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2 Summary

The subject of this thesis is to formulate effective energy expres-
sions (Hamiltonians) of proteins and protein related systems. By
use of equilibrium statistical mechanics we calculate thermodynam-
ical functions, whereupon we compare the results from theory with
experimental data. Papers 1-7 and 10-12 concern this problem. In
addition, Paper 8 (P8) and Paper 9 (P9) are attached. Both these
papers were finalized during the Ph.D. study. However, they are
not related to proteins.

2.1 Introduction to protein thermodynamics

The seminal works of Anfinsen, that led to the Nobel prize in chem-
istry in 1972, established the “thermodynamic hypothesis” of pro-
teins [1]. A consequence of this is that the folded (native) confor-
mation of a protein is the state of lowest Gibbs free energy. This
hypothesis is the foundation of this Ph.D. project. Thus, our first
task is to write down the Hamiltonian for a given protein (or a
protein related system) [2].

Let H; be the value of the Hamiltonian associated with mi-
crostate ¢, thus, the canonical partition function Z for a system
of N microstates, yields [3]

7= exp(=Hy), (1)

where 3 = (kgT)~'. The kg is the Boltzmann’s constant and T
is the absolute temperature. Given the canonical partition func-
tion, one may derive other thermodynamical functions as, e.g., the
internal energy

0
U=——InZ 2
5500 ¢
and the heat capacity
oU 1 02

C =

5T = T2 OF In Z. (3)
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The heat capacity is a thermodynamic quantity that can be directly
measured experimentally. Loosely speaking, the heat capacity is the
amount of heat necessary to raise the temperature one Kelvin [4].

A major difficulty with respect to proteins is that the Hamil-
tonian is not obvious, thus, the canonical partition function is not
easily attainable for proteins. The reason for this is that a protein is
a mesoscopic system that typically consists of thousands of atoms.
In addition, proteins can fold and unfold. Furthermore, proteins are
normally soluted in water, which makes the protein folding prob-
lem (given an amino acid sequence — what is the three-dimensional
conformation?) even more complicated [5].

At physiological temperatures (30°C — 40°C ) proteins exist in a
unique state called the native (folded) state. Upon heating, proteins
will denature (unfold). Surprisingly, at sufficient low temperatures
(< 10°C) several small globular proteins also tend to unfold. The
latter phenomenon is called cold unfolding [6].

Hansen et al. [7] proposed an analytical model that exhibits both
cold and warm unfolding of proteins. This model established the
starting point of this thesis.

It should be noted that our approach to protein folding is an
effective one. An effective approach means that one grasps, and tries
to describe, the main characteristics of the system, thus, throwing
away details of the system. The gain with such an approach is
that fewer free parameters have to be determined compared to an
analysis “from scratch”. Furthermore, proteins are obviously too
complicated to allow more exact modeling so far [8].

To visualize what is meant by an effective description, we will
briefly explain the model for a hydrogen bond between two water
molecules that is applied in P5, P6, and P10.

It is known upon solvation of apolar (no permanent dipoles or
charges) molecules in water, that both enthalpy and entropy are
reduced compared to bulk water (see Refs. 11-16 in P7). This
is usually attributed to an “iceberg” formation around the apolar
molecules (solute) [9]. In order to model this “iceberg” we simply



say that apolar solvation is equivalent to an increased number of
hydrogen bonds between water molecules in the vicinity of an ap-
olar molecule compared with bulk water. Furthermore, we assume
that the hydrogen bonds are able to bend, as illustrated in Figure 1.
The energy associated with the bending of an individual hydrogen

B

Figure 1: Schematic illustration of two water molecules (A and B) where two of the four
orbitals are shown, respectively. The hydrogen bond between the two water molecules
is bent an angle 9. The figure is taken from P6.

bond (HB) between two water molecules is modeled in analogy with
an electric dipole in an external electric field, thus

Hup = —enp cos v, ¥ € [0, ). (4)

The egg may be interpreted as the energy for breaking one hydrogen
bond. The effective Hamiltonian in Eq. (4) is then inserted into the
canonical partition function [Eq. (1)]. After integration over the
¥-angles, thermodynamical functions can be derived and compared
with experimental data.

2.2 Protein related papers

In P1 we expand the framework of Hansen et al. [7]. We show, in
spite of an hierarchical model where the folding follows (thermody-
namically) a specific sequence of folding steps, that the folding and
the unfolding transitions may still follow the behavior of a two-state
system, respectively. Furthermore, in P11 we discuss the possibility
of a two-state unfolding transition for both a single folding pathway,
as in P1, and by multiple (parallel) folding pathways, as investigated
by Dommersnes et al. [10].



In P3 we study a model exhibiting three folding transitions that
is a result of a combination of the Hamiltonians proposed in P1. In
P2 we introduce independent water molecules compared with the
model of Hansen et al. [7] (in Ref. [7] the water associated with a
protein is treated as a unity). Furthermore, we reduce the number
of free parameters compared with the model Hansen et al. [7].

The papers P1, P2, and P3 include only a qualitative comparison
with experimental data on the heat capacity. In P4 we compare also
quantitatively theoretical results with experimental heat capacity
data on myoglobin from Privalov et al. [6]. The water interactions
are now modeled in analogy with interacting electric dipoles in an
external electric field. We also add a vibration term to the energy.
This model results in a fairly good fit to the experimental data.
However, we now realize that the fit can be done even better by
using a (close to) two-state partition function that yields a sharper
transition.

After the work that led to P4 we realized, instead of investigating
complete protein models, that it might be beneficial to split up
protein energetics in two sub-problems: (1) water interactions and
(2) internal interactions, and study these contributions separately.
Water interactions include both water-water interactions and water-
protein interactions.

P5 is a study of the change in the heat capacity upon solvation
of small apolar molecules. This work serves as a preceding study
of hydration effects related to proteins. In P5 we use the model
sketched in Section 2.1, which is the continuum limit of the water
model used by Hansen et al. [7]. The model studied in P5 fits well to
experimental solvation data on small apolar molecules. This water
model is also applied in P6 where we study experimental intrinsic
viscosity data. Intrinsic viscosity is a measure of the effective hy-
drodynamic radius of a macromolecule. In P6 we assume a linear
relation between the degree of folding and the effective hydrody-
namic radius of the protein. This makes it possible to explain the
intrinsic viscosity data on myoglobin.



One problem associated with protein experiments in solution,
is that there is no direct way to separate water interactions from
internal protein interactions. However, Privalov and Makhatadze
show by means of a model compound evaluation that it is possible
to quantify the hydration effect of proteins [11]. In P7 we study
the latter data by the same water model as in P4, i.e., a model in
analogy with interacting electric dipoles in an external electric field.
We fit the model, in a mean field solution, to model compound heat
capacity data from Privalov and Makhatadze [11]. As our model is
an effective description of the solvation process, we found it, and
still find it difficult to make a microscopic interpretation of the pa-
rameters corresponding to the external field and the intermolecular
coupling, respectively.

P10 takes into account the fact that the change in the heat capac-

Iv)y - .
C,ESO V)) is positive for apolar surfaces, whereas

ity upon solvation (A
AC’I(,SOIV) is (surprisingly) negative for polar (permanent dipoles and
charges) surfaces [12]. As a model for the unfolding hydration effect
of the apolar parts of the protein we use the same model applied
in P5. On the other hand, the polar solvation process is much
less understood than the apolar solvation process. We model polar
solvation as breaking hydrogen bonds due to bulk water, i.e., the
apolar model with a minus sign associated with the heat capacity
function. To take into account the presumably strong forces be-
tween the polar surface and the nearest water molecules we apply
a two-state model. Both the apolar model and the polar model fit
well to the model compound data of Makhatadze and Privalov [13].
Furthermore, upon summation of the apolar and the polar contri-
butions from our fittings to the model compound data, we obtain
the characteristic curvature of the hydration heat capacity function
(versus temperature) as expressed in Figure 3 of P10.

In P12 we show, to first approximation, that heat capacity data
of solid state proteins correspond to experimentally measured heat
capacities of proteins in solution, where the latter data are corrected
for the hydration effect by means of a model compound evaluation



[11]. We also show in P12 that the solid state heat capacity can be
represented by an analytical physical model for temperatures from
260 K to 420 K, i.e., the relevant temperatures for water soluted
proteins.

2.3 Other works

In P8 we map the non-directed polymer model onto a Kardar-Parisi-
Zhang like equation by means of path integrals. We relate the scal-
ing exponents in the two models and discuss extreme behavior.

In P9 we investigate clay suspensions experimentally by two tech-
niques: (1) stationary shear viscometry and (2) transient electric
induced birefringence. The data seem to confirm that the clay ag-
gregates increases in size versus increasing salt content.

3 The future

A natural expansion of this protein project is to investigate the hy-
dration heat capacity of native proteins, whose model may show not
to be too different from the model of the unfolding hydration heat
capacity change as inquired for instance in P10. Furthermore, it
would also be interesting to study protein thermodynamics on the
level of individual amino acids. This might result in a more pre-
dictive protein thermodynamics, compared to the models presented
here.

Protein thermodynamics was a challenge
in the beginning of this Ph.D. project,
but is now even more challenging.
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Thermodynamical Implications of a Protein Model with Water Interactions
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NO-7491 Trondheim, Norway
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We refine a protein model that reproduces fundamental aspects of protein thermodynamics.
The model exhibits two transitions, hot and cold unfolding. The number of relevant para-
meters is reduced to three: (1) binding cnergy of folding relative to the orientational encrgy of
bound water, (2) ratio of degrees of freedom between the folded and unfolded protein chain,
and (3) the number of water molecules that can access the hydrophobic parts of the protein
interior upon unfolding. By increasing the number of water molecules in the model, the
separation between the two peaks in the heat capacity curve comes closer, which is more
consistent with experimental data. In the end we show that if we, as a speculative assumption,
assign only two distinct encrgy levels for the bound water molecules, better correspondence

with cxperiments can be obtained.

1. Introduction

Proteins arc crucial components in all living or-
ganisms. [n order to have biological functionality
at physiological temperatures it is important that
they have an exclusively ordered state, termed the
native state. Anfinsen (1973) showed that the na-
tive state is genetically determined, which means
that cach protein, with its specific amino acid
sequence. folds into a unique conformation. The
experiment by Anfinsen also proved that the na-
tive state is thermodynamically determined, i.e.
the state in which Gibbs free energy of the whole
system is lowest. It is now commonly accepted
that folding of the polypeptide chain is thermo-
dynamically driven (Makhatadze & Privalov,
19935).

* Author to whom correspondence should be addressed.
E-mail: audun.bakk@phys.ntnu.no

T Present address: Institute for Theoretical Physics, Kohn
Hall. UC Santa Barbara, CA 93106, USA.
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(1 2001 Academic Press

A peculiar fcature of proteins is that they fold
on time-scales from 10~ % to I's. If one calculates
the folding time of this process simply by taking
the folding as stochastic, one finds astronomical
time-scales (Levinthal, 1968). This is called the
“Levinthal paradox”. A resolution of this appar-
ent paradox is outlined by Shakhnovich (1997),
where he describes how the protein forms at first
a “nucleation-condensate” (Fersht, 1995; Itzhaki
et al., 1995) via thermal fluctuations of the poly-
peptide chain, whereupon a transition state (TS)
oceurs, carrying common features to the native
state, in which the protein descends downhill in
the Gibbs frec cnergy landscape to the native
state. A recent point of view is that the “TS-
pathway” is not a concrete mechanistical path-
way on which every position corresponds to
a unique conformation. Instcad a “statistical
pathway” is introduced, where a new step for-
ward on the pathway means reaching a more
favorable statistical ecnsemble of conformations

1 2001 Academic Press
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with regard to Gibbs {rce energy. However, cvery
step along the path, cach describing an ensemble
of conformations, should have some common
structural features which acts like checkpoints for
the folding. Further, these checkpoints of increas-
ing order is likely to follow a folding pathway
(Baldvin & Rose, 1999; Hansen et al., 1998a, b,
1999; Bakk et al., 2000, 2001), where one particu-
lar point on the pathway depends on the assump-
tion that the main structures of the earlier steps
are conserved.

Unfolding of the polypeptide chain by increas-
ing the temperature is somewhat intuitive, but
what is rather surprising is that proteins unfold at
low temperatures, i.c. they become denaturated
and not biologically functional. Cold denatu-
ration seems to be a general property of small
globular proteins (Privalov, 1990; Chen & Schell-
man, 1989; Griko et al., 1988). Experiments on
low-temperature unfolding are difficult, because
most of the proteins seem to unfold around and
below the freczing point of water. Unfolding at
cold temperatures is thought to result from in-
creased solvation of apolar surface areas of the
protein on unfolding, as water becomes more
ordered (Privalov, 1992).

The paper is organized as follows. In Section 2,
we present the model and calculate the partition
function. In Section 3, we discuss the thermo-
dynamics of the model, and present the results for
folding and unfolding transitions.

2. The Physical Model
2.1. POLYPEPTIDE CHAIN

We refine a physical model for a small globular
protein, which builds on earlier models by Han-
sen et al. (1998a, 1999) and Bakk et al. (2000). The
protein is viewed as a zipper (Fig. 1), in analogy
to the model of Dill er al. (1993) which is a one-
dimensional model of a folding pathway. The
complex three-dimensional protein is equipped
with N contacts. Each individual contact is
assigned an energy of — ¢, <0 if it is folded
(native), zero otherwise (Bryngelson & Wolynes,
1987, 1990). This means that a folded contact is
energetically favorable. Requiring that if contact
i is folded, all contacts j < i are also folded, is an
implication of the pathway. The point of view

F1G. 1. Schematic illustration of a partly folded protein
containing i folded contacts and N — i unfolded contacts
associated with water (shadowed).

that the contacts are distinct contact points in
spacc is a simplification. Folding contact | means
finding the “nucleation-condensate”, which is
reached through a condensation down to a struc-
ture which marks the beginning of the folding
pathway, and guides the protein into the native
state. Each individual contact is regarded as
a statistical ensemble duc to the previous dis-
cussion in Section 1, and they are likely to form
non-local contacts which may be important for
the cooperativity (Shakhnovich, 1997; Abkevich
et al., 1995; Privalov, 1996). However, the specific
contacts do have some common structural mo-
tifs. The specific mechanism forming this “nuclea-
tion-condensate” is not considered in this paper,
but we assume that the condensate cxists
and restrict the study to the TS-pathway, that
eventually folds the protein into its native confor-
mation.

We introduce binary contact variables ¢; e
{0,1}. ¢p; = 0 means that contact i is open (unfol-
ded), and ¢; = 1 means that contact i is in contact
(folded). Assuming N contacts, a Hamiltonian
(H,) for the energies associated with the poly-
peptide chain is written in a compact way as
(Hansen et al., 1998a, b, 1999; Bakk er al., 2000)

Hy= —eoldr + 12+ - + Py - dy).

(h)
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Product terms (¢y -+ ¢;) meet the assumption
about a folding pathway, if ¢; = 0 then all terms
containing j = i will vanish.

The unfolded protein will access some more
degrees of freedom relative to the native protein,
because an unfolded polypeptide backbone will
have rotational freedom represented by the
dihedral angles (Creighton, 1993). This can be
further simplified to one “pscudodihedral” angle
(Peticolas & Kurtz, 1980), and is incorporated by
assigning each single unfolded contact f degrees
of {freedom. The paramcter fis interpreted as the
relative increase in the degrees of freedom for an
unfolded contact compared to a folded contact.

2.2, WATER INTERACTIONS

[ntroduction of water is important for several
reasons, First, proteins arc in vivo cxposed to
water, and second, water has several peculiar
properties due to the polarity of, and the hydro-
gen bonds between water molecules. Makhatadze
& Privalov (1995) state that the sum of the hy-
dration effects destabilize the native state, and
decreasing temperature implies increasing de-
stabilizing action. This is termed the hydrophobic
Jorce, and the water-protein interaction is
incorporated by an “energy ladder” representing
cach individual water molecule associated with
the unfolded parts of the protein (i.e. all contacts
where ¢; = 0) (Hansen er al., 1998a, 1999; Bakk
et al., 2000):

— &y + (g — 1o

(l)z'j = — &y + 2(3, (2)
— &, + 0,

Here w;; is the energy for water molecule j at
contact 1. €, > 0, 1s the cnergy minimum, and 9 is
the spacing betwceen the energy levels. Interac-
tions between the water molecules are not con-
sidcred in this paper. Equation (2) is intcrpreted
as all available energics for one water molecule
associated with the unfolded contact i. Here we
will Tet M walter molecules be associated with
cach unfolded contact, wherecas Hansen er al.
(1998a, 1999) and Bakk et al. {2000) restricted this

number to one. No water is supposcd to access
a folded contact, i.e. the protein interior.

The “ladder” contains g equidistant ¢nergics
which give an entropy contribution while contact
i 18 folded, because then the water is unbounded.
Hence, a folded contact implies an entropy con-
tribution from ¢* degrees of freedom. The water
energy is, of course, a simplification, and is con-
nected to the need of some sort of energy levels to
make it energetically favorable to unfold at low
temperatures. Thus, the “energy ladder” in ¢qn (2)
1s introduced for computational convenience. We
note that the proposed water encrgy in lact is
nothing but the quantized energy levels of a mag-
netic dipole in an external magnetic ficld. How-
gver, in the limit g — oc (with go finite), the
classical limit for a magnetic moment of a fixed
length is obtained. This in turn is equivalent to an
electric dipole in an electric field. The latter can
be interpreted as a direct physical model of dipo-
lar water molecules thal feel an effective clectric
field from the protein. In a protein, an electrical
field arises from the permanent and induced
charges on the protein surface that becomes ex-
posed after unfolding of a contact. This field will
interact with the nearest water molecules (dipolcs)
and structure them. The quantitative aspects of
the folding problem will probably need a dis-
cussion of additional interactions, but this will not
be considered here. Figure | is a schematic iilus-
tration of a partly folded protein containing some
water associated with the hydrophobic parts that
arc exposed upon unfolding of the contacts.

By using the same notation as in cgn (1), the
cnergy associated with water—protein 1nterac-
tions H,, becomces

Hy=(1—¢ Mo + o+ - + oy
+ (1l — o)z + @iz +  + wayy)
e (1 - /)l(/)?_ "'(/);V)
X(wy1 + Oyz + 0+ Oy (3)

2.3, THE PARTITION FUNCTION

The Hamiltonian Hf = Hy + II, describing the
cntire system 1s then

H= —¢eyldpy +Pips + -+ dihs- dn)
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+ (I =@ ){wy + w2+ -+ i)

+ (1 = @1P2)(@z) + w35 + - + Way)

+ o+ (1 — 1o dy)

X (Wy1 + Oxg + 0+ Onpg). (4)
The partition function Z = Y_ Z,, where the

term Z; corresponds to folding of all contacts < i
(pathway assumption), becomes

()

.o . 1_6*9513 (N—=OM
Z[ :.f“\ilgl‘Melsoﬂ elf“ﬂ .

1 _ e*dﬂ

f=1/T is a rescaled inverse absolute temper-
ature where the Boltzmann constant is absorbed
in T. Z, means that all contacts are open, i.e.
a complete unfolded protein. The factor /¥ ' in
eqn (5) arises from the degrees of freedom in the
polypeptide chain that are available in the N — i
unfolded contacts. Further, the product term
g™ is the entropy contribution from M frec non-
interacting water molecules associated with
i folded contacts. ¢®# is the Boltzmann factor
from i contact energies — g, in the polypeptide
chain. The last term in brackets is simply the sum
over all distinct levels in one “water ladder”
raised to the power of the number of water
molecules (N — i) M, bounded to thc unfolded
hydrophobic parts of the protein. A rearrange-
ment of eqn (5) gives

Z,‘ — (gM ez:n[})N ri*Nﬂ (6)

where we have defined

oM
= ,g, e(so,u\d*m(f _I_L . (7)
fl,M 1 —e 99

We put or assume that o < 1 (i.e. g — o), which
means an infinite small level spacing between
the water energies. Hence, a Taylor expansion
yields 1 —e % x~ §f, and thus eqn (7) can be

rewritten as
M
— up 'B
r [ae sinh[?]’ (&)

where a = 1/f'™, and the inverse temperature is
rescaled by ¢gop/2 — . The parameter a reflects

the ratio of thc degrees of freedom between
the folded and the unfolded units of protein
chain. The new energy parameter p = (69/M
— &, + g0/2)/(gd/2) is proportional to the bind-
ing energy of each contact, and may be inter-
preted as an effective chemical potential for each
single protein. Changing the environments of the
protein, i.e. adding denaturants or changing pH,
changes this chemical potential.

We calculate the partition function by simply
summing up the Z, terms in eqn (6):

r
6]

Z:

N
i =

y 1
Zi, — g;\A\I ec[}vV
r

1

0
[ —p OVHD)

NM B
¢ [

©)

=y

where ¢ = 2Ney/go.

The order parameter (“reaction coordinate™) in
this system is n, which is the degree of folding, i.e.
the mean of the number of folded contacts
divided by N, is

1 Zi\;oizi_i ¢
N Z T Mo

n

(In Z)

SN N )Y
_ N m('+1+ Y+ . (10)
N (1 —™THA )

3. Thermodynamical Calculations and Discussion

3.1 CONTINUUM LIMIT OI' THE WATER
ENERGY LEVELS

The heat capacity is C = 2 0*(In Z)/éf*. This
function is independent of the prefactor g"¥e” in
Z. Furthermorc, Z contains the function r, which
has only three parameters: the amplitude factor a,
the effective chemical potential u and the number
of water molecules per unfolded contact M. We
assume that the number of contacts is a constant,
let us say N = 100, reflecting a typical number of
residues in a small protein. The number of rel-
evant parameters in our physical model is now
reduced from the initial six: £, ¢, &0, &,., 0 and M, to
only three parameters: a, 4 and M.

The partition function in eqn (9), and thus the
heat capacity C, is apparently most sensitive to
changes in r» for values » ~ 1. The function r
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F1G. 2. The function r(T) in eqn (8) for a variable effective
chemical potential i, ¢ = 0.5 and M = 1. The absolute tecm-
perature T is rescaled. (——) 0.71; (-----) 0.69; (- - --) 0.67;
(—) 0.65; (—-—) 0.63.

30000
B
E
g 20000 |
8 /
5 /
= /
O . \
10000 [ \ ) — \\
\ L/ ~—_
\ —_
L \—// J
0 *
0.1 0.3 0.5 0.7

T (tlemperature)

FiG. 3. Heat capacity C(T) for M = 1 (scaled by a factor
50) and M = 10 showing two characteristic peaks for cold
and hot unfolding, where ¢ = 0.5 and u = 0.65. Both axes
are rescaled (——) M = 1; (——) M = 20.

is plotted in Fig. 2 for a = 0.5 and M = 1. We
see the effect of a decreasing effective chemical
potential, by the decreasing separation of the two
intersections for r = 1. Larger M implies only
a smaller and higher function r, while the inter-
sections for » = 1 is independent of the specific
value of M. y, = 0.63 is a critical effective chem-
ical potential, and u < p, makes the protein de-
naturated at all temperatures. This critical point
was studied for M = 1 by Hansen et al. (1999),
The heat capacity C(T) in Fig. 3 shows
two characteristic peaks. Calculating the order
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T (temperatute)
F1G. 4. Heat capacity C(T) for M = [ (scaled by a factor
50) and M = 20. ¢ = 0.5 and p = 0.635. Both axcs are res-
caled (——) M = 1; (——) M = 20.

parameter #n in eqn (10), reveals that the protein
is essentially unfolded in the hot and cold temper-
ature regions. This is notable, because as
mentioned earlier hot and cold unfolding is
a common feature of small globular proteins. Tt
makes sense that the protein is unfolded at low
temperaturcs because this is a question of energy
minimizing. Increasing temperature implics
folding, regarded as a compromise between ¢n-
tropy and encrgy. Further incrcasc in temper-
ature shakes the protein, whereupon it cventually
unfolds, i.e. the residual entropy of the polypept-
ide chain dominates in the Gibbs free energy. It is
interesting to note that the temperatures for the
Intersection r = 1 for u = 0.65 in Fig. 2, corre-
sponds to the transition temperatures for the heat
capacity in Fig. 3 for M = 20. The heat capacity
for M =1 is somewhat smeared out, implying
a slightly broader separation between the cold
and hot unfolding peaks.

Although the temperaturc in our model! is
rescaled it may be important that the relative
difference between the two temperatures (T, and
T,, respectively) (T, — T)/T,, associated with
the peaks (1 and 2) of the heat capacity, corres-
ponds to experimental data, where a typical value
is 0.1-0.3 depending on the chemical potential
(Privalov, 1990). In order to make the separation
between the peaks smaller in our model, we can
either decrease u or a, or decrease both y and a.
In Fig. 4, the value of u=0.635 is slightly
decreased compared to Fig. 3 where u = 0.65.
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Obviously this results in a smaller peak separ-
ation. The order parameter n in Fig. 5 shows that
for M =1 the protein is only partly folded be-
tween the two transition temperatures, while for
M = 20 the protein is nearly completely folded.
This fact suggests that for a fixed system size N,
several water molecules per unfolded contact
(M » 1) is important in order to get a more
realistic separation between the two peaks in the
heat capacity.

3.2. TWO LEVEL WATER INTERACTION ENERGY

Finally, in this paper we will discuss the case
g = 2 for the function r in eqn (7). This corre-
sponds to an Ising spin model (Ising, 1925) with
only two energy states per water molecule.
A rearranged version of r then becomes

defs M
"= [coshﬁ} | (1)

where a=g/f'™, and = (eo/M — &, + 6/2)/
(0/2). In Fig. 6, based on r in eqn (11), one sees
that the warm peak is higher than the cold peak,
which is the opposite of the situation in Figs 3
and 4. This first feature corresponds better to
experimental results from Privalov et al. (1986),
Privalov (1990) and Griko et al. (1988). Experi-
ments show that, for the warm unfolding
transition, the heat capacity of the unfolded state
is higher than for the folded state, and it has an
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T (temperature)

F1G. 6. Heat capacity C(T) for d = 0.52, 4 =0.99 and
M = 20. This plot is based on the function rineqn (11). Both
axes are rescaled.

upward slope that decreases with increasing
temperature (Makhatadze & Privalov, 1995;
Privalov, 1997, 1992), with which Fig. 6 is consis-
tent in a qualitative way.

Although this two-level representation of water
molecules gives results with interesting features,
it is not a proper representation of water. But
it can give a clue to a better physical model of
the system, leading to the same features of
interest.

4. Conclusion

We have in this paper refined a protein model
(Hansen et al., 1998a, 1999; Bakk et al., 2000) by
increasing the number of water molecules that
can access the hydrophobic interior of the pro-
tein. The refined model exhibits both the hot and
cold unfolding transitions. By increasing the
number of water molecules that can access the
hydrophobic parts of the protein interior, we
have shown that the separation between the hot
and cold unfolding transition peaks in the heat
capacity curve can be made more sharply peaked,
and can thus come closer in comparison to the
earlier protein models. This is more consistent
with the experimental data. By assuming the
water—protein interactions to be two level, which
is a speculative assumption, the heat capacity
peak corresponding to the cold transition be-
comes smaller than the peak at the hot transition.
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This is in agreement with experimental data, and
opposite to the situation found in the carlier
protein models of Hansen et al. (1998a, 1999) and
Bakk et al. (2000).

A. B. thanks the Rescarch Council of Norway for
financial support (Contract No. 129619/410). A. H,
thanks NORDITA and Niels Bohr Institute for warm
hospitality and support.
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Abstract

We explain the physical basis of a very simple hierarchical model for small globular proteins
with water interactions. The water is supposed to accesses the protein interior in an “all-or-none”
manner during the unfolding of the protein chain. As a consequence of this mechanism (somewhat
speculative), the model exhibits fundamental aspects of protein thermodynamics, as cold and
warm unfolding of the polypeptide chain. Decreasing the temperature below the cold unfolding
the protein folds again. Accordingly, the heat capacity has three characteristic peaks. The cold
and warm unfolding has a sharpness close to a two-state system, while the cold folding yields a
less sharp transition. Interestingly, the entropy of the protein chain drives both the cold folding
and the warm unfolding. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 05.70.Jk; 87.14.Ee; 87.15.Cc; 87.10.+¢

Keywords: Protein folding; Hydrophobicity; Phase transition

1. Introduction

In order to have a precise function in the biological “machinery”, it is important for
proteins to have an unique conformation at physiological temperatures. This is termed
the native (folded) state. Anfinsen [1] proved in his famous experiment with ribonucle-
ase the important fact that the folding of the polypeptide chain is thermodynamically
determined.

One simplified view of protein folding is that the protein is supposed to follow a
specific folding pathway of conformations in the Gibbs free energy landscape [2-9].
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E-mail address: audun.bakk@phys.ntnu.no (A. Bakk).
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heat capacity

T
temperature

Fig. 1. Schematic illustration of the heat capacity around an unfolding transition showing the parameters
in the van’t Hoff enthalpy relation (Eq. (1)). 7, is the transition temperature, Q (area of the peak) is the
released energy (latent heat) and AC is the peak height of the transition.

This is a picture of a folding protein that is forced to follow a specific “path” of
successive conformational steps of increasing structural order. We will use this pathway
assumption in this paper.

A protein in physiological environments (pH, ionic strength, etc.) and temperatures
is packed in a very compact way. An increase of the temperature will eventually
denaturate (unfold) the protein. Other ways to unfold the protein are for instance to
change the pressure, denaturant concentration or the pH. The fact that proteins also
unfold at low temperatures, termed as cold unfolding [10,11], makes the system very
unusual. A major difficulty in experiments of cold unfolding is that the temperature is
around and below the freezing point of water. In a frozen aqueous solution, one cannot
observe any conformational transitions [12].

A general feature on small globular proteins is that they thermodynamically seems
to unfold in an “all-or-none” manner. This means that they unfold cooperatively with-
out noticeable intermediates [13—18], with a deviation from a two-state system not
exceeding 5%. The deviation from a single macroscopic system can be explained by
the presence of unstable intermediates [8,14,19]. It is worth noting that all these exper-
iments have been done only for the warm unfolding. The occurrence of intermediate
states in larger proteins [2,3,20] is not a contradiction to the two-state behavior in the
experiments in Refs. [13—18], because the latter only consider small globular proteins.

The van’t Hoff enthalpy relation (for heat of reaction) [14,21]

A
AH:akBTij (1)

is a powerful way to quantify the sharpness of a smoothed out first-order phase transi-
tion. As shown in Fig. 1, T, is the transition temperature (at the middle of the peak),
O which is the same as AH (no pressure) is the released energy (latent heat), and AC
is the peak height of the transition. « is a dimensionless proportionality factor, and kg
is the Boltzmann constant. For a given AH and Q, then the value of o is inversely
proportional to AC. In this respect a smaller o corresponds to a sharper transition.



62 A. Bakk et al. | Physica A 291 (2001) 60-70

In this article we will explain the physical basis of a protein model that reformulates
the water interactions proposed in earlier models by Hansen et al. [5,6] and Bakk
et al. [8,9]. We will compare thermodynamical quantities, as the heat capacity, to
experiments. The protein is also investigated in a temperature region below accessible
experimental data.

2. Modeling the protein
2.1. The polypeptide chain

The polypeptide chain is modeled as in earlier articles by Hansen et al. [S—7] and
Bakk et al. [8,9], where the protein is supposed to follow a pathway as described in
Section 1. The protein is equipped with N contacts. As a very simple assumption we
say that all contacts contribute equally with respect to energy and entropy. Due to
the fact that a protein is a complex three-dimensional system, a folded contact likely
has non-local interactions with respect to the amino acid sequence in the polypeptide
chain. A weakness in the model is that it has no distinct conformational information
for specific proteins within the contacts. However, in this work we want to investigate
aspects of the mechanism for protein folding. In this respect the generality of the model
is an advantage.

We parameterize the protein in a way analogous to Zwanzig [22], where we assign
binary variables ¥; € {0, 1} describing an open and closed contact i, respectively. The
pathway implies the constraint

YizVi, (2)

because a folded contact 7 is not assumed to unfold when a contact j > i is folded. This
means that it is difficult to unfold a part of the protein within an already larger folded
structure. In order to implement this into a Hamiltonian we introduce a second set of
binary variables & € {1,—B}, and B > 1. The state B is assumed to have a degeneracy
f — 1. Thus, for a system of N contacts the chain—chain Hamiltonian becomes

N
%c:*&‘ozq’ifi, (3)
i=1
and ¢ is the energy gain to fold one contact [23,24]. From the constrains in Eq. (2)
and requiring for simplicity B — oo, the Hamiltonian in Eq. (3) can be reformulated by
the transformation ¥; = ¢, - - - ¢;, where ¢@; € {0, 1} are binary variables. In particular
¥, = ¢1. The value ¢; =0 means an unfolded contact, while ¢; =1 is equivalent to a
folded contact. The product term meets the assumption about a folding pathway. Thus,
Eq. (3) becomes

He=—eo(P1+ 1o+ -+ 12~ Pw) . “®

All open contacts will “flap” freely due to zero energy cost (see Eq. (4)). Having in
mind the degeneracy f — 1 of the state B of the ¢;-variable, each open contact has a
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degeneracy f. The parameter f is interpreted as the relative increase in the degrees
of freedom for an unfolded contact compared to a folded contact.

We note that the chain—chain Hamiltonian emerges from a very simple model, even
simpler than the already simple pathway models by Zwanzig [22], Micheletti et al.
[25], Galzitskaya and Finkelstein [26], and Mufioz and Eaton [27] applied to study
different aspects of protein folding. However, none of these consider the heat capacity
aspect, and in particular the phenomena of cold and warm unfolding. The latter seems
to be connected closely to the water interactions [10], as discussed below.

2.2. Water interactions

Interactions between water and protein surface are important. Proteins are during the
evolution “designed” to interact with water, simply because they are exposed to water
in vivo. Makhatadze and Privalov [28] state that in sum, hydration effects destabilize
the native state, and decreasing temperature implies increasing destabilizing action.
The water that accesses the exposed hydrophobic protein interior during unfolding is
supposed to obtain an “ice-like” structure around the apolar surfaces [29]. Hence, this
structured water will both decrease the entropy and the energy compared to “free”
water [30], and thus impacts the thermodynamics of the system.

Hansen et al. [5,6] proposed a simple model where each water molecule associated
to a contact was represented by a “ladder” of g equidistant energies,

Wi=9N —g, +20, ()
—&y + 5 5

—&w

which we will also apply in the model considered in this text. The interpretation of w;
is the energy difference between a “frozen” water molecule, associated to the unfolded
parts of the protein, and a “free” water molecule in the bulk.

The observable states in a small globular protein is either the unfolded (¢, =0), with
water bound to the surface that uncovers during unfolding of the protein, or the folded
state (¢ --- ¢y = 1) with no water in the protein interior. No intermediate states are
thermodynamically detected for small globular proteins [31]. Hence, one cannot know
for sure how the water enters the protein interior during the unfolding. Hansen et al.
[5,6] and Bakk et al. [8,9] have earlier only considered that the amount of water
interactions increase in proportion to the number of unfolded contacts, and with that the
contact energy of the chain. In this paper we study, as a more speculative assumption,
the case when a macroscopic contribution of water enters the protein surface when the
last contact is unfolded.

We note that Eq. (5) is the quantized energy levels of a magnetic dipole in an
external field. In the continuum limit where g — oo (with gd finite), a classical mag-
netic dipole in an external field is obtained, and this again is analogous to an electrical
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dipole in an external electrical field. The dipolar water molecules are, in addition to
water—water interactions, exposed to an electrical field from the permanent, and induced
charges on the protein surface. Thus, Eq. (5) is a effective representation of that.

By using the same notation as in Eq. (4), we propose the Hamiltonian that corre-
sponds with the water—protein interactions

Hy =1 =12 Py + 2+ -+ wy), (6)

where M is the number of water molecules. The folded protein is a highly ordered
and dense packed structure where no water can access the interior. Due to Eq. (4),
unfolding of the last contact (¢ =0) implies a less dense packing of the protein, and
the cavities are now supposed to be big enough to let water access the interior of the
protein. The next step, unfolding of contact N — 1, implies likely an even lesser dense
packing, and allows more water in the protein interior. We assume in this work that the
water entering upon unfolding of contact N —1 will not interact with the protein surface,
because it is then regarded as a second layer containing “free water”. Cohn and Edsall
[32] state that roughly a monolayer of water is bounded to the protein, implying that
the protein is only interacting with the first monolayer, thus the second, and third, etc.,
water layers, successively entering the protein during unfolding, are regarded as bulk
water. Thus, according to the latter possible (but somewhat speculative) explanation of
how the water accesses the apolar interior of the protein, unfolding of contacts i < N
does not contribute energy to the water Hamiltonian (#,,) and consequently not to the
thermodynamics.

2.3. The statistical framework

The system Hamiltonian (#) describing both chain-specific energy (#,) and water
interactions (J%,) is

H=He+ Hy=—eo(P1 + P12+ P12+ - dy)
+(1 =12 Py )1 + w2+ + wp) . (7

Let now Z; be term number i in the partition function which corresponds with folding
of all contacts <i (pathway assumption), thus

_ e 9B
Zi :fN*ieilio,B (eﬁwﬁl e

M

p = 1/T is a rescaled inverse absolute temperature in which the Boltzmann constant is
absorbed. Z; is the term where all contacts are zero, i.e., a complete unfolded protein,
while Zy corresponds with a folded protein. The factor N~ in Eq. (8) are the chain
specific degrees of freedom deliberated from the N —i unfolded contacts. e/ is the
Boltzmann factor from i contact energies —¢y. The last term in brackets is simply the
sum over all distinct levels in one water molecule raised to the power of the number
of independent water molecules M bound to the unfolded parts of the protein. We
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assume that f < 1 (i.e., g — oc0), which is equal to an infinite small level spacing in
Eq. (5). A first-order Taylor expansion of the denominator in Eq. (8), yields

egw‘ﬁ M .
Z; :fN <5ﬁ) eiéof—In 1) (i<N), 9)

assuming 1 — e 9 ~1 when g —oo. The last term in the partition function (Zy)
corresponds with a complete folded protein, where there are g™ degrees of freedom
from M unbound water molecules and N contact energies —e¢g, yielding

Zy = gl (10)

By summing up the Z; terms in Eqgs. (9) and (10), we obtain the partition function
for the protein

N BAM
Z=%"7=f"g" [("eﬁ ll_fj +er , (11)
i=0

where r = e/ "/ a = ¢/(gd) and u = &,/ep. The inverse temperature is rescaled
by &pf — p. The parameter u in Eq. (11) measures the strength of the water inter-
actions relative to the chain contact energy. Thus, u may be interpreted as an effective
chemical potential. Changing u may mean to add denaturants, change pH or salt
concentration, etc.

The order parameter # in this system measures the degree of folding, i.e., the mean
number of folded contacts divided by N

S¥oiZi 1 (aett YN — 1V — NV )/ — )2+ NPV
Z N (ae!B/BYM (1 —rN)/(1 —r) + 7N '

n=

(12)

n=0 corresponds with an unfolded protein, while n=1 is a completely folded protein.

3. Calculations and discussion

The heat capacity is C = >0*(InZ)/0p>. Fig. 2 shows a typical plot of the heat
capacity C(7) with three peaks (numbered 1-3 from left). These characteristic peaks
correspond with three critical transition temperatures: 77, 7, and 73, measuring the
temperatures at the respective peak maxima. The corresponding order parameter n(7)
in Fig. 3, calculated from Eq. (12), indicates that the protein is essentially folded at
T <T) and T, < T < T3, while the protein is nearly unfolded at 71 < T < 7T, and
T > T5. From this picture it is reasonable to state that the physiological temperature
interval is between peaks 2 and 3. Accordingly, with reference to this temperature
region, we call peak 1 for cold folding and peaks 2 and 3, respectively, for cold and
warm unfolding. Peaks 2 and 3 are both observed in experiments [10,11], and they are
also seen in the model of Hansen et al. [5,6] and Bakk et al. [8,9]. The model in this
work has, in addition to the cold and warm unfolding, the peculiarity of cold folding.
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Fig. 2. Heat capacity C(T). Parameters chosen: @ = 0.077, u =33, f =2, and N = M = 200, exhibiting
three peaks. With reference to the temperature region between peaks 2 and 3 (physiological temperatures)
we call the transitions: (1) cold folding; (2) cold unfolding; and (3) warm unfolding.
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Fig. 3. Order parameter n(7') corresponding with Fig. 2, describing the degree of folding. Parameters are
chosen equivalent to Fig. 2. n = 0 corresponds with an unfolded protein while » = 1 is interpreted as a

completely folded protein.

Experiments on cold unfolding are very difficult because most proteins unfold below
the freezing point of water. Chen and Chellman [11] and Privalov et al. [33] have
all done experiments where the cold unfolding temperature is elevated by denaturants,
but denaturants make the interpretation of the data very difficult. However, Privalov
[10] did experiments in super-cooled water, which is easier to interpret. Unfortunately,
he was not able to detect the sharpness of the cold unfolding, and not at all the heat
capacity below the cold unfolding. This means that our model may predict a cold
folding transition at a temperature below the cold unfolding transition.
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At temperatures below the cold folding (7' — 0) analysis of the model gives n=0.99,
i.e., only the last contact is unfolded, and corresponds to the global energy minimum.
From Fig. 2 it is seen that 7) = 1.5. In Eq. (11) the critical » = e"/7~"/ = 1, which
implies 771 =1/In2~ 1.44 when f =2. Hence, this is nothing but an initiated transition
of the chain entropy. An increase of the temperature from 7 takes the protein through
a nearly unfolded state, whereupon the protein folds again at 7, =1.8. The temperature
is now so high that the energy of water (Eq. (5)) is small (thermal exited) compared
to the chain contact energy ¢, thus the protein prefers to fold again. Further increase
of the temperature causes warm unfolding at 75 = 3.0, because then the entropy of the
chain again dominates the Gibbs free energy. It is interesting to note that the entropy
of the chain causes two transitions, both cold folding and warm unfolding.

We now turn our interest to the sharpness of the transitions, i.c., the value of the
parameter o in the van’t Hoff enthalpy relation (Eq. (1)). For M = 200, o = 4.0 both
for the cold and warm unfolding. This means that the protein is thermodynamically
regarded as a two-state system that folds in an “all-or-none” manner. Privalov [14]
measured o = 4.0 for the warm unfolding. As far as we know there are no experi-
ments on the sharpness of the cold unfolding, but Privalov [10] indicates a sharpness
for the cold unfolding as well, which agrees with our model. The cold folding tran-
sition has a sharpness o = 12.0. This value is typical for a transition where one has
small energy/entropy differences between the folded/unfolded states and the interme-
diate states. Remember that the “folded” state for 7 < T} is actually the first contact
unfolded. Thus, the unfolding will essential depend on the polypeptide chain with the
Hamiltonian in Eq. (4), which can be shown to correspond with a sharpness o = 12.0
[8,19].

The consequence of a decreased p is increasing separation between the cold and
warm unfolding, as seen in Fig. 4. This makes sense. A smaller u is equivalent to
a relatively smaller ¢, compared to ¢ (see Eq. (11)), i.e., it is less favorable for
the protein interior to bind water. The consequence is that the protein prefers to be
folded in a larger temperature interval, in which the water is expelled to the bulk.
However, the transition temperature 77 is not changed because this transition is given
by the value 77 =1/In f. It is also seen that a smaller u is qualitatively equivalent to a
smaller a.

An increase in M is the same as a decrease in N, because then the water becomes
more important relative to the chain, and allows a broader separation between 7, and
T5. The broader separation is also seen for decreasing f, because this is equivalent to
a larger M. Further increase of u will eventually merge peaks 1 and 2. It is interesting
to note that o« = 4 for the merged peaks, because then the transition of the M water
molecules is energetically dominated, which causes the transition at 7, (Fig. 2). Conse-
quently, the cold folding transition is not very robust against change in the parameters.
In order to possibly reveal experimentally such a mechanism, the measurements must
be more reliable at/below the cold unfolding transition.

In sum, the qualitative change from Fig. 3 to Fig. 4, by a decreasing u, is also
obtained by a decrease of a, f or N or an increase of M.
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Fig. 4. Heat capacity where the effective chemical potential is p = 3.2, slightly decreased from the value in
Fig. 2 (u=3.3). All other parameters are chosen as in Fig. 2. The qualitative picture is a broader separation
between 7, and 73 compared to Fig. 2.

Finally, we note that a slightly reformulated version of the model seems to be in
very good qualitatively correspondence with experiments on heat capacity exhibiting
cold and warm unfolding [34].

4. Summary

We have, in this work, studied a hierarchical protein model with water interactions.
The model is based on earlier models by Hansen et al. [5,6] and Bakk et al. [8,9].
In contrast to these similar models, where the water amount was supposed to increase
linearly to the degree of unfolding of the polypeptide chain, we have, as a more
speculative assumption, studied the situation where a macroscopic amount of water
access the protein interior during unfolding of the last contact.

With reference to physiological temperatures we find that the protein exhibits cold
and warm unfolding transitions, which is an experimental fact to small globular proteins
[10,11]. These transitions are associated by a sharpness indicating, from a thermody-
namical point of view, a two-state system which is also experimentally established
[13-18]. Decreasing the temperature further below the cold unfolding region the pro-
tein folds again (cold folding). This folding, caused by the chain entropy, has a less
sharp transition. In sum, the model exhibits three unfolding/folding transitions. The
cold folding transition seems not to be very robust against a parameter change, in
contrast to the cold and warm unfolding.

It is interesting to note that both the cold and the warm unfolding is due to the
polypeptide chain entropy.
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Abstract

The contribution of the hydration heat capacity upon solvation of apolar molecules is derived
by applying equilibrium statistical mechanics on a simple model, which we compare to experi-
mental data on the linear alkanes: methane, ethane, and propane, and to the aromatic compounds:
benzene and toluene. The model is based on a microscopic consideration, where we assign an
effective bending energy of the hydrogen bonds between the water molecules in the solvation
shell around the solute molecule. Thus, we assume that the hydrophobicity is only connected to
forces between the water molecules in the solvation shell, and not to forces between the apolar
molecule and the surrounding water. We find that the model, by fitting the parameters, corre-
sponds well to the experimental data. The proportionality of the heat capacity versus surface
area is also discussed. (©) 2002 Elsevier Science B.V. All rights reserved.

Keywords.: Apolar molecule; Hydrophobicity; Hydrogen bond; Heat capacity

1. Introduction

The thermodynamics related to aqueous solvation of apolar molecules is of interest
in various respects. E.g., in recent years there has been a rapidly growing amount of
protein research. The understanding of water interactions upon unfolding of proteins
seems to be important in order to understand their stability in general [1-4], besides
the more specific feature of cold and warm unfolding of small globular proteins
[5—13]. Thus, the understanding of the thermodynamics related to solvation of smaller
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molecules may be beneficial in order to understand and predict the structure and sta-
bility of large biomolecules [14].

In this work we want to study of the pure hydration effect upon solvation of small
apolar molecules. It is known from experiments that the heat capacity change upon
aqueous dissolution of apolar molecules from the gaseous state is positive and propor-
tional to the density of solute molecules [15], and that this change is decreasing with
increasing temperature [16]. It is also known that the solution of an apolar substance
in water, at room temperature, is associated with a negative entropy change, which
decreases in absolute value with increasing temperature [17]. The hydration effect of
an apolar molecule has traditionally been regarded as a gradual melting of some kind
of ordered “ice-like” shell around these compounds [18].

In order to explain the anomalous heat capacity increment of solvation of apolar
substances, we were inspired by the distorted hydrogen bond model introduced by
Pople [19,20]. By applying statistical mechanics on a simplified model we can cal-
culate its heat capacity and compare it to experimental data on methane, ethane, and
propane from Naghibi et al. [21,22], and on benzene and toluene from Makhatadze and
Privalov [23].

2. Theoretical

Solvation of a molecule in water is a complex process that includes formation of a
cavity in water, and there are interactions between the water molecules and the solute
molecule. Due to these interactions the water molecules are rearranged around the
inserted molecule [24,25].

This work is based upon the simple assumption of considering the solvation shell
around the solute molecule as an “ice-shell” formation, due to Frank and Evans [18],
i.e., an increased number of hydrogen bonds compared to bulk water. We emphasize
that this, which is meant to be an effective description of apolar solvation, may be in
contrast to recent advances in techniques applied on the structural behavior of apolar
solvation. Especially, we note high intensity neutron scattering [26—29] and X-ray ab-
sorption spectroscopy investigations [30—32], where there seems to be no evidence for
significant increase of the internal water interactions around apolar solutes. However,
in this work we will nevertheless conceptually use a kind of “ice-shell” analogy that
enhance formation of hydrogen bonds compared to bulk water, since the reduction of
both enthalphy [33,34] and entropy [35,36] seems to be well established upon apolar
solvation.

We define here the excess energy (AE), as the energy difference between a hydrogen
bond in the “ice-shell” around the apolar molecules, and “free” bulk water. The excess
energy is assumed to be independent of the intrinsic properties of the solute itself [37].
AE is negative and is supposed to be of the size of breaking a hydrogen bond in water
(5.5 kJ mol™") [37,38]. In order to estimate the energy of a hydrogen bond, we use the
distorted hydrogen bond model introduced by Pople [19,20]. Water has four localized
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orbitals, and to first approximation we may regard the bending of the hydrogen bonds
to be independent of each other. So in a simplified model each hydrogen bond can
then be considered to act in a way similar to an electric field that directs a dipolar
moment. Another way to consider this is that the rectifying effect of the apolar surface,
together with the hydrogen bonds acts like an effective electric field upon the dipole
moment of a water molecule. With this latter simplification, the breaking of hydrogen
bond is modeled as a dipole moment that rotates in an electric field. This model is the
same as the classical Heisenberg [39] model for a magnetic moment. With this, the
energy for one rotator or hydrogen bond becomes

E(W)=—¢ecos?, (D)

where ¢ is a bending distortion constant. The angle ¢} is the polar angle of orientation.
The partition function that follows from Eq. (1) is

2n n
Z:/ d§0/ dd sin Ye EW@)/ ks T)
0 0

= ? sinh(b/T) , 2)

where b=¢/kg (kg is the Boltzmann constant) and ¢ is the azimuthal angle. This
yields the internal energy per mole of solute:

U :aTZ%(ln Z)=a[T — beoth(b/T)] . 3)

Here a=NyNakg =NyR, where Ny is the number of hydrogen bonds per solute
molecule, Nx is Avogadro’s number, and R =8.314 J K ! mol ™! is the molar gas con-
stant. From Eq. (3) we obtain the specific heat change upon apolar solvation per mole

solute molecules:
b 2
= <Tsinh(b/T)) 1 ' )

Experimentally one measures the bending distortion constant ey per mole which we
will identify with ¢ in the model above. Thus we have b =e¢y/R.

One can note since this model is a classical one, the specific heat stays non-zero as
T — 0. However, we assume that this is appropriate in our case as only temperatures
above the melting point of ice are considered. Also trying to take quantum effects
into account would complicate solution of our model—which is a simplification of
reality anyway. On the other hand, quantum effects are important at low temperatures
as is the case with respect to rotations and vibrations of molecules. One should also
keep in mind that the hydrogen atom is the lightest element such that one may not
rule out noticeable quantum effects, even at room temperature, before more careful
investigations are performed. The two-state model may thus act as a very simplified
model of such quantization [23,37,40,41,50], which we believe is of less relevance of
the temperatures considered here for apolar surfaces.

ACfa—Tf

a
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The parameter b in Eq. (4) contains the bending constant ey, which is actually a
measure of the energy of breaking 1 mol of hydrogen bonds in ice and transfering
them to “unbound” water. Gill et al. [37] points out that this is not the same en-
ergy as to fully break 1mol of hydrogen bonds and “transfer them into vacuum”,
because an “unbound” water molecule will still interact with its neighbors, but with
a weaker coupling compared to ice. Némethy and Scheraga [38] have estimated this
value to &y = 5.5 kJ mol ™!, which is substantially lower than the widely quoted value
18.8 kJ mol ™" for breaking a hydrogen bond proposed by Pauling [42].

3. Results and discussion

We now want to compare Eq. (4) with experimental data for the hydration heat
capacity of several small apolar molecules. All these data are based upon the definition
that the heat capacity change is the difference in the heat capacity of the solute in its
ideal gaseous phase and its water soluted phase, i.e., the Ben-Naim definition [43].

In Fig. 1 we plot the experimental data on methane, ethane, and propane from
Naghibi et al. [21,22], and in Fig. 2 on benzene and toluene from Makhatadze and
Privalov [23]. The continuous lines are based upon best fit of the parameters a and
b in Eq. (4). All the parameters used in the plots are listed in Tables 1 and 2. The
theoretical lines are clearly within the error-estimates, which is satisfactory in view of
the simplicity of the model.

From Eq. (3) one sees that a is proportional to the number of hydrogen bonds.
Naghibi et al. [21,22], and Makhatadze and Privalov [23] all conclude in that it is
only the first solvation shell that is responsible for the large contribution to the heat
capacity upon solvation of apolar substances. In order to check this in our model we
simply investigate the fraction

a

where A is the accessible surface area for the water molecules which we take from
Hermann [44]. Apparently from Table 1 the deviation from & ~ 2.0 J K~'mol ™" A
is quite small for methane, propane, benzene, and toluene, while ethane has a dis-
tinct deviation from this value. This trend repeats for the parameter b where methane,
propane, benzene, and toluene are all around » =600 K. Again ethane deviates distinct
from this value. Note that b =600 K corresponds to ey =15.0kJ mol~!, close to the
estimated value from Némethy and Scheraga for breaking 1 mol of hydrogen bonds in
ice and transfer them to bulk water [38].

In Fig. 1 we also present a plot based upon choosing a fixed value b =600 K where-
upon a is adjusted accordingly (dashed line). The corresponding values for ¢ and @
are listed in Table 2. The best fit b-values for benzene and toluene are both very
close to 5=600 K, as seen when comparing Tables 1 and 2, and are accordingly not
drawn. Methane and propane are both within the error-estimates, which is not the case
for ethane. Thus, we cannot from our model conclude for these apolar molecules that
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Fig. 1. Experimental data from Naghibi et al. [21,22] on the aqueous solvation contribution to the heat
capacity for the linear alkanes ethane, methane, and propane as function of the absolute temperature. The
continuous lines are best fit of the parameters a and b in Eq. 4, while the dashed lines correspond to best
fit of parameters a with parameter b fixed to 600 K. The parameter values are listed in Tables 1 and 2.
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Fig. 2. Experimental data from Makhatadze and Privalov [23] on the aqueous solvation contribution to the
heat capacity for the aromatic hydrocarbons benzene and toluene as function of the absolute temperature.
The continuous lines are the best fit of the parameters a and b in Eq. (4). Values of the parameters are

listed in Table 1.

Table 1

Best fit of the parameters a and b in Eq. (4) that correspond to the
continuous lines in Figs. 1 and 2?2

Solute a b A [
(UK '"mol"!) (K) (A") (K 'mol"'AT%
Methane 3192 559.1 1524 2.10
Ethane  1047.5 2869 1915 547
Propane 4158 667.7 2234 1.6
Benzene 403.8 612.9 240.7 1.68
Toluene  513.5 599.0 2739  1.87

24 is the accessible surface area [44] and @ is defined in Eq. (5).
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Table 2
Parameter b is fixed to 600 K and parameter a is obtained by a corre-
sponding best fit, due to Eq. (4)?

Solute a @
(JK~"mol™1) (UK~ 'mol~! A7%)
Methane 298.6 1.96
Ethane 389.5 2.03
Propane 455.7 2.04
Benzene 417.2 1.73
Toluene 512.8 1.87

2The value of b and the ones for a correspond to the dashed lines in
Fig. 1.

there exists a “universal” coupling constant ey in water. The reason for this is not
clear to us, but apolar solvation can for instance be sensible to surface geometry. This
may possibly explain the irregular values of the parameters for ethane compared to the
other four molecules examined. In this context one can look at, e.g., cyclohexane which
has a cost in free energy 5.2 kJ mol™' when put into water from vapor at 25°C, while
hexane has a cost of 10.7 kJ mol ™! [45]. This amounts to a free energy per unit surface
area accessible to water of 20 J mol ™" A~ for cyclohexane versus 36 J mol ™' A~ for
hexane. This particular example indicates that the hydrophobic effect is sensitive to sur-
face geometry. Thus, the conclusion that thermodynamical quantities upon solvation of
apolar compounds are proportional to water accessible surface area [46—49], regardless
of the surface geometry, is at best approximate.

Gill et al. [37], and Makhatadze and Privalov [23] consider a two-state model which
they fit to experimental data of apolar solvation. They conclude that the relatively good
correspondence between experiments and their theory seems to support the view that
water molecules in the solvation shell behave almost independently. This latter feature
is common to our viewpoint. Although a two-state model has a more correct behavior
in the T — 0 limit, as discussed in Section 2, we cannot see that a two-state model
has a more direct connection to the molecular basis of the problem at the temperatures
considered here. In this respect we find our model more satisfactory, which is also
supported by a better fit to the experimental data including the slight curvature as seen
in Figs. 1 and 2.

Nevertheless, Sharp and Madan [40] conclude that various qualitative effects of apolar
(also polar) solution can be satisfactorily reproduced by a two-state model. On the other
hand their Monte Carlo simulations on a water network model reveal a more complex
behavior than provided by the two-state picture.

4. Conclusion

We have investigated a new model on the microscopic level for the excess heat ca-
pacity of aqueous solvation of the apolar substances methane, ethane, propane, benzene,
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and toluene. In the model we apply the energy of a hydrogen bond in the “ice-shell”
around the solvated apolar molecule, which models the excess energy of solvation
compared to bulk water, by using a hydrogen bond distortion model introduced by
Pople [19].

The heat capacity is calculated by means of equilibrium statistical mechanics and
the model fits experimental data well for all the proteins considered. One notes from
Table 1 that the energy parameter b for bending hydrogen bonds is nearly the same
for all substances except for ethane. As discussed in Section 3 this may be related to
surface geometry, but otherwise the reason for the latter deviation is not clear.
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Two-state protein model with water interactions. Influence of temperature
on the intrinsic viscosity of myoglobin
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We describe a single-domain protein as a two-state system with water interactions. Around the unfolded
apolar parts of the protein we incorporate the hydration effect by introducing hydrogen bonds between the
water molecules in order to mimic the “icelike” shell structure. Intrinsic viscosity, proportional to the effective
hydrodynamic volume, for sperm whale metmyoglobin is assigned from experimental data in the folded and in
the denaturated state. By weighing statistically the two states against the degree of folding, we express the total
intrinsic viscosity. The temperature dependence of the intrinsic viscosity, for different chemical potentials, is in
good correspondence with experimental d&al. Privalovet al, J. Mol. Biol. 190, 487 (1986]. Cold and
warm unfolding, common to small globular proteins, is also a result of the model.

DOI: 10.1103/PhysReVvE.63.061906 PACS nuner87.14.Ee, 87.15.Cc, 66.20d, 05.70.Ce

I. INTRODUCTION protein can be regarded as a multiple process, i.e., a hierar-
chical folding of M contacts[12], and still be a two-state

Proteins are macromolecules consisting of thousands cfystem from a thermodynamical point of view. Analogous to
atoms. Despite their complexity, Privalov and Khechinash-Zwanzig [13] we assign binary variable¥'; {0,1} corre-
vili [1] showed by a van't Hoff analysis that several smallsponding to an opeftunfolded and closedfolded) contact,
globular proteins € 200 residuesare nearly a two-state sys- respectively. The hierarchical folding implies the constraint
tem, i.e., either the protein is thermodynamically stable in the i
folded (native state, or it is stable in the unfoldédenatur- V=W, k=] @

ategrgfe?:gr;raet'%né compact native state around phvsiolo simply because contagtsk cannot unfold whilek is folded.
P i . pny 9 his can further be parametrized by a second set of binary
cal temperatures and natural chemical environments. An in-

crease of the temperature denaturates the protein, which Y?”ables%i €{1.—B}. The¢; variables may be interpreted as

quite intuitive from a physical point of view, e.g., thinking a simplified representation of the dihedral andl8$ with

about thermal expansion of materials. But, what is ratheg Egr two ai%nt%l efil da:rfgscsclmgéz]eaa%z ?gtn:sgtbiﬁ?e \tgfi-
surprising is that some proteins lose their stability at sub- 99 ' y

: . i o _able xje{1,—C} distinguish between the fully folded state
physiological temperaturgd®2—4]. This is called cold dena: (xw=1) and the intermediate stateg, (y = — C), respec-

turation. .
In this work we apply a simple two-state description for at|vely. The enthalpy for contact thus becomes
protein, which is a reformulated version of a model proposed EC=—ieW & i )

by Hanseret al.[5] and Bakket al.[6,7]. In the denaturated

state water is allowed to access the unfolded regions of th@hen the unfolded enthalpy is set to zero.

protein. The water molecules in this hydration shell are as- In the two-state limit the intermediate states are unstable,
signed a bending energy in order to mimic the “frozen” j.e. C—o. For simplicity we assumB— o, thus the chain-

structure around an apolar surf48¢. By means of statistical chain enthalpy in Eq(2) effectively becomes
mechanics we calculate an order parameter, which we apply

in an expression for thétrinsic viscosity(IV). The IV is Ef=—ie., ie{0,1, 3
proportional to the effective hydrodynamic volume of a mac-
romoleculg 9], and isnotequivalent to thénternal viscosity ~ Which corresponds to the native state=(L) and the dena-
where the latter describes a resistance to extension or corfirated state i(=0) for the complete protein. The protein
pression of a macromolecu[d0]. Finally we compare the contact energy. is simply the sum oM contact energies,
model with experimental data from Prival@t al. on sperm i.e., e,c=Me.
whale myoglobin3]. For simplicity we assume that the denaturated stateghas
chain-related degrees of freedom compared to the thermody-
Il. PROTEIN MODEL namically unique native state of zero entropy. The present
two-state model fulfills the van't Hoff enthalpy relation as
To first approximation, a small single-domain globular shown in Ref[6], which is also experimentally established
protein may be regarded as a two-state macroscopic systefor several globular proteins, myoglobin included. As for
[1,11. However, as shown in Ref6] the folding of such a ¢, in Eq. (3) g, varies little with respect to the temperature
[15], thus we assumg, is independent of the temperature.
Solvation of a molecule in water, in analogy to protein
*Electronic address: Audun.Bakk@phys.ntnu.no unfolding, is a complex affair. It includes a cavity formation
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B [18]. Let N be the effective number of hydrogen bonds in the
B\ s (’ solvation shell around the apolar surfaces of the unfolded
\ protein. Thus, the total degeneracy of the proteig;is- g\
in the folded state due to the water degrees of freedom, while
the degeneracy of the unfolded stategis=g. due to the
chain flexibility. This yields a degeneracy corresponding to

statei
FIG. 1. Schematic illustration of two water moleculésgndB) gi=gr gl (5)
between which a hydrogen bond is bent an argl©nly two of the
four orbitals, where the polarity is indicated @ and 6_, are The Hamiltonian for the protein is simply the sum of

shown for each molecule. The hydrogen bonds are meant to mimighain-chain enthalpiesee Eq.(3)] and protein-water inter-
the “icelike” structure of water around the unfolded apolar regions actions[see Eq(4)]

of the protein.
Hi(0)=Ef+E{"(9), (6)

in water, interactions between water molecules and the sur-

face of the solute molecule, and finally a rearrangement ofvhereupon the canonical partition function becomes

the water around the solute molec(is]. In this work we L

will only consider the latter effect. ¢ LI HB N

Proteins consist of apofams well as polar surfacé47]. Z:iZO gie /(RD( fo dd sinde F (ﬂ)/(RD)

As a simplification, we will in this work only consider the -

hydration effect upon unfolding around the exposed apolar RT

parts of the protein. It is known from solvation of apolar :ch—SIHh{'EHB/(RT)}

substances in water that the hydration contribution to the HB

entropy is negative, moreover, it decreases in absolute value !

for increasing temperatufd 8]. Frank and Evan§8] attrib- =2Nghese/RD(r+1)=2) 7. (7)

uted this to a gradual melting of an “ice shell” around the =0

apolar mollecules. In analogy to this, we regard the water irh:&31 JI(K mol) is the molar gas constafitis the abso-

the s_olvatlon shell around the unfolde(_d apolar part_s of t_h‘?ute temperature, and the functioris defined as

protein as hydrogen bonded (HB), while upon folding this

water is expelled to the bulk, and is there regarded as a r=[aTe “Tsinb/T)]V, (8)

“non-hydrogen-bonded liquid'[19].

Inspired by Popl¢20,21] we define an effective bending where a=Rg™/(eps0w), n=€./(NR), and b=¢yg/R.
energy of one individual hydrogen bond in the solvationThe power ofN in Eq. (7) is due to theN hydrogen bonds
shell that are supposed to act individually. This is a coarse simpli-

fication because ice is supposed to have long-range order

Ef®(9)=—(1—i)eygcosd, &e[0,r]. 4 [21].
In Sec. lll below, which concerns the intrinsic viscosity,

The polar angle? is the bending or distortion of a hydrogen we will need a quantity or a measure of the degree of fold-
bond as illustrated in Fig. 1. One sees from E.thatitis  ing. Thus, we define an order paramé@terfor the system.
enthalpically favorable to let water access the unfolded apoAccording to the previous notation where 0 andi=1 cor-
lar protein surfacedi.e., i=0), otherwise, if water is ex- responds to a denaturated and a native protein, respectively,
pelled to the bulk we put this enthalpy to zerg,s is a Wwe weigh the two states by the corresponding Boltzmann
bending distortion constant and is supposed to be of the siageightsZ; defined in Eq(7). The order parameter becomes
of breaking one mole of hydrogen bonds and transferring
them to bulk water. N@ethy and Scheragid 9] estimated

N
+ g\’;‘/eec/(RT)ZN

o

5.5 kd/mol for this constant, which we will apply in this “ 1Z; 1

work. Water molecules in the bulk will also have internal n=— =1 9)
interactions, but with a weaker coupling compared to ice. Z 7z r

Thus, the value from Naethy and Scheraga is substantially =

lower than the widely quoted value 18.8 kJ/mol for breaking

one mole of hydrogen bonds and transferring them to Up to this point the model is general, only restricted to
vacuum as proposed by Paulif2g]. Each individual water single-domain(smal) proteins exhibiting two states. For
molecule expelled to the bulk is assigned a degeneggdn positive values ofa and b, which is valid throughout this
order to take into account the entropy loss of solvated watework, r >0 is a consequence for all temperatures. Moreover,

'Apolar means that the molecule exhibits no permanent dipole “Order parametein physics is equivalent teaction coordinate
moment, as opposed tmlar. commonly used in chemistry and protein literature.
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the order parameter has the following limits: Jimyn=1 ¥ T T
. . 3 OpH=3.40 (expt.) |
and lim_,..,n=0. Thus, we have constructed an order param- 30 | — T u=3700K ||
eter confined to the intervale[0,1], which statistically de- A i e A
scribes the degree of folding. 25 el b
=) I \ \ Vpi-l=4,80 (expt) | 1
os 20 F R —-— 1 =377.0K
I11. INTRINSIC VISCOSITY g L Y \
: . _ 15 A
We now have the “machinery” to describe the IV. First = | ' L\‘\
we will calculate IV separately in the native and denaturated 10 | oy A / 3
state. By quantifying the population of the two states by the 5 [ ‘-\ \\ ~a...” // /,/ 1
order parametefsee Eq(9)], we are finally able to express i A~ |
the total IV for myoglobin as a sum of native and denatur- P S S S
ational IV weighed against the degree of folding. —40 -20 0 20 40 60 80 100 120
IV is in general defined aj24] T(C)
o FIG. 2. Temperature dependence of myoglobin intrinsic viscos-
=|im 10 ity at different chemical potentialsa. The curves are based upon
[7] :
c—o C7 Eq. (15 wherea=2.59x10 % K~ andb=662 K[19]. u, cor-

responds to a denaturated protein, whilg corresponds to the na-
which is the limit of zero concentration of the reduced tive state in the horizontal region betweerll0 °C and 80 °C. Ex-

viscosity[25]. %' is the macroscopic viscosityvater+ pro-  perimental(expt) data at varioupH's from Privalovet al. [3].

tein), » is the viscosity of pure solvertvatep, andc is the

protein concentration. For a fixed conformation IV is inde- facilitation of rotational degrees of freedom in the backbone
pendent of the solution. However, the conformation will will cause a decrease of the dimensi@7,29, hence(r?)
strongly depend on the solution, e.gH. Thus, in this re- decreases with increase in temperature, as well. Thus, ac-
spect IV will implicitly depend upon the solution, as dis- cording to Eq.(13), the IV also decreases. In order to incor-

cussed further in Sec. IV. porate the latter effect, we do a linear regression of data on
It can be shown that IV for a compact macromolecule ofunfolded myoglobirf. This implies the following
arbitrary shape can be written by heuristic meang24$ temperaturé dependent expression on IV afenaturated
L myoglobin
[7]1=v(Vp+6Vy), 11
R T [ 7]o=23.6-0.11T cm¥/g. (14)

wherev is the Simha factor containing all the shape depen—A 25°C[ y]e=20.9 el hily ol h |
dence,V, andV,,=1.0 cni/g are the partial specific vol- t 7lo=20.9 cmig, notewprt ly close tot € value
umes ofpproteinwand pure vsater, resprt)actively,pmd; the 20.1 cnt/g from Tanford[26] obtained in 6 M guanidinium
hydration ratio. From Eq(11) one sees that IV can be re- HCI. .
garded as an effective measure of the size of a macromo[l)-. From the calculated IV of native and denaturated myoglo-
ecule. In this work we study sperm whale metmyoglobin tha in in Egs.(12) and (14), respectlvgly, we weigh the two
has the following dataV.— 0.75 cn¥lg [9], v=2.8 ands states by the order parameter defined in ). We put
p=0. , .

a ) | native 1V proportional to the degree @ilding, n, and dena-
=0.35[24]. Thus, according to Eq11), IV for myoglobin -y ational v proportional to the degree afnfolding (1
in the native state(1) is

—n), whereupon the total IV becomes
[71=3.1 entlg, 12 [7)or=[nlan+[7lo(1—n). (15
€., |_ndependent of ten:perature. The dqta, Ieadlng tO.EqI'he two states, folded and unfolded protein, correspond to
(12), is measured at 20 °C. However, to first approximation he limits i - d i L
we assume that Eq12) is valid at all temperatures the limits im,_.o[ #]io=[ 7]1 and lim_ol #lio=L7lo, re-
IV in the denaturated state is a bit more Cor.n licated spectively. The order parametsrdepends both on the tem-
i P ‘perature and on the chemical environments, as discussed in
where wemayregard the protein as a random cf6,27). the section below
Flory [28] proposed '

q)<r2>3/2 IV. CALCULATIONS AND DISCUSSION
[7] Flory™ M (13 . .
It seems to be reasonable to only incorporate hydration

effect of the first solvation sheB0,23, according to Cohn

for the intrinsic viscosity of a non-free-draining coiP and Edsall[31] who state that roughly one monolayer of

=3.62x 10" is a universal constantr?) is the mean-square
end-to-end distance, aid is the molecular weight. Accord-
ing to the data from Privaloet al. 3] there seems to be a _ _
pronounced temperature dependence of IV in the denaturatedEXPerimental data from Privalost al. [3].

state(see upper curve in Fig.)2Moreover, it is known that  “Temperature here and in Figs. 2 and 3 in units of °C.
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AUDUN BAKK
10l ' ,_'._'._I._._.'_-_.'_. . -] IV in Eq. (14) is a good approximatiqn to _exper_imenta! data.
: i/ 2N AN The curve corresponding i@, in Fig. 2 is horizontal in a
c 08L i // SN ‘.\ el broad temperature range from approximately 0 °C to 60 °C.
& L " ! Voo This corresponds tm=1 as seen in Fig. 3. Thu$g]:
g 06 A \\ '\ . —[ n]4 implying a native protein in this temperature region,
s - i o and is in fairly good correspondence to experimental data.
g 04 |’ I,‘ ,," VY '\‘ T However, in the experiments there seems to be a slight de-
B 02 i I ‘,' \‘ \\ | | crease of IV in_ the region discussed, probably due to a r_nelt-
< I‘ I VL ing of the native structure analogous to the denaturational
0.0 ;] AN V.
N The curvesu, and w5 in Fig. 3 have both maxima<1,

—40 -20 0 20 40 60 80 100 120 thus only afraction of the proteins are native. Here we note
T(C) that an intermediate value of the order parameter, let us say
FIG. 3. Temperature dependence of the order parameter n d&= 0.8, do.es.not mean that the protein is partly foldgd, but
fined in Eq.(9). All parameters correspond to Fig. 2. The order Meansstatisticallythat 80% of an ensemble of proteins are
parameter measures the degree of f0|d|ng Thusﬂiome protein folded, Wh”e 20% are unfolded ACtua”y, the curves corre-
is folded around physiological temperatures (30 °C), while gor sponding tou, and u3 is a crucial test of the validity of the
< pu, the protein is denaturated at all temperatures. Notertiat ~model, because the corresponding experimental data clearly
decreasing with decreasing deviates from a straight line, as a consequence of the mixture
of native and denaturated proteins that contribute to different

water around apolar molecules is required to explain hydrolntrinsic viscosities. In sum, our model seems to resemble the
dynamic data. experimental data quite well.

If we use an estimated value &40° A 2 for the differ- The curve corresponding o, in Fig. 2 exhibits the char-

ence of the accessible surface area of the denaturated and ffgeristic temperature dependence of cold and warm destabi-
native apolar parts of myoglobiii5], together with an esti- lization. This is better seen in Fig. 3, whegtg corresponds
mated value 9 R for the effective surface area of one water t0 & native protein in an intermediate region around physi-
molecule[23], it is roughly 930 water molecules around the ological temperatures{10 °—80 °C), while it is denaturated
unfolded apolar regions of a myoglobin molecule in the firstoutside this temperature region. Cold and warm unfolding is
solvation shell. Let it be effectively one hydrogen bond perd common feature to small globular protei#3,32. The
water molecule that forms or makes the “freezing action” in Specific values of the chemical potential are all aroynd
the hydration shell, thudl=930 in Eq.(8). Note that the =375 K, which corresponds te.=2900 kJ/mol[see Eq.
latter number is thexcessiumber of hydrogen bonds in the (8)]. It is interesting to compare this to the estimated values
solvation shell compared to bulk water. Thitsis not a very ~ from Makhatadze and Privald\5] on enthalpies of internal
fundamental constant, merely a rough estimate. The estiAteractionsAgH™=7600 kJ/mol, where van der Waals’s
mated value of.z=5.5 kJ/mol[19] impliesb=662 K in  (vdW) interactions contributed yH'¥Y=1200 kJ/mol and
Eq. (8). hydrogen bonding contributes yH"®=6400 kJ/mol. The
Consequently, only two parameters remain “adjustable”|atter three values are nearly constant between 5°C and
in the protein modefsee Eq(7)] and thus i 7], [See EQ. 100 °C. It is reasonable thaigH"®> ¢, >AJH""W, because
(15], namely,a andu. It is likely to believe that a change in in addition to disruption of the internal van der Waals's
the parametep is equivalent to a change in the chemical bonds the broken internal hydrogen bonds are likely to partly
environments |fH, denaturant concentration, gicbecause reappear as water-protein interactions. The latter enthalphy
w is proportional to the chain-chain contact enthakyy;  contribution is only partly because the specific water struc-
which reasonably depends upon, egdd. On the other hand, ture determines the possible hydrogen bond combinations
the parametea contains chain and water entropies in addi-towards the protein surface.
tion to the hydrogen-bond-bending constapg, which are In a future expansion of the model it may be interesting to
presumably more stable parameters upon a change in theok at the apparent decreasing dimensionality with increas-
chemical environment compared to Thus, we call the ef- ing temperature for both native and denaturational IV, which
fective parametep. the chemical potential is more expressed for the latter. This may be attributed to a
In Fig. 2 we plot the intrinsic viscosity vs temperature for gradual melting of the structure due to some excitement of
different © and compare them to experimental data fromsoft vibrational modes implying an effective smaller dimen-
Privalov et al. [3]. The curve corresponding t@; exhibits  sion[17]. If we were able to incorporate such interactions in
the characteristic temperature dependence of an unfoldetie protein model, the parameter fit offitg], and[ »]; may
protein. In Fig. 3, where the corresponding order parametethen turn out to be redundant—resulting in a more complete

vs temperature is plotted, one sees thatcorresponds to model.
n=0 for all T, i.e., it is only[ 7]y that contributes t@ 7]. To the author’'s knowledge regarding experiments on the

This is nothing but the temperature dependent intrinsic vistemperature dependence of the IV, myoglobin is the only
cosity of a free-draining coil expressed in Ef4). We note  studied protein over such a broad temperature range and in
that the assumption of linear dependence on denaturationdlfferent chemical environments as in R¢8]. Thus, we
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hope that the present paper may stimulate experimental woitke linearly dependent on the order parameter and propor-
on IV for other proteins, especially those that exhibit coldtional to the degree of unfolding for the denaturated state.

unfolding, in order to check the generality of the model. The total 1V exhibits good correspondence with experi-
mental data from Privaloet al. [3]. For large chemical po-
V. SUMMARY tentials the protein is native around physiological tempera-

] ) ] ) tures (30°C), whereupon it becomes unstable at lower as

Single-domain proteins have thermodynamically twoye| as higher temperatures. Cold and warm destabilizing

stable states, the native and the denaturgitedl]. We apply  action, common to small globular proteins, is a consequence
a two-state description and incorporate the hydration effects the model.

upon unfolding by a model that mimics the “icelike” shell
around the unfolded apolar surfaces as an increased number
of hydrogen bonds compared to bulk water. By means of
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Abstract

We study theoretically the thermodynamics, over a broad temperature range (5—125°C), related
to hydrated water upon protein unfolding. The hydration effect is modeled as interacting dipoles
in an external field, mimicking the influence from the unfolded surfaces on the surrounding
water compared to bulk water. The heat capacity change upon hydration is compared with
experimental data from Privalov and Makhatadze on four different proteins: myoglobin, lysozyme,
cytochrome ¢ and ribonuclease. Despite the simplicity of the model, it yields good correspondence
with experiments. With some interest we note that the effective coupling constants are the same
for myoglobin, lysozyme, and cytochrome c, although they are slightly different for ribonuclease.
(© 2002 Elsevier Science B.V. All rights reserved.

PACS: 05.70.Ce; 87.14.Ee; 87.10.4-¢

Keywords: Protein folding; Protein thermodynamics; Hydration

1. Introduction

Proteins consist of 20 different amino acids with a great diversity with regard to size,
polarity and charge. The understanding of water interactions seems to be important in
order to understand protein folding in general, and the special feature of cold unfolding
of several small globular proteins in particular [1-9].

We in the present work will represent the energy difference between the unfolded
and folded interior, with regard to the water, by mimicking additional hydrogen bonds
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from which we calculate the hydration heat capacity change upon protein unfolding.
A justification of the model is the ability for water molecules to form an “ice-like”
shell (“iceberg” in the terminology of Frank and Evans [10]) around apolar surfaces
and thus create more hydrogen bonds. Reduction of both enthalpy [11-14] and entropy
[15,16] upon apolar hydration seems to be well established [17].

However, the protein interior that becomes hydrated upon unfolding also consists
of surfaces that has polarity, which means that the surface has permanent dipoles and
charges. The heat capacity change upon purely polar hydration becomes surprisingly
negative [18,19]. For apolar surfaces experiments show that the hydration contribution
to the heat capacity upon solvation is positive. Also for proteins where part of the
surface is polar this heat capacity is positive. Thus, for simplicity we will in this work
use the apolar “ice-like” shell picture to make an effective model for the hydration
effect upon protein unfolding. In this way, we may neglect some crucial features of
polar solvation.

Finally, we apply equilibrium statistical mechanics to the model and calculate the
hydration heat capacity increment, which we compare with experimental data from
Privalov and Makhatadze [19] on four different proteins.

2. Hydration upon protein unfolding

We will use a refined version of a model first proposed by Hansen et al. [7,20,21].
The model studied here was applied by Bakk et al. [22] on a complete protein folding
model, but they did not study the hydration effect separately. In this work we will
study specifically this hydration upon protein unfolding.

Protein unfolding involves a cavity formation in water with a rearrangement of the
water molecules surrounding the unfolded protein [23,24]. When estimating the sol-
vation energy of exposing the interior of a protein to water, one has to calculate the
energy difference between hydrated water, associated with the protein, and bulk water
[19]. More precisely, the hydration is defined as the transfer of a solute from a fixed
position in the ideal gas phase to a fixed position in the solvent [25], i.e., water in the
present case.

In the solvation shell around the unfolded surfaces of the protein there will be forces
that tend to orient the water molecules relative to these surfaces. Frank and Evans
[10] introduced the term “iceberg” to describe the apparent “freezing” of the water
molecules in the solvation shell around apolar molecules. This effective description is
substantiated by the experimental fact that both enthalpy [11-14] and entropy [15,16]
decreases upon apolar hydration.

In order to model the effect upon unfolding of a protein we use a simple model
which we expect contains crucial physical features of apolar solvation. Thus, we model
the water molecules as classical electric dipoles (which are not directly related to the
actual dipole moments of water). In an electric field g a dipole moment s has an
energy £ = —¢-s. Assuming |s| = 1 for simplicity, we have

E=—¢cos?, (D)
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where ¥ is the angle between & and s. The ¢=|¢|, which is a bending distortion constant,
represents directional forces and the angle ¢ represents orientations or bendings relative
to the preferred direction for each water molecule. Eq. (1) is the hydration model used
in the works by Bakk and Heye [26] and by Bakk [27], and it extends the interpretation
of the hydration model applied by Hansen et al. [7,20] and Bakk et al. [28,29].

The idea of representing the solvent by dipoles in protein folding was introduced by
Warshel and Levitt [30], and later in applications by, Russell and Warshel [31], Fan
et al. [32], and Avbelj [33].

Evaluating the specific heat based on the energy of Eq. (1), one easily finds that
it decreases monotonically. Among the proteins studied in the present case there is a
weak maximum according to experiments. Thus, in addition to the energy due to the
external field [see Eq. (1)] we will add a coupling term to model pair interactions
between the water molecules. First of all, pair interactions of some kind are always
present, but an additional reason to include them in the present case is the possibility
to induce a maximum in the specific heat. The physical reason behind this is that
such interactions effectively adds to the field ¢ of Eq. (1). This added field increases
when the temperature is lowered. This again effectively leads to a “compression” of
the temperature scale in some intermediate region in which a maximum in the specific
heat can be created, as we actually find below in our results.

Between each pair of water molecules i and j there is thus a pair interaction

Eij=—Jyjsi-s;, (2)

where Jj; is the coupling constant and s; is the “dipole moment” of water molecule
i. In a mean field solution [34,35] the interaction in Eq. (2) acts like an additional
electric field that adds to ¢ in Eq. (1) to obtain an effective field of magnitude ¢.. In
this way, the combination of Egs. (1) and (2) for each water molecule results in the
effective energy

Ec () = —gc.cos ) + %bm2 , (3)

where ¢ = ¢ + bm with b = Zj‘]ij’ and m = (cos¥) is the average dipole moment.
Note that the sum over the values of J;; (which becomes a spatial integral) are here
not further specified as only the parameter b counts. E.g., the water molecules may or
may not be on a lattice. Also note the addition of the %bm2 term in Eq. (3). This term
compensates the double counting of pair interactions in Eq. (2) when the mean field
is evaluated [22,36].

Now for N such dipoles per protein the partition function for the total hydration

contribution upon protein unfolding becomes
N . N
= {Ze exp (— 3 ﬁbmz)] , 4)

2n n
Z:/O d(p/o dd sin ¥ exp(—fE(V))

where
_ 4msinh(fe.)

Z, ;
’ Pee

(5)
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with = (kgT)~'. Note that the free energy F is related to the partition function by
InZ = —BF. From this the average dipole moment m = (cosd) is obtained as (f is
constant)

_ 10z _0lnZ e  o(-1)2 bm®) om

TN 3Be)  d(Be) 0 om de ’ ©
which yields
olnZ, g\ RT
"= A Be) (z7) P 7

when the gas constant R is introduced to replace Boltzmann’s constant kg such that
here and below ¢ and b becomes energies per mole.

The internal energy is now obtained as U = —01InZ/0f (¢ is constant) such that the
total hydration heat capacity change per mole of proteins is (kg — R)

oU 1
AC = oT ~RTZ O InZ. (8)
We note that using mean field to this problem is an approximation. However, mean
field is relative accurate and widely employed (away from critical points) [34,35,37].
In our case, the resulting parameter b is also an adjustable parameter, thus the mean
field in itself should not introduce inaccuracies of importance in the present case. The
largest uncertainty is expected to be the accuracy of the simplified model itself, that
is used to represent a much more complex system into which one wants to obtain
increased insight.

3. Discussion

We want to compare the heat capacity change upon unfolding solvation of the pro-
tein interior with experiments. The proteins considered are myoglobin (Mb), lysozyme
(Lys), cytochrome ¢ (Cyt), and ribonuclease (Rns) which we compare with experi-
mental data from Privalov and Makhatadze [19] on the hydration contribution to the
heat capacity change upon protein unfolding.

The hydration heat capacity change is shown in Fig. 1, and the parameter fit to the
experimental data agrees quite well with these data. The heat capacity has a maximum
around 25°C for Mb, Lys, and Cyt, while this maximum is shifted to around 50°C
for Rns. Also in Table 1 a similar relation is reflected. With some interest we note
from Table 1 that both the “electric field” constant ¢ and the coupling constant » are
essentially the same for all of the four proteins, but there is a small deviation for Rns.

This small deviation for Rns reflects itself in the ratios between accessible polar and
total surface area (reported from Makhatadze and Privalov [38]), Ad4,/A4;, which are
almost equivalent for Mb, Lys, and Cyt, while this ratio is significantly larger for Rns.
Hence, in this respect the parameters ¢ and b may be regarded as effective ones for the
combined effect of apolar and polar surfaces as discussed in Section 1. Furthermore,
the classification of apolar and polar surfaces is not very accurate in itself.
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Fig. 1. The hydration heat capacity change upon unfolding of four different proteins. Theory is given by the
continuous curves. Experimental data are from Privalov and Makhatadze [19]. Parameters, used to fit the
experimental data are listed in Table 1.

Table 1

Parameters, according to Eqgs. (1), (3), (4), and (8), used in Fig. 1 for the fitting to the experimental heat
capacity hydration data from Privalov and Makhatadze [19]*

Protein e b N AA¢ Adp/AAy
(kJ mol™1) (kI mol—1) (A%) (%)

Mb 2.05 8.2 1240 18250 36.5

Lys 2.05 8.2 800 14090 39.2

Cyt 2.05 8.2 740 11830 382

Rns 2.00 9.0 500 13300 448

2The difference in water accessible surface area between the unfolded and the folded protein AA; is
obtained from Makhatadze and Privalov [38]. Ad4p/Ad; is the ratio between the polar and total accessible
surface area.

Since Rns differs a bit from the other three proteins considered, this may reflect
its larger fraction of polar surfaces which then also can affect qualitative properties.
Our model is more like an effective one for a mixed polar and apolar surface. Thus
features specific for polar surfaces are not properly taken into account, but are more
or less taken into account by adjusting available parameters. E.g., our present model
may seem to give too small curvature on Fig. 1 for Rns. A reason for this may be
the negligence of quantization, which will lower the specific heat and thus increase its
curvature for decreasing temperatures. The polar (ionic) forces are relatively strong and
the hydrogen atom is light, which both favor quantum effects. Earlier applications of a
two-level system [28,39,40] for this kind of problem can thus reflect such quantization.

4. Conclusion

We have proposed a thermodynamical model for the hydration of the protein interior
that becomes exposed to water upon unfolding. To our knowledge this is the first model
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studied and compared to experimental protein data on the pure hydration heat capacity
increment over such broad temperature range (5-125°C).

Hydration is modeled in an “ice-like” shell analogy, where the water molecules are
represented by interacting dipoles in an external field. Compared with experimental data
from Privalov and Makhatadze [19] for the four proteins myoglobin (Mb), lysozyme
(Lys), cytochrome ¢ (Cyt), and ribonuclease (Rns) the model fits quite well. The
specific values of the field coupling constant ¢ and dipole coupling constant b [see
Eq. (4)] are the same for Mb, Lys, and Cyt, while it is slightly different for Rns.

In a more refined model it can be necessary to distinguish between apolar and polar
parts of protein surfaces. E.g., experimentally one finds that the heat capacity change
is negative for hydration of purely polar surfaces [18,19], in contrast to the apolar
surfaces where this heat capacity change is positive.
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Mapping the non-directed polymer model to a non-linear
growth equation of Burgers type
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Abstract

We study the NDP model in the framework of a non-linear growth equa-
tion of Burgers type [Kardar-Parisi-Zhang equation with quenched noise
(KPZQN equation)] by means of path integrals. The scaling exponents
for the KPZQN equation are expressed in terms of the NDP model. In
the strong-coupling regime, at low temperatures, the “tadpole” conforma-
tion seems to be reasonable for the polymer. The “tadpole” is discussed
in the context of interfaces in a strong coupling regime where the noise
dominates. We find that the “tadpole” behavior corresponds to structural
“avalanches” of the interface, whereupon a totally new topology occurs.
This restructuring is followed by periods of conservation of topology where
the interface is “waiting” for new energetically more profitable structures.

PACS: 05.70.Ln, 68.35.Fx, 36.20.Ey, 05.40.Ca

Keywords: non-directed polymer, KPZ equation, quenched noise, tadpole

1 Introduction

The scaling properties of polymers have been studied for a long time. In 1987
Kardar and Zhang approached the problem through modeling polymers as di-
rected [1], by assuming that polymers were stretched in a preferred direction
without overhangs. In this work we will study a non-directed polymer model with
quenched noise (NDP model) [2,3]. We show that the model, using a path inte-
gral method, transforms to the Kardar-Parisi-Zhang equation [4] with quenched
noise (KPZQN equation), whereupon we relate the scaling exponents in the two
models. The ”tadpole” is discussed in the light of diffusion of a population in
a noisy environment. In the end we discuss the mapping between polymers and
growing interfaces.

!'E-mail: Audun.Bakk@phys.ntnu.no
2E-mail: Alex.Hansen@phys.ntnu.no



2 The NDP model

We study a non-directed polymer in a random medium [2,3]. The non-directness
means that the polymer can choose every path in the space including self-crossings.
The polymer is embedded in a d—dimensional random medium with a local uncor-
related interaction energy V' (x), which is meant to model the random fluctuations
in the medium. Assuming Gaussian white noise, the first moment is

(V(x)) =0, (1)
and the second moment of the noise is
V)V (X)) ~ 6%(x = x'). (2)

The polymer has a tension parameter y, which models the energy cost through
stretching by a term ~ (dx(t)/dt)?, where t is a coordinate along the polymer.
We also note that this term may model entropic effects due to disorder [5, 6].
One may ask whether this model is realistic or not? One argument against the
NDP model is that it does not include the energy related to bending, which must
be related to a Laplacian term (~ VZx). Nevertheless, we ignore this bending
energy.

We fix one end of the polymer at the origin and let the polymer of maximum
length £ freely choose its conformation to the endpoint x(¢), thus the Hamiltonian
for a specific polymer conformation x(¢) becomes

0 - 2
Hx(0) = [ a [g & +V(x(t>)], 5

We observe that without noise the polymer will find it energetically profitable to
collapse at the origin, because stretching per se costs energy.
Discretizing Eq. (3) yields

N-1

Hx(0) = 3 [oH0x = xia) + V)] (@

=1

where € can be interpreted as a monomer size, or alternatively Kuhn’s step length
[7]. The maximum length ¢ of the polymer equals then

f = Ne. (5)

3 Mapping the NDP model to the KPZQN equa-
tion

In this section we transform the NDP model to the non-linear KPZQN equation
and establish the relation between the scaling exponents in the two problems.

2



The KPZQN equation yields

Oh(x,t)
ot

=vVih(x,t) + % [Vah(x, t)]2 + n(x), (6)

where h(x,t) is the height of the interface over the hyper-plane position x and
t is the time. The position x is a d-dimensional space coordinate. Thus, h(x,1)
and x span a (d+1)-dimensional space.

The partition function Z(x, ¢) for a polymer with one end fixed at the origin
and the head located at x, with the maximum length ¢, becomes in the continuum

- Z(x,0) = / Dix exp{ 8 / dt [5 (dx—)> +V(x(t))]}, (")

where [ = (kBT . The kg is Boltzmann’s constant and 7 is the absolute
temperature. The integral in Eq. (7) includes all possible paths between the
origin and x, where each path is weighted by a Boltzmann factor.

The energy account associated with each path is a competition between two
terms. The energy penalty of stretching favors localized conformations, while
the stochastic environment forces the polymers to wander in order to gain energy
along the path. In Appendix A we map the NDP model to Eq. (25) by a Feynman
path integral method [8]. The non-linear transformation

Z(x,0) = exp { Ay h(x,0)} (8)
converts Eq. (25) into
dh(x, 0) o N~ 2
s = PVah(x,0) + T | Vah(x,0)] + (), 9)
where we have defined
1
V=_—, and 10
257 (10)
. 1
nx) = —=V(x). (11)
Ay

Equation (9) is the KPZQN equation [Eq. (6)]. We can now map the physical
parameters and quantities in the NDP model to the corresponding ones in the
KPZQN equation, which are listed in Table 1. We observe that the requirement
|Vdﬁ(x, t)] < 1in the KPZQN problem is fulfilled in the NDP case by imposing
|Vah(x,t)] < 1.

The scaling exponents are in general unknown for the KPZQN equation. Dy-
namic renormalization group treatments fail in all dimensions with respect to
non-trivial fixed points, and thus fail in predicting the scaling exponents [7,9].

3



Table 1: Mapping between the physical parameters and quantities in the NDP
model and the KPZQN equation.

KPZQN NDP
h(x,t) h
t 14
X X
~_ 1
14 v —A%
A A

However, Refs. [2,3,7] calculated the scaling exponents of the NDP problem in
the low temperature limit, i.e., they ignored entropic effects. Using these results,
one may predict the scaling exponents related to the KPZQN equation.

It is now important to interpret h(x, ) in the context of the NDP problem.
The free energy for a canonical system with partition function Z is ~ In Z, thus
we see from Eq. (8) that h(x,¢) is proportional to the free energy, i.e., h(x, ) ~
—FEy(x,£), where Ey(x, /) is the energy minimum, in the low temperature limit.
For the KPZQN problem the surface width can be shown to obey the power law
Ah ~ t° [10], where b is the growth exponent. In Ref. [3] they obtained AE, ~ ¢X,
thus from Table 1 we see that the energy-fluctuation exponent y for the NDP
model equals the growth exponent in the KPZQN equation

x = b =1+ log corrections. (12)

The finite size L of the KPZQN interface corresponds to z.(¢) for the NDP
model.? For the KPZQN problem one may define a crossover time t,, which is
the time when the surface crosses over from a time dependent surface width to a
width determined by the system size. The crossover time (saturation time) yields
the power law ¢, ~ L* [10]. Considering Table 1 in connection with the scaling
law r ~ £¢ [3], thus

(= % =1+ log corrections. (13)

The Family-Vicsek scaling relation is o = bz [11], where the roughness expo-
nent « is defined through the saturation width of a system of size L: Ahg,y ~ L®.
We then obtain from Eqs. 12 and 13

a=X=1+ log corrections. (14)

¢

Finally, we note that all these values for the scaling exponents are obtained by
use of extreme statistics.

3Probably this is not obvious at the moment, but presumably it will become more clear after
the next section about the “tadpole”.



4 The “tadpole”

Let us imagine that the NDP model describes a growing polymer in the sense
that the length is interpreted as a time, i.e., £ — t. Under these circumstances
we ask:

How will the head x(t) move during the growth of the polymer?

In Appendix A we obtain Eq. (25) for the partition function of the NDP model.
We observe that Eq. (25) has a close analogy to the following partial differential
equation
0V (x,t)
ot
which models many interesting physical systems with diffusive character in ran-
dom environments.

Zhang considered Eq. (15) as a prototype model for diffusion in a spatial
potential [12,13]. He investigated the evolution of unspecified species with an
initially sharply localized distribution ¥(x, 0) = d(x) where the species are able to
move in space via diffusion, and found interestingly for localized distributions that
they had the conjuncture of “hopping as a dynamical consequence of localization”.
Zhang found also that the localization center x.(t) behaved in all dimensions as

= V2U(x,t) + AV (x) ¥(x,1), (15)

t

\/lnt’

Te(t) ~ (16)
by using extreme statistics.

Let us now try to use this analysis in our own NDP model. The non-directed
polymer starts growing at x = 0, i.e., it is initially localized. The strong-coupling
regime is considered where the random potential (noise) is dominating compared
to the tension. Obviously, the polymer finds after some time that the origin is not
the best attractor. Given enough time, which means increasing the total length
¢ of the polymer sufficient, some more distant attractors are more profitable.
The result is that the head of the polymer (localization center) at a given time
hops. This is analogous to “hopping as a dynamical consequence of localization”
in Zhang’s population conjuncture. Further it is important to understand that
the hopping of the head of the polymer is not just an extension of the existing
conformation of the polymer, but a totally new conformation compared to the
previous conformation. The reason for this is that the whole path is minimized
with respect to the free energy. This is schematically illustrated in Figure 1.
Thus, Eq. (16) describes a sub-ballistic motion of the polymer head in a strong-
coupling regime.

We now see a pattern of a polymer starting at x = 0, but after a time it
jumps to another location where it curls up in a local potential minimum. This
is the best attainable potential well within a radius of the maximum length ¢ of

5
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Figure 1: Schematic illustration of the non-directed polymer (“tadpole”) having
different maximum lengths ¢, < ¢, < /., which shows the “hopping” of the
polymer. The polymer starts at 0 and ends at x, where the head of the “tadpole”
is indicated by the dot.

the polymer. The polymer will wait to grow for a longer body in order to reach
new and better attractors, where the conformation of the polymer is given the
descriptive name “tadpole”.

Hansen et al. [3] considered the NDP model numerically. Using a transfer
matrix they found that the polymer took the shape of a “tadpole” conformation,
as we have discussed.

There seems to be no doubt about the “hopping-tadpole” behavior in the
strong coupling regime. The question is for which value of the noise this behavior
turns over to a diffusive one, i.e., when the localizing center moves as z.(t) ~ v/1?
Another question is whether the path from the origin out to the head of the
polymer P, is fractal 7 Let the length ¢, of this path P, scale as

Uy ~7°. (17)

If 6 > 1, then the path P, is fractal. E.g., ref. [3] assumed § = 1.

Equation (25) describes a diffusive process. A good metaphor is that without
a random potential V (x) = 0 the polymer diffuses on a horizontal surface, but
due to the random potential this surface becomes tilted and the average speed
increases from random walk z.(t) ~ v/t to sub-ballistic motion. This means that
the Gaussian noise makes it more favorable to “speed up” in order to reach more
attractive and deep potential wells. The path is in general fractal, with a fractal
dimension that depends on the slope of the surface. This fact will obviously have
impact on the scaling exponents found in Refs. [2,3,7].

5 What does the “tadpole” mean in the lan-
guage of interfaces?

We have earlier shown that the NDP model transforms to the KPZQN equation.
This means that it should be possible to interpret the “tadpole” conformation for
the non-directed polymer in the framework of an interface growth model described

by the KPZQN equation.



We have earlier interpreted the localization center z.(¢) for the non-directed
polymer to correspond with the finite size L of the interface. We also know that
the noisy NDP exhibit the “tadpole” configuration in the strong coupling regime,
which implies a hopping of the polymer depending on the maximum lengths. This
hopping means that the whole polymer reorganizes its conformation to obtain an
energetically favorable path.

Let us now think of an interface that has an increasing finite size L(t). The
“tadpole” for the NDP will then be analogous to the interface (described by the
KPZQN) illustrated in Figure 2. An increase of the finite size from L, to L; will
not change the structure of the interface from the original size which is illustrated
by the continuous line in Figure 2. This is the same phenomenon as when the
polymer curls up its head into a deep potential well for some time.

h(x,t)

a b &

Figure 2: Schematic illustration of a (1+1)-dimensional interface in a strong
coupling regime which shows the “hopping” of the structure. The interface is
shown for different sizes L, < Ly < L.

Now, imagine that we increase the finite size for the interface to L., which re-
sults in that the interface “converts” to a totally new structure. This corresponds
to a “hop” from the continuous line to the dotted line in Figure 2. The structural
transition of the interface is equivalent to the hopping of the “tadpole”, where
the NDP is long enough to take a new conformation and “dive” its head into a
more distant potential well. In the context of the growing interface this means
that for some time intervals it is waiting to reach a suitable finite size, whereupon
an avalanche occurs and a totally restructured interface appears.

It is also reasonable that this structural hopping occurs even for a system of
fixed size. We illustrate this in Figure 3 where the two diagrams illustrate an
interface growth process within a short time interval in a weak coupling regime
(a), and in a strong coupling regime (b). In the weak coupling regime the main



structure is conserved, while in the strong coupling regime we observe that the
interface restructure itself totally during the growth. This is also analogous to
the “tadpole” hopping, as for the increasing finite size discussed in the previous
paragraph.

h(xt) h(x,t)

a X b X

Figure 3: Schematic illustration of the interfacial structure during growth in a
weak coupling regime (a) and in a strong coupling regime (b), considering a fixed
system size.

6 Conclusion

We establish the mapping between the NDP model and the non-linear KPZQN
equation of Burgers type [14], by means of the path integral method. We see
the trend in the strong-coupling regime, where the noise dominates the tension,
that the “tadpole” conformation is reasonable. We find that the growing “tad-
pole” corresponds to structural “avalanches” of the corresponding KPZQN inter-
face, whereupon a topologically new interface appears. Between the interfacial
“jumps” the topology is conserved, like a “sleeping tadpole”.

Appendix A

The discrete version of Eq. (7) becomes

(N-1)d o o
Z(x,0) = By / . / dryg - diy_gq- e dz1g- - doy_14
2me s s (18)
3 N-1 d N-1
X exp {—2—2/ Z Z(xi’j - .Z‘Z'_l,j)Q — ,36 Z V(Xi) s
i=1 j=1 i=1

where z; ; is the coordinate with indices ¢ € {0, N} along the path, and j € {1, d}
in the d-dimensional space. x; = Zd

j—1€;Ti; is a space coordinate where €; is
the unit vector in the j-direction.



Instead of directly calculate Z(x,¢) we first study the noiseless case Zy(x, ),
ie, V(xi) = 0 in Eq. (18). We start by calculating Z, in the j-direction. Let
T;j — x;, the integral in Eq. (18) over z; yields

A = By /Oo dx exp {—g—z [(z9 — 21)? + (21 — 060)2}}

2me J_o

Y 27?-726 exp {_Qﬁ-ze(‘”? N xO)Q} '

Doing this recursively, we obtain after N — 1 steps

A= D ey {~Hwor}, (20)

by substituting £ = Ne [see Eq. (5)], and z;(¢) = x5 — o is the j—coordinate of
the head of the polymer. Thus, in d—dimensions

Zy(x,0) = (%) ’ exp {—g—zx2} ) (21)

where x* = Z?Zl (z;(£))*. Eq. (21) describes the probability distribution of a
non-directed polymer in a noiseless medium with mean < x >= 0, and standard
deviation o = ,/ﬂ%. We note that Eq. (21) obeys the diffusion equation

(19)

aZ()(X, E) . 1 2
or = o Vad(x.0) (22)

Let us now incorporate the noisy potential V'(x) in the partition function Z(x, ) =
Z(0,0;x,£), which describes a polymer starting at 0 and ending at x with maxi-
mum length /. We are allowed to split the partition function in the sense

Z(0,0;x,0 +¢€) = / d%xy Z(0,0; %0, £)Z (%0, 4; %, £ + €)
Q
(23)
A / dixy Z(0,0; %0, £) Zo(x0, £;%, £ + €) exp {—BeV (x0)} + O(e?),
Q

where xg runs over a d—dimensional shell € of thickness ¢, and 0 < ¢ < /. We



then look at

0Z(0,0;%x,¢+ €)
Oe

:/dde Z(0,0; %0, £) exp {—BeV (x0)}
Q

x 8Z0(X0,£; X7£+6)
Oe

@) / d’xy Z(0,0; %o, £) exp {—BeV (xo)}
Q

- ZO(XOa ga X, E + G)ﬂ V(XO):|

1
X [ﬁVﬁZg(Xo, E, X, Z + 6) — Zo(Xo, E, X, K —+ G)ﬁ V(Xo):|
1

~ V2 [ g +x0,£) Z (0, £;
257Vd/9d xo [Z(0,0;x%0,£) Z (X0, 4;%, £ + ¢€)]

—BV(x)/ddxoZ(0,0;xo,E) Z (%0, 4;%, £ + €)
Q

@) %vgzm, 0:x, 0+ €) — BV (x) Z(0,0;x, £+ ).
Y

(24)

By returning to the original notation
Z(0,0;x,¢) = Z(x,£), whereupon Eq. (24) becomes
07 (x,¥) 1 _,
= VA — Z . 2
BY, Qﬁ’)/ Vd (Xa E) /8 V(X) (Xa g) ( 5)

Eq. (25) describes the probability distribution of a non-directed polymer in a
random medium. Also note that Eq. (25) becomes a time-dependent Schrédinger
equation by interpreting ¢ as imaginary time.
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We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring
stationary shear viscosity and transient electrically induced birefring€ff€B). On one hand the viscosity
data are consistent with the particles being spheres and the particles being associated with large amount bound
water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent
with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by
employing two different models of aggregate sigéfective hydrodynamic radiyiglistribution: (1) bidisperse
model and(2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experi-
mental TEB data and they indicate that the suspension consists of polydisperse particles. The models also
appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low
salt concentrations seem to be monomers and oligomers.

DOI: 10.1103/PhysReVvE.65.021407 PACS nuni)er82.70.Dd, 78.20.Fm, 61.20.Lc, 66.2Q

I. INTRODUCTION capable of describing this complex behavior. Transitions and
aggregate structures within stable phases may thus be dis-
Laponite[1-4] is a widely studied synthetic clay that be- cussed in terms of an interaction potential between indi-
longs to the family of swelling 2:1 clayi$]. All dehydrated  Vvidual platelets. This is achieved by adding the electrolyte-
clays have a layered silicate mesostructure. The 2:1 ¢tays independent van der Waals attraction and the double-layer
smectites thus consist of 1 nm thick and chargétegative ~ repulsion as charactenzgd by an electrolyte-concentration-
surface charge and a smaller positive edge chamgeso- ~dependent Debye screening lenf# The sum of these two
sheets, which in the dehydrated state stédite decks of forces yields different local potential minima, with regard to
cards by sharing charge-compensating cations. Laponite is _Qlatelet-_pla_telet interactions, which may be changed by vary-
particularly interesting model system because of the merel{'d the ionic strength. _ _ _ _
monodisperse size of the colloidal platelé25—30 nm di- The IL phage is a suspension of Brownian particles, and is
ameter, see Fig.)1This is different from natural and other Made up of single platelets and/or larger aggregates of sev-
synthetic clays, which in general have a polydisperse distrieral laponite platelets suspended in water. The size and com-
bution of micrometer sized platelets. Introductions describPactness of these aggregates may depend on electrolyte con-
ing the crystallographic structures and providing preciseentration via the Debye screening length. The aggregates in
definitions “of both natural and synthetic clays, includingthis phase are, in general, too small to scatter visible light
laponite (a synthetic hectorite may be found in several gppremably, thus yielding a transparent liquid with a viscos-
books[5,6]. ity that may be changed by varying the salt-clay concentra-
The addition of salt-containing water to these mesoscopiéon- This phase can be made birefringent by applying high
platelet systems gives rise to interesting colloidal dispersiolectric fields, as will be evident from the present work. At
“phase” diagrams. Four separate regiojhases of physi- low concentrations the. liquid seems to be Newtonian,
cal complexity have been suggested from experimental ob¥hereas upon approaching the IL-IG line the IL phase can
servations of clay-electrolyte-concentration diagrams oflisplay non-Newtonian and thixotropic behavior. The aggre-
laponite: isotropic liquidIL ), isotropic gel(IG), nematic gel,
and flocculatior{2]. e S e S
Traditional theory of Derjaguin, Landau, Verwey, and g T i SRl S
OverbeeK7,8], where both van der Waals and double-layer rf"'—'—L i o W __"'_';J-"ﬂ
forces are considered, provides the simplest available model b * ¥ : ol ! *

le 25 m o
*Corresponding author.
Email address: Audun.Bakk@phys.ntnu.no FIG. 1. Schematic illustration that shows the geometry and di-
"Present address: Department of Physics, Norwegian Universitynensions of a laponite platelet. The surface charges are indicated by

of Science and Technology, NTNU, NO-7491 Trondheim, Norway.negative charge&:) and smaller positive chargés) at the edges.
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gate structure becomes a gel when the clay concentratiofely. The V, is the change in solution volume per unit
becomes sufficiently largg4], possibly signaling a glass solute mass added, at the limit of zero solute concentration.
transition[10]. The §is the hydration ratio i.e.$ grams of bound water per

In the present paper we report on experimental studies Qfram solute(aggregate
laponite samples within the low clay-concentration regime, The Simha factor in Eq(4) equals 2.5 for a sphere and
i.e., in the IL phase. We study samples at different clay angncreases with increasing asymmetry, i.e=2.5. For the
NaCl concentrations by means of two techniques, V'ScomeEaponite used in this present study,=0.37cni/g. A

try, thus measuring the effective hydrodynamic volume of : : :
. . C change in[ 7] can then arise as the result of a change,in
the suspended particles, and by transient electric induced b ge inl 7] g

refringence(TEB) measurements, thus obtaining information &hanged hydrat|on. factos, ,Or a combmz-mon of S—UCh
about rotational diffusion. Combining our data from thesechanges. However, if the particle geometry is known, ¥nd
two techniques we attempt to extract information abouttndV; in Eqg. (4) are known, the intrinsic viscosity is thus
shape and size distribution of the laponite aggregates in thigplicitly a measure of the hydration of the particlesgre-
IL phase. The TEB technique is widely used in studying thegates.
rotational motion of macromolecules in solutiphl], and It should be noted that it is not possible to determine the
has also been used for studying natural cleh. size of the particles only from a intrinsic viscosity measure-

The goal of the present study is twofold) extract infor- ~ment. For example, a mixture of spheres with different sizes
mation about aggregate volumes and shapes in laponite su4ill give the samd 7] as a monodisperse solution of spheres,
pensions, and?) investigate the possibilities and limitations Provided that the hydration ratios of the spheres in the two
of using TEB measurements combined with viscometry incases are the same.
order to characterize such complex colloid aggregate sys-
tems. I11. BIREFRINGENCE OF RIGID PARTICLES

The paper is organized as follows: Section Il gives a short
introduction to intrinsic viscosity and in Sec. Ill we discuss When no external forces influence the orientation of the
some general aspects of rotational diffusion and birefrinarticles, they will be randomly oriented and in thermody-
gence. In Sec. IV we present the samp|e preparation and tHLﬁmiC equilibrium. If the particles for some reason have a
experimental setup, and in Sec. V we discuss the experimes$Pecific orientation at a given time, thern{&rownian) mo-
tal data from the viscosity and the TEB measurements iion will make the system decay to this equilibrium. It can be
view of two different models with regard to the distribution shown that the birefringence relaxation time of a dilute so-

of the aggregate sizes. Section VI is a summary. lution of identical particles, can have as many as five relax-
ation times[15]. All these decay times are known functions
I1. INTRINSIC VISCOSITY OF RIGID PARTICLES of the rotational mobility tensdrl5,16|, but for most particle
geometries it is not possible, using experimental data, to ob-
The intrinsic viscosityis defined a$13] tain reliable estimates of more than two decay times.

In the analysis of the TEB data we will restrict ourselves
[7]=lim Trel ™ 1, (1) to models with geometries that makes it adequate to use only

cso C one decay time. To induce the birefringence it is common to

use electric field pulses that are rectangular as function of
wherec is the laponite concentration, and the relative viscostime, but in order to analyze the properties of the particle

ity equals electric dipoles it is also useful to employ double pulses
where the electric field of the second pulse is reversed rela-

:77_' @) tive to the first puls¢17,18.
Mrel 7’ In the case when the system is dominated by two distinct

_ o _ _ types of particles, i.e., bidispersemodel, each type of par-
where ' is the macroscopic viscositvater and laponite  ticles may have its own relaxation time. The birefringence

and 7 is the water viscosity. Eq2) can be linearized to signal at timet can then be described by
7e=1+[7]c, ©) An(t) t t
, i . ) —=a1ex;(—— +a2exp{——>, 5)
which obviously has the correct limit of zero laponite con- An(0) Ty T2

centration, whereyp, o= 1.

It can be shown thdty] for a compact macromolecule or whereAn(0) is the birefringence at time=0, anda, anda,
aggregate of arbitrary shape can be described by the heuristiepresent the relative contribution to the total birefringence
expressiorj13,14] from each of the two particle types, respectively. This model

o is used in Sec. V B. However, E¢p) can also be interpreted
[7]=v(6Vi+Vy), (4) as representing a system of monodisperse anisotropic par-
ticles for which the five relaxation times of the particles is
wherev is the dimensionless Simha factor containing all thereduced to two times because of the particle symmetry.
shape dependence. The parametgrandV, are the partial For a rigid body, with one axis of rotational symmetry, the
specific volumes of watef1.0 cn¥/g) and solute, respec- birefringence relaxation time is given by=(6D()~?
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emphasized recently by Nicolai and Cocd@l] for their

light scattering studies. Our samples could thus contain some
large impurities reported in some cases to dominate static
light scattering experimen{&1], but both TEB and viscosity
measurements are less sensitive to such impurities than static
light scattering.

af\r The present samples were not filtered, as was done and
o

5 " Fh || B. Viscometer
r{f o P— The viscosity was measured using a rotational coni-
h":lr"#.-.f cylindrical viscometefCONTRAVES Low Shear 30with a
e Couettegeometry, which consists of a static rod, measuring
FIG. 2. Schematic illustration of the TEB experimental setup.the torque, in a concentric rotating cup filled with the sus-
Brief description in Sec. IV C; for further details see, e.g., Refs.pension. For a further introduction to the instrumental setup
[17,18,25. and the theoretical aspects of the rheology, see e.g., Van
Wazer et al. [23]. The temperature in the suspension was
[15,16, whereD (™ is the macroscopic rotational diffusion fixed to 20°C throughout the experiment by a thermostat
coefficient. The Nernst-Einstein relatiph9], valid for dilute  (Haake D8. The torque signal from the rod was sampled and

solutions, relate® (™ to the rotational friction tensat™  transformed to viscosity by a instrumentation data program
[20] (LABVIEW) [24].
D(rot):%, (6) C. TEB setup

The setup for the TEB instrument is shown in Fig. 2. The
wherekg is the Boltzmann constant ariflis the absolute light source is an argon las¢@mnichrome 543-AF oper-
temperature. The rotational friction for a sphere of radiys ated at wavelength 488 nm. The monochromatic light is po-
equals;=8xyr [13], wherey is the viscosity of water. larized at an angle of 45°, relative to the electric field, and

This yields a birefringence relaxation time passes through the Kerr cell where the sample is located. In
the Kerr cell the aggregates are exposed to a pulsed electric

[0 Ay 5 field in the horizontal direction(see Fig. 2 The distance
= w: mrs- (7 between the parallel electrodes is 4 mm. The optical anisot-

ropy caused by the electric field makes the light exiting the
Equation(7) relates the birefringence relaxation time to the Kerr cell, temporally, elliptically polarized.

effective hydrodynamic radius for rotation of a sphere. When the principal axis of the analyzer is oriented per-
pendicular to the polarizer, the light intensity measured by
IV. EXPERIMENT the p_hotqmultiplicato(PM) is_proporti(_)nal to the square of
the birefringenceAn (quadratic detection The PM voltage
A. Sample preparation is displayed on a digital storage oscilloscdpektronix TDS

Laponite RD powder as purchased from Laporte Absor520.
bents(UK), was added to NaCl containing water. Tjl in
the salt-water was adjusted to 10 before addition of laponite

powder in order to prevent decomposition of the platelets 161 | o omM e
themselved 2,21]. The samples were then stirred for two = lomM Nacl “

days, using a magnetic stirrer, before each sample was placed
in a sample tube. Small sample portions were then taken
from the tubes and the experiments reported here were per-
formed. All investigated samples were 1-1.5 months old,
with two exceptions. Samples AA and AB discussed below
were both 6 months old.

It is important to note that laponite suspensions are known
to show slow long-term aging effecf&2]. This is probably 0 2 4 & 8 10
due to decomposition of individual platelets, and thereby dis-
integration of the aggregates, when the suspension samples
are not sealed from air. Such scaling was not carried out for F|G. 3. Relative viscositysee Eq(2)] vs laponite weight con-
the present samples. The effect of aging is, therefore, eXcentration at three different NaCl concentrations. The concentration
pected to be significant for the aggregates characterized hefigarameterc is weight laponite per unit volume of water. The
Nevertheless, our samples were prepared and stored in a r&raight line corresponds to a linear least-squares fit of the linear
peatable manner. interval of the relative viscosityy,q=1+0.2%.

relative viscosity

¢ (mg/ml)
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a)

—

b) again depend upon the laponite concentration and the ionic
strength of the solution. Figure 4 gives examples of different

V4 models of particle association. The “house of cards” con-
Assuming a spherical shape of the aggregates, the Simha
¢) d) ﬁ =0.37cni/g into Eq. (4), yields a hydration ratios=8.8,
the hydrated water volume, associated to each laponite plate-
ticle association. The different models shown éedispersed sus- a spherical geometry of the aggregates, shows that aggre-
and(d) “house of cards” configuration. For a further discussion of platelets, as shown in Fig(d, but we stress that this con-
The temperature in the Kerr cell was fixed to 20°C In light of the measured intrinsic viscosity 7]
num thermometer. The temperature rise was found to b

\
/ - . > .
figuration in Fig. 4d) has likely a larges compared to, e.g.,
/ \ the single platelets in Fig.(d).
e
\ \ \ factor v in Eq. (4) equals 2.5, as stated in Sec. Il. Inserting
[#7]=23cn?lg, v=25, V;=1.0cn¥/g, and V,
»—) i.e., 8.8 g of water per gram of laponite platelets. The lapo-
nite platelet has a density 2.7 g/gnthus §=8.8 yields that
) _ _ let, is on average approximately 24 times the volume of a
FIG. 4. Schematic examples of different models of laponite par'platelet. In other words, the viscosity experiment, based upon
pen_sict)n th?t Cort'Sislis OI nlortmirlmterac_:tin Si?gle '?poknitefplft:ﬂ?tts’ gates are associated with a large amount of water. The latter
noninteracting stacks of platelets) interacting stacks of platelets, may indicate a kind of “house of card’5] association of the
the different models see, e.g., van Olpfih clusion may be an artifact due to the assumed spherical shape
of the aggregates.
throughout the experiment by a thermostdaake D8. Dur- oo . /
ing the experiment the temperature was checked by a platic 23 cnt/g [see Eq(8)], it is interesting to compare this to
at of an aggregate system where each plateleverage
about 0.8 °C after a typical series of six pulses with 0.25 mé)CCL.Jp'les tat c_;glmdncal \|/o|ume_ W|t25d|ame_:|:c(;_r and he'?hhtt
pulse length, 2.5 s intervals, and using an applied voltage gfquivaient to 1ts own volume, 1.e., nm. 1his means tha

850 V/ one laponite plateletsee Fig. 1 is associated with a water
For further technical details on TEB experiments see Ref‘.’ouJme that is 2‘.1 times its own "°'“T“e’ which IS thg same

[17,18,25 estimate as obtained from the spherical approximation used
T above.

However, the source of the intrinsic viscosity described
by Eg.(4) may also be an asymmetric shape of the particles,
A. Viscosity which will give a larger Simha factdri3] and consequently
a smaller hydration ratid in Eq. (4). Thus, asymmetry im-

In Fig. 3 we plot the relative viscosifisee Eq(2)] vs the lies a more dense packing of the aggregates compared to
laponite concentration for three different NaCl concentra P 9 ggreg P

tions (0, 0.1, and 1.0 mM At low laponite concentrations spherical aggregates, when a constant intrinsic viscosity is

. : assumed.
(c<8 mg/ml) one sees a typical linear dependence of the Assuming an asymmetric particle shape is further moti-

relative viscosity, while for large Laponite concentratlonsVated by, e.g., Avery and Ramsd@6], Rosta and von

(c>8 mg/ml) it raises abruptly. The latter is possibly due toGunten[Z?], and Nicolay and Cocarf1] who concluded

a onset of gelation of the clay suspens(@} In the linear that the smallest particles in a laponite suspension were

regime we do a linear least-squares fit, where the inC“natio"r\qonomer{21 26 and/or oligomer21,27. In this respect it
of the relative viscosity equals the intrinsic viscogiee Eq. is interesting to investigate the maximum asymmetry that is

(3)]. We thus obtair( 7]=23=1 cn¥/g for 0 and 0.1mM reconcilable with a “realistic” minimum of hydration. We

[NaCI], anq [7]=26+3 cnv/g for 1'Q mM [NaCll. As the .__assume a monolayer of water molecules with thickness 2.5 A
dlfferenqe is small between the various salt concentrationg . .4 each laponite platelet, independent of whether it is
we obtain the value single or in an aggregate. This gives a hydration ratio
[7]=23+1cnPlg, (8) =0.2. Inserting this6=0.2 into Eq.(4) implies a Simha
factor v=40, which corresponds to an axial ratio 25 for an
based upon the linear part of the relative viscosity data at apblate ellipsoid13]. This is interesting because an axial ratio
salt concentrations. 25 is approximately the ratio between the diameter and thick-
We may define a critical particle concentratich where ~ Ness of a single laponite platelet, which indeed can be ap-
there is one platelet per cube with side lengths that equals 2%70ximated by an oblate ellipsoid.
nm, i.e., the diameter of a laponite platelet, and these cubes Thus, the viscosity experiment does not exclude the pos-
occupy the entire volume. This yield& ~85mg/ml. In the Sibility that the suspension consists of oblate particles that
present experiments the largest Laponite concentration is 8ave axial ratios up to around 25, e.g., laponite monomers.
mg/ml, i.e.,c<c*. o
One difficulty associated with using E@) is that we do B. Bidisperse model (model 1)
not know the value o, because the hydration depends of The experimental TEB data for four different samples are
the geometry of the associated particles. This association wihown in Fig. 5. It is assumed that the fluctuations of the data

V. DISCUSSION
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FIG. 5. Birefringence vs timefor four differ-

ent samples. The experimental data are fitted by
studying two different models: the bidisperse
model in Sec. VB and the log-normal model in
Sec. VC. The corresponding parameters are
listed in Tables | and II. Note that for the inserted
plots the axis of the birefringence is logarithmic,
while thet-axis is linear.

in the TEB experiment are the a result of instrument noisepf this particle is about 30 nm if we assume the shape to be
and not intrinsic to the samples. One source of error is théhat of an oblate ellipsoid.

PM tube with an absolute error af0.05 V. This will make

By doing the same analysis as in the previous paragraph

the analysis for large times, where the relaxation signal isand usingp=25, which was the largest possible asymmetry
small, uncertain. The error estimates of the least-squares fitalculated from the viscosity experiment, we also get a di-
for the bidisperse model and log-normal model are presentedmeter around 30 nm. Thus, from the viscosity experiment
together with the fit of the bidisperse model to the TEB data

in Table | and 1l, respectively.

The simplest possible fit to the TEB data is obtained bywe may conclude that the smallest particles in the suspension
using two exponential functions with different birefringence have diameters in the range 20—35 nm, and that the diameter

decay times as in E(d5). The two relaxation times; and
75, correspond to two effective hydrodynamic radji and

increases with increasing asymmetry of the particles. If we
further assume that the individual platelets do not decom-

r,, respectively. We have assumed a spherical aggregate ggese, we conclude that the smallest particles at low salt con-

ometry. The relation betweenandr for a sphere is given in

tent are individual platelets as Avery and Ram§2§|, and

Eq. (7). The obtained parameter estimates are presented Nicolay and Cocard21] concluded.
Table 1. We find that increase of the salt concentration results |t s interesting to note that the effective hydrodynamic

o radius for the smallest aggregates are approximately one half
We note from Table | that the standard deviation is smallyf the larger ones for the corresponding pairs, ir@/r;

in longer relaxation times, as seen in Table I.

despite the relatively large instrument error. This is probably._

2 in Table I. This means that we have some small aggre-

due to the large amount of data available for each sampI%a,[es and some large aggregates. Figure 5 shows the param-

However, samples numbers 28 and 29 exhibit a large sta
dard deviation of the parametes, but note that the corre-
sponding amplitudea, are small.

We now look at the shortest relaxation times at low salt
concentrations [(NaCl]<0.1 mM). For spherical particles
this corresponds to a mean val(ig ) =23 nm. It would be

interesting to calculate the corresponding size of a particle
with an axial ratio that corresponds to a hydrated laponite
platelet. If we assume one monolayer of water with thickness The exponential fits in the preceding section suggest that
2.5 A attached to the platelet with diameter 25 nm and heighthere may be a broad distribution of the colloid particle size

1 nm, this corresponds to an hydration axial rghis-17.

ter fitting for some of the sample data. The fit is satisfactory
in view of the simplicity of the model. However, it is more
realistic to expect alistribution of the particle sizes. In the
next section we will show that the TEB data also can be
approximated by a log-normal distribution.

C. Log-normal distributed model (model 2)

for some of the samples. Next we, therefore, tried to fit the

Employing data given in Ref13] we find that the diameter TEB data, with regard to the size of the aggregates, onto a

021407-5
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TABLE |. Parameters associated with the various samples whean exponential decay of the birefringence, aggregate radius
a sum of two exponential decays is udedodel ). Parameters;  and relaxation timerg, the birefringence reads
andr; are the corresponding pairs of the relaxation times and the
effective hydrodynamic radii, respectively, /a, is the amplitude o
ratio of the birefringencer,,, is the weighted mean of, andr,, ¢ An(t)~f drp(r)e ¥, (10
equals mass laponite per unit volume of water, 8NdCl] is the 0
salt concentration. The standard deviat{@D) is written as+SD.

and 7, is the birefringence relaxation time for a sphésg
The 75 is given by lettingr— 74 in Eq. (7).

1 I T2 2 M'm c [NaCl] . . C
Sample (u9 (nm) (9 (nm) a,/a, (nm) (mg/ml) (MM) The parameter fit is presented in Table I, from which it is
clear that we have in general, a broad particle size distribu-
21 38 16 5 37 13 28 1.0 0  tion, i.e., large standard deviatiows In Fig. 5 we see that
*1 *2 the log-normal approximation is almost equivalent to the
20 24 13 40 33 14 25 1.5 0 bidisperse model for these samples, with regard to the fit to
+1 +1 the TEB data.
18 25 13 50 36 067 22 2.5 0 An interesting observation was that for sample number
+1 +2 39, an applied Kerr cell voltage of 850 V for 0.5 ms was not
11 68 40 240 62 15 53 6.0 0 enough to align the aggregates, because the birefringence
+2 +2 signal seemed not to be saturated-a0, i.e., when the elec-
41 24 29 320 68 058 43 8.0 0 tric field was switched off. If we applied the same voltage for
+1 +2 1.5 ms the birefringence amplitude became saturated at
30 55 37 200 58 32 53 1.0 0.1 =0. However, the relaxation birefringence sigriafter t
+7 +3 =0) associated with a pulse length of 1.5 ms applied to
29 14 25 1010 99 0.20 37 15 0.1 sample number 39 appears to be almost equivalent to the
1 420 birefringence signal associated with a pulse length of 0.5 ms.

Nevertheless, it would in a future experiment be interesting

28 82 20 850 94 011 18 2.0 0.1 . . - . .
to investigate the samples using different applied voltages

*1 +94 : : B
27 23 13 59 39 035 20 25 01 ﬁll:gr.pulse lengths, which effectively can act as a particle
+1 3 It is worth noting that the log-normal distribution has also
AB 29 i’g 390 +722 21 58 2.5 05 peen applied to despribe the.polydispersity of the diameters
- - of magnetic cores in ferrofluidg28]. Furthermore, Ivanov
39 97 46 1170 100 085 71 10 1.0 [29] showed that the continuous behavior of this particle
*2 *2 distribution can be substituted by a bidisperse model, when
38 57 37 790 92 058 57 15 1.0 the majority of the particles have the smaller radius.
*1 *3 One source of error in the experiments reported here is
3r 82 43 650 86 17 70 2.0 1.0 that we do not know whether the rotational motion of the
*1 =1 aggregates in the Couette geometry deform the aggregates
AA 140 52 680 88 18 75 2.5 4.0 permanently, and thus giving rise to another configuration
+3 +1 than before the experiment. In future experiments it would

be interesting to first test the samples in the TEB device,
whereupon one should measure the viscosity, and finally put
Gaussian distribution, but we found that this did not workthe sample back into the TEB device in order to check the
well in general. However, we found that the TEB data fitinfluence of the flow on the aggregates in the viscometer. It
well onto a log-normal distribution, with regard to the radius might also be interesting to check flow induced birefringence
of the aggregates. The log-normal probability distribution ofin order to investigate the latter effect.
a quantityr, with meanr, and standard deviatiom reads The log-normal distribution for four different samples is
drawn in Fig. 6, all showing the characteristic long tail. Be-
1 In%(r/rg) cause these distributions yielded the best fit to the TEB data,
p(r)= ex;{ T T o2 | (9 this may tell us that the samples have some large aggregates
\/ZO’Y 20 S .
that make the distribution asymmetric compared to a Gauss-
ian distribution[21]. In Fig. 6 we also see the effect of a
which is asymmetric and has a longer tail than the normatelatively small standard deviation for sample numiex
distribution, as shown in Fig. 6. It should also be noted tha{o=0.24), where in this particular case the log-normal dis-
the Gaussian distribution is somewhat unphysical in light oftribution could be approximated by a normal distribution. We
a probability larger than zero far<O, in contrast to the note for the log-normal distributed model, as for the bidis-
log-normal distribution that is only defined foe 0. perse model, that for some of the samples the fit to experi-
The log-normal distribution was fitted to the square rootmental data for long times is only fair. Thus, we cannot rule
of the voltage from the PM, which is proportional to the out the presence of some large particles which we are not
birefringenceAn(t), wheret is the time. When we assume able to account for within our present models.
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TABLE II. Parameters associated with the log-normal distributimodel 2. Parameter is the mean
value of the effective hydrodynamic radius, with a standard deviatiofParameters and [NaCl] are
explained in Table I. The standard deviati@®D) is written as+SD.

re [ [NaCl]
Sample (nm) T (mg/ml) (mM)
21 24+2 0.71+0.09 1.0 0
20 23+1 0.65+0.06 15 0
18 171 0.73+0.03 25 0
11 52+1 0.23+0.01 6.0 0
41 33+2 0.70+0.05 8.0 0
30 53+1 0.18+0.03 1.0 0.1
29 32+4 0.7£0.1 1.5 0.1
28 274 0.9+0.2 2.0 0.1
27 14+1 0.72£0.04 25 0.1
AB 61+2 0.61+0.08 25 0.5
39 80+5 0.7+0.1 1.0 1.0
38 56+ 1 0.44+0.02 15 1.0
37 71*+1 0.46£0.02 2.0 1.0
AA 75+1 0.24+0.02 2.5 4.0

The large standard deviation seen in Table Il indicates thaperse model an¢?2) log-normal distributed model.
we have a polydisperse particle size distribution. This is sub- The viscosity data show, when assuming that the aggre-
stantiated by a look at the amplitude ratios in Table |, whichgates are spherical, that we have a “house of cafldg”
fluctuates around 1 and where the corresponding pairs @fssociation of the laponite platelets, i.e., the aggregates are
radii have a ratio around 2. Thus, we come to the sam@ssociated with a large amount of hydrated water. However,
conclusion as Nicolay and Cocaf@1] in their static and the viscosity data may also be interpreted as being due to
dynamic light scattering experiments, i.e., that the laponiteysymmetrical aggregates with a smaller hydration ratio than
particles are polydisperse. Here we note that Rosta and VQRje gpherical aggregates. In this respect we show that it is
Gunten[27] come to the opposite conclusion, i.e., that thepossiple to interpret the viscosity data as oblate ellipsoidal
suspension is more or less monodisperse.

VI. SUMMARY AND CONCLUSION 1 O 8
. . . _ —~ 154 o
We study a laponite clay suspension at different laponite g ® o
and salt concentrations by shear viscometry and by TEB < 5 ©
measurements. This is to the authors’ knowledge the first B
reported TEB study of laponite. Two different models of the '§ 25 4 §
distribution of the aggregate sizes are conside(&pbidis- o
5 0{———t ——t——t
—e———e Sample no. 41 5 150+ *x
1.04 - - - - Sample no. 39 'g ﬁ
' ~ I\ | Sample no. 37 > 1 % A
,’ \'\ Sample no. AA = 004 "
i ._ [ A
; 2 a
: B 50- 8 =
i ﬁ % 2] o Relaxationtime1
0.5 " (5 A Relaxation time 2
t 0 T T T T T
i 0 1 2 3 4
P [NaCl] (mM)
! .'-/’ . \; ..........
0,042t —— R FIG. 7. Effective hydrodynamic radius for the log-normal dis-
0 100 200 tributed model of the aggregate sizes in the upper plot, and the
r (nm) effective hydrodynamic radius for the bidisperse model associated

with the two relaxation times, andr, in the lower plot. Data from
FIG. 6. Log-normal distribution of the samples that correspondTables | and Il are used. The experimental data points with “
to Fig. 5, wherer is the effective hydrodynamic radius of the ag- correspond to sample&A and AB, which were 6 months old, as
gregates. The distribution has been normalized to unity. stated in Sec. IV A.
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particles with an asymmetry up to 25, e.g., single laponitg27], and Nicolay and Cocarf®21] concluded.

platelets. Finally we note that the present laponite samples were not
The two models were fitted to experimental data obtainednade, filtered, or storetscaled from air in the same con-

using TEB technique, and the models seem to fit the experirolled manner as recent light scattering studies by Nicolai

mental data fairly well in most cases. This means, for theand Cocard21].

samples studied, that the simplistic bidisperse model is al- In a future work it would be important to prepare the

most equivalent to the log-normal distribution. Most of the samples in a different way and also to study other synthetic

samples show, in view of the log-normal model, that we haveclay suspensions such as fluorohectorite. In light of the broad

a broad particle size distribution. This is the same conclusiomsymmetric tails of the log-normal distribution for most of

as Nicolay and CocarfR21], and the opposite of Rosta and the samples reported here, it would be of considerable inter-

von Gunten[27], who performed light scattering experi- est and importance to study suspension samples for which

ments. However, from the available data it cannot be ruledhe large aggregates are filtered out successively.

out that the apparent lack of fits, for some long time tails,
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Abstract

Several small globular proteins exhibit a simple two-state folding process (sharp transition). The rather short
folding times of proteins (fast folders) indicate that folding is guided through some sequence of contact bindings.
We discuss the possibility for reconciling a two-state folding event with a sequential folding process, i.e., a folding
pathway in a schematic model of protein folding. We show that both single and multiple folding pathways can
lead to an apparent two-state folding from a thermodynamic point of view. We also discuss water interactions in
protein folding, leading to cold and warm destabilization of the protein.

Key words: protein folding, thermodynamics, folding pathway, van’t Hoff enthalpy relation

PACS: 87.14.Ec, 05.70.Ce, 87.15.Aa

1. Introduction

Proteins appear to fold into a unique native con-
formation, in spite of an “astronomical” number
of alternative configurations. This apparent para-
dox, usually attributed to Levinthal [1], is further
sharpened in view of the fact that there is experi-
mental evidence that the folding transition behaves
nearly like a two-state system for many single do-
main proteins [2,3]. This means that for these pro-
teins the transition from denatured (unfolded) to
native (folded) state occurs rather directly with-
out observed intermediates. One might think that

* Corresponding author.

Email address: Alex.Hansen@phys.ntnu.no (Alex
Hansen).
1 A.B. and P.G.D. thank the Research Council of Norway
(NFR) for financial support.

Preprint submitted to Computer Physics Communications

such a two-state behavior excludes the possibility
of guiding the protein to the native state. The pur-
pose of the present work is to quantify the degree of
guiding that is compatible with the observed two-
state folding process.

The van’t Hoff enthalpy relation relates the la-
tent heat (Q) of a smoothed-out first order phase
transition, taking place at T, to the height of the
heat capacity peak AC [4]

Q* = akpT?AC, (1)

where « is a dimensionless proportionality factor
and kg is the Boltzmann constant. A small « in-
dicates a sharp transition. The T, is defined as the
temperature where the protein has equal free ener-
gies in the native state and in the denatured state.

When the transition is two-state it is known that
a = 4 [4] and when the transition has intermedi-
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ates then o > 4 [5]. For the small single domain
proteins ribonuclease, lysozyme, chymotrypsin, cy-
tochrome ¢, and myoglobin Privalov and Khechi-
nashvili [4] found experimentally a = 4.2 to within
5 % accuracy, demonstrating that these transitions
are very nearly two-state.

Here we describe some recent attempts of ours to
reconcile these two simultaneous phenomena, i.e.,
coexistence of sharp transitions and short folding
times. We first analyze a protein model with a sin-
gle pathway. This analysis includes interactions be-
tween the protein and the surrounding water. This
allows us not only to describe the usual unfolding
transition, but also the cold unfolding transition,
i.e., when the protein melts as the temperature is
lowered [5]. We also discuss a generalization of the
model to multiple pathways. This provides us with
a different mechanism to destabilize the interme-
diate states [6].

2. Modeling the protein
2.1. Single pathway

In this section we show how one can model pro-
tein folding using a contact energy Hamiltonian.
As asimple guiding principle, we adopt the sequen-
tial “zipper”-like [7] description of the process. We
here view the zipper as an effective description of
a unique folding pathway, i.e., a hierarchically or-
dered sequence of binding events between different
parts of the protein [8,5,9].

One may visualize each binding event as closing
of a specific contact between two different parts of
the protein. Each of these events is characterized
by the binary variable ¥; that indicates whether
the contact 7 is closed (¥; = 1) or open (¥; = 0).
The pathway implies the constraint

U; > Uiy, (2)

because a folded contact 7 is not assumed to unfold
when a contact j > i is folded. This means that it
is difficult to unfold a part of the protein within an
already larger folded structure. In order to imple-
ment this into a Hamiltonian we introduce a second
set of binary variables &; € {1, —B}, where B > 1.

Thus, for a system of IV contacts the chain-chain
Hamiltonian becomes

N
Hy = —e. Z lpifi; (3)
i=1

where €. is the energy gain to fold one contact [10].

From the constraints in Eq. (2) and requiring
for simplicity B — oo, the Hamiltonian in Eq. (3)
can be reformulated by the transformation ¥; =
P12 - - - i, where ¢; € {0,1} are binary variables.
In particular ¥; = ¢;. The product terms meet
the assumption about a folding pathway. Thus, Eq.
(3) becomes

Hy = —¢€.(p1 + p1p2 + -+ p1p2---on). (4)

Furthermore, we assume that folding of the ith con-
tact, i.e., that the ¢ first p-terms in (4) equals 1, is
associated with a degeneracy f~—¢. The partition
sum of the system becomes

N
Z =" fN" exp (Beci)
=0 (5)
— le — €xp ((N + 1)(ﬂec - lnf))
1 —exp (fec —In f)

The Z rapidly changes at 8. = 1/T, = In f/e,,
corresponding to a smoothed-out first order phase
transition at T, = €./In f. The system described
by the partition sum in Eq. (5) gives rise to a sharp-
ness o = 12 [see Eq. (1)].

On the other hand, if we consider a system that
only changes energy when the protein is in the
unique native state, this Hamiltonian becomes

Hp = —Necprpa -+ @n, (6)

Assuming a degeneracy f¥ —1 for the unfolded pro-
tein, the corresponding partition function becomes
Z = fN — 1 + e#Nee, This leads to a sharp phase
transition where o = 4 as expected [see Eq. (1)],
because this is a description of a classical two-state
system [3]. There is no guiding in the Hamiltonian
in Eq. (6) since the ground state, {1111---111},
is one out of the fV possible states, while all the
other fN — 1 states are at zero energy. Thus, the
time to find the ground state for such a two-state
system will be very long.



The simple two-state Hamiltonian Eq. (6) re-
sults in a sharp folding transition, but seems in-
compatible with fast folding. On the other hand,
the guided zipper-like Hamiltonian Eq. (4) is a fast
folder, but gives a less sharp folding transition. We
will in this section go into further detail on this
question, and show possible ways of constructing a
contact energy Hamiltonian which reconciles fast
folding with sharp folding transitions.

We estimate the folding time by the one-step
Monte Carlo Metropolis method [11]. The Monte
Carlo time is not directly related to “real time”,
but should give a reasonable estimate of how the
folding times scales with system size N. We define
the folding time 7 as the average number of Monte
Carlo steps needed to go from the unfolded to the
completely folded state with all Monte-Carlo vari-
ables p; = 1.

The folding time is widely different between the
guided system in Eq. (5) and the two-state system
in Eq. (6). For the true two-state model the fold-
ing time 7 o« f. This is because no variable will
be fixed at value 1 before all variables are 1, thus
making an average probability of 1/ of reach-
ing the ground state at each time step. Thus, the
two-state system takes exponential times to fold,
in accordance with the Levinthal paradox of astro-
nomical folding times for unguided protein folding.

For the guided system governed by Eq. (5), the
folding time scales as 7 oc N2. The reason for this
is that at each time step only one variable can be
fixed at the value ¢; = 1, the one where the pre-
vious variable equals 1 (i.e., ¢;_1 = 1). Attempts
to change other variables will either be energeti-
cally disfavored (for j < i) or likely to be subjected
to reversals at later stages because these confor-
mational changes are not associated with any en-
ergy changes. When each time step allows one vari-
able to possibly change value, it typically takes
N/2 time steps to fix the next ¢ on the pathway.
Summed over all subsequent variables, this gives
an overall folding time scaling as 7 oc N2. The ex-
act prefactor to this folding time depends on tem-
perature, as increased temperature enhances the
probability that an already folded variable unfolds
(1 - 0) again.

To reconcile that a large class of proteins behave
as a two-state system with the necessity of being
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Fig. 1. Schematic drawing of the partial Gibbs free energy
F(n) as a function of the degree of folding n at three
different temperatures [see Eq. (8)]. F(0) is rescaled to 0.
This figure is taken from Ref. [5].

able to reach the ground state in a reasonable time,
we now study a combination of the two Hamilto-
nians in Eq. (5) and Eq. (6)

Hp = XH.y + (1—A)He. (7)

The A. € [0,1] is a dimensionless parameter that
weighs the contributions from the Hamiltonians
H., and H,,, i.e., quantifying the relative amount
of guiding in the system. This construction corre-
sponds to guided folding, but with a large energy
change for the last folding step.

The partition function associated with Eq. (7) is
calculated as in (5). Thus, we can define a partial
free energy F'(n) as

N
Z=> e Prm, (8)
n=0

where n is the degree of folding. For a given tem-
perature the partial free energy of states is F'(n <
N-1)=nTInf—-Xée)—TNInf,and F(N) =
—Ne..

In Fig. 1 we show F'(n) schematically for differ-
ent temperatures T, where we set €. = 1 here and
in the following discussion. Each F'(n) exhibits a
jump at n = N corresponding to a free energy
change N(1 —A.)+ A — Tln f for reaching the
ground state. At low T', F'(n) is monotonically de-
creasing, reflecting a fast folding kinetics where the
typical folding time grows as N2, i.e., a guided sys-
tem. At an intermediate T = Tg = A./Inf all
n < N are equally probable.



Furthermore, T is lower than the folding-
unfolding transition temperature T, where the
denatured state becomes thermodynamically fa-
vored. For T¢ < T < T, the intermediate states
are unstable (see Fig. 1), i.e., they form a barrier
between the folded and denatured state — and
the folding time scales exponentially with both T
and N. At a higher T = T, = 1/In f the folded
state becomes unstable, and the protein unfolds
(n = 0). The fact that the free energy landscape
changes with 7" means effectively that two-state
folding around T, is compatible with guiding and
fast folding at low T'.

2.2. Multiple pathways

The concept of two-state folding transitions and
fast guided folding, can be explored further by a
straightforward generalization of the strict guiding
assumed in Eq. (4). In fact, many proteins show
multiple pathways during folding and hence this is
a necessary generalization of the model. The sim-
plest way to incorporate multiple pathways is to
assume that the folding variables ¢ can appear in
any order in the Hamiltonian as

H=- zaiﬁpi - Zaij@i‘Pj -
’ 7 (9)
e Z Aijk.. PiP;iPE " »
i#j#k...
where the indices 4, j, k, ... are chosen from the set
{1,2,..., N}. The indices within each product term
must be different and the parameters a weighs the
different terms in the Hamiltonian.
For concreteness let us consider a representative
example of the Hamiltonian in Eq. (9)

H=— 1 — 5 — paps — Q10205
— P1P2P3P4P5.-

The interpretation of this Hamiltonian is that fold-
ing of contacts 1 and 5 are independent starting
points of the folding process. In order to fold con-
tact 4, contact 5 must already be in place. How-
ever, this contact is independent whether contact
1 is formed. Contact 2, on the other hand, needs
both contacts 1 and 5 in place. In the end, all five
contacts are formed. A concrete example of multi-

(10)

ple pathways has been reported for staphylococcal
nuclease [12,13].

It can be shown [6] that Eq. (9) corresponds to
a system with multiple folding pathways. By re-
stricting ourselves to a class of Hamiltonians with
only one term with one ¢-variable, only one term
with two -variables, etc., the system in Eq. (9)
exhibits both two-state folding, and a fast folding
time 7 f‘/ﬁ at low temperatures. The key to
this scaling is that after f! folding steps, as long
as 7 is small, typically ¢ -terms are folded. When
i?/2 becomes comparable to N, overlap between
subsequent steps becomes significant, and subse-
quent folding involves fewer new folding variables,
and therefore folding becomes easier. For interme-
diate temperatures, we have as in the pure two-
state model, a regime of slower folding, with fold-
ing time of order fV.

3. How water affects protein folding

Protein-water interactions play an important
role in protein folding [14-16]. We will here sketch
a water model introduced by Bakk et al. [17,18]
that is a refined version of a model first proposed
by Hansen et al. [19]. This model is an expansion
of the single pathway Hamiltonian in Eq. (4).

The basic idea of the protein-water interactions
is that if the contact variable ¥; is closed (¥; =
1), water has no access to that part of the protein,
while if the contact is open (¥; = 0), there is di-
rect contact between protein and water in this re-
gion. Hence, if we call the water interaction energy
E,,, the contact energy associated with the contact
variable ¥; is

H;, = —€.9; + Ew(l - lI’,) . (11)

The first part of the water interaction energy
is modeled by using the simplified analogy of a
classical electrical dipole in an external electrical
field, whose energy is

Ey1 = —€y cos Y, (12)

where €,, is a bending distortion constant. The an-
gle ¥ is the polar angle. Eq. (12) is the hydration
model used in the works by Bakk et al. [17] and
Bakk [20].



In addition to the energy due to the external
field [Eq. (12)], we add a coupling term

1
Bus = —3 ; Jijsi - sj (13)

that models pair interactions between the water
molecules. The J;; is the coupling constant be-
tween water molecules ¢ and 7, and s; is the dipole
moment of water molecule i. For simplicity we put
|si| = 1. It can be shown that the total water en-
ergy By = Ey1 + Ey2 [Egs. (12) and (13)] in a
mean field solution [21] can be represented as [17]

Ey, = Ey1 + Eya = —(€y + bm) cosd + %bmz,
(14)
where bm, with b =}~ Ji;, is the mean field cou-
pling between a water molecule and its surround-
ing water molecules. The average dipole moment
m = {(cos ) has to be determined self-consistently.
As mentioned earlier in this section, the water
molecules are supposed to only interact with the
unfolded regions of the protein. This protein-water
interaction Hamiltonian may be written, after in-
troducing the variables ¢;, as

M
H, = Z[Elluj(l — 1) + B2 (1= ¢192)
j=1

+ e+ ENI(1 = 1009 -+ - o)),
(15)

where E¥ is the energy of water molecule j in con-
tact with the unfolded contact i, and M is the to-
tal number of water molecules associated with each
contact. By summing the chain Hamiltonian H, in
Eq. (3) and the water Hamiltonian in Eq. (15), we
obtain the total protein Hamiltonian

H=H,+H,. (16)

In Fig. 2 we show a typical plot of the heat ca-
pacity of a protein for different parameters, based
upon the Hamiltonian in Eq. (16). The figure shows
two characteristic peaks that correspond to cold
and warm unfolding of the protein, which is com-
mon to several small globular proteins [22]. As ev-
ident from this work and other works [23-27], cold
unfolding seems to be closely linked to the protein-
water interactions.
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Fig. 2. Heat capacity in arbitrary units for different choice
of parameters based upon Eq. (16). The y is proportional
to the contact energy € in Eq. (3) and p; > pi+1. Note the
characteristic two peaks, corresponding to cold and warm
unfolding of the protein. This figure is taken from Ref. [17].

Finally we note that the present representation
of the water is very simple. Experimentally one
finds that the hydration contribution to the heat
capacity is positive for apolar surfaces, while it sur-
prisingly becomes negative for polar surfaces [28].
This important fact should be taken into account
in order to refine the model further [29].

4. Summary

We have shown that it is possible to construct
contact energy Hamiltonians displaying the same
sharp phase transition as for a pure two-state sys-
tem [van’t Hoff coefficient o = 4 in Eq. (1)], and
yet allow for a fast relaxation to the ground state
(fast folding time). This can be achieved either by
a large energy change in the last folding step in a
single folding pathway, or by constructing a Hamil-
tonian with multiple pathways. This first approach
results in a folding time 7 « N2, and the multi-
ple pathways give 7 < f \/N, both in the low tem-
perature limit. The folding time is in both cases
dramatically reduced compared to that of the pure
two-state system which folds in a time 7 oc fV.

Finally we show that introduction of water in
our model gives two characteristic peaks for the
heat capacity that correspond to cold and warm
unfolding transitions of the protein.
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Abstract

We show that experimentally measured heat capacities of six different
proteins (lysozyme, myoglobin, chymotrypsinogen, lactoglobulin, ovalbu-
mine, and ribonuclease A) in their solid state, in the temperature range
from 260 K to 420 K, can be well characterized as a sum of one Einstein
mode, corresponding to the group vibrations, plus a constant, correspond-
ing to the nearly excited skeletal vibrations. The relative root mean square
deviations between experimental data and fitted data are less than 1%. We
also show for lysozyme and ribonuclease A that the experimental values
of the solid state heat capacities, corrected for intermolecular vibrational
modes, deviate less than 15% relative experimental protein data in solu-
tion, where the hydration part of the latter data is excluded by a model
compund evaluation [P.L. Privalov and G.I. Makhatadze, J. Mol. Biol.
224 (1992) 715]. Thus, analyzing solid state proteins may give important
information to energetics and stabilization of proteins in solution.

Keywords: Protein; Solid state; Heat capacity; Vibrational modes

1 Introduction

Since the seminal work of Anfinsen [1], who established the “thermodynamical
hypothesis” of proteins, a lot of experimental data have been accumulated on
protein thermodynamics. Unfortunately, most of these data are on proteins in
solution [2-4]. However, Makhatadze and Privalov have made important efforts
to separate the hydration part of protein energetics [5-8|. Thus, subtracting the
hydration part of the protein heat capacity from the total protein heat capacity,
yields the intramolecular part of a protein’s heat capacity. This intramolecular
part of the heat capacity is likely to correspond to heat capacity of anhydrous
proteins in some fashion. In the literature only a few measurements of heat
capacities of anhydrous proteins exist [9-11]. In the recent years, however, the
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Advanced THermal Analysis System (ATHAS) [12] has contributed with data on
some proteins, studied over a broad temperature range from 5 K to 420 K.

In this paper we will analyze the heat capacities of six different proteins, in
their solid state form, at temperatures in the range from 260 K to 420 K. We
show that it is possible to represent experimental data from Zhang et al. [13]
and Di Lorenzo et al. [14], by a much simpler model than these authors applied.
We represent heat capacities of solid state proteins simply by assuming that the
vibrations of each protein is a sum of one Einstein mode [15] and a constant,
corresponding to the group and skeletal contributions to the heat capacity, re-
spectively. We also discuss relations between experimental data of solid state
proteins and experimental protein data in solution.

2 The model

Proteins are huge macromolecules consisting of thousands of atoms. The vibra-
tional spectra of the proteins are rather complex. The ATHAS [12] has made
progress in analyzing the vibrational spectra of macromolecules, and now it con-
tains a database of vibration spectra for over 200 linear macromolecules and sev-
eral proteins. The ATHAS computational scheme is explained in, e.g., Ref. [16].

Briefly explained, in the ATHAS one splits vibrational spectra of macro-
molecules in group (g) vibrations and skeletal (s) vibrations. The group inter-
actions represent vibrations from isolated groups along the (polypeptide) chain,
while the skeletal vibrations account for larger intramolecular motions of the
molecule. The latter also accounts for intermolecular couplings. Thus, the skele-
tal contribution to the energetics should not be very sensitive to molecular struc-
ture of the species.

The group vibrations are in the ATHAS represented as a sum of Einstein
modes at different characteristic frequencies and box-distributions over narrow
frequency ranges [17]. The box-distributions are non-analytic. In this work we
will represent the group contribution by a single Einstein mode. The heat ca-
pacity at constant volume for Ng moles of group vibrators at temperature T
reads [16]

C\(/g) _ NgR(g/T)Qeo/T’ (1)
(e?/T —1)2

where § = hv/kg is the characteristic temperature for a quantum mechanical
oscillator with characteristic frequency v. The parameters h and kg are Planck’s
and Boltzmann’s constants, respectively, and R = 8.31434 J/(K mol) is the molar
gas constant.

The skeletal vibrations are in general exited at temperatures far below the
characteristic temperatures (6 values) for the group vibrations. The ATHAS
represents the skeletal vibrations by a Tarasov function [18], where Zhang et
al. [13] and Di Lorenzo et al. [14] show that more than 83% of the skeletal modes
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are exited at 260 K. It can be shown that all heat capcity functions normally
used for vibration spectra of solids (Einstein modes, one-, two-, three-dimensional
Debye functions) approach N; R at high temperatures [15], where N; is the number
of vibrators. As a simplification, we thus represent the heat capacity at constant
volume due to skeletal vibrational modes by a constant

c® = NyR. (2)

The experimental heat capacity data of Zhang et al. [13] and Di Lorenzo et
al. [14] are given at constant pressure, i.e., Cp,, while both Egs. (1) and (2) are
given at constant volume (Cy). To convert Cy to Cp, and vice versa, one may
use the modified Nernst-Lindemann approximation that is proven applicable for
polymers [19]

Gy — Oy = BRAC, - 3)
where Ay = 3.9-1072 (K mol)/J, and T}, is an estimated equilibrium melting
temperature that is set to 573 K for all proteins in this work.

In addition to the vibration modes discussed here, at physiological tempera-
tures some larger amplitude modes (rotamers) become more and more important.
In this work, which involves a fitting of a model to experimental data, we incor-
porate these modes in the group modes and the skeletal modes, already discussed
above. Thus, as a simplification we will represent the heat capacity of solid state
proteins at constant pressure C}, as a sum of the group heat capacity [Eq. (1)] and
the skeletal heat capacity [Eq. (2)]. When we correct for the Nernst-Lindemann
approach [Eq. (3)], the heat capacity at constant pressure for one mole proteins
in the solid state yields

7\
C, = (1 — 3RA, T—) (C® 1+ c¥)

m

T\ '[N, (8/T)%e/"
_R<1—3RA0ﬁ) [ (T + N,

(4)

The strength of the model as stated in Eq. (4) is that it contains only three
parameters that have to be determined in the fitting procedure for a given temper-
ature T, namely N,, N;, and 6. Hopefully, by ignoring details in the vibrational
spectra, as we have done, Eq. (4) can upon fitting to experimental data say
something about the key features and generality of intramolecular interactions in
proteins.

3 Results and discussion

We fit Eq. (4) to the experimental data of heat capacity for six different proteins
in their solid state by a least squares error procedure. The experimental data



Table 1: Best fit parameters, according to Eq. (4), for the heat capacity of proteins
in their solid state. M are molecular weights and rms are the relative root mean
square deviations between the experimental data and the fitted data. Parameters
N, and 6, and Nj are explained in connection with Egs. (1) and (2), respectively.

protein M Ny Ns 0 rms

(kDalton) (10*#) (10*°#) (10°K) (%)
Lysozyme 14.3 5.9 1.7 2.0 0.3
Myoglobin 17.0 5.7 2.0 1.8 0.3
Chymotrypsinogen 25.6 6.8 3.2 1.7 1.0
Lactoglobulin 18.4 5.8 2.4 1.8 0.3
Ovalbumine 42.8 13.0 5.0 1.8 0.6
Ribonuclease A 13.7 3.8 1.6 1.8 0.6

on lysozyme (chicken) and myoglobin (horse) are from Di Lorenzo et al. [14],
and the data on a—chymotrypsinogen (bovine), S—lactoglobulin (bovine milk),
ovalbumine (chicken), and ribonuclease A (bovine pancreas) from Zhang et al.
[13]. The optimal fitted parameters, according to Eq. (4), are listed in Table 1.

All the experimental data we use in this work are measured by a Perkin-Elmer
DSC-7 (differential scanning calorimeter). Unfortunately, the authors who per-
formed these experiments do not give an error estimate of their data points, but
the standard deviations of the experiments of Zhang et al. [13] on chymotrypsino-
gen, lactoglobulin, ovalbumine, and ribonuclease A are 2.5% or less. However,
this estimate does not, e.g., incorporate systematic errors. It is also up to dis-
cussion whether the heat capacity data contain contributions from denaturation
of the proteins [13].

In Figure 1 we plot the experimental data together with the optimal fittings.
In light of the simplicity of the model, the agreements between the experimental
data and the fit are very good, with a relative root mean square deviation less
than 1% between the experimental data and the calculated data based upon
Eq. (4). This deviation between theory and experiment is better than the more
detailed modeling of Zhang et al. [13] and Di Lorenzo et al. [14], who obtained
a root mean square error around 3%. However, it should be noted that they
studied the proteins in a broader temperature range (130 to 420 K) compared to
us. The mean value of the characteristic temperature is (§) = (1.8 £0.1) - 10®
K (see Table 1), thus in light of the model the experimental data exhibit some
generality with regard to 6.

In Figure 2, based upon the fittings listed in Table 1, we plot N; and N; [see
Egs. (1) and (2), respectively| versus the molecular weight (M). These two sets
are fitted to two linear functions N; = ¢; M for 1 ={1,2}, respectively. We
obtain ¢; = 0.31 (Dalton)™! (relative root mean square error is 13%), correspond-
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Figure 1: Heat capacity (C},) per mole proteins in their solid state vs. temperature
(T). Experimental data (O) for lysozyme and myoglobin are obtained from Di
Lorenzo et al. [14] and experimental data for chymotrypsinogen, lactoglobulin,
ovalbumine, and ribonuclease A are obtained from Zhang et al. [13]. Continuous
lines (——) are best fits from the theoretical estimate in Eq. (4). Parameters
are accordingly listed in Table 1. For lysozyme and ribonuclease A we have also
inserted three data points (e), respectively. These latter data points represent an
estimate of internal interactions based upon the difference between experimental
protein data in solution and a model compound data evaluation of the hydration
effect, both evaluated by Privalov and Makhatadze [6].
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Figure 2: The number of oscillators Ny and Ny vs. the molecular weight M
(see Table 1) for the six different proteins considered in this work. Both sets,
corresponding to Ny and Nj, are fitted to a linear function, respectively.

ing to N, versus M data, and ¢ = 0.12 (Dalton)~" (relative root mean square
error is 4%), corresponding to N; versus M data. This shows that the number
of vibrators, to first approximation, increases linearly vs. increasing molecular
weight. In particular, Ny has a small deviation from a linear dependence of the
parameter M (4%). The reason for this may be that the N; parameters cor-
respond to the skeletal vibrations of the proteins. The ATHAS shows that the
skeletal vibration modes are nearly excited at temperatures above 260 K [13,14],
and indicates that the skeletal vibrations correspond to long wavelengths. Thus,
the skeletal vibration modes, and consequently the Ny parameter in our model
should not be much affected by the molecular structure of the macromolecules.
Consequently, this may explain the very near linear dependence of the parameter
N, with respect to the size of the protein, i.e., the molecular mass M.

If our present model, expressed by Eq. (4), for heat capacity of solid state
proteins should become useful for proteins in solution, one may ask — what is the
correspondence between thermodynamical data of proteins in solid state and pro-
teins in solution? Protein stability depends upon internal interactions and water
interactions. Up to now, there has been no direct way to experimentally sepa-
rate these contributions from each other. However, Privalov and Makhatadze [6]
show that it is possible to separate these contributions by use of model compound
data, that are based upon transfer characteristics for the solvating process in wa-
ter of more than 100 low molecular weight organic compounds [5]. The latter
data are in accordance with the Ben-Naim definition of the solvation process of a
molecule [20], i.e., transferring the molecule from a fixed position in the ideal gas
phase into a fixed position in water, which only consider effects associated with
insertion of the solute molecule into water. Thus, in the solvation process effects



associated with differences in translational motions of the molecules in the gas
phase and in the water soluted phase are not included. Based upon the solvation
data from these small organic substances and assuming that the hydration data
of a given protein can be represented as a sum of these (known) low-molecular
weight contributions to the heat capacity, Privalov and Makhatadze [6] evalu-
ated the hydration contribution to the heat capacity in the folded (native) state
for four different proteins, including lysozyme and ribonuclease A studied in this
work. If we now subtract the hydration heat capacity, evaluated from model com-
pounds, from the total experimental heat capacity data of proteins in solution,
including both hydration effects and internal interactions, an estimate of the heat
capacity of the internal interactions (HCII) is then left.

For two of the proteins discussed in this work, lysozyme and ribonuclease A,
we plot three data points (corresponding to HCII as described in the previous
paragraph) evaluated by Privalov and Makhatadze [6], respectively. We see that
heat capacity in the solid state (HCSS) and the HCII agrees well.

The observation in the previous paragraph is interesting, however several as-
pects have to be taken into account. First of all, it is not obvious that the
HCSS data and the HCII data should have a simple connection. One source
of discrepancy between HCSS and HCII is that HCII includes possible changes
in the internal interactions upon the solvation process. Here we assume that
this contribution to thermodynamics is negligible, but this point should be fur-
ther investigated. However, a more serious problem may be that HCSS includes
intermolecular interactions in contrast to HCII. Based upon the ATHAS calcu-
lations of Zhang et al. [13] and Di Lorenzo et al. [14] it is possible to estimate
the heat capacity contribution related to the skeletal vibrations. The skeletal
vibrations are in these works described by a Tarasov function [18] where the
lower frequency part is a three-dimensional Debye function, corresponding to in-
termolecular modes. The characteristic temperature of this function is typically
around 100 K, thus the intermolecular modes are fully excited at physiological
temperatures and consequently easy to calculate at these temperatures.

If we subtract the intermolecular part of HCSS, 1.8 kJ/mol for lysozyme and
1.5 kJ/mol for ribonuclease A, the HCII data become larger than the HCSS data
with increasing difference vs. temperature. At 323 K the HCII data are 15% and
8% larger than the HCSS for lysosyme and ribonuclease, respectively. The reason
for this difference may be that proteins in water have more excited rotamers at
a given temperature compared to dehydrated crystallized proteins.

4 Summary and conclusion

We study the heat capacity in the solid state of the proteins lysozyme, myoglobin,
chymotrypsinogen, lactoglobulin, ovalbumine, and ribonuclease A. We show, in
the temperature region from 260 K to 420 K, that the heat capacity can be well



represented as a sum of one Einstein mode [Eq. (1)] and a constant [Eq. (2)]. This
corresponds to the group contributions and the skeletal contributions to the total
heat capacity in the ATHAS scheme, respectively [12]. Despite the simplicity of
the resulting analytical model [Eq. (4)], the fits of the model to the experimental
data are good, with a relative root mean square deviation less than 1% between
experiment and theory.

We show that the experimental heat capacity data for two of the proteins
in the solid state agree well with model compound data from Privalov and
Makhatadze [6] of the same proteins. However, when the experimental data
are corrected for intermolecular vibrational modes the model compound data are
larger than the experimental ones for the heat capacity (up to 15%). This sug-
gests that proteins in water may have more rotamers excited than crystallized
proteins at a given temperature.

This simple description of proteins in solid state may serve as a “baseline”
[14,18] for a full thermodynamic characterization of proteins. By applying this
description of vibrational heat capacity of proteins [Eq. (4)] together with a model
that describes the hydration contribution to the energetics explicitly [21,22], it
may be possible to use this accumulated knowledge to predict thermodynami-
cal stability of proteins in solution, and in particular to predict cold and warm
destabilization of small globular proteins [23-27].
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