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Abstract

This thesis gives an introduction to the Mueller-Stokes calculus, which is used to
describe partially and fully polarized light. It describes how polarized light inter-
acts with various sample configurations resulting in a Mueller matrix, and how
this can be measured by using appropriate instrumentation. Specifically, two such
Mueller matrix ellipsometers have been realized. One system is based on rotating
Fresnel bi-prism and the other on Ferro-electric liquid crystals. The systems are
unique in different ways. The rotating Fresnel bi-prism Mueller matrix ellipsome-
ter is an optimal UV-NIR achromatic suitable for high power angular scattering
measurements. The Ferro-electric liquid crystals Mueller matrix ellipsometer is a
fast acquisition system capable of measuring Mueller matrices at 50 Hz.

The thesis gives an introduction to the topics discussed in the attached six
scientific papers. The first three papers report on construction and design of the
ellipsometers. Paper I describes the design and characterization of two achromatic
132° bi-prism compensators optimized for Mueller matrix applications, while pa-
per II describes an actual implementation and tests of an optimal Mueller matrix
ellipsometer using these prisms. Chapter [5|of this thesis, shows results from scat-
tering and fluorescence measurements using this system. The Ferro-electric liquid
crystals based Mueller matrix ellipsometer is outlined in Paper III. In Section
of this thesis, it is shown how this system can be extended to an imaging polarime-
ter. In paper ILIIL, IV and V some other applications of the systems are shown,
which also test the performances.

e Paper I

The Fresnel bi-prism approach, also known as "achromatic device 1 (AD1)”,
was used in Paper I to design two achromatic 132° compensators. Such
compensators are favorable in Mueller matrix ellipsometers, since they are
capable of producing optimal conditioned system matrices leading to small
experimental errors. Several papers describe the design of achromatic half-
wave or quarter-wave prisms, but to our knowledge no other papers has yet
described achromatic 132° prism designs. The actual measured retardation
of two different prism materials, CaFy and fused silica, are given. It was
concluded that CaF, is the superior material of the two concerning both
spectral range (185 - 8000 nm) and refractive index dispersion. Both prisms
are specifically promising in broad band applications like for instance syn-
chrotron based systems.

e Paper II
A well conditioned multiple laser Mueller ellipsometer is constructed using
the bi-prisms in Paper I . The well conditioning makes the system less sen-
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sitive to calibration errors and noise. Several papers have outlined the im-
portance of well conditioned system matrices also noted by Paper I. Paper
IT includes a complete deduction, concerning the relation between the con-
dition numbers and experimental errors. In particular it is shown how the
measured matrix errors are directly related to the product of the condition
numbers and the calibration errors. In contradiction to the condition num-
ber’s significance, few papers report the actual values obtained from working
systems. This paper describes the instrumentation of an optimal broad band
polarimeter with accompanying experimental results and the actual mea-
sured condition numbers during operation. The ability to measure physical
realizable Mueller matrices is also discussed. To our knowledge, no other
system design has obtained such well conditioned system matrices over the
reported spectral range from UV to NIR.

Paper II1

Systems based on mechanical rotation of prisms, like that of Paper II, can be
very slow compared to other technologies. The Liquid Crystals (LC) tech-
nology is for instance capable of operating at least one order of magnitude
faster. Previously, LC Mueller matrix ellipsometers in the visible range has
been reported. Paper III extends this range into the infra-red using Ferro
Electric Liquid Crystals (FLC). As in Paper II, the design is chosen based
on optimization on the condition numbers of the ellipsometer’s system ma-
trices. Fixed waveplates are included in the design in order to optimize the
performance of the polarimeter. This results in a near optimal broad band
performance. The measured actual switching times and retardation of the
crystals are also reported. Based on stability considerations it is concluded
that the FLC are capable of measuring a full Mueller matrices at 50 Hz.
Paper III elaborates further on the first near infra-red-FLC spectroscopic
Mueller matrix design and shows the first initial results.

Paper IV

In complex media, like for instance tissue or other biological material, opti-
cal models can be hard, if not impossible, to obtain. Other analyzing tech-
niques are then valuable. The Lu-Chipman matrix product decomposition
is one such technique which can be used in order to obtain new knowledge
of the system. Knowledge of artifacts generated by the decomposition itself
is also needed in order to correctly interpret results. In Paper IV | three
simple optical components are studied, a visible polarizer, a IR polarizer
and a roughened glass plate. The azimuth orientations of such homogeneous
polarization elements may be estimated from the direction of the eigenpolar-
ization of the decomposed matrices. It is here demonstrated that there is an
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apparent ambiguity in the determination of both the azimuth angles and the
absolute retardance. For instance, one has to assume some prior knowledge
of the system in order to interpret the absolute retardance value and orien-
tation correctly. The paper reports on results from the FLC Mueller matrix
ellipsometer.

Paper V

The polarization response from a sample tends to provide information that
is largely uncorrelated with spectral and intensity images and can give com-
plementary information about samples. In Paper V several different types
of land mines and three types of plants are investigated by detecting the
Mueller matrix in a back scattering geometry at both specular and of spec-
ular angles. The depolarization index is concluded to be the polarization
metric containing the most information, as it varies largely from sample to
sample. The other polarization metrics like diattenuation and retardance is
close to zero for back scattering geometries. The result shown that plants
depolarize light more during 1570 nm coherent illumination than the mines.
Depolarization information give complementary information and is capable
of discriminating plants from surface mines. The depolarization profiles for
the non-specular angles are shown to result in a Lorentzian profile.

Paper VI

A part of this thesis work was also to study particles, such as aggregated pro-
teins. Some Mueller matrix measurements of the protein Human transthyretin
(TTR) are included in Chapter 5| In order to study protein conformation
luminescent probes can be used. In Paper VI, three different conjugated
polymers, currently used to study protein conformations, are optical char-
acterized. All three polymers PTAA, POMT and POWT are constructed
from a conjugated polythiophene backbone, but with different attached side
groups. PTAA is an acetic acid, while POMT and POWT have amino acid
based side-chains. By varying the ionic strength of the buffer solutions the
polymers can be forced to twist and bend, due to charging or neutralization
of the side-chains. The twist and bend of the polymers cause shift in the
energy levels. Both the quantum efficiency and two photon absorption cross
sections of the polymers are studied in this paper under various pH buffer
solutions. Of the three studied polymers, POMT is shown to have both a
better quantum efficiency and a larger two-photon absorption cross section.
An example of spectral imaging using POMT attached to amyloidal fibrils
is also given.
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1 Introduction

The vectorial nature of light is called polarization. It is one of the fundamental
properties of light beside intensity, wavelength and coherence [1]. Light can be
more or less polarized depending on how it is generated and how it interacts with
matter. The light’s polarization can be viewed in many everyday phenomena Fig-
ure [I.1] For instance, light becomes polarized when reflected from surfaces. This
is clearly seen when viewing light reflections from a water surface through polaroid
glasses. Particles that are much smaller than the wavelength cause the unpolarized
sunlight to become strongly polarized. This scattering effect is known as Rayleigh
scattering [2] and results in a polarization dependent pattern in the sky’s hemi-
sphere. Many living organism like insects [3] have polarization dependent vision
and can utilize the natural polarization of the sky’s hemisphere for navigation.
Also many sea living animals can see polarized light. It has even been suggested
that animals like cuttlefish use polarization to communicate [4]. Although animals
have used polarization for a long time, the first recorded scientific observation
of polarization was not until the discovery of double refraction in calcite (Iceland
spar) in 1669, by Erasmus Bartholinus [5]. The Vikings may have utilized the sky’s
polarization in navigation, but this is disputed [6]. The history of polarization has
been summarized by several authors [1,7-10].

The late discovery of polarization is probably related to the poor polarization
sensitivity of the human eye. A human observer can be trained to see polarization
[11], visible as a yellowish bow-tie shape called the Haidinger’s brush. It got its
named after Wilhelm Karl von Haidinger who first described it in 1844 [12]. Most
people do not notice polarized light without wearing some kind of optical device,
such as polaroid glasses. Several instruments called polarimeters or ellipsometers
have been developed in order to investigate the polarization’s interaction with
matter. The first documented polarimeter was constructed by Biot in 1816 [13]
which soon found its applications in sugar production [14].

The study of polarization has evolved into several scientific topics both within
chemistry, biology and physics. Today polarization has many applications, such
as ellipsometry, astronomical polarimetry, spectropolarimetry, radar polarimetry,
remote sensing, polarization light scattering, cryptography and general studies of
optical components [15].

Polarization can be described in different ways, see for instance Section [2.3]
Here the Stokes-Mueller calculus, which can describe randomly fluctuating light or



4 Introduction

-~

\Wa

Figure 1.1: Some effects of polarization as it appears in nature. The polarization
of the sky is utilized by many insects, like for instance the dung beetle. The sky’s
polarization can be seen by wearing polaroid glasses. Cuttlefish might even use
polarization to communicate [4].

depolarized light, will be used. The ability of a sample to produce depolarized light
is sometimes the only polarization metric which can distinguish objects, especially
in backscattering geometries, see for instance Paper V. or [16]. The alteration
of the polarization state can be described by the Mueller matrix. It is basically
a transfer matrix for both polarized and depolarized light. This transfer matrix
can be measured by an optical technique referred to as either Mueller matrix
polarimetry or Mueller Matrix Ellipsometry (MME).

Chapter [2| gives a short introduction to how polarized light is described by
Stokes vectors and interacts with samples though Mueller matrices. Chapter
gives an introduction to how the Mueller matrix of a sample can be measured, and
describe two such developed instruments, how they were optimized and calibrated.
The measured Mueller matrix can sometimes be unphysical due to incorporated
random noise or calibration errors. How to obtain physically realizable Mueller
matrices is discussed in Chapter 4] Ellipsometry traditionally obtains physical
information about the sample by modeling. When modeling is computationally
difficult or impossible alternative techniques is important. This is discussed in



Chapter [4l Chapter [f] gives an introduction to studied unpublished applications
of Mueller matrix ellipsometry, hence scattering, fluorescence and Mueller matrix
imaging polarimetry, based on recent measurements. Chapter [f gives a short
summary and conclusion of this thesis work.






2 Polarized light

The following chapter gives an introduction to the notation used in the thesis
and will serve as a brief introduction to the Mueller-Stokes calculus. A historical
description to the origin to the Mueller-Stokes calculus can be found elsewhere [8].

2.1 Polarized light and the polarization ellipse

In the literature one finds different definitions of the polarization parameters. Here
the convention proposed by Hauge et al. [17] will be used. The electric field com-
ponents for fully polarized light propagating along the z-axis, are then decomposed
into,

E.(z,t) = Re [Ezoe(i‘“F%TZMz) , Ey(z,t) =Re [Eyge(mf%zwy)] : (2.1)

where E, and E, are amplitudes, w the angular frequency, A the wavelength and
d, and d, the phases for the electric field’s  and y polarizations, respectively. The
end point of the electrical field vector for fully polarized light generally follows
an ellipse when traced at the same position in space over one period 1" = 27”, see
Figure . For a phase-shift of exactly 6 =0, —d, = § £ n -7 one has circularly
polarized light. The clockwise rotation of the electric field, when viewed into the
source, is defined as right circular polarization. The ellipticity ¢, is defined as the
tangent between the half axes of this ellipse, whereas the azimuth angle 6 is defined
as the rotation of its major axis. € and # can be shown to be the related to the

phases and amplitudes of the electric fields compontents [17],

20y

B2+ E2

20y

——cC
B2+ ESO

sin 2¢ = sind, tan20 =

08 4. (2.2)
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Figure 2.1: The polarization ellipse. Plotted with phase-shift 6 = /3 and
amplitudes E,o = E.

2.2 Partial polarized light and the Mueller-Stokes
calculus

George Gabriel Stokes stated in 1852 [18] that any mixture of incoherent polarized
light can be fully determined by four parameters][]

So Iy + Iy <E§O>+<E§O>

s — S1 _ IO — [90 _ < Eg(] > —< ESO > (23)
So Lis — I_45 2 < E:):OEyO COS(6> >
S3 Ir —1I; 2 < Ea:OEyO Sll’l((S) >

The intensity measurements I, refer to common polarization states, <> corre-
sponds to a time-average of the associated electric field components and ¢ the
phase shiftm The Stokes parameters are related to the ellipticity and azimuth
angle for fully polarized light [17],

1
cos(2¢) cos(26)
570 cos(2¢)sin(20) | (24)

sin(2¢)

Henri Poincaré found that the Stokes parameters can be geometrically represented

*This was the first successful mathematical description of partial polarized light. Previous
attempts tried to describe partial polarized light by using electric field amplitudes without
success.

fOther notation use [I, M, S, C] , [P1, P2, P3, P4] or [I,Q,U, V] to describe the Stokes param-
eters. Some authors also use different ordering of the Stokes elements [19].
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Figure 2.2: The Stokes vector can be projected onto a surface called the Poincaré
sphere. Its location is determined by the azimuth and ellipticity angle 6 and e.
Partially polarized states can be described by using the degree of polarization P
as radius.

by a sphere [20]. The surface of the Poincaré sphere can be drawn by using
s1, 82,83 as a Cartesian coordinate system EL see Figure For fully polarized
light so = /s? + s3 + s2. This is not true for partially polarized light. Instead an
important metric, the degree of polarization P [21],

P = —VS%JFM, (2.5)

S0

is used. Partially polarized states can also be represented within the Poincaré
sphere by using P as the radius. In this representation totally unpolarized light is
collapsed into the origin of the sphere [21]. A general polarization state can then
be described by s = [1, P cos(2¢) cos(26), P cos(2¢) sin(26), P sin(2¢)]” [17]. Paul
Soleillet [22] and Francis Perrin [23] described linear algebraic relations how to
transfer a polarization state interacting with materials to another state using the
Stokes formalism. This linear relation was later put into matrix form by Hans
Mueller [24]. The physically realizable transfer matrix M is today known as the

#This coordinate system is related to the polar coordinates (r, 6, ¢) by (1,7/2 — 2¢,26) [21].



10 Polarized light

Mueller matrix]

/
s=M-s
/
So mip M2 Maz Mig S0
/
S1| _ |Ma21 Moz M2z Ma4a| |51 (2 6)
| = .
S mgz1 M3z 1MM33 M3q 52
/
S3 Ma1 My M3 Myq S3

Here s’ is the resulting column vector of Stokes parameters upon interaction be-
tween a sample associated with the Mueller matrix M, with some incoming light’s
Stokes vector s. Consequently, any optical system’s Mueller matrix My, which
is constructed by a succession of optical components, can be directly calculated
by multiplication of the Mueller matrices of the sub-components or layers, as the
light propagate from 1 to N.

M,,, = MyMy_; - -- M. (2.7)

The Mueller matrices for standard components have been derived [1,15], for con-
venience some specific matrices used in this thesis are described below.

The Mueller matrix of a homogenous diattenuating retarder

A diattenuating sample, or diattenuator, experiences differences in absorption be-
tween the two principal axes, while a retarder experiences difference in phase
d. = 05 — 0y with one axis being slow (s) and the other fast (f) (i.e. d5 > dy).
A sample, where the eigenpolarization states of the retarder are aligned with the
eigenpolarization states of the diattenuator, is referred to as homogenous [15]. A
homogenous diattenuating retarder has the following Mueller matrix

1 cos 2 0 0
- cos 2¢ 1 0 0
Myiat(T,0,9) =T 0 0 sin 21, cos o,  sin 21, sin o, (2.8)
0 0 —8in 21, sin d,. sin 29, cos o,

Here tan ye =% = tan(%)e‘i(ds_‘sf), and Ty and T} are the transmission coefficient
P

. . Te2+|Ts|% . .. .
of the matrix’ fast and slow axis. T = % is the transmission coefficient

for unpolarized light. Note that this matrix also can describe a pure diattenuator
(0c = 0) , a pure retarder (¥ = %), and the identity matrix (V = §,0. = 0).

Often 0-3 indexing are used [17].
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The Mueller matrix of a polarizer

One extreme case of a diattenuator is an ideal polarizer which only transmitt one
polarization state. The Mueller matrix of Eq[2.§ can then be reduced to

0 0

Mpol = (29)

1
1
0
0

S O = =
o O O
o O O

where 7 is the transmission coeflicient.

The Mueller matrix of an isotropic reflecting surface

The reflection of an electrometric light-wave at an interface between two isotropic
media can be accurately described by the Fresnel complex reflection coefficients
R, and R,. The Mueller matrix M,.s for such a reflecting surface has an identical
form as that of a homogenous diattenuating retarder in Eq2.8]

1 — Cos 29 0 0
| —cos2¢ 1 0 0
Myep =7 0 0 sin2y cos A sin2ysin A |’ (2.10)
0 0 —sin2¢sin A sin 2t cos A

where % = tane™® = tan(2)e'®»=2) A is the altered phase difference between
the s— and p—polarization and tant is the absolute value of the ratio between

2 2
the real 74 and r, reflection coefficients. 7 = M

for unpolarized light.

is the reflection coeflicient

Optical Rotation and rotation of coordinate systems

Rotation of the electromagnetic field vector around the axis of propagation can be
described by the Mueller matrix R,

1 0 0
0 cos(20) sin(260)
0 —sin(26) cos(260)
0 0 0

R(0) = (2.11)

_ o O O

R is also used to transform between coordinates systems rotated around the axis
of light propagation. A Mueller matrix M(6) which has been rotated an angle 6,
is given by

M(6) = R(—6)MR(0). (2.12)
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2.3 Alternative descriptions of polarized light

The Mueller-Stokes calculus is not unique, but it is the most complete description of
polarized light available [21]. However, it has some limitations compared with other
approaches. First of all, absolute phase information of the light is not retained, as
it is based on intensities instead of amplitudes. Alternative representations such
as the Jones calculus [21,25,26] or the cross-spectral density matrix of Wolf [27],
must be used in order to describe interference phenomena. The Stokes vector is
also constructed by a non-orthogonal vector space which complicates the matrix
algebra.

The Jones calculus [25,26] defines the amplitudes and phases of the electric
field components in a vector E and optical interactions using 2 x 2 transfer matrices

J,
E =JE
)=t ]z
7= . (2.13)
[ E, c d E,

This calculus is equivalent to the Mueller calculus when describing fully polarized
light, but can not describe any depolarizing effects. Another popular description
of partially polarized light is the density matrix formalism [28] m In the density
matrix calculus correlations between the electric fields components of the light are
calculated and presented in 2 x 2 matrix form. The density matrix is a Hermitian
matrix defined as the direct product of the Jones vector with its Hermitian adjoint,

Ju =

< E,E;> <E,E; >} [Jm Jzy} ' (2.14)

< EyEL> < EE;>| |Jy Jyy

The brackets denote averaging over many wave cycles. Among the three most
known representations are that of Wiener, Barakat [29] and Wolf [30]. The Stokes
vector and the density matrices contain the same information and are simple linear
combination of each other. When rewriting the density matrix as a vector J3<!
the transformation is carried out using [17,21,31],

s=AJ},
50 10 0 1 oz
S1| 10 0 -1 ny
o5l 001 1 0] |Jp (2.15)
S3 0 2 —1 0 Jyy

YAlso known as the polarization matrix calculus or coherency matrix calculus. We have chosen
to use the density matrix name in order to avoid confusion with the Hermitian 4 x 4 coherency
matrices of Simon and Cloude.
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A 4 x 4 density transfer matrix F; can be constructed from Eq [17]

aa* ab*

ac* ad*
FJ = J ® J* -

ca* cb*

cc*  cd*

® is the Kronecker product.
formalism using Eq.

M; = AF;A™!

aa* + cc* — bb* — dd*

aa® — ec® — bb* + dd*

ac® 4+ ca® — bd* — db*
i(ac* — ca® — bd* + db*)

aa® 4+ cc* + bb* + dd*

1 aa® — cc* + bb* — dd*

2 ac® 4+ ca* + bd* + db*
i(ac* — ca® + bd* — db*)

i(ad® — cb* 4+ bc* — da™)

ba*  bb*
be*  bd*
(2.16)
da*  db*
e dd*

F; can be directly related to the Mueller-Stokes

(2.17)

ab® + cd* + ba* + dc* —i(ab* + cd*) + ba™ — dc*)

ab® — ed* + ba™ — dc* —i(ab® — cd® — ba™ + dc*)
ad® + ¢b™ + bc* + da* —i(ad® + cb* — bc* — da™)

ad* — cb* — bc* + da*

(2.18)

M is called a Mueller-Jones matrix due to the direct relation between the Mueller
matrix and Jones matrix. Barakat and Anderson stated the set of conditions when
a Mueller matrix can be defined by a Jones matrix, i.e. when it is a Mueller-
Jones matrix [32]. They also showed how a non-Mueller-Jones matrix can be
approximated to its nearest complementary Jones matrix, see [£.1.1] Barakat and
Anderson used Simons definition for the coherency matrix [33] in order to establish

the Hermitian matrix.

When using 2 x 2 transfer matrices the density formalism is unable to describe
depolarizing samples like the Mueller-Stokes calculus [21]. The coherency matrix
is also harder to visualize than the Stokes vector. For more information about the
coherency matrix, see [21,28,29]. Non of the described calculi changes the state

of polarization as the wave propagates.






3 Polarimeters

This chapter describes how to measure the interaction between polarized light and
a sample using the 4 x 4 Mueller matrix. Such an instrument is either referred to as
a Mueller matrix polarimeter or a Mueller Matrix Ellipsometer (MME) depending
on the author or research field. The Mueller matrix depends on wavelength, angle
of incident and location on the sample [15]. In the following these will be assumed
fixed for simplicity.

3.1 General approach

A polarimeter consists of five basic parts; a light source, a Polarization State Gen-
erator (PSG), a sample, a Polarization State Analyzer (PSA) and a detector, see
Figure 3.1} Basically, the Mueller matrix of a sample is found by probing it with a

\\I //
%-» PSG — —> _’D—\
4 ~

Figure 3.1: Simplified sketch of the basic components of a polarimeter; source,
Polarization State Generator (PSG), sample, Polarization State Analyzer (PSA)
and detector.

set of appropriate polarization states, controlled by the PSG, and then analyzing
the altered polarization state with the PSA. At least four intensity measurements
are required to determine a single Stokes vector [34]. To find all 16 Mueller ma-
trix elements a minimum of four probing states are needed for each Stokes vector
measurement [15]. In most setups both the PSA and PSG have an anti-symmetric
ordering and use the same optical components. A variety of possible technical solu-
tions exist, such as systems based on photo-elastic modulators [35], electro-optical
modulators [36-38], Pockel’s cells [39,40], liquid crystals [37,41,42], rotating prisms
retarders or wave plates [43,44]. The PSA and PSG can either be based on a
fixed set or based on continuous modulation of the polarization states. Continu-
ous modulation like photo-elastic modulators can operate very fast, but requires

15
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complicated demodulation techniques. The thesis will focus on non-modulating
techniques using a fixed set of polarization states, as it simplifies the acquisition
and reduces the overall cost considerably. Two different systems have been de-
signed, built and evaluated: one system based on dual rotating prism retarders
(Paper T and II), and a second system based on Ferro-electric Liquid Crystal
(FLC) and fixed waveplates (Paper III). In both systems a single intensity matrix
B is collected. B depends on both the Mueller matrix of the sample M, and the
system’s generating and analyzing matrices W and A,

B=AMW. (3.1)

M is found by inverting the matrices A and W and form
M=A"'BW (3.2)
Theoretical expressions for the generating matrix W and analyzing matrix A are
not needed in practical implementations, as they can be found by calibration, see

Section [3.5] However, explicit expressions are needed when optimizing perfor-
mance.

3.2 General expressions for the system matrices
The system matrices A and W are not Mueller matrices, but constructed by a set
of probing Stokes vectors {w} and a set of analyzing states {a}. Each vector w; in

{w} can be found by multiplying the polarization state generator’s Mueller matrix
Mpsg, in state ¢ with the Stokes vector for unpolarized light Sy, = [1,0,0,0]%,

W; = MPSGZ' * Sunpol -
(3.3)

If four probing states are used, W is given by
W = [W17W27W3,W4]. (34)

Similarly, an analyzing matrix A can be defined for each analyzing state a;, given
by the first row of the PSA’s Mueller matrix Mpg4, in state j.

a; = [17070a O] ’ MPSAJ-‘
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A 4 x 4 analyzing matrix A can then be constructed]

a;
a
as
ay

(3.6)

Each element b; ; in B can now be measured, and the Mueller matrix of the sample
retracted. A and W can also be constructed using more than four states resulting
in n x 4 and 4 X m matrices.

3.3 Specific expressions for the system matrices

Each of the two experimental systems in this thesis uses rotated retarders having
Mueller matrices of the form M,(6,d) given by Eq. and 2.8

Mret(67 5) - Mrot(8>_1Mret(5>Mmt(0)

1 0 0 0
_ 0 (cos (260))2 + (sin (26))? cos (8) cos (26)sin (260) — sin (260) cos (0) cos (20) —sin (26) sin (§)
0 cos(26)sin(20) —sin (20) cos (§) cos (260) (sin (26))2 + (cos (260))? cos (6) cos (26) sin () ’
0 sin (2 6) sin (9) —cos (20)sin (0) cos (9)
(3.7)

with ¢, = 7 and T' = 1.

3.3.1 The compensator based Mueller matrix ellipsometer

The ellipsometer of Paper II is based on Azzam’s dual rotating compensator
setup [43]. EI The compensators are specially designed Fresnel bi-prisms where the
retardation is created by four internal reflections, see Paper I. The PSG and PSA
designs are realized by combining a linear polarizer with a compensator rotated at
angle 6 from the transmission axis of the polarizer, see Figure The resulting
Mueller matrix Mpgq for the PSG is given by

MPSG<9> 5) = Mret(ea 5)Mpol

*Note that the elements in {a} are row vectors and {w} are column vectors.

t Azzam uses continuous modulation of the compensators at an 1:5 ratio and finds the Mueller
elements by Fourier analysis. In this thesis the elements are found by using fixed angular
positions instead of continuous rotation.
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Figure 3.2: The optical components of the Fresnel bi-prism setup. (S) Source,
(P) Polarizer, (C) Compensator, (D) Detector.

1 1 0 0

_ (cos (20))? + (sin (26))2 cos (8) (cos (20))? + (sin (26))? cos (8) 0 0
cos (20)sin (20) — sin (20) cos (6) cos (260) cos(20)sin (20) —sin (26) cos (§) cos (20) 0 0

sin (2 6) sin (6) sin (2 6) sin (6) 0 0

(3.8)

Each rotation angle 6, creates a vector state in {w}. The Mueller matrix of the
PSA Mpga can be constructed with the opposite ordering of the optical elementsﬂ

MPSA = Mpoeret<97 5)

1 cos? (20) +sin? (20) cos (§) cos (26)sin (26) — sin (26) cos (§) cos (260)  — sin (26) sin (9)
1 cos? (26) +sin® (20) cos (§) cos (26)sin (26) — sin (26) cos (§) cos (26)  —sin (26) sin (§)
0 0 0 0
0 0 0 0

(3.9)

A realization of a Mueller matrix ellipsometer based on this approach is
described in Paper II.

3.3.2 The Ferro-electric liquid crystal based system

A second MME was developed, which was based upon a combination of fixed
waveplates and Ferro-electric Liquid Crystals (FLC). FLCs are made out of the
smectic C liquid crystals. The molecules are arranged in layers and each molecule
layer is aligned at an angle with the layer-normal. The chirality of the molecule
introduces a spontaneous dipole moment. This dipole moment is used to control

fNote that if § = dpge = dpga then A #+ W7 while if §psq = —6pga then A = WT.
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the liquid crystal by applying an external electric field. T'wo stable directions of the
molecular alignment are possible depending on the direction of the electric field.
Since the molecules are birefringent a two-state optical retarder can be constructed.
The total retardation is proportional to the crystal thickness.

The FLC-MME was uniquely designed to operate in the near infrared range.
A different FLC-MME system for the visible FLC-MME range has been reported
by others [45]. The arrangement of the optical components can be viewed in Figure
3.3, and is a variant of the Stokes polarimeter of Gandorfer et al. [46]. The Mueller

S P Or OLc Ok OLc Oc: Or. OLc. O P D
%]WWWW\M’WWWWTFD
VYRRV SR VR VAR VARV

Figure 3.3: The optical components of the FLC setup. (0) Rotation angles, (P)
Polarizer, (F;) Fixed waveplate, (LC;) Ferro-electric liquid crystals, (D) Detector.

matrix for the PSG, Mprc,,, can be calculated from

MFLCPSG - MTCt(QLCQ7 ALCQ )MT€t<0F2’ AFQ )Mret(eLC1 ) ALC’1 )M’r‘et(eFl ) AFl )Mp017
(3.10)

since each FLC effectively acts as a fixed waveplate. Similarly, the matrix Mprc,q,
is given by

MFLCPSA - Mpoeret (9F47 AF4)Mret(0LC47 ALC4)Mret(6)F37 AFg)Mret (9L047 ALC4)'
(3.11)

Only the four variables 01¢,,0Lc,,05c, and 01, are influenced during switching of
the FLC’s creating overall 2* = 16 combined generating and analyzing polarization
states. The measured intensity, as the FLC’s switch through each step, is effected
by the detectors impulse response and the internal movement of the liquid crystal
molecules, see Figure [3.4] The intensity vector is cut a length AT directly after
each step to avoid unstable values. Calculations were performed to find the best
place to cut the vector. Figure shows the calculated statistical variance for
different cut lengths AT when sampling at 120 kHz and measuring each step at
1.2 ms. Already after 0.2 ms some stability is obtained. The best stability was
found after approximately 0.8 ms. After this the variance increases since the
number of remaining sample points of the intensity vector decreases.



20 Polarimeters

.
b ]

0.8

o
(o]
e b e

Signal (V)

o
IS
T

0.2

e n

0 5 10 15 20
time (ms)

o

Figure 3.4: The measured voltage from the InGaAs detector as the crystals
switch through each of their 16 steps with the sample position void (blue and red
dots). Some points in the vector are removed to avoid the oscillation introduced
with each step. Only the last points in the measurements for each step are kept
(red dots). The solid black line shows the averaged value of the kept values.
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Figure 3.5: The calculated variance for different cut lengths AT when sampling
at 120 kHz and measuring each step at 1.2 ms.

3.4 Optimization of MME performance

The matrix inversion of Eq[3.2] magnifies the measurement noise in M due to

calibration errors ”HAAIhH and Hﬁw‘/}\l,\”’ and measurement noise (%), since
|AM]| |AA]] |AW]| |AB|
< Ka Kw + Kwka , (3.12)
1M [|A]] W] Bl

(see the appendix of Paper II for the detailed derivation). sy and k4 are the
corresponding matrix condition numbers for W and A. The condition number is
defined by the matrix norm

ka = ||All[JA]I7 (3.13)

The norm is calculated as the ratio of the largest to the smallest singular value
of the matrix [47]. Both systems were optimized by minimization of the system
condition numbers in order to minimize effects of errors. Minimizing the condition
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Figure 3.6: The optimal polarization states create a tetrahedron within the
Poincaré sphere. The dotted 8 shaped line represents all the available polarization
states with the rotating compensator based PSG [48].

numbers maximizes the relative importance of each probing Stokes vector and
analyzing vector, making them as linearly independent as possible.

The optimization is described in detail in Paper I for the Fresnel Bi-prism
system and results of the FLC system’s optimization are presented in Paper III.
The most optimal states for the rotating compensator system are shown in Figure

3.5 Calibration

The calibration routine for the MMEs is based on the procedure suggested by
Compain et al. [49]. A short description of the calibration process is also given
in Paper II and III, but some more details and background are outlined in this
section.

The main limitations of the calibration are:

e The forms of the Mueller matrices of the reference samples have to be known.
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e The orientation of one of the reference samples must be precisely known.

e Coarse prior knowledge about the other calibration sample orientation is
needed.

e The set of reference samples must include at least two samples with suffi-
ciently different Mueller matrices, so that W and A become uniquely defined.

The calibration routine has several attractive properties:
e The choice of calibration samples does not dependent on A or W.
e A and W can be independently determined.
e System simulation is not needed to account for errors.

e All systematic errors are accounted for, as long as the calibration configura-
tion is equal to that of the measurement configuration.

Many different sets of calibration samples can be used. The focus will here
be on transmission calibration using two polarizers and a retarder.

A set of intensity matrices {B} accompanying the set of calibration samples
{M}, together with that of no sample By, are measured,

B, = AW, B, = AM,W, i=1,23. (3.14)

Two sets {C} and {C'} are then constructed, with each set defined as

C,=B;'B, =W 'M;W, i=1,23 (3.15)
and
C,=B,B;' =AM;A™', i=1,2,3. (3.16)

C, is independent of A, and C’; is independent of W. C;, C! and M; are similar
matrices |§] with the same eigenvalues, apart from the introduced random noise H]
A sample with both retardation and diattenuation will take a Mueller matrix in
the form of that of Eq. 2.8 having two real and two imaginary eigenvalues,

Ar1 = 27 cos> 1), Ao = 27 sin® 1), (3.17)
A1 = 7sin 2pe A, Ao = 7 sin 2pet8. (3.18)

$If the dimension of A and W is greater than 4x4, then C’ and C are not longer similar matrices.
The properties of the calibration samples must then be found by alternative approaches.

TAn interesting property of the calibration algorithm is that no calibration is needed when
measuring Mueller matrices with known form, as the physical parameter can be found directly
from the eigenvalues of C.
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By associating the eigenvalues of C; with the theoretical eigenvalues of M;, the
Mueller matrix of each calibration sample can be reconstructed

1 1 C2
T = §(>\R1+)\R2), A—:l:éll'l <a) (319)
A A
U = arctan 2RL) or U = T — arctan 2 (3.20)
)\RQ 2 /\Rl

Some prior knowledge of the sample is needed, since the choice of all optical pa-
rameters is not unique. The transmission 7 of a polarizer like that of Eq.
is

7 = Trace(M). (3.21)

W and X' are found, after reconstructing the set {M}, by solving two sets of
linear equations

M, X — XC; =0 (3.22)
X'M; — ;X' =0, (3.23)

These equations have unique solutions X = W and X’ = A. It is convenient to

rewrite and [3.23],
Hx =0 (3.24)
H';x' =0, (3.25)

where H; and H’; are 16 x 16 matrices and x and x’ are 16 x 1 vectors. In the
case of H; this is established by first defining

G;° =M, U' - U'°C;, (3.26)

where
1 0 00 0100 0000
110 000 2 10000 . 16 00 00
U = 0000 ,UT = 0 0 0 of”  UT = 0000 (3.27)
0 00O 0 00O 0 0 01

Each 4 x 4 matrix G; is written into a new 16 x 1 vector g;. K is then constructed
from

K =[gi,82 816 (3.28)
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Figure 3.7: Ratio of the smallest to the second smallest eigenvalue of the matrix
K Eq. used in the solution for the 16 elements of W and A.

K’; is created similarly starting with Eq The over-determined system’s least
square solution can be found by solving

Kx =0 (3.29)
K'x' =0, (3.30)
where K and K’ are given by
K =HH, + HIH, + H} H; (3.31)
K =HH,+H.H,+H.H,. (3.32)

Their unique solutions are found for the one eigenvalue equal to zero, with corre-
sponding eigenvectors w and a. w and a are then rewritten into the 4 x 4 matrices
W’ and 