
SOLITARY GRAVITY-CAPILLARY WATER WAVES WITH
POINT VORTICES

KRISTOFFER VARHOLM

Abstract. We construct small-amplitude solitary traveling gravity-
capillary water waves with a finite number of point vortices along a
vertical line, on finite depth. This is done using a local bifurcation
argument. The properties of the resulting waves are also examined: We
find that they depend significantly on the position of the point vortices
in the water column.

1. Introduction

The steady water-wave problem concerns two-dimensional water waves
propagating with constant velocity and without change of shape. Historically,
the focus has mainly been on irrotational waves, which are waves where the
vorticity1

ω := ∇× w = vx − uy
of the velocity field w = (u, v) is identically zero. One reason for this is
Kelvin’s circulation theorem [29,31], which says that a flow which is initially
irrotational will remain so for all time, as long as it is only affected by
conservative body forces (e.g. gravity). Another reason is mathematical,
as the velocity field can then be written as the gradient of a harmonic
function; the velocity potential. This enables the use of powerful tools from
complex- and harmonic analysis, and the problem can be reduced to one on
the boundary in a number of different ways [1, 38]. An important class of
such waves are the Stokes waves, which are periodic waves that rise and fall
exactly once every minimal period. The Stokes conjecture on the nature of the
so-called Stokes wave of greatest height fueled research on waves throughout
the 20th century, and would not be fully resolved until 2004 (see the survey
[43] and [39], which settled the convexity of this wave).

More recently, however, there has been renewed interest in rotational
waves. There are several situations where such waves are appropriate, as
effects like wind, temperature or salinity gradients can all induce rotation
[37]. Rotational waves can be markedly different from irrotational waves: For
instance, in rotational waves it is possible to have internal stagnation points
and critical layers of closed streamlines known as cat’s eye vortices [15].
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1Informally, the vorticity describes (twice) the velocity at which an infinitesimal paddle
wheel placed in the fluid will rotate.
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The first result on rotational waves came surprisingly early, in the beginning
of the 1800s with [22] (for a more modern exposition, see [4]). There, Gerstner
gave the first, and still the only known, explicit (nontrivial) gravity-wave
solution to the Euler equations on infinite depth. Although significant because
it is an exact solution, it is viewed as more of a mathematical curiosity, even
today (see [5, Chapter 4.3]). Much later, in [14], came the first existence
result for small-amplitude waves with quite general vorticity distributions. A
vorticity distribution is a function γ : R→ R such that

∆ψ = γ(ψ),

where ψ is the relative stream function (which, unlike the velocity potential,
is still available for rotational waves, but is not harmonic). A sufficient, but
not necessary, condition for such a vorticity distribution to exist is that the
wave has no stagnation points. Several improvements have been made to the
existence result of Dubreil-Jacotin, but it was not until the pioneering article
[7] that large waves were constructed, using global bifurcation theory. This
article sparked mathematical research into rotational waves.

The use of a semi-hodograph transform in [14] and [7], and the correspond-
ing deep-water result in [27], means that the resulting waves cannot exhibit
critical layers. Since then, small-amplitude waves with constant vorticity
and a critical layer have been constructed in [46], and later in [9] with a
different approach that allows for waves with overhanging surface profiles
(there is numerical evidence for the existence of such waves, e.g. [44], but this
is still an open problem). A reasonable next step is that of waves with an
affine vorticity distribution, whose existence was shown in [16,19]. Spurred
by the above results there has also been interest in studying the properties
and dynamics of these waves below the surface [15,46]. This had been done
for linear waves in [18]. Several other avenues have also been considered: We
mention heterogeneous waves both with [25,48] and without [20,47] surface
tension, waves with discontinuous vorticity [8], a variational approach [2] and
Hamiltonian formulation with center manifold reduction [24]. Existence of
large amplitude waves with constant vorticity and a critical layer was estab-
lished in [36], in the presence of capillary effects. There is also a forthcoming
result for pure gravity waves [3], using an entirely different approach.

Common for all the previously mentioned works on rotational waves is
the feature that the vorticity is supported on the entire fluid domain (due
to the assumption of the existence of a vorticity distribution). Recently,
gravity-capillary waves with compactly supported vorticity were constructed
in [41], on infinite depth. This includes small- and large-amplitude periodic
waves with a point vortex, and small-amplitude solitary waves with either a
point vortex or vortex patch. By a point vortex we mean that the vorticity is
given by a δ-function, while we use vortex patch to mean that the vorticity is
locally integrable and compactly supported. The waves with a point vortex
are the simplest form of waves with compactly supported vorticity, and are
in a sense “almost irrotational”.

In this paper, which is based on [45], we extend the existence result for
solitary small-amplitude waves with a point vortex to finite depth, and also
give both qualitative and quantitative properties for these waves. The main
approach to showing existence follows that of [41], but we also treat the
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natural generalization of waves with several point vortices along a vertical
line, and show existence for all but exceptional configurations of vortices.
Finally, by finding an explicit expression for the rotational part of the stream
function, we give some explicit expressions for the small-amplitude periodic
waves with a point vortex on infinite depth that were constructed in [41].

An outline of the paper is as follows: In Section 2 we formulate the problem,
and in Section 3 we give the functional-analytic setting for this formulation.
Then, in Section 4 we prove existence of small solutions, and give some
properties for these. Section 5 treats the extension to several point vortices.
The final section, Section 6, contains the explicit expressions for periodic
waves on infinite depth.

2. Formulation

Under the assumption of inviscid (absence of viscosity) and incompressible
(constant fluid density) flow, the governing equations of motion are the so-
called incompressible Euler equations. For describing water waves on the
open sea, these are realistic assumptions [29, 31], and standard. We will
further assume two-dimensional flow under the influence of gravity, where
the Cartesian coordinates (x, y) describe the horizontal and vertical direction,
respectively. Then the equations read

(2.1)
wt + (w · ∇)w = −∇p− ge2, (Conservation of momentum)

∇ · w = 0, (Conservation of mass)

where w = (u, v) is the velocity of the fluid, p is the pressure distribution
and −ge2 = (0,−g) is the constant gravitational acceleration2.

For convenience we place, at time t, the flat bottom at

{(x, y) ∈ R2 : y = −h}
and the surface at

{(x, y) ∈ R2 : y = η(x, t)},
where η describes the deviation of the free boundary. We assume that η(·, t)
is bounded, continuous and strictly bounded below by −h. It should be
emphasized that, due to the free boundary assumption, the function η is a
priori unknown; determining it is part of the problem.

In addition to Equation (2.1), we require boundary conditions to match our
domain. In order to model the bottom being impermeable, we will demand
that

v|y=−h = 0 (Kinematic boundary condition at bottom),

with which we mean that v(x,−h, t) = 0 for all x and t. Next, we impose
the condition

uηx + ηt = v (Kinematic boundary condition at surface)

2The constant g is approximately 9.8m/s2, varying by less than 0.4% on the Earth’s
suface (see [26]).
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at the surface. This equation is what connects the free boundary to the fluid,
and is equivalent to demanding that particles at the surface will remain there.
We also require that

p|y=η = −α2κ(η), (Dynamic boundary condition)(2.2)

where α2 > 0 describes the surface tension and κ is the nonlinear differential
operator

κ(η) :=

(
ηx
〈ηx〉

)′
=

ηxx

〈ηx〉3
,

yielding the curvature of the surface. The symbol 〈·〉 denotes the Japanese
bracket defined through x 7→ (1 + |x|2)1/2. Equation (2.2) is known to
physicists as the Young–Laplace equation, and states that the pressure
difference across a fluid interface (in this case water/air) is proportional to
its curvature.

Note that in the lower limit α2 = 0, the dynamic boundary condition
in Equation (2.2) corresponds to the assumption of constant pressure on
the surface, but we will require that α2 be strictly positive. The proof of
Theorem 4.1, for example, relies upon the assumption that α2 > 0.

2.1. The vorticity equation. By taking the curl of Equation (2.1), one
obtains after some simple calculations that

(2.3) ωt +∇ · (ωw) = 0,

which states that the vorticity ω is transported by the vector field w. Due
to this, it is natural to expect that if the vorticity consists of a point vortex
at some time, then it will remain a point vortex at all future times, and be
transported with the flow. It should be emphasized that, for now, this is
not justified by Equation (2.3); the multiplication of ω with w is not well
defined, as w will not be smooth at the point vortex. Thus, we will have need
of a weaker form of the equation. We remind the reader of the fundamental
solution of the Poisson equation.

Proposition 2.1 (Newtonian potential). The distribution Γ ∈ L2
loc(R2)

defined by

Γ(x, y) :=
1

4π
log(x2 + y2)

satisfies

∇⊥Γ(x, y) := (−Γy,Γx)(x, y) =
1

2π

(−y, x)

x2 + y2

and
∆Γ = ∇×∇⊥Γ = δ.

If ω is of the form
ω(t) = δ(x0(t),y0(t)),

then we deduce from Proposition 2.1 that w is of the form

w(x, y, t) =
1

2π

(y0(t)− y, x− x0(t))

(x− x0(t))2 + (y − y0(t))2
+ ŵ(x, y, t),

where ŵ satisfies ∇ · ŵ = 0 and ∇× ŵ = 0, and is therefore smooth in space
(see the discussion before Equation (2.10)). As the first term, which we may
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think of as the part of w generated by the point vortex, is singular, divergence
free and odd around (x0(t), y0(t)), it is not unreasonable to think that the
dynamics of the point vortex should depend only on ŵ. In other words, that
the path t 7→ (x0(t), y0(t)) along which the point vortex moves should satisfy

(2.4) (ẋ0, ẏ0) = ŵ.

This can indeed be made rigorous. In [32, Theorems 4.1 and 4.2] it is proved
that if one considers initial data consisting of a vortex patch converging in the
sense of distributions to a point vortex, then the weak solutions of the vorticity
transport equation converge to a moving point vortex in an appropriate sense.
Moreover, the position of this point vortex satisfies Equation (2.4). Thus, we
will allow for point vortices, as long as they are propagated in the fluid as in
Equation (2.4).

2.2. Traveling waves. We now assume that there are functions w̃, p̃, η̃,
depending only on space, and a constant velocity c ∈ R such that

w(x, y, t) = w̃(x− ct, y),

p(x, y, t) = p̃(x− ct, y),

η(x, t) = η̃(x− ct)
for all relevant x, y and t. Positive and negative c then correspond to waves
moving in the positive and negative x-directions, respectively. In the new
steady variables (x̃, ỹ) = (x− ct, y), after dropping the tildes, our equations
read

(w · ∇)w − cwx = −∇p− ge2, (Conservation of momentum)(2.5)
∇ · w = 0, (Conservation of mass)

with boundary conditions

v = 0, at y = −h, (Kinematic)(2.6)

(u− c)η′ = v,
at y = η(x),

(Kinematic)(2.7)

p = −α2κ(η), (Dynamic)(2.8)

on the now time-independent domain

Ω(η) := {(x, y) ∈ R2 : −h < x < η(x)}.
We call the problem of finding w, p and η such that these equations are
satisfied the steady water-wave problem. Note also that the vorticity equation
given in Equation (2.4) reduces to

(2.9) (c, 0) = ŵ(x0, y0)

for a point vortex centered at (x0, y0) ∈ Ω(η).

2.3. The Zakharov–Craig–Sulem formulation. It turns out that it is
possible to reduce the water-wave problem to an entirely one-dimensional one
on the surface in a clever way. This is known as the Zakharov–Craig–Sulem
formulation, and was first introduced by Zakharov in [49], and then later put
on a firmer mathematical basis in [10, 11]. The original formulation relies on
the fluid being irrotational, but it is in fact sufficient that this holds near the
surface. This is where the compact support of the vorticity comes in.
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Suppose that we have solved the steady water wave problem for some
w, p, η. It is then convenient to split the velocity w as

w = ŵ +W,

where ŵ is irrotational, that is, ∇× ŵ = 0 and ∇×W = ω. We also assume
that both ŵ and W are divergence free. For us, W will be known.

Although we will allow for ω to be a singular distribution, the vector field
ŵ = (û, v̂) will be assumed to at least be in the Sobolev space H1(Ω(η))2, and
W = (U, V ) to be at least L1

loc(Ω(η)). By the assumption of∇·ŵ = ∇·W = 0,
the differentials

v̂ dx− û dy, V dx− U dy
on Ω(η) are closed. Hence, as Ω(η) is simply connected, these differentials
are exact by generalizations of the Poincaré lemma [33, Theorems 2.1 and
3.1]. Thus, there are stream functions ψ̂ ∈ H2

loc(Ω(η)),Ψ ∈ L1
loc(Ω(η)) (by

[13, Corollary 2.1]), determined uniquely modulo constants by ŵ and W ,
such that

ŵ = ∇⊥ψ̂, W = ∇⊥Ψ.

Moreover, by the assumed curl of these vector fields, the function ψ̂ is
harmonic, and Ψ satisfies ∆Ψ = ω. In particular, ψ̂ is smooth, and so is W
outside the support of ω.

By the above, we thus have that

(2.10) w = ∇⊥(ψ̂ + Ψ)

holds for the velocity field w. Suppose now that W and Ψ are chosen such
that Ψ = 0 at the bottom. Then the boundary condition in Equation (2.6)
translates to ψ̂ being constant along the bottom. Since ψ̂ is unique modulo
constants, we may as well take this condition to be

ψ̂
∣∣∣
y=−h

= 0

instead.
We will now apply the assumption that suppω ⊆ Ω(η) is compact. This

means that a velocity potential for w exists on any simply connected domain
not containing suppω. Equation (2.5) can then in turn be used to show that

∇
(
−cu+

1

2
|w|2 + p+ gy

)
= 0

holds on any such domain. Hence, in particular, we obtain the surface
Bernoulli equation

(2.11) c(ψ̂y + Ψy) +
1

2
|∇ψ̂ +∇Ψ|2 − α2κ(η) + gη = C, at y = η(x),

where C is a real constant. Here we have inserted the boundary condition
for the pressure at the surface, Equation (2.8). We will set C = 0, since
we are looking for localized waves. This can be seen by letting |x| → ∞ in
Equation (2.11). We now need the following formal definitions to proceed,
which will be specified later on.
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Definition 2.2 (Harmonic extension operator). Given η, we define the
harmonic extension operatorH(η) as the operator mapping a function ζ : R→
R to the harmonic function ψ̂ : Ω(η)→ R satisfying

ψ̂(·, η(·)) = ζ,

ψ̂(·,−h) = 0.

Definition 2.3 (Dirichlet-to-Neumann operator). Given η, we define the
Dirichlet-to-Neumann operator G(η) as the operator mapping Dirichlet data
to non-normalized Neumann data; that is, the operator defined by

G(η)ζ := (−η′, 1) · ∇[H(η)ζ]|y=η

for functions ζ : R→ R.

With Definition 2.2 in mind, define ζ : R→ R by

ζ := ψ̂(·, η(·)),(2.12)

that is, the trace of ψ̂ on the surface. By our assumptions, then, we have

ψ̂ = H(η)ζ,

and we will use this to reformulate Equation (2.11) in a way that only involves
ζ and Ψ. Note that

ζ ′ = ψ̂x + η′ψ̂y,

G(η)ζ = −η′ψ̂x + ψ̂y,

where the right-hand side is evaluated at y = η(x). Inverting these relations
and inserting them in Equation (2.11) yields

(2.13)

c

[
η′ζ ′ +G(η)ζ

〈η′〉2
+ Ψy

]
+

(ζ ′ + (1, η′) · ∇Ψ)2 + (G(η)ζ + (−η′, 1) · ∇Ψ)2

2〈η′〉2

+ gη − α2κ(η) = 0,

and in a similar fashion, one obtains

(2.14) cη′ + ζ ′ + (1, η′) · ∇Ψ = 0

from the kinematic boundary condition in Equation (2.7). Equation (2.14)
can be integrated once to yield

(2.15) cη + ζ + Ψ = 0,

where we have assumed decay at infinity. We emphasize that the function Ψ
and its derivatives are evaluated at y = η(x) in Equations (2.13) to (2.15),
which we suppress for readability. Equations (2.13) and (2.15) form the
Zakharov–Craig–Sulem formulation, which we will combine with a suitable
vorticity equation. One may note that the pressure, p, has been eliminated
from the formulation entirely.

Remark 2.4. Equation (2.13) is slightly different than the equation used
in [41]. The equation in [41] can be obtained by inserting the kinematic
boundary condition, Equation (2.14), into Equation (2.13).
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3. Functional-analytic setting

We now focus on proving the existence of a family of small amplitude
and small velocity traveling waves with vorticity consisting of a point vortex
situated on the y-axis. In other words, solutions with vorticity of the form

ω = εδθ,

where 0 < |ε| � 1, θ ∈ (0, 1) and where we have defined

δθ := δ(0,−(1−θ)h).

The constant θ then corresponds to the relative position of the point vortex
above the bottom, and the parameter ε, describing the strength of the vortex,
will be used as the bifurcation parameter.

We will from here on always assume that η is such that η(0) > −(1− θ)h,
which prevents the surface from touching the point vortex. Furthermore, we
will also assume that η(0) < (1− θ)h. The reason for this is purely technical
(as we will see after Proposition 3.1). For the purpose of accounting for these
assumptions, define the set

(3.1) Λθ := {η ∈ BC(R) : η > −h, |η(0)| < (1− θ)h},

whose intersection Λθ ∩ Hs(R) is open in Hs(R) for any s > 1/2, by the
Sobolev embedding Hs(R) ↪→ BC(R).

The next proposition describes the stream function that we will use for
the rotational part of the velocity; the counterpart of the function G in [41].
While we could use a similar stream function on finite depth, it is more
beneficial to work with one that is tailored for finite depth.

Proposition 3.1 (Stream function). Let η ∈ Λθ and define Φ: Ω(η)→ R by

Φ(x, y) :=
1

4π
log

(
cosh(πx/h) + cos(π(y/h− θ))
cosh(πx/h) + cos(π(y/h+ θ))

)
.

Then Φ defines a regular distribution, and

(3.2)

∆Φ = δθ,

Φ|y=0 = 0,

Φ|y=−h = 0.

Moreover, the function (x, y) 7→ Φ(x, y)− Γ(x, y + (1− θ)h) is harmonic and
satisfies

(3.3) ∇⊥ (Φ− Γ(x, y + (1− θ)h)) (0,−(1− θ)h) =

(
1

4h
cot(πθ), 0

)
,

where Γ is the Newtonian potential introduced in Proposition 2.1.

Proof. We will apply Theorem A.1 (see Appendix A) to prove this result,
and thus need a bijective conformal map from the strip R× (−h, 0) ⊆ C to
the unit disk D, mapping the point −i(1− θ)h to the origin. This is done in
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three steps:

R× (−h, 0) D

R× (0, 1) R× (0,∞)

(z+ih)/h

f

exp(πz)

z−exp(iπθ)
z−exp(−iπθ)

The conformal map for each individual step is well known from elementary
complex analysis, see for instance [21, II.7 and p. 60]. Hence

f(z) :=
eπ(z+ih)/h − eiπθ
eπ(z+ih)/h − e−iπθ

defines the desired map from the strip to the unit disk. By the aforementioned
theorem, then,

Φ(x, y) :=
1

2π
log(|f(x+ iy)|)

=
1

4π
log

(
cosh(πx/h) + cos(π(y/h− θ))
cosh(πx/h) + cos(π(y/h+ θ))

)
solves Equation (3.2) in R× (−h, 0). Because f extends to a meromorphic
function on C, it is immediate that Φ also solves Equation (3.2) in Ω(η)
(recall that η ∈ Λθ).

Finally, we have

∇⊥ (Φ− Γ(x, y + (1− θ)h)) (0, θ) =
i

4π

(
f ′′(iθ)
f ′(iθ)

)
=

(
1

4h
cot(πθ), 0

)
by the final part of the same theorem, which will be important for the
asymptotic velocity of the traveling waves that we shall obtain in Theorem 4.1.

�

Note that the stream function Φ introduces a “mirror vortex” at (0, (1−θ)h),
and moreover is 2h-periodic in the y-direction. This is the reason for the
limitation on the height of the surface profiles in the set Λθ defined in
Equation (3.1).

The next proposition is crucial, because the traces of Φ and its derivatives
on the surface enter in the Zakharov–Sulem–Craig formulation of the problem.
Having an explicit expression for Φ enables us to prove the proposition in a
quite direct way.

Proposition 3.2. Suppose that η ∈ Hs(R) ∩ Λθ, where s > 1
2 . Then

Φ(·, η(·)) ∈ Hs(R),

∇⊥Φ(·, η(·)) ∈ Hs(R)2.

Moreover, the dependence on η is analytic.
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Proof. We will only treat Φ, as the argument for the derivative is similar.
Observe that it is sufficient to consider the function defined by

(3.4) x 7→ log(1 + cos(η(x)− θ) sech(x))

for η ∈ Hs(R) such that |η(0)| < π − θ, where θ ∈ (0, π). Since

cos(η(x)− θ) sech(x) = (cos(η(x)− θ)− cos(θ)) sech(x) + cos(θ) sech(x)

it follows by [40, Theorem 4 of 5.5.3], sech ∈ Hs(R) and Hs(R) being an
algebra that the function in Equation (3.4) lies in Hs(R) and that the
dependence on η is analytic. Another application of the result in [40] then
yields the desired result. �

As we have seen, because of the reliance on the stream function and the
operators H(η) and G(η), a central problem is the solution of the Laplace
equation,

(3.5)
∆ψ̂ = 0 in Ω(η),

ψ̂
∣∣∣
y=η

= ζ, ψ̂
∣∣∣
y=−h

= 0

on the fluid domain Ω(η), given η and ζ. We have the following theorem, which
is adapted from Corollary 2.44 in [30], and which establishes both existence
and uniqueness to Equation (3.5) in suitable Sobolev spaces. Functions on the
surface will be identified with functions on the real line as in Equation (2.12).

Theorem 3.3 (Well-posedness of the Laplace equation [30]). Suppose that
η ∈ Hs(R)∩Λθ for some s > 3/2, and that ζ ∈ H3/2(R). Then Equation (3.5)
has a unique solution in H2(Ω(η)).

Remark 3.4. While the natural setting for the velocity potential or the stream
function on infinite depth is that of homogeneous Sobolev spaces, used in
both [41] and [30], this is not the case for the stream function on finite
depth. Because we require ψ̂ to be equal to a constant at the bottom, it
must necessarily be the case that ψ̂ tends to the same constant at infinity.
Otherwise, because of the finite depth, ψ̂y would not decay at infinity (in the
sense that lim|(x,y)|→∞ ψy(x, y) = 0), and therefore not describe a localized
wave3.

Theorem 3.3 enables us to define the harmonic extension operator described
in Definition 2.2 as an operator H3/2(R)→ H2(Ω(η)), and using this, defining
the Dirichlet-to-Neumann operator. We refer the reader to [30], which is a
rich source of results for these operators also in a more general setting. The
results there are proved for the velocity potential, but should be adaptable
for the stream function.4 The below theorem is an amalgamation of parts
from Corollary 2.40 and Theorems 3.15 and A.11 in [30]. See also [42].

3One could say that such a wave is localized if the limit exists and is different from zero,
but this does not yield any new waves (only a change in the frame of reference).

4Compare with Theorems 3.49 and A.13 in [30] for the case of infinite depth, where
the boundary conditions for the Laplace equation for the stream function and velocity
potential coincide.



SOLITARY GRAVITY-CAPILLARY WATER WAVES WITH POINT VORTICES 11

Theorem 3.5 (Boundary operators [30]). Let s > 3/2 and suppose that
η ∈ Hs(R) ∩ Λθ. Then the harmonic extension operator H(η) and the
Dirichlet-to-Neumann operator G(η) are members of B(H3/2(R), H2(Ω(η))
and B(Hs(R), Hs−1(R)), respectively. The norms of these operators are
uniformly bounded on subsets of Hs(R) ∩ Λθ that are bounded in the norm
on Hs(R). Moreover, the map G(·)ζ is analytic for fixed ζ ∈ Hs(R).

In the same setting as in Theorem 3.5, the curvature of the surface is well
defined:

Proposition 3.6 (Curvature). The curvature operator κ is well defined as an
operator Hs(R)→ Hs−2(R) for any s > 3/2. Moreover, the map is analytic.

Proof. Observe that the function f : R → R defined by f(x) = x〈x〉−1 is
smooth and satisfies f(0) = 0. As s − 1 > 1

2 , the result [40, Theorem 4 of
5.5.3] ensures that f(η′) ∈ Hs−1(R). Since f is also analytic, κ is analytic by
the same result. �

There is one thing we have not yet looked at, namely the vorticity equation
Equation (2.9). Recalling Equation (2.10), we will consider velocity fields of
the form

(3.6) w = ∇⊥ (H(η)ζ + εΦ) .

From Proposition 2.1 we know that the part of the stream function that is
generated by the point vortex at (0,−(1− θ)h) is given by the Newtonian
potential

εΓ(x, y + (1− θ)h),

whence Equation (3.6) reduces to

(c, 0) = ∇⊥[H(η)ζ](0,−(1− θ)h) + ε

(
1

4h
cot(πθ), 0

)
,

by Equation (3.3) in Proposition 3.1.
In particular, this means that any solution necessarily must satisfy

[H(η)ζ]x(0,−(1− θ)h) = 0.

For simplicity, we choose to look for η, ζ in appropriately chosen subspaces of
Hs(R), such that this condition is automatically satisfied. Specifically, define

Hs
even(R) := {f ∈ Hs(R) : f is even},

which is closed in Hs(R), and therefore a Hilbert space in the inherited
norm. We mention that it is still an open question whether asymmetric
traveling waves exist. However, it is known that, in many situations, certain
properties imply symmetry (see for instance [6, 28]). Furthermore, under
suitable assumptions, all symmetric waves are traveling waves [17].

Assume now that η ∈ Hs
even(R)∩Λθ, with s > 3/2, and that ζ ∈ H3/2

even(R).
Then it must necessarily be the case that H(η)ζ is even in x. Hence [H(η)ζ]x
vanishes along the y-axis and so the vorticity equation reduces further to

(3.7) c = c1ε− [H(η)ζ]y(0,−(1− θ)h), where c1 :=
1

4h
cot(πθ).
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Observe also that the Dirichlet-to-Neumann operator G(η) is well defined as
an operator Hs

even(R)→ Hs−1
even(R) for η ∈ Hs

even ∩ Λθ and s > 3/2, and that
κ can be viewed as an operator Hs

even(R)→ Hs−2
even(R).

Remark 3.7. One has to be careful with claims about the solution set when
ε = 0. Equation (3.7) of course actually only needs to be satisfied if ε 6= 0.
This means that if we impose Equation (3.7), then we lose the trivial set of
solutions

(η, ζ, c, ε) ∈ {0} × {0} × R× {0}
for the other equations, except for the point (0, 0, 0, 0). This should be kept
in mind in any claims of uniqueness.

For convenience, define now the spaces

Xs := Hs
even(R)×Hs

even(R)× R,
Y s := Hs−2

even(R)×Hs
even(R)× R

and the set

U sθ := {(η, ζ, c) ∈ Xs : η ∈ Λθ} ⊆ Xs,

which accounts for the limitations on η.
We proceed to introduce three maps that together will form the basis for

our argument. For s > 3/2 we define F1 : U sθ × R→ Hs−2
even(R) by

F1(η, ζ, c, ε) = c

[
η′ζ ′ +G(η)ζ

〈η′〉2
+ εΦy

]
+

(ζ ′ + ε(1, η′) · ∇Φ)2 + (G(η)ζ + ε(−η′, 1) · ∇Φ)2

2〈η′〉2
+ gη − α2κ(η),

the map F2 : U sθ × R→ Hs
even(R) by

F2(η, ζ, c, ε) = cη + ζ + εΦ,

and finally the map F3 : U sθ × R→ R by

(3.8) F3(η, ζ, c, ε) = c− c1ε+ [H(η)ζ]y(0,−(1− θ)h).

In all of these definitions, we really mean the traces of Φ and its derivatives
on the surface. The pointwise evaluation in the second term of Equation (3.8)
is allowed because H(η)ζ is harmonic. It should be clear that all three maps
F1, F2, F3 are smooth.

We can now define F : U sθ × R→ Y s by

F := (F1, F2, F3),

and our task will then be to find solutions of the equation

(3.9) F (η, ζ, c, ε) = 0.

One may immediately note that F (0, 0, 0, 0) = 0, so that the origin is a trivial
solution. It will turn out that in a small neighborhood of the origin in Xs×R,
there is a unique curve of nontrivial solutions parametrized by the vortex
strength parameter ε.
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4. Local bifurcation

We can now finally state and prove the following theorem, establishing
the existence of small, localized, traveling wave solutions with a point vortex.
For this, we will use an implicit function theorem argument on F . Note that
while we do not apply Crandall–Rabinowitz theorem [12], the situation is
very much in the spirit of that theorem. We bifurcate from the family of
trivial waves described in the remark after Equation (3.7) by introducing the
vorticity equation.

Theorem 4.1 (Traveling waves with a point vortex). Let s > 3/2 and
θ ∈ (0, 1). Then there exists an open interval I 3 0 and a C∞-curve

I → (Hs
even(R) ∩ Λθ)×Hs

even(R)× R× R
ε 7→ (η(ε), ζ(ε), c(ε), ε)

of solutions to the Zakharov–Craig–Sulem formulation, Equation (3.9), for a
point vortex of strength ε situated at (0,−(1− θ)h). The solutions fulfil

(4.1)

η(ε) = η2ε
2 +O(ε4),

ζ(ε) = ζ3ε
3 +O(ε4),

c(ε) = c1ε+ c3ε
3 +O(ε4),

in their respective spaces as ε→ 0, where η2 ∈ Hs
even(R) is defined by

η2 := −(g − α2∂2
x)−1χ, χ := c1Φy(·, 0) +

1

2
Φy(·, 0)2,

and where

ζ3 := −η2(c1 + Φy(·, 0)),

c3 := −[H(0)ζ3]y(0,−(1− θ)h),

with c1 as in Equation (3.7), Φ as in Proposition 3.1 and H as in Defini-
tion 2.2.

Moreover, there is a neighborhood of the origin in U sθ × R such that this
curve describes all solutions to F (η, ζ, c, ε) = 0 in that neighborhood.

Proof. As remarked at the end of Section 3, the origin is a trivial solution.
In order to apply the implicit function theorem, we require the first partial
derivatives of F at this point. A direct calculation yields

(4.2) DXF (0, 0, 0, 0) =

g − α2∂2
x 0 0

0 IHs
even(R) 0

0 [H(0)·]y(0,−(1− θ)h) 1

 ,
where the subscript X denotes the partial derivative with respect to the
variable (η, ζ, c) in Xs.

Now, every operator on the diagonal of DXF (0, 0, 0, 0) is an isomorphism.
Indeed, the operator

[g − α2∂2
x] : Hs

even(R)→ Hs−2
even(R)

corresponds to the Fourier multiplier g+α2ξ2. Since g, α2 > 0, this operator is
invertible, with inverse corresponding to the multiplier (g+α2ξ2)−1. The other
two operators on the diagonal are identity operators, and therefore trivially
invertible. Hence DXF (0, 0, 0, 0) ∈ B(Xs, Y s) is also an isomorphism.
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Thus we can use the implicit function theorem to conclude that there is
an open interval I containing zero, an open set V ⊆ U sθ containing (0, 0, 0),
and a map f ∈ C∞(I, V ) such that for (η, ζ, c, ε) ∈ V × I, we have

F (η, ζ, c, ε) = 0 ⇐⇒ (η, ζ, c) = f(ε).

Furthermore, we obtain

Df(0) = −DXF (0, 0, c1, 0)−1DεF (0, 0, c1, 0) =

 0
0
c1

 ,
which yields the first order terms in Equation (4.1). The higher-order terms
can be obtained by inserting expansions for η(ε), ζ(ε) and c(ε) into the
equation F (η(ε), ζ(ε), c(ε), ε) = 0. This concludes the proof of the theorem.

�

Remark 4.2. Because Theorem 4.1 holds for any s > 3/2, we can get arbitrarily
high regularity on the solutions, by possibly making the interval I smaller.
We have not been able to conclude that they are smooth, however, since the
interval could possibly shrink to a point as s→∞.

Observe that, because c1 changes sign at θ = 1/2, the direction in which
the waves obtained in Theorem 4.1 will travel (for small ε) depends on where
the point vortex is in relation to the line y = −h/2. This does not come into
play for waves on infinite depth. Note that if θ = 1− 1/h (when h > 1) then

c1 = − 1

4π
+O(1/h2)

as h → ∞, which is in agreement with what was found in [41] for a point
vortex situated at (0,−1) on infinite depth.

Since c1 vanishes when θ = 1/2, also the next term in the expansion for
c(ε) is of interest. We gave an expression for c3 in Theorem 4.1, but have
not determined its sign yet. We will treat the sign of c3 after Theorem 4.6,
which establishes some properties of the function η2.

Written out, we have

(4.3) χ(x) =
1

8h2

1 + cos(πθ) cosh(πx/h)

(cosh(πx/h) + cos(πθ))2
,

for the function χ defined in Theorem 4.1. We will have use for the fact that
χ has an elementary antiderivative χ] and a double antiderivative χ]] given
by

(4.4)
χ](x) =

1

8πh

sinh(πx/h)

cosh(πx/h) + cos(πθ)
,

χ]](x) =
1

8π2
log(cosh(πx/h) + cos(πθ)),

respectively. While there in general seems to be no nice closed form of the
leading order surface profile

η2 = −(g − α2∂2
x)−1χ

obtained in Theorem 4.1, we can still give some of its properties. An immedi-
ate one is that η2 is smooth. In Proposition 4.4 we give a series expansion
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for η2 in powers of e−π|x|/h. Furthermore, perhaps more surprisingly, we can
find an explicit expression for η2 in terms of elementary functions whenever

(4.5) m :=

√
gh

πα
.

is a natural number. If m ∈ N, then e±
√
gx/α = e±mπx/h are integral powers

of e±πx/h, which would appear on the right side of Equation (4.3) if we had
written out cosh(πx/h) and sinh(πx/h). Since x 7→ e±

√
gx/α spans the kernel

of g − α2∂2
x, this explains integral values of m being special.

Before we state Proposition 4.4 and Theorem 4.6, we need a lemma to
simplify some expressions.

Lemma 4.3. For m ∈ (0,∞) \ N and θ ∈ (0, 1), we have

(4.6)
1

m
+ 2m

∞∑
k=1

(−1)k
cos(kπθ)

m2 − k2
= π

cos(mπθ)

sin(mπ)
,

which is equal to

(4.7)
∫ ∞

0
ym−1 cos(πθ)y + 1

y2 + 2 cos(πθ)y + 1
dy

whenever m ∈ (0, 1). Furthermore, for m ∈ N,

(4.8)
1

m
+ 2m

∞∑
k=1
k 6=m

(−1)k
cos(kπθ)

m2 − k2
= −(−1)m

(
cos(mπθ)

2m
+ πθ sin(mπθ)

)
.

Proof. Both sides of Equation (4.6) define meromorphic functions in m on C
with simple poles in the points Z×{0}. Moreover, they are both equal to the
integral in Equation (4.7) when m ∈ (0, 1), which can be seen by calculating
the integral with both the residue theorem (around a keyhole contour) and
a Laurent series expansion of the integrand. Since the interval consists of
non-isolated points, we have equality on all of C. Finally, Equation (4.8)
follows from Equation (4.6) by taking limits. �

Proposition 4.4 (Expansion for η2). If the number m in Equation (4.5)
satisfies m ∈ (0,∞) \ N, then the leading order term of the surface profile
from Theorem 4.1 is given by

η2(x) =
1

8π2α2

[
log(1 + 2 cos(πθ)e−π|x|/h + e−2π|x|/h)

− π cos(mπθ)

sin(mπ)
e−
√
g|x|/α + 2m2

∞∑
k=1

(−1)k
cos(kπθ)

k(m2 − k2)
e−kπ|x|/h

]
,
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while if m ∈ N, then

η2(x) =
1

8π2α2

[
log(1 + 2 cos(πθ)e−π|x|/h + e−2π|x|/h)

+ (−1)m
(

3 cos(mπθ)

2m
+ πθ sin(mπθ) + cos(mπθ)

π|x|
h

)
e−
√
g|x|/α

+ 2m2
∞∑
k=1
k 6=m

(−1)k
cos(kπθ)

k(m2 − k2)
e−kπ|x|/h

]
.

These series converge uniformly, and, excluding the origin, so do the series
for the first derivative. Moreover, when m ∈ N, the function η2 is given
explicitly in terms of elementary functions by

η2(x) =
1

8π2α2

[
1

m
+ 2

m−1∑
k=1

(−1)m−k
cos((m− k)πθ)

k
cosh((m− k)πx/h)

+ r(eπx/h) + r(e−πx/h)

]
,

where r : (0,∞)→ R is defined by

r(x) :=
1

2
(−1)m cos(mπθ)x−m log(1 + 2 cos(πθ)x+ x2)

+ (−1)m sin(mπθ)x−m(arctan(cot(πθ) + csc(πθ)x)− π(1/2− θ)).
Proof. It follows from

F (e−a|·|)(ξ) =

√
2

π

a

a2 + ξ2
, a > 0,

and the definition of η2, that we may write η2 as the convolution

η2(x) = − 1

2α
√
g

(e−
√
g|·|/α ∗ χ)(x)

= − 1

2α
√
g

(J(x, χ) + J(−x, χ)) ,(4.9)

where
J(x, χ) := e−

√
gx/α

∫ x

−∞
e
√
gy/αχ(y) dy.

Equivalently

η2(x) =
1

2α2

(
J(x, χ]) + J(−x, χ])

)
(4.10)

=
1

α2
χ]](x)−

√
g

2α3

(
J(x, χ]]) + J(−x, χ]])

)
(4.11)

through integration by parts, where χ] and χ]] are the antiderivatives defined
in Equation (4.4).

We first use Equation (4.10) to obtain an explicit expression for η2 when
m ∈ N. By using the substitution x 7→ eπx/h, we find that

J(x, χ]) =
1

8π2
f1(eπx/h), f1(x) := x−m

∫ x

0
zm−1 z2 − 1

z2 + 2 cos(πθ)z + 1
dz.
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The fraction in the integrand in the definition of f1 has partial fraction
decomposition

z2 − 1

z2 + 2 cos(πθ)z + 1
= 1− eiπθ

z + eiπθ
− e−iπθ

z + e−iπθ
,

and since

zm−1 a

z + a
= −(−a)m

z + a
−
m−2∑
k=0

(−a)m−k−1zk, a ∈ C, z 6= −a,

this means that

f1(x) =
1

m
+(−1)meimπθx−m log(x+eiπθ)+(−1)me−imπθx−m log(x+e−iπθ)

+ 2(−1)mπθ sin(mπθ)x−m + 2
m−1∑
k=1

(−1)k cos(kπθ)

m− k x−k,

where log(·) denotes the principal branch of the logarithm. The result now
follows by using the identity

log(x+ eiπθ) =
1

2
log(1 + 2 cos(πθ)x+ x2)

− i(arctan(cot(πθ) + csc(πθ)x)− π/2),

valid for all x ∈ R.
For the series representation of η2, we use Equation (4.11), because this

leads to a series that converges more rapidly. We will assume that m ∈
(0,∞) \ N; the case for m ∈ N is similar, except that one needs to use
Equation (4.8) instead of Equation (4.6). We use the same substitution as
before to arrive at

J(x, χ]]) =
α

8π2√g f2(eπx/h),

where f2 : (0,∞)→ R is defined by

f2(x) := mx−m
∫ x

0
zm−1 log((z−1 + z)/2 + cos(πθ)) dz.

One may check that one has

log((z−1 + z)/2 + cos(πθ)) = − log(2)− log(z)− 2

∞∑
k=1

(−1)k
cos(kπθ)

k
zk

for z ∈ (0, 1) and

log((z−1 + z)/2 + cos(πθ)) = − log(2) + log(z)− 2

∞∑
k=1

(−1)k
cos(kπθ)

k
z−k

for z ∈ (1,∞).
It then follows by termwise integration that

f2(x) =
1

m
− log(2)− log(x)− 2m

∞∑
k=1

(−1)k
cos(kπθ)

k(m+ k)
xk
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on (0, 1] (the endpoint is Abel’s theorem [34, Theorem 17.14]), and that

f2(x) = f2(1)x−m +mx−m
∫ x

1
zm−1 log((z + z−1)/2 + cos(πθ)) dz

= − 1

m
− log(2) + log(x)− 2m

∞∑
k=1

(−1)k
cos(kπθ)

k(m− k)
x−k

−
(

2

m
+ 4m

∞∑
k=1

(−1)k
cos(kπθ)

m2 − k2

)
x−m.

for x ∈ [1,∞). Employing Equation (4.11), we find that η2 is given by

η2(x) =
1

8π2α2

[
log(cosh(πx/h) + cos(πθ))− π|x|/h+ log(2)

−
(

1

m
+ 2m

∞∑
k=1

(−1)k
cos(kπθ)

m2 − k2

)
e−
√
g|x|/α

+ 2m2
∞∑
k=1

(−1)k
cos(kπθ)

k(m2 − k2)
e−kπ|x|/h

]
for all x ∈ R, by using that η2 is even and observing that for x ≥ 0 we have
eπx/h ∈ [1,∞) and e−πx/h ∈ (0, 1]. If we now apply Equation (4.6) from
Lemma 4.3 in order to get a closed-form expression for the coefficient in front
of e−

√
g|x|/α, we arrive at the desired expansion. �

Remark 4.5. The only obstacle to convergence of the series given in Propo-
sition 4.4 is the origin; thanks to the exponential factor e−kπ|x|/h, the con-
vergence is rapid away from the origin. It should also be noted that, while
Equation (4.3) seems to suggest that η2 should be expandable in a series
of powers of sech(πx/h) by equating coefficients in the differential equation
defining it, this seems to lead to a series that does not converge. We have
kept the series expansion for η2 also when m ∈ N, because the expression
in terms of elementary functions is unwieldy, and prone to numerical errors
even for small values of m.

The expressions found in Proposition 4.4 have well defined pointwise limits
as θ ↑ 1 (for x 6= 0) and θ ↓ 0. In particular, when m = 1 these are given by

lim
θ↓0

η2(x) =
1

8π2α2
[1− eπx/h log(1 + e−πx/h)− e−πx/h log(1 + eπx/h)]

lim
θ↑1

η2(x) =
1

8π2α2
[1 + eπx/h log |1− e−πx/h|+ e−πx/h log |1− eπx/h|],

which can can be seen as graphs drawn with thicker lines in Figure 1, together
with η2 for various values of the parameter θ.

We see from Figure 1 that one gets a depression at the origin, which
becomes more pronounced the closer the point vortex is situated to the
surface. The profile when the point vortex is close to the surface is very
similar to the profile for the infinite depth case, found in [41]. However,
a feature which is not seen on infinite depth is that there is a significant
difference between the case θ ≤ 1/2 and the case θ > 1/2 (in addition to the
changing sign of c1). For θ ≤ 1/2 there is a single trough at the origin, and
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Figure 1. The leading order term η2 in η(ε), with h =
1, α2 = 1/(8π2),m = 1. The values of θ shown are θ =
0.1, 0.2, . . . , 0.9, together with the thicker lower and upper
limits θ ↓ 0 and θ ↑ 1.

η2 is everywhere strictly negative. When θ > 1/2 one in addition gets crests
on either side of the origin. As we can see from Figure 1, the positions of
these crests depend on the position of the point vortex.

Some of what we have just discussed is not limited to the specific choice of
constants that are used in Figure 1, and for which Proposition 4.4 yields an
explicit expression for η2. We will see that m = 1 plays a special role in the
asymptotic behavior of η2, however. More precisely, we have the following
theorem:

Theorem 4.6 (Properties of η2). The leading order surface term η2 always
satisfies η2(0) < 0 and η′′2(0) > 0, meaning that the origin is a depression.
When θ ≤ 1/2, the function η2 is everywhere negative, and strictly increasing
on [0,∞). For θ > 1/2, we have two cases, depending on the number m
defined in Equation (4.5):
(i) If m > 1/(2θ), then η2(x) is positive for sufficiently large |x|. In

particular, η2 has crests on either side of the origin.
(ii) If m ≤ 1/(2θ), then η2(x) is negative for sufficiently large |x|.

Furthermore, η2 has the following asymptotic properties for any θ ∈ (0, 1):
(i) For m > 1

(4.12) lim
x→∞

η2(x)eπx/h = − 2

m2 − 1

cos(πθ)

8π2α2
.

(ii) If m = 1, then

lim
x→∞

η2(x)
eπx/h

πx/h
= −cos(πθ)

8π2α2
.

(iii) For m < 1

(4.13) lim
x→∞

η2(x)e
√
gx/α = − π

sin(mπ)

cos(mπθ)

8π2α2
.
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Proof. We first prove that η2(0) < 0 and η′′2 (0) > 0, which holds for all values
of m and θ. By inserting x = 0 in Equation (4.9), and using the evenness of
χ, we find

η2(0) = − 1

α
√
g

∫ ∞
0

e−
√
gy/αχ(y) dy

= − 1

α2

∫ ∞
0

e−
√
gy/αχ](y)︸ ︷︷ ︸

> 0 on (0,∞)

dy < 0,

where the second equality follows from integration by parts, and the function
χ] was defined in Equation (4.4). Since η2 = −(g − α2∂2

x)−1χ, we also have

η′′2(0) =
1

α2
(gη2(0) + χ(0))

=

√
g

2α3

∫ ∞
−∞

e−
√
g|y|/α(χ(0)− χ(y)) dy

> 0,

as χ achieves a global maximum at the origin.
Suppose now that θ ≤ 1/2. Like in Proposition 4.4, we use the fact that

η2 may be written as the convolution

(4.14) η2 = − 1

2α
√
g

(e−
√
g|·|/α ∗ χ),

which shows that η2 is strictly negative, since χ is strictly positive when
θ ≤ 1/2. Moreover, some manipulations of the above formula shows that we
may write the derivative of η2 as

η′2(x) = − 1

α
√
g

[
sinh

(√
g

α
x

)∫ ∞
x

e−
√
gy/αχ′(y) dy

+e−
√
gx/α

∫ x

0
sinh

(√
g

α
y

)
χ′(y) dy

]
,

where we have used the fact that χ is even. One may check that χ′ is strictly
negative for x > 0 when θ ≤ 1/2. This shows that η′2 is strictly positive for
x > 0, and so η2 is strictly increasing on [0,∞) by the mean value theorem.

Before we consider the case θ > 1/2, we prove the asymptotic properties
for η2 listed in Equations (4.12) to (4.13). These follow by multiplying each
side in Equation (4.9) with the appropriate factor and taking limits. For
instance, suppose that m > 1, meaning that √g/α > π/h. For the integral in

eπx/h
(
e−
√
gx/α

∫ x

−∞
e
√
gy/αχ(y) dy

)
=

∫ x
−∞ e

√
gy/αχ(y) dy

e(
√
g/α−π/h)x

there are two possibilities: If θ = 1/2, then it is possible that the integrand
is integrable on the entire real line, meaning that the limit as x→∞ is zero;
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otherwise, the integral tends to ±∞, and so

lim
x→∞

∫ x
−∞ e

√
gy/αχ(y) dy

e(
√
g/α−π/h)x

= lim
x→∞

e
√
gx/αχ(x)

(
√
g/α− π/h)e(

√
g/α−π/h)x

=
1√

g/α− π/h
cos(πθ)

4h2

by L’Hôpital’s rule. The other limits can be treated in a similar way, with
one exception:

The procedure will show that when m < 1, we have

lim
x→∞

η2(x)e
√
gx/α = − 1

2α
√
g

∫ ∞
−∞

e
√
gy/αχ(y) dy

= − 1

8π2α2m

∫ ∞
0

ym
cos(πθ)y2 + 2y + cos(πθ)

(y2 + 2 cos(πθ)y + 1)2
dy

= − 1

8π2α2

∫ ∞
0

ym−1 cos(πθ)y + 1

y2 + 2 cos(πθ)y + 1
dy

where the second and third equality follows from the substitution y 7→ eπy/h

and an integration by parts, respectively. The result now follows since the
integral on the final line is equal to the right-hand side of Equation (4.6) by
Lemma 4.3.

Finally, we consider the case of θ > 1/2, which is harder to describe
completely, as the integrand in the convolution in Equation (4.14) changes
sign. Observe that the claims on the sign of η2(x) for sufficiently large x
follows for m 6= 1/(2θ) from the limits in Equations (4.12) to (4.13). An
additional argument is needed for the edge case m = 1/(2θ), because the
limit in Equation (4.13) vanishes. It turns out that Equation (4.12) also holds
in the special case m = 1/(2θ), which can be shown with the same method
we used to show the other limits. Hence η2 is negative for sufficiently large x
when m = 1/(2θ), which exhausts the values of m. �

Remark 4.7. It is likely that η2 has similar properties to those for the case
θ ≤ 1/2 when θ > 1/2 and m ≤ 1/(2θ), but we have not been able to prove
this.

We are now in a position where we can give the sign of c3 in the expansion
in Theorem 4.1 for θ ≤ 1/2.

Proposition 4.8 (Sign of c3). The constant c3 in Equation (4.1) is negative
when θ ≤ 1/2. In particular, if θ = 1/2 and ε is sufficiently small, the waves
obtained in Theorem 4.1 are left-moving when ε > 0 and right-moving when
ε < 0.

Proof. Recall the definition of ζ3 in Equation (4.1). From Theorem 4.6 we
know that η2 is negative, and strictly increasing on [0,∞). Furthermore, the
factor c1 + Φy(·, 0) is positive and strictly decreasing on the same interval. It
follows that also ζ3 is positive and strictly decreasing on [0,∞).

The harmonic function H(0)ζ3 on R × (−h, 0) assumes the value 0 at
the bottom of the domain and ζ3 > 0 at the top of the domain. By the
maximum principle, it is positive on the entire domain. Thus we may use
the Hopf boundary point lemma (see [23, Lemma 3.4]) in order to conclude
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that [H(0)ζ3]y(0,−h) > 0. The result will therefore follow if we can show
that [H(0)ζ3]y is increasing along the y-axis. We will do this by looking
at [H(0)ζ3]x on (0,∞) × (−h, 0). Because of its values on the boundary,
it is negative in the interior. Another application of the Hopf boundary
point lemma implies that [H(0)ζ3]xx is negative on the y-axis (except at the
point (0,−h), where it vanishes). Since [H(0)ζ3]yy = −[H(0)ζ3]xx by the
harmonicity of H(0)ζ3, this concludes the proof. �

We finish our exposition on a single point vortex with a short discussion on
the streamlines of waves obtained in Theorem 4.1. Observe that if (x(t), y(t))
denotes the position of a fluid particle at time t, then

(4.15) (ẋ(t), ẏ(t)) = w(x(t), y(t), t),

before the new variables in Section 2.2. After introducing the steady variables,
Equation (4.15) becomes

(4.16) (ẋ(t), ẏ(t)) = w(x(t), y(t))− (c, 0),

meaning that if we only keep the first order terms for w and c from Theo-
rem 4.1, we obtain (keeping the same notation for the paths)

(4.17) (ẋ(t), ẏ(t)) = ε∇⊥ (Φ + c1y) (x(t), y(t)).

−2 0 2
−π

−2π
3

−π
3

0

x

y

(a) θ = 1/3

−2 0 2
−π

−2π
3

−π
3

0

x

y

(b) θ = 2/3

Figure 2. Streamlines in the frame of reference traveling with
the wave, for h = π and ε > 0. The wave corresponding to
θ = 1/3 propagates to the right, while the wave corresponding
to θ = 2/3 propagates to the left. The arrows illustrating
the vector field on the right hand side of Equation (4.17)
have been scaled here for visibility, and only their direction is
quantitatively accurate.

We have used this to obtain Figure 2, which shows streamlines in the
steady frame moving with the wave. The portraits corresponding to θ and
1− θ can be obtained from each other by a 180◦ rotation. When θ = 1/2, all
the streamlines are closed (not shown), so we will focus on the case θ 6= 1/2.
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The lines y = −h and y = 0 are nullclines for the system in Equation (4.17),
and the points (x, y) with

(4.18)

x = ±h/π arcosh(|2 sin(πθ) tan(πθ) + cos(πθ)|),

y =

{
−h θ < 1/2

0 θ > 1/2

are equilibrium points, corresponding to stagnation points. One may check
that

h/π arcosh(2 sin(πθ) tan(πθ) + cos(πθ)) =
√

3hθ +O(θ5)

as θ ↓ 0, meaning that the distance between the equilibria is very close to
linear in θ for small θ (a corresponding statement holds for 1−θ small). They
go off to infinity as θ → 1/2 from either side. The heteroclinic orbit (which
can be expressed explicitly in terms of arcosh) connecting the two equilibrium
points described in Equation (4.18) encloses a critical layer containing closed
streamlines. Outside this region the particles always move in the same
direction with respect to the steady frame. This direction is either to the left
or right depending on the sign of cot(πθ) and ε.

We also mention that on infinite depth, the streamlines always look like
those in Figure 2b. If the point vortex is situated at (0,−d), the equilibrium
points at the surface will be at (±

√
3d, 0), and the points on the heteroclinic

orbit between these satisfy

x2 + (y + d)2 = 2dy(1 + coth(y/(2d))),

which is close to half an ellipse centered at (0,−d) with semiaxes
√

3d and
∼ 2.0873d. The equilibrium points in Equation (4.18) converge to those on
infinite depth as h→∞ if d is held fixed.

Because only the first order terms in ε have been kept in Equation (4.17),
we do not make any claim about the accuracy of the phase portraits in
Figure 2 for the full system in Equation (4.16). That would require further
and more thorough analysis, in particular for the case θ = 1/2. Still, the
phase portraits can give some indication as to how these waves look beneath
the surface. One feature will remain the same for Equation (4.16): Because
of the singularity of Φ at (0,−(1− θ)h), the streamlines will always remain
closed sufficiently close to the point vortex.

5. Several point vortices

We aim to extend the existence result for traveling waves with a single
point vortex in Theorem 4.1 to a finite number of point vortices on the y-axis.
As opposed to the single vortex case, where we could choose θ freely, there
will be limitations on the positions that the point vortices can occupy. We
will return to this. Suppose that

1 > θ1 > θ2 > · · · > θn > 0,

and that we wish to establish the existence of a traveling wave with point
vortex at the points

(0,−(1− θ1)h), . . . , (0,−(1− θn)h),
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the situation being otherwise similar to that of a single point vortex. The
admissible surface profiles are those in Λθ1 , as the uppermost point vortex is
the most restrictive.

For η ∈ Λθ1 and γ = (γ1, . . . , γn) ∈ Rn we may define

(5.1) Φγ :=
n∑
j=1

γjΦj ,

where

Φj(x, y) :=
1

4π
log

(
cosh(πx/h) + cos(π(y/h− θj))
cosh(πx/h) + cos(π(y/h+ θj))

)
, j = 1, . . . , n,

in Ω(η). We will seek solutions of the form

w = ∇⊥[H(η)ζ + Φγ ],

cf. Equation (3.6) for a single point vortex.
The main difference from the single point vortex case is of course the

vorticity equation, Equation (2.9), which needs to be imposed for each of the
point vortices. For the ith point vortex, the vorticity equation reduces to

(c, 0) = ∇⊥[H(η)ζ](0,−(1− θi)h)

+
1

4h

(
γi cot(πθi) +

n∑
j=1
j 6=i

γj
[
cot

(
π
θi + θj

2

)
− cot

(
π
θi − θj

2

)]
, 0

)
,

which, if we assume that η and ζ are even (see the discussion before Equa-
tion (3.7)), can be written more succinctly as

(5.2) c1 = −([H(η)ζ]y(0,−(1− θi)h))ni=1 + Θγ.

Here, we have defined 1 := (1, . . . , 1) ∈ Rn and the matrix Θ ∈ Rn×n by

(5.3) Θi,j =


1

4h
cot(πθi) i = j

1

4h

(
cot

(
π
θi + θj

2

)
− cot

(
π
θi − θj

2

))
i 6= j

for 1 ≤ i, j ≤ n.
As opposed to for one vortex, it is now more natural to use the wave velocity

c as the bifurcation parameter. We will therefore write ε instead of c in order
to have notation that is more consistent with the one vortex case. The idea
is to use the vortex strengths γ in order to balance Equation (5.2), which is
possible when Θ is invertible. It should be emphasized that this is almost
always the case (Theorem 5.6), but that there always are configurations of n
point vortices that yield singular Θ (Proposition 5.7). We have already seen
such a configuration, albeit a trivial one: For the case n = 1 one has Θ = 0
when θ = 1/2.

We make the necessary redefinitions

Xs := Hs
even(R)×Hs

even(R)× Rn,
Y s := Hs−2

even(R)×Hs
even(R)× Rn,

U sθ1 := {(η, ζ, γ) ∈ Xs : η ∈ Λθ1} ,
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and proceed to define, for s > 3/2, the map F1 : U sθ1 × R→ Hs−2
even(R) by

F1(η, ζ, γ, ε) = ε

[
η′ζ ′ +G(η)ζ

〈η′〉2
+ Φγ

y

]
+

(ζ ′ + (1, η′) · ∇Φγ)2 + (G(η)ζ + (−η′, 1) · ∇Φγ)2

2〈η′〉2
+ gη − α2κ(η),

the map F2 : U sθ1 × R→ Hs
even(R) by

F2(η, ζ, γ, ε) := εη + ζ + Φγ ,

and finally the map F3 : U sθ1 × R→ Rn by

F3(η, ζ, γ, ε) := Θγ − ε1− ([H(η)ζ]y(0,−(1− θi)h))ni=1.

In all of these definitions, the function Φγ and its derivatives are evaluated
at (x, η(x)), which is suppressed for readability.

We now define F := (F1, F2, F3) : U sθ → Y s, and seek solutions of the
equation

(5.4) F (η, ζ, γ, ε) = 0,

which has the origin as a trivial solution. We are led to the following analog
of Theorem 4.1 for several point vortices, establishing the existence of a
family of small, localized solutions, assuming that Θ is nonsingular. The
resulting waves have one critical layer for each point vortex, assuming that
no component of γ vanishes.

Theorem 5.1 (Traveling waves with several point vortices). Let s > 3/2,
and let 1 > θ1 > θ2 > · · · > θn > 0. Suppose that the matrix Θ defined in
Equation (5.3) is invertible. Then there exists an open interval I 3 0 and a
C∞-curve

I → (Hs
even(R) ∩ Λθ1)×Hs

even(R)× Rn × R
ε 7→ (η(ε), ζ(ε), γ(ε), ε)

of solutions with velocity c = ε to the Zakharov–Craig–Sulem formulation,
Equation (5.4), for point vortices of strengths γ1(ε), . . . , γn(ε) situated at

(0,−(1− θ1)h), . . . , (0,−(1− θn)h).

The solutions fulfil

(5.5)

η(ε) = η2ε
2 +O(ε4),

ζ(ε) = ζ3ε
3 +O(ε4),

γ(ε) = γ1ε+ γ3ε
3 +O(ε4),

in their respective spaces as ε → 0, where γ1 := Θ−11, the function η2 ∈
Hs

even(R) is defined by

η2 := −(g − α2∂2
x)−1χ, χ := Φγ1

y (·, 0) +
1

2
Φγ1
y (·, 0)2,

and where

ζ3 = −η2(1 + Φγ1
y (·, 0)),

γ3 = Θ−1([H(0)ζ3]y(0,−(1− θi)h))ni=1,

with Φγ1 as in Equation (5.1) and H as in Definition 2.2.
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Moreover, there is a neighborhood of the origin in U sθ × R such that this
curve describes all solutions to F (η, ζ, γ, ε) = 0 in that neighborhood.

Proof. As for a single point vortex, we wish to apply the implicit function
theorem at the origin. We find the derivative

DXF (0, 0, 0, 0) =

g − α2∂2
x 0 0

0 IHs
even(R) 0

0 −([H(0)·]y(0,−(1− θi)h))ni=1 Θ

 ,
where ([H(0)·]y(0,−(1−θi)h))ni=1 means the operator Hs

even(R)→ Rn defined
by

ζ 7→ ([H(0)ζ]y(0,−(1− θi)h))ni=1.

Recalling that g − α2∂2
x and Θ are invertible by the discussion after Equa-

tion (4.2) and by assumption, respectively, DXF (0, 0, 0, 0) is an isomorphism.
Hence we can use the implicit function theorem to deduce the existence of

an open interval I around zero, an open set V ⊆ U sθ1 containing the origin,
and a map f ∈ C∞(I, V ) such that for (η, ζ, γ, ε) ∈ V × I, we have

F (η, ζ, γ, ε) = 0 ⇐⇒ (η, ζ, γ) = f(ε).

The terms in the expansion in Equation (5.5) can be obtained as in the proof
of Theorem 4.1. �

Remark 5.2. It is worth mentioning that on infinite depth, the matrix Θ is
always invertible. A corresponding existence theorem for infinite depth would
thus hold for any configuration.

Remark 5.3. An extension of the existence result in Theorem 5.1 to point
vortices that are not all on the same vertical line would require a different
argument than the one we have used. The main issue is that assuming η and
ζ to be even is then no longer sufficient to satisfy the vertical component of
the vorticity equation, like we did to obtain Equation (5.2).

One may note that the sign reversal of the wave velocity about the midpoint
θ = 1/2 that we saw with the single point vortex, can be seen also for several
point vortices, albeit in a different manner. If the matrix Θ corresponds to
1 > θ1 > · · · > θn > 0, and we reflect the vortices across the line y = −h/2
by considering ϑi := 1 − θi, 1 ≤ i ≤ n instead (without reordering them),
then the new matrix is −Θ. This causes a swap of sign on the leading order
vortex strengths, γ1 = Θ−11.

We have pointed out that the matrix Θ is not invertible for all configurations
of point vortices, and gave the trivial example of θ = 1/2 for a single point
vortex. This example, together with Theorem 4.1, also shows that invertibility
of Θ is not a necessary condition for the existence of a traveling wave with
point vortices in those points. See also Remark 5.5.

The only case for multiple point vortices on the y-axis where we can
feasibly describe the admissible positions directly is for n = 2. In fact, we
give a complete description of when Θ is invertible in Proposition 5.4; see
also Figure 3, which presents this result graphically. One may observe that
the midpoint between the bottom and surface plays a role also here.

Proposition 5.4 (Θ for n = 2). For two point vortices, we have the following:
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det(Θ) < 0

det(Θ) > 0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ1

θ 2

Figure 3. The determinant of Θ for the case n = 2 as a
function of (θ1, θ2). The determinant vanishes along the solid
black curve, which is given explicitly as a parametrization in
Proposition 5.4. (In the figure, the level curve for det(Θ) = 0
is computed numerically.)

(i) If θ1 ≤ 1/2, then Θ is invertible for all θ2 ∈ (0, θ1).
(ii) If θ1 > 1/2, then Θ is invertible for all θ2 ∈ (0, θ1) except for exactly

one value, 0 < θ̂2(θ1) < 1/2. The graph of θ̂2 : (1/2, 1) → (0, 1/2) is
described by the curve

(π/4, 3π/4) → (1/2, 1)× (0, 1/2)
t 7→ (t+ f(t), t− f(t))/π

where f : (π/4, 3π/4)→ R is defined by

f(x) := arccot

(√
1

2

(
cot(x)2 +

√
4− 3 cot(x)4

))
.

Proof. It is useful to write the determinant of Θ as

det(Θ) =
1

16h2

[
cot(πθ1) cot(πθ2) +

4 sin(πθ1) sin(πθ2)

(cos(πθ2)− cos(πθ1))2

]
.

One immediately observes that the second term inside the parentheses is
always strictly positive. If θ1 ≤ 1/2, then one has in addition that the first
term is nonnegative for any θ2 ∈ (0, θ1) ⊆ (0, 1/2). This proves the first part
of the proposition.

For the second part, let us first prove that there is exactly one value of θ2

for each θ1 ∈ (1/2, 1) that makes Θ singular, and that this value lies in the
interval (0, 1/2). For fixed θ1 ∈ (1/2, 1) the determinant is strictly increasing
in θ2, and tends to −∞ as θ2 ↓ 0, and to ∞ as θ2 ↑ θ1. Hence it vanishes at
exactly one value of θ2, say θ̂2(θ1). Because the determinant is positive when
θ2 = 1/2, this value must necessarily lie in the interval (0, 1/2).
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We now move to the parametrization of the graph of the map θ̂2 : (1/2, 1)→
(0, 1/2). One may note from Figure 3 that there is symmetry across the
diagonal line

{(θ1, θ2) ∈ (0, 1)2 : θ1 > θ2, θ1 + θ2 = 1},
which suggests making a change of variables. By letting

(5.6) φ1 := π
θ1 + θ2

2
, φ2 := π

θ1 − θ2

2
,

we can write the determinant in the form

det(Θ) =
1

16h2

[
cot(φ1)2 cot(φ2)2 − 1

cot(φ2)2 − cot(φ1)2
+ cot(φ2)2 − cot(φ1)2

]
,

which leads us to solve the quadratic equation

x2 − ax+ a2 − 1 = 0, a := cot2(φ1), x := cot2(φ2)

for x, given a. Doing this yields the parametrization, by using φ1 as the
parameter (some care has to be taken to ensure that one picks the right
branches of the functions involved) and going back to the original variables
by inverting Equation (5.6). �

Remark 5.5. By employing the parametrization of the graph of θ̂2 provided
by Proposition 5.4, one can show that the each column of Θ is linearly
independent from 1 when det(Θ) = 0. This implies that an argument similar
to that of Theorem 5.1 can be performed, by using the vortex strength γ1 as
the bifurcation parameter, instead of c. Thus it is possible to show existence
for any configuration when n = 2. An extension of this argument to n > 2 is
harder, because it requires the rank of Θ to be n− 1.

While the set of configurations that make det(Θ) vanish is hard to describe
in general when n > 2, some observations can be made. Of course, if n ≥ 2,
and as long as the derivative of det(Θ) with respect to the variable (θ1, . . . , θn)
does not vanish at a point where det(Θ) = 0, the zero set of det(Θ) is locally
a smooth manifold of dimension n − 1 around that point by the implicit
function theorem. When n = 2, the zero set is actually the graph of a smooth
function in θ1 by Proposition 5.4, and numerical evidence suggests that the
zero set is the graph of a smooth function in (θ1, θ2) when n = 3. Actually
checking that the derivative does not vanish is hard, but we have the following
theorem:

Theorem 5.6. The subset of configurations of point vortices in

{(θ1, . . . , θn) ∈ (0, 1)n : 1 > θ1 > θ2 > · · · > θn > 0}
such that Θ is not invertible has measure zero.

Proof. Each entry in Θ is analytic in each θi for θ1, . . . , θi−1, θi+1, . . . , θn
fixed. It follows that det(Θ) also has this property, when viewed as a function

U := {(θ1, . . . , θn) ∈ (0, 1)n : 1 > θ1 > θ2 > · · · > θn > 0} → R.

We first verify that det(Θ) does not vanish identically on U . To that
end, fix 1/2 > θ̃1 > θ̃2 > · · · > θ̃n > 0 and consider θ1 = εθ̃1, . . . θn = εθ̃n
for 1 > ε > 0. The purpose of the upper bound of 1/2 is to make sure
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that tan(πθi) is well defined for all 1 ≤ i ≤ n. Observe now that if we let
T := diag(tan(πθk))

n
k=1, then

4h[TΘ]i,j =

{
1 i = j

tan(πθi)
(

cot
(
π
θi+θj

2

)
− cot

(
π
θi−θj

2

))
i 6= j

,

where

lim
ε↓0

tan(επθ̃i)

(
cot

(
επ
θ̃i + θ̃j

2

)
− cot

(
επ
θ̃i − θ̃j

2

))
= − 4θ̃iθ̃j

θ̃2
i − θ̃2

j

for i 6= j. It follows that diag(tan(πθk))
n
k=1Θ has a limit in B(Rn) as ε ↓ 0,

and that this limit is

(5.7) lim
ε↓0

diag(tan(πθk))
n
k=1Θ =

1

4h
(IRn −B),

where we have defined B ∈ Rn×n by

(5.8) Bi,j :=

{
0 i = j

4θ̃iθ̃j(θ̃
2
i − θ̃2

j )
−1 i 6= j

.

In particular, B is skew-symmetric, which implies that IRn − B is in-
vertible. Since the set of invertible operators is open, so is the matrix
diag(tan(πθk))

n
k=1Θ for sufficiently small ε, which in turn means that Θ is

invertible for such ε.
Finally, the set U is connected. Hence, since we know that det(Θ) is

analytic in each variable and does not vanish identically, we infer5 that the
subset of U on which det(Θ) vanishes has measure zero. �

In general we cannot do better than Theorem 5.6, in the sense that for
any n ≥ 1 there will always be a configuration of n point vortices that makes
det(Θ) vanish.

Proposition 5.7. There are always configurations of point vortices in

{(θ1, . . . , θn) ∈ (0, 1)n : 1 > θ1 > θ2 > · · · > θn > 0}
where Θ is singular.

Proof. The matrix appearing on the right-hand side of Equation (5.7) in
the proof of Theorem 5.6 has a positive determinant. Indeed, the matrix
B defined in Equation (5.8) is skew-symmetric, so its spectrum is purely
imaginary. Moreover, since the matrix is real, the eigenvalues are either zero
or appear in complex conjugate pairs.

Say that the first m eigenvalues λ1, . . . , λm of B are zero and that

λm+2j−1 = λm+2j = iµj , j = 1, . . . , (n−m)/2,

where the µj are real. Then it follows that

det

(
1

4h
(IRn −B)

)
=

1

(4h)n
det(IRn −B)

=
1

(4h)n
(1 + µ2

1)(1 + µ2
2) · · · (1 + µ2

(n−m)/2),

5This follows by induction on the dimension, by using the well known result in one
dimension.
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because the determinant of a matrix is equal to the product of its eigenvalues
(taking algebraic multiplicity into account). By Equation (5.7) we then have

(5.9) det(Θ)
n∏
k=1

tan(πθk) > 0

for small ε > 0 (as in the proof of Theorem 5.6) by continuity of the
determinant. Since all the tangents are also positive, this implies that
det(Θ) > 0 for small ε > 0.

It remains to exhibit a configuration where det(Θ) < 0. To that end, fix
1
2 > θ̃1 > θ̃2 > θ̃3 > · · · > θ̃n > 0 and consider θ1 = 1− εθ̃1, θ2 = εθ̃2, . . . θn =

εθ̃n for 1 > ε > 0. Proceeding as in the proof of Theorem 5.6 we find

(5.10) lim
ε↓0

diag(tan(πθk))
n
k=1Θ =

1

4h
(IRn − B̃),

where we have defined B̃ ∈ Rn×n by

B̃i,j :=

{
0 i = j or i = 1 or j = 1,

4θ̃iθ̃j(θ̃
2
i − θ̃2

j )
−1 otherwise.

This matrix is still skew-symmetric like B, and so the right-hand side of
Equation (5.10) has a positive determinant, as before. Hence Equation (5.9)
holds for small ε. However, now tan(πθ1) is negative and the rest of the
tangents are positive, meaning that det(Θ) must be negative. �

6. Explicit expressions for infinite depth

In this section we give some explicit expressions for periodic waves with
a point vortex on infinite depth, constructed in [41]. We will adopt the
notation and conventions used there. The fluid domain for the trivial surface
is R× (−∞, 1) and the waves have period 2πL. The stream function for the
rotational part is denoted by G.

Proposition 6.1 (Stream function). The stream function for the rotational
part is given by

G(x, y) =
1

4π
log

(
cos(x/L)− cosh(y/L)

cos(x/L)− cosh((y − 2)/L)

)
.

Proof. We wish to find the stream function G : R × (−∞, 1) → R corre-
sponding to equally spaced point vortices of unit strength at the points
2πLZ× {0} ⊆ R2, and which is such that this stream function vanishes at
the surface, R× {1}. By symmetry, it must be the case that Gx vanishes on
πL(1 + 2Z)× (−∞, 1). This leads us to the boundary value problem

∆G = δ, G|y=0 = 0, Gx|x=±πL = 0,

on (−πL, πL)× (−∞, 1). This equation can be dealt with using Theorem A.2
in Appendix A.

In order to apply Theorem A.2 we require a conformal map satisfying the
requirements in the theorem statement. One may check (see [45, Sections 7.1
and 7.2]) that

(6.1) f(z) :=
tanh(1/(2L))− tanh((1 + iz)/(2L))

tanh(1/(2L)) + tanh((1 + iz)/(2L))
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defines a bijective conformal map from the half strip (−πL, πL)× (−∞, 1)
onto the slit unit disk D \ ((0, exp(−1/L))× {0}), and which is such that
(i) The origin is fixed.
(ii) The surface is mapped to the unit circle.
(iii) The sides {±πL} × (−∞, 1) are mapped to the slit.
The result now follows by taking the logarithm of the modulus of the map f
in Equation (6.1). �

By using Proposition 6.1, we can obtain an explicit expression for the
leading order wave velocity c1, and a Fourier series for the leading order
surface profile η∗:

Proposition 6.2 (c1 and η∗). The leading-order wave velocity c1 and surface
profile η∗ are given by

c1 = − 1

4πL
coth(1/L),

η∗ = − 1

4π2

∞∑
n=1

n

gL2 + α2n2
e−n/L cos(nx/L),

respectively.

Proof. Recall how the wave velocity appeared on the right-hand side of
Equation (3.3). By using the final part of Theorem A.1, we find

c1 =
i

4π

(
f ′′(0)

f ′(0)

)
= − 1

4πL
coth(1/L),

where f is the conformal map introduced in Equation (6.1) in the proof of
Proposition 6.1.

We now move to the surface profile. From [41] we know that

(6.2) η∗ = −(g − α2∂2
x)−1

(
χ− 1

2πL

∫ πL

−πL
χdµ

)
,

where χ is defined by

χ(x) := c1Gy(x, 1) +
1

2
Gy(x, 1)2.

Written out, we have

χ(x) =
1

8π2L2

cosh(1/L) cos(x/L)− 1

(cos(x/L)− cosh(1/L))2

with the elementary antiderivative

χ](x) = − 1

8π2L

sin(x/L)

cos(x/L)− cosh(1/L)
.

In particular, this means that∫ πL

−πL
χdµ = χ](πL)− χ](−πL) = 0,

so that Equation (6.2) reduces to

(6.3) η∗ = −(g − α2∂2
x)−1χ.
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In order to find the Fourier series for η∗, we require the Fourier series of χ.
We may write

χ](x) =
1

i

[
1 +

e−ix/L−1/L

1− e−ix/L−1/L
− 1

1− eix/L−1/L

]
,

which, by expanding into geometric series, means that

χ](x) = i
∞∑

n=−∞
sgn(n)e−|n|/Leinx/L.

Hence, by termwise differentiation, we obtain

χ(x) =
1

4π2L2

∞∑
n=1

ne−n/L cos(nx/L),

which, combined with Equation (6.3), yields the result. �

One may note that

c1 = − 1

4π
+O(1/L2)

as L → ∞, which agrees with the speed of the solitary waves on infinite
depth. When L is large, the surface profile is very similar to the surface in
the localized case, see Figure 4b. At the other extreme, the first terms in the
Fourier series will dominate.

−2 0 2

−2

−1

0

·10−2

x

η ∗
(x
)

(a) L = 1 (Whole period)

−5 0 5

−2

−1

0

·10−2

x

η ∗
(x
)

(b) L = 100 (Only part of a period)

Figure 4. The leading order surface profile term, η∗, when
g = 1, α2 = 0.01, cf. [41, Figure 1].

Appendix A.

In this appendix, we provide two theorems that are used in order to get
exact expressions for the rotational part of the stream function. Except for
the final part, Theorem A.1 is a standard result [35, p. 166]. Theorem A.2 is
a less well known extension of Theorem A.1.
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Theorem A.1 (Green’s functions in R2). Suppose that Ω ( R2 is a simply
connected domain and that z0 ∈ Ω. Furthermore, suppose that f : Ω→ D is
a bijective conformal map onto the open unit disk, extending continuously to
a function Ω → D and satisfying f(z0) = 0. Then the function ϕ : Ω → R
defined by

ϕ(z) :=
1

2π
log(|f(z)|)

is in L1
loc(Ω), extends continuously to the boundary of Ω, and satisfies

∆ϕ = δz0 ,

ϕ|∂Ω = 0.

Furthermore, the harmonic function h defined by

h(z) := ϕ(z)− 1

2π
log (|z − z0|)

satisfies

∇h(z0) =
1

4π

(
f ′′(z0)

f ′(z0)

)
after identifying R2 and C via (x, y) 7→ x+ iy.

Proof. We first check the boundary values of the function ϕ. By assumption,
f extends continuously to ∂Ω, and every point on ∂Ω must necessarily be
mapped to the unit circle. It is thus immediate that ϕ also extends continuosly
to the boundary, and moreover, vanishes there.

Identify now R2 and C. Observe that since f(z0) = 0, we have

f(z) = g(z)(z − z0), z ∈ Ω

for some holomorphic function g, where |g| > 0. Indeed, we must have
g(z0) = f ′(z0) 6= 0 because f is injective, and the injectivity of f also ensures
that there can be no other roots. Thus

ϕ(z) =
1

2π
log (|z − z0|) + h(z),

where

h(z) :=
1

2π
Re log (g(z))

is harmonic by |g| > 0 and the Cauchy-Riemann equations. Hence, by
Proposition 2.1, the function ϕ is L1

loc and satisfies

∆ϕ = δz0 .

The last assertion follows by observing that one must necessarily have
g′(z0) = 1

2f
′′(z0), meaning that(

1

2π
log(g(·))

)′
(z0) =

1

2π

g′(z0)

g(z0)
=

1

4π

f ′′(z0)

f ′(z0)
,

whence we deduce from the Cauchy-Riemann equations that

∇h(z0) =
1

4π

(
f ′′(z0)

f ′(z0)

)
. �
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Theorem A.2 (Green’s functions in R2, mixed). Suppose that Ω ( R2 is
a simply connected domain and that z0 ∈ Ω. Furthermore, assume that
∂Ω = ΓD t ΓN , where ΓN is C1 and open in ∂Ω. Finally, suppose that
f : Ω→ D \ ((−1,−a]× {0}), where a > 0, is a bijective conformal map of Ω
onto the unit disk with a slit, satisfying f(z0) = 0 and extending continuously
to the boundary. This map should send ΓD to the unit circle and ΓN to the
interval (−1, a]×{0}, and should extend analytically across ΓN (when viewed
as a map on C). Then the function ϕ : Ω→ R defined by

ϕ(z) :=
1

2π
log (|f(z)|)

is in L1
loc(Ω), extends continuously to the boundary and satisfies

∆ϕ = δz0 ,

ϕ|ΓD
= 0,

∂nϕ|ΓN
= 0,

where ∂n denotes the normal derivative.

Proof. The only change from Theorem A.1 is checking that the normal
derivative vanishes on ΓN . This follows by using conformality. �
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