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Problem description:

Software Defined Networking is an approach to networking where the control plane
is decoupled from the data plane. It has been well received by the network com-
munity and praised as the next generation in networking. The approach allows
for programmable networks designed for its specific purpose. Military networks
are currently developing fast, and may now consist of numerous unmanned entities
deployed in a network to solve critical missions. They each have their purpose in
the network and data to deliver to other units or a controlling point in the network.
As the mission develops, the requirements for the individual data streams changes.
The location of an entity may have to be broadcasted to all other entities or a video
stream may currently be critical for a mission, while later it should just offered as a
service and not prioritized throughout the network. To offer a more robust network,
an additional radio interface could be added with a tradeoff of lower bandwidth but
longer range. The network can now be considered a heterogeneous network. However
this imposes higher complexity on the network.

Objective: The objective of this thesis is to explore how the concept of Software
Defined Networking can be used to address the problems occurring for the suggested
infrastructure consisting of a network of multi radio unmanned entities.

Methodology: The candidate needs to identify what limitations the circumstances
put on an approach using software defined networking. Also how it can be incorpo-
rated into the suggested infrastructure, both physically and logically. The approaches
should be thoroughly discussed. A proof of concept should be implemented for one
of the approaches.
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Abstract

Military operations are increasingly dependent on networks and trans-
ferring of data. A heterogeneous mobile tactical network, is a complex
network with dynamic characteristics used during military operations. In
the field, resources are scarce, and the network can quickly get congested.
To optimize the network to efficiently route traffic and handle prioritized
data, a method offering fine grained control of the network would be
beneficial. Software Defined Networking (SDN) has proven to facilitate
granular control for several types of networks. This thesis looks at how
Software Defined Networking (SDN) can be incorporated and used in
a heterogeneous mobile tactical network. It states that the first step
towards an SDN network is to build topology for the network. Three
conceptual models are discussed, and an approach where topology is
collected from a local legacy router is implemented.





Sammendrag

Militære operasjoner er i økende grad avhengig av nettverk og overføring
av data. Et heterogent mobilt taktisk nett, er et komplekst nettverk
med dynamiske egenskaper i bruk under militære operasjoner. I felten er
det begrensede ressurser, og nettverket kan raskt bli overbelastet. For å
optimalisere nettverket for å lede trafikk effektivt og håndtere prioritering
av data, vil det være fordelaktig å benytte en metode som tilbyr detaljert
forvaltning av nettverket. Software Defined Networking (SDN) har vist
seg å fasilitere finkornet styring av ulike typer nettverk. Denne oppgaven
vurderer hvordan SDN kan bli integrert and benyttet i et heterogent
mobilt taktisk nettverk. Det blir konstatert at første steg for en overgang
til et SDN-nettverk, er å bygge topologi for nettverket. Tre konseptuelle
modeller blir diskutert, og en tilnærming hvor topologi blir hentet fra en
lokal tradisjonell router er implementert.
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Chapter1Introduction

This chapter first explains some of the motivation for this thesis. Then a summary of
what the thesis will be about, and lastly the structure of the document is described.

1.1 Motivation

A modern military network consists of multiple mobile tactical units deployed to
perform predetermined mission critical tasks. Each node has its assets, drawbacks
and purpose in the network, but to perform the mission it is destined for, it is
necessary to communicate with a controlling entity. The network is interconnected
via a radio technology employing a multihop routing protocol. The radio utilizes
a shared medium and has certain characteristics like range, bandwidth and delay
associated with it. As the mobile units move, these characteristics change and the
link may even perish when moving too far.

By extending the network with one additional radio access technology with the
tradeoff of lower throughput for longer range, more flexibility is offered to the system.
Each node will then be connected to two separate radio interfaces- Now there are
even more routes for the data to take to arrive at the its destination. As the new
access technology is added to the system, it forms an even more complex system
with new potential, challenges and limitations. It is now a heterogeneous network.

SDN has been suggested to facilitate complex network in need of strict policy
management for optimization of the available bandwidth. SDN is an approach to
networking where the control plane is decoupled from the data plane. The control
layer is moved to a centralized intelligence where the data plane is abstracted for
network applications running on top of the control layer. The network applications
are offered granular control mechanisms for the data flows throughout the network.
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2 1. INTRODUCTION

1.2 What this thesis will be about and how it is carried out
(Methodology)

This thesis will look at how SDN can build topology in a heterogeneous military
tactical network with a hybrid structure consisting of both legacy network components
and SDN entities. The complexities of a scenario encountered by Kongsberg, are
explained and structured. Three conceptually different architecture models are
proposed and discussed. Lastly one of the approaches for Model 1 is implemented as
a proof of concept

1.3 Structure of the document

Chapter 2 presents and explains a selection of terms used throughout the thesis.
Next, chapter 3 explains the complexities and limitations of the scenario. After the
problem is described, chapter 4 proposes several approaches for the architecture
design of the platforms. Then, chapter 5 implements one of the proposals from
chapter 4. In the end, experiences from the implementation is presented in chapter 6
and chapter 7 has a discussion and the conlusion for the thesis.



Chapter2Theory
This chapter will present the concepts encountered and discussed throughout this
thesis. It will establish common grounds before heading into the scenarios, evaluations
and models presented later. First SDN will be introduced along with its accompanying
protocol OF. Next, Mobile Ad hoc Network (MANET) will be introduced, followed
by the mobile tactical network. Lastly, Heterogeneous Networks (HetNets) will be
introduced.

2.1 Software Defined Networking

SDN is an approach to networking where the data plane is decoupled from the control
plane. In legacy networks, the control for each device is distributed and assigned to
each individual device. The concept of SDN decouples this control plane and moves it
to a centralized software intelligence called a controller. The network devices are then
programmatically controlled and configured by the controller. Figure 2.1 illustrates
a sample topology for an SDN network and how the controller is connected to the
network devices.

3



4 2. THEORY

Figure 2.1: Sample topology for an SDN network. Each host is connected an SDN
switch. The SDNs switches are all controlled by a centralized controller.

Figure 2.2 illustrates the layered architecture of SDN, where the infrastructure
layer represents the data plane, also referred to as the forwarding plane. The
infrastructure layer comprises the physical devices, which is controlled by the upper
layers. The control layer communicates with the infrastructure layer via a south-
bound Application Programming Interface (API), and abstracts the underlying
network, providing a simplified view of the network to the application layer. The
application layer builds on top of the control layer and can via the north-bound API
offered by the controller, create complex networking applications.
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Figure 2.2: Layered SDN architecture. From [21]

The term controller is often used for the combined functionality of both the
control and the application layer. A controller maintains a view over the entire
network, and implements policies regarding forwarding, priorities, and load balancing.
The controller often comes bundled with a range of business applications that provide
these functions using the north-bound API, often implemented in Python, Java or
Representational state transfer (REST), provided by the control layer. A standard
for the north-bound API has yet to be defined and acknowledged.

2.1.1 OpenFlow

The OpenFlow (OF) protocol is an open standard that was initially developed to
facilitate network research and development, but when published in [19], it quickly
caught the interest of research communities and network vendors. In 2011 the
development was moved to the newly founded Open Network Foundation (ONF),
which would keep developing it with a strong philosophy for open source. OF is now
the most widely used south-bound API, and it is the only defined SDN standard [23].

OF utilizes the existing forwarding tables in network devices, earlier populated
by the distributed routing algorithms. OF defines this as a flow table consisting of
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flow entries. The flow entries are set using the OF protocol, which provides a set
of messages to program the switches. A flow is "a set of packets transferred from
one network endpoint (or set of endpoints) to another endpoint (or set of endpoints).
The endpoints may be defined as IP address-TCP/UDP port pairs, VLAN endpoints,
layer three tunnel endpoints, or input ports, among other things"[12].

Match Field Priority Counters Instructions Timeouts Cookie Flags

Table 2.1: Overview of the fields in a flow entry in the flow table.

Flow entries are used to match and process packets, and is illustrated in 2.1.
A flow entry contains one or more match fields for matching the packets. The
fields available for matching includes all fields in Ethernet, Virtual LAN (VLAN),
Mutliprotocol Label Switching (MPLS), IPv4 and IP version 6 (IPv6). It also offers
OpenFlow Extensible Match (OXM), which describes Type-Length-Value (TLV)
pairs that can be used to define any header field. As an example the rule could match
with all packets with a specified IPv4 address. The priority field, gives the entry
precedence over other entries. Counters are used to gather statistics for the flows.
This is typically counting packets and bytes. The instructions field contains actions
to execute for incoming packets. The packet may be forwarded, dropped or passed
to the controller. It can also execute more advanced features before passing it on,
such as editing the header fields. If the flow entry is idle for longer than the timeout
threshold, the flow is removed. The cookie is a value chosen by the controller, and
does not affect the packet processing. Flags offer additional life cycle functionality
to the flows. It can be set to notify the controller when the flow times out [22]. The
flow rules configured by the controller and the outcome of these rules are one of the
fundamental actions:

– Forward

– Drop

– Pass to the controller

Incoming packets are first matched against the Flow Tables, as illustrated in
figure 2.3. The packets can trigger a flow entry with actions to execute. It can
instruct the switch to forward the packet on a physical or logical port. The packet
will then be dispatched out on the network. Or the packet can match a flow rule
defining a filtering scheme which drops the packets. Packets that require to be
processed by the controller, will be consumed and dispatched to the controller. The
controller will respond to the packet, for example by installing new flow entries. The
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communication between the SDN switch and the controller is performed over the OF
protocol. The most basic controller defines, adds and deletes flow entries.

Figure 2.3: Simplified view of how OF handles incoming packets.

Flow entries can be installed in reactively, where it passes packets not matching
any of the flow entries, to the controller. The controller can then determine how
the flow should be treated and install the appropriate flow entries. The scheme can
also be to act pro-actively, installing rules for the expected flows. More general flow
entries can be used to catch those not matching with other entries. This is up to the
controller, and the apps running on top of it.

The switch is usually connected to the controller over a Transport Layer Security
(TLS) encrypted channel, but may also be over Transmission Control Protocol (TCP).
There are two conceptual ways of connecting the SDN device to the controller,
in-band and out-of-band. In the latter case, the controller is connected outside of
the OF pipeline. This requires basic Internet Protocol (IP)/TCP networking. For
in-band connections, the switch may allow the controller to initiate the connection,
or else, the switch has to be pre-configured with the proper flow entries.

An OF enabled device can be considered a layerless device, as only the controller
and the application running on top, decide what layer the device is interpreting.
However, the terms SDN Switch or OF Switch has been coined as devices supporting
OF and will be used intermittently throughout this thesis.

An SDN controller initially builds topology by registering switches when they
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connect to the controller. Then further topology discovery is up to the application
running on top of the controller, for example a layer 2 learning switch.

2.2 Mobile Ad hoc Network

As IP networks advanced from conventional wired networks into more advanced
wireless ones, the community realized the need to establish a body to research and
develop standards for the fast developing dynamic networks. The MANET working
group was formed by the Internet Engineering Task Force (IETF), and quickly
released a Request for Comment (RFC) [18] in 1999. This RFC tried to describe
and explore what they defined as a MANET. The MANET working group has now
defined their purpose:

“The purpose of the MANET working group is to standardize IP routing protocol
functionality suitable for wireless routing applications within both static and dynamic
topologies with increased dynamics due to node motion or other factors.”[3]

A MANET can be described by having mobile nodes with wireless access technol-
ogy and routing capabilities. These nodes typically form an ad hoc, multihop stub
network with few or no connections to other networks. The nodes in the network
will provide the necessary routing functionality to efficiently route traffic as needed.
Reference [18] describes MANETs in this nonchalant way:

“It is, simply put, improved IP-based networking technology for dynamic, au-
tonomous wireless networks.”[18]

MANETs now encompass a wide range of networks with common, typically
fluctuating, characteristics. Reference [18] presents a list of some of the prominent
characteristics, which is presented in short form below.

– Dynamic topology. The topology of the network is usually dynamic, as the
nodes are free to geographically move around.

– Bandwidth-constrained. The wireless technologies deployed on these nodes
often offer limited bandwidth. As the nodes move, the characteristics of the links
will also change. This characteristic also often leads to congestion throughout
the network, and thus traffic policing emerge as an important component.

– Energy-constrained. Mobile nodes carried by systems powered by limited
power sources, have to preserve energy.

– Limited physical security. Wireless networks are in general more prone to
attacks than wired networks.
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The relevant characteristics varies for different types of networks and use cases.
Relevant for this thesis are the MANETs used for military purposes.

2.3 Mobile Tactical Networks

Reference [16] proposes a taxonomy for the network architecture of a military network.
The proposed network is divided into three layers; backbone, aggregation and mobile
tactical networks. The backbone network has similarities to the core network layer
of the Cisco hierarchical network model, which interconnects different sites and areas
of an enterprise. This is called the strategic backbone network, and it is a national
network connected to headquarters and operational bases around the world. This is
illustrated in figure 2.4 connecting the Deployable tactical network to the strategic
backbone network in Norway. The aggregation layer comprises a deployable tactical
network and a tactical backbone, both offering connectivity to the strategic backbone.
Deployable tactical networks are networks residing where operations are currently
ongoing, domestic or abroad. They are usually connected to the backbone via tunnels
or satellite links. The strategic backbone network is similar to the deployable tactical
network, but should offer connectivity for mobile tactical networks. This means it
has to be equipped with all the necessary radio technology to communicate with the
appropriate forces and networks.
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Figure 2.4: A Three-level network topology, from [16]. This figure illustrates a
scenario where the strategic backbone residing in Norway, is connected to a deployable
tactical network. The deployable network aggregates traffic from several locations.

The mobile tactical network is a MANET deployed during an operation or mission.
Due to the nature of military operations, these networks are very different from
commercial networks. The network consist of mobile units, that being manned or
unmanned, aerial-, ground- or sea vehicles, or individual soldiers. These nodes, while
in motion, changes the topology in a rapid pace. The nodes, connected using military
grade radio interfaces with possible scarce resources, will experience big variations in
connectivity, link capacity and network topology. A mobile tactical network has to
be formed in this way, because during military operations, it can not rely on public or
static infrastructure. Static infrastructure will not be feasible where the operations
are being carried out, both because of the mobile nature of an operation, but also
because of geographical location. It can not rely on public infrastructure either, as it
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is prone to attacks and may be compromised or disconnected.

2.4 Heterogeneous Networks

HetNets are used to describe a network consisting of different types of equipment
implementing inequal software. Software include communication protocols, imple-
mentations and configurations. The various types of equipment can also have varying
channel characteristics, including range and frequency.

Wireless access technologies allow peers to communicate using the air between
them. By using parts of the frequency spectrum as the channel for communication,
data can be transmitted and received while roaming. Different wireless technologies
has been developed and seen wide deployment, in particular for WLANs and cellular
networks. Each of the technologies have their particular characteristics derived from
factors like frequency, protocols and purpose. For example WLANs have relatively
short range, but offer high throughput, while cellular networks offer longer range,
but lower throughput.

As these technologies have matured, it has become evident that some of these
technologies complement each other in certain scenarios. Together they can for
instance satisfy both the need of roaming in a larger areas, as well as offering high
bandwidth when remaining close to key locations. When such a network is realized,
and two or more RATs are integrated, it is referred to as a HetNet. Figure 2.5 shows
an example of how HetNets are deployed and utilized. The figure shows some UE,
illustrated as a cellphone, capable of connecting to both a WLAN and a cellular
network.
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Figure 2.5: Example of integration of wireless access networks. The UE has access
to both the WLAN and the cellular network.

The selection of which RAT to use when, remains a problem area where extensive
research has been done [14]. Typically a decision of what RAT to use is made when
a new network arrives [13]. This decision has been characterized as an optimization
issue [15], where the goal is to distribute the traffic over several RATs to maximize
the network flow. Other HetNets are integrated with other intentions. What they
have in common is that the end-user should be agnostic to the decision. It should be
handled by the network.

The reader should understand that a HetNet is deployed to satisfy one or more
Quality of Service (QoS) parameters. For example to offer:

– Throughput

– Robustness

– Priority

– Availability



Chapter3SDN in heterogeneous mobile
tactical networks

This chapter will present the scenario encountered by Kongsberg. The nodes in the
network are defined and explained. HetNet capabilities is added to the scenario
before SDN is proposed as a way to mitigate the complexity of the scenario.

3.1 Scenario

The scenario evaluated in this thesis is a potential real scenario worked out in
collaboration with Kongsberg. The scenario, use cases and problems presented are
all elaborations of the challenges faced, and potential solutions.

The network is a mobile tactical network of a number of mobile platforms,
communication is key. The platforms are operating in the air, at sea or on the ground,
and may be manned or unmanned. The term platform will be used throughout this
thesis and will be defined as a system consisting of a communication system, a local
system with a specific purpose, e.g. sensors and control mechanisms, and a switch
interconnecting all of them.

All platforms are deployed with a specific purpose. It may be to execute an
assignment, assist an already ongoing operation, or passively gather data. During
the deployment, the platforms require to communicate with a controlling entity and
other platforms. The controlling entity will be referred to as C2 and represents the
node where the platforms are administered; see C2 in left corner of figure 3.1. This
node will also be where the mobile tactical network is connected to the strategic
backbone.

13



14 3. SDN IN HETEROGENEOUS MOBILE TACTICAL NETWORKS

Figure 3.1: Illustration of a mobile tactical network with a variety of nodes. C2 is
the commanding entity, node 1 and 2 are ground nodes, node 3 is an aerial node,
and node 4 is a surface node.

As the platforms carry out their assignment, they are controlled by, or receive
orders from, C2. The multihop nature of the mobile tactical network routes this
traffic via the appropriate platforms, to the destination platform. Similarly, data
generated by the platforms, will traverse the intermediate platforms to reach the
destination. As a consequence, the links close to C2 will experience a heavier load,
because of the aggregated data from the outer platforms. Examples of data streams,
are video, control data and telemetry data. Certain streams are crucial for the
operation of the platform, and other for its current assignment.

The platforms are equipped with military RAT with limited available bandwidth.
As the data streams are aggregated throughout the network, some links may be
congested. A congested link is critical when several of the platforms have to be
controlled from C2, or if a platform is currently executing a mission which requires
live video. This can be mitigated by enforcing a certain level of traffic policing, a
scheme to differentiate data and police routing of the traffic.

3.2 Heterogeneous Capabilities

To extend the communication capabilities of the platforms, the platforms will be
equipped with two RATs. The radios deployed on each of the platforms have differing
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and complementing characteristics. They will be referred to as respectively Radio 1
and Radio 2, see figure 3.1. Radio 1 provides superior range, but lacks bandwidth.
Radio 2 provides better throughput than Radio 1, but inferior range. An illustration
of a platform with two radios are given in figure 3.2, where the local system is
connected to both radios.

Throughput Range Frequency
Radio 1 20 kbps Long 30-90 MHz
Radio 2 1 Mbps Med 225-400 MHz

Table 3.1: Comparison of the available communication links and their characteristics.
Radio 1 offers low throughput, but long range. Radio 2 provides higher throughput,
but shorter range.

Figure 3.2: The proposed architecture for a platform consisting of 2 RATs, a local
system, and a switch interconnecting them.

Multiple RATs provide HetNet capacities. It increases robustness and redundancy
in the network. Figure 3.3 illustrates how the platforms in 3.2 can be connected in an
example topology. The white radios all have connectivity with each other, while the
grey radio are missing one link. Radio 1, with long range, can ensure connectivity,
even though the platforms have moved out of range for Radio 2 connectivity. Data
can be redundantly transmitted over both channels simultaneously for critical data.
Throughput can be increased by utilizing both channels.
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Figure 3.3: Example topology for the platforms illustrated in figure 3.2. Radio 1
(white) are all interconnected, while Radio 2 (grey) only have links from node 1 to 2
and from node 2 to 3.

The radios are not just operating on different channels, they are also running
their separate routing software and algorithms. They are running well developed
routing protocols for interacting with the network and building topology for the type
of network they provide. This means that they are two distinct systems.

Radio 1 is running OSPF on the wired side, and a proprietary routing protocol over
the network. Radio 2 is also running OSPF on the wired side, and is currently running
Wireless OSPF on the network. Wireless OSPF builds topology by discovering its
neighbors and its second hop neighbors from the hello messages sent from its first
neighbors.

To enable the platforms to efficiently use the radios, an application or a system
that manages the radios has to be present. SDN has the potential to form a such a
solution.

3.3 SDN

SDN excel legacy networking with its dynamic nature, and ability to quickly adapt
to changes by modifying the policies of the network. It can provide granular control
of traffic to shape it according to any available scheme. By implementing the
functionality in software, a flexible solution is provided that can easily be extended
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with additional services. Building an SDN application can add granular control of
the traffic streams traversing the network, and traffic schemes can be worked out
for prioritization and filtering. [24] implements a detailed application for traffic
engineering. A similar type can be deployed on the platforms.

The core advantages of SDN applies, however, the nature of the mobile tactical
network, makes a centralized solution impractical. A centralized solution involves
traffic from the SDN Switches to the controller. The control traffic will vary depending
the implemented policies and whether the switch is programmed to operate in a
reactive or a proactive manner. Nonetheless, the control traffic will represent overhead
traffic too significant to sustain. Emitting heartbeat messages, installing new flow
rules and handling table misses over TCP is infeasible. The varying quality of the
links also poses problems to a centralized solution. The controller can be disconnected
as the platform moves in and out of range. The flow entries will then time out,
if such a scheme is chosen. These challenges can be mitigated by distributing the
intelligence by deploying multiple controllers, as recommended in [24].

Deploying one controller on each platform will ensure constant connectivity
between the switch and the controller, but at a cost. The controller will not have an
overview of the entire network, and will be ignorant of the existing topology. Without
awareness of the current topology, the controller is unable to enforce routing and
policing for the network.

The radios have routing protocols specifically designed for their working domain.
Years have been spent to tune them for optimal performance. Reconfiguring the
network to run SDN instead of the current software, is inpractical. It requires
significant effort and time to develop the required controller applications replacing
the existing functionality. A hybrid network is a network consisting of both SDN
devices and legacy devices, and can be a viable compromise. However, a hybrid
network has significant differences from a pure solution. The disadvantages has to
be mitigated.

Topology is key to develop a SDN system. Before policies can be enforced, the
topology of the network has to be established to know how to configure the traffic
flows. Acquiring topology for a network can be constructed in several ways. The
whole system does not have to be replaced by SDN switches, but a hybrid solution
should be explored. Chapter 4 will evaluate a number of approaches for the physical
infrastructure for the platform how it affects its ability to gather topology.





Chapter4Architecture design

This chapter proposes three conceptually different models for the architecture of a
platform. It walks through the models one by one, and attempts to clarify how they
differ in implementation effort, available topology and what grade they can influence
routing decisions.

4.1 Proposed models

The physical architecture of the platform greatly influences its ability to develop
topology data and understand the network. A controller can only communicate
directly with OF enabled devices. This means that if the radios handling routing and
transmitting/receiving of traffic do not offer OF support, information about network
topology and packets handled, can not be accessed by a regular controller. However
it is possible to extend controllers to produce topology in hybrid networks with both
SDN and legacy equipment.

This section will present three conceptually different models. Each of the models
vary in physical implementation. This affects cost, implementation complexity, and
effort required to realize the system. In the platform illustrations (figure 4.1, 4.2,
4.4, 4.3), the Host System represents the local system of the platform. The radios,
encapsulated by the dotted lines, represent physical separate systems, currently
deployed with a router and a radio interface. The router runs a routing protocol
specified for the respective radios. The controller is an SDN controller, and the
switch is an SDN switch. The controller and all SDN switches comprises what will
be referred to as the SDN system.

4.1.1 Model 1

The first design, figure 4.1, is designed with 1 SDN switch. The radios are left as is,
and offer no OF capabilities. This design is simple and cost effective, as it does not
require considerable changes to the radios. The SDN switch is connected to both

19



20 4. ARCHITECTURE DESIGN

radios, and can forward packets up or down, that is, to Radio 1 or Radio 2. The
SDN system of this model is confined to the controller, and a single SDN switch.

Figure 4.1: Platform design with one SDN switch interconnecting the radios and
the local system.

The benefit of this approach is the simple architecture, where the controller will
interact with a single switch. The carefully developed and designed radios, do not
have to be modified or changed. This is beneficial as the radios are expected to already
operate in a resource effective manner, both regarding channel optimization and
power management. The main effort of this approach is developing the application
to control the SDN switch.

Topology has to be built by the controller to allow it to decide how traffic streams
should be handled. Information about the network outside of the platform is not
initially available to the controller. The radios are running routing algorithms over
the interfaces facing the radio network, but topology messages cannot be intercepted
by the SDN system. However, there are two approaches to gather additional topology
data for the system. The topology built by the radios, may be accessible and can
be utilized by the controller, or the controller can be developed to build its own
topology using "hello" beacons.

Gathering the already computed topology from the radios require the radios to
have an open API or Command Line Interface (CLI). The controller can then be
extended to tap into the database of the radio router and collect topology data.
When such an interface is available, an extension to the controller has to be developed
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and integrated. Depending on the available interface, this extension may poll the
router at a certain interval to update the topology, or listen to events published by
the interface. This is determined by the software running in the radio router.

The convergence time for detecting changes in the topology, is determined by
the characteristics of the employed routing protocol. Protocols designed for low
bandwidth often have higher convergence time than high bandwidth networks. This
is because the protocols are designed to minimize the overhead traffic affiliated with
building topology, and can do so by sending less updates over the network than in
networks operating over higher bandwidth. A difference in expected convergence
time for each of the radios should be taken consideration of when implementing the
system.

Polling mode adds additional convergence time for detecting changes in the
topology, because of the delay between an update in the router database and next
poll. This can be mitigated by lowering the polling interval appropriately, but
increases internal bandwidth usage and unreasonable high rate may affect energy
consumption. The rate of polling should also be considered for each of the radios.
Radio 1, with low throughput, will have a lower update rate than Radio 2.

The radios may offer an interface for characteristics for the current links. This is
typically given as a quotient, Received Signal Strength Indication (RSSI) value, or
Signal-to-noise ratio (SNR). The controller can use this information to rate the links
according to a set of specifications.

The second approach is for the controller to build its own topology. To realize
this, a protocol has to be developed. A simple hello beacon may suffice in some
cases, while for proper robust routing a more complete topology discovery mechanism
should be implemented. A hello beacon broadcasted over both radio networks can
notify nearby nodes of its existence, its neighbours, and second hop neighbors.

A simple scheme would be to broadcast a hello messages containing the id of the
node, and its neighbours. The bit rate for a network consisting n nodes, which are
sending hello messages to n - 1 nodes every t second, can be calculated like shown
in equation 4.1.

The message size will depend on the size of the network, but for this example an
average size of 64 bytes will be used.

Bitrate = n ∗ (n − 1) ∗ size ∗ 8
t

(4.1)

In a network of 5 nodes and an average size of 64 bytes per packet. The overhead
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bit rate is given in equation 4.2. This is not significant for Radio 2, but difficult to
handle for Radio 1.

Bitrate = 5 ∗ (5 − 1) ∗ 64 ∗ 8
15 = 682bit/s (4.2)

Running a separate topology algorithm for the SDN system, will also add extra
overhead on top of the protocols already running in the radios. Developing different
algorithms for the two radios, should be considered to better tune the control traffic
to the available bandwidth. The system will also build full topology for both the
router and the SDN system. This redundancy can be avoided if the topology is
collected like described in the first approach. The trade-of and limitations of reading
the topology data from the radios may then be acceptable compared to the additional
generated overhead.

The radios, each running their respective routing engines, will process the traffic
before it arrives at the SDN switch. If the destination address of the arriving packet
does not belong to the intermediary platform, the radio routers, operating in a
multihop mode, will forward the traffic to the radio interface destined for its next
hop. This means that once traffic originating from the host system of a platform has
been sent to the appropriate radio (Radio 1 or 2) by the SDN switch, it is out of
control of the SDN system and solely routed by the radios.

This means that when data is generated by a platform, the only way to influence
the routing is the initial choice of sending the traffic to Radio 1 or 2. To affect the
routing decisions further tunnelling could be used to set up the next destination.

4.1.2 Model 2

The concept for Model 2 is to implement an SDN switch into the radio between the
router and the radio interface, see the radios in figure 4.2. This resembles a pipeline
structure, where packets move through the router, then the SDN switch, before it
is dispatched on the network. The switch is then able to intercept traffic flowing
from the radio interface to the radio router, and interact with it. There are several
approaches to the infrastructure of this model. Firstly one or both of the radios can
have the SDN switch implemented, secondly, the switch interconnecting the system
can or cannot be an SDN switch.
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Figure 4.2: Platform design with one SDN switch in each of the radios.

Pipelining the traffic via an SDN switch, enables the controller to manage the
traffic flowing between the router and the radio interface in the radio. Packets can
be inspected and policies enforced according to any traffic engineering scheme. It can
inspect the control traffic generated by the radio router, and either read the packets,
forward them, and build its own database, or stop the messages and substitute it
with a custom algorithm to build topology.

If the switch is used to tap into the control traffic generated by the router only
to read the packets, parts of the routing protocol deployed in the router, has to be
implemented in the controller. The current routing protocol, and the capabilities of
the controller framework, determine the effort required to implement the controller
compatible with the topology messages. SDN controllers support a certain range of
protocols, and a frequently deployed protocol is likely to be supported by the chosen
controller framework. If the routing protocol is custom made and/or proprietary,
the application will have to be extended to support it. Extendability should be
emphasized when initially selecting the controller.

Parsing the topology packets, is a similar approach to fetching the topology from
the switches in Model 1. It requires an understanding of the protocol to implement
the required functionality. However, reading the topology packets in real time, will
keep the controller updated in real time. There will be no added propagation delay
for topology changes. The controller will now build a redundant database, with the
exact same data as the router.

The second option, is to let the SDN switch and the controller run a routing
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algorithm itself. Filtering out the control traffic sent from the router, and running
complete routing in the controller, requires a considerable implementation effort.
This is similar to the second approach for Model 1.

Following the latter option, the router will continuously try to run the routing
protocol, but keep being filtered out by the SDN switch. This makes the router
redundant. However, the architecture could be a good approach to start developing
the radio into supporting SDN and OF. The switch could initially be set to forward
all traffic, could then incrementally be augmented to provide new services. This was
what OF was initially built for; carving out a piece of the network to be used for
development and testing [12].

The center switch for the platform can be an SDN switch or a legacy switch. The
platform will have a centralized controller that will have a view over the “whole”
network. This is the network of the platform, in addition to whatever topology it has
managed to gather. An SDN switch in the center will route the traffic originating
from the local system to the appropriate radio according to the policy scheme. A
legacy switch would route it according to its local forwarding table. However, the
traffic would still be intercepted by the SDN switch in the radios, handled there, and
then rerouted to the other radio if necessary.

When the SDN switches are deployed in the radios, the SDN system is able to
influence the routing decisions more than in Model 1. After sending the packet to
Radio 1 or 2, the routers will attempt to route the packets to a destination according
to its current topology. The packets can then be intercepted by the SDN switch
before reaching the radio interface. The SDN switch can then alter the packets
according to its own topology and traffic engineering requirements, and send it out
to the radio interface.

It is also possible to integrate an SDN switch into only one of the radios, illustrated
in 4.3. This can be done for example for testing purposes. The SDN system will not
have the topology for the radio without the SDN switch. The controller may either
let the radio handle the routing without knowledge of its links, or the topology can
be collected similar to the first approach in Model 1.
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Figure 4.3: Platform design with SDN switch in only one radio.

4.1.3 Model 3

Model 3 represents the most comprehensive and radical change to the existing systems.
The routers running in the radios are now substituted by an SDN switch, see figure
4.4. In such a scenario, the controller would be running a full routing suite. Similar
to Model 2, where topology was built by the controller, the topology has to be
completely built by the SDN system. However, the redundant router running as a
zombie, is now omitted. The SDN system is now entirely in control of the platform
network, and no work around is needed to route the traffic.

Figure 4.4: Platform design where the routers in the radios are substituted by SDN
switches.



26 4. ARCHITECTURE DESIGN

Implementing a controller application for what is already present in the radios
today will require a significant effort. Replicating the current functionality of the
router is possible, and may be beneficial considered the research spent to optimize
the protocols.

The controller has to run a controller application for each of the two radios
because of the different characteristics for the two radios. As discussed in chapter 3,
Radio 2 offers less bandwidth, and cannot be expected to run the same protocol as
Radio 1.

Deploying a full SDN solution makes the system more agile and dynamic. A
controllers extendability offers graceful ways to develop the system and test out new
functionality and protocols.



Chapter5Implementation

This chapter will first present a selection of available SDN controllers and the network
emulation tool Mininet. Then a simple proof-of-concept for Model 1(figure 4.1),
polling topology data, will be presented.

5.0.1 Available controllers

The flourishing scene of SDN has caught the attention of and given birth to several
initiatives and foundations. There are a vast range of controllers available, some of
which was conceived from the start of OF, while other has just emerged. Controllers
differ in implementation language, OF support, north bound API and internal
workings. A considerable amount of controllers are open source and is publicly
developed as has been the vision of SDN and OF from the start[12]. There are some
trends in the field, and some controllers are gaining more momentum than others[10].
Table 5.1 evaluates some of the most prominent open source controllers and their
key parameters.
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Controller Language Active OpenFlow Description
Ryu[7] Python Yes 1.5 Framework for SDN offer-

ing a centralized controller
with a python API which is
used by applications built
on top.

NOX[4] C++ No 1.0 The first OpenFlow
controller. Developed
by Nicira Networks and
widely used for the initial
research of OF. Now
discontinued.

POX[4] Python Hardly 1.1 A python version of NOX.
Eventually gained more
support than NOX. Pro-
vides a web and python
API.

OpenDaylight[9] Java Yes 1.4 Alliance founded by Net-
work Equipment Manufac-
turers (NEMs) offering an
SDN platform with a plu-
gin interface for extensions
and applications.

OpenContrail[6] C++/Python Yes ???? Mainly for cloud network-
ing and Network Function
Virtualization (NFV). Of-
fers services both on the
control and data plane;
OpenContrail Controller
and vRouter.

Floodlight[2] Java Yes 1.4 Controller with a module
system offering Graphical
User Interface (GUI), load
balancing, and a range of
switching apps.

ONOS[5] Java Yes 1.5 Open Network Operating
System. Hosted by the
Linux Foundation to de-
velop a SDN Operating
System (OS).

Beacon[1] Java No 1.0 Built in Java with OSGi
and Spring offering mod-
ule support. It has been
used as the basis for
Floodlight[11].

Table 5.1: Comparison of the available open source SDN controllers.
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5.1 Ryu

Ryu is an open SDN framework offering a component-based controller. It is supported
by Nippon Telegraph and Telephone (NTT) and is currently deployed in the NTT
cloud infrastructure. It has also been merged into OpenStack [8], an open source
cloud operating system, where it handles network virtualization. The ryu framework
is implemented in the control layer, figure 2.2, now illustrated in 5.1 and provides a
north-bound API for flexible development of components in the application layer.
Ryu is written in python, but offers an API in both python and REST. The REST
API is based on JavaScript Object Notation (JSON), which offers the opportunity to
implement applications in any given language.

Figure 5.1: Ryu architecture. From [20]. The controller is running in the control
layer, and the SDN applications are running in the application layer.

Ryu supports OF versions up to 1.5, along with Nicira Extensions [7]. It also
support Netconf, OF-config, Netflow, Simple Network Management Protocol (SNMP)
and others. Protocols are defined in separate python files. Currently it support a
range of protocols, including IPv4, IPv6, TCP, Border Gateway Protocol (BGP)
and Open Shortest Path First (OSPF). The controller can be extended with custom
protocols by implementing it, using the existing protocols as examples. Ryu also
comes with support for a selection of applications. A switch application with Snort
support, offers interoperability with the open source network Intrusion Detection
System (IDS) Snort. A BGP speaker for applications supporting BGP routing. And
recently it has added a Quagga server, enabling event driven messages from other
Quagga daemons.

The rich north-bound interface, the wide support for protocols, packets and
applications, along with the simplicity of extending the framework makes Ryu
great for rapid development and prototyping. Ryu comes bundled with a range of
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applications, including a layer 2 switch, a layer 3 switch, a firewall, an application
for graphical representation of the topology, and more. These applications can be
used to develop custom and other more complex systems.

Ryu was chosen for the implementation because of the flexibility it provided.
The well defined north-bound API, and the ease of developing and prototyping new
functionality was valuable. It could easily be integrated with other applications and
interfaces.

5.2 Mininet

Mininet [17] is an open source network emulator built in Python. It provides a
virtual network which can be used for testing, development and prototyping of new
protocols, networks, and SDN controllers. Every component of the network can
run on one computer including hosts, switches and controllers. Mininet has been
widely used for developing new SDN applications and can be connected to any type
of controller over a selected TCP port.

Mininet offers an environment for rapid development and prototyping. A network
can be started from the command line with options for customizing the initial
network, it can be programmed in Python, or defined using JSON. It comes bundled
with several applications for sample setups, and a GUI for designing a network.
The Python API is powerful, and is used to configure most aspects of the network,
including host configuration, network life cycle, and switch configuration.

A host in Mininet is a linux container with a separate namespace. It acts as a
real linux machine with ownership of processes, interfaces, ports, and routing tables.
The host can be configured to run custom processes and applications such as routing
software or IDSs.

Switches are set up as Linux bridges, or Open Virtual Switch (OVS), open
multilayer virtual switches. The Python API can configure these switches and map
them to individual controllers, and set the appropriate OF version.

The links connecting the nodes are virtual links over virtual interfaces. The
interfaces resides in a network namespace owed by the nodes. To emulate custom
characteristics of the links, a Linux tool called Traffic Control (TC) is used. TC
is integrated and can be configured by the Python API while programming the
networks. Bandwidth, delay, loss, and queue length can easily be altered.

Mininet was chosen for the implementation because of its well defined and
documented python API. The API enables simple development of complex networks,
which can be changed at run time.
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5.3 Implementation

This implementation has been carried out to illustrate the concept explained for the
first approach for building topology in Model 1 (4.1). The topology will be built by
polling the topology data from a router running a topology algorithm. The goal is
not to design a real scenario, but to show an example for how existing topology data
can be collected for a platform in the evaluated scenario.

5.3.1 Topology

The network is emulated using Mininet. It consist of three platforms with one router
on each platform. The routers represent the router running in a radio and is set up
using Quagga1. For testing purposes, Quagga is set up to run a simple OSPF set up
externally, and with a passive interface internally on the platform, see figure 5.2. A
mapping of IPv4 addresses to routers are shown in table 5.2

External Internal
R1 10.1.100.1/24 10.0.1.1/24
R2 10.1.100.2/24 10.0.2.1/24
R2 10.1.100.3/24 10.0.3.1/24

Table 5.2: Table for IPv4 addresses for the interfaces of the routers in the imple-
mented network.

Internally each platform has 1 host representing the local system of the platform,
1 host running the local controller, and an SDN switch connected in-band to the local
controller(see figure 5.2. S4 is set up as a basic layer 2 switch to simulate connection
between the platforms. By disconnecting a platform from S4, it can be considered
disconnected from the network by the other platforms.

1Quagga is a widely deployed open source routing software suite.
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Figure 5.2: Topology of the network implemented using Mininet.

The network programmed in Mininet is given in appendix A. It can be started
by running the command in listing 1. The script defines and starts all components
of the network, except for the controllers, which will have to be started separately.

Listing 1 Command to start the network.
$ sudo python topology_quagga_ospf.py

The topology script creates custom classes for the routers (OSPFRouter), switches
(OSPFSwitch) and hosts (OSPFHost). The custom classes are created to add
additional required functionality to each of the nodes in the network. Listing 2
illustrates how they are instatiated. The cls parameter sets the custom class for the
nodes.

Listing 2 Instatiation of a switch, a router, and a regular host in the networking
script.
s1 = self.addSwitch(’s1’, dpid=’00000000000000a1’, cls=OSPFSwitch,

protocols=’OpenFlow13’, inband=True)↪→

r1 = self.addHost(r1name, cls=OSPFRouter,
quaggaConfFile=r1quaggaConf, zebraConfFile=zebraConf,
intfDict=r1intfs)

↪→

↪→

h1 = self.addHost(’h1’, cls=OSPFHost, ip=’10.0.1.1’,
route=’10.0.1.254’)↪→
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The router class is set up to configure the host to operate as a Quagga router
with the correct settings and start a zebra and OSPF daemon for each of the routers.
The commands in listing 3 is executed by the router class. It starts a Zebra and an
OSPF daemon with names corresponding to the name of the router.

Listing 3 Command used to configure the routers appropriately.
self.cmd( ’/usr/lib/quagga/zebra -d -f %s -z %s/zebra%s.api -i

%s/zebra%s.pid’ % (self.zebraConfFile, QUAGGA_RUN_DIR, self.name,
QUAGGA_RUN_DIR, self.name) )

↪→

↪→

self.cmd( ’/usr/lib/quagga/ospfd -d -f %s -z %s/zebra%s.api -i
%s/ospfd%s.pid’ % (self.quaggaConfFile, QUAGGA_RUN_DIR,
self.name, QUAGGA_RUN_DIR, self.name) )

↪→

↪→

When the network is started, the controller for S4 can be started by running the
command in listing 4. S4 is configured to connect to C4 running on port 6656. S4 is
a simple layer 2 switch implemented in Ryu. It is set up to print OSPF messages for
debugging purposes.

Listing 4 Command to start the controller for S4.
$ sudo ryu-manager --ofp-tcp-listen-port 6656 simple_switch.py

Next, the local controller for the platforms has to be started. To start the
controller in the controller-host on a platform, a shell for the node has to be opened
from the Mininet CLI, and then start the Ryu controller in the newly opened shell.

Listing 5 .
mininet> xterm h4

$ sudo ryu-manager --ofp-tcp-listen-port 6653 my_switch.py

When all the controllers for each of the controller-hosts (C1, C2, and C3), are
started. The network is up and running, including hosts, routers, switches, and
controllers, on a single machine.

5.3.2 Topology Parser

The controller started in listing 5, is set up to start a layer 2 switch implemented
in Ryu. The switch is augmented to spawn a thread running the topology parser.
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The data gathered by the topology parser can be utilized as desired to achieve the
necessary functionality for the SDN switch.

Listing 6 .
self.topology_thread = hub.spawn(self.topology_parser)

The topology parser has been implemented using an interface opened by Quagga
on port 2604. This interface offers a CLI for acquiring the current data for the
router. The topology parser connects to the interface using telnet and executes the
appropriate commands. The result is returned as a text string, which is interpreted
by the topology parser. The topology parser offers a telnet and a vtysh method to
acquire the topology, depending on if the controller is running on the same system
as the router or not.

The topology parser has functions to interpret the output of different commands
for Quagga. These functions build up a dictionary called router(listing 7), which
represents the current state of the router. It includes the router id, and information
about the attached routers.

Listing 7 Router object of the topology parser from the experiment.
1 {
2 "Router ID": "10.1.100.1",
3 "Attached Routers": {
4 "10.1.100.3": {
5 "Connected to": ["10.0.3.0", "10.1.100.1"],
6 "Age": "370",
7 "Connected": "True"
8 },
9 "10.1.100.2": {

10 "Connected to": ["10.0.2.0", "10.1.100.3"],
11 "Age": "371",
12 "Connected": "True"
13 }
14 }
15 }

The topology parser instantiated in the thread spawned by the controller is
updated at the polling frequency set by the controller (listing 8). This will ensure
the data is updated. The information gathered can be handed to a map for IPs
maintained by the router and used as necessary.



5.3. IMPLEMENTATION 35

Listing 8 .
router_parser_handle = topology_parser(self.router_id)
while True:

router_parser_handle.update()
print router_parser_handle.router
time.sleep(15)





Chapter6Experiences from the
Implementation

This chapter will mention what was done in the implementation along with some
challenges encountered.

The implementation illustrates that topology data may be collected from a router
running a topology discovery algorithm. This is, however, clearly limited by the API
offered by the routing software.

The end result was an application that was able to retrieve topology data from
the router, structure it for internal use, select relevant information, and serve it
to the controller. It illustrates that the approach is a viable option for acquiring
topology. However, the implemented application is not a comprehensive solution. To
achieve a fully dynamic solution, adequate effort has to be put into development of
the application.

The controller has to support gathering the topology data. This could already
be implemented and bundled with the controller, or controller has to have support
for developing extensions. Ryu turned out to have a recently added zebra server.
This was attempted implemented, but lacked documentation and required support at
the time. However, Ryu had a well defined API for spawning threads, and creating
interfaces between applications.

The routing software has to have an available APIs. A rich and comprehensive
API will provide detailed information for the state of the router, but requires a deep
understanding of the routing protocol. The data has to be interpreted to collect the
data relevant to the controller. The effort for developing a dynamic application to
collect this data, increases greatly as the routing protocol increases in complexity.
The format for the API is important. The Quagga API used in the implementation,
responded with text strings. These text strings had to be structured for further
use. Responses in JSON or eXtensible Markup Language (XML) would simplify this
process.
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Chapter7Discussion and Conclusion

This last chapter will first discuss the models in chapter 4. Then state the conclusion
for this thesis along with potential future work.

7.1 Discussion

The models proposed in chapter 4 have varying characteristics and advantages.
Throughout the models, they present three different ideas for managing topology
for the SDN system. The first is to collect already gathered topology data from
the radios. This will not generate any additional network traffic, and can be done
without modifying the radios. It is explained for Model 1, and Model 2 with only
one radio with an SDN switch implemented.

Topology can also built by tapping into the control traffic generated by the routers.
This requires the controller to be able to interpret the protocol messages, which is
likely for common protocols, but have to be implemented for custom ones. This
approach will not generate additional network traffic, but an SDN switch has to be
implemented in the radio.

Lastly, topology can be built by developing a custom topology application for the
SDN system. This requires much effort, and should be carefully considered before
carrying out. The custom topology messages will create additional network traffic if
the router is running simultaneously. For both Model 2 and Model 3, the routing
protocol for the router can be eliminated.

Routing can be influenced in varying degree. It can either be directly edited
by intercepting the traffic and overriding the parameters if necessary, or it can be
influenced by utilizing legacy routing schemes to force routing through the network.

The different Models and the appurtenant approaches to building topology,
requires varying implementation effort. Collecting the already existing topology
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depends on the API offered by the routing software, but it has to be parsed and
interpreted before it is integrated into the topology application. The application
interpreting the data, will have to be developed unless the controller framework offers
an interface to the router. Listening to the topology messages of the router, requires
the controller to understand the protocol, which may also be considered as a major
task. However, developing an application to create topology will requires the most
effort.

Model 1, which doesn’t require any modifications to the radios, would be the
natural first step when moving towards a full SDN system. It provides some basic
functionality, while not requiring changes to existing equipment. The next step
would then be to implement an SDN switch into the radio. Initially, implementing
it will not affect the system at all. The SDN system can then be extended with
new functionality, and can be used for testing, Eventually, the SDN switch can be
implemented to handle most of the functionality of the radio. Lastly the transition
can be smooth to a full SDN system with the same capabilities as the legacy network,
but with the added properties of SDN.

7.2 Conclusion

In this study the scenario encountered by Kongsberg, involving heterogeneous mobile
nodes, has been elaborated, and the characteristics of the network has been structured.
It was encountered that the first step for transitioning towards an SDN network, was
to build topology for a SDN controller. Then three conceptually different architecture
models are presented. The architecture of the models influences its ability to build
the topology for the SDN application. It also affects implementation effort and
the influence over the routing decisions. A proof of concept was developed for an
approach that collects topology data from a router. It turned out to be a feasible
solution to collect this information, but required extensive knowledge of the deployed
routing protocol. Lastly it is argued that the models can be used to incrementally
implement SDN capabilities into the evaluated platform.

7.3 Future Work

Developing a more dynamic SDN application to parse the topology data from
the routing software would make the application more applicable to a changing
environment. Developing and evaluating how SDN applications can use the gathered
topology, would be the next step towards a software defined heterogeneous mobile
tactical network.
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AppendixAMininet Topology Script

1 from mininet.topo import Topo
2 from mininet.net import Mininet
3 from mininet.cli import CLI
4 from mininet.log import setLogLevel, info, debug
5 from mininet.node import Host, RemoteController
6 from mininet.node import Controller, OVSController
7 from mininet.node import OVSKernelSwitch
8

9 QUAGGA_DIR = ’/usr/lib/quagga’
10 # Must exist and be owned by quagga user (quagga:quagga by default on

Ubuntu)↪→

11 QUAGGA_RUN_DIR = ’/var/run/quagga’
12 # To avoid permission denied problems
13 # Folder bust be owned by quagga:quaggavty
14 # Files must be owned by quagga:quagga
15 # Files must be executable
16 CONFIG_DIR = ’/etc/quagga/configs’
17

18 class InbandController( RemoteController ):
19 def __init__(self, *args, **kwargs):
20 RemoteController.__init__(self, *args, **kwargs)
21

22 def checkListening( self ):
23 "Overridden to do nothing."
24 return
25

26 class OSPFHost(Host):
27 def __init__(self, name, ip, route, *args, **kwargs):
28 Host.__init__(self, name, ip=ip, *args, **kwargs)
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29

30 self.route = route
31

32 def config(self, **kwargs):
33 Host.config(self, **kwargs)
34

35 debug("configuring route %s" % self.route)
36 self.cmd(’ip route add default via %s’ % self.route)
37

38 class OSPFSwitch(OVSKernelSwitch):
39 def __init__(self, name, *args, **kwargs):
40 OVSKernelSwitch.__init__(self, name, *args, **kwargs)
41

42 def start(self, a):
43 return OVSKernelSwitch.start(self, [cmap[self.name]])
44

45 class OSPFRouter(Host):
46 def __init__(self, name, quaggaConfFile, zebraConfFile, intfDict,

*args, **kwargs):↪→

47 Host.__init__(self, name, *args, **kwargs)
48

49 self.quaggaConfFile = quaggaConfFile
50 self.zebraConfFile = zebraConfFile
51 self.intfDict = intfDict
52

53 def config(self, **kwargs):
54 Host.config(self, **kwargs)
55 self.cmd(’sysctl net.ipv4.ip_forward=1’)
56

57 for intf, attrs in self.intfDict.items():
58 self.cmd(’ip addr flush dev %s’ % intf)
59 if ’mac’ in attrs:
60 self.cmd(’ip link set %s down’ % intf)
61 self.cmd(’ip link set %s address %s’ % (intf, attrs[’mac’]))
62 self.cmd(’ip link set %s up’ % intf)
63 for addr in attrs[’ipAddrs’]:
64 self.cmd(’ip addr add %s dev %s’ % (addr, intf))
65

66 self.cmd(’/usr/lib/quagga/ospfd -d -f %s -z %s/zebra%s.api -i
%s/ospfd%s.pid’ % (self.quaggaConfFile, QUAGGA_RUN_DIR,
self.name, QUAGGA_RUN_DIR, self.name))

↪→

↪→
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67

68 def terminate(self):
69 self.cmd("ps ax | egrep ’ospfd%s.pid|zebra%s.pid’ | awk

’{print$1}’ | xargs kill" % (self.name, self.name))↪→

70 Host.terminate(self)
71

72 class OSPFTopo( Topo ):
73

74 def build( self ):
75 s1 = self.addSwitch(’s1’, dpid=’00000000000000a1’,

cls=OSPFSwitch, protocols=’OpenFlow13’, inband=True)↪→

76 s2 = self.addSwitch(’s2’, dpid=’00000000000000a2’,
cls=OSPFSwitch, protocols=’OpenFlow13’, inband=True)↪→

77 s3 = self.addSwitch(’s3’, dpid=’00000000000000a3’,
cls=OSPFSwitch, protocols=’OpenFlow13’, inband=True)↪→

78 s4 = self.addSwitch(’s4’, dpid=’00000000000000a4’,
cls=OSPFSwitch, protocols=’OpenFlow13’)↪→

79

80 zebraConf = ’%s/zebra.conf’ % CONFIG_DIR
81

82 # Router 1
83 r1name = ’r1’
84 r1eth0 = { ’mac’ : ’00:00:00:00:01:01’,
85 ’ipAddrs’ : [’10.0.1.254/24’] }
86 r1eth1 = { ’mac’ : ’00:00:00:00:01:02’,
87 ’ipAddrs’ : [’10.1.100.1/24’] }
88 r1intfs = { ’r1-eth0’ : r1eth0,
89 ’r1-eth1’ : r1eth1}
90 r1quaggaConf = ’%s/quagga1.conf’ % (CONFIG_DIR)
91 r1 = self.addHost(r1name, cls=OSPFRouter,

quaggaConfFile=r1quaggaConf, zebraConfFile=zebraConf,
intfDict=r1intfs)

↪→

↪→

92

93 # Router 2
94 r2name = ’r2’
95 r2eth0 = { ’mac’ : ’00:00:00:00:02:01’, ’ipAddrs’ :

[’10.0.2.254/24’] }↪→

96 r2eth1 = { ’mac’ : ’00:00:00:00:02:02’, ’ipAddrs’ :
[’10.1.100.2/24’] }↪→

97 r2intfs = { ’r2-eth0’ : r2eth0, ’r2-eth1’ : r2eth1}
98 r2quaggaConf = ’%s/quagga2.conf’ % (CONFIG_DIR)
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99 r2 = self.addHost(r2name, cls=OSPFRouter,
quaggaConfFile=r2quaggaConf, zebraConfFile=zebraConf,
intfDict=r2intfs)

↪→

↪→

100

101 # Router 3
102 r3name = ’r3’
103 r3eth0 = { ’mac’ : ’00:00:00:00:03:01’, ’ipAddrs’ :

[’10.0.3.254/24’] }↪→

104 r3eth1 = { ’mac’ : ’00:00:00:00:03:02’, ’ipAddrs’ :
[’10.1.100.3/24’] }↪→

105 r3intfs = { ’r3-eth0’ : r3eth0, ’r3-eth1’ : r3eth1}
106 r3quaggaConf = ’%s/quagga3.conf’ % (CONFIG_DIR)
107 r3 = self.addHost(r3name, cls=OSPFRouter,

quaggaConfFile=r3quaggaConf, zebraConfFile=zebraConf,
intfDict=r3intfs)

↪→

↪→

108

109 # Add links to their separate networks
110 self.addLink(r1, s1)
111 self.addLink(r2, s2)
112 self.addLink(r3, s3)
113

114 # Add links to connect the OSPF network
115 self.addLink(r1, s4)
116 self.addLink(r2, s4)
117 self.addLink(r3, s4)
118

119 # Add hosts to each platform
120 h1 = self.addHost(’h1’, cls=OSPFHost, ip=’10.0.1.1’,

route=’10.0.1.254’)↪→

121 h2 = self.addHost(’h2’, cls=OSPFHost, ip=’10.0.2.1’,
route=’10.0.2.254’)↪→

122 h3 = self.addHost(’h3’, cls=OSPFHost, ip=’10.0.3.1’,
route=’10.0.3.254’)↪→

123 self.addLink(h1, s1)
124 self.addLink(h2, s2)
125 self.addLink(h3, s3)
126

127 # Add hosts for controllers for each platform
128 h4 = self.addHost(’h4’, ip=’10.0.1.2’)
129 h5 = self.addHost(’h5’, ip=’10.0.2.2’)
130 h6 = self.addHost(’h6’, ip=’10.0.3.2’)



47

131 self.addLink(h4, s1)
132 self.addLink(h5, s2)
133 self.addLink(h6, s3)
134

135 topos = { ’ospf’ : OSPFTopo }
136

137 # One controller for taking care of the OSPF network and
138 # one for the switches outside of the OSPF network.
139 # c1 running inside the OSPF network. Runs a simple switch.
140 c1 = InbandController(name=’c1’, ip=’10.0.1.2’, port=6653)
141 c2 = InbandController(name=’c2’, ip=’10.0.2.2’, port=6654)
142 c3 = InbandController(name=’c3’, ip=’10.0.3.2’, port=6655)
143 c4 = InbandController(name=’c4’, ip=’127.0.0.1’, port=6656)
144 # ryu-manager --ofp-tcp-listen-port 6656 simple_switch.py
145

146 cmap = {’s1’: c1, ’s2’: c2, ’s3’: c3, ’s4’: c4}
147

148 if __name__ == ’__main__’:
149 setLogLevel(’debug’)
150 topo = OSPFTopo()
151

152 net = Mininet(topo=topo, controller=None)
153

154 for controller in cmap:
155 net.addController(cmap[controller])
156

157 net.start()
158 # Set IP to be able to communicate with the in-band controller
159 net.getNodeByName(’s1’).cmd(’ifconfig s1 inet 10.0.1.10’)
160 net.getNodeByName(’s2’).cmd(’ifconfig s2 inet 10.0.2.10’)
161 net.getNodeByName(’s3’).cmd(’ifconfig s3 inet 10.0.3.10’)
162 net.getNodeByName(’s4’).cmd(’ifconfig s4 inet 10.1.100.4’)
163

164 CLI(net)
165

166 net.stop()
167

168 info("done\n")
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