expected to be good. A similar procedure
has been used in several other works which calculated Tc by
means of the Usadel equation. In those works, it was as-
sumed that the anomalous Green’s function in the supercon-
ductor varied very little as long as dS /�#1 was satisfied, and
hence one could ignore the spatial dependence of the Green’s
function once it had been found. More precisely, Tc was
evaluated in the middle of the superconducting region. In our
case, we will use the same approximation since our approach
is analytical in nature. The main contribution to the integral
in Eq. �37� comes from energies �'�, for which the terms
including the coordinate x on the right-hand side of the equa-
tion change very little as long as dS /�#1. We will focus on
the difference between the critical temperature in the P and
AP alignments defined as

�Tc � Tc
AP − Tc

P. �40�

We will normalize all temperatures on Tc
0, which is the bulk

critical temperature of the superconductor in the absence of a
proximity effect. As demanded by consistency, the critical
temperature approaches Tc

0 when dF→0. We choose the cut-
off frequency as � /�0=30.

With the analytical solution in hand, we now present a
study of the critical temperature in the P and AP configura-
tions, investigating in particular the role of impurity scatter-
ing. First, we plot the critical temperature as a function of
ferromagnetic layer thickness with a fixed superconducting
layer thickness of dS /�=0.03 in Fig. 13. Using a supercon-
ductor with �=200 nm, this would correspond to a thickness
dS=6 nm. To ensure the validity of our assumption that the
anomalous Green’s functions vary little with x throughout
the superconducting layer, we plot the critical temperature
both at x /dS=0.50 �symbols� and x /dS=0.01 �dashed lines�.
As seen, the difference is negligible. From Fig. 13, one may
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infer that the critical temperature in the P configuration goes
to zero much faster than in the AP configuration as a function
of the ferromagnetic layer thickness dF. This supports the
notion that the antiparallel configuration favors superconduc-
tivity in the middle layer. The effect of impurity scattering is
seen to suppress the critical temperature in general.

One may understand intuitively why the antiparallel
alignment is favorable compared to the parallel alignment,
since the average exchange field cancels in the former case.
Qualitatively, our results are consistent with the monotonic
decay found for a high barrier transparency when using the
Usadel equation.2 However, a more realistic scenario would
be to invoke low barrier transparency boundary conditions at
the S/F interfaces. Due to the complexity of the problem
upon including an arbitrary amount of impurities, we have
used perfectly transparent interfaces here as a first approxi-
mation. It would nevertheless be quite interesting to extend
this formalism to low-transparency interfaces to investigate
the role of impurity scattering under those circumstances.
Especially, the role of gimp with regard to the re-entrant be-
havior of Tc would be worth investigating. Our analytical
results may serve as a basis for extending this formalism to
low-transparency interfaces in the case of an arbitrary value
for h imp, as opposed to h imp#1 in the Usadel regime.

IV. SUMMARY

We have investigated various aspects of the physics
resulting from the proximity effect in ferromagnet/
superconductor �F/S� bilayers. In contrast to previous works,
which were limited to either the clean or dirty limit, we have
taken into account an arbitrary scattering rate for both non-
magnetic and magnetic impurities. This has allowed us to

access the crossover regime from the ballistic to diffusive
regime of the proximity effect. We have derived analytical
formula for �i� the proximity-induced DOS of an F/S bilayer,
�ii� the Josephson current in an S/F/S junction, and �iii� the
critical temperature of an F/S/F structure. Our results are
valid for an arbitrary ratio of the parameter h imp and are thus
applicable both to weak ferromagnetic alloys as well as Per-
malloys in either the diffusive or clean limit.
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APPENDIX

The Pauli matrices used in this paper are defined as

 1 = �0 1

1 0
�,  2 = �0 − i

i 0
�,  3 = �1 0

0 − 1
� ,

1� = �1 0

0 1
�, 1̂ = �1� 0�

0� 1�
�,  ̂i = � i 0�

0�  i
� ,

!̂1 = � 0�  1

 1 0�
�, !̂2 = � 0� − i 1

i 1 0�
�, !̂3 = �1� 0�

0� − 1�
� .
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We calculate the density of states �DOS� in a diffusive superconducting/ferromagnetic bilayer with a spin-
active interface. We use a self-consistent numerical treatment to make a systematic study of the effects of the
spin dependence of interfacial phase shifts �SDIPS� on the self-consistent superconducting gap and the DOS.
Strikingly, we find that the SDIPS can induce a double gap structure in the DOS of the ferromagnet, even when
the superconducing layer is much thicker than the superconducting coherence length. We thus obtain DOS
curves which have interesting similarities with those of SanGiorgioet al. �Phys. Rev. Lett. 100, 237002
�2008��.
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I. INTRODUCTION

Superconducting/ferromagnetic �S /F� hybrid structures
give rise to a fascinating interplay between two antagonist
electronic orders. The ferromagnetic exchange field Eex
privileges one spin direction while standard superconductiv-
ity favors singlet correlations. This leads to a rich behavior
which has triggered an intense activity in the last years �see,
e.g., Refs. 1 and 2�. In particular, the “superconducting prox-
imity effect,” i.e., the propagation of the superconducting
correlations in ferromagnets, has been widely studied. This
propagation is accompanied by spatial oscillations of the su-
perconducting order parameter because Eex induces an en-
ergy shift between electrons and holes. As a result, one can
build electronic devices with new functionalities, such as Jo-
sephson junctions with negative critical currents,3 which
could find applications in the field of superconducting
circuits.4,5 From a fundamental point of view, it is very in-
structive to study the density of states �DOS� of S /F struc-
tures. So far, this quantity has been less measured6–10 than
critical temperatures or supercurrents. However, this way of
probing the superconducting proximity effect is very inter-
esting because it provides spectroscopic information. One
striking consequence of the spatial oscillations of the order
parameter in the F layer is that the zero-energy DOS can
become larger than in the normal state for certain ferromag-
net thicknesses.6

The behavior of S /F hybrid circuits depends crucially on
the properties of the interfaces between the S and F materi-
als. In this paper, we focus on the case of diffusive structures.
Diffusive S /F interfaces have been initially described with
spin-independent boundary conditions.11 It has been found
that the amplitude of the superconducting proximity effect
directly depends on the tunnel conductance GT of an inter-
face �see, e.g., Ref. 1�. Later, spin-dependent boundary con-
ditions have been introduced in the limit of a weakly polar-
ized ferromagnet.12,13 Due to the spin dependence of
interfacial phase shifts �SDIPS�,14–16 one has to take into
account new conductance parameters G�

F and G�
S at the F and

S sides of the interface, respectively. It has been shown that
G�

F and G�
S can significantly affect the behavior of S /F hy-

brid circuits. For instance, G�
F can shift the spatial oscilla-

tions of the superconducting order parameter.13 More re-
cently, it has been found that G�

S can induce an effective
Zeeman splitting �Z

eff in a superconducting layer with a thick-
ness dS smaller than the superconducting coherence length
scale �S.17 This induces a double gap structure �DGS� in the
S and F densities of states. However, in practice, the regime
dS1�S is frequently reached �see, e.g., Refs. 18 and 19�.
Remarkably, DGSs have been recently observed at the F side
of Ni/Nb bilayers with dS much larger than �S,10 although
Ref. 17 has found that �Z

eff scales with dS
−1 in the low-dS

regime. Whether a DGS persists in the large-dS regime is
therefore an important question, especially in the light of this
recent experiment.

In this paper, we study how G�
F and G�

S modify the DOS
of a S /F bilayer. We use a numerical treatment to explore a
wider parameter range than in previous works. In particular,
we can reach the limit of thick superconductors and larger
values of G�

S . We find that G�
S shifts the spatial oscillations of

the superconducting order parameter in F, similarly to G�
F. It

can also significantly affect the amplitude of the supercon-
ducting gap. When dS increases, the SDIPS-induced DGS
becomes narrower, in agreement with Ref. 17. Nevertheless,
it can surprisingly persist in the large-dS limit. Indeed, in a
distance of the order of �S near the S /F interface, the reso-
nance energies of the S spectrum remain spin dependent be-
cause quantum interferences make the superconducting cor-
relations sensitive to the SDIPS. This behavior is transmitted
to the whole F layer due to the superconducting proximity
effect. We thus obtain, at the F side of S /F bilayers, DOS
curves which have interesting similarities with those of Ref.
10, although dS)�S. More generally, our results could be
useful for interpreting experiments.

This paper is organized as follows. Section II defines the
S /F bilayer problem studied in this paper. Section III ex-
plains the principle of our numerical treatment. Section IV
presents a detailed study of the SDIPS-induced DGS. Section
V shows the effects of the SDIPS on the self-consistent su-
perconducting gap and on the oscillations of the zero-energy
DOS with the thickness of F. Section VI discusses the data
of Ref. 10. Section VII concludes.
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II. DESCRIPTION OF THE S ÕF BILAYER

We consider a diffusive S /F bilayer consisting of a stan-
dard BCS superconductor S for −dS"x"0 and a ferromag-
net F for 0"x"dF. We characterize the normal quasiparticle
excitations and the superconducting condensate of pairs with
the Usadel normal and anomalous Green’s functions Gn,�
=sgn��n�cos��n,�� and Fn,�=sin��n,��, with �n,��x� as the su-
perconducting pairing angle, which depends on the spin di-
rection �� �↑ ,↓�, �n�T�= �2n+1��kBT as the Matsubara fre-
quency, and x as the spatial coordinate.20 The Usadel
equations describing the spatial evolution of �n,� write

�S
2�2�n,�

�x2 =

�n

�0

sin��n,�� −
��x�
�0

cos��n,�� �1�

in S and

�F
2 �2�n,�

�x2 = kn,�
2 sin��n,�� �2�

in F with

kn,� = �2�i� sgn��n� + �
�n
/Eex�� . �3�

In the above equations, �0 denotes the bulk gap of the S
material, �S= ��DS /2�BCS�1/2 is the superconducting coher-
ence length scale, �F= ��DF /Eex�1/2 is the magnetic coher-
ence length scale, DF�S� is the diffusion constant in F�S�, and
Eex is the ferromagnetic exchange field of F. The self-
consistent superconducting gap ��x� occurring in Eq. �1� can
be expressed as

��x�log� T

Tc
0� =

�kBT

2 
���↑,↓�


�n
'(D

�sin��n,�� −
��x�

�n
 � �4�

with (D as the Debye frequency of S, Tc
0=�0 exp�E� /�kB as

the bulk transition temperature of S, kB as the Boltzmann
constant, T as the temperature, and E as the Euler constant.
The above equations must be supplemented with a descrip-
tion of the boundaries of S and F. We use ��n,� /�x 
x=−dS

+

=��n,� /�x 
x=dF
− =0 for the external sides of the bilayer. For

the S /F interface, we use the spin-dependent boundary
conditions12,17

"�F
��n,�

�x
"

x=0+
= �T sin��n,�

F − �n,�
S � + i��

F� sgn��n�sin��n,�
F �

�5�

and

"�S
��n,�

�x
"

x=0−
= ��T sin��n,�

F − �n,�
S � − i��

S� sgn��n�sin��n,�
S �

�6�

with �n,�
F =�n,��x=0+� and �n,�

S =�n,��x=0−�. These equations
involve the reduced conductances �T=GT�F /A�F and ��

F�S�

=G�
F�S��F�S� /A�F�S�, the barrier asymmetry coefficient �

=�S�F /�F�S, the normal-state conductivity �F�S� of the F�S�
material, and the junction area A. Note that we have used a
definition of ��

S which differs from that of Ref. 17 to ensure

a symmetric treatment of ��
F and ��

S in Eqs. �5� and �6�. The
term GT corresponds to the usual tunnel conductance of the
interface. Like GT, the terms G�

F and G�
S can be defined mi-

croscopically from the scattering parameters of the S /F in-
terface �see definitions in Ref. 17�. The terms G�

F and G�
S can

be finite only in case of a SDIPS. The SDIPS results from the
fact that the scattering phases picked up by electrons upon
scattering by the S /F interface can depend on spin due to the
ferromagnetic exchange field or to a spin-dependent interface
potential. Thus, in principle, any kind of S /F interface can
have a finite SDIPS. However, the exact values of G�

F and G�
S

are difficult to predict because they depend on the detailed
microscopic structure of the interface. One possible approach
is to consider G�

F and G�
S as fitting parameters which have to

be determined from proximity-effect measurements. Note
that the derivation of the boundary conditions �5� and �6�
assumes a weak transmission probability per channel �tunnel
limit�, which seems reasonable considering the band-
structure mismatch between most S and F materials. It fur-
thermore assumes that the system is weakly polarized. How-
ever, there is no fundamental constraint on the amplitudes of
GT, G�

F, and G�
S because these parameters consist of a sum of

contributions from numerous conducting channels.
In S /F circuits, long-range triplet correlations �between

equal spins� can occur when the circuit includes several F
electrodes or domains with noncolinear magnetizations.21

Recently, it has been found that this effect can also arise in
S /F circuits with spin-active interfaces due to spin-flip inter-
facial coupling terms which are due, e.g., to some misaligned
local moments at the S /F interface.22 In our work, we con-
sider interfaces which are “spin active” in the sense that the
SDIPS is finite. However, we assume that there is no inter-
facial spin-flip coupling and that F is uniformly polarized.
Hence, we do not obtain any long-range triplet component
with our model. Note that we also disregard spin-flip and
spin-orbit scattering occurring inside the S and F layers �see,
for instance, Refs. 23 and 24�.

III. NUMERICAL TREATMENT OF THE PROBLEM

Equations �1�–�6� have already been solved numerically
with a self-consistent procedure in the case ��

S =��
F =0 �see,

e.g., Ref. 24�. In this paper, we study the cases of finite ��
S

and ��
F using a numerical treatment based on a relaxation

method. This treatment is divided into two steps. We first
calculate the values of ��x� and �n,� self-consistently with a
relaxation method in imaginary times. Then, we determine
the pairing angle ���� ,x� corresponding to the calculated
��x� by using a similar relaxation method in real times, i.e.,
we use �n=−i�+- and sgn��n�=1 in Eqs. �1�–�6�, with as �
the energy and -=0.05�0 as a rate which accounts for in-
elastic processes.25 Finally we obtain the DOS N�� ,x�
=�N��� ,x� at position x by using N��� ,x�
= �N0 /2�Re�cos����� ,x���, with N0 /2 as the normal DOS per
spin direction. Throughout this numerical treatment, we use a
discretized space, with a step of 0.001�S�F� in S�F�. In the
following, we mainly focus on NF���=N�� ,x=dF

−�. Refer-
ence 17 studied analytically S /F bilayers with dS'�S /2,
��

S #1, �T#1, and dF1�F. Our approach allows one to go
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beyond this regime. Note that in Figs. 1–5, the results are
shown for Eex=100�0, (D=601kBT, and kBT=0.1�0.

IV. SDIPS-INDUCED DOUBLE GAP STRUCTURE

A. Variations of the bilayer spectrum with the thickness of S

The left and right top panels of Fig. 1 show the densities
of states N�� ,x=−dS

+� and N�� ,x=0−� at the left and right

sides of the superconductor, respectively, for different values
of dS and the bottom panel of Fig. 1 shows the corresponding
DOS NF��� at the right side of F. For dS=0.35�S, the curves
calculated with our numerical code �black full lines� are in
close agreement with the analytical solution given in Ref. 17
�black dashed lines�. The DOS is similar at the two sides of
S and displays a DGS which reveals the existence of an
effective Zeeman splitting of the form

�Z
eff = 2�0

�S

dS
��

S = ETh
S G�

S

GS
�7�

with ETh
S =�DS /dS

2 as the Thouless energy of the S layer and
GS=�SA /dS as its normal-state conductance. The DGS is
also visible in NF��� due to the proximity effect. It becomes
narrower when dS increases, in agreement with Eq. �7�,
which indicates that �Z

eff scales with dS
−1. For very large val-

ues of dS, the DOS N�� ,x=−dS
+� at the left side of S tends to

the bulk value Re�cos��0�����, with �0���=arctan��0 / �−i�
+-��. However, a DGS remains clearly visible in NF���, a
result which is quite counterintuitive considering the low-ds
expression Eq. �7� �see bottom panel, full line�. Note that in
the S layer, with the parameters of Fig. 1, dS)�S and �=0
��=�0�, N�� ,x� decays from its bulk value to N�� ,x=0−� in
a distance on the order of �S �2�S� near the interface �not
shown�. In the large-dS limit, the DOS N�� ,x=0−� at the left
side of the S /F interface does not show a clear DGS for the

FIG. 1. �Color online� Densities of states N�� ,x=−dS
+� �top left

panel� and N�� ,x=0−� �top right panel� at the left and right sides of
the superconductor, respectively, and density of states NF��� at the
right side of the ferromagnet �bottom panel� plotted vs � for differ-
ent values of dS. The full lines correspond to our numerical results.
The black dashed lines correspond to the analytical predictions of
Ref. 17 for dS /�S=0.35.

FIG. 2. �Color online� Density of states NF��� at the right side of
the ferromagnet plotted vs � for different values of dF �left panel�
and different values of ��

S �right panel�. In the left panel, for
dF /�F=1.6, we have multiplied �NF���−N0� /N0 by a factor of 50
for visibility of the curve.

FIG. 3. �Color online� Density of states NF��� at the right side of
the ferromagnet plotted vs � for ��

S =0 �left panel� and ��
S finite

�right panel�. The solid lines are calculated from Eqs. �8�–�11� and
the black dotted lines correspond to the self-consistent numerical
resolution of Eqs. �1�–�6�.

FIG. 4. Self-consistent superconducting gap ��x� vs the spatial
coordinate x for different values of � �left panel� and ��

S �right
panel�.
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weak value of ��
S used in Fig. 1 because of the strong DOS

peak at �=�0. However, a DGS would appear more clearly
in N�� ,x=0−� for larger values of ��

S , e.g., using ��
S =0.4 �not

shown�. The DGS thus seems to persist at large values of dS
due to an effect which involves a S area with thickness ��S
near the S /F interface and the whole F.

B. Variations of the bilayer spectrum with the thickness of F

Due to the ferromagnetic exchange field Eex, the zero-
energy DOS NF��=0� oscillates around its normal-state
value N0 when dF increases.6,26–28 In the large-dS limit, we
find that the DGS can occur at the F side for both an ordinary
�NF��=0��N0� and a reversed �NF��=0�"N0� DOS. How-
ever, its visibility varies with dF like in the limit dS'�S /2 of
Ref. 17. Figure 2, left panel, shows NF versus � for different
values of dF and dS /�S=5. From dF=0.53�F to 0.58�F,
NF��=0�−N0 is positive and the visibility of the DGS in-
creases �see black, blue, and green full lines�. For dF=�F,
NF��=0�−N0 is negative and the DGS is not visible anymore
�see red full line�. For dF=1.6�F, the DGS is visible again,
with both the inner and outer peaks of the DOS inverted due
to NF��=0�−N0"0 �see dashed line�.

C. Variations of the bilayer spectrum with G	
S

In the parameters range investigated by us �with in par-
ticular Eex)�, 0.35'dS /�S'10, and 0.4'dF /�F'4�, no
DGS occurs when ��

S =0. The DGS studied in this paper thus
seems to be a direct consequence of ��

S �0 for large dS /�S as

well as small dS /�S. Figure 2, right panel, shows the varia-
tions of NF��� with ��

S , for a constant value of dF. For ��
S

=0, no DGS appears. For a very small ��
S �see full line,

corresponding to ��
S =0.2 or G�

S =GT�, NF��� shows a change
in slope which corresponds to a smoothed DGS, near �=�0
�from Sec. IV B, this DGS occurs only for certain values of
dF�. When ��

S becomes sufficiently large, NF��� shows a
clear DGS, i.e., two peaks, one above and one below �=�0,
while a local minimum is visible for ���0. The distance
between the two peaks of NF��� increases with ��

S . In Fig. 2,
when ��

S becomes too large ���
S 10.8�, the sign of NF��

=0�−N0 changes. This suggests that ��
S does not only induce

DGSs but also shifts the oscillations of NF��� with dF. This
last effect will be investigated in more details for �=0 in
Sec. V. With the parameters of Fig. 2, the DGS is not visible
anymore when ��

S becomes larger than approximately 1. In
the general case, this threshold strongly depends on the dif-
ferent parameters characterizing the S /F bilayer.

D. Analytical description of the thick superconductor limit

In order to have a better insight on the persistence of the
SDIPS-induced DGS at large values of dS, we provide in this
section an analytical description of the case where S is semi-
infinite. For simplicity, we assume that the superconducting
gap is only weakly affected by the presence of the F layer,
i.e., ��x�=�0. We furthermore assume that the proximity ef-
fect is weak, i.e., �n,��x�F�#1 and �n,��x�S�−�n

0#1, with
�n

0=arctan��0 / 
�n
�. In this case, the Usadel equations �1�
and �2� lead to

�n,��x� = �n,�
F cosh� �x − dF�kn,�

�F
�� cosh�dFkn,�

�F
� �8�

for x�F and

�n,��x� = �n
0 + ��n,�

S exp� x�n

�S
� �9�

for x�S, with �n= �1+ ��n /�0�2�1/4. We have introduced in
the above equations ��n,�

S =�n,��x=0−�−�n
0 and �n,�

F =�n,��x
=0+�. The linearization of the boundary conditions �5� and
�6� with respect to these two quantities leads to

�n,�
F =

�T�sin��n
0� + cos��n

0����
S�

�T cos��n
0� + i��

F� sgn��n� + Bn,�

�10�

and

��n,�
S = −

��T + i��
S� sgn��n�

�n
3 + ���T + i��

S� sgn��n��

�n

�0

�11�

with Bn,�=kn,� tanh�dFkn,� /�F�. Importantly, Eqs. �8�–�11�
are valid provided ��n,�

S #1 and �n,�
F #1, which requires �T

#1, ��
S #1, and dF1�F. We have used these hypotheses to

simplify Eq. �11�. The validity of the approximation ��x�
=�0 will be discussed in Sec. V.

Figure 3 shows NF��� calculated from the analytical con-
tinuation of Eqs. �8�–�11� �black dashed lines� and from our
numerical code �red full lines� for a weak value of � and

FIG. 5. �Color online� Zero-energy density of states NF��=0� at
the right side of F versus the thickness dF of F. The density of
states calculated numerically is shown with dots. The full and
empty dots correspond to NF��=0�"0 and NF��=0��0, respec-
tively. The density of states given by Eqs. �8�–�11� is shown with
black dashed lines. Panel �a� corresponds to a case with no SDIPS
���

F =��
S =0�. Panels �b� and �c� show the effect of a finite ��

F. Panels
�d� and �e� show the effect of a finite ��

S , in comparison with panel
�c� where ��

S =0. With the parameters used here, Eqs. �8�–�11� are in
agreement with our numerical code only when ��

S =0.
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��
S =0 �left panel� or ��

S �0 �right panel�. The two calcula-
tions are in relatively good agreement.29 For the parameters
used in Fig. 3, we have checked numerically that the ap-
proximation ��x�=�0 gives results in very good agreement
with the full resolution of Eqs. �1�–�6�. At ���0, small dis-
crepancies arise between the predictions of the numerical
code and of Eqs. �8�–�11� due to resonance effects which
make ��n,�

S and �n,�
F larger than for �=0 or �)�0. Equations

�8�–�11� allow one to recover the fact that a DGS can appear
in NF��� due to ��

S �0 �right panel�. In the limit dS)�S, the
pairing angle of the system cannot be put under the form
���x ,��=�(x ,�− ���Z

eff /2�), contrarily to what has been
found for dS'�S /2. Therefore, the notion of SDIPS-induced
effective Zeeman splitting is not valid for thick S layers.
Nevertheless, from Eqs. �9� and �11�, near the S /F interface,
the resonance energies of the S spectrum can be spin depen-
dent because quantum interferences make the superconduct-
ing correlations sensitive to the SDIPS on a distance on the
order of �S /�n near the S /F interface. From Eqs. �8� and
�10�, this behavior is transmitted to the whole F layer due to
the proximity effect. From Eq. �11�, the energy scale related
to the occurrence of the DGS has the form

�SDIPS = 2�0
G�

S

GS
˜

�12�

with GS
˜=�SA /�S as the normal-state conductance of a slab of

thickness �S of the S material. Interestingly, this expression
has a form similar to Eq. �7�, with dS replaced with �S �one

has 2�0=�DS /�S
2=ETh

S̃ �. Note that for a ballistic S /F single-
channel contact, the SDIPS also produces a spin-dependent
resonance effect.30 However, in this case, one does not obtain
a DGS but rather a subgap resonance in the conductance and
the zero-frequency noise of the system.

V. SELF-CONSISTENT SUPERCONDUCTING GAP
AND ZERO-ENERGY DOS OF F

For completeness, we now discuss the effects of the
SDIPS on the self-consistent superconducting gap ��x� and
the zero-energy DOS NF��=0� versus dF. It is already known
that the amplitude of ��x� decreases when �T or � increases,
similarly to what happens in a S/normal-metal bilayer.31 Fig-
ure 4 compares the effects of � �left panel� and ��

S �right
panel� on ��x� �it only shows the effect of ��

S �0, but the
effect of ��

S "0 is similar�. One can see that ��x� signifi-
cantly decreases when 
��

S 
 increases. Similarly, in a clean
superconductor connected to a ferromagnetic insulator �FI�,
��x� has been predicted to decrease due to the spin depen-
dence of the reflection phases against FI.32 In contrast, in the
regime of parameters investigated by us, ��

F has a negligible
effect on the value of ��x� because it does not occur directly
in boundary condition �11� at the S side of the interface.
From this brief study of ��x�, we conclude that the approxi-
mation ��x�=�0 used in Sec. IV D is valid only for suffi-
ciently small values of �T, �, and ��

S .
Figure 5 presents the effects of ��

F and ��
S on the varia-

tions of NF��=0� with dF. The DOS calculated numerically
is shown with symbols and the DOS given by Eqs. �8�–�11�

is shown with full lines. In panels �a�–�c�, we have used
��

S =0, so that the two calculations are in close agreement. In
panels �d� and �e�, the two calculations strongly differ be-
cause ��

S is too large for the hypotheses leading to Eqs.
�8�–�11� to be valid. We recover the fact that, in the regime
dF1�F, NF��=0� shows exponentially damped oscillations
with dF.6,26 In the regime dF'�F, the oscillations of NF��
=0� with dF are less regular. This can be understood from the
analytical description of Sec. IV D. For dF1�F, one has
Bn,��kn,�, so that NF��=0� depends on dF through the
cosh�dFkn,� /�F� term of Eq. �8� only. For dF'�F, Bn,� and
thus �n,�

F strongly depend on dF, which complicates the varia-
tions of NF��=0� with dF and leads to more irregular oscil-
lations. Reference 13 already showed that ��

F can shift the
oscillations of NF��=0� with dF. Panels �b� and �c� confirm
this result and also show that a positive �negative� ��

F de-
creases �increases� the amplitude of NF��=0�. From panels
�d� and �e�, ��

S can also significantly shift the oscillations of
NF��=0� with dF, in agreement with Fig. 2, right panel. For
the parameters used in Fig. 5, ��

S does not modify spectacu-
larly the amplitude of NF���. For larger values of 
��

S 
, the
amplitude of the superconducting proximity effect would
significantly decrease due to a reduction in ��x� �not shown�.

VI. DISCUSSION ON THE DATA OF REFERENCE 10

We now consider the DOS measurements realized by San-
Giorgio et al.10 for Nb/Ni bilayers with dS=50 nm. From
Ref. 18 which considers samples fabricated by the same
team, one has �S �10 nm, so that dS /�S �5. However,
double gap structures have been observed by SanGiorgio et
al., which motivates a comparison with our model.

Figure 6 compares the data measured for dF=1.5 nm
�black squares� with our numerical calculation �full line�.
Our calculation reproduces almost quantitatively the experi-
mental curve. We have used dF=1.5 nm, dS /�S=5, and T
=280 mK, in agreement with Refs. 10 and 18. We have also
used the exchange field Eex=78 meV, estimated by Ref. 10,

FIG. 6. �Color online� Comparison between the data of SanGior-
gio et al. �Ref. 10� for ds=1.5 nm and our numerical calculation
with �0=1.3 meV, Eex=78 meV, kBT=280 mK, dF /�F=0.53,
dS /�S=5, �T=0.06, ��

F =−1.1, ��
S =0.5, �=2, TD=275 K, and -

=0.025�0.
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and the Debye temperature TD=275 K of Nb, taken from
Ref. 33. We have assumed �F=2.83 nm, �T=0.06, ��

F =
−1.1, ��

S =0.5, and -=0.025�0. Note that from Ref. 18, one
has �S

−1 �15.9 �( cm and �F
−1 �9.7 �( cm, so that one

should have �=�S�F /�F�S �2.9 with the above values of �S
and �F. In Fig. 6, we have used a value �=2, which is in
relatively good agreement with this estimate. The values of
�T, ��

F, ��
S , and � used in the fit yield G�

F /GT �18 and
G�

S /GT �4. A theoretical prediction of these ratios is very
difficult because they depend on the detailed microscopic
structure of the Nb/Ni interface. However, with a simple
delta function barrier model, it is already possible to find
situations where G�

S and G�
F are larger than GT �see Appendix

A and Fig. 6 of Ref. 17�. Therefore, we think that the SDIPS
parameters used by us are possible.

We cannot reproduce quantitatively the data obtained by
SanGiorgio et al. for all values of dF with the same set of
parameters as for dF=1.5 nm. We think that this might be
due to the fact that some characteristics of the samples such
as, e.g., Eex and thus �F, ��

F, ��
S , and � can vary with dF.34 In

the data of SanGiorgio et al., from dF=1.5 nm to dF
=3.0 nm, the distance between the two peaks of the DGS
increases like in our model �see Fig. 2, left panel�. However,
the outer peak of the DGS remains very close to ���0,
which seems difficult to reproduce with our model. Note that
in Ref. 10, for dF=3.5 nm, the outer peaks of the DOS are
inverted, whereas a sharp dip occurs at low energies, which
can give the impression that the inner peaks of the DOS
persist but are not inverted, in contrast to what we find �see
Sec. IV B�. However, we think that the observation of this
zero-bias dip is not totally reliable. Indeed, SanGiorgio et al.
explained that, in the DOS of their thickest samples �for dF
�3.5 nm�, “the zero-bias peak is due to the steep voltage
dependence of the background conductance and is therefore
a by-product of the data normalization procedure.” The zero-
bias dip of the dF=3.5 nm sample occurs on the same en-
ergy scale as these zero-bias peaks, and it goes together with
a strange zero-bias singularity similar to those shown by the
thickest samples. Therefore, we are not sure whether a

proper interpretation of the data of Ref. 10 must take into
account this feature. Reference 35 suggests that the DGS
observed by SanGiorgio et al. could be due to triplet corre-
lations. However, it is difficult to know whether this inter-
pretation can be more satisfying than ours because Ref. 35
does not show any quantitative interpretation of the data and
does not discuss, for instance, the evolution of the inner and
outer peak positions with dF.

VII. CONCLUSION

In summary, we have calculated the density of states
�DOS� in a diffusive S /F bilayer with a spin-active interface.
We have used a self-consistent numerical treatment to make
a systematic study of the effects of the SDIPS. We charac-
terize the SDIPS with two conductance-like parameters G�

S

and G�
F, which occur in the boundary conditions describing

the S and F sides of the interface, respectively. We find that
the amplitude of ��x� significantly decreases if G�

S is too
strong, whereas it is almost insensitive to G�

F. In contrast,
both G�

S and G�
F can shift the oscillations of the zero-energy

DOS of F with the thickness of F. Remarkably, we find that
the SDIPS can produce a double gap structure in the DOS of
F, even when the S layer is much thicker than the supercon-
ducting coherence length. This leads to DOS curves which
have striking similarities with those of Ref. 13. More gener-
ally, our results could be useful for interpreting future experi-
ments on superconducting/ferromagnetic diffusive hybrid
structures.
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We present a study of the proximity effect and the inverse proximity effect in a superconductor 
 ferromagnet
bilayer, taking into account several important factors which mostly have been ignored in the literature so far.
These include spin-dependent interfacial phase shifts �spin-DIPS� and inhomogeneous textures of the magne-
tization in the ferromagnetic layer, both of which are expected to be present in real experimental samples. Our
approach is numerical, allowing us to access the full proximity effect regime. In Sec. II of this work, we study
the superconducting proximity effect and the resulting local density of states in an inhomogeneous ferromagnet
with a nontrivial magnetic texture. Our two main results in Sec. II are a study of how Bloch and Néel domain
walls affect the proximity-induced superconducting correlations and a study of the superconducting proximity
effect in a conical ferromagnet. The latter topic should be relevant for the ferromagnet Ho, which was recently
used in an experiment to demonstrate the possibility to generate and sustain long-range triplet superconducting
correlations. In Sec. III of this work, we investigate the inverse proximity effect with emphasis on the induced
magnetization in the superconducting region as a result of the “leakage” from the ferromagnetic region. It is
shown that the presence of spin-DIPS modifies conclusions obtained previously in the literature with regard to
the induced magnetization in the superconducting region. In particular, we find that the spin-DIPS can trigger
an antiscreening effect of the magnetization, leading to an induced magnetization in the superconducting region
with the same sign as in the proximity ferromagnet.

DOI: 10.1103/PhysRevB.79.054523 PACS number�s�: 74.20.Rp, 74.50.�r

I. INTRODUCTION

The interplay between ferromagnetism and superconduc-
tivity has over the past decade attracted much interest from
the condensed-matter physics community. Research on
superconductor 
 ferromagnet �S 
F� heterostructures contin-
ues to benefit from great interest, which is fueled by the
exciting phenomena arising from a fundamental physics
point of view in addition to the prospect of harvesting func-
tional devices in low-temperature nanotechnology.

There is currently intense activity in this particular re-
search area �see, e.g., Refs. 1 and 2 and references therein�.
The interest in S 
F hybrid structures was boosted at the
beginning of this millenium, primarily due to the theoretical
proposition of proximity-induced odd-frequency correla-
tions3 and the experimental observation of 0-� oscillations
in S
F
S Josephson junctions.4 A large amount of work has
been devoted to odd-frequency pairing �see, e.g., Refs. 5–21�
and the physics of 0-� oscillations �see, e.g., Refs. 22–38� in
S 
F heterostructures. The concept of odd-frequency pairing
dates back to Refs. 39–42 and was recently re-examined in
Ref. 43.

So far, the proximity effect has received much more at-
tention than the inverse proximity effect. In S 
F bilayers, the
proximity effect causes superconducting correlations to pen-
etrate into the ferromagnetic region.1 Similarly, the inverse
proximity effect induces ferromagnetic correlations in the su-
perconducting region near the interface region.44–47,76 Often,
the bulk solution is employed in the superconducting region,
such that both the induced magnetic correlations and the self-
consistency of the superconducting order parameter are ne-
glected. However, it was shown in Ref. 48 that the induction

of an odd-frequency triplet component would lead to a finite
magnetization in the superconducting region close to the S 
F
interface. Prior to this finding, some experimental groups had
reported findings which pointed toward precisely such a
phenomenon.49,50 Very recently, Xia et al.51 presented an ex-
perimental observation of the inverse proximity effect in Al/
�Co-Pd� and Pd/Ni bilayers by measuring the magneto-
optical Kerr effect. Their data could be roughly fitted to the
predictions of Ref. 48, and other experiments44,45,49,50,52 have
also addressed aspects of the inverse proximity effect S 
F
bilayers.

In Ref. 53, the authors investigated the proximity-induced
magnetization in the superconducting region of a S 
F bilayer
and found that the magnetization would oscillate in the clean
limit �see also Ref. 54� and decay monotonously in the dif-
fusive limit, with a sign opposite to the magnetization in the
bulk of the ferromagnet. The reason for this screening behav-
ior in the superconductor was attributed to a scenario in
which the spin-↑ electron of a Cooper pair near the interface
would prefer to be located in the ferromagnetic region, while
its spin-↓ partner would remain in the superconducting re-
gion, thus creating a magnetization with an opposite sign
compared to the ferromagnet. By considering the weak-
proximity effect regime in the diffusive limit, both Refs. 48
and 53 arrived at this conclusion. However, it would be de-
sirable to go beyond the approximation of a weak-proximity
effect employed in previous work to investigate if this may
alter how the induced magnetization in the superconducting
region behaves.

Moreover, none of the above works on the inverse prox-
imity effect have properly included an important property
which is intrinsic to S 
F interfaces, namely, the spin-
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dependent interfacial phase shifts �spin-DIPS� that occur at
the interface. The spin-DIPS have been shown to exert an
important influence on various experimentally observable
quantities in S 
F bilayers28,55,56 and should be taken into
account. For instance, the anomalous double-peak structure
in the local density of states �LDOS� in a diffusive S 
F bi-
layer reported very recently by San Giorgio et al.57 was re-
produced theoretically in Ref. 58 by using a numerical solu-
tion of the Usadel equation when including the effect of the
spin-DIPS.

So far, due to the complexity of the problem, several as-
sumptions have been usually made when treating S 
F hybrid
structures. For instance, since the quasiclassical equations
become quite complicated for inhomogeneous ferromagnets,
they have been linearized in most of the previous works.
However, presently, the direction of this research field tends
toward a more realistic description of S 
F structures than the
simplified models that mostly have been employed up to
now. It is obvious that this is a necessary step in order to
reconcile the theoretical predictions with experimentally ob-
served data.

Our motivation for this work is to examine the effect of
inhomogeneous magnetization textures and spin-DIPS on
both the proximity effect and the inverse proximity effect in
S 
F bilayers. This is directly relevant to two recent experi-
mental studies51,59 which studied the superconducting prox-
imity effect in the conical ferromagnet Ho and the inverse
proximity effect in the superconducting region of a S 
F bi-
layer, respectively. As we shall show in this work, nontrivial
magnetization textures and spin-DIPS have profound influ-
ence on the physical properties of S 
F bilayers, suggesting
that their role must be taken seriously.

We divide this work into two parts which are devoted to
the proximity effect in the ferromagnetic region �Sec. II� and
the inverse proximity effect in the superconducting region
�Sec. III�. In Sec. II, we present results where we treat the
role of magnetic properties at the interface and the possibility
of inhomogeneous magnetization thoroughly. We study the
proximity-induced density of states �DOS� in a S 
F bilayer
which takes into account the presence of spin-DIPS at the
interface and also the possibility of having a nontrivial mag-
netization texture �such as a domain wall� in the ferromag-
netic region. In order to access the full proximity effect re-
gime, we do not restrict ourselves to any limiting cases.
Rather, we employ a full numerical solution of the DOS by
means of the quasiclassical theory of superconductivity. We
apply our theory to two cases of ferromagnets with an inho-
mogeneous magnetic texture, namely, on one hand ferromag-
nets with domain walls and on the other hand conical ferro-
magnets.

In Sec. III, we study numerically and self-consistently the
inverse proximity effect in a S 
F bilayer of finite size upon
taking properly into account the spin-DIPS that occurs at the
S 
F interface. Our main objective is to study the influence
exerted on the inverse proximity effect by the spin-DIPS.
Surprisingly, we find that the spin-DIPS may invert the sign
of the proximity-induced magnetization in the superconduct-
ing layer compared to the predictions of Refs. 48 and 53.
Consequently, the spin-DIPS can trigger an antiscreening ef-
fect of the magnetization, which suggests that their role must

be taken seriously in any attempt to construct a theory for the
inverse proximity effect in S 
F bilayers. We also explain the
basic mechanism behind the sign-inversion induced by the
spin-DIPS.

This paper is organized as follows. In Sec. II A, we
present the theoretical framework we use to perform our
computations in Sec. II, namely, the quasiclassical theory of
superconductivity in the diffusive limit for an inhomoge-
neous ferromagnet using the Ricatti parametrization. In Sec.
II B, we present our numerical results for proximity-effect
and the local density of states for the two cases of ferromag-
nets with domain walls and with conical magnetic textures.
In Sec. II C, we present a discussion of our results obtained
in Sec. II. Moving on to Sec. III of this work, we introduce a
slightly different notation and parametrization for the
Green’s function in Sec. III A, which is easier to implement
for a homogeneous S 
F bilayer. In Sec. III B, we present our
results for the inverse proximity effect manifested through an
induced magnetization in the superconducting region and in
particular how it is influenced by the presence of spin-DIPS.
The results for Sec. III are discussed in Sec. III C, and we
conclude with final remarks in Sec. IV. Throughout the pa-

per, we will use boldface notation for three-vectors, . . .ˆ for
4�4 matrices and . . .� for 2�2 matrices.

II. PROXIMITY EFFECT IN A S #F BILAYER WITH AN
INHOMOGENEOUS MAGNETIZATION TEXTURE

A. Theoretical framework

In the first part of our work, we shall consider the prox-
imity effect in the ferromagnetic region of an S 
F bilayer
when the magnetization texture is inhomogeneous. This is
the case, e.g., in the presence of a domain-wall structure or
conical ferromagnetism, which both will be treated below.
We will use the quasiclassical theory of superconductivity60

and consider the diffusive limit described by the Usadel
equation.61

1. Quasiclassical theory and Green’s functions

To account for an inhomogeneous magnetization in the
ferromagnet, it is convenient to parametrize the Green’s
function to obtain a simpler set of equations to solve. One
possibility is to use a generalized �-parametrization62 as fol-
lows:

ĝ = �M0c�0 + �M · �� �s !�
+

!�
− − M0c�0 − �M · �� ��s

� ,

!�
0 = c�i�Mz�2 − My�3� 0 Mx�0� 0 M0�1s , �1�

where � j are the identity �j=0� and Pauli �j=1,2 ,3� matri-
ces and

�� = ��1,�2,�3� . �2�

Also, s�sinh��� and c�cosh���. The Green’s function is
then completely determined by the complex functions �, M0,
and M with the additional constraint M0

2−M2=1 in order to

satisfy ĝ2= 1̂.
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However, for our purpose we find it both more convenient
and elegant to use a Ricatti-parametrization of the Green’s
function63,64 as follows:

ĝ = �N� �1� − ��̃� 2N� ��
2Ñ� �̃� Ñ� �− 1� + �̃��

� . �3�

This parametrization facilitates the numerical computations

and also ensures that ĝ2= 1̂. The unknown functions �� and
�̃� are key elements in this parametrization of the Green’s
function and will be solved for below. Here, . . .� denotes a
2�2 matrix and

N� = �1 + ��̃�−1Ñ� = �1 + �̃��−1. �4�

In order to calculate the Green’s function ĝ, we need to
solve the Usadel equation with appropriate boundary condi-
tions at x=0 and x=dF. The two natural length scales asso-
ciated with each of the long-range orders are the supercon-
ducting and ferromagnetic coherence lengths,

�S = �DS/�0, �F = �DF/h0, �5�

where �0 and h0 denote the bulk values of the gap and the
exchange field. We set DF=DS=D for simplicity. The Usadel
equation reads

D � �ĝ � ĝ� + i��!̂3 + diag�h · �� ,�h · �� �T�, ĝ� = 0 �6�

and is supplemented with the boundary conditions,28,55

2�dFĝ � ĝ = �ĝBCS, ĝ� + i�G�/GT��diag� 3, 3�, ĝ� �7�

at x=0 where the interface is spin polarized along the z axis

and ĝ� ĝ=0̂ at x=dF. Here, �� �
�x , and we define

� = RB/RF �8�

as the ratio between the resistance of the barrier region and
the resistance in the ferromagnetic film �note that RB=GT

−1�.
The barrier conductance is given by28

GT = GQ
n

N

Tn, �9�

where GQ=e /h and Tn is the transmission coefficient for
channel n. The boundary conditions Eqs. �22� and �23� are
derived under the assumption that Tn#1, but this does not
necessarily mean that the barrier conductance is small since
there may be a large total number of channels N through
which transport may take place. The parameter G� describes
the spin-DIPS taking place at the F side of the interface.65

Since its exact value depends on the microscopic properties
of the barrier region, they are here treated phenomenologi-
cally. We finally underline that the boundary conditions
above are valid for planar diffusive contacts.

Since we employ a numerical solution, we have access to
study the full proximity effect regime and also an, in prin-
ciple, arbitrary spatial modulation h=h�x� of the exchange
field. This is desirable in order to clarify effects associated
with nonuniform ferromagnets, such as spiral magnetic or-

dering or the presence of domain walls. Inserting Eq. �3� into
Eq. �21�, we obtain the transport equation for the unknown
function �� �and hence �̃��,

D��2�� + ���� �F̃� ���� �� + i�2��� + h · ��� �� − �� �� ��� = 0,

�10�

with F̃� =−2Ñ� �̃� . The boundary condition at x=0 reads as

2�dF�x�� = �2c�� − si 2 + �� �si 2��� � + i�G�/GT�� 3�� − �� 3� ,

�11�

while �x�� =0 at x=d. For �̃� , we obtain

D��2�̃� + ���̃� �F� ���̃� �� + i�2��̃� + h · ��̃� �� − �� ��̃� �� = 0,

�12�

with the corresponding boundary condition,

2�dF�x�̃� = �2c�̃� − si 2 + �̃� �si 2��̃� � − i�G�/GT�� 3�̃� − �̃� 3� .

�13�

We have defined F� =−2N� �� . Note that we use the bulk solu-
tion in the superconducting region, which is a good approxi-
mation when assuming that the superconducting region is
much less disordered than the ferromagnet and when the in-
terface transparency is small, as considered here �see detailed
discussion in Sec. II C�. One finds that

�� BCS = �̃� BCS = � 0 s/�1 + c�
− s/�1 + c� 0

� . �14�

The normalized DOS is finally evaluated by

N���/N0 = Tr�Re�N� �1 − ��̃���/2. �15�

In what follows, we will omit the effect of spin-flip and
spin-orbit scattering to reduce the number of parameters in
the problem. In comparison with real experimental data,
however, the effects of these pair-breaking mechanisms are
easily included in our framework by adding two terms �̂sf
and �̂so in Eq. �21� �see, e.g., Ref. 20 for a detailed treat-
ment�. In this paper, we will focus on the role of the phase
shifts obtained at the interface due to the spin-split bands and
the inhomogeneity of the exchange field in the ferromagnet.

2. Inhomogeneous magnetization

We will consider three types of inhomogeneous magnetic
structures: Bloch walls, Néel walls, and conical ferromagnets
�see Fig. 1�. An example of the latter is the rare-earth heavy
fermion elemental magnet Ho although we hasten to add that
while Ho features strong ferromagnetism, we will consider
the weakly ferromagnetic case. These structures are shown in
Fig. 1 and are to be contrasted with the usual assumption of
a homogeneous exchange field in the ferromagnetic region.
For the first two cases, the domain wall has a width dW and is
taken to be located at the center of the ferromagnetic region
�x=dF /2�. The Bloch wall is thus modeled by

h = h�cos �ŷ + sin �ẑ� , �16�

while ŷ→ x̂ for the Néel wall. Here, we have defined
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� = − arctan��x − dF/2�/dW� , �17�

similarly to Ref. 64.
In the case of a conical ferromagnet, cf. Fig. 1, the mag-

netic moment belongs to a cone. In Ho, the opening angle is
	=4� /9 and the magnetic moment then rotates like a helix
along the c axis with a turning angle �=� /6 per interatomic
layer with distance a �see Ref. 59 for a further discussion�.
Above 21 K, the conical ferromagnetic structure transforms
into a spiral antiferromagnetic structure. Instead of using an
abrupt change in the magnetization direction at each inter-
atomic layer, we will model this transition smoothly since
the effective field felt between the layers probably should be
a weighed superposition of the exchange fields from the two
closest layers. In the ferromagnetic phase, the spatial varia-
tion in the exchange field may thus be written as

h = h�cos 	x̂ + sin 	�sin��x

a
�ŷ + cos��x

a
�ẑ�� . �18�

B. Results

In what follows, we will choose the parameters of our
model, corresponding to a realistic experimental setup in or-
der to make our study directly relevant for experiments on
S 
F bilayers. The numerical treatment makes use of built-in
routines in MATLAB for a two-point boundary value problem
for an ordinary differential equation. More specifically, we
use a finite difference code which implements a three-stage
Lobatto-Illa formula. An initial guess for the Ricatti matrices
is supplied with fixed boundary conditions, and the Usadel
equation is then solved in the entire ferromagnetic region.

In Sec. II B 1, we will study the effect of domain walls in
weak ferromagnets. Weak ferromagnetic alloys such as PdNi

or CuNi are commonly employed in experiments, and the
corresponding exchange field h depends on the concentration
of Ni, reaching up to tens of meV. The modification of the
DOS is most dramatic in the case when the energy scales for
the superconductivity and the ferromagnetism are of the
same order, h��. This scenario appears to have been real-
ized in Ref. 4 where Cu1−xNix, with x=0.44 was used. The
diffusion constant in the weakly ferromagnetic alloys is usu-
ally of order D�10−4 m2 /s. The superconducting region is
considered to act as a reservoir with thickness dS)�S, while
we fix the thickness of the ferromagnetic region at dF /�S
=0.5. This typically corresponds to a thickness of the ferro-
magnetic layer �10 nm. The remaining parameters are then
the domain-wall thickness dW and the term G� accounting
for the spin-dependent phase shifts at the interface. Below,
we will contrast a thin domain wall �dW#dF� with a thick
domain wall �dW �dF� and investigate the role of G�. In
what follows, we choose �=5 corresponding to a situation
where RB)RF.

In Sec. II B 2, we will study conical ferromagnetism, of a
similar kind to that realized in the heavy rare-earth element
holmium �Ho� under certain conditions. Recently, it was
strongly suggested by experimental data that a long-range
triplet superconducting component was generated and sus-
tained in a superconductor 
Ho proximity structure.59 The ex-
perimental samples used in Ref. 59 did not appear to fall into
the diffusive motion regime since Ho is a strong ferromag-
net. More specifically, it was estimated that h �10 in Ref.
59, suggesting that one would have to revert to the more
general Eilenberger equation in order to study the proximity
effect in Ho. In this work, we will study a conical ferromag-
net under the assumption that the diffusive limit is reached.
For the actual structure of the magnetization, we choose the
same parameters for Ho as those reported in Ref. 59: 	
=4� /9, �=� /6, and a=0.526 nm �see Fig. 1�. However, we
choose the exchange field much weaker than in Ho, in order
to justify the Usadel approach. Thus, our results may not be
directly applicable to Ho. While in Ref. 59 it was estimated
that h�1 eV, corresponding to an exchange field compa-
rable in magnitude with the Fermi energy, we choose h /�0
=5 in our study of conical ferromagnetism to ensure the
validity of the quasiclassical approach. Assuming that �S
=20 nm, which should be reasonable for a moderately dis-
ordered conventional superconductor, we obtain a /�S
=0.0263.

1. Domain wall

Before proceeding to a dissemination of our results, it
should be noted that we find identical results for the Bloch
and Néel wall cases. This seems reasonable since the only
difference between those two cases is that the y component
of the magnetization is exchanged with the x component.
The long-range triplet component comes about as long as
only one of these is nonzero, and it does not matter which
one it is. It is also necessary for the magnetization to vary
directionally with the x coordinate in order to generate the
inhomogeneity required for the long-range triplet compo-
nent. Note that the z component of the magnetization is the
same for the Bloch and Néel walls. In what follows, we only

dW
dF

Bloch wall Néel wall

x

y

z

Conical ferromagnet

α

θ

Superconductor

Ferromagnet

a

FIG. 1. �Color online� The three types of inhomogeneous ferro-
magnets we will consider in this work: Bloch walls, Néel walls, and
conical ferromagnets �such as Ho�.
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consider the Bloch wall configuration since the results for the
Néel wall are identical. We also note that in our study, the
magnetization is always inhomogeneous in the direction per-
pendicular to the interface, i.e., upon penetrating into the
ferromagnetic region. In the case where the inhomogeneity
of the magnetization is in the transverse direction �parallel to
the interface�, i.e., there is no variation in the x direction, the
proximity effect does not become long ranged even if equal-
spin correlations may be generated.35 The general condition
for a long-range proximity effect is that there exists a mis-
alignment between the triplet anomalous Green’s-function
vector and the exchange field.

We first study the thin-domain-wall case dW /dF=0.2. To
begin with, we shall consider the energy-resolved DOS in the
center of the domain wall �x=dF /2� for several values of the
exchange field. This is shown in Fig. 2. As seen, the zero-
energy DOS is enhanced in all cases due to the presence of
odd-frequency correlations.8,9,12,66 The influence of the spin-
DIPS �G�� seems to be an induction of additional peak fea-
tures in the subgap regime. This effect is most pronounced at
low exchange fields �in particular h /�0=0.5 in Fig. 2�. A
possible physical explanation for the additional peak features
in the LDOS may be the fact that G� acts as an effective
exchange field in both the superconducting and ferromag-
netic layers.55 It thus conspires with the intrinsically existing
exchange field in the ferromagnetic layer to yield a modified
value of the total exchange field. This explanation is consis-

tent with the fact that the position of the peaks change upon
increasing G�. More specifically, the spin-DIPS appear to
enhance the exchange field since the peaks move outwards
toward the gap edge.

Next, we investigate the thick-domain-wall case and
choose dW /dF=0.8. In Fig. 3, we again consider the energy-
resolved LDOS in the middle of the ferromagnetic layer
�x /dF=0.5� for three different values of the exchange field.
Upon comparison with Fig. 2, it is seen that the general trend
upon increasing the domain-wall thickness is an overall en-
hancement of the proximity effect. The qualitative features in
Fig. 3 are very similar to those in the thin-domain-wall case,
but the enhancement at zero energy tends to be larger par-
ticularly so for large values of h /�0. Again, it is seen that the
effect of the spin-DIPS is a modification of the total ex-
change field, amounting to a double-peak structure at subgap
energies in the LDOS.

It is also interesting to consider the spatial dependence of
the zero-energy DOS in the ferromagnetic region. By using
local STM-techniques, it is possible to probe the DOS at �in
principle� any location in the ferromagnetic film. The spe-
cific choice of �=0 is particularly interesting in terms of the
DOS since it is strongly influenced by the presence of odd-
frequency correlations. As pointed out in Refs. 12 and 20, the
behavior of the DOS at �=0 may be interpreted as a compe-
tition between spin-singlet even-frequency and spin-triplet
odd-frequency correlations. The former tend to give a mini-
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FIG. 2. �Color online� Plot of the energy-resolved LDOS evaluated at x /dF=0.5 in the case of a thin domain wall dW /dF=0.2. We
consider three values of the exchange field h and also investigate how the LDOS changes with the phase shift G� at the interface.
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FIG. 3. �Color online� Plot of the energy-resolved LDOS evaluated at x /dF=0.5 in the case of a thick domain wall, dW /dF=0.8. We
consider three values of the exchange field h and also investigate how the LDOS changes with the phase shift G� at the interface.
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gap in the DOS for subgap energies, while the latter yields a
zero-energy peak in the DOS. Clearly, these two effects are
competing with each other since they have a destructive in-
terplay. In the present case, one would expect that the
domain-wall structure should favor the generation of the
odd-frequency triplet components, thus enhancing the
LDOS. This conjecture is supported by Figs. 2 and 3.

In Fig. 4, we plot the spatially resolved LDOS at �=0 for
several values of dW to probe directly how the odd-frequency
correlations are affected by the domain-wall thickness. As
compared to Figs. 2 and 3, we normalize the LDOS on its
value at x=0 in Fig. 4 for easier comparison between differ-
ent values of dW and choose G�=0. From the plot, it is clear
that the thicker the domain wall, the more strongly enhanced
the zero-energy DOS. This also supports the notion that the
magnetically inhomogeneous structure favors the generation
of odd-frequency triplet components. The concomitant en-
hancement of the DOS may then be seen at increasingly
larger penetration depths in the ferromagnet when the
domain-wall thickness is increased.

2. Conical ferromagnetism

We now turn to a study of how the superconducting prox-
imity effect is manifested in a ferromagnet with a conical
magnetization such as Ho. We fix the exchange field at
h /�0=5 and study how the DOS changes upon increasing
the ferromagnetic layer thickness. The motivation for this is
to obtain a better understanding of how the DOS changes
when only the long-range triplet components are present in
the sample. In an inhomogeneous ferromagnet, the singlet
component and the Sz=0 triplet component are short ranged
and penetrate in a distance �F=�D /h into the ferromagnet.
The Sz= 01 triplet components, however, are not subject to
the pair-breaking effect originating with the Zeeman splitting
and can thus penetrate a much longer distance �N=�D /T into
the ferromagnet, where T is temperature. Therefore, by mak-
ing the ferromagnetic layer thick enough, one can be certain
that there is no contribution from either the singlet or Sz=0
triplet components. Since we have chosen h /�0=5, we find
that the penetration depth of these components in the ferro-
magnetic layer should be 0.44�S.

We next turn to a study of the proximity-induced LDOS.
In Fig. 5, we plot the energy-resolved LDOS for three layer
thicknesses: �i� d /�S=0.1, �ii� d /�S=0.5, and �iii� d /�S=0.9.
In case �i�, both short-ranged and long-ranged components
should contribute significantly to the LDOS. In case �ii�, the
long-ranged components should dominate over the short-
ranged ones, while finally in case �iii� only long-ranged com-
ponents remain. This is because we evaluate the energy-
resolved DOS at the F 
 I interface, x=dF, as was also done in
the experiment of Refs. 57 and 67.

As seen in case �ii� and �iii�, a pronounced zero-energy
peak is present, bearing witness of the odd-frequency corre-
lations in the system. The peak is more pronounced with
increasing thickness since the long-range triplet correlations
dominate over the even-frequency singlet Green’s function
as the thickness increases. However, case �i� is qualitatively
different from the two other thicknesses. In this case, the
low-energy LDOS is completely suppressed in the regime
G� /GT"1 and suddenly reappears for G� /GT�1. It is very
interesting to note that the same effect was recently discov-
ered for an S 
N junction with a magnetically active
interface,68 but in that case the effect was completely inde-
pendent on the junction thickness.
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the ferromagnet for h /�0=5 and dF /�S=0.5. The lines correspond
to dW /dF in the range �0.1,0.9� in steps of 0.1 along the arrow. Here,
G� is set to zero.
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In order to investigate this effect further, we focus on the
zero-energy LDOS in the thin junction case in Fig. 6. As
seen, for sufficiently thin layers dF /�S#1, an abrupt cross-
over takes place at a critical value of G� /GT, qualitatively
altering the LDOS at zero energy. Remarkably, we find that a
similar transition takes place upon increasing the ferromag-
netic layer thickness. Consider a plot of the zero-energy
LDOS in Fig. 7 as a function of dF /�S. As seen, at a critical
layer thickness, the zero-energy LDOS rises abruptly from
zero and acquires the usual oscillating behavior. To see how
the full energy-resolved LDOS evolves with increasing G�

for a fixed thickness dF /�S=0.1, consider Fig. 8. As seen, the
LDOS changes qualitatively above a critical value of
G� /GT �1.14.

To summarize the findings of Figs. 6–8, we have found
that there is an abrupt crossover from a fully suppressed

LDOS to a finite LDOS which appears at a critical thickness
of the ferromagnetic layer, and the particular value of the
critical thickness depends on the value of G�. In a similar
way, we find that there is an abrupt change appearing at a
critical value of G� for sufficiently thin layers. The natural
question is: what is the reason for these changes? An impor-
tant clue is found in the fact that when the LDOS is fully
suppressed, the odd-frequency correlations must be zero.12

The presence of odd-frequency correlations will in general
lead to an enhancement of the LDOS at zero energy, which at
present is one of the main suggestions put forth in the litera-
ture with regard to the issue of how to obtain clear experi-
mental signatures of this exotic type of superconducting pair-
ing. Therefore, the abrupt transition from a fully suppressed
LDOS to a LDOS which is enhanced even compared to the
normal-state value is a strong indicator of a symmetry tran-
sition from the usual even-frequency correlations to a state of
mixed even-frequency and odd-frequency correlations or
possibly even pure odd-frequency correlations. It is therefore
clear that the spin-DIPS occurring at the interface have para-
mount consequences with regard to the symmetry properties
of the induced superconducting correlations in the ferromag-
net. Due to the complexity of the problem, it is unfortunately
not possible to give an exact analytical treatment of the in-
fluence of G� on the symmetry properties of the anomalous
Green’s function.

In the remaining part of the discussion of conical ferro-
magnets, we wish to focus on how the proximity-induced
LDOS depends on the structure of the magnetic texture,
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which is determined by the parameters �a ,	 ,�� in Fig. 1. We
here focus on the role of 	 and �, which control, respec-
tively, the direction and the speed of rotation of the magne-
tization upon entering the ferromagnetic layer. Thus, we keep
a /�S fixed at a /�S=0.0263. In Fig. 9, we present results for
the zero-energy LDOS at x=dF as a function of � for several
values of 	. The LDOS displays oscillations as a function of
� and eventually seems to sature upon increasing �. This may
be understood microscopically by realizing that when the
rotation of the magnetization texture becomes faster, i.e., in-
creasing �, the effective magnetization felt by the Cooper
pair averages out to zero for the rotating components. For
our setup, this would mean that only the hx component
should remain nonzero, while hy =hz=0. To verify this sce-
nario, we have also plotted the results in the hy =hz=0 case in
Fig. 9 �dotted lines� for each value of 	, which is seen to
coincide with the limiting behavior in the high-� case. It is
interesting to note that for 	=� /2, the LDOS vanishes com-
pletely above a critical value for �. This may be understood
by noting that hx=0 when 	=� /2. Thus, when � increases,
we have �hx	= �hy	=0, causing the ferromagnetic layer to act
as a normal metal.

C. Discussion

The main approximation that we have made in our calcu-
lations is to use the bulk solution for the order parameter of
the superconductor. Although this approximation is expected
to be satisfactory in the regime dS) ��S ,dF�, such that the
superconductor acts as a reservoir, there are two aspects
which are lost upon doing so. One aspect is the depletion of
the superconducting order parameter near the interface. The

depletion may be disregarded in the tunneling limit69 �low
barrier transparency�, and we do not expect that an inclusion
of the spatial profile of the superconducting order parameter
near the interface should have any qualitative influence upon
our results, as long as the superconducting order parameter is
not dramatically reduced at the interface.

The assumption of a step-function superconducting order
parameter is commonly employed in the literature, but let us
for the sake of clarity here examine a bit more carefully
under which circumstances this is truly warranted. In the
present work, we have considered a superconducting reser-
voir of size dS)�S and a ferromagnetic film of size dF'�S.
For a weak ferromagnet considered here, the ferromagnetic
coherence length �F is comparable in size to �S. Also, we
have considered the case where �=RB /RF)1, corresponding
to a low barrier transparency, which should be experimen-
tally relevant. To investigate quantitatively how much the
superconducting order parameter is suppressed near the in-
terface, let us fix h /�0=10, dS /�S=5, dF /�F=1, and �=5.
Using a numerical approach for S 
F bilayer with a homoge-
neous exchange field as employed in Sec. III of our paper,
we obtain the gap self-consistently with the result shown in
Fig. 10. It is also necessary to introduce the barrier asymme-
try factor �=�S�F / ��F�S�, where �F�S� is the conductivity in
the F �S� layer. Here, we set �=1. As seen, the depletion of
the gap is quite insensitive to the value of G�, and we have
verified that the depletion of the gap is virtually the same
even up to ferromagnetic layer thicknesses of dF /�F=4. As
recently pointed out in Ref. 58, the step-function approxima-
tion breaks down for low values of � and/or high values of �,
and if the spin-DIPS G�

S induced on the superconducting side
are large in magnitude compared to the tunneling conduc-
tance GT, the suppression of the gap becomes more pro-
nounced.

The second aspect which is lost is the inverse proximity
effect in the superconductor. The inverse proximity effect is,
in similarity to the depletion of the order parameter, expected
to be small when the interface transparency is low and dS
)dF. Nevertheless, the presence of the spin-DIPS at the in-
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terface, modeled through the parameter G�, could have some
nontrivial impact on the correlations in the superconductor.
Cottet showed that this may indeed be so in Ref. 56, at least
when the superconducting layer is quite thin. The full effect
exerted on the LDOS by the presence of spin-DIPS on both
sides of the interfaces was recently investigated numerically
in an S 
F bilayer.58 However, no study so far have investi-
gated how the proximity-induced magnetization in the super-
conducting region is affected by spin-DIPS. We will proceed
to investigate this particular issue in detail in Sec. III of this
work.

Above, we have considered the diffusive limit �S / limp
)1, where limp=vF is the mean-free path. The diffusive
limit was also considered in Ref. 77, where the critical su-
percurrent through a conical ferromagnet was calculated. Al-
though the magnetic texture we have considered in the sec-
ond part is identical that of the conical ferromagnet Ho, one
important difference is that Ho is a strong ferromagnet, con-
trary to the case studied here. This means that the diffusive
limit condition h #1 is not fulfilled for Ho, and it was in
fact estimated in Ref. 59 that h �10. This calls for a treat-
ment with the more general Eilenberger equation, which al-
lows for a study where the energy scale of the Zeeman split-
ting is comparable or larger than the self-energy associated
with impurity scattering. A natural continuation of this work
would therefore be to study a proximity structure of a
superconductor 
conical ferromagnet for an arbitrary ratio of
the parameter h . Such an endeavor would nevertheless be
quite challenging unless a weak-proximity effect is assumed.
In the present work, we have not restricted ourselves to any
limits with regard to the barrier transparency or the proxim-
ity effect. Although the exchange field considered for the
conical ferromagnet in this paper is smaller than the one
realized in Ho, we expect that our results may be qualita-
tively relevant for STM measurements in superconducting
junctions with Ho. In general, increasing the exchange field
amounts to a quantitative reduction in the magnitude of the
proximity effect.

Finally, we show that the zero-energy DOS for the
domain-wall case exhibits a similar crossover behavior as the
conical ferromagnetic case upon varying G� and dF when
dF /�S#1. In Fig. 11, the zero-energy DOS is plotted for the
thick-domain-wall case to illustrate this effect—the results
are very similar even for dW /dF#1 when dF /�S#1. Once
again, it should be noted that a complete suppression of the
DOS amounts to pure even-frequency superconducting cor-
relations induced in the ferromagnetic region, since the pres-
ence of odd-frequency correlations enhances the zero-energy
DOS. The exact microscopic mechanism behind the abrupt
crossover occurring at critical values of G� and dF, respec-
tively, remains somewhat unclear. A possible resolution
to this behavior is the observation that the spin-DIPS may
conspire with the proximity-induced minigap in the ferro-
magnetic region for sufficiently thin layers �dF /�S#1� and
yield a zero-energy DOS of the form N�0��1 /�G�

2 −GT
2, as

noted in Ref. 55. In this case, a scenario similar to the one of
a thin-film superconductor in the presence of an in-plane
magnetic field is realized, where the spin-resolved DOS ex-
periences a quasiparticle energy-shift with 0h. In this case,
the role of the exchange field is played by G�, while the role

of the superconducting gap is played by GT. We do not ob-
serve the effects shown in Fig. 11 for larger values of dF,
which is consistent with the fact that the minigap is com-
pletely absent in this regime since the proximity effect be-
comes weaker.

III. INVERSE PROXIMITY EFFECT IN A S #F BILAYER
WITH A HOMOGENEOUS MAGNETIZATION

TEXTURE

In this part of the paper, we will consider the inverse
proximity effect of an S 
F bilayer, where the exchange field
is fixed and parallel to the z axis, manifested through an
induced magnetization near the interface of the supercon-
ducting region. We will again employ the quasiclassical
theory of superconductivity60 and consider the diffusive limit
described by the Usadel equation,61 as this is experimentally
the most relevant case. Our approach will be to solve the
Usadel equation and the gap equation for the superconduct-
ing order parameter self-consistently everywhere in the sys-
tem shown in Fig. 12.
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A. Theory

We will use the conventions and notation of Ref. 20,
which also allows for an inclusion of magnetic impurities
and spin-orbit coupling if desirable. To facilitate the numeri-
cal implementation, we employ the following parametriza-
tion of the Green’s functions:

ĝj =�
c↑,j 0 0 s↑,j

0 c↓,j s↓,j 0

0 − s↓,j − c↓,j 0

− s↑,j 0 0 − c↑,j

�, j = �S,F� , �19�

where we have introduced

s�,j = sinh���,j�, c�,j = cosh���,j� . �20�

Note that �ĝj�2= 1̂ is satisfied. The parameter ��,j is a mea-
sure of the proximity effect, and obeys the Usadel equation,

Dj�x
2��,j + 2i�� + �h�sinh���,j�

− 2i�� cosh���,j� = 0,� = �↑ ,↓� , �21�

in the superconducting �h=0, j=S� and ferromagnetic ��
=0, j=F� layer, respectively. Above, DS and DF denote the
diffusion constants in the two layers, � is the quasiparticle
energy, � is the pair potential, and h is the exchange field.
The two latter are in general subject to a depletion close to
the S 
F interface.

The boundary condition for the ferromagnetic Green’s
function, ĝF, reads as55

2�FĝF�xĝF = �T�ĝS, ĝF� + i��,F�	̂3, ĝF� �22�

at x=0 and ĝF�xĝF=0̂ at x=dF. Here, . . .ˆ denotes a 4�4
matrix in spin � particle-hole space. Also,. For the supercon-
ducting Green’s function, ĝS, we have

2��S/��ĝS�xĝS = − �T�ĝF, ĝS� − i��,S�	̂3, ĝS� �23�

at x=0 and ĝS�xĝS=0̂ at x=−dS. Above, we have defined

�T = GT�F/�A�F�, ��,F�S� = G�,F�S��F/�A�F� , �24�

and the barrier asymmetry factor,

� = �S�F/��F�S� . �25�

Moreover, A is the tunneling contact area, while �F�S� are the
normal-state conductivities. Note that

A�F�S� = dF�S�/RF�S�, �26�

where dF�S� is the thickness of the layer and RF�S� is the
normal-state resistance.

In total, the interface between the S and F regions is thus
characterized by three parameters: the normalized barrier
conductance �T, the spin-DIPS ��,S, and ��,F on each side of
the interface. In what follows, we will study the mutual in-
fluence of superconductivity and ferromagnetism on each
other instead of assuming the bulk solution for ĝS in the
superconducting region, as is usually done in the literature.
We solve the Usadel equation self-consistently in both the S
and F layers, supplementing it with the gap equation:

� =
NF�

2
�

0

�

d� tanh�
�/2�
�

� Re�sinh����� , �27�

where we choose the weak coupling-constant and cut-off en-
ergy to be NF�=0.2 and � /�0=75. When obtaining the
Green’s functions, a number of interesting physical quanti-
ties may be calculated. For instance, the normalized LDOS is
obtained according to

N���/N0 = Re�cosh �↑ + cosh �↓�/2. �28�

Experimentally, the LDOS may be probed at x=−dS in the
superconducting layer and x=dF in the ferromagnetic layer
by performing tunneling spectroscopy through the insulating
layer. In principle, it is also possible to obtain the LDOS at
any position x by using spatially resolved scanning tunneling
microscopy.

The quantity of interest which we shall focus on in this
work is the proximity-induced magnetization in the super-
conducting region. A few words about the sign of the mag-
netization in the problem are appropriate. First, recall that the
magnetic moment � of an electron is directed opposite to its
spin S, namely, ��−�e /me�S, where e= 
e
 and me is the
electron charge and mass. Therefore, if the exchange energy
h favors spin-↑ electrons energetically, the resulting magne-
tization M of the ferromagnet will be directed in the opposite
direction, M � �−z�.

In the absence of a proximity effect, we have M=0 in the
superconducting region and M=M0ẑ in the ferromagnetic re-
gion, where

M0 � − �BN0h �29�

in the quasiclassical approximation h#�F. Now, the change
in magnetization due to the proximity effect may be calcu-
lated according to

�M = − �Bẑ
�

���
†�	 �30�

in both the superconducting and ferromagnetic regions. Us-
ing a quasiclassical approach, the above expression translates
into a normalized change in magnetization,

�M/M0 = − �
0

� d�

h 
�

� Re�cosh���tanh�
�/2� . �31�

In the ferromagnetic region, the normalized magnetization
M /M0 is therefore 1+�MF /M0, while in the superconduct-
ing region we have an induced magnetization �MS /M0,
where �MF�S� is determined by Eq. �31� on the ferromagnetic
�superconducting� side of the interface.

Although we shall be concerned with a full numerical
solution when presenting our results in Sec. III B, let us for
completeness sketch how an analytical solution may be ob-
tained under the assumption of a weak-proximity effect. In-
cluding the spin-DIPS, the analytical results obtained here
are thus a natural extension of the results in Ref. 48, where
the spin-DIPS were neglected. We remind the reader that
spin-DIPS occur whenever there is a finite spin polarization
in the ferromagnetic region or when the barrier itself is mag-
netic.
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In the weak-proximity regime, the Usadel equation in the
ferromagnetic region becomes

DF�x
2���

F + 2i�� + �h����
F = 0, �32�

where the linearization of Eqs. �19� and �21� amounts to
��,F→���

F where 
���
F
#1. The general solution is readily

obtained as

���
F = A��eik�x + e−ik�x+2ik�dF� , �33�

upon taking into account the vacuum boundary condition
�x���

F=0 at x=dF and defining

k�
2 = 2i�� + �h�/DF. �34�

In the superconducting region, we obtain the Usadel equa-
tion,

DS�x
2���

S + 2i��cBCS − �sBCS����
S = 0, �35�

under the assumption that the superconducting order param-
eter is virtually unaltered from the bulk case. This is a valid
approximation for �� ,�T�#1 and not too large ��,S �typi-
cally ��,S"1�, which we have verified by using the full nu-
merical solution. Here, ���

S is the deviation from the bulk
BCS solution, i.e., ��,S→��BCS+���

S with 
���
S 
#1 and

cBCS = cosh��BCS�, sBCS = sinh��BCS� ,

�BCS = atanh��/�� . �36�

In this case, the general solution reads as

���
S = B��ei/x + e−i/x−2i/dS� , �37�

when incorporating the vacuum boundary condition �x���
S

=0 at x=−dS upon defining

/2 = ��cBCS − �sBCS�/DS. �38�

The remaining task is to determine the unknown coefficients
�A� ,B��. Linearizing the boundary conditions Eqs. �22� and
�23�, we obtain at x=0

�S�x���
S /� = �T�c���

F − �sBCS − cBCS���
S� − �i��,S��sBCS

+ cBCS���
S� ,

�F�x���
F = �T�c���

F − �sBCS − cBCS���
S� + �i��,F���

F.

�39�

From these boundary conditions, one derives that

A� =
z4
�

z3
�

sBCS�z3
���Ta + i��,S� − z1

���T�
z2
�z3

� − z1
�z4

� − �sBCS�T,

B� =
sBCS�z1

���T − z3
���T� + i��,S��

z2
�z3

� − z1
�z4

� . �40�

Here, we have defined the auxiliary quantities:

z1
� = − �TcBCS�1 + e2ik�dF� ,

z2
� =

i/�S�1 − e−2i/dS�
�

+ cBCS��T + i���,S��1 + e−2i/dS� ,

z3
� = ik��F�1 − e2ik�dF� − ��TcBCS + �i��,F��1 + e2ik�dF� ,

z4
� = cBCS�T�1 + e−2i/dS� . �41�

Equations �33�, �37�, and �40� constitute a closed analytical
solution for the Green’s functions in the entire S 
F bilayer.
To use this analytical solution, one should verify that

���

F,S
#1 for the relevant parameter regime. Spin-flip and
spin-orbit scatterings may also be accounted for in the ana-
lytical solution of the Green’s function by adding appropriate
terms to the Usadel equation. The calculation is then per-
formed along the lines of Refs. 20 and 70.

B. Results

We are now in a position to evaluate the proximity-
induced magnetization numerically. The full �nonlinearized�
Usadel equation will be employed, such that we are not re-
stricted to the weak-proximity effect regime. To stabilize the
numerical calculations, we add a small imaginary number to
the quasiparticle energy, �→�+ i�, with �=0.05�0. We fo-
cus on the results reported very recently by Xia et al.51 and
take dS /�S=0.2, dF /�F=1.0, and h /�0=15 as a reasonable
set of parameters which should be relevant to this experi-
ment. Also, we assume that the junction conductance was
low, �T=0.1, and set the barrier asymmetry factor to �=0.2,
corresponding to a scenario where the superconducting re-
gion is much less disordered than the ferromagnetic one. We
will also investigate the case dS /�S=1.0 to see how the prop-
erties of the system changes when going away from the limit
dS /�S#1. We underline that our main objective in this work
is to investigate the influence of the spin-DIPS on the
proximity-induced magnetization in the system, such that we
mainly vary ��,F and ��,S while keeping the other parameters
fixed.

Let us first consider the temperature dependence of the
proximity-induced magnetization in the superconducting re-
gion in Fig. 13. To clarify the role of the spin-DIPS on each
side of the interface, we plot �MS /M0 for several values of
��,S in Fig. 13�a� while keeping ��,F=0 fixed. Conversely,
we plot �MS /M0 for several ��,F in Fig. 13�b� with ��,S=0.
In both cases, we plot the proximity-induced magnetization
at x=−dS. One obvious difference between these two sce-
narios is that the spin-DIPS on the superconducting side,
��,S, influence the proximity-induced magnetization much
stronger than ��,F. The same thing is true with regard to the
influence of spin-DIPS on the superconducting order param-
eter: ��,S influences the spatial profile of � much more than
what ��,F does. From Fig. 13, it is clearly seen how the
proximity-induced magnetization may switch sign upon in-
creasing the magnitude of the spin-DIPS ��,S. We have
checked numerically that this effect also takes upon increas-
ing ��,F when keeping ��,S=0. Thus, increasing either ��,S
or ��,F can lead to a sign change in the proximity-induced
magnetization in the superconducting region. It is then clear
that the conclusion of Ref. 53 that only spin screening is
possible in diffusive S 
F bilayers does not hold in general
since the presence of spin-DIPS alters the screening effect. In
what follows, we focus on the role of ��,S since its impact on
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�MS /M0 is much greater than that of ��,F. In Fig. 14, we
consider the case dS /�S=1.0 to show that the sign change in
the magnetization persists when going away from the limit
dS /�S#1. The spatial profile of the total magnetization in the
F and S regions are shown for the case dS /�=0.2 with ��,S
=0.0 in Fig. 15 and ��,S=1.0 in Fig. 16. It is seen that the
magnetization decreases in a monotonic fashion toward the
superconducting region and reaches its bulk value deep in-
side the ferromagnetic region. In the superconductor, magne-
tization is induced near the interface and decays with the
distance from the interface.

C. Discussion

We propose the following explanation for the antiscreen-
ing effect observed upon increasing ��,S. The effect of the
spin-DIPS in the case of a thin superconducting layer dS
#�S in Ref. 56 was shown to be equivalent to an internal
magnetic exchange splitting heff in the superconducting re-

gion. Therefore, the magnitude of the magnetization in the
superconductor should essentially grow with an increasing
value of ��,S. If this is the case, the proximity-induced mag-
netization should also be sensitive to the sign of ��,S, as the
opposite spin species would be energetically favored when
comparing the case ��,S with �−��,S�. To test this hypothesis,
we plot in Fig. 17 the proximity-induced magnetization at
T=0 as a function of the spin-DIPS on the superconducting
side, ��,S �keeping ��,F=0�. The results confirm our
hypothesis—it is seen that �MS /M0 is an antisymmetric
function of ��,S. The influence of ��,S can also be seen di-
rectly in the LDOS in the superconducting region. For ��,S
�0, we obtain a double-peak structure in the LDOS at x=
−dS in agreement with Refs. 56 and 58, while the supercon-
ducting order parameter depletes very little close to the in-
terface for the chosen parameter values. In general, the
depletion of the superconducting order parameter is found to
be small as long as ��T ,��#1 and ��,S �1 or smaller.

In Ref. 48, the inverse proximity effect of an S 
F bilayer
was studied without taking into account the presence of spin-
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DIPS, with the result that the proximity-induced magnetiza-
tion in the superconducting region would have the opposite
sign of the proximity ferromagnet, i.e., a screening effect. It
was proposed in Ref. 48 that this behavior could be under-
stood physically by considering the contribution to the
magnetization from Cooper pairs which were close to the
interface: the spin-↑ electron would prefer to be in the ferro-
magnetic region due to the exchange energy, while the spin-↓
electron remaining in the superconducting region then would
give rise to a magnetization in the opposite direction of the
proximity ferromagnet. However, it is clear from the present
study that this simple picture must be modified when prop-
erly considering the spin-DIPS ��,S on the superconducting
side of the junction since they act as an effective exchange
field inside the superconductor.

In this paper, we have evaluated the proximity-induced
magnetization in the vicinity of the interface without taking
into account the Meissner response of the superconductor.
This should be permissible in a thin-film geometry as the one
employed in Ref. 51, where the screening currents are sup-
pressed. In particular, for a field in the plane of the super-
conducting film �see Fig. 12�, the Meissner effect should be
strongly suppressed71 for dS /�S#1.

IV. SUMMARY

In conclusion, we have in Sec. II of this work investigated
the proximity effect in a superconductor 
 inhomogeneous fer-
romagnet junctions. Proper boundary conditions which take
into account the spin-dependent phase shifts experienced by
the reflected and transmitted quasiparticles were employed.
As an application of our model, we have studied the LDOS
in the ferromagnet in the presence of domain walls and a
conical magnetic structure. We find that the presence of a
domain wall enhances the odd-frequency correlations in-
duced in the ferromagnet manifested through a zero-energy
peak in the LDOS. For the conical ferromagnet, we show
that the spin-dependent phase shifts originating with the in-
terface have a strong qualitative effect on the LDOS, espe-
cially for thin layers. In particular, we find an abrupt cross-
over from a fully suppressed LDOS to a finite LDOS which
appears at a critical thickness of the ferromagnetic layer, and
the particular value of the critical thickness depends on the
value of G�. In a similar way, we find that there is an abrupt
change appearing at a critical value of G� for sufficiently
thin layers. We speculate that the reason for this could be a
symmetry transition from even-frequency to odd-frequency
correlations for the proximity amplitudes in the ferromag-
netic region. The theory developed in the present paper takes
into account both the phase shifts acquired by scattered qua-
siparticles at the interface due to the presence of ferromag-
netic correlations and also an arbitrary inhomogeneity of the
magnetic texture on the ferromagnetic side. Our results for
the conical ferromagnetic structure should be relevant for the
material Ho, which was used in Ref. 59 to indicate the pres-
ence of long-range superconducting correlations.

In Sec. III of this work, we have investigated numerically
and self-consistently the inverse proximity effect in a
superconductor 
 ferromagnet �S 
F� bilayer manifested
through an induced magnetization in the superconducting re-
gion. We find that the interface properties play a crucial role
in this context, as the spin-dependent interfacial phase-shifts
�spin-DIPS� may invert the sign of the proximity-induced
magnetization. This finding modifies previous conclusions
obtained in the literature and suggests that the influence of
the spin-DIPS should be properly accounted for in a theory
for the inverse proximity effect in S 
F bilayers.
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APPENDIX: SPIN-ACTIVE BOUNDARY CONDITIONS

To facilitate and encourage use of the spin-active bound-
ary conditions required for an S 
F interface, we here write
down their explicit form in the diffusive limit for the case of
a magnetization in the z direction, following Refs. 55 and 56.
Consider a junction consisting of two regions 1 and 2, as
shown in Fig. 18. The regions have widths dj and bulk elec-
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FIG. 16. �Color online� Plot of the spatial dependence of the
total magnetization at zero temperature for dS /�S=0.2, ��,F=0.0,
and ��,S=1.0.
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trical resistances Rj. The matrices used below are 4�4 ma-
trices in particle-hole � spin space using a basis

�r,t� =�
↑�r,t�
↓�r,t�
↑

†�r,t�
↓

†�r,t�
� .

Introducing 	̂=diag�1,−1,1 ,−1�=diag��� 3 ,�� 3�, where �� 3 is
the third Pauli matrix in spin-space, we may write the bound-
ary conditions as follows:

2�d1/R1�ĝ1�xĝ1 = GT�ĝ1, ĝ2� − iG�,1�	̂, ĝ1� ,

2�d2/R2�ĝ2�xĝ2 = GT�ĝ1, ĝ2� + iG�,2�	̂, ĝ2� . �A1�

Here, GT is the conductance of the junction, while G�,j

are the phase shifts on side j of the interface. The parameters
�GT ,G�,j� may be calculated by relating them to microscopic
transmission and reflection probabilities within, e.g., a
Blonder-Tinkham-Klapwijk �BTK� �Ref. 72� framework. Ex-
plicitly spin-active barriers were considered in ballistic S 
F
bilayers using the BTK approach for both s-wave73 and
d-wave74 superconductors. In the absence of spin-DIPS
�G�,j→0�, Eq. �A1� reduce to the Kupriyanov-Lukichev
nonmagnetic boundary conditions.75 Let us make a final re-
mark concerning the treatment of interfaces in the quasiclas-
sical theory of superconductivity. We previously stated that
the application of the present theory requires that the char-
acteristic energies of various self-energies and perturbations
in the system are much smaller than the Fermi energy �F. At
first glance, this might seem to be irreconcilable with the
presence of interfaces, which represent strong perturbations
varying on atomic length scales. However, this problem may
be overcome by including the interfaces as boundary condi-
tions for the Green’s functions rather than directly as self-
energies in the Usadel equation.
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We study the proximity-induced superconducting correlations in a normal metal connected to a
superconductor when the interface between them is spin-active and the normal metal is ballistic or
diffusive. Remarkably, for any interface spin polarization there is a critical interface resistance, above
which the conventional even-frequency proximity component vanishes completely at the chemical
potential, while the odd-frequency component remains finite. We propose a way to unambiguously
observe the odd-frequency component.

PACS numbers: 74.20.Rp, 74.50.+r, 74.20.-z

Superconductivity and superfluidity are hallmarks of
the wave-like character of matter, and manifest them-
selves in vastly different systems, from ultracold dilute
gases via cold metals and fluids, to extremely dense pro-
tonic and neutronic matter. In all these contexts, the
symmetry of the order parameter is of profound impor-
tance. Over the last decades, the possibility of super-
conducting order parameters that changes sign under a
time-coordinate exchange of the two fermions compris-
ing the Cooper-pair, has emerged in addition to the
by now well studied varieties of orbital symmetries [1–
5]. This so-called odd-frequency superconductivity [6] is
distinct from the traditional even-frequency pairing in
the Bardeen-Cooper-Schrieffer paradigm, and may be in-
duced by proximity effects in hybrid structures of super-
conductors and magnets [1].

In a broader context, proximity systems offer the possi-
bility of controlling the physics of competing broken sym-
metries. The fundamental heterostructure for studying
proximity induced superconductivity is the superconduc-
tor/normal metal (S|N) bilayer, where the normal metal
or the interface may have magnetic properties. Among
possible triplet pair correlations, in the diffusive limit
odd-frequency pairs are favored [7], whereas in ballistic
hybrid systems both odd- and even-frequency amplitudes
compete [3, 4]. As all known superconductors to date ex-
hibit an even-frequency order parameter, the observation
of proximity induced effects that are particular to odd-
frequency pairing would be of utmost interest.

There are two major difficulties associated with the
detection of the odd-frequency state in superconduc-
tor/ferromagnet (S|F) bilayers. One is the usually short
penetration depth into the ferromagnetic region, limited
by the magnetic coherence length ξF , much less than
the superconducting coherence length ξS [1]. Another
problem is that odd-frequency pairs are only well defined
when even-frequency correlations vanish in the ferromag-
net. Clear-cut signatures of the former are therefore only
accessible in a limited parameter regime [8].

The majority of work on superconducting proximity-
structures so far has been restricted to the diffusive limit
and spin-inactive interfaces [9]. For a non-magnetic bi-
layer, a minigap appears in the density of states of the
normal metal. It scales with the Thouless energy of the
normal layer and with the transmission probability of
the interface. Such minigap structures are readily ac-
cessible experimentally [10]. For a spin-active interface,
the transmission properties of spin-↑ and spin-↓ electrons
into a metal are different, and this gives rise to both
spin-dependent conductivities and spin-dependent phase
shifts at the interface [11–15]. In this Letter we show
that a spin-active interface in an S|N bilayer produces
clear signatures of purely odd-frequency triplet pairing
amplitudes that can be tested experimentally.

We consider the system shown in Fig. 1. The super-
conductor is conventional (even-frequency s-wave) while
the interface is magnetic. We find that there is a dramatic
change in the nature of proximity correlations when the
spin-dependent phase shifts exceed the tunneling proba-
bility of the interface. The spin-active interface in an S|N
bilayer causes the even-frequency correlations to vanish
at zero excitation energy, while odd-frequency correla-
tions appear. At the same time, the minigap, one of
the hallmarks of the conventional proximity effect, is re-
placed by a low-energy band with enhanced density of
states. We focus on the density of states (DOS) in the
normal region, which can be probed by tunneling exper-
iments. Our findings suggest that it should be possible
to detect the odd-frequency amplitude without any in-

Superconductor
Magnetic interface

Normal metal

STM-tip

FIG. 1: (Color online) Proposed experiment for observation
of the odd-frequency component in a diffusive N|S junction.
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terfering effects of even-frequency correlations. Since the
exchange field is absent in the normal metal, this resolves
the two main difficulties associated with the experimental
detection of odd-frequency correlations mentioned above.

We adopt the quasiclassical theory of superconductiv-
ity [18], where information about the physical proper-
ties of the system is embedded in the Green’s function.
For equilibrium situations, it suffices to consider the re-
tarded Green’s function, ĝ, that is parameterized con-
veniently in the normal (N) region by a parameter θσ,
allowing for both singlet and triplet correlations [8]. In
the superconducting (S) region, we employ the bulk so-
lution ĝS = c · τ3 ⊗ σ0 + s · τ1 ⊗ (iσ2), with c = cosh(θ),
s = sinh(θ), θ = atanh(Δ/ε), τi and σi being Pauli ma-
trices in particle-hole and spin space, respectively.

We use the formalism described in Ref. [8], and con-
sider first the diffusive limit. Then, the orbital symme-
try for all proximity amplitudes is reduced to s-wave
and hence the singlet component always has an even-
frequency symmetry while the triplet component has
an odd-frequency symmetry. The Green’s functions are
subject to boundary conditions, which assume at the
S|N interface in the tunneling limit the form [13, 15]:
2γdĝN∂xĝN = [ĝS , ĝN ]+i(Gφ/GT )[τ0⊗σ3, ĝN ], and at the

outer interface read ∂xĝN = 0̂. Here, γ = RB/RN where
RB (RN ) is the resistance of the barrier (normal region),
and d is the width of the normal region, while GT is the
junction conductance in the normal-state. The boundary
condition above contains an additional term Gφ com-
pared to the usual non-magnetic boundary conditions
in Ref. [9]. This term is due to spin-dependent phase
shifts of quasiparticles being reflected at the interface.
Gφ may be non-zero even if the transmission GT → 0,
corresponding to a ferromagnetic insulator [13]. We de-
fine the superconducting coherence length ξS =

√
D/Δ

and Thouless energy εTh = D/d2, where D is the dif-
fusion constant, and assume that the inelastic scattering
length, lin, is sufficiently large, such that d � lin.

The Usadel equation [19] reads D∂2
xθσ+2iε sinh θσ = 0,

with boundary condition γd∂xθσ = (csσ−σscσ)+iσsσ
Gφ

GT

at x = 0 and ∂xθσ = 0 at x = d. Here, cσ = cosh(θσ) and
sσ = sinh(θσ). For ε = 0 we find pairing amplitudes that
are either purely (odd-frequency) triplet for |Gφ| > GT ,

fs(0) = 0, ft(0) = GT · sgn(Gφ)/
√

Gφ
2 − GT

2, (1)

or purely (even-frequency) singlet for |Gφ| < GT ,

fs(0) = i · GT /
√

GT
2 − Gφ

2, ft(0) = 0. (2)

Thus, the presence of Gφ induces an odd-frequency com-
ponent in the normal layer. The remarkable aspect of
Eqs. (1) and (2) is that they are valid for any value of the
width d below the inelastic scattering length, and for any
interface parameter γ. Thus, the vanishing of the singlet
component is a robust feature in S|N structures with spin-
active interfaces, as long as |Gφ| > GT . Without loss of
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FIG. 2: (Color online) The singlet and triplet proximity am-
plitudes induced in the normal metal are shown for Gφ/GT <
1 [in a) and c)] and Gφ/GT > 1 [in b) and d)]. In e), we plot
the energy-resolved DOS for several values of Gφ/GT . Fi-
nally, f) shows the zero-energy DOS as a function of GT /Gφ,
with the proximity amplitudes shown in the inset.

generality, we focus on positive values of Gφ from now on.
The DOS is given as N(ε)/N0 =

∑
σ Re{cσ}/2, yielding

N(0)/N0 = Re{Gφ/
√

Gφ
2 − GT

2}. At zero-energy, the
DOS vanishes when Gφ < GT , which means that the
usual minigap in S|N structures survives. However, the
zero-energy DOS is enhanced for Gφ > GT since the sin-
glet component vanishes there.

The full energy-dependence of the DOS may only be
obtained numerically. To model a realistic experimen-
tal setup, we fix γ = 10 and d/ξS = 1.0, although our
qualitative results are independent of these particular
choices. As a measure of the relevant energy scale, we
define ε0 = εTh/(2γ). The results are shown in Fig. 2 to
investigate the effect of the spin-dependent phase shifts.
The low-energy DOS is strongly enhanced due to the odd-
frequency amplitude when Gφ/GT > 1 (Gφ/GT = 1.5
in the figure). Conversely, the DOS develops a minigap
around ε = 0 when Gφ/GT < 1 (Gφ/GT = 0.5 in the
figure). The ratio Gφ/GT depends on the microscopic
barrier properties [15]. In the tunneling limit, one finds
that Gφ can be considerably larger than GT .

We suggest the following qualitative explanation for
the mechanism behind the separation between even- and
odd-frequency correlations. The superconductor induces
a minigap ∝ GT in the normal metal, while the spin-
active barrier induces an effective exchange field ∝ Gφ.
The situation in the normal metal then resembles that of
a thin-film conventional superconductor in the presence
of an in-plane external magnetic field [22], with the role of
the gap and field played by GT and Gφ, respectively. In
that case, it is known that superconductivity is destroyed
above the Clogston-Chandrasekhar limit [23], as the spin-
singlet Cooper-pairs break up. In the present case, we
observe coexistence of the exchange field and spin-singlet
even-frequency superconductivity as long as Gφ is below
the critical value of Gφ = GT . At the critical point, the

DOS varies as 1/
√

|ε| and diverges at ε = 0. However,
for Gφ > GT spin-singlet pairing is no longer possible



3

at the chemical potential. It is then replaced by spin-
triplet pairing, which must be odd in frequency due to
the isotropization of the gap in the diffusive limit. Thus,
there is a natural separation between even-frequency and
odd-frequency pairing in the normal metal at a critical
value of the effective exchange field Gφ.

The same effect occurs in the ballistic limit, as we now
show. In this case, we can obtain the retarded Green’s
function using the formalism described in Refs. [14, 16].
The Eilenberger equation in the normal region reads
ivFx∂xĝ+[ετ3⊗σ0, ĝ] = 0̂. For the boundary conditions,
we use a scattering matrix describing the magnetic inter-
face between the superconductor and the normal metal,

Ŝ =

(
rS · exp

(
i
2
ϑSσ3

)
tSN · exp

(
i
2
ϑSNσ3

)
tNS · exp

(
i
2
ϑNSσ3

)
−rN · exp

(
i
2
ϑNσ3

)
)

, (3)

with real reflection and transmission spin matrices rS ,
rN , tSN , and tNS . The spin mixing angles ϑS , ϑN , ϑSN ,
and ϑNS describe spin dependent scattering phases [11].
Neglecting spin flip scattering, the transmission and re-
flection amplitudes are diagonal in spin space, and the re-
lations rS = rN ≡ diag [r↑, r↓], tNS = tSN ≡ diag [t↑, t↓],
r2
↑ + t2↑ = r2

↓ + t2↓ = 1, ϑNS + ϑSN = ϑS + ϑN follow from

the unitarity of Ŝ. Possible scalar phases are omitted in
Eq. (3), as they play no role in the final results.

We next concentrate on subgap energies. The anoma-
lous amplitudes can be decomposed into singlet and
triplet components, f = (fs + ft σ3)(iσ2). Defining fσ =
(fs + σft)/2, we obtain on the top of the normal over-
layer (x = d) fσ(ε) = −sgn(ασ)t↑t↓/

√
α2

σ − (t↑t↓)2 with
ασ = sin (2εd/vFx + ϑσ+) + r↑r↓ sin (2εd/vFx + ϑσ−).
Here, ϑσ± = σ

2
(ϑN ± ϑS)± arcsin(ε/Δ), and ε has to be

supplemented by an infinitesimally small positive imag-
inary part. The interface parameters and the Fermi ve-
locity component in x-direction, vFx = vF cos ψ, depend
on the impact angle ψ. The relevant energy scale in the
problem is the ballistic Thouless energy, εTh = vF /2d.
The DOS is non-zero only for |α| > t↑t↓, which for suffi-
ciently large impact angle always is fulfilled. Clearly, the
most interesting regime concerns ε/εTh ∼ |ϑσ±| ∼ t↑t↓.

In the tunneling limit, for small excitation energies
ε/εTh � 1 and small spin mixing angles ϑσ± we ob-
tain ασ = (4εd/vFx + σϑN ). In this case, due to
ϑσ+ + ϑσ− = σϑN , only the spin mixing angle for re-
flection at the normal side of the interface enters, and
acts as an effective exchange field b = ϑNvFx/4d on the
quasiparticles. Especially interesting is the case ε = 0,
for which all proximity amplitudes are even in momen-
tum. For ε = 0 we obtain ασ = σϑN , and the pairing
amplitudes are either purely (odd-frequency) triplet for
|ϑN | > t↑t↓,

fs(0) = 0, ft(0) = −t↑t↓ ·sgn(ϑN )/
√

ϑ2
N − (t↑t↓)2 (4)

or purely (even-frequency) singlet for |ϑN | < t↑t↓,

fs(0) = i · t↑t↓/
√

(t↑t↓)2 − ϑ2
N , ft(0) = 0. (5)
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FIG. 3: (Color online) Momentum-averaged proximity am-
plitudes at the surface of the normal layer. Parameters: d =
vF /Δ, T0 = 0.1 (see text). (a) and (c): ϑN = ϑS = 0.05 < T0;
(b) and (d): ϑN = ϑS = 0.15 > T0. Energy units are
ε0 = T0 εTh. Even frequency singlet components are shown
in (a-b), odd frequency triplet components in (c-d).

Comparing with the results for the diffusive case, we find
that Gφ/GT corresponds to −ϑN/(t↑t↓).

In Fig. 3, we show results for the proximity amplitudes
in the ballistic limit, and focus on positive values of ϑN

without loss of generality. A systematic expansion of
all terms in the tunneling probability shows that in the
tunneling limit the spin dependence of the transmission
probabilities can be neglected, and only that of the phase
shifts needs to be kept. Thus, we assume t↑ = t↓ = t. We
model the dependence on the impact angle ψ as t(μ) =

(t0)
1

μ , μ = cos ψ, and assume for simplicity spin mixing
angles independent of μ. The tunneling probability for
normal impact is T0 = t20. In the case T0 < ϑN at small
energies the odd frequency triplet amplitude dominates,
and it is the only non-zero amplitude at ε = 0. On
the other hand, for T0 > ϑN both singlet and triplet
amplitudes contribute. This is due to the fact that for
large impact angles the transmission probability t(μ)2

drops below the value for the spin mixing angle ϑN .

We turn now to the DOS. The general expression,
assuming the bulk solution in the superconductor, is

N(ε)/N0 = Re
∑

σ=±1

∫ 1

0
|ασ|/

√
α2

σ − (t↑t↓)2 dμ. In the
tunneling limit, this simplifies again, and provided that
|ϑN | > t↑t↓ for all impact angles, the DOS at the
Fermi level is enhanced above its normal state value,
N(0)/N0 =

∫
dμ |ϑN |/

√
ϑ2

N − (t↑t↓)2. In Fig. 4, we
show results for the DOS. In (a-b) we assume the de-
pendence on the impact angle as above, whereas in (c-d)
we allow tunnelling only in a narrow tunneling cone of 10
degrees. The DOS for the cases of dominating triplet am-
plitudes and dominating singlet amplitudes differ quali-
tatively. In the case of a tunneling cone this difference
is most drastic, and a comparison with the results above
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FIG. 4: (Color online) (a) DOS as function of energy at the
top of the normal layer for fixed transmission probability T0 =
0.1, and various values of ϑN = ϑS . Remaining parameters
are as in Fig. 3. (b) DOS and proximity amplitudes at ε = 0
for ϑN = ϑS = 0.2 as function of T0. In (c) and (d) we show
the results corresponding to (a) and (b) when assuming an
(abrupt) tunneling cone with opening angle of 10 degree.

shows that it is very similar to the diffusive case. In the
right panels, where ϑN = ϑS = 0.2, we demonstrate that
for T0 < 0.2 only the odd frequency triplet amplitude is
present at the chemical potential, while the singlet am-
plitude is zero. The corresponding zero-energy DOS is
enhanced in this region, whereas it is reduced in the re-
gion when singlet correlations are present at ε = 0.

The simplest experimental manifestation of the odd-
frequency component is a zero-energy peak in the DOS
[17, 20, 21]. In S|F layers, where this phenomenon
has been discussed, a clear peak at zero energy is often
masked by the presence of singlet correlations fs, which
tend to suppress the DOS at low energy. This is not so in
the system we consider, provided T0 < |ϑN | in the ballis-
tic limit, or equivalently, GT < |Gφ| in the diffusive limit.
This is ideal for an observation of the odd-frequency com-
ponent, manifested as a zero-energy peak in the DOS.

The important factor, with regard to isolation of the
odd-frequency correlations at zero energy is the inter-
face. The even-frequency correlations vanish when the
interface transmission T0 is sufficiently low. The parame-
ters ϑN , or equivalently, Gφ can be increased by increas-
ing the magnetic polarization of the barrier separating
the superconducting and normal layers. By fabricating
several samples with progressively increasing strength of
magnetic moment μ of the barrier, one should be able to
observe an abrupt change at the zero-energy DOS above

a certain strength of μ. Alternatively, one could alter T0

by varying the thickness of the insulating region.

In summary, we have investigated the proximity-effect
in a S|N bilayer with spin-active interface. We find
that both in the ballistic and diffusive limits, the even-
frequency correlations may vanish at zero energy, while
odd-frequency correlations persist. This result is inde-
pendent of the specific values for the layer thicknesses and
barrier resistances, indicating that it is a robust and gen-
eral feature of spin-active interfaces. Our findings suggest
a way of obtaining unambiguous experimental identifica-
tion of superconducting odd-frequency correlations.
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