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Abstract

This thesis is submitted as partial fulfillment of the requirements for the degree of
doctor philosophiae and is a result of four years of research at the Department of
Physics, the Norwegian University of Science and Technology.

The work presented represents applications of concepts from statistical physics and
modern network theory. The systems studied vary and include fractured geological
media, crumpled paper, political polling results and pure network theory. In the
introductory chapters I familiarise the reader with the main concepts that are
applied in the papers at the end. A total of five papers are included.

Paper I [1] : The network formed by ridges in a straightened sheet of crumpled
paper is studied using a laser profilometer. Square sheets of paper were crum-
pled into balls, unfolded and their height profiles measured. From these profiles
the ridges formed during the crumpling were extracted and viewed as networks.
Nodes were defined as intersections between ridges, and links as the various ridges
connecting the nodes. Several network and spatial properties have been investi-
gated such as the ridge length distribution, the degree distribution and the facet
area distribution. The tail of the ridge length distribution was found to follow a
power-law whereas the shorter ridges followed a log-normal distribution. The de-
gree distribution was found to have an exponentially decaying tail, and the degree
correlation was found to be disassortative. The facets created by the ridges and
the Voronoi diagram formed by the nodes have also been investigated.

Paper II [2] : In this paper we present a generalised version of the classical
cluster coefficient, which can also be applied to networks with directed links. This
generalisation takes into account more than the immediate nearest neighbours,
giving more detailed information about the network structure than the classical
version. The introduced concept is compared to earlier generalisation attempts,
and it is applied to the directed protein interaction network of the S. cerevisiae
yeast cell.

Paper III [3] : This paper describes the application of statistical methods to
political polling data in order to look for correlations and memory effects. We
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propose measures for quantifying the political memory using the correlation func-
tion and scaling analysis. These methods reveal time correlations and self-affine
scaling properties. We have applied these measures to polling data from Norway.
Power-law dependencies have been found between correlation measures and party
size, and different scaling behaviour has been found for large and small parties.

Paper IV [4] : Fracture data from eight granite outcrops from the Laxemar and
Simpevarp areas in south-east Sweden have been investigated as complex networks.
For each outcrop a network was generated by viewing each fracture as a node, and
linking it to any other fractures that it intersects. We show that the networks
have complex behaviour with a broad degree distribution. The clustering coeffi-
cients and efficiencies are compared with values for rewired and random versions
of the networks, and on this basis we have classified the networks as small-world
networks. The degree-degree correlations of the networks indicates that they are
disassortative.

Paper V [5] : In this paper we present a modern complex network (Graph theory)
analysis of a discrete fracture network (DFN) model in two dimensions aimed at
mimicking geological fracture networks. The main feature of the DFN model is
the power-law fracture length distribution and the fractally distributed fracture
centres. Several key network properties have been analysed such as degree distri-
bution, degree correlations, clustering and efficiency. It has been shown that the
degree distribution follows a power-law, p(k) ∝ k−αk where αk is dependent on the
fracture length power-law exponent αl, and insensitive to the fractal dimension D2

of the fracture centre distribution. The nodes of the network are more likely to
link to nodes of similar degree and the networks are therefore assortative. Both
the clustering and the efficiency of the network have been shown to depend on
the fracture length distribution, with an increase of both clustering and efficiency
for higher αl. Finally the networks are classified as “small-world” networks, giving
important implications for the transport and stability properties of the networks.
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1 Introduction

Science is facts;
just as houses are made of stones,
so is science made of facts;
but a pile of stones is not a house,
and a collection of facts is not necessarily science.

Henri Poincaré (1854 – 1912)

The following chapters will provide the reader with an introduction to the theory
and the setting that have motivated the papers attached at the end. This intro-
duction is not meant to be a full review of any of the topics that are discussed, but
to give readers not familiar with these topics the essentials needed to understand
the papers. I have described not only the technical aspects, but also the setting
and motivation for the work. In some cases I have summarised the main results
from our papers and put these into context.

In all the chapters I have provided examples and references that I hope will be
of interest to all readers, both novice and expert. For any reader who wishes to
gain a deeper understanding of any of the fields I have provided references to some
insightful review articles and books at the beginning of each chapter.

The papers presented at the end of this thesis span a range of topics loosely
connected. The first paper [1] was the result of a training project where we wanted
to investigate the ridge structure of crumpled paper. Crumpled paper is a much
used analogy for many thin plate deformation problems, and the network formed
by the ridges produced during crumpling was investigated. We proposed a novel
power-law ridge length distribution, and confirmed the self-affine1 nature of the
height profile of the unfolded crumpled sheets.

The second paper [2] describes a new measure for the path-structure in complex
networks. This work was motivated by the fact that the currently established

1See Section 2.3.
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2 Introduction

measures are either very local (i.e. the clustering coefficient) or very global (i.e.
efficiency). Our measure for describing the path-structure of complex networks
describes quantitatively the neighbourhood around each node including more than
just the nearest neighbours. This gives new and very descriptive information con-
cerning the structure of the network. The traditional clustering coefficient can be
viewed as a special case of our novel measure.

Our third paper [3] introduces novel applications of concepts from statistical physics
to analyse political polling data. Here we show how the auto-correlation function
and scaling analysis can describe memory effects in the voter base for political
parties. We have found a qualitative difference in the behaviour of small and large
parties, and a power-law correspondence between party size and various correlation
measures.

The fourth paper [4] presents a novel network analysis of the fracture traces from
a selection of outcrops. A network definition is introduced and applied to the
outcrop traces. The networks are shown to have a broad degree-distribution and
large global and local connectivity. They are classified as Small-World networks
giving important implications for their transport properties.

The fifth and final paper [5] applies the above mentioned network analysis to
fractures generated by a two-dimensional discrete fracture network model. Using
parameters motivated by real-world outcrop studies we have shown that the model
reproduces both qualitatively and quantitatively many of the measures found for
real-world outcrops. This includes the Small-World network classification and
degree distribution. The model however shows a qualitatively different behaviour
in the degree-degree behaviour.



2 Statistical concepts

There are three kinds of lies:
lies, damned lies and statistics.

Mark Twain (1835 – 1910)

In this chapter I will introduce some of the statistical concepts that have been
central to the papers in this thesis. As mentioned in the Introduction this is in
no way an attempt to give an exhaustive record of the concepts discussed, but
an introduction aimed at giving a reader not familiar with the field of statistical
physics a brief overview and maybe inspire him/her to pursue the references. A
reader familiar with the field could turn to the next chapter.

First, I will discuss the concept of scale-free distributions and their relation to
power-laws. Thereafter I will briefly discuss fractal systems, and introduce some
of the most central measures used to describe them. Finally, I will introduce the
concept of roughness, and describe some of the standard methods of detecting the
roughness exponent.

2.1 Scale-free distributions and Power-laws

Consider a sizeable population, perhaps the adult inhabitants of Norway, and think
of the height and weight of these individuals. With little problem you would be
able to estimate the average height and weight of this population well within a
factor of two. If you were to estimate the average wealth or income of the same
population it would not be as easy to come within a factor of two of the real
value. There are no 100 m high or 1000 kg heavy persons to significantly influence
the average of the weight and height distributions1, but there are people with
income and wealth many orders of magnitude larger than the median value found

1In fact even one person 100 m high or 1000 kg heavy would not significantly influence the
average values.
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4 Concepts from Statistical Physics

in the population. These rare, but not negligibly few, large values significantly
influences the distribution. Mathematically one finds that the height and weight
distributions follows a normal or gaussian distribution, whereas the income and
wealth distributions are power-laws 2.

In Figure 2.1 I have plotted two qualitatively different distributions. In the left
hand panel is the height distribution of Norwegian soldiers for the last decade, and
in the middle panel the wealth distribution for Norwegian tax-payers for a recent
time interval3. Note that the wealth distribution is not very well represented in
the middle plot and is much better represented with logarithmic axis as in the
right hand panel.
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Figure 2.1: a) Height distribution of Norwegian soldiers for the period 1998 –
2006. b) Wealth distribution of Norwegian tax-payers for the period 1986 – 2003.
c) same as in plot ’b)’ but with logarithmic axis.

The values in the high end of the wealth distribution show a linear behaviour in
the log-log plot, and this is the trademark of a power-law. A distribution with
this behaviour is said to have a fat tail. Statistical properties of systems exhibiting
such distributions are often completely controlled by the few but large data points
in their tail. This motivates the saying It’s all in the tail. A power-law distribution
of a quantity x is given by

p(x) = Cx−α (2.1)

where α is known as the power-law exponent and C is a normalising constant.

2These distributions are not power-laws over the whole range of values, but only in the large
value end of the range known as the tail.

3Soldier height data from Statistics Norway (Statistisk sentral byr̊a) [6], and wealth distribution
data from Hansen [7].



Scale-free distributions and Power-laws 5

Note that there is no parameter which sets the typical or characteristic scale in Eq.
2.1 as there is in the normal, log-normal, poissonian or exponential distributions.
That is because the function is scale-free, there is no typical scale attached to
the distribution itself. Any scale information will have to be introduced via the
bounds of the function. The power-law is the only function that obeys the relation
ap(x) = p(bx) for constant a and b. Much has been written about power-laws and
a nice review is presented by Newman in Ref. [8]. Many systems have been shown
to have properties following such a law for the whole or part of their distribution.
These properties include the size of cities, length of rivers, number of books sold,
frequency of words, fracture lengths and e-mail lengths to name some. A more
comprehensive list of systems displaying scaling behaviour is given by Wiesenfeld
[9].

The moments of a power-law are either divergent or convergent in the limit of
infinite systems depending on the exponent α. Of special interest is the first order
momentum or average value of the probability distribution p(x) for some x in the
range xmin ≤ x ≤ xmax given by

〈x〉 =

∫ ∞

−∞

xp(x)dx = C

∫ xmax

xmin

x1−αdx = C(x2−α
max − x

2−α
min). (2.2)

If we assume α > 0 so that larger x are less likely, then < x > is dominated by
the xmax term for α < 2 and by the xmin term for α > 2. For most real systems
we do not have the whole probability distribution, but only a limited interval. For
α > 0 we will then sample the low range portion of the distribution much better
than the high range portion and therefore get a much more accurate value for xmin

than for xmax. If 0 ≤ α ≤ 2 the value of 〈x〉 will then be completely dominated
by the largest x in our selection, and therefore vary from selection to selection.
Speaking of an average value for an ensemble in this range is therefore meaningless
even though the average value always exists for a finite set of values.

In the limit of infinitely large sets of values the mean will allways diverge for α < 2.
For higher moments of x given by 〈xn〉 =

∫
xnp(x)dx, these will converge only if

α > n+ 1.

Various methods of measuring the exponent α are also interesting. Often there
are much noise in the data and a linear fit to the plot of log(p(x)) vs log(x) is
hard or associated with much uncertainty. One way of achieving a more accurate
estimate is to use logarithmic binning. By doing this you increase the binning size
as x increases in order to compensate for the lower frequency of samples in this
range. This will lower the fluctuations in the tail of the distribution. Care must
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Figure 2.2: a) Probability distribution for 105 realisations of a random variable
x in the interval 1 ≤ x ≤ 100 distributed according to a power-law with exponent
α = 1.5, equal binning size. b) The same distribution plotted with logarithmic axis.
c) Same probability function binned with logarithmic binning size. c) Cumulative
distribution with logarithmic bin sizes.

be taken to account for the increasing binning size while plotting the histogram.
Another method is to look at the cumulative distribution P (x) given by

P (x) =

∫ ∞

x

p(x′)dx′ =
C

α− 1
x−(α−1) = C ′xαcum . (2.3)

Although much information is lost while constructing the cumulative distribution4

it may help to form a smoother tail that is easier to analyse. Note that the slope
of the linear fit changes to αcum = α − 1. The various methods and their effect
are visualised in Figure 2.2 for 105 realisations of a random variable distributed
according to a power-law with exponent α = 1.5.

Figure 2.2 shows that the accuracy of the estimated exponent generally increases

4This is detailed information about the behaviour of the probability distribution itself.
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when using logarithmic binning and looking at the cumulative distribution. How-
ever care should be taken as these methods are in effect averaging methods and
thus conceal information about the distribution that could be important. Another
method for extracting the exponent is given by Newman in [8] where all n samples
xi over a given minimum xmin are taken into account

α = 1 + n

[ n∑
i=1

ln
( xi

xmin

)]−1

. (2.4)

For the distribution presented in Figure 2.2 this gives an exponent α = 1.67 which
is worse than any of the linear fittings.

2.2 Fractals

The term fractals was introduced by B. B. Mandelbrot. The publication of his
books Fractals: Form, Chance and Dimension [10] (1977) and The Fractal Geom-
etry of Nature [11] (1982) helped establish the field. A vast literature has emerged
exploring this novel way of looking at Nature. Mandelbrot himself defined a fractal
as [12],

A fractal is a shape made of parts similar to the whole in some way

A part of the whole can be called similar because it is identical to the whole, as in
deterministic fractals, or statistically similar 5 as in stochastic fractals. Although
a part of a line is similar to the whole it is not a fractal. In order to qualify the
shape must have a non-integer fractal dimension as described below. This implies
that pure fractals have structure on all scales, and are then perceived as rough
or fragmented. In Nature there are many examples of quasi-fractals displaying
fractal properties on a limited range of scales. These systems include clouds, snow
flakes, crystals, coastlines, river networks and mountain ranges. The abundance
of fractals in nature also includes fracture networks as we’ll see in Chapter 4.

A fractal system is described6 by its fractal dimension, D, that describes how the
fractal spreads in the space that it is embedded in. As noted above a entity is
only fractal if it has a non-integer fractal dimension. Various definitions for the
fractal dimension have arisen, but the Hausdorff-Besicovitch dimension7 is often

5Having the same statistical properties.
6Generally only true for mono-fractals.
7Called the Hausdorff dimension for short.
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taken to be the most important [13] of these. The definition is based on a measure
Md on a set S of points in space. The set is covered by a test function8 h(δ)
of linear size δ and assosiated with a geometrical factor γ(d) such that h(δ) =
γ(d)δd. The measure is then given by the sum of test functions needed to cover
the whole set, Md =

∑
h(δ). Generally as δ → 0 the measure Md either goes

to zero or infinity depending on d, known as the dimension of the measure. The
critical dimension where the measure changes from zero to infinity is defined as
the Hausdorff dimension D,

Md =
∑

γ(d)δd = γ(d)N(δ)δd δ→0
→

{
0, d > D
∞, d < D.

(2.5)

Here, if all the test functions are taken to be of the same size, N(δ) is the number
of such funcions needed of linear size δ. This definition is very general and can be
applied to any set. It should also be noted that it is a local definition that allows
for a variation of the fractal dimension between various regions of the set. For
a full mathematical description see Falconer [13]. Although it is mathematically
convenient it is not computationally easy to implement and compute, and therefore
the box-counting dimension is often preferred. For a nice discussion on fractal
measures see the book Fractals by Feder [12].

The box-counting dimension is found by counting how many boxes N(δ) of size
δ is needed to cover the set for various values of δ. For fractal shapes the two
variables N and δ are realted by

N(δ) ∝
1

δD
, (2.6)

where D is the box-counting dimension. D is easily found by a linear fit to the plot
of log(N(δ)) vs log(δ). This method has been refined and various implementation
schemes have been developed. The measure is also easily generalised into a multi-
fractal measure [14–16]. Note that the two definitions given in Eq. 2.5 and 2.6
do not necessarily give the same dimension. A nice example of a fractal shape is
the coastline of Norway [12]. This is illustrated in Figure 2.3. The shape of the
coast has been analysed with the box-counting technique and a fractal dimension
of D = 1.52 has been found. A plot of N(δ) vs δ plotted with logarithmic axis can
be seen in Figure 2.4.

8This test function may be a line, square, circle, ball, disk, cube ect, and the geometric factor
associated with the test function is the pre factor of the length/area/volume occupied by the
test function i.e. γ = π/4 for discs, π/6 for spheres, and 1 for cubes.
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a) b)

Figure 2.3: Outline of the coast of Norway at two different scales. Image a) is
about 300 x 150 m2 and image b) 30 x 15 m2. Could you tell which was which scale
if the topography of Norway was unknown to you? Map data: Statens kartverk
(www.statkart.no)
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Figure 2.4: Plot of number of boxes needed N(δ) vs box size δ for the coast of
Norway, along with its linear fit in logarithmic axis.

2.3 Self-similarity and self-affinity

The concept of fractallity is closely connected to the concepts of self-similarity and
self-affinity. Imagine that you zoom in on a graph, h(x), with the same factor λ in
all directions, h(x) → λh(λx), and you find that the overall structure of the graph
does not change, then the graph is self-similar. This is isotropic scaling, and the
images in Figure 2.3 was scaled this way. The distinction between deterministic
(exact replica) and stochastic (statistically equal) similarity applies as it does to
fractallity. Now imagine that you would have to zoom with a different ratio in one
of the directions in order to produce a similar graph. This is anisotropic scaling
and shapes displaying this property are called self-affine shapes. Mathematically
this can be expressed as [17]

h(x) = λ−Hh(λx) (2.7)

where λ is the scaling ratio, and H is the Hurst exponent9. The simplest self-affine
structure is the discrete random walk where for each time step the walker takes
one step up or down with equal probability. The random walk has no memory and
it has H = 1/2. In Figure 2.3 I have plotted a random walk with 105 steps, I have

9Also known as the roughness exponent.
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Figure 2.5: Random walk with N = 105 steps. The red curve is the full random
walk, and the blue curve is a scaled version of the section between the two black
lines crossing the red curve. The blue curve has been scaled with a ratio λ = 16
in the x-direction, and λ0.5 = 4 in the y-direction.

also plotted a scaled version of the middle portion of the walk. It is not possible
to tell from their statistical properties which of the two graphs is a magnification
of the other, and they look similar to the naked eye.

The Hurst exponent describes the auto-correlation of the graph in question. For a
graph to be called self-affine it must have 0 ≤ H ≤ 1. If H > 1 the graph is not
asymptotically flat, and grows without bounds, and if H < 0 then the variance
〈z2〉 approaches a constant larger than zero, and the graph is known as a fractional
noise [18]. For H in the interval 0 ≤ H < 1/2 the graph is anti-correlated and
mean reverting, and for 1/2 < H ≤ 1 the graph is positively correlated and trend
reinforcing. Examples of the three different behaviours can be seen in Figure 2.6
where I have plotted three different profiles with H = 0.1, 0.5 and 0.9. As the
figure shows the profile with the lowest H seems to be rougher and spikier than
the one with larger H.

Many different methods have been developed to determine the Hurst exponent of
profiles and surfaces. Various studies [19,20] have estimated the accuracy of these
methods, and there have been shown to be strengths and weaknesses with all of
them. In general it is preferable to use more than one method when estimating
the Hurst exponent. The discrepancy between different methods gives a good
indication of the accuracy with which the Hurst exponent has been estimated.
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Figure 2.6: Plot of three different profiles with different Hurst exponent.

Below I will give a short introduction to some of the most important methods.

2.3.1 Box-counting

The box-counting method can measure the box dimension DB of a profile h(x).
In general it is necessary to use rectangular and not square boxes to measure
the fractal properties of a self-affine profile. For box sizes small compared to the
variation of the profile the method will measure a local box dimension given by
DB = 2−H for a one-dimensional profile in two-dimensional space [12, 20]. Note
that for larger scales when the box-sizes are large compared to the variations of
h(x) the method will report a fractal dimension of 1 since the function no longer
is fractal at these scales. For such large scales the relation DB = 2−H no longer
holds.

2.3.2 Power spectrum density

The Power Spectrum Density (PSD) method is a Fourier based method where the
spectral density of the profile is calculated. For a one-dimensional self-affine profile
in two-dimensional space the power spectrum, S(f), is given by [13]

S(f) ∝ f−1−2H , (2.8)
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where f is the frequency. The PSD method can be generalised to higher di-
mensions analysing shapes such as two-dimensional surfaces in three dimensions
without having to make one-dimensional cross-sections of the surface. The method
is reported [19] to perform well for relatively large system sizes under a range of
conditions.

2.3.3 Detrended fluctuation analysis

The Detrended Fluctuation Analysis method [21] (DFA) measures the fluctuations,
F (s), of a signal around a polynomial trend for a range of scales s. The order of
the polynomial used varies, and the method is often referred to as DFAn where n
describes the order used. The order should be high enough so that any global trends
in the signal are removed, and the analysis becomes insensitive to the choice of
order. For a stationary signal with self-affine properties the fluctuations will scale
as

F2(s) ∝ s
H , (2.9)

where the subscript 2 indicates that the second moment of the fluctuations are
considered. The method is easily generalised to a multifractal formulation (MF-
DFAn) where other moments of the fluctuations are considered, and has been
reported to give robust results for many systems with varying noise.

2.3.4 Averaged wavelet coefficients

The Average Wavelet Coefficient [22] (AWC) method is based on the wavelet
transform of the function h(x). The arithmetic mean of all the wavelet coefficients
W [h](a) for each scale a is calculated, and it has been found that for self-affine
functions there is a scaling relation

W [h](λa) � λ(1/2)+HW [h](a), (2.10)

where λ is a rescaling factor. The method has been reported to perform well for
small and sparse data sets, where other methods are plagued by noisy signals.





3 Networks

No man is an island, entire of itself...
John Donne (1572 – 1631)

Over the last few decades we have seen a tremendous development in our under-
standing of networks and network structures [23–27]. This development is largely
motivated by the emergence of more detailed complex network1 data and the nu-
merical capabilities to study them. Network theory originates from the mathemat-
ical discipline of graph theory first discussed in 1735 by Leonard Euler [28] as he
looked at the bridge structure between various islands in the city of Köningsberg.
This study captures the essence of network theory as it describe the interactions
between a set of connected entities.

In the following chapter I will introduce the basic concepts used to describe net-
works, and discuss various measures that have been constructed to classify their
type and quantify their interactions. These measures enable the discussion of the
Small-World concept, and this concept is central in the following chapters. Again
this is not an exhaustive record, nor a reflection of the status of the research front
in the field. At the end of this chapter I discuss the motivation for and context of
the two first papers attached at the end of this thesis.

The chapter provides a foundation for further chapters, and puts our article on
path structures in complex networks [2] into context.

1Specially concerning the Internet.
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3.1 Basic network concepts

A network2 is a set of entities named nodes3 that are strongly or loosely connected
in some sense via connections called links4. The nodes and links may be of the
same type or there might be different types of each in the network as illustrated
in Figure 3.1.

����

���	
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Figure 3.1: Example network showing various types of nodes and links, and the
concept of components.

Two nodes that share a link are said to be connected, and a component of a network
is a set of nodes between which you can traverse5 either directly or via other nodes.
The network in Figure 3.1 has two components where one is larger than the other.
Components that are considerably larger than the other components in the network
are called giant components, and in many studies the nodes not belonging to this
component are not considered, in order to simplify the analysis. Networks where
it is possible to traverse from all nodes to all other nodes have only one component
and are called fully connected. The most common network with different types
of nodes are the bipartite networks that have two types of nodes, and links only
between unequal nodes.

2Also known as a graph.
3Also referred to as vertices or actors.
4Also referred to as edges or bonds.
5You can traverse from a node to all its connected nodes.
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The links in a network may also have various properties, the most common of
which are directionality and weight. Networks where the links have directionality
are called directed networks, and networks where the links have weight are called
weighted networks.
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Figure 3.2: Example network showing a weighted and directed bipartite network
whith two types of nodes; employers and employees. The number listed at the links
are the weight of the links, and the number listed for the nodes are the strength
of the nodes.

An example of a weighted, directed bipartite network is a network of employers
and employees connected by their salary payments. We assume that no employer
receives salary and that no employee pays wages. In Figure 3.2 I have displayed
an example network to illustrate some basic concepts. This is a weighted, directed
bipartite network of 3 employers and 7 employees. The arrows indicates payments
from an employer to an employee, and the numbers associated with each arrow
indicates the size of the payment that we shall call the weight, w, of the link.

One of the most fundamental properties of any node is the degree 6, k, of the node.
The degree is the number of nodes that a given node is connected to. For our
example network in Figure 3.2 the degree of the nodees IBM and Statoil is both
four since they are connected to four other nodes, whereas the degree of the node
Tina is two. For weighted networks nodes may be characterised by their strength,
s, given [25] by

6This number is known as the coordination number in some disciplines.
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si =
∑
j∈NN

wij, (3.1)

where wij is the weight of the link between nodes i and j, and j runs over all
the nearest neighbours NN of node i. An unweighted network can be seen as a
weighted network where all the weighs wij = 1 for all ij, then the strength is equal
to the degree for all nodes.

3.1.1 Degree and strength distributions

The distribution of degrees p(k) and/or strengths p(s) is very descriptive of the
complexity of a given network. A regular network, as for example a triangular
lattice, will have a very narrow degree distribution p(k) = δ(k − 6) as each node7

has six neighbours and therefore ki = 6 for all i. Purely random unweighted and
undirected networks where each pair of nodes are liked with a given probability p
have a degree distribution given [24] by

p(k) = Ck
N−1p

k(1− p)N−1−k, (3.2)

where N is the number of nodes in the network and Ck
N−1 =

(
N−1

k

)
is the binomial

coefficient. In the limit of large N this approaches the Poisson distribution p(k) =
e−〈k〉〈k〉k/k! which is a well confined distribution with a pronounced peak. On
the other hand many natural complex networks show a broad degree distribution
that span many orders of magnitude. A special case of such networks having a
degree distribution given by a power-law p(k) ∝ k−β are called scale-free networks.
Such a distribution indicates that the presence of nodes with a very high degree
or strength is not neglibly small and that the presence of such nodes affects the
behaviour of the network. Nodes that have a degree or strength considerably larger
than the average or median node in the network are called hubs. Many systems,
as diverse as international airport networks, citation networks, reference networks
protein interaction networks and power-grid networks, show scale-free behaviour
in their degree or strength distribution with a typical power-law exponent in the
range 2 < β < 3 [24, 25]. As we shall see in the following sections a broad degree
distribution is connected to the concept of Small-World networks.

7Here a node is perceived as the intersection of links in the lattice.



Basic network concepts 19

3.1.2 Diameter, Clustering and Efficiency

In addition to the degree distribution it is also interesting to see how well the nodes
interact both locally and globally in the network. Various measures for quantifying
the interaction capabilities of networks have been introduced, including motives
[29–31], community structures [32, 33] and weighted networks [34, 35], however
the most prominent ones are the clustering coefficient for the local scale and the
diameter , characteristic path length and the efficiency for the global scale. By
local and global scale I mean the range of nodes included in the measure in terms
of distance from a given node. Distance from a node is measured by the number of
links that you have to traverse to move from one node to another, and is therefore
a topological measure.

As mentioned above the clustering coefficient, C, is a measure of how well the nodes
interact on a very local neighbour to neighbour scale. The measure is defined [25]
as the mean of the local clustering coefficient, Ci, for each node

C =
1

N

N∑
i=1

Ci Ci =
2Enn,i

ki(ki − 1)
, (3.3)

where N is the number of nodes in the network, ki is the degree of node i and
Enn,i is the number of links between the nearest neighbours of node i. The local
clustering coefficient can be seen as a measure of how many of your friends are
friends with each other (Enn,i) divided by how many could have been friends with
each other (ki(ki − 1)/2), and both C and Ci falls within the range 0 ≤ C(i) ≤ 1.
A high C indicates a high degree of local interaction, and therefore the spreading
of any quantity (abstract as information, or concrete as oil) is easy on this scale.

To discuss at the global measures I need to introduce the concept of a geodesic
path, dij, which is the shortest path in terms of links that have to be transversed in
order to go from node i to node j. Note that for undirected networks dij = dji but
for directed networks we generally have dij 	= dji. The diameter, D, of a network
is the largest geodesic path in the network [25]

D = max
i

(min
j

(dij)), (3.4)

and hence describes how well the network is connected globally, and how easy or
difficult it is to cross the network. If there is a small part of the network that
has a three-structure8 this will dominate the diameter measure and the real global

8A structure where there are no loops.
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connectivity of the network will not be correctly reflected. To better probe the
global connectivity the characteristic path length, L, was introduced [25]. The
characteristic path length measures the arithmetic mean geodesic path

L =
1

N(N − 1)

∑
i,j∈N,i �=j

dij, (3.5)

and is a more robust measure than D. The Small-World property 9 is the property
that the characteristic path length grows at most logarithmically with the number
of nodes N in the network. This concept is illustrated in the famous six degrees
of separation [36] expression stating that you are only six handshakes away from
anybody in the world even though there are more than six billion people in the
world.

For networks with more than one component there is however a problem. If a
network is not fully connected there will be at least one dij = ∞, and hence
D = L = ∞ for the entire network. As many interesting and complex networks
have more than one component (and no giant component to look at) a better global
measure is the efficiency, E, of the network. This measure describes the global
transport properties of the network and is given [25] by the harmonic mean of the
geodesic paths

E =
1

N(N − 1)

∑
i,j∈N,i �=j

1

dij

. (3.6)

The efficiency also lies in the interval 0 ≤ E ≤ 1, and a high E indicates good
global transport properties in the network.

3.2 Small-World networks

In their groundbreaking article in Nature in 1998 Watts and Strogatz [37] in-
troduced the concept of Small-World networks. They defined such networks as
networks with both large local connectivity, as measured by the clustering coeffi-
cient, and large global connectivity as measured by the characteristic path length.

9Note the difference between the Small-World property and the Small-World class of networks.
In order to classify a network as belonging to the Small-World class it needs to have the
Small-World property ensuring good global connectivity AND high clustering ensuring good
local connectivity. This is described in more detail in Section 3.2.
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They illustrated this by a model where a given number of nodes, N , are arranged
in a circle, and every nodes was connected to the k nearest neighbours on both
sides. A replication of their figure is shown in Figure 3.3. This model produces
a regular network where each node is connected to 2k other nodes close by. This
makes the networks very connected on a local scale, and gives it a large clustering
coefficient. On the global scale however the network is not very well connected
since you have to transverse a large number of links to move from one side of the
circle to the other.

Regular Small−world Random

p = 0 p = 1
Increasing randomness

Figure 3.3: Replication of figure plotted by Watts and Strogatz in their Nature
article where they introduced the concept of Small-World networks. Here shown
for N = 12 nodes connected to the k = 2 nearest neighbours.

In their model Watts and Strogatz rerouted each link with a probability p. By
rerouting a link they made it point to a randomly chosen node in the network,
taking care not to duplicate any existing links. This produced long range links
in the network that dramatically lowered the number of links needed to traverse
form one side of the network to the other. For p = 0 the regular network is
kept unchanged. For p = 1 all the links in the network are pointing to random
nodes and the network is therefore a random network. Such networks are very well
connected globally since there are many links across the network. However they
are not well connected locally. Therefore they have a low clustering coefficient and
a low characteristic path length.

For an interesting class on networks having 0 < p < 1 a sufficiently large number
of long range links is introduced to lower the characteristic path length signifi-
cantly and still keep enough of the original links so that the clustering coefficient
remains large. The function C(p) and L(p) vs p is reproduced in Figure 3.4. These
intermediate values for p make the model produce Small-World networks.
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Figure 3.4: Replication of figure plotted by Watts and Strogatz in their Na-
ture article where they introduced the concept of Small-World networks. Both
the clustering coefficient C(p) and the characteristic path length L(p) have been
normalised by their values for the purely regular case C0(p) = C(p = 0) and
L0(p) = L(p = 0) respectively. Note that for the shaded area in the middle of
the figure the network have simultaneously a large C and a small L. The data is
averaged over 100 realisations of networks with N = 105 nodes.

Much has been written on the properties of Small-World networks [23, 26, 37–39],
and they have proven to have remarkably good transport properties due to the
combination of both good local connectivity and good global connectivity. They
have also been shown to be surprisingly resilient to random removal of links or
nodes for the same reasons. If a link or node were to be removed there would very
likely be an alternative route with comparable transport properties. However a
large group of Small-World networks are also scale-free networks where the hubs
bind the network together and facilitate a majority of the transport. A targeted
attack [40] disabling a portion of these hubs would seriously reduce the global
connectivity, and these networks are therefore very vulnerable for such attacks.

For globally well connected networks one would expect both a low characteristic
path length, since it is easy to traverse from one side of the network to the other,
and a high efficiency since transport in such a network is easy. As pointed out
above many interesting networks have more than one component causing the char-
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acteristic path length to diverge. However for reasonably well behaved networks
a small L is comparable to a large E. Note that the minimum value of dij is one,
and therefore the harmonic measure E has no divergent terms. In such cases it
is therefore possible to probe the local connectivity by looking at the clustering
coefficient, and determine the global connectivity by looking at the efficiency.

3.3 Randomised and rewired networks

In order to determine whether a given value for C or E is large or small it is
necessary to relate the values for the given network to a comparable network, as
no value is large or small by itself. Two useful versions that any network can be
compared with is the randomised and rewired versions of itself.

For the randomised version all links in the networks are removed and then dis-
tributed randomly among the nodes taking care not to produce duplicated links.
This changes the degree distribution of the network to that of a random network
given in Eq. 3.2 and removes any degree-degree correlations. Such a network is
expected to have a very low clustering coefficient since the probability that two
nodes connected to a given node are connected to each other by chance is small
in a large network. On the other hand they will also have a low diameter and
characteristic path length due to the large number of long range links10.

In the rewired case two pairs of connected nodes are selected at random and their
links are interchanged so that two new pairs of connected nodes are produced.
Care must be taken not to select pairs that are already interconnected, or duplicate
present links. This process is repeated until all the links have been rewired. This
procedure preserves the degree-distribution of the network but removes any degree-
degree correlations that may be present.

3.4 Degree-degree correlations

In addition to the measures mentioned above the degree-degree correlation of the
network is an interesting property. Do nodes predominantly link to other nodes of
the same degree or to nodes of higher/lower degree? I will discuss two methods
for studying such correlations.

10Here assuming that there are only one component in the network or there is a giant component
that is investigated. This is a reasonable assumption when the average degree k̄ > 1.
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The first method was proposed by Pastor-Satorras et al. [41, 42] and builds on
calculating the average degree 〈knn〉 for the nearest neighbours of all nodes of
degree k. Plotting 〈knn〉 vs. k reveals any correlations in the linking. A flat
curve indicates no special structure in the degree-degree correlations, whereas an
increasing or decreasing curve indicates an underlying structure.

The second method was proposed by Maslov and Sneppen [43,44] and they propose
to plot a two-dimensional correlation matrix C(k1, k2) given by

C(k1, k2) =
P (k1, k2)

Pr(k1, k2)
, (3.7)

where P (k1, k2) is the probability that a node of degree k1 is linked to a node
of degree k2, and Pr(k1, k2) is the same probability of a rewired version of the
same network. A value C(k1, k2) > 1 indicates an over-representation of links
between nodes of degree k1 and k2, whereas a value C(k1, k2) < 1 indicates an
under-representation. Networks where small-degree nodes tend to link to high-
degree nodes are called disassortative networks and are found to be abundant in
biological and technical networks. On the other hand networks where nodes tend
to link to other nodes of similar degree are called assortative networks and are
abundant in social networks where hubs tend to link to other hubs. The origin of
the difference in behaviour is still not fully understood [45].

In order to look at the statistical significance of the correlations found in C(k1, k2)
Maslov and Sneppen introduced the matrix Z(k1, k2) given by

Z(k1, k2) =
P (k1, k2)− Pr(k1, k2)

σr(k1, k2)
, (3.8)

where σr(k1, k2) is the standard deviation of Pr(k1, k2) for an ensemble of rewired
networks. A value of Z(k1, k2) ∼ 0 indicates that the difference between the
actual and the rewired probability is small compared to the fluctuation in the
rewired probability, and therefore the result is not statistical robust. A value
|Z(k1, k2)| � 0 indicates that the difference is large compared to the fluctuations,
and the result is robust for the region.

3.5 Ridge network in crumpled paper

A surprisingly rich literature [46–50] has emerged on studies dealing with crumpled
paper. This is an interesting problem largely because it is an easily investigated
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version of the more general thin plate deformation problem. The paper Ridge
network in crumpled paper [1] describes a crumpling experiment that we have
conducted where we extracted the ridge network that formed when sheets of paper
where crumpled. The ridge networks were investigated using the above outlined
modern network theory, and a rich behaviour were found.

3.6 Path structures

In our paper A quantitative measure for path structures of complex networks [2]
we try to bridge the gap between the very local nearest neighbour measure of
the clustering coefficient and the global measures of diameter, characteristic path
length and efficiency. We ask the question How many paths of length n from node
i are there to nodes which also can be reached with a path of length m? In order
to quantify this we introduce the measure Cr(m,n) given by

Cr(m,n) =
1

N

N∑
i=1

Cr
i (m,n) (3.9)

where

Cr
i (m,n) =

pi(m,n)∏n−1
j=0 (N r

i − j)
(3.10)

where N r
i is the number of nodes in the sub-network11 of radius r around node

i and pi(m,n) is the actual number of paths of length n to nodes that can also
be reached by a m-path from node i. Here the product

∏n−1
j=0 (N r

i − j) is the
maximum possible number of such paths. This measure reproduces the classical
clustering coefficient in Eq. 3.3 for the case C1(1, 2), and it is also bounded by
the unit interval 0 ≤ Cr(m,n) ≤ 1. The strength of the measure is that it takes
into account more than just the nearest neighbours of the node, and gives detailed
information on the more long-ranged structure of the networks.

11A sub-network of radius r around node i is the set of nodes and links that can be reached by
traversing r links.
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Clouds are not spheres, mountains are not cones,
coastlines are not circles, and bark is not smooth,
nor does lightning travel in a straight line.

Benoit Mandelbrot (1942 –)

The field of geology dates back centuries if not millennia [51]. Throughout time
humans have always strived to understand their surroundings, and geological media
such as rock and sand have always been present. In this chapter I will introduce
the central concepts and observations that form the foundation of our articles
concerning fracture networks and summarise some of our key findings. I also outline
the implications of the complexity of geological media with regard to modelling
and upscaling.

4.1 The complexity of geological media

In Mandelbrot’s groundbreaking book The Fractal Geometry of Nature [11] he
opens by observing that Nature exhibits many scale-free properties. He describes
coastlines, river networks, mountain ranges and clouds that span many orders of
magnitude, and that have the same statistical properties over the entire range. The
picture in Figure 4.1 depicts two typical geological sedimentary layer structures.
There are two lens covers included for scale reference. If you turn to Figure 4.2
you will see that one of the lens covers is a giant replica, and the scale of this
is illustrated by the person in the figure. It is impossible to tell the scale of the
lens covers from the surroundings because the geological features in the picture
are scale-free.

The same scaling invariance applies to fracture systems, and a nice review of
many detailed studies is written by Bonnet et al. [52]. Bonnet reports the findings
of about 40 different outcrop studies. Their main scale-free properties are the

27
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Figure 4.1: Two pictures of typical geological sedimentary structures. Lens
covers included for scale reference. Photo credit: S. W. Wheatcraft and S. W.
Tyler.

fractal placement of fracture centres and the power-law distribution of fracture
lengths. The confirmation of such distributions and the determination of their
cut-off lengths and exponent/dimension are highly non-trivial, and the results are
not always very robust. However, there is overwhelming evidence that general
fracture systems display these properties. For the case of the fractal dimension
this is mostly measured by the box-counting method and the reported dimensions
lie in the interval between 1.0 and 2.01. In Figure 4.3 I have reproduced a figure
from Bonnet [52] showing the spread of fractal dimensions between the different
studies. For the power-law length distribution the various studies apply various
numerical methods2 for determining the exponents, and again I have reproduced
Bonnets distribution of the exponents reported in Figure 4.3.

This lack of a typical scale leads to problems when one tries to model the behaviour
of large geological formations [53–55]. In a numerical simulation one can only
include a limited amount of features and one therefore has the need to upscale
various properties in the model. It is not possible to measure properties such as
the permeability for large volumes, such as for example a reservoir, and upscaling
is therefore necessary from laboratory scale values. This is a highly nontrivial
task [56,57].

Another complicating factor concerning geological media is the lack of data. This
specially applies to the characterisation of fractures and fracture systems in three

1This interval is netural because the fracture centers are distributed in a plane filling more of
space than a line (with dimension 1) and less than the plane itself haveing dimension 2.

2as described in Chapter 2.
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Figure 4.2: The same two pictures as in Figure 4.1 but now with a finger and
a person acting as real scale references. The scale-free nature of the sedimentary
structures makes it impossible to se that the lens cover in the right panel is a
dummy giant reproduction. Photo credit: S. W. Wheatcraft and S. W. Tyler.

dimensions. It is currently not practically possible to record the three-dimensional
fracture network in detail of any substantial volume. Although the size of a fracture
may be large in the in-plane direction, the aperture of the fracture is mostly well
below the resolution of seismic methods and the fractures are therefore not detected
during seismic surveys. Some experiments have been conducted yielding detailed
three-dimensional information on small systems [58–60]. However these are mostly
laboratory scale experiments and yield too little data to lend them self to statistical
analysis. Therefore the vast majority of studied fracture systems are either two-
dimensional (outcrops) or one-dimensional (bore-holes). Due to the fractal nature
of the fractures extrapolation from one- or two-dimensions distributions to three-
dimensional distributions is not trivial [61–63].

Understanding the structure of geological media, and how single- or multi-phase
flow behaves in such media, is crucial to many different fields. The extraction of
hydrocarbons from reservoirs has been an important field, but also the preservation
of ground-water supplies, the building of nuclear waste repositories and civil engi-
neering are fields where this understanding is vital. The communication between
the fields is unfortunately not always the best, leading to a slow exchange of ideas
and the production of a waste literature published in a variety of journals. This
makes it more complicated to define a research front in the field, and to familiarise
oneself with the literature.
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Figure 4.3: Reproduction of figures from a review by Bonnet et al. [52]. a) Dis-
tribution of fractal dimension for fracture networks reported by various studies b)
Distribution of power-law fracture length distributions reported by various studies.

4.2 Fracture modelling, brief history

The origin of modelling of fractures in geological media must be seen in context
with the modelling of porous media and percolation processes. A nice review of
the early history of this development is given by Sahimi [64]. First porous media
was modelled as a macroscopically homogenous system and various percolation
and permeability properties were studied. Later the need to model the porous
media as macroscopically heterogeneous manifested itself, as this was clearly the
case for naturally occurring geological media. Fractures are one of the significant
sources of macroscopic heterogeneity in geological media.

The first discrete fracture models were so called double-porosity models [65,66]. In
these models fractures are regularly spaced and fully connected, and the matrix 3

is a set of disconnected regularly shaped blocks. All transport in the system goes
through the fracture system, having one porosity, and this system is generally
supplied with material from the matrix having a different porosity. One such
model is the sugar-cube model [66] that is illustrated in Figure 4.4.

These models grew more sophisticated, including three or more degrees of poros-
ity forming multi-porosity models [68, 69]. However the models contained many
adjustable parameters with unclear physical meaning, and they proved unable to

3The material (the rock) that actually makes up the fractured geological formation is called the
matrix.
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Figure 4.4: a) Representation of fractures in an early sugar-cube model, b) Rep-
resentation of fracture in a modern DFN model. Figure form Sisavath et al. [67].
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represent the unordered fractal fracture networks found in nature. Also double-
permeability and multi-permeability models have been developed where there is
flow between fractures, fractures and matrix and within the matrix [70,71].

A model where each fracture is placed individually with correlated or uncorrelated
position, size, orientation and other properties to build a network of fractures is
more capable of incorporating the fractal nature of the fractures. This type of
model was introduced in the context of electrical analogy models to study the flow
in such networks [72,73]. Also these models were sophisticated and more realistic
properties for the various distributions were introduced [67, 74, 75]. Such models
where each fracture is treated as a separate entity are called discrete fracture
networks (DFN).

4.3 A discrete fracture network model

In our paper [5] we have implemented a DFN model where the main properties
are the fractal placement of the fracture centres and the power-law distribution of
the fracture lengths. This model is described in detail by Darcel et al. [63, 76, 77]
who have developed the model in both two and three dimensions. They have
also studied various percolation and stereological properties of the model. The
fractallity of the fracture centres is imposed through a hierarchal multiplicative
process. This process produces a multifractal probability field for the placement
of the centres where the second-order dimension, D2, also called the correlation
dimension [78], is controlled. The generation of a power-law length distribution
with a given exponent, αl, is straight-forward using a pseudo-random number
generator. In our case we have generated two-dimensional fracture networks at
the percolation threshold, where there is a continuous path from one side of the
system to the other. We have investigated the model for the parameter regime
1.5 ≤ D2 ≤ 2.0 and 2.0 ≤ αl ≤ 3.0. This range of values was motivated by studies
such as those described by Bonnet et al. [52]. A small D2 gives a heterogeneous
fracture center distribution with large voids between densely populated regions,
whereas a largeD2 gives a more homogeneous and even fracture centre distribution.
For the fracture lengths a large αl gives a larger portion of smaller fractures, and in
the limit of αl →∞ all the fractures have the same length. A smaller αl gives, on
the other hand, a larger portion of longer fractures. Examples of model realisations
are given in Figure 4.5 for different choices of model parameters.

In order to analyse the network properties of the fracture networks generated we
have developed a network representation of the fractures. We define each fracture
as a node in the network and link all nodes where the corresponding fractures
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Figure 4.5: Illustration of fracture sets produced by different choices of the model
parameters. The number of fractures produced in each case is the same.
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a) b) c)

Figure 4.6: Illustration of the applied networks definition. Each fracture is
considered a node, and all nodes representing fractures that intersect each other
are linked. This gives a topological network representation of the fracture network.
a) Generated linear fractures, b) Fractures with nodes and links indicated, c) Pure
network representation of the fractures.

intersect in real space. This procedure is illustrated in Figure 4.6, and enables us
to investigate the networks using the tools from modern network theory discussed
in Chapter 3. The procedure is also illustrated for a real-world set of outcrop
fractures in Figure 4.8.

The results of the analysis show that the networks formed have a broad degree
distribution that can be fitted with a power-law in the tail. The power-law expo-
nent seems to be insensitive to variations in D2 but decreases monotonically with
increasing αl. The clustering coefficients and efficiencies also seems insensitive to
the fractal dimension and increases monotonically with the fracture length dis-
tribution exponent. The efficiencies and clustering coefficients for various model
parameters are plotted in Figure 4.7. Compared to rewired and random versions4

of the same networks the model produces networks with large clustering coeffi-
cients and efficiencies, and they are therefore small-world networks. The model
also forms assortative networks i.e. nodes of a given degree tend to link to nodes
of similar degree and not link to nodes with degrees that differ significantly form
its own. Figure 4.9 displays a typical degree-degree correlation matrix discussed
in Section 3.4 for the networks produced by the model.

4This comparison is described in detail in our fifth paper [5].



Comparison between model and real-world results 35

1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
lu

st
er

in
g,

 C

D2

αl = 2.00

αl = 2.25

αl = 2.50

αl = 2.75

αl = 3.00

1.5 1.6 1.7 1.8 1.9 2 2.1
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

E
ffi

ci
en

cy
, E

D2

αl = 2.00

αl = 2.25

αl = 2.50

αl = 2.75

αl = 3.00

a) b)

Figure 4.7: a) Average values of the clustering coefficient for various values of
the model parameters. b) Average efficiency values for the same networks.

4.4 Comparison between model and real-world

results

We have studied outcrop data obtained by Svensk Kärnbränslehantering AB (SKB),
and applied the above outlined network analysis to these data. Figure 4.8 shows
the fracture traces from a real-world outcrop study and the corresponding topo-
logical network representation.

The outcrop networks have a broad degree distribution, p(k), comparable to that
produced by the DFN model. The outcrop distribution can be fitted by a power-
law for the tail of the distribution. The best fit gives an average exponent αl =
2.3 for the realation p(k) ∝ k−αk . This is somewhat higher than the model results
described above that range from 0.86 to 2.2. Note that the data for the outcrop
degree distribution were not abundant, and the estimate exponent for the tail of
the distribution is connected with a large uncertainty.

The outcrops were found to have a clustering coefficient C, in the range 0.088 <
C < 0.24 with an average value of 0.18. This agrees well with the model results
shown in Figure 4.7 that range from 0.079 to 0.31 and have an average value of 0.19.
The efficiencies, E, found in the outcrops lie in the interval 0.0045 < E < 0.14
with an average value of 0.065. This average is somewhat higher than what is
found in the model results ranging from 0.026 to 0.051 with an average of 0.038. A
higher efficiency in the outcrop networks is not surprising as the model networks
are generated at the percolation threshold and the outcrop networks are believed
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Figure 4.8: a) Outcrop fracture traces in real space. b) Topological network
representation for the fractures in a).

to have a fracture density somewhat above the percolation threshold. A higher
fracture density will generally give a larger efficiency.

The outcrop fractures forms dissassortative networks i.e. low degree nodes tend
to link to high degree nodes and vice versa, and equal degree nodes tend not to
link to each other. This is in contrast to the model networks that form assortative
networks. This difference in the degree-degree correlation matrix can be seen in
Figure 4.9.

Maybe the most important finding is that the outcrop fractures form small-world
networks. This means that they form very robust and efficient transport networks
that are not vulnerable to the random removal of a few nodes or links. This is very
beneficial if one wants to extract hydrocarbons from a fractured reservoir. However
it is a major problem if one wants to confine a pollutant such as in a nuclear waste
disposal or while trying to preserve a underground fresh water reserve.
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Figure 4.9: a) Degree-degree correlation matrix for a typical model network. b)
Average degree-degree correlation matrix for the outcrop networks studied.

4.5 Thoughts for future work

All of the above presented results are for two-dimensional problems. A natural
extension of this work is to look at three-dimensional systems where fractures are
represented by (rough) two-dimensional sheets. This will add much complexities to
the problem since the interactions between the fractures become more complicated.
The intersection between two lines is just a point, however the intersection between
two sheets is a profile of some sort. This change in behaviour/dimensionallity
motivates the assignment of weights5 to the links in the network since the lines
will have different properties depending on the way that the fractures intersect.

Calculating the permeability of fracture networks is currently mainly done by
methods like finite element or finite difference as in [79, 80]. However it may be
possible to build (weighted) networks where one can calculate the permeability
directly. A better understanding of the permeability of single (rough) fractures
and fracture joints is a prerequisite for this.

Carbonate reservoirs are presumably the type of geological formation where this
type of analysis will be of greatest interest due to the low permeability of such
formations and the subsequent need for the fracture system to facilitate trans-
port. In contrast to granite, from which the real world outcrops described above
are formed, carbonate reservoirs are generally sectioned into sedimentary layers.
These layers influences the fractures in the media. Some fractures terminate at
layer-boundaries, some are inter-layer fractures and some layer boundaries can be

5See Section 3.1.
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perceived as fractures. This heterogeneity has to be dealt with if an analogue
study in three dimensions is to be attempted for such a formation.

The hierarchal method for generating fractally distributed fracture centres in the
DFN model discussed above is not very flexible. Only one of the moments are tun-
able, and this gives little control over the multi-fractal behaviour of the method.
Described by the f-alpha formalism the method produces a parabolic f-alpha func-
tion. A more general method, producing other f-alpha functions, would be inter-
esting. Changing the multi-fractal behaviour of the fracture centres may influence
the structure of the fracture network.



5 3D fracture project

I haven’t failed,
I’ve found 10,000 ways that don’t work.

Thomas Alva Edison (1854 – 1912)

As described in Section 4.1 there have been few reported findings concerning the
full characterisation of true three-dimensional fracture networks. The detailed
mapping of an in situ fracture network requires either a method that can reveal
the internal structure of the rock such as seismic, CT or MRI, or a detailed dis-
section of the volume to be investigated. Current seismic methods does not have
the resolution to reveal features smaller than the decimeter scale, and geological
surveys suggest that most fracture networks are dominated by fractures with an
aperture considerably smaller than that. For technics such as CT or MRI only
laboratory scale samples can be investigated, and the reliability of the results are
questionable largely due to poor statisitcs. Some work has been done on dis-
section and nuclear traces [58, 81–84]. However, no-one has reported production
of fracture networks of sufficient scale and quality needed for a network analysis
similar to what is outlined in Chapter 4. In this chapter I will discuss a project
that we started in order to produce fracture networks suitable for such analysis.
Unfortunately the project did not yield the results that we hoped for.

5.1 Purpose of experiment

The purpose of the project was to generate and characterise three-dimensional
fracture networks in such detail that the location and extension of each individual
fracture could be determined. By doing this in a statistically reproducible manner
we could build fracture networks that could be analysed using tools from modern
network theory. A secondary target was to measure the acoustic activity in the
samples during the fracturing process. This would have given us insights into the
dynamics of the fracturing process.

39
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In order to fracture the samples we would apply stress very close to their yielding-
stress, and monitor the activity with via acoustic-emission (AE) recordings. There-
after we would cut the samples in thin layers and record the fractures by pho-
tographing them layer by layer. From this a full three-dimensional profile of the
fracture networks could have been built.

For this experiment a triaxial loading configuration or a controllable confining pres-
sure would have been desirable. The yielding stress of a rock is greatly increased
when a confining pressure is applied, and this situation is closer to what we per-
ceive as a natural fracturing process for geological media. However, the availability
of such equipment is sparse, and the experimental complications involved are con-
siderable. An uniaxial loading was therefore applied, with the extension to a more
complex loading scheme to be considered in future work.

5.2 Choice of material and sample preparation

The choice of material was not trivial. Earlier works along similar lines have in-
cluded Carrara marble [81], sandstone [83] and other natural rocks [82]. We also
considered artificial samples such as aluminium-alloys, ceramics, ice and solidified
granular matter. However all the artificial materials proved to have severe defi-
ciencies such as being too brittle, too ductile or too porous. Another reason for
choosing a natural rock was that the sample would be more realistic and closer to
the geological systems that we wanted to imitate. Among the natural rock types
sandstone was a good candidate, but the porous and coarse-grained structure of
the rock would make it difficult to record any fracture pattern via dissection. We
therefore concentrated on more brittle rocks, such as marble and granite. Granite
was chosen because of its availability and an anticipation that the fractures would
be easier to photograph in a granite sample than a marble sample. A picture of
a granite sample with acoustic-emission microphones attached is given in Figure
5.1.

The granite samples used were cylinders of 50 mm in diameter and 125 mm long,
having a density of 2.64 kg/dm3. We used six microphones for each sample to
record the acoustic activity while applying stress. These were placed in two planes
normal to the cylinder axis equally distributed around the circumference of the
sample. The position of the microphones can be seen in Figure 5.1.
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a) b)

Figure 5.1: a) A granite sample with acoustic-emission microphones attached
mounted in a hydraulic press. b) A granite sample after the yielding-stress has
been exceeded.
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Figure 5.2: a) Plot of the AE activity as a function of the loading stress fitted
with an exponential function. b) Histogram of the estimated AE event energy
distribution plotted with logarithmic axis and fitted with a power-law function for
the high-value tail.

5.3 Fracture production and AE results

In order to estimate the yield-stress for the granite samples three samples were
loaded until they yielded. A loading rate of 1.5 kN/s was used, and the three
samples yielded 196.6 MPa, 169.7 MPa and 178.4 MPa respectively. A spread in
the yielding-stress is expected due to heterogeneities in the samples and differ-
ences in the initial (micro) fracture population. We observed a ∼ 15% difference
between the highest and lowest yielding stress. This complicated the process of
fracture production because the yielding stress of a given sample could not be
known beforehand. It would therefore be very hard to load a sample very close
to this threshold without destroying the sample. The recorded activity from the
AE measurements gave a good indication of the level of fracturing within the rock.
From this activity and visible signals such as sputtering of fragments from the
sample, the loading was stopped very close to what was perceived as the yielding
threshold of the samples.

Three samples were loaded with AE microphones attached. They were loaded up
to 158.2 MPa, 194.9 MPa and 188.8 MPa respectively, and for each sample nearly
2·105 AE events were recorded. The AE equipment was calibrated and thresholded
to only detect acoustic signals that were above the noise generated by the loading
equipment. For each AE event, a hit number was assigned, and the energy of
the event was estimated from the magnitude recorded at the various microphones.
The location of the event was estimated by triangulation. The frequency of events
increased exponentially with loading stress as shown in Figure 5.2.
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a) b)

Figure 5.3: a) Picture of a cross-section of a granite sample after loading. The
picture is taken along the cylindrical axis. b) Histogram of the radial AE activity
within a typical sample. The values are the number of AE hits in the various
sections integrated along the cylindrical axis and normalised.

A large number of papers have been published on AE measurements describing the
deformation, fracturing and break-down of various materials [64,85–87]. In Figure
5.3 a histogram of the spatial distribution of the AE activity of a typical sample is
shown. The histogram is a top-view plot, and displays the radial distribution of the
activity. The histogram of the estimated event energies also plotted in Figure 5.2,
and shows the tell-tale power-law tail that has been reported repeatedly throughout
the literature. Note that no corrections of the event energy due to dispersion
because of different travel lengths to the microphone were made [88].

5.4 Missing fractures

The main object of the project was to detect the fractures induced in the samples.
The AE measurements showed that there was considerable activity in the samples
during loading, and this should have produced fractures. A sample was therefore
cut normal to its cylindrical axis at the middle of the sample, and the surface
polished. A microscope was used to photograph the surface with a pixel-resolution
of 1 μm. A full view of the sample surface can be seen in Figure 5.3. To our
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surprise no fractures were visible in the photographs. It seems that the fractures
were closed and not detectable.

In order to attempt to visualise the fracture we applied various fluorescent tracers.
Both florescent molecules and nano-spheres were tested. These were diluted in
a solution wettable to the rock. The tracers absorb florescent light at a given
wavelength and emit at a different wavelength. This enabled us to illuminate the
sample at one wavelength and filter this out while examining the sample. Neither
of the two traces were able to penetrate into the fractures, and no fracture were
recorded.

Due to the inability to record the fractures we abandoned the project. The fracture
location obtained from the AE emissions could have given interesting information
on the dynamic fractal distribution of fractures. However the accuracy needed
for such an analysis is very high, and the triangulation was not able to achieve
an accuracy better than ∼ 5mm. Therefore this part of the project was also
abandoned.

Although the project did not yield the desired results it gave insights into the
problem of recording three-dimensional fracture systems. The usefulness of such
data for the understanding of both single fractures and fracture systems is so
great that several labs are currently developing methods and experimental setups
to record such data. Hopefully this project can help to make these efforts more
successful.
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The network formed by ridges in a straightened sheet of crumpled paper is studied using a laser profilometer.
Square sheets of paper were crumpled into balls, unfolded, and their height profile measured. From these
profiles the imposed ridges were extracted as networks. Nodes were defined as intersections between ridges,
and links as the various ridges connecting the nodes. Many network and spatial properties have been investi-
gated. The tail of the ridge length distribution was found to follow a power law, whereas the shorter ridges
followed a log-normal distribution. The degree distribution was found to have an exponentially decaying tail,
and the degree correlation was found to be disassortative. The facets created by the ridges and the Voronoi
diagram formed by the nodes have also been investigated.
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I. INTRODUCTION

The crumpling of paper is an everyday occurrence, yet it
is a surprisingly rich and complex process. Paper is an elas-
tic, flexible, and heterogeneous material, and many authors
have tried to describe its crumpling properties analytically
�1–3�, numerically �4,5�, and experimentally �6–11�. The
crumpling process of paper is also interesting because it is a
special case of the thin plate deformation problem that is
central in describing processes that occur, for example, in car
crashes and tank failures �12�. Earlier studies have tried to
describe the ridge network of crumpled paper �4,6,10� and
some results have been found; however, much is still unclear.
This work aims at describing the ridge network formed dur-
ing the common hand-crumpling process of ordinary printing
paper. The application of modern network theory �13–15�
has been specially emphasized.

This paper is organized as follows. In Sec. II the experi-
mental procedure is described, and in Sec. III the ridge de-
tection method is presented. The results are discussed in Sec.
IV; in particular the ridge length and the degree distribution
are discussed. Also, the degree-degree correlation, the clus-
tering, and the surface roughness are investigated, in addition
to the facet distribution and the angular ridge distribution.
Finally the main conclusions are summarized in Sec. V.

II. EXPERIMENTAL PROCEDURE

Ordinary printing paper was used for all the experiments,
and some of the properties of the paper are given in Table I.
All the samples were cut into square sheets of 21�21 cm2,
and crumpled by hand into small balls. The diameters of the
various balls produced are given in Table I. The hand-
crumpling procedure has been applied before �6,8,10�, and is

practical because it is easy to conduct and produces a com-
pact result. Unfortunately, the process in not repeatable and
poorly controlled. Several test crumplings were conducted
before the measured samples were crumpled in order to re-
duce the variance between the samples. Earlier studies �8� on
acoustic emissions from crumpling of various materials have
indicated that the emission spectra show a surprisingly low
sensitivity to the crumpling method. This may indicate that
the outcome of the crumpling is not highly sensitive to the
details of the process. Balankin et al. �10� discuss the scaling
behavior of the crumpling process for different paper thick-
nesses. They conclude that the impact of the variation of the
applied confinement force F on the ball radius R is small
since there is only a weak dependence R�F−0.25. For these
reasons, no special precautions, such as dents or initial fold-
ing, were taken to increase repeatability. After crumpling the
samples, they were carefully unfolded, taking care not to tear
the paper, introduce new ridges, or remove some of the origi-
nal ridges. When the paper ball was unfolded the paper was
stretched to a size of 20�20 cm2, and fastened to an alumi-
num plate. This ensured that the vertical heights of the

*Christian.Andresen@ntnu.no
†Alex.Hansen@ntnu.no
‡Jean.Schmittbuhl@eost.u-strasbg.fr

TABLE I. List of samples investigated. x and y steps are the
numbers of measured points in the x and y directions, respectively.
Thickness is the thickness of the paper, and ball diameter is the
diameter of the ball produced during the crumpling process. All
samples were originally 21�21 cm2 and thereafter unfolding and
stretching to 20�20 cm2 producing a maximum height of 12 mm.
An area of 18�18 cm2 in the center of the samples was measured.

Sample x step y step
Thickness
��m�

Weight
�g/m2�

Ball diameter
�mm�

1 900 900 51±5 49.0±1.0 26±2

2 1800 1800 51±5 50.0±1.0 27±2

3 1000 1000 95±5 80.0±0.5 35±2

4 900 900 95±5 80.0±0.5 32±2

5 3600 3600 100±2 83.0±0.5 33±2

6 900 900 220±5 175.0±1.0 43±2
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samples were no more than 12 mm �the maximum range for
the instrument used�.

The full �2+1�-dimensional height mapping was mea-
sured profile by profile using a laser profilometer over an
area of 18�18 cm2 in the center of the samples. The height
of each point was measured using a laser giving a voltage
output linearly proportional to the distance between the
probe and the paper surface. The voltage output was con-

verted to a floating point length measure using a 16-bit
analog-to-digital converter. The laser diameter used was
30 �m; however, accuracy considerably smaller than this
could be achieved. Each profile was acquired by sliding the
sample under the probe while measuring. Multiple profiles
were acquired by stepping the probe normal to the sliding
direction. A typical one-dimensional height profile and a
complete �2+1�-dimensional map are shown in Fig. 1. The
number of points per profile was kept equal to the number of
profiles, resulting in a square grid of measurements or “pix-
els.” The number of points used for the various samples is
given in Table I. The in-plane accuracy of each point was no
larger than 10 �m for any sample, and in the out-of-plane
direction it was 0.5 �m for all samples.

III. RIDGE DETECTION

A ridge stands out as a line of high curvature in an other-
wise smooth landscape. The curvature of any point in a
height profile ��x�� can be calculated as the field �2��x��,
where x�= �x ,y� are the planar coordinates. In the present
case, it proved necessary to smooth the height profile ��x��
with a short-range Gaussian filter before calculating �2��x��
in order to filter away small-scale features. A range of differ-
ent filters was tested, and the result did not seem sensitive to
the details of the filter. The main effect of the filtering was
the removal of single isolated high-curvature pixels, or small
groups of such, and a narrowing of the ridge lines. After
filtering, the curvature field was calculated and thresholded
so that all points over a given value were considered to have
a unit value and all other points to have a zero value. Any
isolated points above the threshold were filtered away. From
the remaining points, lines were detected as ridges. It is
throughout this paper assumed that all ridges are straight
lines. It proved difficult to automate the ridge extraction pro-
cess from the thresholded field; finally this step had to be
done manually. Some statistics of the produced networks are
listed in Table II. Figure 1 shows an example of a full ridge
network. In the middle plot of Fig. 1, a single one-
dimensional profile is given, and all points along this profile
giving rise to ridges are marked. It can be seen from this
figure that not all sections of the profile that have high cur-
vature give rise to a ridge, while some smooth sections do
give rise to a ridge. This may stem from the directionality of
the ridges relative to the profile shown. Ridges crossing the
profile at a small angle may seem smooth, but small local
dents crossing close to orthogonally may seem large.

Nodes are defined as intersections between ridges, and a
ridge therefore extends only from one node to another. All
the links are regarded as undirected since a paper ridge does
not have any preferred direction. The networks formed are
fully connected and have therefore only one component.

IV. NETWORK PROPERTIES

The different paper thicknesses used in the experiments
showed a clear trend that thinner paper crumple more than
thick paper, and therefore produce more nodes and links �see
Tables I and II�. Apart from the scale of the network created,
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FIG. 1. �Color online� Top: Gray-scale height plot of sample 6
as function of x and y positions. Gray-scale indicates elevation
�lighter is higher�; ridges are clearly visible. Middle: A single one-
dimensional profile from sample 6 �marked as a black line in the
bottom plot�. The points of the profile that give rise to ridges are
marked by squares. Bottom: Network extracted from sample 6 su-
perimposed on the gray-scale plot from the top figure.
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no significant differences in the various distributions referred
to below were detectable. As a consequence, most distribu-
tions are averaged over all samples after each of them have
been normalized appropriately. The lack of change in the
behavior due to sample thickness may arise from the small
amount of data available, and no correspondence between
paper thickness and other properties can be excluded. From a
scaling point of view, a qualitative change of behavior is not
expected since a large and thick sheet of paper is equivalent
to a thin and small sheet. Note that the needed confinement
also varies with the paper thickness, and all our experiments
are conducted at approximately the same confinement. Sul-
tan and Boudaoud �11� discuss two regimes for the crum-
pling process, depending on the confinement of the sample.
The transition confinement is partly dependent on the paper
thickness. Our experiments are as mentioned conducted at
approximately constant confinement �although it is poorly
controlled�, and it might therefore be that due to the varying
paper thickness our samples lie in different regimes. How-
ever, the uniform behavior of the samples indicates that they
are all in the same regime. Also the number of self-contacts
is very large for all the samples, and this indicates that they
are all in the highly confined regime.

It can be seen from Table I that samples 3 and 4 both have
the same paper thickness, although they have significantly
different numbers of links and nodes. This is most likely due
to the difference in confinement. Sample 3 had a larger ball
radius than sample 4, and was therefore less confined, and
also has fewer nodes and links than sample 4.

A. Ridge length

The length of a ridge between nodes a and b is defined as
the spatial length from node a to b, following the assumption
that all ridges are straight lines. Previous works have re-
ported log-normal, �, and exponential functions �3,6,10� to
give good fits for this distribution. However, we find that,
whereas the small-scale part of the distribution is well fitted
by a log-normal function, the tail of the distribution is not
well fitted by any of the above-mentioned functions. The

large-scale part of the distribution is better fitted by a power-
law function p�l�� �1− l / l0�� where l is the ridge length and
l0 is the maximum ridge length for a given sample. Both fits
can be seen in Fig. 2. We have found the tail to be best fitted
by an exponent �=0.81. To compare the fits of the different
functions they are plotted in Fig. 3 divided by the original
distribution in order to emphasize any discrepancies.

The underlying reason for the shift in behavior may stem
from the fact that the distribution of short ridges is domi-
nated by remnants of originally long ridges. These ridges
have been intersected by “younger” ridges crossing them af-
ter their formation. As outlined by Blair and Kudrolli �6�,
this random sectioning of ridges will give rise to a log-
normal length distribution. The larger ridges, on the other
hand, have not been so heavily sectioned by younger ridges.
They are therefore not expected to follow the log-normal
distribution of the shorter ridges. Instead, we detect a power-
law dependency of the distribution of the difference between
the longest ridge l0 and the ridge length. It is reasonable to
assume that larger samples will produce larger maximum
ridges, and therefore l0 is a sample-size-dependent quantity.
Why this difference should exhibit a scale-free behavior is
not clear.

B. Degree distribution

The degree of a node is defined as the number of ridges
meeting at that node. The distribution has been found to have

TABLE II. List of extracted networks with their number of
nodes, number of links, clustering coefficient C, the clustering co-
efficient for the corresponding planar Delaunay network, CD, the
clustering coefficient for a nonplanar randomized network with the
same degree distribution, CR, and the maximum node degree for the
network. The clustering coefficients for the random networks were
calculated using an average over 1000 samples after each sample
had 10 000 random rewirings.

Sample Nodes Links C CD CR

Maximum
Degree

1 503 890 0.182 0.4371 0.0045 8

2 1211 2238 0.190 0.4315 0.0020 9

3 190 293 0.138 0.4458 0.0095 6

4 350 580 0.162 0.4394 0.0064 8

5 929 1829 0.231 0.4326 0.0029 10

6 286 501 0.199 0.4384 0.0083 8
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FIG. 2. �Color online� �a� Plot of the average noncumulative
ridge length distribution p�l� as a function of 1− l / l0, where l is the
ridge length and l0 is the maximum ridge length for any given
sample. The data are fitted by a log-normal distribution and a power
law p�l�� �1− l / l0�� with �=0.81. �b� Plot of the average noncumu-
lative ridge length distribution p�l� as a function of normalized
ridge length l / l0.
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a maximum probability at a median degree and produce a
Gaussian-like form that is plotted in Fig. 4. The tail of the
distribution is well fitted by a log-normal function of the
same form as in Eq. �4�. This is in strong contrast to many
naturally occurring networks, which show a power-law tail,
giving a larger portion of high-degree nodes than can be seen
in the acquired samples.

C. Degree-degree correlation

The correlation between the degree of connected nodes
has been studied using the procedure developed by Maslov
and Sneppen �15�. They have defined a correlation measure

C�k1,k2� =
P�k1,k2�
PR�k1,k2�

, �1�

where P�k1 ,k2� is the probability that a node of degree k1 is
linked to a node of degree k2. PR�k1 ,k2� is the same average
probability for a set of randomized networks. The random-

ized networks are assumed to have the same numbers of
nodes and links, and the same degree distribution as the
original network. A value C�k1 ,k2�	1 indicates that there is
an over-representation of links between nodes with degree
k1 and k2, whereas C�k1 ,k2�
1 indicates an under-
representation. In order to look at the statistical signification
of the correlation, Maslov and Sneppen introduced another
correlation measure,

Z�k1,k2� =
P�k1,k2� − PR�k1,k2�

�R�k1,k2�
, �2�

where �R�k1 ,k2� is the standard deviation of the samples
used to generate PR�k1 ,k2�. For P�k1 ,k2� only the sample
data are available. If a given coupling P�k1 ,k2� is over-
represented �that is, P�k1 ,k2�	PR�k1 ,k2�� then Z�k1 ,k2�	0
and if it is under-represented Z�k1 ,k2�
0. If the standard
deviation is small, the corresponding correlation coefficients
are large, thus emphasizing statistically significant results. In
all results presented here, 1000 randomized versions of
the various samples were used to produce PR�k1 ,k2� and
�R�k1 ,k2�. Each randomization used 10 000 rewirings of the
original network.

Figure 5 shows the C�k1 ,k2� matrix for all the samples.
There is a tendency of small-degree nodes not to link to other
small-degree nodes, but rather link to large-degree nodes.
Links between large-degree nodes are also under-
represented. This type of network is known as a disassorta-
tive network. Figure 6 shows the Z�k1 ,k2� matrices for the
same samples, and the same trends as in Fig. 5 can be ob-
served. There is a clear trend in nearly all examined net-
works �16� that technical and biological networks such as the
Internet and various protein interaction networks are disas-
sortative, and that social networks such as acquaintance net-
works are assortative. The underlying reason for this is still
not fully understood.

0 0.2 0.4 0.6 0.8 1

10
0

10
1

l / l
o

f(
l)
/p

(l)

data points
Power law fit
Log−normal fit
Gamma fit
Exponential fit

FIG. 3. �Color online� For comparison, the results shown in Fig.
2 from fitting the ridge length distribution p�l� with �, log-normal,
and exponential functions divided by the data themselves are
shown, together with the same plot for the power-law fit as a func-
tion of normalized ridge length l / l0.
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FIG. 4. �Color online� Plot of the degree distribution p�k� as a
function of node degree k with a fitted log-normal tail. The inset
shows the same data plotted on log-log scale. This shows that the
distribution does not have a power-law-distributed tail.
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D. Clustering

The cluster coefficients C for all the samples are given in
Table II, and they are all in the range 0.13–0.23. The defini-
tion used here is the standard

C =
1

N
�
i=1

i=N

Ci, �3a�

Ci =
2ENN

ki�ki − 1�
, �3b�

where N is the number of nodes in the network, ENN is the
number of links between nearest neighbors of node i, and ki
is the degree of node i �14�. A network embedded in two-
dimensional Euclidean space with no crossing links is called
a planar network, and has been described by West �17�. Gen-
erating a planar randomized network for comparing the clus-
ter coefficients is very hard since no links can cross and the
rewiring therefore must be local. However, the clustering can
be compared with the Delaunay network �18� for the same
spatial layout of nodes. For a given spatial node configura-
tion and degree distribution, the Delaunay network gives the
maximum possible clustering coefficient. The clustering co-
efficient for a Delaunay network made from nodes randomly
distributed in the plane and with a number of nodes compa-
rable to our samples is 0.44. Delaunay networks are closely
linked to Voronoi diagrams, and both are described below.
The cluster coefficient for a nonplanar random network,
where the links can cross, having the same number of nodes
and links and the same degree distribution is in the order of
0.001. The ridge networks have a much higher clustering
than the nonplanar networks. This is expected because any
node in a planar network has a low chance of being linked to
a faraway node. This will generally increase the local clus-
tering �17�. On the other hand the clustering is significantly

lower than in the Delaunay case. This indicates that the ridge
network does not form highly interconnected cliques.

V. GEOMETRICAL PROPERTIES

Various geometrical properties of crumpled thin sheets
have been investigated in the past �6,19,20�. Here we discuss
the size distribution of facets formed by the ridges and of the
Voronoi sections formed by the location of the nodes. The
angular distribution of the ridges and the three-cone struc-
tures is also investigated.

A. Facets

The nodes and links of the network form facets �also
called domains� of various sizes and shapes. A facet is de-
fined as an area of the crumpled paper confined by a closed
loop of ridges that is simply connected, meaning that it con-
tains no internal facets. The nodes bordering the facets are
the corners or vertices of the facet. The distribution of facet
areas and number of vertices for each sample have been cal-
culated. The vertex distribution for all the samples was av-
eraged, giving each sample equal weight. The number of
facets with three, four, five, and six vertices was 46%, 28%,
15%, and 8%, respectively, and the number of facets with
more than six vertices was 4%. The maximum number of
vertices was 14. In Fig. 7 the distribution of the facet vertex
number can be seen; the data are fitted with a log-normal
function

p�a� =
1

�2�a�
e−�ln�a� − ��

2/�2��2, �4�

where a is the vertex number, � is the logarithm of the
average number of vertices per facet, and � is the standard
deviation. The best fit was achieved with �=0.42 and �
=1.13.

The areas of the facets have also been investigated. The
binned distribution of areas was normalized by the maximum
area for each sample, and the average over all samples cal-
culated. The resulting distribution can be seen in Fig. 8 to-
gether with a log-normal fit. The best fit parameters were
�=1.17 and �=2.16 in arbitrary units.
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B. Voronoi networks

Given a set of nodes in space �or the plane� the Voronoi
diagram �18� is a sectioning into areas around each node
where each section contains all the points that are closest to
the node in its interior. This partitions space �the plane� into
sections filling the whole space �plane�. The Delaunay net-
work is a network where each node is linked to all the other
nodes that it shares a Voronoi section border with. A visual-
ization of this is given in Fig. 9, where the Voronoi diagrams
for four of the samples are plotted. The gray scale of a given
Voronoi section reflects the size of the section. Smaller sec-
tions have a lighter shade and larger sections have a darker
shade. It can be seen that the sections are grouped according
to size, making regions of the whole diagram that contains
mainly large or small sections. The distributions of the areas
of the various Voronoi sections have been calculated and
fitted with a log-normal function. As in the facet case, each
sample has been normalized by its maximum area. The dis-

tribution follows the same general shape as the facet distri-
bution, and they can both be seen in Fig. 8.

C. Angular distribution

The angular distribution of the ridges relative to the bor-
der of the sample has been studied in order to detect any
preferred ridge direction or ordering among the ridges with
regard to direction. No such preferred direction or ordering
was found, and the distribution of ridge angles was reason-
ably uniform, both for each sample and for the average. A
plot of the binned ridge angle distribution can be seen in Fig.
10.

The distribution of angles between ridges in a three-ridge
cone �a node where three ridges meet, and hence form a
conelike structure� has earlier been investigated both analyti-
cally and experimentally �6,19,20�. It has been reported that
there are indications of preferred opening angles for such
cones in the regions about 20°, 60°, and 110°, although all
acquired distributions have been broad. All k=3 nodes have
been investigated and the ridge separation angles show a
broad distribution with a maximum in the range between
100° and 150°. There are no significant peaks in the distri-
bution and this indicates a random ordering. However, 32%
of all the angles lies in the interval between 90° and 150°.
This suggests that the ridges tend to span out, trying to sepa-
rate themselves from each other. Recall that 120° is the angle
at which they are evenly separated. A plot of the distribution
for all the samples and their average can be seen in Fig. 10.
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VI. ROUGHNESS

The roughness of crumpled paper surfaces has been inves-
tigated before �4,6,10�. These investigations have reported
self-affine behavior; this means that the surface is statisti-
cally characterized by

h�x� = �−Hh��x� , �5�

where h�x� is the height of the profile at position x, � is a
rescaling factor, and H is the Hurst exponent. We have in-
vestigated the one-dimensional profiles produced by the pro-
filometer using the average wavelet coefficient �AWC�
method �21�, the power spectrum density �PSD� method
�22�, and the bridge method �23�. The results from all the
methods indicate that the crumpled paper forms a self-affine
surface. Earlier works have reported a small-scale region
with a Hurst exponent HS�1.0 and a large-scale region with
HL�0.7 �6,10� and HL�0.8 �4�. Our results follow the same
trend in that there is a crossover scale between two scaling
regimes. However, we found the small-scale exponent to be
HS=1.25±0.05, indicating that the surface is asymptotically
nonflat at these scales. Unfortunately, the data did not give a
robust value for HL because the sample size was too small
compared to the crossover scale. The data did, however, in-
dicate that HL
1.0 and in the range reported above. In Fig.
11, results from the PSD and AWC methods can be seen.

VII. CONCLUSION

The main points reported above are that the tail of the
ridge length distribution is found to be well reproduced by a
power-law distribution, and that the short ridges follow a
log-normal distribution as reported earlier. The degree distri-
bution has been shown not to have a power-law tail, but
rather an exponential decay, and the networks have been
found to be disassortative. The facet area distribution, the
corresponding Voronoi diagram area distribution, and the
Delaunay vertex distribution have all been found to fit log-
normal distributions.
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Abstract – In this paper we present a generalised version of the classical cluster coefficient,
which also can be applied to networks with directed links. This generalisation takes into account
more than the immediate nearest neighbours, giving more detailed information about the network
structure than the classical version. The introduced concept is compared to earlier generalisation
attempts, and it is applied to a directed version of the protein interaction network of the yeast cell
S. cerevisiae and networks generated by the growing preferential attachment model of Barabási
and Albert. Finally, we give some ideas on how our concept is related to modularity and community
structures.
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Introduction. – Over the past few years, a wide range
of concepts and measures for complex networks have been
proposed and investigated. However, complex networks
are still most often described by three basic concepts.
Perhaps the most important measure of complex, real-
world networks is the degree distribution, p(k) —the
probability that a randomly selected node is connected to
k other nodes [1]. For a surprisingly wide range of complex
networks the degree distribution shows a scale-free char-
acter, described by a power law, p(k)∼ k−γ , [2–8]. The
second main characteristic is the small-world phenom-
enon, describing the fact that there is often a relatively
short path between any two nodes in most networks. The
maximum of the shortest paths between any two nodes in
the network, referred to as the diameter, is often observed
to grow logarithmically or slower with the network size,
N [9]. Finally, the third main characteristic for complex
networks is the cluster coefficient, which is related to the
formation of cliques of linked nodes. The clustering in
most real networks is observed to be considerably larger
than the clustering in random networks [9].
More recently, there has been a considerable interest

in understanding the structural properties of complex
networks. This includes the study of local patterns,
so-called, motifs [10–13], overrepresented compared to
what is seen in random networks, and community struc-
tures [14–17], which can be described as modules of nodes
interconnected by a relative small number of links, but
where the nodes in each module are relatively highly

linked to each other. Another field of interest has been
networks with weighted links [18–22], and much attention
has also been given to study the dynamical features of
evolving networks [1,23].
As mentioned above, clustering is a central and well-

studied concept in network theory. The classical cluster
coefficient only concerns the formation of triplets and
triangles in a given network. Many new ideas for a
generalisation of the concept of clustering have been
proposed, however most of them only apply to a specific
type of networks or only look at a certain aspect of
clustering. Some generalisations have successfully been
applied to weighted networks where a cluster coefficient
without a degree-correlation bias has been proposed [24].
Other examples include loop structures [25,26] and higher-
order cluster coefficients taking into account more than the
nearest neighbours of a node [27–29].
However, none of the above-mentioned attempts seems

to satisfactorily produce a robust generalisation of the
concept of clustering. The aim of this article is to present
such a generalised measure that can be applied to all
types of networks and give a broad range of information.
We would like to introduce a quantitative measure for
path structures in complex networks in order to better
be able to describe and quantify the underlying structure
and dynamics of networks. This measure, which contrary
to the classical cluster concept includes long-range path
structures, is motivated by the hope of giving insight to
improve the understanding of clustering mechanisms.
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Fig. 1: (Colour on-line) Two small networks with the same
number of links and nodes where the local clustering coefficient
for the central node (marked red) is Ci = 1/3 even though the
surrounding structure of the node is different.

The structure of this paper is as follows. First a moti-
vation is given, then the new measure is introduced and
compared to earlier generalisations. Then the concept is
applied to a real-world protein interaction network and
networks generated by the growing preferential attach-
ment model of Barabási and Albert [30,31], showing the
features of our idea. Finally we give some ideas about
how our concept is related to modularity and community
structures.

Motivation. – The classical cluster coefficient for a
network with N nodes is defined [23] by

C =
1

N

N∑

i=1

Ci, (1)

where

Ci =
2Ei,nn
ki(ki− 1) , (2)

where Ci is the local cluster coefficient for a given node
i, ki is the degree of node i and Ei,nn is the number of
links between the nearest neighbours of node i. The sum
in eq. (1) is restricted to nodes with degree larger than 1.
As can be seen from the above definition, this concept
only takes into account the immediate nearest neighbours
of node i and the links between these nodes. From the
networks displayed in fig. 1, it is clear that this is not
always descriptive for the situation. The local structure
for the two small networks are different when looking at
the central node. However, the cluster coefficient given by
eq. (1) is still the same for both cases.
The classical cluster coefficient is not defined for

networks with directed links and this excludes a large
number of networks. Another weakness in the classical
definition can be seen when looking at regular networks
such as those displayed in fig. 2. For the triangular
network all nodes in the core of the network have a local
clustering Ci = 2/5; however, for both the square and the
hexagonal networks the cluster coefficient is zero. This
in spite of the fact that these networks show clustering
compared to random versions of the same networks. In

Fig. 2: (Colour on-line) A selection of regular networks:
a) triangular network where all nodes not at the edge have a
local clustering coefficient Ci = 2/5; b) square regular network
where all nodes have a local Ci = 0; and c) hexagonal regular
network where all local Ci = 0.

Fig. 3: (Colour on-line) Example network used for illustrating
the definition and the generalised clustering concept. Note the
colouring scheme that illustrates the radius from the central
red node numbered 8. k8,1 = 6, k8,2 = 5, k8,3 = 4 and k8,4 = 1,
resulting in N18 = 6, N28 = 11, N38 = 15 and N48 = 16.

fig. 3 an example network is given, and this network will
be used for explaining the new concept and comparing
it with the classical definition. Our concept reproduces
the old definition as a special case. However, it also offers
considerably more information about the clustering of a
network, including the regular networks mentioned above.

Description. – We define a local sub-network charac-
terised by a radius r, containing Nri nodes, around node i.
We denote the number of node i’s nearest neighbours, ki,1,
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node i’s next nearest neighbours ki,2, etc. For r= 1 the
sub-network only consists of node i’s nearest neighbours,
N1i = ki,1, for r= 2 node i’s next nearest neighbours are
also included, N2i = ki,1+ ki,2, etc. This layering is illus-
trated in fig. 3 for the example network with node 8 as
the central node. We find N18 = 6, N

2
8 = 11, N

3
8 = 15 and

N48 = 16.
We relate the idea of clustering to paths in the network.

A unique path is defined as a sequence of linked nodes
where each node is visited only once. In fig. 3 node 10 can
be reached directly with a path of length 1 from node 8,
but it is also possible to go via node 9 to create a path
of length 2. Other paths from node 8 to node 10 are also
possible. In the same way, node 6 can be reached via two
paths of length 2 from node 8, etc. As we have mentioned,
this idea also makes is possible to look at clustering in
networks with directed links. In networks with undirected
links, any link is interpreted as two directed links going in
opposite directions.
The question is: How many paths of length n from node

i are there to nodes which also can be reached with a path of
length m? The sub-network around node i consists of Nri
nodes, not including node i itself. The potential number of
paths of length 2 from node i isNri (N

r
i − 1), corresponding

to ki(ki− 1) for the classical cluster coefficient in eq. (2).
The potential number of paths of length 3 is Nri (N

r
i − 1)×

(Nri − 2), etc. Hence, the maximum number of potential
paths of length n from node i is given by Πn−1j=0 (N

r
i − j),

with Nri � n. The generalised cluster coefficient for node
i, within radius r, is then given by

Cr(m,n) =
1

N

N∑

i=1

Cri (m,n), (3)

where

Cri (m,n) =
pi(m,n)∏n−1
j=0 (N

r
i − j)

, (4)

where pi(m,n) is the actual number of paths of length
n to nodes that can also be reached by a m-path from
node i. Cr(m,n), as the classical cluster coefficient, is
bounded by the unit interval, i.e., 0�Cr(m,n)� 1. The
sum in eq. (3) is restricted to nodes with Nri � n, giving
a non-zero denominator. Note that the classical cluster
coefficient is reproduced with r= 1 and (m,n) = (1, 2),
i.e., C1(1, 2). The definition generates symmetric results,
i.e., Cr(m,n) =Cr(n,m). For the special case where
n=m paths of equal length is investigated, and the
measure then describes the abundance of same length
paths to nodes in the sub-network. As mentioned above,
the central node of the two networks of fig. 1 has the same
classical local cluster coefficient, C1i (1, 2) = 1/3. However,
the difference in the networks is reflected in the difference
in the coefficients C1i (1, 3), which is 0 for network a and
1/12 for network b.
Special cases of our generalised cluster coefficient

grasp the same ideas as previously mentioned attempts

to broaden the clustering concept. Both Bianconi and
Capocci [25] and Fronczak et al. [27] are inspired by the
growing network model of Barabási and Albert [30,31].
Bianconi and Capocci are focusing on the appearance
of loops of length h, defined as a closed path of h links
where each node is visited only once. This can, with
undirected links, be related to our model by focusing
on the cluster coefficient Cr(α, h−α) with 0<α<h
and 1� r�max(α, h−α). Fronczak et al. put forward
an idea of a cluster coefficient of order x, involving the
probability that there is a distance of length x between
two neighbours of a given node. In our representation,
this should be related to the coefficient Cr(1, x+1). Jiang
and Claramunt [28] are suggesting a k-cluster coefficient,
involving the number of links among k neighbours of a
given node. This could, only differed by an n-dependent
factor, be related to

∑n=k
n=1 C

k(n, n+1). In [29], Newman
is focusing on so-called Ego-centered networks, illustrated
by the concept of friends of friends, their friends, etc.
Our coefficients Cn(n, n+1) and Cn(n, n) grasp much of
this idea. Caldarelli, Pastor-Satorras and Vespignani [26],
inspired by grid-like structures, are looking at so-called
quadrilaterals —different cycles of length 4. Their primary
and secondary quadrilateral seem to be grasping the same
idea as C1(1, 3) and C2(2, 2), respectively.

Results. – We start by applying the general cluster-
ing concept to a protein interaction network from the
S. cerevisiae yeast cell. This example was chosen because
it belongs to a well-known class of biological networks that
have been studied for some time. The network is treated as
a set of directed links and therefore illustrates the applica-
tion of our concept to this type of networks. The network
data is made publicly available by Jeong et al. [32] on
their web pages [33]. The network originally contained
1870 nodes; however, 412 of these did not belong to the
giant component. The next largest component contained
seven nodes, and we have therefore removed all nodes
not belonging to the giant component. This left us with
a network of 1458 nodes and 3941 directed links. The
network has a scale free degree distribution [32], giving
it a broad range of degrees. This class of networks have
been shown to often display interesting properties such
as the small-world property and high clustering [1]. The
network is shown in fig. 4.
The results from the generalised cluster coefficient is

in the form of a set of n×m matrices Cr(m,n), one
for each radius investigated. In table 1 these results
are listed for radius r= 1 up to m= n= 5. The same
type of results have been obtained for r= 3 for later
visualisation of clustering trends in the network, shown
in fig. 5. For coefficients Cr(m,n) with r >max(m,n) no
new information is gained compared to results for lower
r, with the exception of Cr(r, r), because no new paths
are included. Note that the number of nodes in the sub-
networks created for each node during the calculation of
Cri (m,n) is much larger for r= 3 than for r= 1. In the
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Fig. 4: (Colour on-line) Topological visualisation of the protein
interaction network for the yeast cell S. cerevisiae.

Table 1: The cluster coefficients for the protein interaction
network for the yeast cell S. cerevisiae, with r= 1.

m n= 1 n= 2 n= 3 n= 4 n= 5
1 – 0.07083 0.01504 0.01697 0.00779
2 0.07083 0.01200 0.01504 0.01279 0.00701
3 0.01504 0.01504 0.00783 0.01250 0.00697
4 0.01697 0.01279 0.01250 0.01375 0.00779
5 0.00779 0.00701 0.00697 0.00779 0.00745

r= 1 case the sub-networks will only contain the nearest
neighbours of the node, and the size of the sub-networks
will be in the order of the average connectivity k̄out,
here in the order of 3. For the r= 3 case the number
will be in the order of k̄3out, here in the order of 25, if
we assume a uniform degree distribution. However, the
degree distribution is not uniform, but scale free, and this
produces hubs that significantly increases the size of the
sub-networks for r > 1. The average sub-network size for
the giant component of the protein network is 2.7 for r= 1
and 53.6 for r= 3. Note that the result of C1(1, 2) listed
in table 1 for the giant component of the network strongly
resembles the classical cluster coefficient. This value is
found to be 7 · 10−2, and the corresponding value is 5 · 10−3
for a randomised version of the same network. These
randomised networks have the same number of nodes and
links and the same in- and out-degree distribution as the
original network, but the links have been randomised.
For a truly random undirected network (the Erdös-Rényi
model [34]) the cluster coefficient is shown to be in the
order of k̄/N [35], where k̄ is the averages degree and N is
the number of nodes. For the studied yeast network k̄/N
is in the order of 2 · 10−3. We can therefore conclude that
the protein interaction network is rather well connected,
having a cluster coefficient that is more than ten times
that of a comparable random version.
In order to visualise any trends in the clustering, we

compare the results from the real-world network with
results from the randomised versions of the same network.
The average clustering of the randomised networks is
denoted CrR(m,n) and is calculated as an average over 100

a) b)

Fig. 5: (Colour on-line) Results from the calculation of the ratio
W r(m,n) =Cr(m,n)/CrR(m,n) for two different r and for m
and n in the range 1 to 5. In plot a) for r= 1 and in plot
b) for r= 3. The values plotted are the natural logarithm of
W r(m,n).

samples. Any trends will then be apparent in the measure
W r(m,n) =Cr(m,n)/CrR(m,n). In fig. 5 W r(m,n) is
plotted for r= 1 and r= 3. We see that for small r the
number of paths in the original network with high m and
n far exceeds the case for the randomised networks. For
larger r more nodes are included in the calculation, and
there is an abundance of small m large n paths (and vice
versa), indicating that there are many paths to the near
neighbours via further away neighbours. This seems to
indicate that if protein a is directly linked to protein b,
the indirect influence from a to b via some intermediate
proteins is larger than in a random network. In terms of
robustness, this could be seen as a sign of stability since
the influence on b form a is upheld even though the direct
link or some of the indirect links are broken, because there
is an anomalous abundance of indirect links.
Next we apply the clustering concept to the well-

studied growing Barabási-Albert model based on prefer-
ential attachment [30,31]. Our Barabási-Albert networks
were initialised with a cluster of m0 = 5 fully connected
nodes, and thereafter nodes were included node by node,
each given two new links to the existing network using
the preferential attachment rule. Results for the coeffi-
cients C1(1, 2) and C2(2, 2), as a function of network size,
can be seen in fig. 6, each result is averaged over 200
samples. As can be seen in fig. 6, the coefficient C1(1, 2)
follows a power law C1(1, 2)∼N−β , with β = 0.73. This
is in good agreement with what has been seen previously
with β = 0.75 [35], and should come as no surprise since
C1(1, 2) is the classical cluster coefficient in a network with
undirected links.
The coefficient C2(2, 2), which also can be seen plotted

in fig. 6, does not seem to decrease with increasing network
size, but saturates at a finite value. This shows that the
importance of “friend of a friend” type connections does
not diminish as the system size increases, in contrast to
the classical “my friend, your friend” connections. This
may indicate that the Barabási-Albert model incorporates
more clustering mechanisms that previously thought.
Community structures in networks is a feature describ-

ing the fact that there within groups of nodes is a higher
link density than what one would expect in a randomised
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Fig. 6: (Colour on-line) The coefficients C1(1, 2) and C2(2, 2)
as function of the system size for the BA model. Note that
C1(1, 2) follows a power law as is predicted for the classical
cluster coefficient with a exponent of 0.73 and that C2(2, 2)
seem to asymptotically reach a finite value.

version of the same network. These nodes then form differ-
ent communities which are interconnected by fewer links
than one would expect if the links were placed on the basis
of random chance [17].
The quantitative measure for community structures is

known as modularity. Only differed by a multiplicative
constant, the modularity measures the number of links
within groups minus the expected number of links within
the same groups if the links had been placed at random.
This is related to randomised networks and not pure
random networks. Randomised networks have the same
number of nodes and links as the original network. In
addition the degrees of the nodes are conserved, but
the links have been randomised. Precise definitions of
modularity can be found in [15] and [17].
It seems that our measure W r(m,n) might touch upon

the concept of modularity since W r(m,n) measures the
ratio between the generalised cluster coefficients Cr(m,n)
and cluster coefficient CrR(m,n) in the corresponding
randomised network. For a certain r0, the measure
W r(m,n) will be of the order of 1. At this point the aver-
age sub-network with radius r behaves as a sub-network
of a randomised version of the original network. This
indicates that we are including nodes outside the local
module when increasing r beyond r0, and hence r0 could
be interpreted as an indication of an average module
radius of the network.

Summary and conclusion. – In this paper we have
introduced a generalised version of the classical cluster
coefficient. The classical concept can be retrieved as a
special case of the generalised version. It should be stressed
that our generalisation also can be applied to networks
with directed links. The classic definition in eq. (1) does
not apply to this very important class of networks, and

it has therefore been difficult to quantify the clustering
of such networks. Our definition can therefore be used
to quantitatively describe the clustering of both directed
and undirected networks. The new concept also gives addi-
tional information about the underlying structure within
the networks, involving more than just the immediate
neighbourhood of the nodes in the clustering idea. This
gives information about more far-reaching structures, and
looks at how the network is connected at a larger scale. To
illustrate the usefulness and application of our generalisa-
tion, we have used it to investigate the clustering in the
protein interaction network of the yeast cell S. cerevisiae.
The network is shown to display a high order of clustering
and non-trivial long-range path structures which depend
on the size of the sub-networks used to calculate the local
cluster coefficients. We also applied the measure to look at
the clustering in the well-studied Barabási-Albert model
of growing networks with preferential attachment. Our
results may indicate that the Barabási-Albert model is
better at modelling clustering mechanisms than previously
thought. We have also shown that our measure can be
related to modularity and community structures, with an
indication of an average module radius of the network.
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