
Inter-/Intra-session Recurrent Neural
Network for Session-based
Recommender Systems

Ole Steinar Lillestøl Skrede

Master of Science in Computer Science

Supervisor: Massimiliano Ruocco, IDI

Department of Computer Science

Submission date: July 2017

Norwegian University of Science and Technology

Ole Steinar Lillestøl Skrede

Inter-/Intra-session Recurrent Neural
Network for Session-based Recom-
mender Systems

Master’s Thesis in Computer Science, Spring 2017

Data and Artificial Intelligence Group
Department of Computer and Information Science
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology
Submission date: July 2017
Supervisor: Massimiliano Ruocco

Abstract
Recommender systems are useful to users of a service and to the company offering
the service. Good recommendations can help users find what they are looking
for faster, and they can help users discover new content. For businesses, the re-
commendations can improve user engagement. In recent years, research has been
done on employing Recurrent Neural Networks (RNNs) within the case of recom-
mender systems. Results have been promising, especially in the session-based
setting where RNNs have been shown to outperform state-of-the-art models. In
many of these experiments, the RNN could potentially improve its recommend-
ations by utilizing information about a user’s past sessions, in addition to his
interactions in the current session. A problem for session based recommenders,
is how to produce accurate recommendations at the start of a session, before the
system has learned much about the user’s current interests.
We propose a novel approach that extends the existing RNN-based session-

based recommender, making it able to process the user’s recent sessions, to im-
prove recommendations. This is done by using a second RNN layer to learn from
recent sessions, and predict the user’s interest in the current session. By feed-
ing this information to the original RNN layer, the proposed solution is able to
improve its recommendations.

Our experiments on three different datasets, show that the proposed approach
can significantly improve recommendations throughout the sessions, compared to
a single RNN working only on the current session. The proposed model especially
improves recommendations at the start of sessions, and is therefore able to deal
with the cold start problem within sessions.

i

Sammendrag
Anbefalingssystem er nyttige både for brukere av en tjeneste og bedriften som
tilbyr tjenesten. Gode anbefalinger kan hjelpe brukere med å lettere finne det de
leter etter, og de kan hjelpe brukere med å oppdage nytt innhold. Anbefalingene
kan også øke brukerengasjemnt i tjenesten til bedriften. De siste årene har det
blitt gjort forskning på bruk av rekurrente nevrale nettverk (RNN) innen anbe-
falingssystemer. Resultatene har vert lovende, spesielt i sesjonsbaserte tilfeller,
der RNN har gjort det bedre enn State of the art modeller. I mange av disse
eksperimentene, kunne RNNene potensielt ha forbedret anbefalingene sine ved
å benytte informasjon om brukerenes tidligere sesjoner, i tillegg til brukerens
interaksjoner i den gjeldende sesjonen. Et problem for sesjonsbaserte anbe-
falingssystmer er hvordan de kan finne gode anbefalinger tidlig i sesjonen, når
systemet enda ikke har lært særlig om brukerens gjeldende interesser.
Vi foreslår en ny metode som utvider det eksisterende RNN baserte sesjons-

baserte anbefalingssystemet slik at det kan bruke brukere sine tidligere sesjoner
til å forbedre anbefalingene. Dette gjøres ved å bruke et ekstra RNN lag til å
lære fra nylige sesjoner, og forutse brukerens interesser i den nåværende sesjonen.
Ved å formidle denne informasjonen til det første RNN laget, kan den foreslåtte
modellen forbedre sine anbefalinger.

Eksperimentene våre på tre ulike datasett, viser at den foreslåtte modellen
oppnår signifikant forbedrede anbefalinger i sesjoner, sammenlignet med et enkelt
RNN som kun forholder seg til hver enkelt sesjon. Den foreslåtte modellen oppnår
spesielt forbedrede anbefalinger i begynnelsen av sesjonene, og er dermed i stand
til å håndtere kald start problemet innad i sesjoner.

iii

Preface
This thesis was written in the spring of 2017 for the Department of Computer

Science (IDI) at the Norwegian University of Science and Technology (NTNU).
Many thanks to supervisor Massimiliano Ruocco for his guidance, input, and

support. Thanks also to Helge Langseth for his contributions.

v

Contents
1 Introduction 1

1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 3
1.3 Research Method . 3

1.3.1 Limitations . 4
1.4 Contributions . 4
1.5 Thesis Structure . 5

2 Background Theory 7
2.1 Recommender Systems . 7

2.1.1 Collaborative Filtering . 7
Matrix Factorization . 8
Bayesian Personalized Ranking Matrix Factorization 9
Item k Nearest Neighbors 10

2.1.2 Content-based Filtering . 11
2.1.3 Cold Start Problem . 11
2.1.4 Session-based Recommender Systems 12

2.2 Neural Networks . 12
2.2.1 Activation Functions . 14
2.2.2 Training Neural Networks 14
2.2.3 Dropout . 15
2.2.4 Minibatches . 15

2.3 Deep Learning . 15
2.3.1 Recurrent Neural Networks 16

LSTM and GRU . 18
2.3.2 Item Representations . 22

One-hot Vectors . 22
Embeddings . 22

2.4 Evaluating Recommender Systems 23
2.4.1 Recall . 23
2.4.2 MRR . 24

2.5 Next Basket Recommendation . 24
2.5.1 Representing Past User Sessions in Next Basket Recom-

mendation . 25

vii

Contents

3 Related work 27
3.1 RNN as a Recommender System 27
3.2 Dealing with Large and Dynamic Item Sets 29
3.3 Temporal Dynamics . 29
3.4 Context Aware Systems . 31
3.5 Other Relevant Techniques and Approaches 31

3.5.1 Dealing with Long Sessions 31
3.5.2 Feeding Rich Input to the Recommender System 32
3.5.3 Training Recommender Systems Consisting of Multiple RNN

Layers . 32
3.5.4 Data Augmentation and Privileged Information 33

4 Proposed architecture 35
4.1 Main Idea: the II-RNN . 35
4.2 Problem Formulation . 36
4.3 Model Description . 37

4.3.1 Intra-session RNN . 37
4.3.2 II-RNN . 38

5 Experimental Setup 41
5.1 Experimental Setup . 41

5.1.1 Datasets . 41
Reddit Dataset . 41
Last.fm Dataset . 42
Instacart Dataset . 42
Preprocessing . 42

5.1.2 Baselines . 43
Most Popular . 43
Most Recent . 43
Item-kNN . 44
BPR-MF . 44

5.1.3 Implementation . 44
5.1.4 Experiments . 45

First-n Recommendations 45
Creating Mini-batches . 46

6 Results and Discussion 47
6.1 Results . 47
6.2 Evaluation . 56

6.2.1 Baselines . 56
6.2.2 RNN and II-RNN . 56
6.2.3 BPR-MF . 57

viii

Contents

6.2.4 Dropout . 57
6.2.5 Average-Pooling and Last Hidden State 57

6.3 Discussion . 57
6.3.1 Usefulness of the Inter-Session Level RNN 57
6.3.2 Importance of Retraining the Model 58
6.3.3 Artificial and Natural Sessions 58
6.3.4 Declining Performance on the Instacart Dataset 58

7 Conclusion 59
7.1 Limitations . 59

7.1.1 Response time . 59
7.1.2 Scalability . 59
7.1.3 Dynamic set of items and item with short lifespans 59
7.1.4 Suggestion to Overcome the Limitations 60

7.2 Contributions . 60
7.3 Answering Research Questions . 60
7.4 Further work . 61

7.4.1 Producing recommendations before the first user interaction 62
7.4.2 Session representations . 62
7.4.3 Learning Item Embeddings 62
7.4.4 Recommending Items with Short Lifespans 62
7.4.5 Alternating Training . 63
7.4.6 Novel Recommendations . 63
7.4.7 Utilizing Contextual Information 63

Bibliography 65

ix

List of Figures
2.1 A feed-forward network. Examples are inserted into the network

by setting the values in the input layer. The values of the nodes in
each layer are computed as a function of the values in the nodes
in the prior layer. 13

2.2 Sigmoid, ReLU, and tanh activation functions. 14
2.3 A simple RNN. Represented as a loop(left), and unrolled to t

timesteps(right). 17
2.4 Simple illustration of a Recurrent Neural Network (RNN). 17
2.5 Illustration of a long short-term memory (LSTM), adapted from

[20]. Rectangles represent element-wise operations. Circles and
ellipses represent Neural Network (NN) layers. 19

2.6 Illustration of a gated recurrent unit (GRU), adapted from [21].
Rectangles represent element-wise operations. Circles and ellipses
represent NN layers. 21

3.1 Illustration of the proposed model in [1]. 28
3.2 RNN using multiple GRU cells, unrolled to three time steps. Any

number of sequence lengths is of course possible as with a RNN
with one layer of cells. 28

3.3 Adapted illustration of the parallel GRU model used in [6]. 33
3.4 Adapted illustration of the data augmentation used in [5]. 34

4.1 Illustration of the intra-session RNN. 38
4.2 Illustration of the inter-/intra-session RNN (II-RNN). This illus-

tration does not show how the session representations are obtained. 39
4.3 Illustration of the II-RNN with average pooling to create session

representations from items. 40
4.4 Illustration of the II-RNN where the last hidden state of the intra-

session RNN is stored as the session representation. 40

6.1 First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Reddit dataset, with Recall@5 metric. . . 53

6.2 First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Reddit dataset, with MRR@5 metric. . . 53

xi

List of Figures

6.3 First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Last.fm dataset, with Recall@5 metric. . 54

6.4 First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Last.fm dataset, with MRR@5 metric. . . 54

6.5 First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Instacart dataset, with Recall@5 metric. 55

6.6 First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Instacart dataset, with MRR@5 metric. . 55

xii

List of Tables
1.1 Outline of this thesis. 5

2.1 Illustration of collaborative filtering. User4’s rating of Item3 is
predicted by using the ratings of Item3 (yellow) from similar users
(green). 8

2.2 Simple example of average pooling and maximum pooling. Values
for max-pooling are indicated with blue color. 26

5.1 Statistics for our three datasets, after preprocessing. 43
5.2 Best found configurations for the RNN models. We found that the

configurations that worked well for the II-RNN, worked well for
the standalone intra-session RNN as well. Not all configurations
are applicable to the standalone intra-session RNN. 45

6.1 Recall and MRR scores for the RNN models and the baselines.
Relative scores are given compared to the standalone intra-session
RNN. The best results per dataset are highlighted. 48

6.2 Recall and MRR scores for the Bayesian Personalized Ranking
Matrix Factorization (BPR-MF) baseline and the RNN models on
the hold-one-out version of the dataset. Only the best performing
II-RNN model is included for each dataset. Relative scores are
given compared to the standalone intra-session RNN. The best
results per dataset are highlighted. 49

6.3 First-n-recommendations results on the Reddit dataset. The val-
ues for II-RNN are for the last hidden state implementation. . . . 50

6.4 First-n-recommendations results on the Last.fm dataset. The val-
ues for II-RNN are for the average-pooling implementation. 51

6.5 First-n-recommendations results on the Instacart dataset. The
values for II-RNN are for the last hidden state implementation. . . 52

xiii

Glossary
BPR Bayesian Personalized Ranking. 38

BPR-MF Bayesian Personalized Ranking Matrix Factorization. xiii, 8, 9, 27, 44,
47, 49, 57, 58

FFNN Feed-forward Neural Network. 13, 25

GRU gated recurrent unit. xi, 18, 20–22, 27, 28, 32, 33, 37–39, 45, 47, 57, 63

II-RNN inter-/intra-session RNN. xi–xiii, 36–40, 43, 45, 47, 49–63

Item-kNN Item-k nearest neighbors. 8, 10, 12, 27, 44, 47, 56

LSTM long short-term memory. xi, 18–20, 22, 30, 62

MRR mean reciprocal rank. 24, 37

NBRP next basket recommendation problem. 24, 25

NN Neural Network. xi, 8, 12, 13, 15, 16, 19, 21, 22, 25, 30, 32, 62

ReLU rectified linear unit. 14, 20

RNN Recurrent Neural Network. xi–xiii, 1–4, 11–13, 16–18, 20, 23, 25, 27–33,
35–40, 42, 43, 45, 47–49, 53–58, 60–62

xv

1 Introduction
Here, we introduce the domain of our work and what we want to achieve, we
describe our contributions, and the reminder of this thesis is presented.

1.1 Background and Motivation
There is a vast amount of information and products available on the web. Even
within a single website the number of items can be overwhelming for users. This
is true for news sites, streaming services, e-commerce sites, and many other sites
on the Internet. Recommender systems can help create a better user experience
by helping users find what they are looking for and are interested in. They can
also help businesses in different ways, like showing targeted ads, help to offer a
better product, and increase user engagement.

Users are generally interested in finding what they are looking for as easy
as possible, or to be shown products or content that interests them, but which
they normally would not have discovered on their own. E.g. Spotify helps users
discovering new music, tailored to the user, through their Discover Weekly 1

playlists. When a user buys something on the e-commerce site Amazon, the site
display items that other users bought together with the chosen item.
In a session-based setting, the actions of the user within a session are cor-

related. This means that a recommender system can observe the user’s actions
and improve the recommendations as the system learns more about the user’s
interests. Recently, RNNs has been shown to work well in the session-based set-
ting [1–4]. RNNs are naturally good at working with sequences of data, because
they have an internal memory of what they have already seen, and the ability to
update and discard information in their memory. Therefore, a RNN will make
more accurate recommendations as it learns more about a user. This also means
that a simple RNN will struggle to make good recommendations at the start of a
session. The advantage a RNN has over many other recommendation/prediction
models, is that it naturally considers the order of sequences. Many other models
use the relaxed assumption that the order does not matter, or that items are

1"Introducing Discover Weekly: your ultimate personalised playlist":
https://press.spotify.com/it/2015/07/20/introducing-discover-weekly-your-ultimate-
personalised-playlist/

1

1 Introduction

only dependent on the last previous item in the sequence. Solutions that take
the whole sequence into account are possible, but RNNs considers the order of
sequences in a very natural way that few other models do.

One of the first papers that looked at how a RNN can be used for session-based
recommendations, was [1]. Here a straightforward implementation of a session-
based RNN recommender system is made. The RNN processes the sequence
of items interacted with, and produce a list of recommended items. Items are
represented as one-hot vectors at the input stage. The proposed RNN model
achieved marked improvements over widely used approaches, on two datasets.
The datasets contained sessions of item interactions in the e-commerce and movie
domains. Later, [5] looked at how the model from [1] can be improved through
data augmentation, pre-training, privileged information, and output embeddings.
These techniques are explained in Chapter 3. All the suggested techniques gave
improvements over the original RNN model from [1]. In [4] they investigate how
contextual information can be used to improve a session-based RNN recommender
system. That is, a RNN similar to the one proposed in [1], is improved by
considering the temporal difference between events in a session, and the input
context of those events. The input context is the external situation, such as the
time of day or weather, of a event. In [6], it is shown how information about items
can be used to improve a session-based RNN recommendation system. They used
existing methods to create feature vectors from images or text related to items.
Multiple modified variants of the architecture from [1], that are able to process
the additional feature vector, are proposed. The models exploiting the additional
feature vector, are shown to outperform the original model.

The aforementioned papers only look at recommendations on a per session
basis. That is, given a user with an interaction history consisting of multiple
sessions, using information from past sessions to improve recommendations in
the next session could be possible. This possibility has not yet been thoroughly
researched. Intuitively, there should be a strong dependence between sessions.
E.g. for a news site, a user will probably be interested in reading news within the
same news categories that he read in previous sessions. Or for an e-commerce
site, if a user purchased hiking boots in his last session, he will probably not be
interested in another pair in his next session. However, he might be interested in
additional hiking equipment such as a primus stove.

In this thesis, we want to investigate how the straightforward implementation
of a session-based RNN recommender system can be extended to also make use of
previous user sessions, thereby improving recommendations within a session. We
will add a second RNN layer to the model in order to process previous sessions, use
this to supply the original RNN layer with information about the current session,
and thus be able to improve recommendations within the current session.

2

1.2 Goals and Research Questions

1.2 Goals and Research Questions
We want to find out how previous sessions can be incorporated into a RNN-
based session-based recommender system. The goal of this thesis is therefore
to implement a novel RNN-based session-based recommender system, that also
considers the user history of users. We want to find out how the model performs
as a recommender system.
Intuitively, RNNs improve their sequence predictions throughout a sequence,

after having learned from the earlier items. Specifically, it seems reasonable that
a RNN is limited to produce sub-optimal predictions at the start of sequences.
Since our proposed model supply the RNN with initial information about the
session, it should be able to make stronger recommendations from the start of
the session.

Research question 1: Can a RNN be used to learn from previous sessions,
and thus produce initial information about the next session, which can help
improve recommendations from the straightforward session-based RNN recom-
mendation system implementation?

Research question 2: Given that our proposed model performs close to the
straightforward RNN model or better, is it able produce improved recommenda-
tions at the beginning of sessions, and thereby deal with the cold start problem
of session-based recommendations?

1.3 Research Method
After building our model, we will compare it to multiple baselines on different
datasets. One of the baselines should be a RNN. First, we know from earlier work
[1–4], that it performs very well in the session-based recommendations scenario.
Second, our model is an extension to a standard RNN, which means that our
model should be able to outperform a standard RNN.
We also need to tweak our model, by adjusting parameters and testing different

implementations, to perform as optimal as possible. Then we theorize about its
performance, trying to find its strengths and weaknesses, and why it performs
the way it does. Finally, we test our hypotheses with experiments on the model.

If time allows it, we perform more iterations of tweaking, theorizing, and exper-
iments, where the tweaking is done based on what we discover in the experiments.

To answer our second research question, we compare our model with the
straightforward model on the first recommendations within sessions as well as
the overall recommendations.

3

1 Introduction

1.3.1 Limitations

As touched upon earlier, there are at least two kinds of recommendations. One
type is novel recommendations. These help the user discover new content that
he likes. It is a way of helping the user explore, by guiding him to content that
he will find interesting, but maybe would not have found by himself. An example
of this is Netflix and Spotify who try to expose the user to new movies/series
and music, respectively. The goal of these kind of recommendations is often to
get the user to consume more content than he normally would, but also to help
the user discover content. Another type is predictive recommendations. These
help the users by showing them what they are looking for. The goal is often to
provide an improved user experience, by saving the user from the work of finding
the desired content. An example of this could be an e-commerce site that helps
users find what they are looking for, saving them some trouble of searching and
browsing.
It is hard to evaluate the recommendations of a system that produces novel

recommendations. This is because it would require actual users to evaluate the
recommendations, either directly or indirectly. Predictive recommendations, on
the other hand, can be evaluated without human interaction, if the system has
access to a dataset. The true actions of the user are in the dataset, so the
recommendation problem becomes a sequence prediction problem.
Because of this, the work in this thesis focus on creating a recommender system

that tries to predict the actions of users.

1.4 Contributions

We propose an extension to the straightforward session-based RNN recommender
system, that makes it able to learn from the sequence of recent sessions leading
up to the current session. The model is able to predict a user’s current interests
based on representations of his recent sessions. We show two simple methods for
creating session representations.
Our results on three different datasets shows that our proposed model signific-

antly outperforms the original RNN model, and that both session representation
methods used, work well. The proposed model achieves stronger overall recom-
mendations. The biggest improvement is observed at the start of sessions, and
our model is therefore able to deal with the cold start problem of sessions. This
is important, since the original model depends more on observing some events
within the current session before it can produce good recommendations.

4

1.5 Thesis Structure

Chapter Description
Chapter 1 Introduction Gives an introduction, and short

overview of the thesis. Introduces and motivates
the subject.

Chapter 2 Background theory Explains central theory
used in this thesis.

Chapter 3 Related work In this chapter we investigate re-
lated work by others. This include work that
has inspired this thesis, and knowledge that this
work is based on.

Chapter 4 Architecture Explains our proposed model in
detail.

Chapter 5 Experiments and results Describes the exper-
iments we have performed, and the results from
these. This includes information about the data-
sets used.

Chapter 6 Evaluation and conclusion This chapter eval-
uates and discuss our results. Our contributions
are presented here, and further work is outlined.

Appendix Appendix Contains additional information

Table 1.1: Outline of this thesis.

1.5 Thesis Structure
The reminder of this thesis is outlined in Table 1.1

5

2 Background Theory
In this chapter, we explain terms and concepts used in this thesis.

2.1 Recommender Systems
Recommender systems try to predict a user’s evaluation of an item, or what
items a user is interested in interacting with. They can be, and are, used in
many areas. Some examples are music, movies, news, restaurants, recipes, online
shopping, and dating. There are two basic approaches to recommender systems;
collaborative filtering and content-based filtering [7]. These two methods can be
combined into a hybrid approach.

2.1.1 Collaborative Filtering
Collaborative filtering uses information about user preferences to recommend
items highly rated by similar users. I.e. this approach uses the user-item interac-
tions to perform prediction [7]. To illustrate, let us look at a movie recommend-
ation system. A user logs into a website where he can rate movies he has seen,
and the site then recommend movies to the user, based on his ratings. With the
collaborative filtering approach, the user needs to rate some movies to get good
recommendations, and as the user rate more movies, the system can make better
recommendations. To make the recommendations, the system groups together
similar users, based on their item interactions. A user is then recommended
movies that he has not seen and that was rated highly by other similar users.
The system decides whether users are similar by looking at how like-minded they
are, that is, how similarly they rate movies. This is illustrated in Table 2.1. The
system predicts what rating the question mark will be by using the ratings for
that item made by similar users. This approach is called user-based collaborative
filtering [7].

An alternative approach is the item-based collaborative filtering. Here, a user-
item rating is predicted by identifying similar items instead of identifying similar
users. For a given user A, and an item B, where we want to predict A’s rating
of B, a set of items similar to B is first found. Then the rating of B is predicted
based A’s ratings of the other items in this set. E.g. if A generally rated other

7

2 Background Theory

Item1 Item2 Item3 Item4
User1 0.8 0.4 0.1
User2 0.9 0.3 0.1
User3 0.4 0.7 0.5 0.9
User4 0.9 ? 0.2
User5 0.2 0.6
User6 1.0 0.5 0.2

Table 2.1: Illustration of collaborative filtering. User4’s rating of Item3 is pre-
dicted by using the ratings of Item3 (yellow) from similar users (green).

items in the set highly, the system predict that A will give a high rating to B as
well.
User-based and item-based collaborative filtering are both memory-based meth-

ods. They are simple to implement, but they do not work well when the user-item
rating matrix is sparse [7].
An alternative to memory-based methods, that is also commonly used, is

model-based methods. These methods include machine learning and data min-
ing methods, such as decision trees, nearest neighbor methods, Bayesian meth-
ods, NNs and latent factor models (e.g. matrix factorization) [7]. Compared
to memory-based methods, these methods are usually more complex, but better
able to deal with sparse user-item ratings matrices.
Next, we explain BPR-MF and Item-k nearest neighbors (Item-kNN), which

we use in our experiments.

Matrix Factorization

Matrix factorization is a of latent factor model. The idea behind latent factor
models, is that users and items can be described by latent factor. E.g. a user
might have a preference for a certain actor, or he might like movies with a lot of
action and explosions. In fact, this is an important assumption for recommender
systems in general. If each user and item is fully unique and have nothing in
common with other users or items, then there is no point in having a recom-
mender system. Because each user would not be interested in the items rated
by other users [8]. So, we assume that users and items can be described by
latent features, and that they might have such features in common. With this
assumption, many of the rows and columns in the user-item ratings matrix are
highly correlated. Thus, the data contain redundancies, and it should therefore
be possible to approximate the data with a low-rank matrix [7].
This brings us to matrix factorization. Given that we have the m×n user-item

8

2.1 Recommender Systems

ratings matrix R where all values are observed, the matrix can be expressed as

R = UV T

Here U is a m × k matrix, and V is a n × k matrix. k is the number of latent
factors needed to represent the data, each column in U is the latent vector for
a user, and similarly, each column in V is the latent vector for an item. So R
can be constructed if we know U and V . The problem is that we do not have
access to all values in R, else we would not need a recommender system, and we
do not know the value of k. Fortunately, we can choose a value for k and often
get a good approximation of R even when the chosen value for k is lower than
the actual value [7]. So, a reasonable choice for k is chosen and we have

R ≈ UV T

The error between the actual R and our approximation can then be expressed as
||R − UV T ||2. Each row ui in U is the latent factor vector for user i, and each
entry in this vector describes the user’s affinity towards the corresponding latent
factor. Similarly, each row vj of V describes the latent factors of item j. With
this, we can predict how user i will rate item j, by

rij ≈ ui · vj

To calculate the approximation UV T , U and V can be initialized with random
values. Then the error can be iteratively reduced until it goes below a spe-
cified threshold (or for a maximum number of iterations), using a gradient decent
method [7, 8]

Bayesian Personalized Ranking Matrix Factorization

BPR-MF was introduced by [9]. For the matrix factorization method described
above, we assumed that some user-item ratings were available. In some systems,
a typical example is movie streaming sites, explicit ratings are available. I.e. we
have access to ratings telling whether a user liked or disliked an item. However, in
many cases only implicit behavior is available. E.g. we know which movies a user
has watched, but we do not have user-item ratings for those movies. Therefore
we might assume that the user liked the movie because he watched it. But this
leaves us with only positive ratings. Missing ratings could mean that the user
has not had the chance to consider the item, or that he did not find it interesting
and chose to not interact with it. More formally, we have a set S of implicit
feedback, where S ⊆ R. And the task is to provide each user with a personalized
ranking, >u, of items I. Hence the task is to find >u⊂ I2, given the implicit
feedback S. Thus, the ranking is a pairwise ranking between items. In [9], they

9

2 Background Theory

train the matrix factorization model by fitting it to rank io >u in, where io are
the items from S that user u has interacted with and in are items u has not
interacted with. i1 >u i2 means that u ranks item i1 above i2. The goal is
that the system becomes able to rank unobserved items for each user, after the
training is complete.
In [9] they show how this training can be done by optimizing the posterior

probability
p(Θ| >u) ∝ p(>u |Θ)p(Θ)

Where Θ represents the parameter vector of an arbitrary model class (e.g. matrix
factorization), and >u is the desired but latent preference structure for user u.

Item k Nearest Neighbors

K nearest neighbors methods are some of the most popular collaborative filtering
methods used [10]. They are fairly simple to implement, but often very effective.
Both user-based and item-based approaches are possible. In this thesis, we focus
on the item-based approach, referred to as Item-kNN. The main idea behind
the algorithm is to form top-K recommendations based on similarity of items.
The motivation behind this idea is the assumption that users are more likely to
interact with items that are similar to those he has interacted with in the past. A
general description of the kNN method can be found in [10]. Our implementation
is based on the implementation from [1], since the traditional implementations
does not fit directly in the session-based setting.
The Item-kNN model is usually built based on the m×n user-item interactions

matrix R. Since we deal with sessions, we build it based on the item interactions
in the user sessions. Formally, our training data consists of a set of sessions S =
{S1, S2, ..., Sn}. Each session consists of a set of items that the user interacted
with, Ss = {vs

1, v
s
2, ..., v

s
p}. Here V is the set of items, v ∈ V , and |V | = n.

Traditionally, a n×n item similarity matrix is calculated based on R. A n×n = N
similarity matrix is also created in our session-based scenario, but the similarity is
calculated based on the co-occurrences of items in sessions. So Ni,j = sim(vi, vj),
where

sim(vi, vj) = coc(vi, vj)
oc(vi)oc(vj)

Here coc(vi, vj) is the number of co-occurrences of item vi and vj in sessions,
for i 6= j, and oc(vi) is the number of sessions where vi is present. That is,
the similarity of two items is the number of co-occurrences of the two items in
sessions divided by the square root of the product of the number of sessions in
which the individual items occur [1]. This is the cosine similarity between the
vectors of the sessions the items appear in.

10

2.1 Recommender Systems

With this, a top-k recommendation can be made after the user has interacted
with item vi. This is done by recommending the items corresponding to the k
highest similarity scores in the ith row of N .
For cases where the set of items is large, N will be huge, which can cause a

memory problem. Since N also can end up being sparse, we solve this by not
actually creating the whole matrix, and only calculate similarity for items that
co-occur.

2.1.2 Content-based Filtering
In content-based recommender systems, descriptive attributes of items are used
to make recommendations [7].
Content-based approaches builds a user profile based on the item interactions

of the user, and features of items. For example, if a user watches a lot of western
movies or movies with a certain actor, the system can infer that the user likes the
western genre or is a fan of that actor. Then, the system can recommend movies
within the western genre or movies where the actor appears. So, the approach is
to build a user profile based on the latent features of the items he interacts with.

To achieve good results with content-based filtering, it is important to cre-
ate accurate item profiles with representative features. An advantage of the
content-based approach is the ability to make recommendations for new items.
Even though no ratings for the new item are available, recommendations can
be made based on ratings of similar items. However, content-based methods
can tend to provide obvious recommendations, and is not able to recommend
items with keywords that the user has never interacted with. On the other
hand, collaborative-methods are better at recommending such novel items to the
user, because they can leverage the knowledge from similar users. Even though
content-based methods are effective with new items, they are not effective for
new users. The new user needs to perform several interactions or ratings before
the system can give him strong recommendations. All in all, content-based and
collaborative-based methods have different trade-offs [7].

2.1.3 Cold Start Problem
Recommender systems are dependent on rich data of user interactions in order to
provide robust recommendations. Collaborative models are usually more depend-
ent on user data than content-based models [7]. However, item content is not
always available to the content-based methods either. In general the cold start
problem occurs when the recommender system is based on having information
that might not be available in a sufficient amount. For the session-based RNN
recommender proposed in [1], the cold start problem is present at the beginning
of each session, since the model has no initial information about the user at the

11

2 Background Theory

start of a session. Even if that model had initial information about the user, the
user’s interests might vary from session to session. Thus, the system could still be
dependent on observing some user interactions before being capable of providing
precise predictions.
Collaborative filtering methods have the cold start problem for both new users

and new items, while content-based methods have the cold start problem only
for new users [7].

2.1.4 Session-based Recommender Systems
Users often interact with systems in sessions. I.e. they interact heavily with
the system for a limited amount of time, and then become inactive for some
time, before interacting with the system again. A session refers to the, shorter
period of active interaction, where the user performs multiple actions. Examples
of user interaction in a session-based manner include listening to music on Spo-
tify, browsing an e-commerce site like Amazon, and participating in an online
discussion forum like Reddit.
Many existing recommender systems only considers the last item clicked, such

as Item-kNN. Other approaches might take the full user history into account, such
as matrix factorization models. In many cases, such as for small e-commerce sites,
sessions are treated as independent sessions, even though the sessions are tracked
with a user id. The reason for this is often that most users only visit the site a
few times. Also, even though a user visits the site more than once, he is often
interested in something very different from last time. This lack of user profile
makes factor models hard to apply. Thus, neighborhood model are mostly used
[1]. However, recent work has shown that RNN-based models can outperform
existing session-based recommender system approaches [1, 2, 4, 5].

2.2 Neural Networks
NN are models inspired by the human brain [11]. They consist of layers of
neurons, referred to as nodes or units. The nodes are connected by directed links,
with the purpose of transferring values from one node to the next. Each link is
associated with a numeric weight. Each node can have multiple links coming in,
and multiple links going out. The output of each node, aj , is calculated as

aj = g(
n∑

i=0
wi,jai) + bj

Here, wi,j are the weight associated with the links coming in to node j from nodes
i, and ai is the output, or activation, from nodes i. bj is an additional dummy

12

2.2 Neural Networks

Figure 2.1: A feed-forward network. Examples are inserted into the network by
setting the values in the input layer. The values of the nodes in each
layer are computed as a function of the values in the nodes in the
prior layer.

input associated with each node, called a bias. The bias can be zero, i.e. it is
optional. g() is the activation function. By using nonlinear activation functions is
important because it makes a neural network able to represent nonlinear function
[11]. The nodes in a NN are arranged in layers. A NN has one input layer, one
output layer, and any number of hidden layers. Figure 2.1 illustrates a simple
NN with one hidden layer. The values of the nodes in the input layer is the input
to the model. An example of such input could be an image, where each node gets
the value from one pixel. Hidden layers are called hidden because they operate as
a black box, where we do not observe their output. There are two distinct ways
of connecting the layers in a NN. A Feed-forward Neural Network (FFNN) have
connection in one direction only, from the input layer towards the output layer.
Here, each node in a layer only receives input from upstream nodes. The output
of a Feed-forward Neural Network (FFNN) only depends on the current input.
The other approach is called a Recurrent Neural Network (RNN). In a RNN, the
output of nodes can be sent back as input into upstream layers, or into its origin
layer. Therefore, the output of a RNN will depend on both the current input and
previous inputs. This gives RNNs a memory between inputs. We discuss RNNs
in more detail in Section 2.3.1.

13

2 Background Theory

Figure 2.2: Sigmoid, ReLU, and tanh activation functions.

2.2.1 Activation Functions
Multiple activation functions exist. It is seldom obvious which one is the right
choice for each case. It is also possible to apply different activation functions to
different layers or nodes. Some of the most common activation functions, that
often work well, are rectified linear unit (ReLU) [12], sigmoid function, and tanh.
These are illustrated in Figure 2.2.

Sigmoid: f(x) = 1
1 + e−x

TanH: f(x) = tanh(x) = 2
1 + e−2x

− 1

ReLU: f(x) =
{

0 for x < 0
x for x ≥ 0

2.2.2 Training Neural Networks
The most popular training method is backpropagation. Backpropagation uses a
chain rule to calculate the derivative of the loss function, with respect to each
parameter in the network. The weights are then adjusted by gradient descent
[13]. Hence, a loss function is used to compute the error between the actual

14

2.3 Deep Learning

output and the desired output of each output node in the network. From this,
the weights to upstream nodes can be updated based on the partial derivative of
the loss with respect to the weights. In other words, the weights are adjusted by
how much they contributed to the loss, in order to minimize the loss.
Other methods of training a NN are also possible, such as evolutionary al-

gorithms. However, the most successful algorithm for training neural networks is
the backpropagation algorithm [13], which was introduced by [14].

2.2.3 Dropout
Dropout is a regularization technique that can be used when training neural
networks. As the name implies, a subset of the nodes is deactivated. Deactivating
subsets of the nodes during training, can help avoid overfitting and it can speed up
the training [15]. Speed up is achieved because there are less nodes to train. By
randomly deactivating nodes, the network becomes more robust, this is because
it cannot rely too much on any one node to produce good results.

One can also view dropout as a way of performing model averaging. By de-
activating random nodes, different networks are created and trained. Nodes are
dropped with probability 1 − p and kept with probability p. During testing, all
nodes are kept active.

2.2.4 Minibatches
When training NNs, the error for multiple training examples can be calculated,
then the average of the errors can be used to update the weights. These groups of
examples are called minibatches. There are several benefits of using this. Using
large batches generally results in a more accurate estimate of the actual error
of the model. For example, if some of the examples are outliers. With a better
estimate of the real error, the training algorithm can use a higher learning rate.
Also, some hardware can be better utilized when training with minibatches. [16]

2.3 Deep Learning
The small network shown in Figure 2.1 is not capable of learning very complex
tasks, it is too simple. Increasing the size of the layers would probably give it
some more capacity. If we wanted to do image labeling, the task of recognizing
objects in an image, we could increase the input layer so that it had three nodes
for each pixel (RGB). We would also have to increase the output layer to have one
node for each possible label. However, even with a huge hidden layer, the model
will struggle to make sense of raw pixels with only a few calculations. To help
the model, we could give it additional input, we could tell it whether geometric

15

2 Background Theory

figures like circles exists in the image. But by doing this, we have started to do
some of the image labeling ourselves. Also, the model is dependent on us being
able to find good features for it. We want the model to do most of the work for
us. It would be nice if the model could extract good features by itself, and it
turns out that it can.
By adding more hidden layers to our model it becomes much more capable. In

its simplest explanation, deep learning is just that, using more layers. This does
not just apply to neural networks, one can also stack layers of other artificial intel-
ligence methods, but we will focus on neural networks. The great benefit of using
deep models is that the models can learn to extract useful features themselves
[16]. In the case of image labeling, the first layers can learn to extract features
like edges and simple shapes. The deeper layers can then use these features to
recognize more complex shapes in the image. Or in the case of recommender sys-
tems, the model can learn to extract features from the items and user preferences
from user actions. Deep learning lets the machine learn hierarchical concepts,
giving it more power and flexibility [16].

2.3.1 Recurrent Neural Networks
A RNN is a form of NN that is suited for processing sequences of data. Standard
NN have no form of memory between examples, they assume that each example
is independent, which often is not true. A RNN solve this by using loops where
information from each time step is passed on to the next one. This gives the
model memory, and it does not need to assume independence between examples.
It also means that the model is more suited for sequences of varying lengths.
Figure 2.3 illustrates a basic RNN. It can be illustrated both as a loop and as an
unrolled network. Note that, as implied by the looped representation, the RNN
is the same across all time steps. In the unrolled version, the RNN boxes are the
same network, there are not t different RNNs that are connected.

At each time step, the network takes in external input and input from the last
time step, and two outputs are created. One output is passed on to the output
layer, or the next hidden layer if there is one. The other output is the state of the
RNN, which is passed on to the next time step. Each time step does not have to
be separated by a fixed amount of time, each time step is just when input arrives.
It is fully possible to apply deep learning to RNNs. One can stack multiple RNN
layers, or add other types of layers such as a feedforward layer.
RNNs are not constrained to neither fixed input sizes nor output sizes. The

size of input and output vectors are fixed, but RNNs are not limited to a fixed
number of such vectors. However, RNNs can be applied both to domains where
it is natural to treat the data as sequences, as well as problems where the amount
of input is fixed. An example of this is to use a RNN as a sliding window over

16

2.3 Deep Learning

Figure 2.3: A simple RNN. Represented as a loop(left), and unrolled to t
timesteps(right).

Figure 2.4: Simple illustration of a RNN.

fixed sized images.
We now explain the RNN more formally, using Figure 2.4 to illustrate. The

output, Yt, at each time step in a minimal RNN is calculated as follows.

X = Xt|Ht−1

Ht = a(XWH + bH)

Yt = softmax(HtW + b)

Where Xt is the input vector, and X is the concatenation of the input vector,
Xt, and the hidden state from the last time step, Ht−1. WH and W are weight
matrices, while b and bH are bias vectors. a() is the activation function, and
the hyperbolic tangent is a typically choice here. For the first time step, there is
no Ht−1, so for H0 an all zero vector is used. The softmax function used when

17

2 Background Theory

calculating Yt is optional. It is useful if you want to interpret the output as
probabilities, but if you are only interested in e.g. the index of the highest value,
it can be skipped.

LSTM and GRU

Early RNNs had trouble with training because of vanishing and exploding gradi-
ents. When using many time steps the gradients often grew too steep, exploded,
or they approached zero, vanished. This problem happened because the recur-
rent edge in a node always had the same weight, which resulted in the derivative
of the error either exploding or approaching zero, at an exponential rate, as the
number of time steps grew [13]. This was solved by introducing a memory cell.
The new model was introduced by [17] and is called LSTM. Improvements to the
original model has been made later. In the LSTM model, each node in the re-
current layer is replaced by a memory cell. The internal structure of the memory
cell is a bit complex, but simply explained it has an internal state that it can
modify, in addition to the old features of RNN nodes. So, the cells can decide
how much information in the internal state they want to keep, and how much
new information they want to add at each time step.
More recently, in 2014, [18] introduced a new type of hidden units. The cell was

based on the LSTM cell, but with a simpler and more computationally efficient
architecture. This new recurrent unit is commonly referred to as a GRU. RNNs
using either of the two units have been shown to perform well on tasks that
require long-term dependencies to be captured [19].
We first explain the LSTM in detail, then the GRU. A detailed illustration of

a LSTM is shown in Figure 2.5. The output Yt, and the hidden state Ht, for each
time step is calculated with the following equations.

X = Xt|Ht−1

f = σ(XWf + bf)

u = σ(XWu + bu)

r = σ(XWr + br)

X ′ = tanh(XWc + bc)

Ct = f · Ct−1 + u ·X ′

Ht = r · tanh(Ct)

Yt = softmax(HtW + b)

As in the basic RNN,X is the concatenation ofXt andHt−1. Also, the softmax
function in Yt is optional here as well. σ is the sigmoid activation function, which

18

2.3 Deep Learning

Figure 2.5: Illustration of a LSTM, adapted from [20]. Rectangles represent
element-wise operations. Circles and ellipses represent NN layers.

19

2 Background Theory

squashes values to the range [0, 1]. W and b represent different weight matrices
and bias vectors, respectively. All the vectors inside the LSTM cell are the same
size. This size is often smaller than the input and output vectors, because a
smaller size means less calculations and thus a faster network. However, the size
must be large enough for the network to model the data it is trained on, in order
to produce accurate results. This size is an adjustable hyperparameter, and it is a
trade-off between runtime speed and how complex data the model can represent.
These equations might seem complex at first, so we will explain the core idea

behind them. A RNN has a hidden state that makes it able to remember inform-
ation from earlier inputs in a sequence. The LSTM introduces a second memory
state, C. f is intended as a forget gate, which decides what information in the
memory that should be forgotten. For example, if we are using a LSTM to give
recommendations on an e-commerce site. After a user have looked at some items,
the LSTM has learned what items the user is interested in. If the user then buys
one of these items, then he will probably not be interested in getting that item
as a recommendation. Hence, the forget gate will decide that the LSTM should
forget that the user was interested in that item.
u is the update gate in the LSTM cell. This decides which information from

the current input should be added to the memory. X ′ is the current input after
it has been through the activation function. Alternatives to tanh, such as the
ReLU function, can be used here. The new memory state, Ct, is calculated by
applying the forget vector to the last memory state, Ct−1, and adding it to the
update vector applied to the input. In other words, it is the sum of what should
be remembered from the past and what should be remembered from the new
input. Ht is calculated by applying the result gate to Ct. Due to the σ function,
the f and u vectors only have values between zero and one. This means that
Ct will have values between zero and two. To avoid increasing values in Ht for
each time step, the values in Ct are squashed to the [−1, 1] range with the tanh
function. So C works as the long-term memory, and the result gate is applied
to it in order to retrieve information relevant to the current time step. This
information is stored in the working memory H.
Note that there are many variations of the LSTM. The one described here is

often used. We now look at GRU, a variation of LSTM, that has become popular.
GRU is a simpler version of , and therefore less computationally expensive, but
often without performing worse than LSTM. The GRU cell is illustrated in Figure
2.6, and the outputs are calculated by the following equations.

X = Xt|Ht − 1

z = σ(XWz + bz)

r = σ(XWr + br)

20

2.3 Deep Learning

Figure 2.6: Illustration of a GRU, adapted from [21]. Rectangles represent
element-wise operations. Circles and ellipses represent NN layers.

21

2 Background Theory

X ′ = Xt|r ·Ht−1

X ′′ = tanh(X ′Wc + bc)

Ht = (1− z) ·Ht−1 + z ·X ′′

Yt = softmax(HtW + b)

The difference from the LSTM architecture is that in GRU the forget and
update functionality is combined into one function, z. Also, only one memory
state is used. As before, softmax is optional and other choices of activation
functions than tanh are possible.

2.3.2 Item Representations
Here we explain two different ways of representing items as input into a NN.

One-hot Vectors

A one-hot vector is simply a vector where all the values except for one, are the
same default value. Usually the default value is zero, and the non-default value
is 1.
This can be useful when we want to feed a neural network with classes that

can be enumerated, but where the order of the numbers has no more meaning
than as an identification number. That is, the numbers do not describe the
classes, and the assignment of numbers is indifferent. Furthermore, if we wanted
the network to output one of the items, then we could let the network output a
vector with the same size as the number of items. The value at each index can
then be interpreted as how certain the network is that the corresponding item,
is the correct output.

Embeddings

A one-hot vector is very sparse, which means that there are a lot of ”empty” val-
ues. Thus, the vector takes up much space without containing much information.
An embedding is a mapping to a lower dimensional space, a smaller vector. A
simple example of this is numbers in binary format. With one-hot encoding, we
can represent 10 numbers with 10 bits, but by using all possible combinations of
ones and zeros, it is possible to represent 210 numbers with 10 bits. Similarly,
sparse vectors can be mapped to denser, lower dimensional vectors. Note that
in principle, this can be done as a one-to-one mapping, where no information is
lost. When used in practice with neural networks, the embedding matrix, which
maps a sparse vector to a dense embedded vector through matrix multiplication,
is initialized with random values. Part of the training of the network is then to

22

2.4 Evaluating Recommender Systems

also train the embedding matrix. The embedding matrix is just another layer in
the network, and can be trained like any other layer.
Going from a one-hot vector to an embedded vector can help speed up cal-

culations, because multiplying a matrix with a one-hot vector is equivalent to
extracting the row in the matrix that corresponds to the hot value. Furthermore,
by training the network to learn to embed, it can learn to map vectors that rep-
resent similar things to similar vectors. This is used in Word2Vec [22] to map
words with similar meanings to similar vectors in vector space.

The advantage of using embeddings to represent input items, instead of a one-
hot representation, is that the embeddings can be trained together with the rest
of the network. This means that the different indexes in the embedding vectors
can represent latent features in the item that the embedding represent. Since the
embeddings can be trained, they can be initialized with random values and the
network can discover the latent features through training.

2.4 Evaluating Recommender Systems
Here we describe the two evaluation metrics used by [1], and many of the papers
using RNN-based session-based recommendation models discussed in Chapter 3.

2.4.1 Recall
We assume that the recommender system can make a recommendation in form
of a ranked list of N items. Thus, the item at the top of the list is the one that
the recommender system believes is the most relevant for the user, and so on.
In some cases, the user is presented with the full list of recommendations, thus

the ordering does not matter. What matters then is that the relevant item is
present in the list. Recall is a measure of how often the list of recommendations
contains the relevant item. In our case the relevant item is the next item that
the user will click on, since we are focused on predictions.

Depending on the system, different number of recommendation can be made.
But in most cases only a small number of recommendations, about 5-10, can be
made, because the users don’t have patience to look through a long list of recom-
mendation. Furthermore, a good recommender should not need many attempts
to predict the relevant item.

Recall can be evaluated for different values of N . The recall score is calculated
as

Recall@N = |{relevant recommendations}|
|{relevant items}|

And in our case, we define a ’relevant recommendation’ to be a list of item
recommendations that contains the relevant item.

23

2 Background Theory

2.4.2 MRR
A recommender that has the relevant item in the end of its list of recommenda-
tions will get the same recall score as a recommender that has the relevant item
at the start of its list. It is preferable that a recommender ranks the relevant
item as high as possible compared to other items. E.g. impatient users will only
look at the first of many recommendations. mean reciprocal rank (MRR) is a
score that tells us something about how high in the list of recommendations the
relevant item is. MRR is the average of the reciprocal ranks of the relevant items
in the recommendation lists given as response to the recommendation queries
Q:[23]

MRR = 1
|Q|

|Q|∑
i=1

1
ranki

.

So, it is the average of the inverse rank of the relevant item in each list of
recommended items from the recommender system. The rank is 1 if the relevant
item is first in the list, 2 if it is second etc. If the relevant item is not in the list
the rank is set to infinite. I.e. 0 is used instead of 1

ranki
.

If one recommender system rarely predicts the relevant item, but is able to rank
it highly when it does, it can get a similar score as a recommender that often
predicts the relevant item but always gives it a low rank. But in this case the first
recommender would get a low recall score, while the second would get a higher
one. Therefore, it is useful to use both recall and MRR to evaluate recommender
systems. Also, the two scores are intuitive and can easily be interpreted.

2.5 Next Basket Recommendation
The next basket recommendation problem (NBRP) is different but related to
the session-based recommendations that we deal with in this paper. We mention
NBRP because it faces one of the same challenges that our proposed model, and
therefore we discuss some papers on NBRP in Section 2.5.1.
Given a user’s purchase history, the NBRP is to recommend the next basket

of items that the user would be interested in buying. The purchase history
contains previous bought baskets, and each basket contain a set of items. A
typical example is shopping on e-commerce sites like Amazon. This is similar to
session-based recommendations, since baskets are similar to sessions. Each basket
could be associated with a session, where the session can consist of all user actions
and items interacted with, while the basket only consists of the bought items.
The items in the baskets could be temporally ordered. Items in a user’s basket
are often related to other items in the same basket or in previous baskets. E.g.

24

2.5 Next Basket Recommendation

a user may buy a laptop and some accessories in the same basket. It may also
buy only the laptop accessories in one basket, because it bought a laptop in a
previous basket.

2.5.1 Representing Past User Sessions in Next Basket
Recommendation

The idea behind the model we propose in this thesis is to improve upon the
session-based RNN models proposed by [1] and others mentioned in Section 3.1,
by utilizing past user sessions. Therefore, we need a way of representing these
past sessions.

In [24] and [25] the authors deal with this problem when they look at the
NBRP. [25] use a FFNN in their approach, while [24] use a RNN. Both papers
use embeddings to represent the items. Also, both papers create vector represent-
ations of the previous user baskets, which are used as input into their NN-model.
[25] concatenate the vector representations of the previous k user baskets into one
vector which becomes the input vector, while [24] inputs the vector representation
of one basket at each time step in the RNN. Creating the basket representations
from their set of items are solved with pooling.
Two pooling methods are used. The first is average pooling, where each di-

mension of the basket representation vector is calculated as

bu
t = 1
|Bu

t |

|Bu
t |∑

j=1
nu

t,j . (2.1)

Here nu
t,j is the embedded item representation of the j-th item in the basket

of user u at time t, Bu
t is the basket of embedded item representations, and bu

t

is the embedded basket representation for user u at time t.
In other words, average pooling is the aggregation of vectors by taking the

average value of every dimension of those vectors.
The second pooling method suggested is maximum pooling, which is calculated

as

bu
t,k = max(nu

t,1,k, n
u
t,2,k, ...), (2.2)

where bu
t,k is the k-th dimension of a basket representation vector bu

t , and nu
t,j,k

is the value of the k-th dimension of the vector representation of the j-th item,
nu

t,j , in basket Bu
t . Both pooling methods are illustrated with an simple example

in Table 2.2

25

2 Background Theory

nu
t,1 [0.4 0.3 0.9]

nu
t,2 [0.5 0.7 0.1]

nu
t,3 [0.6 0.2 0.5]

avg-pooling [0.5 0.4 0.5]
max-pooling [0.6 0.7 0.9]

Table 2.2: Simple example of average pooling and maximum pooling. Values for
max-pooling are indicated with blue color.

26

3 Related work
In this chapter, we first look at work on using RNN as (part of) a recommender
system. Then we look at different approaches to improve a RNN recommender,
and how user history can be incorporated.

3.1 RNN as a Recommender System
In [1] a RNN with GRU cells is tested as a session based recommender where
no user history is available. Their proposed architecture is illustrated in Fig-
ure 3.1. In short, they achieved very promising results. This was the paper
that first introduced a straightforward implementation of a session-based RNN
recommender system. The model was tested on two datasets, both containing
sequences of user clicks with timestamps. The first dataset contained clicks on
items from an e-commerce site from the RecSys Challenge 2015 1, and the other
contained clicks on videos from a YouTube-like platform. In addition to some
trivial baselines, Item-kNN and BPR-MF [9] were used. Item-kNN and BPR-MF
are usually strong baselines for recommendation problems and are often used in
practice. BPR-MF performed poorly on both datasets, while Item-kNN was the
best performing baseline in both cases. The proposed RNN model significantly
outperformed all baselines.
An interesting approach that was tested, was to use a weighted sum of the item

representations where earlier items were discounted. That is, the input vector at
each step was

it = αit−1 + ot

where 0 < α < 1, and ot is the one-hot representation of the item clicked at
time step t. The motivation was that encoding information about earlier events
into each input could help to reinforce the memory effect in the RNN. However,
it turned out that the model always performed better when only receiving the
one-hot representation for the current item at each time step.

Another possibility that was experimented with was using multiple layers of
GRU cells. This means that multiple GRU cells are stacked and where the
hidden state from each cell becomes the input of the next one. This is illustrated

1RecSys Challenge 2015: http://2015.recsyschallenge.com/challenge.html

27

3 Related work

Figure 3.1: Illustration of the proposed model in [1].

Figure 3.2: RNN using multiple GRU cells, unrolled to three time steps. Any
number of sequence lengths is of course possible as with a RNN with
one layer of cells.

28

3.2 Dealing with Large and Dynamic Item Sets

in Figure 3.2. Also, here the simpler method of using only a single layer gave the
best performance. The authors stated that the sequences in their dataset might
have been too short for multiple cell layers to contribute. With longer sequences
multiple layers could be useful because each layer could learn information at
different time scales.
The successful application of RNNs for the session-based recommendation

problem, and closely related problems, has been further supported by many other
papers [2–6, 24, 26, 27]. In the next sections, we look at some interesting ap-
proaches from some of these and other papers.

3.2 Dealing with Large and Dynamic Item Sets
Two problems that real world recommender systems often must deal with are
when the set of items are large, and when the item set is dynamic. Sites like
Amazon and Spotify deal with millions of items and songs. For both, new
items/songs are continually added to the site. Furthermore, for news sites, the
articles quickly become old and uninteresting as well. In [5] and [28], the authors
investigate approaches that can deal with these problems. This is done by having
the recommender system only operate in the latent feature space. This requires
methods to encode item- and other input to latent features, and to find corres-
ponding items from embeddings. [28] suggest using nearest neighbors methods to
find a set of items close to the recommended embedding in embedded space. Since
the recommender system only deals with item embeddings, i.e. latent features, it
does not need to know about the actual item set. Thus, it is able to operate even
though new items arrive and old items are removed. Furthermore, the embedded
space is smaller than full item space, which makes the recommender system able
to scale with large item sets. Also, the reduced number of parameters means
that the recommender can calculate recommendations faster. However, the need
for additional methods to map back to item space might restrict the speed gain
somewhat.

3.3 Temporal Dynamics
Temporal changes in both user preferences and item relevance is a complicating
factor for recommender systems. Items that were popular half a year ago, might
not be as popular today. This implies that a recommender system should be
trained on recent data to keep it up to date with the latest consumer trends.
However, the amount of recent data can be limited, and old data can contain
useful information as well. In [5] shows that a useful approach is to pre-train the
recommender system on the full dataset, and then use recent data to fine-tune

29

3 Related work

the model afterwards.
The authors of [29] argue that both item-features and user-features can evolve

over time. As an example, consider an online discussion forum like Reddit. Here,
users can create sub-forums, called subreddits, for discussing specific topics. Users
with different interests can join the subreddit, participate in discussions, and
start their own discussions. The participants obviously affect the discussions.
Therefore, the topic of the subreddit can change over time as new users join and
adds their personal touch to the discussions. Likewise, a long-time follower of a
subreddit may gain new interests based on what is discussed in the subreddit.
The authors therefore suggest modelling this co-evolutionary nature. This is
done by combining a RNN with multi-variant point process models. The posed
problem is interesting, and underlines the need for recommender systems to be
able to keep up with the latest trends.
The idea that latent item- and user-features are not static, has also been in-

vestigated in [30]. They work on a movie dataset and the task of predicting
user-movie ratings. Movies can achieve cult status long after their release, or get
a surge of interest after receiving an award such as an Oscar, while some movies
are popular during certain seasons such as Christmas. Also, user’s preferences
change over time. The authors experiment with modeling static user- and item
features, and they use two RNNs to model the temporal evolution of users and
movie state. That is, a individual RNN for the users and one for the items.
The user-state RNN receive a user’s movie rating vector and time as input. The
movie-state RNN is defined in the same manner.
In [31], the problem of Just-In-Time recommendation is handled with an LSTM.

The task is to predict when the user will return to a service, and what he will
be interested in a that time. E.g. the user’s music preference will probably be
different on a Friday night compared to Monday morning. The approach is based
on survival analysis, which is the study of the probability that a patient will sur-
vive at least until a time T . The approach suggested in this paper operates on an
inter-session level, similar to what we use in our own proposed model, discussed
in Section 4.3.2.
In [26], the authors look at modeling both the short- and long-term interests

of users. They suggest two models. The first one combines two NNs and a RNN.
A NN is used to model item static features, one is used to model user static
features, and the RNN is used to model user temporal features. The second
model, deals with the temporal user features at two levels of granularity. A fast-
rate RNN and a slow-rate RNN is used to model the most recent user interests
and seasonal user interests, respectively. This second model is referred to as
a multi-rate model. Both models outperformed state-of-the-art baselines. Best
performance was achieved with the multi-rate model, but this one also has the
drawback of having many parameters to train.

30

3.4 Context Aware Systems

3.4 Context Aware Systems
As already mentioned, the time of a user’s actions can play an important role in
what the user’s preferences are. In addition to this, if user actions happen close
to each other in temporal space, then the actions are probably more related to
each other than if the time between them had been longer. In [4], the authors
refers to these two conditions as input context and transition context. Transition
context is the temporal distance between user actions. Input context refers to the
surrounding situation under which the user action takes place. The input context
is not restricted to time, other contexts such as weather pr physical location can
also be used. The authors suggest using input context and transition context as
additional input to a RNN-based recommender system. They found that utilizing
either of these can improve the recommendations, and that the best results can
be achieved by combining both types of context.
Many recommender systems only use the items interacted with as input. We

have seen suggestions to use temporal information as well. In [2], it is suggested
that all user actions can be useful in order to provide stronger recommendations.
Search functionality is typically available on modern e-commerce sites. The user’s
search queries are a rich source of their preferences. In general, all types of
observable user behavior have potential of providing the recommender system
with information about the user. The paper investigates using item- and event
embeddings as input to a RNN-based recommender, where both are latent feature
vectors describing the item or the event interacted with. In case of the event,
methods such as bag-of words can be used on search queries to create the event
encoding.

3.5 Other Relevant Techniques and Approaches

3.5.1 Dealing with Long Sessions
To be able to train a RNN, it must be unrolled. In practice, this means that
constraints on computational capacity or time, can result in an upper limit of time
steps the RNN can be unrolled to. User sessions can of course be of any length.
So how should a session of length s, be handled when the RNN implementation
allows a maximum of t time steps, and s > t. Note that we here assume that
we have access to the full session and that we want to make a recommendation
based on it. A simple solution is to cut off the first s − t time steps from the
session, and make the recommendation on the last t time steps. This can result in
reduced prediction accuracy. Note that, this problem only exist during training
since the unrolling is needed for backpropagation of the loss. When testing, only
the hidden state from the previous time step is needed so the RNN does not need

31

3 Related work

to be unrolled. In [27] they use history states to deal with this problem. This
is done as follows. Let i0, i1, ..., is represent the items that a user has interacted
with in its session. If s ≥ t, the history state is computed as:

n =
s−t∑
j=0

εjnj ,

where nj is the embedded vector representation of item ij , and εj is the aging
factor for old states, which give more weight to the newest items. The history
state is then given as the first input into the RNN, and the corresponding output
is ignored. So, the idea is to balance the trade-off between computation and
overhead by supplying the RNN with a summary of the first part of the session. In
the paper, usage of a history state improved the model’s performance. However,
the difference was most notable when the hyperparameters of the model were not
fine-tuned. So even though using a history state can give an improvement, [27]
found that tuning the model is more important and can have a bigger impact on
the performance.

3.5.2 Feeding Rich Input to the Recommender System
Strong results have been achieved by using recommender models that only re-
ceives item IDs as input. Intuitively, a recommender could improve on this if it
received more information. Several papers have looked at different approaches to
this. In [6], the authors look at recommender models that take item IDs and/or
item features as input. They compared several architectures, and found that a
model that use both types of input can significantly outperform models that use
only item IDs or only item features. The strongest model they found, used a
GRU layer to process item IDs, and another GRU layer to process item features,
separately. The output of these two layers were then combined through another
final NN layer to produce output recommendations. This approach requires a
method to extract item features. E.g. to extract features from textual descrip-
tion of items, encoding methods such as word2vec [32] can be used. Their parallel
GRU model is illustrated in Figure 3.3
In addition to information about the items, information about the user inter-

actions can also be used.

3.5.3 Training Recommender Systems Consisting of
Multiple RNN Layers

In [6], the authors also look at how to best train their model that consists of two
parallel GRU layers. The straightforward method is to train the whole model
in each backpropagation pass, but their results showed that better results could

32

3.5 Other Relevant Techniques and Approaches

Figure 3.3: Adapted illustration of the parallel GRU model used in [6].

be achieved when only training parts of the network at a time. The reasoning is
that alternating training approaches prevents different components in the model
from learning the same relations. Two of the approaches that worked well, was
to alternate between training sub-networks from mini-batch to mini-batch, and
from epoch to epoch. E.g. training the item ID GRU layer for 10 epochs, while
the other GRU layer was frozen, and then switching.

3.5.4 Data Augmentation and Privileged Information
The authors of [5] looked at different ways of improving the results achieved with
the RNN-based session-based recommender system proposed in [1]. In addition to
pre-training the model and outputting embedded recommendations, as discussed
earlier, they propose using data augmentation and privileged information. The
data augmentation consists of using all prefixes of the original input sessions as
new training sequences, and applying dropout to session events. This is illustrated
in Figure 3.4.
Privileged information is used by training a teacher model on the remaining

parts of sequences, and training the recommender model on a trade-off between
the real labels and the labels predicted by the teacher model. Formally, given
a sequence [x1, x2, ..., xr] with label xr+1 from a session, the privileged sequence
is x*= [xn, xn−1, ..., xr+2], where n is the length of the original session before

33

3 Related work

Figure 3.4: Adapted illustration of the data augmentation used in [5].

preprocessing. Thus, the privileged sequence is simply the reversed reminder of
the full sequence. The teacher model is trained on the privileged sequences x*,
with the same label, xr+1. Then, the student model M(x) is trained by minim-
izing a loss function of the form (1−λ) ·L(M(x), V (xn)) +λ ·L(M(x),M*(x*)),
where λ ∈ [0, 1] is a trade-off parameter between the two sets of labels. The
authors suggest that this approach can be useful when the amount of training
data available is small.

34

4 Proposed architecture
In this chapter, we present our proposed model in detail. We first present the
motivation and intuitive idea behind our model, then we describe the model itself.

4.1 Main Idea: the II-RNN
In the session-based setting, the user’s actions might depend on all earlier actions
in the session, not just the previous one. How the dependencies between the ac-
tions work, will vary with domains. E.g. on a news site, if a user reads articles
about German news and international sports, that user will probably be inter-
ested in reading news articles about German sport. While for a online grocery
shopping site, past actions might indicate that the user will not be interested
in similar items. If the user has added bread and milk to his basket, he will
probably not add anymore bread or milk to that basket. But if the user has only
added milk to the basket, it might be interested in adding bread as well. RNNs
work well in the session-based recommendation scenario because it can process
sequences of user actions, and create an internal representation of the user’s in-
terests. Also, it does not assume that all actions indicate interest in something,
it can learn to interpret actions as sign of disinterest. And as discussed in Sec-
tion 3.1, the RNN model achieves state-of-the-art performance on session-based
recommendation problems.

In addition to the short-term dependencies between actions within a session,
there are usually long-term dependencies between actions from different sessions.
E.g. a user that was interested in news articles about golf in his previous ses-
sion(s), will probably also have that interest in his current session. Or a user
that bought a new laptop in a recent previous session, will probably not be in-
terested in buying another one in the current session, but he might be interested
in accessories to the laptop he bought. This means that it should be possible
to improve the recommendations for a session-based recommender system, by
giving it information about the user’s interaction history. Furthermore, one of
the reasons that a RNN works well for recommendations within a session, is that
it can process the sequence of the session events. Similarly, we believe that the
order of the sequence of earlier sessions can be important. An example could be
a person that regularly does his grocery shopping online. If he buys bread in one

35

4 Proposed architecture

session, then he will probably not be interested in buying another one within the
next few sessions. And when he has not bought bread in the last sessions, he is
probably going to buy one soon.
Since RNNs work well for recommendations on sequences of events within a

session, and because the sessions themselves form a sequence, we think that a
RNN could work well to process the sequence of sessions as well.
So, our idea is to use one RNN to process the events within a session,

as has been done before, and to enhance the recommendations from
this by using a second RNN to process a user’s recent sessions and
help the first RNN with a initial prediction about the current session.
In other words, a RNN that works on an inter-session level, provides the initial
hidden state for a RNN that works on a intra-session level. We will refer to this
model as II-RNN.

4.2 Problem Formulation
In the session-based recommendation scenario, there is a system with a set of
items that a mass of users can interact with. The word item is used in a very
broad sense here. We work with three different datasets, where the possible
recommendations are sub-forums of a discussion site, artists on a music website,
or groceries on a Internet-based grocery service. The datasets are explained in
Section 5.1.1. Each user interacts with the system in sessions, as described in
Section 2.1.4.
Let N be the set of items in the system, and nv ∈ Rd is the embedded rep-

resentation of item v. Each user u has an interaction history Su = {Su
t1
, Su

t2
, ...},

where Su
ti

is a session of interaction by user u at time ti. The session history is
ordered temporally by ti. The session length is |Su|. Each session Su

ti
consists of

a collection of events {eu
ti,j ∈ Rm|j = 1, 2, ..., |Su

ti
|}. Where eu

ti,j is the represent-
ation of event j in the session. Events can be any type of interaction, as discussed
in Section 3.5.2. However, in this thesis the events will simply be items the user
interacts with, so here each event will be an item v. All recommendation models
we experiment with use an item id, iv ∈ {1, 2, ..., |N |}, as input for each item.
However, the RNN models retrieves the corresponding embedded representation
nv for each iv, and feed those into the RNN layer of the model.

The common task for all the recommendation models we experiment with, is
to predict each consecutive item v in a session Su

ti
. That is, for each item vS,j

in a session S, predict vS,j+1. Thus, items vS,j for j = 1, 2, ..., |Su
ti
| − 1 are

given as input to the recommender system, and vS,j+1 are the relevant items.
A recommendation Rj = {vr1 , vr2 , ..., vrk

} is made for each item vS,j . A perfect
recommender would always have vr1 = vS,j+1. So Rj is an ordered list of re-
commended items, where we want the relevant item vS,j+1 to appear as early as

36

4.3 Model Description

possible in the list. The recommender can have k recommended items in each
recommendation Rj .
We evaluate each recommender system by their Recall@K and MRR@K scores,

for K = 5, 10, 20. Therefore, the recommender systems should provide k = 20
recommended items in each recommendation Rj . Recall and MRR is explained
in Section 2.4.1 and 2.4.2.

4.3 Model Description
II-RNN is an extension to a RNN. Therefore, we start by describing our RNN
model, which is similar to the one used in [1], described in Section 3.1. This will
be the intra-session RNN in the II-RNN, and will also be used as a baseline to
compare the II-RNN to. Afterward we describe the full II-RNN.

4.3.1 Intra-session RNN
The intra-session RNN produce recommendations by processing the sequence of
items in a session. Figure 4.1 illustrates the model. This model is very similar to
the one in [1] and other papers. We do not use one-hot encodings as input, but
use item embeddings directly. Mathematically these two methods are equivalent,
but in practice this saves us the computation required to create the one-hot
vectors. When the set of items is huge, creating a mini-batch of one-hot vectors
will require a large amount of memory, which can be a problem.
The embedded item representation is sent through one or multiple layers of

GRU, and dropout is applied to these layers. Afterwards a feedforward layer is
used to scale up the vector to R|N |. The output vector is then

[
ov1 ov2 ... ov|N|

]
,

where ovi
is a score for item vi ∈ N . The list of recommendations, Rj is then

created by taking items corresponding to the k highest scores, sorted by their
score.
Training is done with the Adam algorithm for stochastic gradient descent [33].

And the loss is calculated with cross entropy. The target output is a score of 0 for
all items, except for the relevant item which should get a score of 1. This means
that we treat the recommendation problem as a classification problem. That is,
given the users recent activity, predict the next item he will interact with. This
works because the model predicts scores for how likely it believes that each item
is the correct class, and these scores then form a natural way of ranking the
recommendations.

Our model is very similar to the RNN model introduced in [1]. We skip the
one-hot input vectors, and use the embeddings directly. Also, we do not sample
on the output. In [1] they have a correct item output for each input, and they
sample some items that serve as negative samples, i.e. wrong outputs. When

37

4 Proposed architecture

Figure 4.1: Illustration of the intra-session RNN.

we calculate the loss, we set all other items than the target item as negative
samples. In other words, we do not use sampling on the output. Furthermore,
we only use cross-entropy as our loss function. This means that we train our
model as a classifier. However, since the model is asked to produce a ranked
list of recommendations, the problem is actually a ranking problem. In [1], the
authors found that Bayesian Personalized Ranking (BPR) [9], worked better than
cross-entropy for large GRU-layers (~1000 units). For smaller GRU-layers (~100
units) however, the difference between Bayesian Personalized Ranking (BPR)
and cross-entropy was minimal on one of two datasets. Since we achieved strong
results in our experiments using cross-entropy, we did not experiment further
with other loss functions. In addition to this, [1] did many small tweaks and
optimizations in order to minimize training and prediction time [34]. This has
not been a focus in our work.

4.3.2 II-RNN

Although the intra-session RNN can achieve a strong performance, it starts out
in each session without any knowledge about the user. It learns about the user’s
interests throughout the session, but all that information is discarded again at
the end of the session. The II-RNN can therefore improve upon the intra-session
RNN because it considers the user’s most recent sessions and supplies the intra-

38

4.3 Model Description

Figure 4.2: Illustration of the II-RNN. This illustration does not show how the
session representations are obtained.

session part with information at the start of each session. Figure 4.2 illustrates
the II-RNN.

For each session Su
ti

in a user’s interaction history Su, let su
ti

be an embedded
vector representation of that session. The input to the inter-session RNN layer
(the GRU layer in Figure 4.2) is then the sequence {su

tz−g
, su

tz−g+1
, ..., su

tz
}, where

su
tz

is the representation of the most recent session, and g is the number of recent
sessions that should be processed. The initial hidden state, H0, of the intra-
session RNN is then set to final output of the inter-session RNN. In other words,
the inter-session RNN produce the initial hidden state of the intra-session RNN,
based on a series of vector representations of the most recent sessions for the
given user. And the output of the inter-session RNN is calculated before the
intra-session RNN starts producing predictions.
We apply two different methods of producing the session representations su

ti
.

One is the average of the embedded vector representations of the items in the
session, as described in Section 2.5.1, and illustrated in Figure 4.3. The other is
to simply use the the last hidden state of the intra-session RNN as the session
representation, illustrated in Figure 4.4. Even though the final hidden state can
contain more useful information learned by the intra-session RNN, it is more a
representation of the end of the session, rather than the whole session. Since the
hidden state is produced by a RNN, it will depend on the order of the sequence
of items in a session, while the average of the embeddings is unaffected by the
order of the items.

39

4 Proposed architecture

Figure 4.3: Illustration of the II-RNN with average pooling to create session rep-
resentations from items.

Figure 4.4: Illustration of the II-RNN where the last hidden state of the intra-
session RNN is stored as the session representation.

40

5 Experimental Setup
In this chapter, we explain which experiments we did, how we did them, and we
discuss the datasets we used.

5.1 Experimental Setup

5.1.1 Datasets
We experimented with three different datasets. One is a dataset on user activity
on the social news aggregation and discussion website Reddit 1 2. This dataset
contains tuples of usernames, a subreddit where the user made a comment to
a thread, and a timestamp for the interaction. The second dataset contains
listening habits of users on the music website Last.fm 3 [35]. This dataset contains
tuples of user, timestamp, artist, and song listened to. The last dataset is from
the Internet-based grocery delivery service Instacart 4 [36]. The Instacart dataset
contains logs of users’ shopping carts, and the order in which items were added
to the cart.

Reddit Dataset

The Reddit dataset contains a log of user interaction on different subreddits (sub-
forums), with timestamps. Here, an interaction is when a user adds a comment
to a thread. Since the dataset itself, does not split the interactions into sessions,
we did this manually when preprocessing the dataset. To do this we analyzed
the dataset and specified a time limit for inactivity. Using the timestamps, we
let consecutive actions that happened within the time limit belong to the same
session. That is, for a specified time limit l, and a list of a user’s interactions
{at0 , at1 , ..., atn

}, ordered by their timestamps ti, two consecutive interactions ati

and ati+1 belong to the same session if and only if ti+1 − ti ≤ l. We set the time
limit to 1 hour (3600 seconds).

1Reddit: https://www.reddit.com/
2Subreddit interactions dataset: https://www.kaggle.com/colemaclean/subreddit-interactions
3Last.fm: https://www.last.fm/
4Instacart: https://www.instacart.com/

41

5 Experimental Setup

Note that users, in addition to commenting on threads, also do a lot of browsing
and reading. Therefore, it makes sense to set a time limit that allows for some
time between the interactions captured in the dataset. Also, some users are
more active than others, some users are mostly passive consumers who rarely
comments. So, it is impossible to set a time limit that fits all users. However, it
is important that the time limit is large enough that the average session contains
a fair amount of interactions, but small enough so that it is reasonable to assume
that the interactions are dependent on each other.

Last.fm Dataset

We also had to split each user’s history into sessions manually for the Last.fm
dataset. We used the same approach as for the Reddit dataset, but here we used
30 minutes (1800 seconds) as the time limit. Also, we faced the problem that the
dataset contains an overwhelming amount of songs. Since our recommendation
models produce a score for each possible item, the huge amount of songs caused a
memory requirement problem. To solve this, we simplified the dataset by ignoring
the specific song of each user interaction and only use the artists. This reduce
the item set to a manageable size.

Instacart Dataset

The user actions in the Instacart dataset are naturally sorted into sessions as the
dataset is provided. Each user is associated with several previously bought carts,
and each cart contain items bought, and the order in which they were placed in
the cart.

Preprocessing

After the initial manual splitting into sessions, we used the same preprocessing for
all three datasets. In the Reddit and Last.fm datasets, there were many items
that repeated consecutively. We are not interested in a recommender system
that learns to predict the last seen item, therefore we removed all consecutively
repeating items, and only kept one instance. Furthermore, the RNN models
need to have a specified maximum length of the sessions, because they must be
unrolled in order to be trained. To deal with this, we set the maximum length, L,
of a session to L = 20. Sessions that had a length l of L < l < 2L were split into
two sessions. This was done because we did not want to throw away all sessions
that were too long, but splitting very long sessions create many sessions that
should not be separate sessions, since the events in them depend on each other.
However, there were some unreasonable long sessions that probably originate
from bots or some other error source. These were removed with the 2L limit for

42

5.1 Experimental Setup

Reddit Last.fm Instacart
Number of users 18271 977 19420
Number of sessions 1135488 630774 319688
Sessions per user 62.1 645.6 16.5
Average session length 3.0 8.1 9.7
Number of items 27452 94284 41095

Table 5.1: Statistics for our three datasets, after preprocessing.

session lengths. With this scheme, most of the sessions from all datasets were
kept.
Sessions of length l < 2 were removed, and users with less than 3 sessions were

also removed. Finally, the datasets were split into a training set and a test set
on a per user basis. For each user, 80% of his sessions were placed in the training
set, and the remaining in the test set. Each user’s sessions were sorted by the
timestamp of the earliest event in the session, and the test set contains the most
recent sessions of each user.
Table 5.1 shows statistics for the three datasets after preprocessing (before

splitting into training and test sets).

5.1.2 Baselines
In addition to the following baselines, the intra-session RNN itself forms a baseline
for the II-RNN.

Most Popular

The most popular baseline is a very simple baseline, but it can perform decently
in some cases. All items are sorted by their number of occurrences in the training
set, and the top k items are recommended at each time step. Although a very
basic baseline, it provides a nice sanity check. Any serious model should be able
to beat this model.

Most Recent

Even though we removed consecutive repetitions of items in all sessions, there
could still be a high repetitiveness of items within sessions. I.e. some items can
occur multiple times in a session. Especially in the Reddit and Last.fm datasets,
where users can tend to interact with some subreddits or artists multiple times
in their sessions. We believe that it is less likely to see such repetitiveness in the
Instacart dataset, because users probably only add each item to their cart once.

43

5 Experimental Setup

The most recent baseline behaves as a stack. It is initially filled with k random
items. For each time step, the item interacted with is added to the top of the
stack, and the item at the bottom is pushed out of it. However, if the new item
is already in the stack, it is just moved to the top. The recommendation at each
time step is then the stack of recently seen items, where the top recommend-
ation is the item just interacted with. Our model should be able to beat this
baseline significantly. But the most recent baseline gives us information about
the diversity of items within sessions.

Item-kNN

Item-kNN is a simple, but usually strong baseline. It is commonly used in practice
as a item-to-item recommender [37]. Different implementations are possible. We
implemented it as follows. For each item in the dataset, we count the number of
co-occurrences with the other items in the dataset. A co-occurrence is when two
items appear in the same session. When testing, the algorithm recommends the
top k items with highest co-occurrences with the last seen item.

BPR-MF

BPR-MF [9] is a commonly used matrix factorization method. It tries to predict
personal pairwise rankings of unseen items. I.e. given a user and two items,
BPR-MF tries to predict which of the two items the user would rate higher. We
use an existing implementation 5, that we tweak slightly to fit our use case. The
original implementation does not recommend already seen items, but in our case,
users often interact with items they have already seen. Therefore, we changed it
to also recommend seen items.
BPR-MF computes feature vectors for users and items based on the user’s

earlier interactions, and is then able to make a recommendation based on this.
This means that the recommendations will be the same throughout future ses-
sions, unless the model is re-trained. In other words, BPR-MF cannot be applied
directly to session-based recommendations. To make a fairer comparison, we cre-
ated a hole-one out split of the dataset. Only the last session of each user was
put in the test set. BPR-MF still produce the same recommendations for all time
steps in the test session for a given user.

5.1.3 Implementation
All our code is available on GitHub here 6. The implementation is done in Python
3.5.2, with the Tensorflow machine learning software library. Instructions to

5theano-bpr: https://github.com/bbc/theano-bpr
6Implementation: https://github.com/olesls/master_thesis

44

5.1 Experimental Setup

Reddit Last.fm Instacart
Embedding size 50 100 80
Learning rate 0.001 0.001 0.001
Dropout rate 0 0.2 0.2
Max. recent session representations 15 15 15
Mini-batch size 100 100 100
Number of GRU layers, intra-session level 1 1 1
Number of GRU layers, inter-session level 1 1 1

Table 5.2: Best found configurations for the RNN models. We found that the
configurations that worked well for the II-RNN, worked well for the
standalone intra-session RNN as well. Not all configurations are ap-
plicable to the standalone intra-session RNN.

recreate our results are available together with the code.
We run our experiments on three different computers, all with the Ubuntu

16.04 operating system. All computers have at least 16 GB of RAM, and a
Nvidia GeForce GTX 1060 6 GB or better.

5.1.4 Experiments
We used Recall@K and MRR@K for K = 5, 10, 20 to evaluate all models. In
addition to the baselines described, we compared the intra-session RNN and
the II-RNN, on the described datasets. We experimented with mini-batch sizes,
embedding sizes, learning rate, dropout rate, using multiple GRU layers, and
number of session representations, to find the best configurations for each dataset.
The best configurations we found are summarized in Table 5.2. For the II-RNN
we compared results using average-pooling and the last hidden state as session
representations for past sessions. We used the same size for the item embeddings
and internal vectors in the GRU layers. We found tanh to work well as activation
function in the GRU layers, but we did not test other alternatives.

First-n Recommendations

The intra-session RNN learns about the user as it observes item interactions
throughout a session. It is therefore reasonable to believe that the model’s pre-
diction accuracy increases throughout the session. As discussed in Section 2.1.4,
we hope that the II-RNN can improve both the overall recommendations, and
especially the first few recommendations in each session. To evaluate this, we test
the RNN models both on the overall recommendations and on the first n recom-
mendations, for n = 1, ..., L, where L is the maximum session length. That is, we

45

5 Experimental Setup

evaluate the Recall and MRR scores as explained earlier, on recommendations
for the first time step, for the first two time steps, and so on. The evaluation
score for the first n = L recommendations, is the same as the overall score. To
clarify, the first-n score is the score over the recommendations for all time steps
up until the nth. As an example, the first-n score for n = 4 is the total score for
all the four first time steps across all sessions. Thus, for n = 1 we only evaluate
recommendations at the first time step, while for n = L we evaluate over all time
steps.

Creating Mini-batches

As discussed in Section 3.5.4, we want our model to be biased towards recent user
trends. This is often desirable in practice, and we find it reasonable to assume
that it applies for our datasets. Furthermore, the way we split our dataset into
training- and test sets reflect this. I.e. the test set contains the most recent
samples for each user. This leaves us with two desirable properties for how
the training samples should be processed. First, more recent samples should be
processed last. Second, each mini-batch should contain a variety of users. I.e. no
user should be over represented with samples in any mini-batch.
To achieve these properties, we constructed the following scheme for creating

mini-batches. Each training sample, a session, is associated with a user. All
sessions belonging to the same user, are grouped together, and sorted oldest to
newest.

46

6 Results and Discussion
Here, we present our results, then we evaluate and discuss our findings, highlight-
ing interesting results.

6.1 Results

We found that using multiple GRU layers did not improve performance neither
when applied at the inter-session level, nor at the intra-session level. Dropout
was crucial to get good results on the Last.fm and Instacart datasets, while on
the Reddit dataset the models performed best without dropout. To achieve the
best results, dropout had to be used on all GRU layers.

Table 6.1 shows an overview of how the models and baselines scored. Relat-
ive scores are given compared to the standalone intra-session RNN. We ran the
RNN model three times and the results presented in the table are averages of
three runs. However, the results were usually consistent between runs. Table
6.2 shows how the BPR-MF baseline performed on the hold-one-out version of
the dataset. Item-kNN and most recent baselines were the strongest baselines
on the Reddit and Last.fm dataset, but were both clearly outperformed by the
intra-session RNN. While on the Instacart dataset, the most recent baseline per-
formed worse than just giving random recommendations. However, the Item-kNN
baseline performed closer to the intra-session RNN here. In all cases, the II-RNN
significantly outperformed the standalone intra-session RNN and all baselines.

The results from the first-n-recommendation testing is shown in Tables 6.3,
6.4, and 6.5 for the Reddit, Last.fm, and Instacart datasets, respectively. On
the Reddit dataset, the II-RNN scores significantly higher on all scores after
the first recommendation, compared to the overall score (n = 19) of the intra-
session RNN. Figures 6.1 and 6.1 shows graphs for the Recall@5 and MRR@5
metrics. Graphs for the other metrics are similar. Figures 6.3 and 6.3, and
6.5 and 6.5, shows equivalent evaluation graphs for the Last.fm and Instacart
datasets, respectively. Only the best performing variant of the II-RNN for each
dataset is shown.

47

6 Results and Discussion

Dataset: Reddit
Model Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
RNN 0.3372 0.4173 0.5004 0.2436 0.2542 0.2600
II-RNN
(last hidden state)

0.4476
(+32.7%)

0.5344
(+28.1%)

0.6180
(+23.5%)

0.3213
(+31.9%)

0.3329
(+31.0%)

0.3388
(+30.3%)

II-RNN
(avg.-pooling)

0.4361
(+29.3%)

0.5168
(+23.8%)

0.5963
(+19.2%)

0.3202
(+31.4%)

0.3309
(+30.1%)

0.3364
(+29.4%)

Most popular 0.1322 0.1946 0.2647 0.0850 0.0932 0.0982
Most recent 0.2152 0.2205 0.2209 0.0969 0.0977 0.0977
Item-kNN 0.2171 0.3032 0.3885 0.1174 0.1288 0.1349
Dataset: Last.fm
Model Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
RNN 0.1350 0.1843 0.2478 0.0867 0.0932 0.0976
II-RNN
(last hidden state)

0.1439
(+6.6%)

0.2018
(+9.5%)

0.2776
(+12.0%)

0.0891
(+2.8%)

0.0968
(+3.9%)

0.1020
(+4.5%)

II-RNN
(avg.-pooling)

0.1478
(+9.5%)

0.2048
(+11.1%)

0.2788
(+12.5%)

0.0930
(+7.3%)

0.1005
(+7.8%)

0.1056
(+8.2%)

Most popular 0.0528 0.0650 0.0829 0.0433 0.0449 0.0462
Most recent 0.1061 0.1305 0.1379 0.0422 0.0456 0.0462
Item-kNN 0.0851 0.1191 0.1590 0.0504 0.0548 0.0576
Dataset: Instacart
Model Recall@5 Recall@10 Recall@20 MRR@ MRR@ MRR@
RNN 0.0848 0.1248 0.1773 0.0480 0.0533 0.0569
II-RNN
(last hidden state)

0.1050
(+23.8%)

0.1541
(+23.5%)

0.2179
(+22.9%)

0.0603
(+25.6%)

0.0668
(+25.3%)

0.0712
(+25.1%)

II-RNN
(avg.-pooling)

0.1026
(+21.0%)

0.1515
(+21.4%)

0.2145
(+21.0%)

0.0586
(+22.1%)

0.0651
(+22.1%)

0.0694
(+22.0%)

Most popular 0.0446 0.0692 0.0976 0.0230 0.0262 0.0282
Most recent 0.0000 0.0001 0.0003 0.0000 0.0000 0.0000
Item-kNN 0.0754 0.1114 0.1546 0.0413 0.0460 0.0491

Table 6.1: Recall and MRR scores for the RNN models and the baselines. Rel-
ative scores are given compared to the standalone intra-session RNN.
The best results per dataset are highlighted.

48

6.1 Results

Dataset: Reddit
Model Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
RNN 0.3660 0.4388 0.5118 0.2781 0.2878 0.2928
II-RNN
(last hidden state)

0.5022
(+37.2%)

0.5803
(+32.2%)

0.6537
(+27.7%)

0.3807
(+36.9%)

0.3912
(+35.9%)

0.3963
(+35.3%)

Most popular 0.1296 0.1900 0.2569 0.0883 0.0962 0.1010
Most recent 0.2389 0.2421 0.2425 0.1100 0.1105 0.1105
Item-kNN 0.2463 0.3331 0.4169 0.1403 0.1517 0.1577
BPR-MF 0.1271 0.1900 0.2621 0.0878 0.0961 0.1011
Dataset: Last.fm
Model Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
RNN 0.1568 0.2088 0.2761 0.0972 0.1041 0.1088
II-RNN
(avg.-pooling)

0.1775
(+13.2%)

0.2390
(+14.5%)

0.3133
(+13.5%)

0.1085
(+11.6%)

0.1165
(+11.9%)

0.1216
(+11.8%)

Most popular 0.0511 0.0646 0.0801 0.0432 0.0450 0.0460
Most recent 0.0986 0.1170 0.1217 0.0398 0.0423 0.0427
Item-kNN 0.0988 0.1348 0.1746 0.0566 0.0614 0.0642
BPR-MF 0.0619 0.0833 0.1207 0.0467 0.0494 0.0520
Dataset: Instacart
Model Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
RNN 0.0812 0.1189 0.1688 0.0465 0.0514 0.0548
II-RNN
(last hidden state)

0.0974
(+20.0%)

0.1423
(+19.7%)

0.2010
(+19.1%)

0.0562
(+20.9%)

0.0621
(+20.8%)

0.0661
(+20.6%)

Most popular 0.0422 0.0661 0.0912 0.0222 0.0253 0.0271
Most recent 0 0.0001 0.0003 0 0 0
Item-kNN 0.0718 0.1046 0.1442 0.0396 0.0439 0.0467
BPR-MF 0.0409 0.0653 0.0923 0.0218 0.0251 0.0269

Table 6.2: Recall and MRR scores for the BPR-MF baseline and the RNN models
on the hold-one-out version of the dataset. Only the best performing
II-RNN model is included for each dataset. Relative scores are given
compared to the standalone intra-session RNN. The best results per
dataset are highlighted.

49

6 Results and Discussion

RNN
n Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
1 0.2184 0.3018 0.3934 0.1420 0.1530 0.1594
2 0.2864 0.3639 0.4487 0.2078 0.2180 0.2239
3 0.3042 0.3821 0.4663 0.2199 0.2302 0.236
4 0.3156 0.3935 0.4771 0.2289 0.2392 0.2451
5 0.3215 0.3998 0.4833 0.2331 0.2435 0.2493
6 0.3257 0.4041 0.4876 0.2363 0.2467 0.2525
7 0.3285 0.4070 0.4905 0.2382 0.2486 0.2544
8 0.3305 0.4092 0.4926 0.2397 0.2501 0.2559
9 0.3321 0.4109 0.4842 0.2408 0.2512 0.2570
10 0.3333 0.4122 0.4956 0.2417 0.2521 0.2580
11 0.3343 0.4132 0.4967 0.2423 0.2528 0.2586
12 0.3350 0.4140 0.4974 0.2429 0.2533 0.2592
13 0.3357 0.4147 0.4981 0.2433 0.2538 0.2596
14 0.3362 0.4153 0.4987 0.2438 0.2542 0.2601
15 0.3366 0.4157 0.4991 0.2440 0.2545 0.2603
16 0.3370 0.4161 0.4995 0.2443 0.2548 0.2606
17 0.3373 0.4164 0.4998 0.2445 0.2550 0.2608
18 0.3375 0.4166 0.5001 0.2447 0.2552 0.261
19 0.3377 0.4169 0.5003 0.2448 0.2553 0.2611
II-RNN
n Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
1 0.4130 0.4998 0.5842 0.2893 0.3009 0.3067
2 0.4332 0.5189 0.6018 0.3103 0.3217 0.3275
3 0.4362 0.5225 0.6056 0.3122 0.3237 0.3295
4 0.4396 0.5258 0.6088 0.3152 0.3267 0.3325
5 0.4414 0.5278 0.6108 0.3165 0.3280 0.3338
6 0.4429 0.5294 0.6124 0.3178 0.3294 0.3352
7 0.4439 0.5305 0.6135 0.3186 0.3301 0.3359
8 0.4447 0.5313 0.6144 0.3191 0.3307 0.3365
9 0.4452 0.5319 0.6150 0.3196 0.3312 0.3370
10 0.4457 0.5325 0.6155 0.3200 0.3316 0.3374
11 0.4462 0.5330 0.6161 0.3203 0.3320 0.3378
12 0.4466 0.5335 0.6165 0.3207 0.3323 0.3381
13 0.4469 0.5338 0.6168 0.321 0.3326 0.3384
14 0.4472 0.5341 0.6171 0.3211 0.3328 0.3386
15 0.4474 0.5343 0.6173 0.3213 0.3329 0.3387
16 0.4475 0.5345 0.6174 0.3214 0.3330 0.3388
17 0.4477 0.5346 0.6176 0.3215 0.3332 0.339
18 0.4479 0.5348 0.6178 0.3217 0.3333 0.3391
19 0.4480 0.5350 0.6179 0.3218 0.3334 0.3392

Table 6.3: First-n-recommendations results on the Reddit dataset. The values
for II-RNN are for the last hidden state implementation.

50

6.1 Results

RNN
n Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
1 0.0951 0.1273 0.1715 0.0592 0.0634 0.0665
2 0.1169 0.1538 0.2021 0.0766 0.0815 0.0848
3 0.1231 0.1626 0.2141 0.0801 0.0853 0.0889
4 0.1271 0.1684 0.2223 0.0826 0.0881 0.0918
5 0.1289 0.1717 0.2273 0.0836 0.0892 0.0931
6 0.1308 0.1748 0.2314 0.0846 0.0904 0.0943
7 0.1318 0.1766 0.2344 0.0851 0.091 0.0949
8 0.1327 0.1781 0.2368 0.0855 0.0915 0.0955
9 0.1335 0.1795 0.2388 0.0858 0.0919 0.0959
10 0.1339 0.1803 0.2403 0.086 0.0921 0.0962
11 0.1343 0.1811 0.2417 0.0861 0.0923 0.0964
12 0.1347 0.1819 0.243 0.0863 0.0925 0.0967
13 0.135 0.1825 0.2439 0.0863 0.0926 0.0968
14 0.1351 0.183 0.2447 0.0863 0.0927 0.0969
15 0.1353 0.1834 0.2454 0.0863 0.0927 0.0969
16 0.1354 0.1837 0.2461 0.0864 0.0928 0.097
17 0.1355 0.184 0.2466 0.0863 0.0927 0.097
18 0.1356 0.1841 0.2471 0.0864 0.0928 0.0971
19 0.1357 0.1844 0.2475 0.0863 0.0928 0.0971
II-RNN
n Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
1 0.13 0.1812 0.2476 0.0815 0.0882 0.0927
2 0.1421 0.1949 0.2631 0.0908 0.0978 0.1025
3 0.1447 0.1986 0.268 0.0924 0.0995 0.1042
4 0.1465 0.2011 0.2717 0.0934 0.1007 0.1055
5 0.1471 0.2023 0.2734 0.0936 0.1009 0.1058
6 0.1477 0.2032 0.2748 0.094 0.1013 0.1062
7 0.1479 0.2037 0.2757 0.0939 0.1013 0.1063
8 0.1482 0.2042 0.2764 0.094 0.1014 0.1063
9 0.1481 0.2044 0.277 0.0939 0.1013 0.1063
10 0.1482 0.2045 0.2774 0.0938 0.1013 0.1063
11 0.1483 0.2046 0.2777 0.0937 0.1012 0.1062
12 0.1483 0.2048 0.278 0.0937 0.1012 0.1062
13 0.1483 0.2049 0.2783 0.0936 0.1011 0.1062
14 0.1482 0.2049 0.2784 0.0936 0.101 0.1061
15 0.1481 0.2049 0.2785 0.0934 0.1009 0.106
16 0.1481 0.2049 0.2786 0.0933 0.1008 0.1059
17 0.148 0.2048 0.2787 0.0932 0.1007 0.1058
18 0.1479 0.2048 0.2788 0.0931 0.1006 0.1057
19 0.1478 0.2048 0.2788 0.093 0.1005 0.1056

Table 6.4: First-n-recommendations results on the Last.fm dataset. The values
for II-RNN are for the average-pooling implementation.

51

6 Results and Discussion

RNN
n Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
1 0.1168 0.1626 0.2139 0.0699 0.0759 0.0795
2 0.1148 0.1607 0.2144 0.068 0.0741 0.0778
3 0.1103 0.1564 0.2113 0.0648 0.0709 0.0747
4 0.1062 0.1519 0.2073 0.0619 0.0679 0.0717
5 0.1023 0.1471 0.2027 0.0592 0.0651 0.0689
6 0.0992 0.1435 0.1989 0.0572 0.0630 0.0668
7 0.0966 0.1403 0.1952 0.0554 0.0612 0.0650
8 0.0944 0.1375 0.1922 0.0541 0.0597 0.0635
9 0.0928 0.1355 0.1898 0.0530 0.0586 0.0624
10 0.0914 0.1337 0.1876 0.0521 0.0577 0.0614
11 0.0899 0.1319 0.1855 0.0512 0.0567 0.0604
12 0.0889 0.1306 0.1840 0.0505 0.056 0.0597
13 0.0880 0.1295 0.1827 0.0500 0.0554 0.0591
14 0.0873 0.1285 0.1815 0.0495 0.0549 0.0586
15 0.0866 0.1276 0.1805 0.0491 0.0545 0.0581
16 0.0861 0.1269 0.1795 0.0488 0.0541 0.0578
17 0.0856 0.1262 0.1787 0.0485 0.0538 0.0574
18 0.0851 0.1256 0.1780 0.0482 0.0535 0.0571
19 0.0848 0.1251 0.1774 0.0480 0.0533 0.0569
II-RNN
n Recall@5 Recall@10 Recall@20 MRR@5 MRR@10 MRR@20
1 0.1718 0.2335 0.3077 0.1055 0.1137 0.1188
2 0.1615 0.2229 0.2969 0.0976 0.1057 0.1108
3 0.1512 0.2116 0.2849 0.0902 0.0983 0.1033
4 0.1428 0.2017 0.2742 0.0845 0.0923 0.0973
5 0.1359 0.1934 0.2650 0.0798 0.0874 0.0923
6 0.1301 0.1863 0.2569 0.0760 0.0835 0.0883
7 0.1254 0.1806 0.2501 0.073 0.0803 0.0851
8 0.1217 0.1759 0.2445 0.0707 0.0778 0.0826
9 0.1187 0.1720 0.2400 0.0687 0.0758 0.0805
10 0.1162 0.1687 0.2360 0.0672 0.0741 0.0787
11 0.1139 0.1658 0.2326 0.0657 0.0726 0.0771
12 0.1120 0.1633 0.2295 0.0646 0.0713 0.0758
13 0.1105 0.1613 0.2270 0.0636 0.0704 0.0748
14 0.1092 0.1596 0.2250 0.0628 0.0695 0.0740
15 0.1080 0.1581 0.2231 0.0622 0.0688 0.0732
16 0.1071 0.1569 0.2215 0.0616 0.0681 0.0726
17 0.1063 0.1558 0.2202 0.0611 0.0676 0.0720
18 0.1056 0.1549 0.2190 0.0607 0.0672 0.0716
19 0.1050 0.1541 0.2179 0.0603 0.0668 0.0712

Table 6.5: First-n-recommendations results on the Instacart dataset. The values
for II-RNN are for the last hidden state implementation.

52

6.1 Results

Figure 6.1: First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Reddit dataset, with Recall@5 metric.

Figure 6.2: First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Reddit dataset, with MRR@5 metric.

53

6 Results and Discussion

Figure 6.3: First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Last.fm dataset, with Recall@5 metric.

Figure 6.4: First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Last.fm dataset, with MRR@5 metric.

54

6.1 Results

Figure 6.5: First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Instacart dataset, with Recall@5 metric.

Figure 6.6: First-n-recommendations comparison of standalone intra-session
RNN and II-RNN on the Instacart dataset, with MRR@5 metric.

55

6 Results and Discussion

6.2 Evaluation

Here we point out and explain interesting results found.

6.2.1 Baselines

The standalone intra-session RNN outperformed all baselines on all datasets.
Based on what we have seen in other papers, this was as expected. The Item-
kNN was the overall strongest baseline on the three datasets. On the Reddit
and Last.fm dataset, the "most recent" baseline outperformed Item-kNN on some
metrics. The reason for this is the high repetitiveness in these datasets. On the
other hand, we expected the Instacart to have a very low repetitiveness, which
is confirmed by the extremely low score of the "most recent" baseline. Based on
the number of items in the dataset, the expected Recall@20 score for random
recommendations on Instacart would be approximately 0.0005, which is higher
than what the "most recent" baseline achieved. We hypothesize that the baseline
scored some points on the first recommendations in each session, since those are
random. But that it scored worse in the end, when trying to recommend items
already added to the basket.

6.2.2 RNN and II-RNN

For the II-RNN, the intra-session RNN is the most important comparison. II-
RNN is an extension to the RNN, that also considers recent past user behavior.
Therefore, the II-RNN should in theory be able to perform better than the simpler
intra-session RNN. Our results show that II-RNN can significantly outperform
the RNN.
In addition to achieving a higher overall score on the whole sessions, the II-

RNN scores significantly higher at the start of sessions. In other words, II-RNN
can make strong recommendations at the start of sessions, before learning much
about the current session. Furthermore, the II-RNN scores closer to its overall
score at the start of sessions than the intra-session RNN does.
Note that on the Reddit dataset, the strong improvement the II-RNN has

over the intra-session RNN, may bartially be explained by the short average
session length in this dataset. Given that II-RNN performs much better at the
start of sessions, the intra-session RNN is hampered by the lack of long sessions.
However, with longer sessions the II-RNN would also have been able to achieve
higher scores.

56

6.3 Discussion

6.2.3 BPR-MF
Even though BPR-MF usually is a strong recommender, and therefore is popular
to use in real applications, it was outperformed by the RNN models in our ex-
periments. However, this might not be too surprising. BPR-MF tries to predict
rankings between items in order to recommend unseen items that users would
rank highly. In other words, it might perform better when used to produce novel
recommendations instead of being used as a prediction recommender. Further-
more, BPR-MF does not directly apply to the session-based setting, since it is
not able to dynamically change its recommendations throughout a session.

6.2.4 Dropout
We were only able to get the II-RNN to perform better than RNN on the Last.fm
and Instacart datasets with dropout. Without it, II-RNN performed worse than
the intra-session RNN. This shows, that even though it is intuitive that the II-
RNN model should perform better, it is still necessary to tune and regularize the
model to achieve this.

6.2.5 Average-Pooling and Last Hidden State
It is hard to point out why average-pooling would work better than using the
last hidden state, or vice versa, for session representation. But we observe that
using the last hidden state worked better on the Reddit and Instacart dataset,
while average-pooling worked better on the Last.fm dataset.
The last hidden state can contain traces of information from earlier sessions as

well as the one it is used to represent. Due to how GRU cells work, the intra-
session RNN layer can decide to forget some features and focus on others. On
the other hand, average-pooling represent all items in a session. Furthermore,
average-pooling cannot give any information about the order of items in a session,
and it weighs all items evenly. It is possible that these properties are advantages
or disadvantages depending on the type of data worked on.

6.3 Discussion
In this section, we discuss the merits of our work, and it’s limitations.

6.3.1 Usefulness of the Inter-Session Level RNN
Our work has shown that a RNN recommender system in a session-based setting,
can improve recommendations by utilizing information about users’ earlier ses-
sions. We have also shown that a second RNN layer can be used to process this

57

6 Results and Discussion

information to help the first one. However, we cannot draw any conclusions on
whether a second RNN layer is needed, or if a simpler solution can be equally
good. Intuitively, it makes sense that the order of past sessions could be import-
ant, and in that case a RNN should be a good solution. But simpler solutions
could probably also work in many cases. Therefore, it would be interesting to
compare our model to other solutions for using information about past sessions
to help the intra-session RNN. For example, one could feed the intra-session RNN
with the session representation of the last session, directly. Or pooling could be
used on the r most recent sessions’ session representations, to create the initial
hidden state for the RNN.

6.3.2 Importance of Retraining the Model
In real world applications, it is important that a recommender system is up to
date with the latest user trends. The RNN models scored higher on the hold-
one-out version of the dataset used for testing BPR-MF. This could suggest that
those models perform better on current sessions than sessions further into the
future. I.e. the RNN models are less effective on test sessions temporally far
away from the training sessions. This makes intuitive sense, but in our case other
factors also influence this difference in scores. One of those factors is that the
models have more training data in the hold-one-out version of the dataset.

6.3.3 Artificial and Natural Sessions
The sessions in the Reddit and Last.fm datasets were manually extracted from the
full user histories. How we divided the user histories into sessions in these datasets
could affect our results. Therefore, it is very promising that the II-RNN achieved
strong results on the Instacart datasets, where real users naturally created the
sessions. Furthermore, the lack of repetitiveness in this dataset implies that the
RNN models were able to learn more complex dependencies than just repeating
already seen items. The fact that the RNN models significantly outperformed
the "most recent" baseline on the other datasets, confirms this.

6.3.4 Declining Performance on the Instacart Dataset
As shown in Figure 6.5 and 6.6, both RNN models achieved weaker results to-
wards the end of sessions. This is somewhat unintuitive, since one would think
that the models would perform better towards the end, having learned more
about the user’s current interests. A possible explanation is that customers buy
their typical items first, and that there is simply less structure to their habits fur-
ther into the sessions. Hence, the results are not necessarily erroneous, although
they look a bit weird.

58

7 Conclusion
This chapter concludes our work. We look at limitations in the proposed II-RNN
model, and how these can be solved. Then we look at the contributions of our
work, and we suggest several ideas for further work and improvements.

7.1 Limitations
Even though our proposed II-RNN achieves strong results on the evaluation met-
rics we have used, there are also other important metrics that we have not looked
at.

7.1.1 Response time
In real world recommender system applications, speed is important, as recom-
mendations should become available in real time. Training time is less important,
because it can, for example, be performed regularly on a separate machine, and
the trained model can be transferred into the online system when done. But the
demand for a low response time from the recommendation system still needs to
be addressed.

7.1.2 Scalability
In addition to response time, scalability is another important requirement in real
world applications. Our largest dataset in terms of items, the Last.fm dataset,
has about 100 000 items. Amazon are currently offering about 400 000 000 items
[38]. Scaling up our model to handle such numbers is not trivial. A simple idea
could be to have separate recommender systems for different categories. However,
this still leaves us with tens of millions of items on Amazon, about 100 times more
than what we encountered in the Last.fm dataset.

7.1.3 Dynamic set of items and item with short lifespans
In the datasets we have worked with, we have assumed a static set of items. I.e.
the set of items does not change over time. New items are not added, and no
items are removed. In many cases this is a valid assumption, because the model

59

7 Conclusion

can be retrained frequently (e.g. weekly) to account for changes in the item set.
We have also assumed that the items have a long lifespan. I.e. that items will
be relevant in the foreseeable future. This is not the case on news sites. New
articles are created by the hour, and they have a short lifespan. A system that
recommends last week’s news, might not be very useful. In such cases, it might
be necessary to create a recommender that is able to recommend items not seen
during training.

7.1.4 Suggestion to Overcome the Limitations
The limitations mentioned above means that our model might need further work
and modifications to adopt to those cases. Note that most of our model is op-
erating in the embedded vector space, which means that it works on the latent
features of items rather than the actual items. Therefore, we hypothesize that
an approach similar to the one used in [28], and also suggested in [5], could be
useful. By using a method to map items to the embedded space, and a method
to find close neighbors in embedded space, the recommender need only produce
recommended embeddings. A recommended embedding can then be compared to
the embeddings of fresh items, and items close to the recommendation in embed-
ded space are then recommended. In other words, the core of the recommender
system would not need to know about which items are outdated and which are
fresh, because it would only work with the latent features.

7.2 Contributions
Through our experiments, we have shown how a straightforward session-based
RNN recommender can be expanded, making it able to consider a user’s past
sessions when making recommendations in the current session. We have shown
that this approach gives clear improvements on all three datasets that we have
experimented with. Furthermore, the proposed II-RNN model was shown to
perform particularly well early in sessions. This means that the II-RNN can
alleviate the cold start problem of session-based recommender systems.
We have also shown two methods for creating session-representations, which

both generally work well. But which one works best, will depend on the domain
and data the model is applied on.

7.3 Answering Research Questions
We now revisit our research questions from Section 1.2.

60

7.4 Further work

Research question 1: Can a RNN be used to learn from previous sessions,
and thus produce initial information about the next session, which can help
improve recommendations from the straightforward session-based RNN recom-
mendation system implementation?

We have implemented a RNN-based session-based recommender, very similar
to the one suggested in [1]. This model, the intra-session RNN, achieved strong
results compared to the baselines, in line with the results from [1]. By extending
this model with a second RNN-layer, that processed past sessions, we were able to
improve upon the results from the standalone intra-session RNN. Our proposed
model fulfills the specifications required in research question 1, and the result is
improved recommendations across all three datasets that we have experimented
with.

Research question 2: Given that our proposed model performs close to the
straightforward RNN model or better, is it able produce improved recommenda-
tions at the beginning of sessions, and thereby deal with the cold start problem
of session-based recommendations?

Our proposed model, II-RNN, significantly outperformed our standalone intra-
session RNN implementation. By comparing the two models on first-n recom-
mendations, we were able to compare the two models at different time steps
throughout the sessions. On the Reddit and Last.fm datasets, both models
achieved increasing scores towards the end of sessions. In our experiments, the
II-RNN model showed marked improvements over the intra-session RNN at the
start of sessions. Specifically, we observed the biggest performance difference on
the very first recommendation. The standalone intra-session RNN was able to
lessen this difference throughout the sessions. However, we observed that the
difference stabilized towards the end of sessions. On the Reddit dataset, the II-
RNN scored significantly higher on the first time step than the highest score the
intra-session RNN was able to achieve throughout the whole session.

7.4 Further work

Here we present some ideas and research questions that could be interesting to
investigate in further work on the II-RNN model.

61

7 Conclusion

7.4.1 Producing recommendations before the first user
interaction

Both the intra-session RNN and the II-RNN models presented here, produce re-
commendations only after observing the first user interaction in a session. It is of
course, possible to present recommendations to the user as soon as he has entered
a session, before any interaction has taken place. A possible way to do this, is
to let the II-RNN produce an initial dummy interaction. The intra-session RNN
layer could then use this dummy interaction to produce initial recommendations.
If work on this approach is done, one should also consider work done in [31],
where they investigate how to predict when the user will start his next session,
and what his interests will be, using a LSTM to model inter-session behavior.

7.4.2 Session representations

Although the II-RNN worked with our two methods of creating session represent-
ations, there might be other approaches that are better. In [24], both maximum-
pooling and average-pooling was used. They achieved slightly better results when
using maximum-pooling, so that is a possible candidate. Other methods such as
bag-of-word, or using a NN to create session representations, should also be con-
sidered.

7.4.3 Learning Item Embeddings

The II-RNN learned item embeddings during the recommendation training pro-
cess. It would be interesting to experiment with other methods of learning the
item embeddings. Pre-training the embeddings with another method, could im-
prove results, because it could help the II-RNN discover latent features. Also,
existing encoding methods should be considered. Especially if additional inform-
ation about items, such as text or images, are available. In that case, we refer to
[6], where relevant work has been done.

7.4.4 Recommending Items with Short Lifespans

This is also discussed in Section 3.2 and 7.1. A solution where the core of the
recommender system only works with embeddings, and another method is used
to extract the actual items from the embeddings, could make the recommender
more applicable to news sites and other cases where the items have short lifespans.
Such an approach could enable the recommender to scale to larger item sets as
well. Exploring these possibilities would be very interesting.

62

7.4 Further work

7.4.5 Alternating Training
In [6], discussed in Section 3.5.2 and 3.5.3, the authors found that when training
a model with two parallel GRU layers, it is better to alternate training on sub-
networks of the model. I.e. tuning all parts of the model in each backpropagation
pass was not optimal. Alternating on freezing one of the GRU layers, while tuning
the other gave better results.
Such an approach would be interesting to experiment with on the II-RNN

model as well. A difference from [6] is that their GRU layers worked in parallel
to produce recommendations, while in our model the GRU layers are working
sequentially.

7.4.6 Novel Recommendations
Producing novel recommendations are often more interesting and useful than
predictive recommendations. However, they usually require feedback from real
users, making such systems harder to experiment with. Nevertheless, it would be
interesting to approach novel recommendations with II-RNN.

7.4.7 Utilizing Contextual Information
As discussed in Section 3.4, additional information can be given to the recom-
mender system in order to improve recommendations. Timestamps are often
available in training data, and can be used both to find temporal distance between
user interactions, and to say something about the time of the interaction. E.g.
day of the week, and whether the interaction happened during holidays. Some of
the papers mentioned in Section 3.4 were able to improve recommendations by
utilizing such information, and it is possible that adding such information to the
II-RNN could improve it as well.

63

Bibliography
[1] Balázs Hidasi et al. “Session-based Recommendations with Recurrent Neural

Networks”. In: CoRR abs/1511.06939 (2015). url: http://arxiv.org/
abs/1511.06939.

[2] Bartłomiej Twardowski. “Modelling Contextual Information in Session-
Aware Recommender Systems with Neural Networks”. In: Proceedings of
the 10th ACM Conference on Recommender Systems. RecSys ’16. Boston,
Massachusetts, USA: ACM, 2016, pp. 273–276. isbn: 978-1-4503-4035-9.
doi: 10.1145/2959100.2959162. url: http://doi.acm.org/10.1145/
2959100.2959162.

[3] Yuyu Zhang et al. “Sequential Click Prediction for Sponsored Search with
Recurrent Neural Networks”. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence. AAAI’14. Québec City, Québec, Canada:
AAAI Press, 2014, pp. 1369–1375. url: http://dl.acm.org/citation.
cfm?id=2893873.2894086.

[4] Qiang Liu et al. “Context-aware Sequential Recommendation”. In: CoRR
abs/1609.05787 (2016). url: http://arxiv.org/abs/1609.05787.

[5] Yong Kiam Tan, Xinxing Xu and Yong Liu. “Improved Recurrent Neural
Networks for Session-based Recommendations”. In: CoRR abs/1606.08117
(2016). url: http://arxiv.org/abs/1606.08117.

[6] Balázs Hidasi et al. “Parallel Recurrent Neural Network Architectures for
Feature-rich Session-based Recommendations”. In: Proceedings of the 10th
ACM Conference on Recommender Systems. RecSys ’16. Boston, Massachu-
setts, USA: ACM, 2016, pp. 241–248. isbn: 978-1-4503-4035-9. doi: 10.
1145/2959100.2959167. url: http://doi.acm.org/10.1145/2959100.
2959167.

[7] Charu C. Aggarwal. Recommender Systems: The Textbook. 1st. Springer
Publishing Company, Incorporated, 2016. isbn: 3319296574, 9783319296579.

[8] Matrix Factorization: A Simple Tutorial and Implementation in Python.
url: http://www.quuxlabs.com/blog/2010/09/matrix-factorization-
a - simple - tutorial - and - implementation - in - python/ (visited on
2017-07-01).

65

Bibliography

[9] Steffen Rendle et al. “BPR: Bayesian Personalized Ranking from Implicit
Feedback”. In: CoRR abs/1205.2618 (2012). url: http://arxiv.org/abs/
1205.2618.

[10] Mukund Deshpande and George Karypis. “Item-based top-N Recommend-
ation Algorithms”. In: ACM Trans. Inf. Syst. 22.1 (Jan. 2004), pp. 143–177.
issn: 1046-8188. doi: 10.1145/963770.963776. url: http://doi.acm.
org/10.1145/963770.963776.

[11] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. 3rd. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009. isbn:
0136042597, 9780136042594.

[12] Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltzmann
Machines Vinod Nair.

[13] Zachary Chase Lipton. “A Critical Review of Recurrent Neural Networks
for Sequence Learning”. In: CoRR abs/1506.00019 (2015). url: http://
arxiv.org/abs/1506.00019.

[14] D. E. Rumelhart, G. E. Hinton and R. J. Williams. “Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1”. In:
ed. by David E. Rumelhart, James L. McClelland and CORPORATE PDP
Research Group. Cambridge, MA, USA: MIT Press, 1986. Chap. Learning
Internal Representations by Error Propagation, pp. 318–362. isbn: 0-262-
68053-X. url: http://dl.acm.org/citation.cfm?id=104279.104293.

[15] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: J. Mach. Learn. Res. 15.1 (Jan. 2014), pp. 1929–
1958. issn: 1532-4435. url: http://dl.acm.org/citation.cfm?id=
2627435.2670313.

[16] Ian Goodfellow, Yoshua Bengio and Aaron Courville. “Deep Learning”.
Book in preparation for MIT Press. 2016. url: http://www.deeplearningbook.
org.

[17] Sepp Hochreiter and Jürgen Schmidhuber. “Bridging Long Time Lags by
Weight Guessing and "Long Short TermMemory"”. In: SPATIOTEMPORAL
MODELS IN BIOLOGICAL AND ARTIFICIAL SYSTEMS. IOS Press,
1996, pp. 65–72.

[18] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”. In: CoRR abs/1406.1078
(2014). url: http://arxiv.org/abs/1406.1078.

[19] Junyoung Chung et al. “Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling”. In: CoRR abs/1412.3555 (2014). url:
http://arxiv.org/abs/1412.3555.

66

Bibliography

[20] Martin Görner. Tensorflow and deep learning - without a PhD. url: https:
/ / cfp . devoxx . be / 2016 / talk / ULT - 2698 / Tensorflow _ and _ deep _
learning_-_without_at_PhD.html (visited on 2017-06-05).

[21] Christopher Olah. Understanding LSTMs. url: http://colah.github.
io/posts/2015-08-Understanding-LSTMs/ (visited on 2017-06-07).

[22] Tomas Mikolov et al. “Efficient Estimation of Word Representations in
Vector Space”. In: CoRR abs/1301.3781 (2013). url: http://arxiv.org/
abs/1301.3781.

[23] Ellen M. Voorhees. “The TREC Question Answering Track”. In: Nat. Lang.
Eng. 7.4 (Dec. 2001), pp. 361–378. issn: 1351-3249. doi: 10.1017/S1351324901002789.
url: http://dx.doi.org/10.1017/S1351324901002789.

[24] Feng Yu et al. “A Dynamic Recurrent Model for Next Basket Recommenda-
tion”. In: Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’16. Pisa, Italy:
ACM, 2016, pp. 729–732. isbn: 978-1-4503-4069-4. doi: 10.1145/2911451.
2914683. url: http://doi.acm.org/10.1145/2911451.2914683.

[25] Shengxian Wan et al. “Next Basket Recommendation with Neural Net-
works”. In: Poster Proceedings of the 9th ACM Conference on Recommender
Systems, RecSys 2015, Vienna, Austria, September 16, 2015. 2015. url:
http://ceur-ws.org/Vol-1441/recsys2015_poster15.pdf.

[26] Yang Song, Ali Mamdouh Elkahky and Xiaodong He. “Multi-Rate Deep
Learning for Temporal Recommendation”. In: Proceedings of the 39th In-
ternational ACM SIGIR Conference on Research and Development in In-
formation Retrieval. SIGIR ’16. Pisa, Italy: ACM, 2016, pp. 909–912. isbn:
978-1-4503-4069-4. doi: 10.1145/2911451.2914726. url: http://doi.
acm.org/10.1145/2911451.2914726.

[27] S. Wu et al. “Personal recommendation using deep recurrent neural net-
works in NetEase”. In: 2016 IEEE 32nd International Conference on Data
Engineering (ICDE). 2016, pp. 1218–1229. doi: 10 . 1109 / ICDE . 2016 .
7498326.

[28] Gabriel Dulac-Arnold et al. “Reinforcement Learning in Large Discrete Ac-
tion Spaces”. In: CoRR abs/1512.07679 (2015). url: http://arxiv.org/
abs/1512.07679.

[29] Hanjun Dai et al. “Recurrent Coevolutionary Feature Embedding Processes
for Recommendation”. In: CoRR abs/1609.03675 (2016). url: http://
arxiv.org/abs/1609.03675.

67

Bibliography

[30] Chao-Yuan Wu et al. “Recurrent Recommender Networks”. In: Proceedings
of the Tenth ACM International Conference on Web Search and Data Min-
ing. WSDM ’17. Cambridge, United Kingdom: ACM, 2017, pp. 495–503.
isbn: 978-1-4503-4675-7. doi: 10.1145/3018661.3018689. url: http:
//doi.acm.org/10.1145/3018661.3018689.

[31] How Jing and Alexander J. Smola. “Neural Survival Recommender”. In:
Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining. WSDM ’17. Cambridge, United Kingdom: ACM, 2017,
pp. 515–524. isbn: 978-1-4503-4675-7. doi: 10.1145/3018661.3018719.
url: http://doi.acm.org/10.1145/3018661.3018719.

[32] Yoav Goldberg and Omer Levy. “word2vec Explained: deriving Mikolov et
al.’s negative-sampling word-embedding method”. In: CoRR abs/1402.3722
(2014). url: http://arxiv.org/abs/1402.3722.

[33] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-
timization”. In: CoRR abs/1412.6980 (2014). url: http://arxiv.org/
abs/1412.6980.

[34] Balázs Hidasi. Personal communication. 2016.
[35] Thierry Bertin-Mahieux et al. “The Million Song Dataset”. In: Proceed-

ings of the 12th International Conference on Music Information Retrieval
(ISMIR 2011). 2011.

[36] The Instacart Online Grocery Shopping Dataset 2017. url: https : / /
www . instacart . com / datasets / grocery - shopping - 2017 (visited on
2017-06-16).

[37] Greg Linden, Brent Smith and Jeremy York. “Amazon.Com Recommenda-
tions: Item-to-Item Collaborative Filtering”. In: IEEE Internet Computing
7.1 (Jan. 2003), pp. 76–80. issn: 1089-7801. doi: 10.1109/MIC.2003.
1167344. url: http://dx.doi.org/10.1109/MIC.2003.1167344.

[38] How many products are sold on Amazon.com – January 2017 Report. url:
https://www.scrapehero.com/how- many- products- are- sold- on-
amazon-com-january-2017-report/ (visited on 2017-06-20).

68

	Title Page
	masteroppgave.pdf

