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Abstract

We have studied various aspects of the critical properties of the Abelian Higgs model.
The initial motivation to study this model is its relation to superconductivity, but the
results extend beyond the realms of superconductivity. This thesis contains an intro-
ductory part and three research papers, all related to di�erent aspects of the Abelian
Higgs model.

P aper1: We ha veinvestigatedthe properties of the model using a dual vortex rep-
resen tation. By focusing on the propagators ofthe gauge �eld A and the dual gauge
�eld h w e �nda nicedemonstration of the fact that the dual of a neutral condensate
is isomorphic to a charged condensate. Finally this also provides �rm support for the
existence of a stable charged �xed point in the theory, distinct from the 3DXY �xed
point.

P aper 2:The critical uctuations in the Abelian Higgs model are vortex loops. We have
studied the geometrical properties of these loops, and by using duality w e have obtained
scaling relations betw een the fractal dimension DH of the loops and the anomalous
dimension �� of the dual �eld theory.

P aper3: We have calculated the GL parameter �tri separating a �rst order metal to
superconductor transition from a second order one, �tri = (0:76 � 0:04)=

p
2. We also

argue qualitatively that this �tri is the value separating type-I and type-II behavior,
in contrast to the conven tional value 1=

p
2. The calculations have been done including

uctuations in the amplitude and the phase of the matter-�eld, as well as uctuations
in the gauge �eld.

paper 4: We have determined the e�ective interaction betw een v ortices in the Ginzburg-
Landau model from large-scale Monte-Carlo simulations. We �nd a change, in the form
of a crossover, from attractive to repulsive e�ective vortex interactions in an intermediate
range of Ginzburg-Landau parameters � 2 [0:76; 1]=

p
2, depending on temperature. We

present a simple physical picture of the crossover, and relate it to observations in Ta and
Nb elemental superconductors which have low-temperature values of � in the relevan t
range.
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1 Introduction

The current chapter is a brief introduction to superconductivity in general; and to the
conten ts of the thesis. Section 1.1 starts with an overview of the historical development,
and con tinues to giv e an account of the macroscopic observable properties of super-
conductors. In section 1.2 the microscopic ingredients of superconductivity are briey
described. Finally section 1.3 is an introduction to coarse grained phenomenological
theories of superconductivity.

The main focus of this thesis has been on the normal-superconductor transition. Many
aspects of phase transitions are general, irrespective of the particular transition in ques-
tion; chapter 2 con tainsa general introduction to phase transitions. All the original
w ork in this thesis is based on di�erent approaches to the Ginzburg Landau (GL) model,
various aspects of this model are the topic of chapter 3. The main tool used in our in-
vestigations has beenMonte Carlo (MC) simulations, and this technique is covered in
chapter 4.

1.1 Macroscopic overview

In this section I will present superconductivity from a macroscopic point of view, i.e.
the macroscopic phenomena that together constitute superconductivity.

P erfectconductivity (1911) Superconductivity w as�rst disco vered by H. Kamer-
lingh Onnes in 1911 [1]. What he disco vered was what w ecan call perfect con-

ductivity, i.e. that in certain metals such as mercury, lead and tin electric DC
resistance vanishes completely below a certain temperature.

P erfectdiamagnetism (1933) The second ingredient of superconductivity was dis-
covered in 1933;perfect diamagnetism. A magnetic �eld is not allowed to enter a
superconductor. F urthermore, a magnetic �eld initially present in the sample will
be expelled when the sample is cooled through the critical temperature1. This

1This view has later been modi�ed; for type-II superconductors a �eld initially in the sample will

freeze in and form a ux line lattic e.

1
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2 CHAPTER 1. INTRODUCTION

is a fundamental property, and distinct from perfect conductivity2. Together the
tw o concepts ofperfect conductivity and perfect diamagnetism are the hallmarks
of superconductivity.

Theoretical progress (1950 - 1960) For a long time the concept of superconductiv-
ity puzzled physicists, but during the 1950's there was great theoretical progress,
and a seemingly complete understanding of the phenomenon emerged. Highlights
from this period were the BCS [2] theory ,Gorkov's derivation of the GL model
from the BCS theory [3], and Abrikoso v's discussion oftype-II superconductors [4],
which in particular have signi�cantly di�erent properties in a magnetic �eld.

High Tc (1986) The �eld of superconductivity was revitalized with Bednorz andM�uller's
disco very of High-Tc superconductivity [5] in 1986. The superconductors known
prior to Bednorz and M�uller's disco very hadto be cooled with liquid Helium, a
procedure which is expensive and cumbersome. The High Tc superconductors can
be cooled with liquid Nitrogen; a major simpli�cation compared to Helium.

High Tc superconductivity was �rst found in the ceramic compound LaSrCuO, and
has later been found in the similar compounds YBaCuO and BiSrCuO. Common
to these materials is a highly anisotropic structure consisting of 2D CuO planes,
high values for � (i.e. they are all type II superconductors) and low carrier density.
Ironically these superconductors are all very poor conductors, or even insulators,
above the critical temperature.

As the name indicates, superconductors are perfect conductors, but from a theoretical
point of view the properties in a magnetic �eld are even more interesting. Fig. 1.1 shows
ho w the magnetic �eld lines are excluded from3 into the interior of the superconductor.

A t some magnetic �eld the excess energy from expelling the magnetic �eld will exceed
the condensation energy of the superconducting condensate. A t this stage the magnetic
�eld enters the superconductor, and superconductivity is destroyed. This process can
tak e place in two ways depending on whether it is a type-I or type-II superconductor4.
A type-I superconductor will change abruptly to the normal phase when the magnetic
�eld exceeds a critical �eld Hc. F or a t ype-II superconductor the magnetic will enter the
superconductor and form a ux line lattice for Hc1

< H < Hc2
, and then go completely

normal for H > Hc2
.

In the intermediate state the superconductor is still superconducting, but the ability to
carry a superconducting current is severely limited by the ux lines. The microscopic
di�erence between type-I and type-II superconductors is whether the interaction between
the ux lines is attractive or repulsive. This topic has been studied in Paper III.

2Consider for instance a gas of free fermions, there is no resistance in this gas, but it does not show

the Meissner e�ect and is consequently not a superconductor.
3This is not entirely true; the magnetic �eld penetrates an outer layer of thickness � which is of

order 102�A.
4In fact it is actually the other way around, the classi�cation in type-I and type-II superconductors

is based on their response to an external magnetic �eld.
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1.2. MICROSCOPIC ASPECTS 3

B = 0

Figure 1.1: A superconductor in a weak magnetic �eld. The magnetic �eld lines go around

the superconductor, and the induction in the interior of the superconductor is zero. This is

a visual demonstration of the Meissner e�ect.

There are numerous industrial applications of superconductors: SQUIDs are extremely
sensitive to magnetic �eld, High Tc superconductors are used in cellular �lters to get
sharp frequency response [6], in MRI superconductors are used to maintain a strong
magnetic �eld, and in pow er applications superconductors are used both for distribution
[7] and for transformers.

1.2 Microscopic aspects

Superconductivity is a highly nontrivial quantum mechanical problem. Due to some
e�ective attractive electron-electron interaction a certain fraction of the electrons pair
up in so called Co oper-p airs, forming a superconducting condensate. In convential su-
perconductors like Aluminum, Tin and Lead this e�ective interaction is mediated by
phonons [1]. Whereas in in the case of high Tc superconductors there is only limited
kno wledge of the pairing mechanism, however some important facts are:

d-wav e:The gap function has d-wave symmetry [8, 9] conven tionals-w ave symmetry.

AF/SC: The ground state is either a superconductor or an insulating antiferr omagnet,
depending on the doping level [10], see Fig. 1.2. This ground state is highly exotic,
making high Tc superconductors a regime of their own.

URN:NBN:no-2110



4 CHAPTER 1. INTRODUCTION

AF d−Wave SC

X

T

Figure 1.2: A generic phase diagram in the doping-temperature plane common for all high
Tc superconductors, �gure copied from [10].

Given that there is an e�ective attractive electron-electron in teraction, the BCS [1]
theory provides a very satisfying explanation of how superconductivity arises.

1.3 Phenomenological theories

The pairing of electrons into a superconducting condensate is a problem of quantum
mechanics. But the question of what happens to the condensate when the temperature
is increased, and more speci�cally: what are the properties of the superconducting !
normal transition; this is generally a problem of statistical mechanics5. The problem is
typically approached as follows:

1. Some, possibly unknown, mechanism leads to the formation of a condensate. In
the case of superconductivity the universal properties of this condensate are

(a) It is described by a complex �eld  (r).

(b) It is charged, and consequently there must be a photon mediating long range
interactions.

(c) The thermal properties are such that j (r)j is �nite below the critical tem-
perature, and vanishes above it.

2. A statistical mechanics model is formulated which captures the universal properties
of the condensate, and this model is approached with the usual tools of statistical

5Of course - strictly speaking this is also a quantum mechanical problem, however at �nite temper-

ature the thermal uctuations will by far dominate over the quan tum uctuations, and the latter are

ignored.
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1.3. PHENOMENOLOGICAL THEORIES 5

mechanics. In our case the Ginzburg Landau model meets these requirements, but
the requirements listed abo ve are very gener al, and as w eshall see in chapter 3
the model can be applied to many other phase transitions as well.

In addition to superconductivity the lambda transition in 4He has been treated in this
fashion with great suc cess[11].
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2 Phase Transitions

Understanding the various phases of matter is one of the major problems in physics.

We are all familiar with the phases H2O go through upon heating; from the solid ice

phase, to the liquid phase and �nally to the vapor phase. Phase transitions take place

in many di�erent areas of physics. The topic of this thesis has been the superconductor

to normal metal1 phase transition. Important questions to consider when studying a

phase transition are:

1. What is the symmetry of the disordered state, and is this symmetry broken in the

ordered state.

2. What is the order of the phase transition, and in the case of second order transitions

what are the critical exponents, i.e. the universalit y class.

3. What is the mechanism behind the transition. This is specially applies to contin-

uous transitions, where the universal properties are determied by critical uctua-
tions.

The underlying principle, that the equilibrium state minimizes free energy, and the

resulting competition betw een entropy and energy is considered in section 2.1. Section

2.2 is devoted to the important concept of symmetries, and broken symmetries. In

section 2.3 we will present the di�erence betw een �rst order and second order transitions.

The last tw o sections, 2.4 and 2.5 are devoted to critical phenomena.

2.1 Phase transitions and Free Energy

The concept of an order parameter is very important when studying phase transitions.

Most2 phase transitions can be formulated as order/disorder transitions. The low tem-

1Will use the term \metal", although at least some of the High-Tc materials have very exotic normal

states, quite di�eren t from ordinary metals.
2Theories with local symmetries, the GL model being the prime example, are exceptions. For these

theories it is impossible to de�ne a local order parameter, also global order parameters are fraught with

diÆculties, and the whole concept of an order parameter is less useful. Nevertheless it still makes sense

to speak of an ordered and a diordered state in the sense that the ordered state has low entr opy, and

the disordered state has high entropy.

7
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8 CHAPTER 2. PHASE TRANSITIONS

perature state is order ed, indicated by a �nite value for the order parameter, andthe
high temperature state is disor der ed, with a vanishing order parameter. The Helmholtz
F ree energy very clearly reveals the main principles in a transition between order and
disorder

F = E � TS: (2.1)

The equilibrium state minimizes F , and as we can we see from Eq. 2.1 this is achieved
by minizingE and maximizing S. How ev er these t w o are conicting goals.Generally
the in ternal energy is minimized by forming an ordered state with low entropy. On the
other hand the entrop y is maximized by forming a completely random state, which leads
to an increase in energy with respect to the ordered state. The results is that for low
temperatures the energy dominates over entropy leading to an order ed state, whereas
for high temperatures the situation is opposite. Clearly the transition occurs when the
equilibrium state changes from an energy dominated state to an entropy dominated one.
F or some models, like the 1D ising model there is no �nite temperature transition; for
these model the disordered state will be favored for any T > 0.

2.2 Broken symmetries

Most models in statistical physics have symmetries, i.e. the microscopic state  can
be transformed, while the con�gurational energy H( ) remains invarian t.Let � be a
faithful representation of the symmetry group G, then H( ) has a G symmetry if

H(� ) = H( ): (2.2)

The Ising and XY models have a Z2 and U(1) symmetry respectively. The con�guration
energy for these tw o models, along with representations of the Z2 and U(1) symmetries
are shown in Eq. 2.3 and 2.4:

HI = �
X

hi;ji

sisj si ! �si Z2; (2.3)

HXY = �
X

hi;ji

cos (�i � �j) �i ! �i + ' U(1): (2.4)

Let us consider the order parameter for the Ising model,

hm( )i =
1

V

X

x

s(x): (2.5)

In the disordered state hm( )i = hm(� )i = 0 and hm( )i has the same symmetry has

URN:NBN:no-2110



2.2. BROKEN SYMMETRIES 9

the con�guration energy3. How ev er in the ordered state the system has chosen a value4

for hm( )i spontaneously, and hm( )i 6= hm(� )i. In this case the state of the system
no longer possesses the symmetry of the Hamiltonian, and we say that the symmetry
has been spontaneously broken.

To see ho w a spontaneous symmetry breaking can take place we consider the two Ising
states  A and  B which are related by spin rev ersal. The magnetization of the tw o
states is M0 and �M0 respectively. In zero �eld the probability to�nd thesystem in
the t w o states is equal, i.e.PA = PB. When we couple the spins to a symmetry breaking
magnetic �eld h this degeneracy is lifted, and the probability to �nd the system in state
 A is giv en b y

PA =
e�M0hN

e�M0hN + e��M0hN
: (2.6)

Here N is the n umber of spins in the system. If we now �rst consider the limit N !1
and then subsequently the limit h! 0+ Eq. 2.6 yields PA = 1. By going to the N !1
limit with a �nite H , we e�ectively ban the system from part of phase space5, and when
we later let h ! 0+ the system is still con�ned to this part of phase space. The end
result is that hm( )i has been spontaneously chosen6 to the value M0.

It is crucial to understand that:

1. The N !1 limit is requir edto get spontaneous symmetry breaking. Mathemati-
cally the spontaneous loss of symmetry is singular behaviour, i.e. the ordered and
disordered state are seperated by a singularity. For any �nite N the ordered and
disordered states can be analytically connected.

2. The limits N !1 and h! 0+ do not commute; the limit N !1 must be taken
�rst.

Both the symmetries in Eq. 2.3 and 2.4 are global, in the sense that we must transform
all the spins to leave the action invarian t.If w e couple the matter �eld to a gauge �eld,
w ecan make the symmetry local, in the sense that a transformation involving only a
�nite number of spins can leave the action invarian t.The Ginzburg Landau model has
a local U(1) symmetry, local symmetries can never be spontaneously broken [12]. This
means that non gauge-invariant quantities are bound to zero by symmetry.

3We say that the state  has the full symmetry of H( ), and for this reason the disordered state is
also called the symmetric state. A t the level of individual spins the state of the system is clearlynot
invariant, but the statistical properties are invariant.

4In the case of the ising model this is just a choice betw een +m0 and �m0.
5For this reason spon taneous symmetry breaking is also described as ergodicity breaking.
6Of course in this case the choice w as facilitated by the limit h! 0+, h! 0� would have given the

opposite result. In nature this is accomplished by in�nitesimal �elds from an inevitable imperfection of
some kind.
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10 CHAPTER 2. PHASE TRANSITIONS

2.3 The o rderof a phase transition

The most common classi�cation of the order of phase transitions is that transitions with
a �nite latent heat are �rst order, and the remaining are continuous7 [13]. When we go
through a �rst order transition from disordered side, we change to a \fully developed"
ordered state, whereas for a second order transition the ordering starts at the critical
point.

Strong first order

TC TC TC

Weak first order

TC TC TC

Second order

TC TC TC

Figure 2.1: A schematic illustration of the order pa rameter behavior with temperature for

a strong �rst order, weak er �rst o rder, and continuous transition.

The vertical jumps indicated in Fig. 2.1 are betw een t w o distinct phases with the same
free energy. If w ego to the right in Fig. 2.1, i.e. to w eaker and w eak er�rst order
transitions, we even tually come to acritical point, where the phases which were distinct
coalesce into one. At this point the transition has changed to second order, or continous.

2.4 Critical phenomena

When the ordered state and the disordered state can no longer be distingushed we have
a critical point. F or the remaining part of of this chapter we will consider spin models
like Eq. 2.3 and 2.4, but with an additional symmetry breaking �eld h conjugate to
the order parameter. In what follows m is the order parameter, and t = jT � Tcj is the
distance from the critical point. F or a system to be critical botht and h must be tuned
to (0; 0).

2.4.1 Scaling and critical exponents

The spesi�c heat div erges at the critical point. This is not just any divergence, it
is a power law governed by the critical exponent �, i.e. CV / jT � Tcj

��
. Many

7In most cases the continuous are second order, but we can also ha ve anomalies like the KT transition

which can be considered as in�nite order.
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2.4. CRITICAL PHENOMENA 11

other thermodynamical quantities also diverge as pow er laws with accompanying critcial
exponents, they are listed in table 2.1.

Quantity De�niton Critical point

CV /
@2f
@T 2

jT � Tcj
��

T ! T�c h = 0

� /
@2f
@h2

jT � Tcj
�

T ! T�c h = 0

m /
@f
@h jT � Tcj

�
T ! T�c h = 0

m /
@f
@h

jhj1=Æ T = Tc h! 0�

G(r) / hm(0)m(r)i � hmi2 r�(d�2+�) T = Tc h = 0

G(r) / e�r=�; � / jT � Tcj
��

T ! T�c h = 0

T able 2.1:Critical exponents along with their de�nition.

The six critical exponents listed in table 2.1 are not independent, in 1963 Rushbrooke
used basic thermodynamics, along with some quite reasonable assumptions to show that
the six exponents must satisfy four inequalities [13,14]. Experiments indicated that the
inequalities were indeed satis�ed as equalities, and in 1965 Widom [15] put forward the
generalized homogeneity assumption

fs(jtj; h) / b�dfs(jtjb
1=� ; hb�h) (2.7)

assumed to be valid close to the critical point (t; h) = (0; 0). In Eq. 2.7, fs is the
singular part of the free energy densit y,and b is an arbitrary scaling factor. From
this h ypothesis it is quite simple to derive scaling relations relating the six exponents,
reducing the number of independent exponents to two. The scaling relations are derived
by di�erentiation according to table 2.1, combined with a suitable choice of the scaling
factor b. F or the exponent � the derivation is as follows:

CV /
@2f

@t2
= b2=��df (2)(jtj b1=� ; hb�h): (2.8)

The next step is to set h = 0 and choose b = jtj�� , this gives

CV / jtjd��2 f (2)(1; 0); (2.9)

and we can identify � = 2�d�. If w e proceed in the same manner for the other exponents
w e can expressall of them in terms of the unknown exponents � and �h

� = 2� d�  = �(2�h � d) Æ =
1

d=�h � 1
� = �(d� �h): (2.10)
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12 CHAPTER 2. PHASE TRANSITIONS

F rom Eq. 2.10 we can eliminate the dependence on �h and �, and we �nd the following
relations relating the remaining four exponents

�+ 2� +  = 2; (2.11)

�+ �(Æ + 1) = 2; (2.12)

these scaling laws are called Rushbrook and GriÆths laws. The four exponets �; �; 

and Æ can all be deriv ed fromthe free energy, and are also called the thermodynamic

exp onents. Kadano� [16] pointed out that tw o further relations, which were already seen
to be satis�ed by experiments, could be understood if we assume the form

G(r; t) =
�(rt�)

rd�2+�
(2.13)

for the t w o-point correlation function. In Eq. 2.13 �(z) is a scaling function with the
properties

�(z) /

�
C z � 1
zd�2+�e�z z � 1:

(2.14)

F rom theFluctuation Dissipation theorem we know that the susceptibility � is equal to
the spatial integral of G(r; t), and suÆciently close to the critical point this gives

� /

Z
drG(r; t) =

Z
dr�(rt� )r1�� : (2.15)

We introduce z = rt� and rewrite Eq. 2.15 as

� / t��(2��)
Z
dz�(z)z1��| {z }

I

: (2.16)

In Eq. 2.16 I is a numerical in tegral without temperature dependence, and w ecan
iden tify the scaling of the prefactor with.

(2� �) � =  (2.17)

�d = 2� � (2.18)

The tw o equations Eq.2.17 and 2.18 are called Fishers and Josephons scaling relations
respectively. Josephons scaling relation is also called hyperscaling, and is the only scaling
relation with explicit dependence on d. F ord > dc it breaks down.
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2.4. CRITICAL PHENOMENA 13

Grouping the exponents

The description of phase transitions in terms of an order parameter, and a con�guration
energy is not unique. F or instance both of the models

Z =

Z
D�e�

P
hi;ji cos(�i��j) (2.19)

and

Z = I0(�)
3N
X
fb(x)g

Ærb(x);0e
�
P

x;i
ln(Ibi(x)(�)=I0(�)) (2.20)

describe the phase transition in a 3D magnetic model of planar spins8. Since Eq. 2.19
and 2.20 are such widely di�erent parameterisations there is no reason why the critical
exponents should be the same. On the other hand an experimentalist can measure both
CV and �, and both representations Eq. 2.19 and 2.20 should reproduce the correct
value of �. Consequently it seems fruitful to split the exponents in tw o groups:

�; � Universal exponents spesi�c for the particular transition.

�; �; Æ;  Exponents that depend on the description chosen.

The exponents in the last group \transform as a subgroup", i.e. they can change numer-
ical v aluewithout a�ecting the value of � or �. By expressing � and � in terms of the
other exponents w e �nd that the following combinations of exponents must be invariant



2� �
2� +  �(Æ + 1) (2.21)

when the same transition is described with di�erent representations. This is what
happens in both Paper I and Paper II where the same transition is described with tw o
di�erent theories which have di�erent stable �xed points.

2.4.2 Limits of critical exponents ! 1. order transitions

The div erging correlation length, and the resulting scale-in variance and critical expo-
nents is a property of second order phase transitions. For �rst order transitions the
correlation length stays �nite, and consequently there is no scale-invariance nor critical
exponents. F rom quite simple principles it is possibleto calculate bounds for some of
the critical exponents, and as we shall see below these limits correspond to the critical
exponents we obtain if we formally consider �rst order transitions.

8Eq. 2.20 is the character representation of the XY model [17].
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14 CHAPTER 2. PHASE TRANSITIONS

Lo w er bound for �

We go back to the integral in Eq. 2.15 and insert the scaling ansatz Eq. 2.14 explicitly.
Right at the critical point t = 0, and we insert �(rt�) = C. The spatial dependence is
a pure power law

� /

Z L

0

drr1�� / L2��: (2.22)

Clearly � can not div ergefaster with system size than � / Ld, and consequently w e
must have � � 2� d.

Lo w er bound for �

The order parameter should vanish at the critical point, i.e.

lim
jtj!0

jtj� = 0 ) � > 0; (2.23)

on the other hand a discontinuous jump, i.e. a �rst order transition, would correspond
to � = 0.

Upper bound for �

There is no latent heat �E for a continous phase transition, i.e.

�E =

Z �t

��t

dt jtj
��
/ 2�t1��; (2.24)

must v anish in the limit �t ! 0. Consequently we must have � < 1. F or a �rst order
transition there is a �nite latent heat, which corresponds to � = 1. All in all this gives
the following bounds on the critical exponents

� < 1; � > 2� d; � >
1

d
; � > 0;  > 1;

1

Æ
> 0: (2.25)

Especially the bounds in Eq. 2.22 and 2.23 along with the formal continuation to �rst
order transitions was used in Paper II and Paper III.

2.5 Renormalization

The div ergenciesat the critical point are not just any arbitrary divergence, they are
go verned by critical exponents, i.e they are power laws. The important aspect of pow er
laws is that they are scale free, meaning that there is no natural intrinsic length scale
in the system. This qualitative insight is the foundation of R enormalizationGroup
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2.5. RENORMALIZATION 15

(R G)theory .The idea is to to study how the system transforms under a length scale
transformation, and then �nd a �xed point for this transformation. A t the �xed point
the system is self-similar, i.e. critical. RG is not a canned method, it is more a way of
thinking, and the actual implementation must be carefully adapted to the problem at
hand9. It is used in many di�erent �elds of physics, and there is an extensive literature
on the topic [13, 19{23]. Below I will just sketch tw osituation where R Gis applied,
the �rst is quite simple and intuitive, the second is important to understand the �eld
theories we have considered in Paper III.

Real space RG

The real space RG technique consists of summing out short distance uctuations, and
then subsequently rescaling the lattice constant with a factor b

�1 to recover the original
lattice. It is not the most frequently used approach for actual computations of critical
exponents, but demonstrates the underlying principles nicely . The formation of block

spins is shown schematically in Fig. 2.2.

Figure 2.2: The left part sho ws a 2D lattice of ising spins, in the right part the lattice has

been coarse grained, and the direction of each block spin is given by the net direction of the

spins in 2 � 2 block to the left. In thecase of a dra w, the value of the upper left spin is

used.

The transformation shown in Fig. 2.2 is straightforward to implement \visually", but
to actually calculate nontrivial critical properties in this manner is cumbersome. One
approximate method is the Migdal-Kadano� procedure [24]. F rom the simple algorithm
demonstrated in Fig. 2.2 it is evident that the method lends itself quite naturally to
Monte Carlo simulations [25].

9In [18] there is an entertaining ban ter over the unfortunate use of the de�nite article \the" in
conjunction with renormalization theory.
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16 CHAPTER 2. PHASE TRANSITIONS

Forthe remaining part of this section w ewill consider a general situation, where the
system has been transformed by summing out uctuations on a length scale < b, and
then see what general results we get from this. Actual calculations are quite complicated
and outside the scope of this introduction.

We start v ery generally with an actionS which is parametrized by the couplings fKg

S = K1O1 +K2O2 +K3O3 + � � � ; Z = T re�S(fKg): (2.26)

In Eq. 2.26 Oi are general operators10. Observe that there is no explicittemperature
dependence in Eq. 2.26, i.e. for simple spin models a factor ��1 has been absorbed in the
couplings. F urthermore, we assume that the model has a continuous phase transition11,
and that there exists a transformation

fK 0g = R(fKg)

in the space of couplings, and further that this transformation has a �xed point

fK�g = R(fK�g);

corresponding to the critical point. Close to the �xed point we assume that the trans-
formation can be line arize d, about the �xed point

K 0
i �K�

i =
X

i

Tij
�
Kj �K�

j

�
; Tij =

@K 0
i

@Kj

����
fKg=fK�g

: (2.27)

We assume that T can be diagonlized and denote the eigenvalues�� and the left eigen-
vectors b ye�, we can then form the linear combinations

u� =
X

i

e
�
i (Ki �K�

i ) (2.28)

which transform as

u0� =
X

i;j

e
�
i Tij

�
Kj �K�

j

�
= ��u� = by�u�: (2.29)

As indicated in Eq. 2.29 it is convenient to write �� as by� , where y� are called R G
eigen values.We group scaling �elds u� and RG eigenvalues y� together, and determine
whether u� is relevant depending on the sign of y�:

y� > 0: u� is a relevant scaling �eld, in the sense that u� according to Eq. 2.29 grows
under rescaling, a coupling K� which deviates only slightly from the critical value
will then o w away from K�

�, and the system as a whole is not critical. The
reduced temperature and conjugated �eld are always examples of relevant scaling
�elds.

10In the case of spin models Oi typically correspond to nearest-neighbor interaction, next-nearest-

neighbour interactions, multi-spin in teractions and so on.
11The RG theory can not be used to determine whether there is a continous phase transition; this

m ust be given.
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2.5. RENORMALIZATION 17

y� < 0: u� is a irrelevant scaling �eld, the deviation from the critical value will vanish
upon con tinued rescaling. An example of an irrelev an tvariabel is the (�nite)
anisotropy parameter � in a spin model; although the critical state is generally
isotripic we will not destro y criticality by starting out with � 6= 1.

Irrelev an t scaling �elds may give rise to corrections to scaling which apply some
distance from the critical point [18], �nally dangerous irrela vant variables indeed
a�ect the �xed point properties [18, 26].

y� = 0: u� is a marginally relev ant scaling �eld, which may, or ma y not, be of interest.

A physical way explaining the distinction betw een relevant and irrelevant scaling �elds
is that the relev an tscaling �elds correspond12 to variables which the experimentalist
must carefully tune to �nd a critical point, whereas she can simply ignore the irrelevan t.
One of the properties of the RG is that the partition function is preserved [18]. Close
to the �xed point we can ignore all the irrelevan t scaling �elds, and thesingular part of
the free energy density satis�es

fs(ut; uh) = b�dfs(b
ytut; b

yhuh): (2.30)

If we identify the scaling �elds ut and uh with t and h respecitively13, and �t = 1=� w e
immediately recognize Widoms homogeneity assumption Eq. 2.7. That the homogene-
ity assumption and scaling laws follow as a naturalconsequence, are one of the great
successes of RG theory [13].

RG applied to �eld theories

A very di�erent application of R Gis on continuum �eld theories like the Ginzburg
Landau theory, and �4 theory .The partition function for these theories is de�ned by a
functional integral

Z =

Z
D�e�S(�); S(�) =

Z
dx

�
1

2
jr�j2 +m2 j�j2 + u j�j4

�
; (2.31)

i.e. the sum of all possible values of � at all points in space with the weight given b y
S(�). Now clearly it does not make sense to sum over all paths �(x), the system of
interest has an inherent microscopic scale, and we must limit the set of functions f�(x)g
to those which are smooth on this distance. T o facilitate this we introduce an arbitr ary

length scale ��1, and only consider functions that can be expressed as

�(x) =

Z �

0

dkeikx ~�(k); (2.32)

12Observ e that due to the coupling Eq.2.28 the scaling �elds will generally be linear combinations

of the original v ariables lik e pressure and temperature.
13The spin models, which we have adopted as example here, are particularly simple because T is

diagonal, at least for the relevant eigenvalues.
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18 CHAPTER 2. PHASE TRANSITIONS

i.e. functions which are smooth on length scales . ��1. This process of \controlling"

the functional integral is called regularization. The regularization introduces an arbitray

parameter �, which is clearly unsatisfactory. It is desirable to reexpress the theory in

such a manner that measurable quantities are independent of this arbitrariness, this is

achiev ed b yrenormalization.
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3 The Ginzburg Landau model

The Ginzburg Landau (GL) model, or Abelian Higgs model as it is called in particle
physics, is a metamodel which is used to describe many [27] di�erent phase transitions
at a phenomenological lev el. In its most general form it consists of a matter-�eld �

coupled to a gauge �eld A which mediates long range interactions.

Depending on the properties of the matter, � can be for instance complex scalar (Su-
perconductivity) or a tensor (Liquid Crystals).

This thesis is entirely based on various approaches to the critical properties of the GL
model. In this c hapter we will present various aspects which have been important in our
approach. Section 3.1 is a presentation of the model, and w e performe a naive saling
analysis to obtain a dimensionless description. Section 3.2 is a brief historical account
of the order of the phase transition in the GL model. T opological defects in the form
of vortex lines and loops are very important excitations in the GL model, they are the
topic of section 3.3 and in section 3.4 we construct a dual theory which has these vortices
as the primary objects. Section 3.5 deals with an interacting gas of loops, the GL model
can be used as an e�ective theory for this gas. Section 3.6 contains a discussion the the
RG ow diagram, and �nally section 3.7 contains the discrete model used for simulations
in Paper III.

3.1 Representation of the model

The model was �rst written down in 1950 by Ginzburg and Landau [35], their approach
was based purely on ph ysicalin tution [36], with no detailed kno wledgeof the super-
conducting state. Although it is now to some extent possible to derive [3, 37] the GL
equations from the microscopical BCS theory we will generally consider the parameters
of theory as free.

The GL model can be written in many di�erent ways, in the superconductivity littera-

19
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20 CHAPTER 3. THE GINZBURG LANDA U MODEL

ture it is customarily written as an energy-functional with dimensional quantities

H( ;A) =

Z
dr

�
�(T ) j j2 + u

2
j j4 + ~

2

2m�

j(r� ie�A) j2 + 1

2�0
(r�A)

2

�

Z =

Z
D DAe��H( ;A): (3.1)

Here �(T ) = �0�; � = (T � TMF)=TMF is a temperature dependent parameter which
driv es the system through a phase transition.TMF is the mean-�eld critical temperature
where the superconducting condensate is formed1. m� and e� are e�ective mass and
charge for a cooper pair2, and u is a self-coupling, to haveu > 0 is essential to stabilize
the lo w-temperature properties of the theory.

If w e ignore spatial uctuation in the �elds in Eq.3.1 the integrand in H( ;A) becomes
a free ener gydensit y, and (T ) can found as the value maximizing f ,

j (T )j =
(
 0 j� j

1

2 T < TMF

0 T > TMF
;  0 =

r
�0

u
: (3.2)

F orT < TMF w e see from Eq.3.2 that  attains a �nite value. When  has a �nite value,
the gauge �eld A acquires a dynamical mass mA through the Higgs mechanism [38{
40]. In terms of interactions the Higgs mechanism means that the the electromagnetic
interactions are screene d, with a screening length � � m�1

A

3.

In addition to the length scale �, the order parameter varies spatially on a length scale
�, the correlation length. At the mean �eld level � and � are given b y

�(T ) =

s
m�u

4(e�)2�0�0| {z }
�0

j� j� 1

2 ; �(T ) =

s
~2

2m��0| {z }
�0

j� j� 1

2 ; (3.3)

i.e. they both diverge at the critical point with critical exponents 1=2. The fraction
� = �=� is a material parameter which determines the superconductors response to
an external magnetic �eld. At the mean �eld level the separation between type-I and
type-II superconductors is at the value � = 1=

p
2, how ev er w e argue in Paper III that

uctuations reduce this value to � � 0:76=
p
2. Although the spesi�c values, and in

1In con ventional superconductors thermal uctuations are not important. Then Eq. 3.1 might be ap-
proximated with the saddle point approximation, and TMF coincides with the true critical temperature.
For high Tc superconductors an incoherent condensate is formed at TMF, whereas superconductivity
is not realized un til this condensate iscoherent at TC < TMF. This intermediate regime is called the
pseudogap regime, and T � is often used to denote TMF.

2It is actually possible to derive the GL equations [1] from BCS theory in a suitable limit [3, 37],
and in that way give more precise values for e� and m�. How ever the real strength of the GL model is
nevertheless to predict universal properties.

3Of course the Higgs mechanism is the underlying e�ect for the Meissner e�ect.
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3.2. THE TRANSITION 21

particular the critical exponents of 1=2 in Eq. 3.3 are wrong, the de�ntion of � and �
as the length scales of the magnetic �eld and order parameter variations, and the ratio
�, will still be used when uctuations are included.

T o reduce the number of parameters in Eq. 3.1 it is convenient to de�ne rescaled �elds
and couplings through the following replac ements

A!

r
�0
�
A; e� !

s
�

�0
e;  !

r
2m�

�~2
 ;

m��(T )

2�~2
! m2; u!

�~4

2 (m�)
2
u:

(3.4)

Then Eq. 3.1 is replaced by the expression

Z =

Z
DAD exp(�S(A;  ))

S =

Z
dr

�
j(r� ieA) j2 +m2j j2 + uj j4 +

1

2
(r�A)2

�
: (3.5)

In Eq. 3.5 we have a dimensionless action S( ;A) instead of the dimensionful energy
function H( ;A) in Eq. 3.1. All the individual terms in the integrand of S( ;A) carry
dimension L�d, and the individual naive scaling dimensions of �elds and couplings are
as follo ws

[ ] = L
1�d

2 ; [A] = L1�
d

2 ; [u] = Ld�2;
�
m2

�
= L�1; [e] = L

d

2
�2: (3.6)

If w eexpress all dimensionful quantities in terms of the coupling q, we can in troduce
dimensionless �elds and couplings by making the following replacements,

 !  e�1; A! Ae�1; r! re2; m2 ! ye4; u! xe2: (3.7)

Then we get the �nal action

S =

Z
dr

�
j(r� iA) j

2
+ y j j

2
+ x j j

4
+

1

2
(r�A)

2

�
: (3.8)

with the dimensionless coupling constants x and y, and where all �elds are dimensionless.

3.2 The transition

In the original expression Eq. 3.1 the transition was driven b y�(T ) which changes sign
at TMF, in Eq. 3.8 the whole concept of a mean-�eld critical temperature does not make
sense any more. How ev er the transition is still driven by the term in front of j j2, i.e.
y. A t the mean �eld level this means that the transition is at y = 0, uctuations will
modify this value, the value of yc depends on x, and is a decreasing function of x [41].
The parameter x corresponds to �2, and we will use x and � interchangeably.
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22 CHAPTER 3. THE GINZBURG LANDA U MODEL

The GL model is complex, and even the question of the order of the transition has been
nontrivial to settle. A t the mean �eld level the e�ect of the gauge �eld vanishes, and Eq.
3.5 reduces to j�j4 theory. This theory has a continuous transition both at the mean
�eld level and also when uctuations are tak en into account. When considering the
various approximate approaches to the transition it is convenient to divide the degrees
of freedom in three categories: gauge �eld A, amplitude j j and phase arg [ ]. The
various approximations then consist of including the uctuations in only some of these
�elds, this is summarized in table 3.1.

F rom table 3.1 one can conclude that ther e is a �tri separating the �rst order and
second order transistion, and the next question is the numerical value of this �. In 1982
Hagen Kleinert [46] calculated �tri � 0:80=

p
2 using a dual approach, and in 1983 John

Bartholomew [47] found �tri � 0:4=
p
2 with Monte Carlo simulations. A short review

of this question can be found in [48], �nally our Paper III is devoted to calculating �tri .
We �nd �tri � 0:76=

p
2 using Monte Carlo simulations.

3.3 Vo rticesand ux lines

V ortices and ux lines are essential elements of superconductivity. In type-II supercon-
ductors the magnetic �eld penetrates the superconductor in terms of ux lines or ux
tubes. V ortices are singular phase uctuations, and determine the critical properties of
the theory.

3.3.1 Vo rtices in neutral theories

To introduce vortices we will start with the simpler j�j4 theory, which has the Hamilto-
nian density

H =
1

2
jr�j2 +m2 j�j2 + u j�j4| {z }

V (j�j)

: (3.9)

Eq. 3.9 has a global U(1) symmetry, i.e. H is invariant under the transformation

�(x)! ei��(x): (3.10)

The vacuum state is the one which minimizes the potential energy V (j�j) and is constant
in space. For m2 > 0 this is the solution j�0j = 0, but for m2 < 0 there is an in�nite set
of v acuum states j�0j =

p�m2=2u which are related by the symmetry transformation
Eq. 3.10. This set M of vacua is called the vacuum manifold, in the case of U(1)
symmetryM� S1.

Let us now consider a classical solution4 where � approaches di�erent poin ts in M in
di�erent spatial directions:

4To be a solution the �eld con�guration must approach the vacuum asymptotically at spatial in�nity
[49].
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Description Fluctuations Order

1: A t the pure mean-�eld level the model reduces to
the j j

4
theory, i.e. the e�ect of the gauge �eld van-

ishes completely.

None 2. order

2: j j
4
theory is a well known theory, which is muc h

studied [42].
j j ; arg [ ] 2. order

3: T o study the e�ect of the gauge �eld Halperin,
Lubensky and Ma [43] integrated out the gauge �eld
exactly, this giv es a cubic term in the remaining e�ec-
tive � theory .This is a sound approach in the �� 1,
i.e. strongly type-I regime.

A 1. order

4: In 1981 Dasgupta and Halperin [44] studied the
combined e�ects of phase and gauge �eld uctuations,
excluding amplitude uctuations. They deriv edvar-
ious duality relations, and introduced the concept of
an inverte dXY transition. Excluding the amplitude
uctuations is a valid approximation in the �� 1, i.e.
strongly type-II regime.

arg[ ] ;A 2. order

5: For the superconductors present at the beginning
1980's the critical region is extremely narrow, and the
predicted jump across the �rst order transition very
small. Consequently the question was diÆcult to set-
tle experimentally . However there is an isomorphism
betw eensuperconductors and liquid crystals [30, 43],
and on this system experiments can be done [45].

j j ; arg [ ] ;A
(Experiment)

1. and

2. order

Table 3.1: A schematic view of some important results regarding the order of the phase

transition in the GL model. Especially from cases 3 and 4 one can conclude that there must

be a �tri sepa rating �rst order and second order transitions. It is also important to realize

that a correct description of this feature of the GL model requires a full descprition, including

uctuations in j j ; arg [ ] and A.
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m
2
> 0 m

2
< 0

Figure 3.1: The potential V (j�j) form2 > 0 and m2 < 0. In the �rst case the minimum

is unique, whereas in the second case there is an in�nite number of equivalent minimum

cha racterized by di�erent values of arg[�0]. These di�erent minima can be transformed into

each other by Eq. 3.10.

�(r; �) = j�(r)j ei� (3.11)

This solution is ev erywhere continuous except in a subspace of dimensionality ds =
d � d�, where d� is the \dimensionality" of �, i.e 2 in our case, the subspace with a
singular �(r) is then a point in d = 2 and a line in d = 3. If we encircle the singular
point/line the phase of � changes by 2�, this phase change is top olo gically stable, in the
sense that we must make global changes in � to recover the true vacuum state, and it
is called a vortex. The amplitude j�(r)j is left unspeci�ed in Eq. 3.11, but to avoid
div ergences we must require j�(r)j ! 0 in the core of the vortex [17]. The size of the
vortex core is given b y�, and for r � � j�(r)j approaches a constant. In lattice theories
the vortices will live on the dual lattice where the original variables are not de�ned,
and hence the vanishing amplitude in the vortex core is not an issue. Since vortices are
mostly a phase phenomena, pure phase models capture this degree of freedom perfectly.

The energy a single vortex diverges linearly with system size, and is consequently not a
particularly relevan t excitation5. How ev ervortex-pairs with opposite charge have much
low er energy, and are very important6. The famous Kosterlitz-Thouless [50] transition
in the 2DXY model is an un bindingof vortex pairs, whereas the 3D transition is a

5It should be noted that periodic boundary c onditions, which are the most commonly used boundary

conditions in simulations, explicitly rule out the possibility of single vortices in 2D, or vortex lines which

end in the in terior of the sample in 3D.
6The 3D generalization of two point charges is a unit loop.
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vortex-loop blowout [51, 52]. The di�erence between a single vortex and a pair with
opposite charge is illustrated in Fig. 3.2. That the energy density of a single vortex only
deca ys algebraically also means the vortices in teract throughlong range interactions.

Figure 3.2: T o the left is a single vortex of charge +1, if we integrate the phase along the

circle we pick up a phase change of 2�, furthermore we observe that the e�ect of the vortex

in the interior is felt all the way to the edges. T o the right is a pair of vortices of charge �1,
if we encircle one of these vortices along one of the small paths we pick up a phase change

of �2�, wheras the phase change along the large path is zero. Finally, outside of the large

circle the e�ect of the vortex pair is not felt.

3.3.2 Vo rtices in charged theories

The GL model is a gauge theory with a local symmetry, also for these models topological
excitations in the form of vortices are important, but due to the local gauge symmetry
the in terpretation in terms of a phase �eld is more subtle; for instance it is always
possible to carry out a transformation into the unitary gauge, where arg[�] is a constant
ev erywhere in space [49]. The natural generalization of the U(1) vortices to gauge
theories are Abrikosov ux tubes [4] or Nielsen-Olesen vortices as they are called in the
particle physics community [53]

�(r; �; z) = j�0j e
iNW �f(�=e2; e j�0j r); A�(r; �; z) = �

NW

er
�̂�a(e j�0j r): (3.12)

NW is an integer, and a(z) and f(z) are functions which must be determined numerically,
they vanish for z ! 0 and approach unity for z ! 1. In addition to the phase
singularity, and vanishing order parameter along the core, these vortices also carry
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magnetic ux,

� = lim
R!1

I
jrj=R

drA = �NW
2�

e
: (3.13)

In the context of superconductivity they are called Abrikosov ux tubes, and they are
the object responsible for the magnetic ux penetrating type-II superconductors. The
magnetic �eld deca yswith a characteristic length � aw ayfrom the vortex. The tw o
chracteristic lengths � and � are illustrated in Fig. 3.3.

2ζ
λ2

B

|ψ|

Figure 3.3: Schematic �gure of a j (r)j and B = r�A around a vortex, along with the

cha racteristic lengths� and �.

Due to the uctuating gauge �eld the energy density of Nielsen-Olesen vortex decays
exponentially , and consequently the vortex-vortex interactions are screene dwith a char-
acteristic length �. The origin of this screening is the Higgs mechanism, which renders
the gauge �eld massive, i.e. mA � 1=�7. Note the somewhat paradoxical situation that
vortices in a neutral theory interact with long-range interactions, whereas the vortices in
a charged theory have short range interactions. This will be a recurring theme which we
will meet again several times when we discuss charged and neutral theories in relation
to duality in sections 3.4 and 3.5.

In the remaining part of the chapter we will present various approximations to the GL
model, common for all these approaches is that the vortices, and their properties, are
correctly retained.

7In the superconductivity literature it is usually called the Meissner e�ect due to Meissner who

discovered perfect diamagnetism. But the origin of the perfect diamagnetism is the Higgs mechanism,

which is a general mechanism for dynamic mass creation.
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3.4 Duality

In 1941 Kramers and Wannier [54] formulated a dual version of the 2D Ising model on
a square lattice by constructing a set of new variables living on the links of the original
lattice, this particular model turns out to be self-dual and it is a simple exercise both to
deriv e the dual model, and the critical coupling�c [55]. The generalization to di�erent
lattices and interactions, was carried out by F. Wegner [56].

In general a dual model has the following features:

1. The dual variables live on a lattice which is dual to the original, see Fig. 3.4

2. The strong coupling and weak coupling states are interchanged, in terms of conven-
tional statistical mechanics. This means that the dual theory will have an e�ective
dual temperatur e�d(�) with the properties lim�!1 �d(�) = 0 and lim�!0 �d(�) =
1.

One consequence of this property is that a strongly coupled problem which is
diÆcult to attac kwith perturbative methods might be more manageable in the
dual weak-coupling formulation.

The dual theory is generally constructed by identifying the important uctuations which
destroy order in the original theory. These excitations are the primary objects of the
dual theory, in the ordered state, the density of these excitations is low, whereas in the
disordered state they proliferate. On this background one can also consider the dual
theory as a disorder theory , and the dual order parameter as adisorder-p arameter8 in
contrast to a conven tional order parameter.
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�
��������������������������������������������������� Original lattice

Dual lattice

Figure 3.4: A superposition of a 2D square lattice and its dual counterpart. The dual lattice

is made by translating every lattice point half a lattice constant in all directions. Clea rly a

second duality transfo rmation will lead back to the original lattice.

As described in section 3.3 vortices are very important uctuations in the GL model.
Reformulating the theory so that these highly non local excitations become the primary

8This of course only applies when the dual theory is expressed in terms of theoriginal coupling

constan ts.
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objects is the foundation of the dual approach. This transformation has been performed
in many di�erent ways in the literature [57{60].

3.4.1 Lattice transformation

The actual duality transformation is exact, but some approximations must be done
before we can make analytical headway. Starting with Eq. 3.5 the �rst approximation
is in de�ning the model on a lattice and replacing all derivative with �nite-di�erence
operators9, this gives us:

S( ;A) = a3�
X

x

�
�(T ) j j

2
+
u

2
j j

4
+

~
2

2m�a2
j(�� ie�A) j

2
+

1

2�0a2
(��A)

2

�

(3.14)

We then make the L ondon approximation

 ! j 0j e
i�; j 0j is uniform in space: (3.15)

There are tw o important limitations arising from this approximation:

1. F or smallx values the GL model has a �rst order transition between the normal
state and the superconducting state. Amplitude uctuations are an essential in-
gredient in this transition, and consequently the dual theory can not give correct
predictions in this part of the phase diagram10 [44, 61].

2. To have a superconducting condensate tw o requirements must be met:

(a) We must have a �nite amplitude j (r)j, i.e. a condensate of Cooper-pairs
must exist.

(b) This condensate must be coherent.

By �xing the amplitude w e ignore the requirement in point 2a, and take the
existence of a condensate as giv en. This is generally a valid approximation as
superconductivity is destroyed when the condensate is inc oherent, and not when
the amplitude vanishes [51].

9We will initially keep a �nite lattice constant a, i.e.

@�f(x)!
1

a
(f(x+ a�̂)� f(x)) =

1

a
��f(x)

Z
dr! a3

X
x

, but the a will eventually be set to unit y.
10Actually Hagen Kleinert does this [46], how ever this requires additional approximations.
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Furthermore we replace A and e� according to Eq. 3.4

S( ;A) =
X

x

�
�J

2

��(�� ieA) ei�
��2 + 1

2
(��A)

2

�
; J =

a 2

0~
2

m�

: (3.16)

The �nal step is to expand the kinetic term in Eq. 3.16,

��(�� � ieA) ei�
��2 ! ���ei�(x+a�̂)�iaA� � ei�(x)

���2 = 2 [1� cos (���(x) � eaA�(x))] :

(3.17)

This way we are guaranteed that the lattice model has the same local U(1) symmetry as
the continuum model. We ignore the the constant term from Eq. 3.17, and set J = 1.
Then the model is the 3DXY model coupled to a gauge �eld

S = ��
X
x;�

cos (�(x + �̂)� �(x)� eaA�(x)) +
1

2
(r�A)

2
: (3.18)

Now the remaining part of the duality transformation is explained in great detail in
Appendix A, here I will just sketch some essential elements in the transformation:

1. The cos - function is replaced with a quadratic form and an auxiliary integer using
the Villain approximation.

2. The kinetic energy is decoubled using the Hubbard Stratonovich decoubling.

3. The Poisson summation formula, along with the curl identity r � (r�G) = 0 is
used several times.

The end-result is the following theory of interacting vortex loops

Z(�) =

Z
Dh

X
m

0

exp

"
�
X
x

�
2�im � h+

1

2�
(r� h)

2
+
e2

2
h
2

�#
; (3.19)

Here the m �eld is a set of integer valued vortex segments forming closed loops, and h
is a dual gauge �eld mediating interactions betw eenthe vortex segments. The h was
originally introduced as an auxiliary �eld, but in the dual theory it appears as a gauge
�eld in the same manner as the A �eld appears in the original theory. This identi�cation
will be clear when we have discussed the continuum dual model and properties of charged
and neutral theories in general in sections 3.4.2 and 3.4.3. Again we see that an originally
charged theory (with e 6= 0) will have a massive h �eld, and consequently screened
interactions, whereas the interactions will be long-r ange in a originally neutral theory.
The dual gauge �eld can be integrated out exactly to yield an e�ective vortex theory Eq.
A.20 and A.21, in this form the model has been extensively used for simulations [62{66].
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By adding source terms JA and Jh which couple to A and h respectively, we can also
calculate the correlation functions hAqA�qi and hhqh�qi. The derivations are sketched
in Appendix A, and the we �nd

hAqA�qi =
1

jQj
2
+m2

0

0
@1 +

4�2�m2
0hmqm�qi

jQj2
�
jQj2 +m2

0

�
1
A ; (3.20)

hhqh�qi =
2�

jQj
2
+m2

0

 
1�

2��2hmqm�qi

jQj
2
+m2

0

!
(3.21)

wherem0 = ��1 and Q� = 1�e�iq��̂. These correlation functions were studied in Paper
I. All correlation functions have been calculated in the transverse gauger�A = r�h = 0.
Both of the �elds h and A are renormalized by vortex uctuations, albeit in quite
di�erent ways. The correlation functions Eq. 3.20 and 3.21 will be studied in more detail
at the end of Section 3.4.3. The vortex-vortex correlator hmqm�qi can be calculated
quite simply from a simulation of the vortex model, and then Eq. 3.20 and 3.21 can be
used to calculate hAqA�qi and hhqh�qi.

3.4.2 Continuum dual model

In the previous section w ehave performed a lattice duality transformation from Eq.
A.5 to Eq. A.20 and A.21, ultimately we would like a continuum dual model, i.e. the
dual ofEq. 3.5. Based on the lattice derivation this can beac hiev ed b y \a backward
iden ti�cation" and one additional (uncontrolled) approximation, the presentation below
is mostly based on [67,68]. The key point is to compare the equations

Z(�) =

Z
DA

X
b

0

exp

"
�

X
x

�
1

2�
b
2
� ibA+

1

2
(r�A)2

�#
(3.22)

and

Z(�) =

Z
Dh

X
m

0

exp

"
�

X
x

�
2�im � h+

1

2�
(r� h)2 +

e2

2
h
2 +

�

2
m

2

�#
: (3.23)

Here Eq. 3.22 corresponds to Eq. A.8, but with the A �eld included, and Eq. 3.22 is
just Eq. 3.19 with an additional term �=2m2 in the action. F ormally the subsequent
analysis should be performed in the limit � ! 0, but w eneed to retain a �nite � to
iden tify the continuum dual model11. The gauge �eld h in Eq. 3.23 is massive, but if

11This is essen tially an uncontrolled appro ximation [67], but as long as �m2 is short ranged it should
be irrelavant at least in the RG sense [44]. Furthermore results from simulations indicate that it is a
valid appro ximation [51,62].
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w e ignore thisadditional term the action of Eq. 3.22 and Eq. 3.23 can be compared
term by term,

1

2�
b
2
!

�

2
m

2

1

2
(r�A)

2
!

1

2�
(r� h)

2

�b �A! 2�m � h:

With this iden ti�cationw eobserve that the role of the integer loop �elds b and m
can be interchanged, and if w ein terpret Eq. 3.23 as Eq. A.8 in the original duality
transformation, and then go backwards to a �eld theoretical description, w e�nd the
con tinuum dual action

S(h; �) =
1

2
(r� h)2 +

e2

2
h
2 + j(r� iedh)�j

2 +m2

� j�j
4 + u� j�j

4 : (3.24)

In Eq. 3.24 � is the dual �eld, this is a �eld for the vortices of the original theory .
Observe ho w the original local gauge symmetry has been reduced to a global U(1)
symmetry due to the mass term e2=2h2. F rom [68] w ehave the follo wing exact R G
iden tities:

m�

@e2

@m�

= �Ae
2 (3.25)

�A = 1 (3.26)

The identity �A = 1 has also been shown with simulations [62, 63]. F rom Eq. 3.25 we
infer that in the long distance limit, any �nite e will ow to in�nity, this corresponds to
making the gauge �eld in Eq. 3.24 in�nitely massive and it e�ectively drops out of the
theory .Then Eq. 3.24 reduces to the neutral theory

S(�) = jr�j
2
+m2

� j�j
4
+ u� j�j

4
: (3.27)

3.4.3 Charged and neutral theory

In case of the theories w econsider there are long range interactions mediated by a
gauge �eld in the charged case, whereas in the neutral case there are only short range
interactions. The gauge �eld present in charged theories also provides ample amounts
of entrop y.

F rom the iden titiesEq. 3.25 and 3.26 w esaw that a �nite e w ouldo w to in�nity
reducing the originally charged theory Eq. 3.24 to the neutral theory Eq. 3.27. If, on
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S(A;  ) = m
2

 j j
4 + u j j

4 +
1

2
(r�A)2 S(�) = m

2

� j�j
4 + u� j�j

4 + jr�j2

+ j(r� ieA) j2

S( ) = m
2

 j j
4 + u j j

4 + jr j2 S(h; �) = m
2

� j�j
4 + u� j�j

4 +
1

2
(r� h)2

+ j(r� iedh)�j
2

T able 3.2:The various charged and neutral theories related by dualit y.

the other hand, the original is neutral, i.e. e = 0, the dual will be Eq. 3.24 with a
massless gauge-�eld, i.e. a charged theory , and we can set up a table relating charged
and dual theories.

The essential content of table 3.2 is also shown in Fig. 3.5. Observe the isomorphism
along both the diagonals. These properties have been studied, and exploited, in Paper
I and Paper II. Of course what is dual, and what is original theory eventually becomes
a relative notion.

Duality transformation

Original charged

S(ψ, A )

Dual neutral
S(φ)

Original neutral
ψ)S(

Dual charged
hφ,S( )

Figure 3.5: Figure showing the relations between charged and neutral versions of the original
and dual theo ry, the various actions S(�) refer to table 3.2. The dashed lines indicate

isomorphism.

The dual theory is a theory for the vortices, consequently we can study the properties of
a particular theory by considering the vortices in a suitably chosen original theory. By
considering the vortices of the 3DXY model (original neutral/dual charged), w eha ve
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calculated anomalous dimension of the full GL model. This exponent is diÆcult to
calculate, and although our method is quite indir ect, our result � � �0:30 agrees with
other methods [48].

Now when we have completed the duality picture, and introduced the concepts of charged
and neutral theories, it is instructive to go back to the correlation functions Eq. 3.20 and
3.21. F rom the simulations we measure hmqm�qi, and spesi�cally how this correlation
function behaves in the q ! 0 limit. For a charged system we �nd the following behavior
[62]:

T < Tc : hmqm�qi / q2 ) hAqA�qi / C (3.28A)

T = Tc : hmqm�qi / q�A ) hAqA�qi / q�A�2 (3.28B)

T > Tc : hmqm�qi / C ) hAqA�qi / q�2 (3.28C)

In Eq. 3.28B we have identi�ed the scaling of hmqm�qi at the critical point with the
anomalous dimension of A. We found �A = 1 in Paper I, but this is actually an exact
result due to gauge invariance, which dates all the way back to Halperin, Lubensky and
Ma [43,68]. If we invok e the standard scaling form

hAqA�qi =
1

m2

A + q2
; (3.29)

and insert the scaling behavior from Eqns. 3.28A - 3.28C we �nd that mA is �nite for
T < Tc and vanishes for T � Tc, i.e. an explicit demonstration of the Meissner e�ect.

F rom the preceding discussion of duality and charged versus neutral theories, we know
that the dual of a neutral theory is isomorph to a charged theory, with inverted temper-
ature axis. This is clearly demonstrated if we consider the dual gauge �eld correlator
hhqh�qi for a neutr altheory .In this case hmqm�qi will scale as q

2 for all T , but with
di�erent coeÆcients, and a careful calculation [62] gives similar behavior for hhqh�qi
as hAqA�qi in Eqns. 3.28A - 3.28C, but with inverted temperatur axis, see Fig. 3.6,
and Fig. 1 and 3 in Paper I.

3.5 Loop gas

In this section we will consider a gas of interacting loops, and eventually show that the
GL model is an e�ective �eld theory for this gas. Although very di�erent from the duality
transformation in the preceding section; the �nal result is e�ectively the same. How ever
the geometric approach of this derivation allows to establish a connection betw een the
geometric prop ertiesof the loop(vortex)-tangle and the dual �eld theory. Something like
this does not follo w from the more direct duality transformation of the previous section.
All of section 3.5 follows the derivations given in chapter 6 of [17] quite closely.
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q2hAqA�qi charged

q

T > TC

T = TC

T < TC

q2hhqh�qi neutral

q

T < TC

T = TC

T > TC

Figure 3.6: Schematic behavior of q2hAqA�qi and q2hhqh�qi for charged and neutral

models respectively.

3.5.1 Random walk ! Gaussian �eld theory

We start with random loops, i.e. random walkers which close on themselves, and then
show that a Gaussian �eld theory can be used to describe these loops. We start by
considering arandom w alker as shown in Fig. 3.7, and the probability P (x;y; N), to
get from x to y in a total of N steps.

t

t

. . . . .

..

.

.

.X

Y

Figure 3.7: Random walker, starting in x and going to y in a total of N = 26 steps, lattice
constant a.
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P (x;y; N) satis�es the following discrete di�usion equation,

��NP (x;y; N) =
a

2D

X

�

�����P (x;y; N � 1) (3.30)

P (x;y; 0) = Æx;y;

where �� and ��� are forward and backward �nite di�erence operators respectively, a
is lattice constant and D is the spatial dimensionality. By using the F ourier ansatz
P (k; N) = P (k)N w e �nd that

P (k) = 1�
a2

2D

X

�

K�(k)K
�

�(k); K�(k) =
1

ai

�
eik�a � 1

�
(3.31)

solves Eq. 3.30. We will mostly ignore the explicit N dependence and sum over allN ,
long paths will be suppressed with the Boltzmann factor e��N". In addition w ewill
specialize on closed loops, i.e. x = y and consider a partition function for one loop

Z1 =
X
x;N

1

N
eN(ln(2D)���)P (x;x; N); (3.32)

Z1 = �
X
k

ln
�
1� 2DP (k)e���

�
: (3.33)

The factor (2D)N in Eq. 3.32 and 3.33 accounts for the number of spatial con�gurations
of a chain of length N , and the factor N�1 ensures that one particular loop is only
counted once in the partition function12. The �nal step is to consider a grand canonical
ensemble of such loops, by exponentiation of Eq. 3.33 w e�nd the grand canonical
partition function

� = eZ1 =
Y
k

G0(k) (3.34)

G0(k)
�1 = 1� e��"2DP (k) =

m2 +K �K�

m2 + 2D=a2
: (3.35)

In Eq. 3.35 we have introduced the mass parameter m2 = a�2
�
e�" � 2D

�
. The factors

G0(k) in Eq. 3.34 can be produced by Gaussian integrals o ver real v ariables�(k)

Y
k

G0(k) =
Y
k

�Z
d�1(k)p

2�

d�2(k)p
2�

�
e�

1

2

P
2

i=1 �i(k)G
�1

0
(k)�i(k): (3.36)

12The summation over N going from Eq. 3.32 to Eq. 3.33 is done using the identity

1X

N=1

1

N
x
N = � ln(1� x):
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Observe that we for the moment have no physical interpr etation of �(k), its only pur-

pose is to bring down factors of G0(k) through Gaussian in tegration. We are mainly
interested in the the continuum limit a ! 0, and then we can approximate G0(k) to a
free propagator, and we get the �nal �eld theory:

� =

Z
D�e�

1

2

R
dr��(r)(�@2+m2)�(r): (3.37)

Eq. 3.37, that a set of random loops can be described by a Gaussian �eld theory ,
concludes this section. In the next section we will see how the free �eld theory can be
modi�ed to include interactions betw een the loop segments.

3.5.2 Adding interactions

The goal of this section is to add interactions betw een the loop segments, and see how
the �eld theory Eq. 3.37 can be modi�ed to accommodate these interactions. First we
will add a steric repulsion term betw een the loop segments, and then subsequently we
will see how to add long range interactions.

Steric repulsion

If w e consider the continuum limit of Eq. 3.30, with imaginary time t = �is substituted
for the step variable, we get the Schr�odinger equation

i@t (x; t) = �
1

2M
@2 (x; t) (3.38)

for a particle of mass M = D=a. Consequently w ecan consider Eq. 3.37 as second
quantized version of the same theory . In terms of second quantized �eld theories w e
know how to add tw o-particle interactions [69],

E =
1

2

Z
dxdy�(x)��(x)V (x� y)�(y)��(y): (3.39)

If w e assume thatV (x� y) is a pure contact interaction, i.e. V (x� y) = uÆ(x� y) we

�nd that steric repulsion betw een the loop segments can be included by adding a j�j4

term to the free action in Eq. 3.37.

Long range interactions

The vortex loops which are interested in are excitations which destroy the order in the
system, and hence couple to the soft modes of the system. Unless screened, this coupling
will give rise to long range interactions, and it is essential to �nd a way to include such
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interactions to the loop-gas formulation. We want to include 1=R interactions betw een
the loop segments in a manner which mimicks the electromagnetic interaction betw een
curr ent loops, i.e. we wan t a Boltzmann weight of the form

W = exp

2
4���

4�
I2
X
i;j

I
�i

dxi

I
�j

dxj
1

jxi � xj j

3
5 : (3.40)

In Eq. 3.40 i and j are indexes for di�erent current loops, all carrying the same current
I . �i is the path along loop i, and dxi is a line element along �i. It can be shown [17]
that the Boltzmann w eigh tEq. 3.40 can be written as a functional in tegral over an
auxiliary gauge �eld h, coupled to the current distribution from the loops,

W =

Z
Dh� [h] exp

"
�
1

T

Z
dx

1

2�
(r� h)

2
� iI

X
i

I
�i

dxih(xi)

#
: (3.41)

Now w ewill turn to the free �eld theory Eq. 3.37, and see how this theory can be
modi�ed to take the long range interactions into account. Going back to the fundamental
quantity P (x;y; N) it is clear that there are many di�erent paths connecting x and y,
and a path integral representation seems quite natural. Omitting the intermediate steps
w e get the following path integral representation of the complete partition function Eq.
3.37

� =
X
N

1

N !

NY
i=1

Z
1

0

dsi
si

e��fsi=a
Z
DxiDpi exp

�Z si

0

ds0i

�
ipi(s

0

i) _xi(s
0

i)�
p2i (s

0

i)

2M

��
:

(3.42)

Now the crucial point is that in the formulation Eq. 3.42 the long range forces, i.e. the
coupling betw een loop-coordinates and a uctuating gauge �eld, can be incorporated by
follo wing simple prescription:

1. Replace pi(s)! p(s)�qh(x(s)), or in real-space r ! r�qh, i.e. the well known
minimal coupling.

2. Add an additional �eld energy 1
2� (r� h)

2
, and integrate over the auxillary �eld

h.

In conclusion the �nal �eld theory for a grand canonical ensemble of interacting loops,
with both steric repulsion and long range interactions, is given by the following �eld
theory

� =

Z
D�Dh exp

�
�

Z
dx

�
m

2

� j�j
2 + j(r� iqh)�j2 + u� j�j

4 +
1

2
(r� h)2

��
: (3.43)
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Interpreting the interacting loop gas

Up to now the loops in this section have been completely arbitrary, but of course at this
stage it is natural to identify the loops with the vortex loops of the previous section,
and the �eld theory Eq. 3.43 with the dual theories in table 3.2. The advantage of the
present derivation is that it highlights the physical content of the various terms in the
dual �eld theory. In particular that the j�j4 term represents steric repulsion, when the
prefactor u� changes sign this turns into a short range attractive interaction, and this
is a possible picture of the change from type-II to type-I superconductivity in the dual
description [61]. F urther interpretation of the dual matter �eld will be given in the next
section.

3.5.3 Geometric exponent relations

Another advantage with the loop gas derivation in the previous section is that w e get
a connection betw een the geometric properties of the loops, and the critical properties
of the corresponding �eld theory. Speci�cally w ewill in this section derive a scaling
relation relating �� of the (dual) �eld theory, the exponent13 � characterizing the loop
size distribution and the fractal dimension DH of the loops at the critical point. We will
again go back to the probability P (x;y; N), but now the focus shifts to the perimeter
N , and not on theparticular poin ts x and y. Let D(N) be the density of loops with
perimeter N :

D(N) /
1

N

X

x

P (x;x; N) / N��: (3.44)

The important point with Eq. 3.44 is that w eknow from the polymer literature [70,
71] that in a critical loop tangle D(N) should scale with N�� as indicated. All the
contributions in Eq. 3.44 are equal, and to proceed we pick an arbitrary x and invert

P (x;x; N) / NP (N; z) / N1��: (3.45)

In addition we have the following scaling ansatz for P (x;y; N)

P (x;y; N) /
1

Nd�
F

�
jx� yj

N�

�
: (3.46)

This ansatz is motivated by the exact result for the case of random loops [70], and gives
explicit exponent values for this case. F (z) is a general scaling function, the exponent
� in the argument is called the wandering exponent, and indicates how much the path
from x to y \wiggles". By turning the argument around w e�nd that the number of
links in a path of linear extent L scales as

N / L
1

� = LDH ; (3.47)

13
� should not be confused with the exponent regulating the divergence in the speci�c heat.
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and as indicated in Eq. 3.47 ��1 corresponds to the fractal dimension of the loop [70].
Regarding the function F (z) w e will be interested in the limit z ! 0. For self avoiding
w alks14 F (z) / z in this limit, whereas in our case limz!0 F (z) = C. By combining
Eq. 3.45 and 3.46 we �nd the scaling relation d� = �� 1.

A t the critical point the tw o point correlation function G(r) scales with an anomalous
scaling dimension ��. A t the same time we know from the way the � �eld was in troduced
in Eq. 3.37 that G(x;y) is proportional to the probability to get from x to y on a
connected vortex tangle,

G(x;y) = h�(x)��(y)i /
X

N

P (x;y; N): (3.48)

The sum overN in Eq. 3.48 can not be done, but if w e focus on long loops/distance
the discrete nature of N becomes unimportant, and we can replace

P
N with

R
dn

G(x;y) �

Z
dn

1

nd�
F

�
jx� yj

n�

�
=

1

jx� yj
d� 1

�

C: (3.49)

In Eq. 3.49 C is numerical constant. By combining the power of jx� yj with the usual
scaling of G(x;y) we �nd the scaling relation �� +��1 = 2. All in all this section can
be summed up with the relations:

d

DH

= �� 1; �� +DH = 2: (3.50)

When Eq. 3.50 is applied to vortex loops it is important to realize that the anomalous
scaling dimension �� belongs to the dual �eld. So by performing simulations on the
3DXY model, identifying the vortex loops of this model and calculating � from Eq. 3.44
w e can calculate�� � �0:30 of the dual to the 3DXY model, and not �XY � 0:034 [72].

The �nal connection betw een the vortex loops and the dual �eld-theory is the quantity
OL [51,52]. If there is at least one vortex path connecting the opposite sides of the system
OL = 1, otherwise OL = 0. Clearly OL measures whether the � �eld has condensed, and
w e get the following correspondence:

lim
jx�yj!1

h�(x)��(y)i =

�
C $ OL = 1
0 $ OL = 0

(3.51)

The scaling relations Eq. 3.50 and the connection Eq. 3.51 touc hesthe fascinating
�eld of the geometry of phase transitions. In the early 1970's Kastelyn and Fortuin [73]
developed a link/cluster representation of the partition function for the Ising model
and some other similar models. In 1980 Coniglio and Klein show ed that the Kastelyn-
F ortuin clusters percolate at the Ising critical point, and the exponents characterizing the

14These walks are not allo w ed to form closed loops.

URN:NBN:no-2110



40 CHAPTER 3. THE GINZBURG LANDA U MODEL

geometric properties of this cluster coincide with the thermal Ising exponents. Later this
has been expanded to more advanced models [74], and quite recently A. M. Schakel [75]
deriv ed the relations Eq.3.50. The distinction betw een these references and our result
is that in our case the geometric objects are well de�ned in terms of the original spin-
model, whereas in these other approaches the geometric objects are purely the results of
a transformation. Nevertheless it would be very interesting to relate our results closer
to the framework of Fortuin and Kastelyn.

3.5.4 Discussion of geometric results

In Paper II we have calculated the exponent � which characterizes the loop size distribu-
tion, both for charged and neutral condensates. The results are summarized numerically
in table 3.3, and \visually" in Fig. 3.815.

Exponent Gaussian e = 0 e 6= 0 Limit
� 5=2 2.312� 0.003 2.56� 0.03 � > 2

DH 2 2.287� 0.004 1.92� 0.04 DH < 3
� 1=2 0.437� 0.001 0.52� 0.01 � > 1/3
�� 0 -0.287� 0.004 0.08� 0.04 �� > -1

T able3.3: V alue of the loop-size distribution exponent, as determined from simulations.

The remaining exponents have been calcualated using scaling relations Eq. 3.47 and 3.50.

Gaussian results are exact, and con�rmed for the di�erent exponents independently.

Charged condensate Gaussian loops Neutral condensate

Figure 3.8: A schematic illustration of the three cases in table 3.3. The three fractal

dimensions are ordered according to: DH(e 6= 0) < DG

H
< DH(e = 0), where DG

H
is the

fractal dimension corresponding to a Gaussian �eld theory, i.e. random loops. Qualitively

the three loops are self-avoiding, random and self-seeking.

The precise numerical values are not of major importance, how ev erthere are several
qualitative aspects which are w orth considering. The Gaussian results in table 3.3

15Observ e that Fig. 3.8 is somewhat misleading, the duality transformation presented in section 3.4

applies only in d = 3, in d = 2 the topological excitations are points and not loops.
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come from random closed loops, corresponding to the free �eld theory Eq. 3.37, these
results are excact. Compared to Eq. 3.37 the interacting theory Eq. 3.43 contains t w o
competing terms, the j�j

4
term is a steric repulsion term. Conseqently we expect that

the v ortex tangle from a charged theory, i.e. dual neutral, has a vortex tangle which is
less compact than random loops, i.e. DH(e 6= 0) < DG

H
, and from table 3.3 we see that

this is correct.

On the other hand the gauge-�eld h in Eq. 3.43 mediates long range attractive inter-
actions which counteract the e�ect of the j�j

4
term, and w eexpect the vortex tangle

from a neutral theory, i.e. dual charged, to be more compact than the neutral tangle,
i.e. DH(e = 0) > DH(e 6= 0). Actually table 3.3 shows that the vortex tanglefrom a
neutral theory is more compact than the random loops, i.e. the long interactions over-

compensate the steric repulsion. However the steric repulsion term prevents a complete
collaps of the vortex tangle.

That the vortex tangle from a neutral theory is more compact than that originating
from a charged theory has direct physical explanation. Due to the presence of a uc-
tuating gauge �eld, the vortex-vortex interactions in the charged system are screened,
and the vortex tangle is compressible. How ev erin the originally neutral system the
vortices in teract through long range interactions, and the vortex tangle is incompress-
ible. By generating a large amount of compact vortex loops the system tries to become
compressible by self-screening vortex loops.

A vortex tangle with DH > 2 is opaque. If a magnetic �eld is applied to such a vortex
tangle the thermal vortex loops will be devoured by the �eld induced lines, how ev er the
magnetic �eld lines ha vea cross sectional area that scales as L2, and with DH there
remains a vortex tangle which can undergo a vortex loop blow out in the liquid phase,
as suggested by Ngyuen [52].

3.6 RG Flow

The full GL model has three nontrivial �xed points in addition to the Gaussian �xed
point. Starting along the neutral e = 0 line the Gaussin �xed point G is unstable, and
a �nite value of u will ow tow ards the3DXY �xed point under renormalization. This
�xed point determines the critical exponents for a neutral superuid like 4He and the
3DXY and j�j

4
models.

The 3DXY �xed point is unstable in the charge direction, and for a �nite charge the
system will ow to the SC �xed point which is distinct from the 3DXY �xed point [62].
The shaded region in Fig. 3.9 corresponds to a region of runaw ay trajectories; thisis
interpreted as a �rst order transition in accordance with Halperin, Lubsenky andMa [43].
The tricritical point T seperates the critical point SC from a �rst order transition, and the
line connecting G and T is a separatrix. In Paper III we argue that this line corresponds
to the line separating type-I and type-II superconductivity.

The duality transformation betw eencharged and neutral theories which w ehave de-
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SC

He / 3DXY

T

4G

q

u

2

Figure 3.9: A RG ow diagram for the GL model, the various �xed points are SC: charged
superconductor �xed point, 3DXY: neutral 3DXY/4He �xed point, G: Gaussian �xed point
and T:tricritical point. In the shaded region there is no �xed point, i.e. �rst order. The
couplings on the axis are the rescaled charge and self coupling from Eq. 3.5.
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scribed in the preceeding sections, i.e. Fig. 3.5, corresponds to moving up and down
along the line connecting 3DXY and SC. Since a duality transformation only a�ects the
description of a particular phase transition, the invariant subgroups in Eq. 2.21 must
connect the exponents of the SC and 3DXY �xed points. Observe that in the case of a
massive gauge �eld the topology of the phase diagram changes, and in particular the
ow direction between 3DXY and SC is reversed.

It is often claimed in the literature that the phase transition in High Tc superconductors
like YBCO and LaSCO is in the same universalit y class as 4He, but if we consider Fig.
3.9 it is clear that this cannot be the case. These superconducting condensates are

char ged, and the ultimately stable �xed point is the SC �xed point. How ever the charge
is \small", and when w e approach the critical point w ewill observe 3DXY critical
behavior for jtj . tXY, this will pertain until w ereach a crossover [18] temperature
t� � tXY. Finally for jtj . tSC � t� the critical properties will be governed by the true
charged SC �xed point. How ever due to the narrowness of the true critical region, and
the duality arguments relating the 3DXY and SC �xed points, it is probably diÆcult
di�erentiate e.g. YBCO behavior from 4He behavior experimentally .

3.7 Lattice version

In Paper III we calculated the tricritical xtri separating the �rst order and second order
transition, this is not a universal quantity, and care must be taken to not in troduce
spurious lattice artifacts, in particular one must tak e �nitea e�ects explicitly into ac-
count, and the �nal answers must be evaluated in the limit a! 0. This is covered quite
thoroughly in Paper III and references therein.

The model can be parameterised in many di�erent ways. The parametrisation presented
below is marginally di�erent from the one used in Paper III.

S = �G
X

x;i<j

1

2
�2
ij(x) �

2

�G

X

x;i

Re [��(x)Ui(x)�(x + {̂)]

+ �2

X

x

��(x)�(x) +
x

�3
G

X

x

j��(x)�(x)j
2

(3.52)

The gauge �eld has been discretised according to:

�i(x) = aqAi(x)

�ij(x) = �i(x) + �j(x+ {̂)� �i(x+ |̂)� �j(x)

Ui(x) = ei�i(x)

The couplings �G and �2 are related to the lattice constant a, and the continuum

URN:NBN:no-2110



44 CHAPTER 3. THE GINZBURG LANDA U MODEL

parameters x and y as:

�G =
1

q2a

�2 =
1

�G

"
6 +

y

�2
G

�

3:1759115 (1 + 2x)

2��G
�

�
�4 + 8x� 8x2

�
(ln 6�G + 0:09)� 1:1 + 4:6x

16�2�2
G

#
:
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4 The tools of the trade

Phase transitions are probably the most intriguing aspects of statistical mechanics, and
as already mentioned in chapter 2 they correspond to singular behavior in the derivatives
of the Free Energy. When the points of interest correspond to mathematical singularities
it is obvious that a mathematical description will be challenging. In this chapter w e
will describe the Monte Carlo method, which has been our approach to study phase
transitions, but �rst we will very briey mention some other techniques which are widely
used in statistical physics.

Analytical solutions

Some, exceptionally few, lattice models have exactanalytical solutions, where the 2D
Ising model solv ed b yLars Onsager [76] is the most prominent example. Exact solu-
tions to some other models like the Potts-model and V ertex-model can be found in [77].
Although these solutions are the result of impressing mathematical vigor, they are very
specialized and provide limited possibility for generalizing to other models. The most
important use of these exact solutions is to serve as a benchmark for the validity of more
general approximate methods.

Mean-�eld theory

Mean-�eld theory, can in general always be applied. The fundamental approximation
of the mean-�eld theory is to ignore spatial uctuations, and treat the original many-
particle problem as an e�ective one-particle problem [13, 26]. This can provide a good
overall structure of the phase diagram, but close to the critical point w ekno wthat
uctuations are important, and the mean-�eld predictions will generally be incorrect.
In some cases the order of the transition will be incorrectly predicted, and in the case
of continuous transitions the critical exponents will be wrong1. The temperature range
where mean-�eld theory fails is called the critical regime, and the width of this regime
is given by the Ginzburg criterion [13, 26, 78]. In some cases, like conven tionaltype-I
superconductors, thisregime is so narro w that experiments will nev er rev eal anything

1The critical exponents calculated in mean-�eld theory are called classical, not to be confused with
classical/QM.

45
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but mean-�eld behavior, whereas in other transitions like high Tc superconductors and
4He the critical regime is wide and true critical behavior is observed in experiments.

Spatial dimension is important for the properties of phase transitions, this also applies to
mean-�eld approximations. The higher the spatial dimension the stronger the inuence
of interacting neighbors, and consequently the importance of uctuations is reduced
with increasing dimension. F or d = 4 mean-�eld theory is correct up to logarithmic
corrections, and for this reason d = 4 is called the upp ercritical dimension. That an
exact result can be found in d = 4 has led to the " = 4 � d expansion where d = 3
results are obtained by doing perturbation theory around the d = 4 result, with "

as expansion parameter. Combined with R Gthis is a major sport in statistical �eld
theory with good numerical results, how ever the method pro vides limited insight into
the qualitative properties of the transition [11, 21, 23].

P erturbation series

P erturbation theory in terms of low and high temperature2 expansions make it possible
to study various thermodynamic quantities analytically, expansions of various models in
statistical physics can be found in [17,79]. The inherent problem with these expansions
is that they can never get the critical properties correct, and the same expansion can not

be used on both sides of the critical point3. This is really no surprise since the critical
points correspond to mathematical singularities, which generally limit the usefulness of
a perturbative approach.

Simulations

When all else fails, one must turn to the computer for help. The essence of simulations
in statistical physics is to let a state  evolve in phase space, and as  evolves w e make
measur ements. We can not assume to sample the en tire phase space, but the hope is
that the states w evisit are repr esentative. There are many di�erent methods to do
computer simulations [80], three much used methods are:

Molecular dynamics, the most \brute-force" way, where the equations of motion for
a large number of particles are integrated in time - quite simply. For a classical
system the state of the system then evolves according to

 i(t+�t) =  i(t) + �t _ i(t)� (�t)
2 @H (f g)

@ i

: (4.1)

The result is generally deterministic when the initial condition is speci�ed [81].

2Corresponding to strong coupling and weak coupling in terms of �eld theory.
3Prior to Lars Onsager exact solution of the 2D Ising model, some people thought one had to employ

two di�erent partition functions, one below and above the critical point.
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Langevin dynamics is a variation of Molecular Dynamics based on a �rst order equa-
tion of motion, and an additional noise term representing the properties of a
thermal bath

 i(t+�t) =  i(t)� ��t
@H (f g)

@ i

+�t�i(t): (4.2)

�i(t) is the noise term, and � is a constant representing coupling to the dissipa-

tive modes of the system. Without the noise term Eq. 4.2 describes dissipative
dynamics, which will lead the system straight into the closest local minimum in
energy. If w e set � = �t in Eq. 4.2 we see that Langevin Dynamics can be in-
terpreted as Molecular Dynamics with random velocities. Antunes et.al. [82] have
used Langevin dynamics to study the distribution of vortices and vortex loops,
very similar to Paper I and Paper II in this thesis.

Monte Carlo is not �a priori based on dynamics like the tw o other methods. Instead
it is based on selecting con�gurations  � randomly, this can of course be done
in many di�erent ways, and the resulting dynamics depends on the details of the
simulations [83]. F or local algorithms it is probably possible to relate Monte Carlo
time to \real time" [85].

If w e go through thethree approaches listed above, the focus of the algorithms shifts
con tinuously from details to universal quantities. In Molecular Dynamics the simula-
tions are performed so that the �nal answers can be compared with experiments on a
quantitive level; the results are reported with dimensionful pressure and temperature
etc. F or Monte Carlo simulations only the qualitative behaviour is expected to reproduce
the real world, consequently Monte Carlo is mostly used to access universal properties.
We have used the Monte Carlo method exclusively, and the rest of the current chapter
is dev oted describing this method.

In section 4.1 we present the Monte Carlo method, the importance sampling, and �nally
the Metrop olis algorithm. Section 4.2 is devoted to data analysis, and especially how to
calculate the error in the measurements, in section 4.3 we present reweighting which is
a very pow erful method to extract more information from a simulation. All simulations
are necessarily performed with a �nite system size, in section 4.4 we discuss how this
a�ects the results, and how we can use �nite size e�e cts to gather information about
the critical properties. Finally w econclude the chapter with some considerations for
Lattice Gauge theories in section 4.5.

4.1 Monte Carlo - a crash course

Monte Carlo (MC) is a very general method, applicable to a wide variety of problems.
Common for all these problems is that phase space is very large, prohibiting an ex-
haustive searc h. In physics MC is in particular used to study equilibrium properties in
statistical physics and lattice gauge theory. If combined with an annealing scheme [86]
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MC can be used to �nd approximate solutions to hard optimizing problems like \the
traveling salesman problem", design of integrated circuits, organizing the timetable for a
public transport company and image restoriation. A naive MC simulation is quite sim-
ple and straightforward to implement, how ever it should nevertheless bea last resort,
since it is a costly method in terms of computer time.

A note on notation

For the remaining part of this chapter we will use the following notation:
True values:

Expectation values: hOi =
1

Z

X

i

Oie
��Ei (4.3)

Fluctuations/statistical variance: �2O = hO2i � hOi2 (4.4)

Of course the true values Eq. 4.3 and 4.4 require knowledge of the full partition function,
and w emust be con ten twith estimators, generally w ewill use 
�[�] to indicate an
estimator, the index on the estimator indicates how the rawdata have been sampled,
see page 49. T ypically we wan t to estimate expectation values, i.e. w e use an estimator

�[hOi]. In addition to the estimate 
�[hOi] itself we also want an indication ofho w
reliable this estimate is, i.e. the variance of the estimator. The following notation is
used for estimators and their accompanying errors:

Estimator of expectation value: 
�[hOi] (4.5)

Error in estimate: 
�

h
�2
�[hOi]

i
= Æ [hOi] (4.6)

Where the notation Æ [hOi] is introduced to simplify. Consequently a numerical value is
according to Eq. 4.5 and 4.6 given as the value of 
�[hOi] � Æ [hOi].

4.1.1 The generic statistical physics p roblem

The most naive approach is to pick N states  � randomly, and then use the estimator


i[hOi] =

PN

k=1 Oke
��Ek

PN

k=1 e
��Ek

: (4.7)

The estimator Eq. 4.7 is un biased, i.e. its expectation value coincides with the true
expectation value, nev ertheless this is generally a very poor approach. A t a given
temperature T the partition function and expectation values are heavily dominated by
states with E ' hEi, these states typically constitute only a small fraction of the total
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number of states, and the general random state will give a small contribution to the
averages4. Consequently a large part of the computing time will be wasted on states
which only contribute a vanishing amount to the �nal answer.

Instead of the random sampling, we will use what is called importance sampling. The
key point about importance sampling is that instead of jumping about in phase space
completely at random, we devise a random walk, where consecutive steps in the w alk
represent states wic hare \thermodynamically close". The w alk is constructed suc h
that the probability to visit a state is proportional to its Boltzmann weight. This
w aythe w alk eris ensured to spend most of its time on states with E � hEi, and
consequently little computing resources are w asted on the states which give a very
limited contribution. The walk is devised so that the probability P(�) to be in state �
only depends on the state �0 in the previous step, and not on the preceding states. A
random sequence with this property is called a Markov chain [89].

Because the states are visited with a frequence proportional their Boltzmann weight, it
might seem that an implementation requires knowledge of the density of states, 
(E),
how ever as we shallsee below it is possible to construct such a walk if w eonly know
the ratio betw een the probabilitiesP(�) and P(�0). When the occurence frequency of
the states is proportional to the Boltzmann distribution, we do not need the Boltzmann
w eigh ts in the estimators:


�[hOi] =
1

N

NX

�=1

O�: (4.8)

Observe the use of greek indices's in Eq. 4.8 compared to the latin in Eq. 4.7. F or the
remaining part of this chapter greek indices's will be used to indicate timeseries which
have been sampled using importance sampling.

4.1.2 Building the Markov chain

In the following we will use W(�jn) to denote the probability distribution of � after n
steps of the walk through phase space, furthermore P(�) denotes the target5 distribution
which W(�jn) should converge tow ards in then ! 1 limit. We start the system in a
particular state �, then we consider the set of states �0 2 f�1; �2; � � � ; �Ng which can b e

reache dfrom �, and the transition probabilites P (�! �0). The transition probabilities
are k ey ingredients in this scheme, and must satisfy the following requirements:

Normalisation: X

�0

P (�! �0) = 1; (4.9)

4A t� = 1:1 only sev en out of totally 512 states provide 99.9% of the contribution to the partition
function of a 3� 3 Ising system [13]

5In our case the target distribution will of course be the Boltzmann distribution, but the analysis
has general applicability.
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Detailed balance:
P(�)P (�! �

0) = P(�0)P (�0 ! �) : (4.10)

Accessibility:
The transition probabilities must be such that all of phase space is accessible, i.e. given
tw o arbitrary states�1 and �2 it must be possible to evolv e from�1 to �2 in a �nite
number of steps.

Observe that the actual transition probabilites are still left unspeci�ed, nevertheless,
giv en that they actually satisfy Eq. 4.9 and 4.10 we can show that the actual distribution
W(�jn) con vergestow ardsP(�). Let us in troduce Dn as a \di�erence" betw eenthe
distributions P(�) and W(�jn)

Dn =
X

�

jW(�jn) � P(�)j : (4.11)

We will sho w that W(�jn) indeed converges towards the target distribution P(�) by
showing that Dn+1 < Dn.

Dn+1 =
X

�

jW(�jn + 1)� P(�)j

=
X

�

�����
X

�
0

W(�0jn)P (�0 ! �)� P(�)

�����

=
X

�

�����
X

�
0

�
W(�0jn)P (�0 ! �)� P(�)

�
�����

=
X

�

�����
X

�
0

fW(�0jn)� P(�0)gP (�0 ! �)

����� :

(4.12)

Since it is a probaility we must haveP (�0 ! �) � 0, if we apply the triangle inequality6

to Eq. 4.12 we get

Dn+1 �
X

��
0

jW(�0jn)� P(�0)j P (�0 ! �)

=
X

�
0

jW(�0jn)� P(�0)j
X

�

P (�0 ! �)

= Dn

(4.13)

What w e have essentially proved with Eq. 4.12 and 4.13 is that provided the tw o
conditions Eq. 4.9 and 4.10 are satis�ed, the actual distribution W(�jn) will converge

6T riangle inequalit y:jx+ yj � jxj+ jyj.
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tow ards the wan ted distributionP(�). So far this has been quite general, now we must
specify the transition probabilities P (�! �0), it is by specifying these probabilities the
target distribution is determined. Consider the detailed balance condition Eq. 4.10
sligh tly rewritten

P (�! �0)

P (�0 ! �)
=
P(�0)

P(�)
: (4.14)

The individual probabilities P(�) and P(�0) require knowledge of the full partition func-
tion and are clearly unknown, but their ratio P(�0)=P(�) is known

P(�0)

P(�)
= e��(E�0�E�); (4.15)

and w ecan use this to devise transition probabilities which will ensure that W(�jn)
converges tow ardsthe Boltzmann distribution. Eq. 4.15 still leaves quite a lot of
arbitrariness and the eventual c hoice is mostly a matter of computational convenience,
the Metropolis algorithm described in the next section is probably the most common.

4.1.3 The Metropolis algorithm

The Metropolis algorithm w as�rst introduced by Metropolis et.al. in 1953 [90]7 .
Propose a change in the system state �! �0 and calculate the change in energy �E =
E�0 � E�. If �E < 0 the proposed change is accepted, otherwise it is only accepted
with a probability exp(���E), ie

P (�! �0) =

(
1
N�

�E < 0
e���E

N�
�E > 0

(4.16)

In Eq. 4.16, N� is the number of states reachable from the state � - it must be included
to satisfy the normalisation constraint in Eq. 4.9, but pla ysno further role. How to
perform simulations with the Metropolis algorithm is schematically shown in Fig. 4.1.

Many other algorithms are used. Heat Bath, where the transition probabilities are
changed to P (�! �0) = (1+ exp(��E))�1, is another general purpose algorithm, and
in addition several specialized algorithms which for instance respect particular sym-
metries, ha vebeen dev eloped [91]. In our simulations w ehave used the Metropolis
algorithm, along with overr elaxation, which is briey mentioned in section 4.5.

7The title of the paper was: \Equation of State Calculations by Fast Computing Machines"

URN:NBN:no-2110



52 CHAPTER 4. THE TOOLS OF THE TRADE

1. Prepare an initial con�guration �0.

2. Propose a new state �0 randomly, and calculate �E = E�0
�E�.

3. Accept the new state �0 with probability P = min(1; e���E), this is prac-
tically done by drawing a uniformly distributed random rumber r 2 [0; 1],
and accepting the new state if r < P .

4. Make measurements on the current state �.

5. Reedo from 2 above until suÆcient accuracy has been obtained.

Figure 4.1: The Metropolis algorithm

4.2 Data analysis

4.2.1 T emporal correlations

Compared to the naive random sampling we have increased the eÆciency of the simu-
lations considerably by employing the importance sampling method, but it comes with
a price. The consecutive states in the Markov chain are highly correlated, and only
states separated by several sweeps through the lattice are truly independent. T otest
for independence we can study a normalised autocorrelation function

�(t) =
hO(t)O(0)i � hOi2

hO2i � hOi2
' e�t=� : (4.17)

As indicated in Eq. 4.17 the autocorrelation function decays roughly as an exponential
function with a characteristic time scale � . The problem with temporal correlations is
specially severe around phase transitions.

4.2.2 Statistical errors

Averages are calculated from the naive formula Eq. 4.8, and the errors in these measure-
ments are given by the standard error of this estimator. F or independent measurements
the standard error can be estimated simply from

Æ [hOi] =
1

N(N � 1)

NX

k

(Ok � hOi)2 ; (4.18)

i.e. the squared standard error is given by the variance of the original data divided
by the number of measurements. How ev er thisformula can not be applied directly to
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MC rawdata because they are not truly independent. T o circumvent this we group the
measurements together in bins to form new stochastic variables, and these bin variables
are assumed to be independent.

1 2 3 4 5 6 7 8 9 10

Figure 4.2: The full timeseries has been divided in ten di�erent bins, and averages are

calculated for each bin. These averages are then used as new, independent random variables.

We denote the full timeseries of N measurements as f	g, then we divide this series into
J independent timeseries f 1;  2;  3; : : : ;  Jg, and calculate the averagesXi

Xi =
J

N

X

�2 i

O� (4.19)

for eac h bin independently. Observe that although Xi in Eq. 4.19 represents an average
over a subset of the data w e willconsider it as a stoc hastic variable with hXii = hOi
and unknown variance. Now we can use these new variables to express hOi as


�[hOi] =
1

J

JX

i=1

Xi: (4.20)

Although the original measurements w ere highly correlated the new variablesX1; X2; : : : ; XJ

are independent, and we can estimate the variance in the estimator Eq. 4.20 as

Æ [O] =
1

J(J� 1)

JX

i=1

(Xi � hOi)
2
: (4.21)

When w ewish to estimate a nonlinear function f(O�) of the MC data, w euse the
estimator


�[f (hOi)] = f (
�[hOi]) = f

 
1

N

X
�

O�

!
; (4.22)

i.e. hOi is estimated �rst. Applying the estimator Eq. 4.22 is straightforward, but it is
diÆcult to get a reliable estimate for the error Æ [f (hOi)], this is done using Jack-Knife

estimators [92,93]. We go back to Fig. 4.2 and the variables Xi from Eq. 4.19 and form
the new variables

Yi =
1

J� 1

X
k 6=i

Xk; fi = f (Yi) ; (4.23)

i.e. in terms of Fig. 4.2 the variable Y4 is the a verage over all the \white blocks", and
fi is function evaluation of this average. Then the following Jack-Knife estimators are
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used to estimate f hOi) and Æ [f (hOi)]


J [f (hOi)] =
1

N

NX

i=1

fi (4.24)

ÆJ [f (hOi)] =
N � 1

N

NX

i=1

 
fi �

1

N

NX
k=1

fk

!2
: (4.25)

The important conten t of this technique is Eq. 4.23 where the variable set (Yi; fi) is
formed. What we essen tilly do here is to apply the estimators Eq. 4.20 and 4.22 to a
dataset with one variable missing, and then repeating with a new dataset missing until
all possibilities have been exhausted. In this way all the data are sampled (J� 1) times,
and the technique is an example of resampling [93].

4.3 Reweighting techniques

During the simulations the probability to �nd the system with energy E can be approx-
imated by recording a histogram H(E),

P (E) =
N(E)e��E

Z(�)
'

H(E)R
dEH(E)

; (4.26)

and in the limit of an in�nitely long simulation this will approach the true probability
giv en on the right hand side of Eq. 4.26. The important point with Eq. 4.26 is that
we have factored out the temperature independent density of states N(E), and we can
write

N(E) ' P (E; �)e�EZ(�): (4.27)

Eq. 4.27 should apply equally well irrespective of the temperature, and we can write

P (E; �1)e
�1EZ(�1) = P (E; �0)e

�0EZ(�0)

P (E; �1) = P (E; �0)e
���EZ(�0)

Z(�1)
; (4.28)

where �� = �1 � �0. Eq. 4.28 contains the unknown quantities Z(�0) and Z(�1), but
if we require that P (E; �1) be normalized to unity we can write

P (E; �1) =
P (E; �0)e

���ER
dEP (E; �0)e���E

: (4.29)

If w enow use Eq. 4.26 to approximate P (E; �0) w ecan calculate P (E; �1) from Eq.
4.29. In this way we can calculate thermodynamical properties at the coupling constant
�1 from rawdata obtained at the coupling constant �0. This process is called reweighting.
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Often we are not interested in the probabilities P (E; �) themselves, but rather how a
general expectation value hAi varies with �. If we multiply Eq. 4.29 with A and sum
over allA w e get

hAi(�) =

R
dAP (A; �0)Ae

���ER
dAP (A; �0)e���E

=

P
�A�e

���E�P
� e
���E�

; (4.30)

where
P

� is a sum over the complete time-series of the quantity A. In the �nal step of
Eq. 4.30 we have used

hAi(�) =

Z
dAP (A; �)A =

1

N

X
�

A�: (4.31)

Eq. 4.30 requires that w estore the complete time series of the simulations, but the
adv an tage is that no ambiguity is introduced by binning the rawdata in histograms. If
w e consider a general �eld theory like in section 4.5 where the action can be written

S = �1H1 + �2H2 (4.32)

the exponent in Eq. 4.30 must be generalized to e���iH�i , and the timeseries of H1 and
H2 must be stored individually. A demonstration of reweighting is given in Fig. 4.3.

4.3.1 F errenbergSwendsen reweighting

F errenberg Swendsen reweighting is the most succesful example of Multi Histogram

Methods [91]. The method consist of combining the rawdata from simulations at several
di�erent values of the coupling constant, and then reweight the complete dataset. This
method allows for reweigh ting to a much broader range of coupling constants. F or Paper
III reweigh ting was absolutely essential8 to �nd the critical coupling constants.

The original formula as given by Ferren berg and Swendsen [94] is given in terms of his-
tograms. Given N histograms Hi(E;A) of energy and an arbitrary operator A sampled
at N di�erent coupling constants �i, the probability distribution reweighted to coupling
constant � is giv en b y

P�(E;A) =

PN
i=1 g

�1
i Hi(E;M)e��EPN

j=1 njg
�1
j e��jE+fj

; (4.33)

here nj is the length of timeseries j, gj = 1 + 2�j is a weight factor determined by
the autocorrelation time and fj is free-energy like quantity which must be determined
self-consistently from

e�fj =
X
E;A

P�j (E;A): (4.34)

8We used a soft w are package kindly donated to us by Kari Rummukainen at Nordita to do Ferrenberg

Swendsen reweighting.

URN:NBN:no-2110



56 CHAPTER 4. THE TOOLS OF THE TRADE

-1.6 -1.55 -1.5 -1.45 -1.4 -1.35 -1.3 -1.25E

Histograms of E

β0

β1
β2

β3

Figure 4.3: This �gure shows histograms of E for the 2D Ising model. The simulation has

been performed at �0 = �c � 0:44069, and the rawdata have subsequently been reweighted

to �1 = 0:436, �2 = 0:444 and �3 = 0:456. The histograms reweighted to �1 and �2
overlap quite nicely with the original histogram and the errors are small. �3 is too fa r from

�0, and the dominating weight of this histogram is in a region where the original histogram

has negligible support, consequently the errors grow dramatically large and this histogram

is not reliable.
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The use of Eq. 4.33 requires that 2-dimensional histograms H(E;A) are stored during
the simulations, this is impractical and an implementation in terms of the timeseries
(E�; A�) is preferable. In this case the expectation value of A reweighted to � is given
by [95]:

hAi (�) =

PN

i=1

Pni

�t=1
Ai(�t)Pi(�t; �)

PN

i=1

Pni

�t=1
Pi(�t; �)

: (4.35)

Where Pi(�t; �) and fi are given b y a self consistent solution of the set:

Pi(�t; �) =
g�1i e��Ei(�t)

PN

j=1 njg
�1
j e��jEj(�t)+fj

(4.36)

e�fj =

NX

i=1

niX

�t=1

Pi(�t; �j): (4.37)

4.4 Finite size e�ects

As mentioned in section 2.2 an in�nite system size is essen tial to get a true phase
transition. Obviously simulations must be performed with a �nite system size, and this
will inevitably a�ect the results.
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T

<M>

Tc

Exact solution
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Figure 4.4: Simulation results on the 2D Ising model. The left part shows the magnetization

as a function of temperature, the right part shows CV for L = 10 and L = 100.

8The pseudocritical temperature in this case is the location of the maximum in the spesi�c heat.
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F rom Fig. 4.4 we can see how the phase transition9 is a�ected by �nite size. In general
all singularities will be rounded, in particular this means that

1. Response functions like CV and � attain �nite values instead of diverging at the
critical point, they will also be broadened. This is illustrated in the right part of
Fig. 4.4.

2. F unctionswhich should be excactly zero will generally have a �nite tail, as the
magnetisation above TC , shown to the left in Fig. 4.4.

3. Discontinous jumps across �rst order transitions will be smeared out to narro w
regions with large slope, and be super�cially continous.

In addition critical couplings will be shifted. These shifts can generally be both ways,
and the pseudocritical couplings will be di�erent for di�erent quantites. These e�ects
always tak e place, in addition there can be other �nite size e�ects which are more speci�c
for the model/observable in question, for instance a quite exotic �nite size e�ect for loop
size distribution is discussed in [71].

The microscopic origin of �nite size e�ects is that the correlation length � is bounded
by the system size. In true critical phenomena � = jtj

��
! 1 at the critical point,

whereas in �nite systems � can not exceed L:

�0(T ) = jT � Tcj
��

; �(T ) =

�
�0 �0 < L

L �0 > L
: (4.38)

If w e go back to the critical scaling presented in section 2.4.1 we can replace jtj
��

with
L, and in that way we can �nd how the quantities vary with system size

CV / jtj
��

=
�
jtj
��
��=�

) CV / L�=� (4.39)

m / jtj
�
=
�
jtj
��
�
��=�

) m / L��=� (4.40)

� / jtj� =
�
jtj��

�=�
) � / L=� = L2��: (4.41)

In Eq. 4.41 we have used the scaling law Eq. 2.17 to get an expression involving only
�, and not �. Utilizing the �nite size e�ects in this manner is falled Finite Size Scaling

(FSS) and is the most commonly used method to calculate critical exponents from MC
data. A good introduction to FSS can be found in [96], and an extremely elaborate FSS
see [72].

In addition to calculating exponents, �nite size e�ects can be applied to many other
things. In Paper III �nite size e�ects were used to di�erentiate bet w een �rst and second

9Of course, in a �nite system it is not a true phase transition, we will nevertheless talk about it as

a phase transition.
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order phase transitions, and in Paper IV w estudied the �nite size behaviour of the
vortex-vortex distance to determine whether a particular superconductor was type-I or
type-II .

4.4.1 A �rst o rder transition?

The most naive way to determine the order of a phase transition is to look for a discon-
tinuous jump in the order parameter, or other thermodynamic quantities. This method
detects strong �rst order transitions, but a weak transition, combined with unavoidable
�nite size rounding, will be impossible to detect this w ay.In the late 1980's Lee and
Kosterlitz [97] devised a method based on �nite size scaling and coexistence at �rst
order transitions, to di�erentiate bet w een �rst and second order transitons, the use of
this method was essen tial in Paper III.

A ta �rst order transition w ehave coexistence of tw odi�erent phases, w ecall them
symmetric and broken and use  S and  B to denote the tw opur e states. In addition
w e will use the symbol  S+B to denote a mixed state containing both symmetric matter
and broken matter. According to the de�nition of coexistence, the two states  B and
 S ha ve the same free energy, but in going from one state to the other we have to form
an interface, and due to interface tension there is a free energy barrier �F between the
tw o pure states.

During the simulation we build up a histogram H(O) of the operator Ô, for a �rst order
transition the critical histogram will typically look like the right part of Fig. 4.5, with
a double peak structure corresponding to the pure states  B and  S and a valley in
betw een corresponding to the mixed state S+B which is less probable to �nd.

The probability that an operator X has the particular value X1 can be written:

P (X = X1) =

P
f�jXi=X1g

e��E�

Z(�)
= e��A(X1;L) (4.42)

In Eq. 4.42 A(X1; L) is a free energy like quantity, it di�ers from the true free energy by
a temperature dependent additive quantity, but the di�erence �A between tw o states
X1 and X2 is the same as for the free energy

A(X1; L)�A(X2; L) = F (X1; L)� F (X2; L) = �F (L): (4.43)

Combining Eq. 4.42 and 4.43 we �nd that the free energy gap separating the two pure
states is given by

�F (L) =
1

�
ln

�
P+

P�

�
; (4.44)

where P+ denotes the probability to �nd either one of the pure states, and P� denotes
the probability to �nd the mixed state in the bottom of the well of Fig. 4.5. Now to
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Figure 4.5: The left pa rt sho ws rawdata of the quantity R2, w ecan clea rly identify tw o
stable states, indicated with arrows as R2

B
and R2

S
in the �gure. The right part shows a

histogram of R2, and the probabilities P+ and P
�

referenced in Eq. 4.44 are indicated with
arrows. The histogram shows a slightly reweighted (see section 4.3) version of the rawdata.
The reweighting has been done to get tw oequally high peaks.

�nally determine the order of the phase transition w econsider the scaling of �F (L)
from Eq. 4.44 with L:

�F (L) / Ld�1 ) First order transition (4.45)

�F (L) / L0 ) Second order transition (4.46)

The pow erd� 1 in Eq. 4.45 corresponds to a at interface betw een the two pure states.
T o get properd � 1 scalingof � F (L) requires quite large systems/strong transitions,
in Paper III we generally concluded that transitions with �F (L) / L�; � > 0 were �rst
order.

4.5 Simulations of the full GL model

Monte Carlo simulations on Lattice Gauge Theories is in principle not di�erent from
standard statistical mechanics simulations; ho w ev erthere are some conceptual di�er-
ences it is important to be aw are of:

1. There is no heat bath - i.e. there is no natural factorization of the action in terms
of [�] = J�1 and [H ] = J - instead we only have a complete action S which has
dimension [S] = 1, and instead of the coupling � to an external thermal reservoir
there are only the \internal couplings" of the �eld theory.
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2. The Metropolis acceptance probability P = min(1; e���E)! min(1; e��S).

3. Because of the points mentioned above one quite often has to abondon the \com-
mon sense" one has developed for T dependence e.t.c. from conven tional statistical
ph ysics simulations.

How ev er these di�erences do not present any serious diÆculties compared conventional
statistical mechanics. The rest of this section will be devoted to overr elaxation, which
is a method designed to speed up Lattice Gauge simulations.

4.5.1 Overrelaxation

Section 4.4.1 was devoted to the free energy barrier betw een the tw o coexisting states
in a �rst order transition, and how the height of this barrier could be used to determine
the order of the transition. Unfortunately this barrier also complicates the simulations
signi�cantly. If we look at the rawdata tothe left in Fig. 4.5 we see that the system
moves v ery infrequently bet ween the tw o coexisting phases, the characteristic timescale
div erges as � / e�F , and the resulting statistics is poor. T o reduce this problem
overr elaxationhas been essential10.

The idea of overrelaxation is to calculate a new state  0� which \deviates muc h" from
the original state  �, but nev ertheless is accepted with high probability. This w ay
the correlations betw een consecutive states are reduced. The algorithm we have used
[99{ 101] consists of tw o steps:

We start with writing the scalar potential in Eq. 3.52 as

V ( (x)) = �a �F+ �2 j (x)j
2
+

x

�3G
j (x)j

4
(4.47)

where

a = j (x)j

�
cos [arg( (x))]
sin [arg ( (x))]

�
(4.48)

and

F =
2

�G

� P
� j (x� ê�)j � cos [arg ( (x� ê�)) + ��(x)]P
� j (x� ê�)j � sin [arg( (x� ê�)) + ��(x)]

�
: (4.49)

F is proportional to ana verage of  (x) at the neighboring points. Using a and F w e
introduce the new variables

X = a � f ; f =
F

jFj
(4.50)

10We have focused on rather weak �rst order transitions, if the phase transitions inquestion are
strongly �rst order Multicanonic al [98] sim ulations is essential.
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and

Y = a�Xf (4.51)

and rewrite the scalar potential Eq. 4.47 in terms of X;Y and jFj,

�V (X;Y 2; jFj) = X4 x

�3
G

+X2

�
�2 +

2xY 2

�3
G

�
| {z }

B

�X jFj+ Y 2�2 + Y 4 x

�3
G

: (4.52)

The actual updates are performed on the new variables X and Y with Eq. 4.52 as
the starting point. As w ecan see �V in Eq. 4.52 only depends on Y 2, so changing
Y ! Y

0 = �Y leaves the action invariant. In terms of the original variables this
corresponds to reecting the phase of  (x) around the direction of f

arg ( (x)) = arctan
2Xf2 � a2

2Xf1 � a1
: (4.53)

The updating of X is more complicated. Naively w ewould just solv e the equation
�V (X) = �V (X 0), but the problem with this is that for an unsymmetric potential the
interval dX is mapped to dX 0

dX 0 = �dX

�
@V (X)

@X

��
@V (X 0)

@X 0

�
�1

| {z }
P (X!X0)

; (4.54)

as illustrated in Fig. 4.6. This leads to a violation of detailed balance, which can be
corrected by the use of an accept/reject step with the probiblity P (X ! X 0) indicated
in Eq. 4.54. Consequently the algorithm for overrelaxation update ofX consists of tw o
steps:

1. Find the X 0 which solves the equation

�V (X) = �V (X 0): (4.55)

2. Accept the new state X 0 with probability

P (X ! X 0) =

�
@V (X)

@X

��
@V (X 0)

@X 0

�
�1

: (4.56)

When we have calculated a newX 0, and determined to accept it, the new value of  (x)
is calculated from

j (x)j =
p
X 02 + Y 02

(4.57)

arg ( (x)) = arctan
Y 02 +X 0f2

Y 01 +X 0f1
:
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V(X)

X’
dX’

X
dX

Figure 4.6: A demonstration of how dX maps to dX 0 with an unsymmetric potential.

1
2

2"

A

1
2

2"

B

Figure 4.7: A 2D visualization of the overrelaxation update of the central \spin". The

position marked as 1 is the initial state of  , the dashed line is parallel to F. The Y update

consists in reecting the spin around this line to position 2. Finally the position 2" is the

�nal con�guration from Eq. 4.57. See the text for the di�erence betw een �gure A and B.
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64 CHAPTER 4. THE TOOLS OF THE TRADE

The phase transition in this model is schematically betw een an ordered state character-
ized by relatively large values of the amplitude, and gauge invarian t phase di�erences
close to zero, and a disordered state which is opposite in the sense that the average
amplitude is small, and the gauge invarian t phase di�erences are close to random.

Now, if we consider the overrelaxation scheme as visualized in Fig. 4.7 we see that the
algorithm is designed to facilitate faster changes between ordered and disordered states.
Both �gure A and B in Fig. 4.7 show a \quite ordered" state. In �gure A the central
spin is aligned parallel to the neighboring spins, and in the �nal overrelaxed state it is
an ti parallel to its neighbors, and with muc h reduced amplitude. Hence both arg ( (x))
and j (x)j have been updated cooperatively to aid in disor dering the system. In �gure
B the situation is opposite, in the �nal overrelaxed state botharg ( (x)) and j (x)j ha ve
been updated to order the system.
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A Details of duality
transformation

The problem with Eq. 3.18 is the cos function, which is diÆcult to handle analytically.
The �nal approximation is the Villain approximation [102], which consist in replacing
the cos with a \forced periodic" harmonic potential in the following way

e� cos �
� RV(�)

n=1X

n=�1

e��V(�)=2(��2�n)
2

: (A.1)

In Eq. A.1 �V(�) is a modi�ed bending energy and RV(�) is a normalization constant,
with the special choice

�V(�) = �
1

2

�
ln

�
I1(�)

I0(�)

��
�1

and RV(�) =
p
2��V(�)I0(�) (A.2)

the Villain approximation Eq. A.1 is quantitativ ely correct over the whole temperature
range [17]. How ev er thecritical properties of the XY model will be correctly reproduced
even if w eset �V(�) = � and RV(�) = 1, and w ewill generally be content with the
approximation

e� cos �
�

n=1X
n=�1

e��=2(��2�n)
2

: (A.3)

Basically this approximation amounts to approximating the cosine with a harmonic ap-
pro ximation, and then introducing the new integer valued �eld n to enforce the perio dic

behavior of the cosine. Since the vortices are a consequence of the perio dic nature of
cos, the n �eld is essential.

Now we are ready to embark on the actual duality transformation in section A, apart
from the approximations described in this section, the actual transformation is exact.
The duality transformation is performed with the gauge �eld present, but for simulations
w eoften go back to Eq. 3.18 and omit the gauge �eld altogether. Then w eare left
with the 3DXY model, which is a thoroughly investigated model in statistical physics.
Physically , omitting the gauge �eld amounts to \turning o�" the charge in the problem,
i.e. as if the condensate w ereneutral. These aspects are discussed further in section
3.4.3.
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72 APPENDIX A. DETAILS OF DUALITY TRANSFORMATION

In this section we will perform the duality transformation from the original GL model
to a grand canonical set of interacting vortex loops. In the derivation w ewill make
repeated use of the Poisson summation formula [17]

1X

n=�1

e2�inA =
1X

a=�1

Æ(A� a) (A.4)

to shift betw een integer �elds and real �elds, and the Hubbard-Stratonovic h (HS) decou-
pling [26] is repeatedly used to linearize quadratic exponents at the price of an auxiliary
�eld. This process involv es a great number of di�erent �elds - it is important to realize
that at each step equivalence is only in terms of the partition function, i.e. the sum
over all �eld con�gurations for the di�erent �elds, and not betw een the di�erent �elds.
In other words it is not possible to transform uniquely from a state speci�ed by one set
of �elds to the same state speci�ed by another set of �elds1.

ZV (�) =

Z
D�DA

1X
n=�1

exp

"X
x

(X
�

�

2
(@�� � 2�n� � eA�)

2
+

1

2
(r�A)

2

)#

(A.5)

The �rst operation on Eq. A.5 is to HS decouple the kinetic term. This introduces an
auxiliary vector �eld B(x) which must be integrated over, but the advantage is that the
coupling betw een the integer n �eld and the � andA �elds is linearised. If we temporarily
ignore the gauge �eld, the Hubbard Stratonvich decoubled partition function is2

~ZV (�) =

Z
D�DB

1X
n=�1

exp

"X
x;�

�
1

2�
B2

�(x) + iB�(x) (@�� � 2�n�)

�#
: (A.6)

The next step is to use P oisson summation formula Eq. A.4 on the coupling between
B�(x) and n�, this forces the auxiliary �eld B(x) to take only integer values, this integer
valued �eld will be denoted by b(x). Subsequently we perform a partial integration of
the term involving @��

Y
x

Z
d�(x)e

P
�
ib�@�� !

Y
x

Z
d�(x)e�i�

P
�
@�b� =

Y
x;�

Æ(rb(x)); (A.7)

i.e. the constraint r � b(x) = 0 is enforced uniformly in space. Physically this means

1In addition we will also ignore the prefactors arising from the various Gaussian integrals, this will

not a�ect the critical properties, but as the prefactors will generally be T - dependent the high and low

temperature properties will be incorrect.
2In Eqns. A.6 - A.9 we denote the partition function with ~ZV to indicate the absence of the A �eld.
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that b(x) describes a set of closed loops. A t this stage the theory looks like3

~ZV (�) =
X

b

0

exp

"X
x

1

2�
b2(x)

#
: (A.8)

The constraint r � b = 0 in Eq. A.8 is essential, without this constraint the partition
function w ouldhave factorized in spatially independent Jacobi � functions with no
phase transition. How ever the constraint leads to spatial couplings and a nontrivial
theory with a phase transition.

The next step is to solve the constraint r�b = 0 explicitly by introducing a new integer
valued �eldK, and writing b = r�K. In addition we relax the integer value constraint
on K, and instead introduce the real valued �eld h along with an integer v alued �eldm
by using Eq. A.4 backwards

~ZV (�) =

Z
DADh

X
m

0

e�S(A;h;m); (A.9)

S(A;h;m) =
X
x

�
1

2�
(r� h)

2
+ 2�im � h� i (r� h) � eA+

1

2
(r�A)

2

�
:

In Eq. A.9 w ehave reinserted the gauge �eld A. The m objects in Eq. A.9 are
the vortices. In order to get a pure vortex theory w emust in tegrate over the gauge
�elds h and A, this can be done quite simply. The �rst step is to use the vector
iden tity4 (r�A)

2
= r2A2 � (rA)

2
to rewrite the �eld energies. We w orkin the

gauge5 rA = rh = 0. Finally we express the action in terms of Fourier components

S(A;h;m) =
X
q

�
1

2�
jQqh�qj

2
+ �i (mqh�q +m�qhq)�

ie

2

h
A�
q (Qq � h�q)� +A

�
�q (Q�q � hq)�

i
+

1

2
jQqA�qj

2

�
: (A.10)

The next step is to form complete squares. We introduce the new variables

A+ =
1

2
(Aq +A�q) ; A� =

1

2i
(Aq �A�q) (A.11)

and

�+0 =
ie

2
(Qq � h�q +Q�q � hq) ; ��0 =

e

2
(Qq � h�q �Q�q � hq) : (A.12)

3The symbolic notation
P

b

0

is used as
P

b

0

=
Q
x

P
1

b(x)=�1 Æ(rb), i.e. a sum over closed in teger

loops.
4The general identity is (A�B) � (C�D) = (A C) (BD)� (BC) (AD).
5For theA - �eld this is a c hoice based on computational convenience, in the case of h there is

really no c hoice, remember that the �elds K and subsequently h were introduced to explicitly solve the
constrain trb = 0.
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Then the A part of the action can be written with completed squares as

S(A) =
1

2

X

q

�
jQqQ�qj

�
A+ +

�+0
jQqQ�qj| {z }
~A+

�2

+ jQqQ�qj

�
A� +

��0
jQqQ�qj| {z }
~A�

�2

�
1

jQqQ�qj

��
�+0

�2
+
�
��0

�2�
| {z }

e
2hqh�q

�
: (A.13)

The integrals over ~A+ and ~A� are Gaussian and can be readily performed, and w e
are left with the �nal term e2hqh�q=2 in Eq. A.13. The prefactors arisingfrom the
Gaussian integrals will be ignored. F or the remaining part of the theory w esee that
the e�ect of the integral over the A �eld is to produce a mass term e2hqh�q=2, i.e
uctuations in A produce a mass term in h, which means screening of the vortex-vortex
interactions. A t this stage the theory looks like

S(h;m) =
X
q

�
�i (mqh�q +m�qhq) +

1

2�
QqQ�qhqh�q +

e2

2
hqh�q

�
: (A.14)

The h �eld is integrated over in the same manner as theA �eld. With the convenience
variables

h+ =
1

2
(hq + h�q) ; h� =

1

2i
(hq � h�q) ; (A.15)


+

0 =
�i

2
(mq +m�q) ; 
�0 =

�

2
(mq �m�q) (A.16)

and

�2 =
1

2

�
e2 +

QqQ�q

�

�
; (A.17)

w e can write the action with completed squares as

S(h;m) =
1

2

X
q

�
�
2

�
h
+ +



+

0

�2| {z }
~h+

�2

+ �
2

�
h
� +



�

0

�2| {z }
~h�

�2

�

1

�2

��


+

0

�2
+
�


�

0

�2��
: (A.18)

Again only the last term in Eq. A.18 gives a contribution, and the �nal theory of
interacting vortices is given b y

S(m) = �
X
q

mqm�q

e2� +QqQ�q
: (A.19)
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H(m) = �2�2J0
X

x1;x2

m(x1)V (x1 � x2)m(x2); (A.20)

V (x) =
X

q

e�iq�x

4
P

� sin
2
� q�
2

�
+ ��2

: (A.21)

A.1 Generating functional

By adding source terms J �A and K � h to the action we can calculate the generating

functional Z(J;K), and then even tually the correlation functionshAqA�qi and hhqh�qi
by di�erentiation. The derivation of the generating functional is completely analogous
to the derivation Eqns. A.10 - A.19, but the presence of source terms complicates the
algebra.

We start b y going back to Eq. A.10 and add an additional term

1

2

X
q

(JqA�q + J�qAq) (A.22)

to the action. Then we proceed in the same manner as to Eq. A.13, but with

�+ = �+
0
�

1

2
(Jq + J�q) ; �� = ��

0
�

1

2i
(Jq � J�q) (A.23)

and

1

QqQ�q

��
�+
�2

+
�
��

�2�
= e2hqh�q �

1

QqQ�q

�
JqJ�q � i

�
�0qJ�q + �

0
�qJq

��

(A.24)

Then we are ready to start on the h integration, with the new quantities 
�,


+ = 
+

0 +
ie

4QqQ�q

(J�q �Qq + Jq �Q�q) (A.25)


� = 
�

0
�

e

4QqQ�q

(J�q �Qq � Jq �Q�q) : (A.26)
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The �nal generating functional is given b y

Z(Jq;J�q) =
X

mqm�q

exp

"
�

X
q

fmqG(q)m
�q � F (Jq;J�q)g

#
: (A.27)

F (Jq;J�q) =
JqJ�q

2QqQ�q�2

�
e2

4�2 (QqQ�q)
2
[(JqJ�q) (Q�qQq)� (Q

�qJ�q) (JqQq)]

�
e�

�22QqQ�q
[J
�q (Qq �mq) + Jq (Q�q �m�q)] : (A.28)

Finally the correlation function can be found by di�erentiation,

hA�

qA
�

�qi =
1

Z(0; 0)

@2

@J
�

q@J
�

�q

Z(Jq;J�q)

����
Jq=J�q=0

=
1

Z(0; 0)

X
mqm�q

�
@2F

@J
�

q@J
�

�q

+
@F

@J
�

q

@F

@J�
�q

�
exp [: : :]

������
Jq=J�q=0

: (A.29)

Calculating hhqh�qi is done in much the same manner, but of course Eq. A.22 is
replaced by

1

2

X
q

(Kqh�q +K�qhq) : (A.30)

In conclusion, the �nal formulas relating the vortex correlation function hmqm�qi and
the gauge �eld correlation functions hAqA�qi and hhqh�qi are

hAqA�qi =
1

jQj
2
+m2

0

0
@1 +

4�2�m2

0
hmqm�qi

jQj
2

�
jQj

2
+m2

0

�
1
A

hhqh�qi =
2�

jQj
2
+m2

0

 
1�

2��2hmqm�qi

jQj
2
+m2

0

!
:

URN:NBN:no-2110



ar
X

iv
:c

on
d-

m
at

/0
00

21
97

 v
1 

  1
4 

Fe
b 

20
00

Anomalous scaling dimensions and stable charged fixed-point of type-II

superconductors

J. Hove and A. Sudbø
Department of Physics

Norwegian University of Science and Technology, N-7491 Trondheim, Norway

(July 9, 2004)

The critical properties of a type-II superconductor model
are investigated using a dual vortex representation. Comput-
ing the propagators of gauge field A and dual gauge field h in
terms of a vortex correlation function, we obtain the values
ηA = 1 and ηh = 1 for their anomalous dimensions. This pro-
vides support for a dual description of the Ginzburg-Landau
theory of type-II superconductors in the continuum limit, as
well as for the existence of a stable charged fixed point of the
theory, not in the 3DXY universality class.

PACS numbers: 74.60.-w, 74.20.De, 74.25.Dw

Determining the universality class of the phase-
transition in a system of a charged scalar field coupled
to a massless gauge field, such as a type-II superconduc-
tor, has been a long-standing problem1. Analytical and
numerical efforts have recently focused on the use of a
dual description of the Ginzburg-Landau theory (GLT)
of type-II superconductors, pioneered by Kleinert2, in in-
vestigating the character of a proposed novel stable fixed
point of the theory for a charged superconducting con-
densate, in which case the 3DXY fixed point of the neu-
tral superfluid is rendered unstable3–6. The dual formu-
lation has also been employed to investigate the possibil-
ity of novel broken symmetries in the vortex liquid phase
of such systems in magnetic fields4,5.

The GLT is defined by a complex matter field ψ cou-
pled to a massless fluctuating gauge field A with a Hamil-
tonian

Hψ,A = m2
ψ |ψ|2 +

uψ
2

|ψ|4 + |(∇− i2eA)ψ|2 +

1

2
(∇× A)

2
. (1)

Here, e is the electron charge, and Hψ,A is invariant
under the local gauge-transformation ψ → ψ exp(iθ),
A → A + ∇θ/2ie. The GLT sustains stable topological
objects in the form of vortex lines and vortex loops, the
latter are the critical fluctuations of the theory4,5. These
objects are highly nonlocal in terms of ψ, but a dual
formulation offers a local field theory for them. The con-
tinuum dual representation of the topological excitations,
(in D = 3 only), consists of a complex matter field φ cou-
pled to a massive gauge field h2, with coupling constant
given by the dual charge ed, and with dual Hamiltonian

Hφ,h = m2
φ |φ|2 +

uφ
2

|φ|4 + |(∇− iedh)φ|2 +

1

2
(∇× h)

2
+

1

2
(∇× A)

2
+ ie (∇× h) · A. (2)

The massiveness of h reduces the symmetry to a global
U(1)-invariance. For details on how to obtain this dual
Hamiltonian, we refer the reader to the thorough expo-
sition of this presented in the textbook of Kleinert7. For
e 6= 0 the original GLT in Eq. 1 has a local gauge sym-
metry, the dual theory in Eq. 2 has a global U(1) sym-
metry. In the limit e→ 0, A decouples from ψ in Eq. 1,
Hψ describes a neutral superfluid, and the symmetry is
reduced to global U(1). The dual Hamiltonian Hφ,h de-
scribes a charged superfluid coupled to a massless gauge
field h with coupling constant ed, and the global sym-
metry is extended to a local gauge symmetry. Hence,
when e → 0, the dual of a neutral superfluid is isomor-

phic to a superconductor. Integrating out the A field
in Eq. 2 produces a mass-term e2h2/2, where an exact
renormalization-group equation for the mass of h is given
by ∂e2/∂ ln l = e28. Therefore, when e 6= 0, then e2 → ∞
as l → ∞. This supresses the dual gauge field, and the
resulting dual theory is a pure |φ|4-theory. Hence, in
the long-wavelength limit, the dual of a superconductor

is isomorphic to a neutral superfluid2.
In this paper, we obtain the anomalous scaling di-

mensions ηA of the gauge field3,9, as well as ηh of the
dual gauge field, not previously considered, directly from
large-scale Monte-Carlo simulations. At a 3DXY critical
point,ηA = ηh = 0. We find that (ηA = 1, ηh = 0) when
e 6= 0, and that (ηA = 0, ηh = 1), when e = 0. We also
contrast the anomalous dimension of the dual mass field
φ at the dual charged (original neutral) and dual neutral
(original charged) fixed points, obtaining ηφ = −0.24 in
the former case, and ηφ = 0.04 in the latter.

A duality transformation, to a set of interacting vortex
loops, is performed on the London/Villain approximation
to the GLT. In this approximation the partition function
is

Z(β, e) =

∫

DADθ
∑

{n}

exp

[

−
∑

x

{

1

2
(∆ × A)

2
+

β

2
(∆θ − eA− 2πn)2

}]

. (3)

Here, θ is the local phase of the superconducting order
parameter ψ, while n is an integer-valued velocity field
(not vortex field) introduced to make the Villain poten-
tial 2π-periodic. The symbol ∆ denotes a lattice deriva-
tive. Amplitude fluctuations are neglected in this ap-

1



proach. The validity of this approximation for 3D sys-
tems, has recently been investigated in detail, both nu-
merically and analytically10.

An auxiliary velocity field v linearises the kinetic en-
ergy. Performing the θ-integration constrains v to sat-
isfy the condition ∆ · v = 0, explicitly solved by writing
v = ∆ × h, where h is forced to integer values by the
summation over n. Introducing an integer-valued vortex

field m = ∆×n, and using Poisson’s summation formula,
we find

S(A,h,m) =
∑

x

{

2πim · h +
1

2β
(∆ × h)

2

+ie (∆ × h)A +
1

2
(∆ × A)

2

}

. (4)

Integrating the gauge field in Eq. 4 produces a mass term
e2h2/2, giving an effective theory containing the vortex
field m coupled to a massive gauge field h

Z(β, e) =

∫

Dh
∑

{m}

∏

x

δ∆·m,0 exp

[

−
∑

x

{

2πim·h+

e2

2
h2 +

1

2β
(∆ × h)2

}]

. (5)

The variables m in Eq. 5 describe a set of interacting
vortices, where the interactions are mediated through the
gauge field h. The variables in Eq. 5 are defined on
a lattice which is dual to the lattice from Eq. 3, and
the behavior with respect to temperature is inverted in
the new variables. The θ field in Eq. 3 describes order,
while the m field represents the topological excitations
of the θ field. These excitations destroy superconducting
coherence, and hence quantify disorder7.

Integrating out the h field in Eq. 5, we obtain the
Hamiltonian employed in the present simulations,

H(m) = −2π2J0

∑

x1,x2

m(x1)V (x1 − x2)m(x2), (6)

V (x) =
∑

q

e−iq·x

4
∑

µ sin2
( qµ

2

)

+ λ−2
. (7)

In Eq. 7, the charge e and lattice-spacing a have both
been set to unity, and λ is the bare London penetration
depth. At every MC step, we attempt to insert a loop
of unit vorticity and random orientation. A new energy
is calculated from Eq. 6, and the proposed move is ac-
cepted or rejected according to the Metropolis algorithm.
This procedure ensures that the vortex lines of the sys-
tem always form closed loops of random size and shape5.
In all simulations, a system size of 40×40×40 was used,
and up to 1.5·105 sweeps over the lattice per temperature
were used.

To investigate the properties of A and h at the charged
critical point of the original theory, Eq. 1, we have cal-
culated the correlation functions 〈AqA−q〉 and 〈hqh−q〉
in terms of vortex correlations, obtaining

〈AqA−q〉 =
1

|Q|2 +m2
0



1 +
4π2βm2

0G(q)

|Q|2
(

|Q|2 +m2
0

)



 , (8)

〈hqh−q〉 =
2β

|Q|2 +m2
0

(

1 − 2βπ2G(q)

|Q|2 +m2
0

)

, (9)

where G(q) = 〈mqm−q〉, m0 = λ−1 and Qµ = 1 −
e−iq·µ̂. All correlation functions have been calculated in
the transverse gauge ∇·A = ∇·h = 0. Both of the fields
h and A are renormalized by vortex fluctuations, albeit
in quite different ways.

Invoking the standard form
(

q2 +m2
eff

)−1
for the cor-

relation functions in the immediate vicinity of the critical
point in the limit q → 0, we find the following expressions
for the effective masses,

(

mA
eff

)2
= lim

q→0

m2
0

1 + 4π2βG(q)q−2
, (10)

(

mh
eff

)2
= lim

q→0

m2
0

2β
(

1 − 2π2βG(q)
m2

0

) . (11)

When e 6= 0 the correlation function for A assumes the
form

〈AqA−q〉 ∝
1

q2−ηA
(12)

at the critical point. To determine ηA, we compute the
vortex correlator G(q). For λ << L = 40 , we expect the
following behaviour for G(q) in the limit q → 0,

T < Tc ⇒ G(q) ∝ q2, (13)

T = Tc ⇒ G(q) ∝ qη, (14)

T > Tc ⇒ G(q) ∝ C(T ). (15)

When these limiting forms are inserted in Eq. 10, we see
that for T ≤ Tc, m

A
eff will be finite through the Higgs

Mechanism (Meissner effect). For T ≥ Tc we will have
mA

eff = 0 as in the normal case of a massless photon.
Assuming G(q) ∝ qη precisely at the critical point, it is
seen that η corresponds to ηA from Eq. 12. We thus
identify the scaling power of G(q) at the critical point

with the anomalous dimension of the massless gauge field
A.

2
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FIG. 1. log-log plot of G(q) for the three alternatives in
Eq. 13 - 15, with λ = a/2. For this λ, Tc = 1.446. Apart
from the point q = qmin, T = 1.446 the error bars are smaller
than the symbols used.

All three limiting forms Eqs. 13-15 are shown in Fig.
1. The gauge field masses mh

eff and mA
eff in Eqs. 10 and

11, are shown in Fig. 2. At the critical point G(q) ∝ q, so
that ηA = 1. Note that, while mA

eff vanishes at T = Tc,
mh

eff is finite but non-analytic. As a result of the vortex

loop blowout, the screening properties of the vortices are
dramatically increased, and mh

eff increases sharply.
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eff/m0 as functions of T .

To find ηh independently, we consider first the un-
charged case λ → ∞, m0 → 0. First, at an intermediate
step in the transformation Eqs. 3 - 5, the action reads

S(β, e) = −
∑

x

{

1

2β
l2 + eiA · l +

1

2
(∇× A)

2

}

. (16)

Here, l is an integer field of closed current loops. Setting

e = 0 in Eq. 5, the action of the dual Villain model is
obtained,

S̃V (β,Γ)=−
∑

x

{

2πim ·h+
1

2β
(∆×h)2 +

Γ

2
m2

}

. (17)

Here, a term Γm2/2 has been added, and S̃V (β,Γ) cor-
responds to the Villain-action in the limit Γ → 0. How-
ever, it is physically reasonable to propose that the limit
Γ → 0 is non-singular, since the added term is short-
ranged. It should therefore be an irrelevant perturba-
tion, in renormalization group sense, to the long-ranged
Biot-Savart interaction governing the fixed point, which
is mediated by h. Rescaling h → he/2π in Eq. 17, we

have11Z(β, e) = Z̃V
(

e2/4π2, 1/2β)
)

, leaving Eqs. 16 and
17 interchangeable; ηh from Eq. 17 should have the same
value as ηA from Eq. 16. The above is demonstrated by
our simulations based on Eqs. 6-9, which are independent

of the proposed form Eq. 17.
To determine ηh we study the correlation function

〈hqh−q〉 (Eq. 9) in the limit m0 → 0. At the un-
charged fixed point of the original theory, which is
the charged fixed point of the dual theory, we have
limq→0 2πβ2G(q) = (1−C2(T ))q2+..., q2−C3(T )q2+ηh +
..., and q2 − C4(T )q4 + ..., for T < Tc, T = Tc, and
T ≥ Tc, respectively. Here, C2(T ) corresponds to the
helicity modulus (superfluid density)12, C3(T ) is a crit-
ical amplitude, and C4(T ) is the inverse of the mass of
the dual gauge field for T ≥ Tc. Correspondingly, we
have limq→0 < hqh−q >= 2βC2/q

2, 2βC3/q
2−ηh , and

2βC4, for T < Tc, T = Tc, and T ≥ Tc, respectively.
Note that h is massless for T < Tc, while it is massive for
T > Tc, the dual system exhibits a “dual Meissner-effect”
for T ≥ Tc. At T = Tc, we have q2 〈hqh−q〉 ≃ C3(T )qηh.
A plot of q2 〈hqh−q〉 is shown in Fig. 3. A linear be-
haviour at T = Tc is found, implying that ηh = 1 when
e = 0. Since ηh = 1 in the uncharged case, this provides
further support for the Hamiltonian Eq. 2.

We now set e 6= 0. The gauge field h becomes massive
via the term e2h2/2, which appears after integrating out
the A field in Eq. 2. In this case, limq→0〈hqh−q〉 =
2β/m2

0 from Eq. 9, and h(r) would naively have the
trivial scaling dimension (2 − d) /2. However, the mass
term offers us a freedom in assigning dimensions to e
and h, by introducing renormalization Z-factors, here

e′ = Z
1/2
h e and h′ = Z

−1/2
h h.

Prior to integrating out A in Eq. 2, the mass ap-
pears in the term ie (∇× h) · A. Integration of the φ
field, partial or complete, can only produce (∇/i− edh)-
terms. In particular, this must hold during integration
of fast Fourier-modes of the φ field. Thus, the term
i(∇ × h) · A is renormalisation group invariant, i.e. its
prefactor must be dimensionless. In terms of scaled fields,
at the charged fixed point of the original theory, we have

A′ = Z
−1/2
A A, with ZA ∝ lηA , ηA = 18. For h, we use

Zh ∝ l∆, where ∆ is not an anomalous scaling dimen-
sion (h is massive, cf. Fig. 2), but rather a contribution

3



to the engineering dimension of h. Inserting this into
the crossterm ie (∇× h) · A, we find the scaling dimen-
sion (ηA + ∆) /2 − 1, which must vanish. This gives the
constraint ∆ = 1 to avoid conflicting results for ηA.

Remarkably, therefore, the scaling dimension of h at
T = Tc is the same in both cases m0 = 0 and m0 6= 0.
The results for ηA and ηh in the previous paragraphs,
are summed up in Table I.
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FIG. 3. q2〈hqh−q〉 for two different T . For λ = ∞,
Tc = 3.00.

We next consider the distribution of vortex loop sizes in
the model Eq. 7, connecting the vortex loop distribution
to the anomalous dimension of φ at Tc both for the case
e = 0 and e 6= 0. During the simulations, we sample the
distribution of loop-sizes D(p), where p is the perimeter
of a loop. This distribution function can be fitted to the
form5,4

D(p) ∝ p−αe−βpε(T ), (18)

where ε(T ) is an effective line-tension for the loops. Fig-
ures showing the qualitative features of D(p) can be
found in Ref. 5. The critical point is characterised by
a vanishing line-tension, and close to the critical point
we find that ε(T ) vanishes as ε(T ) ∝ |T − Tc|γφ .

The vortex loops are the topological excitations of the
GL and 3DXY models, at the same time they are the
real-space representation of the Feynman diagrams of the
dual field theory. By sampling D(p), we obtain infor-
mation about the dual field φ, particularly γφ can be
identified as a susceptibility exponent for the φ field5.
Using the scaling relation γφ = νφ (2 − ηφ), and the im-
portant observation that even at the charged dual fixed
point νφ = ν3DXY

5, this also gives us a value for the
anomalous scaling dimension ηφ when we use the value
ν3DXY = 0.67313.

In Ref. 5 the vortex loops of the 3DXY model have
been studied meticulously, yielding the value ηφ(0) =
−0.18± 0.07. Since the dual of this model is isomorphic

to a superconductor, ηφ(0) should be similar to ηψ(e) of
the original GLT.
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FIG. 4. ln ε(T ) as a function of ln |T − Tc|. The upper line
shows the charged case with finite e, and the lower line shows
the neutral case with e = 0. The slopes of the two straight
lines are γφ = 1.315 and γφ = 1.51, corresponding to the
anomalous dimensions ηφ = −0.24 (neutral, i.e. dual charged)
and ηφ = 0.04 (charged, i.e. dual neutral), respectively.

We have studied the vortex loop distribution in both
the neutral and the charged case. In the former case
we find ηφ ≃ −0.24, in good agreement with Ref. 5. In
the latter case the dual theory has a U(1) symmetry,
and we would expect to find ηφ = η3DXY . The exponent
η3DXY has recently been determined with great accuracy
to η3DXY = 0.03813, whereas we find ηφ ≃ 0.04 which
compares well with this value. Fig. 4 shows ε(T ) for
both the charged and uncharged models. It is evident

that they belong to two different universality classes.
In the case e 6= 0, which corresponds to the dual neu-

tral case, the inverse φ-propagator is given by G−1 = q2+
Σ(q), where Σ is a self-energy, and Σ(q) ∼ q2−η by defi-
nition. This gives a leading order behavior G ∼ 1/q2−η

provided η > 0, and we find η = 0.04 for this case. On
the other hand, for the case e = 0, which corresponds
to the dual charged case, dual gauge field fluctuations
alter the physics, softening the long-wavelength φ field
fluctuations. We obtain G−1 = q4 + Σ(q), again with
Σ(q) ∼ q2−η, which now gives a leading order behavior
G ∼ 1/q2−η, provided η > −2. Our result η = −0.24 for
the case e = 0 (dual charged) is consistent with this, and
also with the absolute bounds η > 2−D = −1, in D = 3.

A consequence of the above is that in D = 3 dimen-
sions, λ ∼ ξ(D−2)/(2−ηA) = ξ at the charged critical
point, in contrast to λ ∼ √

ξ at the 3DXY neutral crit-
ical point. Since our results have been obtained directly
by MC simulations, they are valid beyond all orders in
perturbation theory.
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Hausdorff dimension of critical fluctuations in abelian gauge theories
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The geometric properties of the critical fluctuations in abelian gauge theories such as the Ginzburg-
Landau model are analyzed in zero background field. Using a dual description, we obtain scaling
relations between exponents of geometric and thermodynamic nature. In particular we connect the
anomalous scaling dimension η of the dual matter field to the Hausdorff dimension DH of the critical
fluctuations, which are fractal objects. The connection between the values of η and DH , and the
possibility of having a thermodynamic transition in finite background field, is discussed.

PACS numbers: 74.60.-w, 74.20.De, 74.25.Dw

Anderson has proposed the breakdown of a general-
ized rigidity associated with proliferation of defect struc-
tures in an order parameter as a general means of char-
acterizing phase transitions1. In the context of three-
dimensional superfluids and extreme type-II supercon-
ductors, such ideas have recently been put on a quanti-
tative level2,3. It has been explicitly demonstrated that
in three spatial dimensions abelian gauge theories such
as the Ginzburg-Landau theory describing type-II super-
conductors, suffer a continuous phase transition driven
by a proliferation of topological defects in the order pa-
rameter, which are closed loops of quantized vorticity3.
These loops are induced by transverse phase fluctuations
in a complex scalar order parameter. Such fluctuations
are prominent in, for instance, doped Mott-Hubbard
insulators4,2,3.

In this paper, we investigate the non-trivial geometric
properties of these critical fluctuations, and give a geo-
metric interpretation of the anomalous scaling dimension
of the condensate order parameter both for a charged and
neutral condensate. In addition, we discuss the connec-
tion between the geometric properties of the zero-field
critical fluctuations and the possibility of having a ther-
modynamic finite-field phase transition involving unbind-
ing of loops of quantized vorticity.

We emphasize that the main results to be presented
are quite general, and apply to the static critical sector
of any theory of a complex scalar matter field coupled to
a fluctuating gauge-field in three spatial dimensions2,3,5,
provided the symmetry group of the theory is abelian.

The Hamiltonian for the system is given by

H(q, uφ) = m2
φ |φ|2 +

uφ

2
|φ|4 + |Dµφ|2 +

1

4
F 2, (1)

where F 2 = FµνFµν , Fµν = ∂µhν−∂νhµ, Dµ = ∂µ−iqhµ,
and φ = |φ| exp(iθ) is a complex matter field coupled to a
massless gauge field h with coupling constant q. The |φ|4-
term mediates a short-range repulsion, while the gauge-
field h mediates long range interactions. mφ is the mass-
parameter for the φ-field, and uφ is a self coupling.

Consider Eq. 1 representing a 3D condensate with
charge q 6= 0 sustaining stable topological objects in the

form of closed vortex loops. Then the theory with q = 0
is a field-theoretical description of the ensemble of these
stable topological objects, constituting a dual description
of the original theory5. The theory with q = 0 is also a di-
rect field-theoretical description of a neutral condensate.
Thus, in 3D, the gauge-theory H(q 6= 0, uφ) describing
a charged condensate has field-theoretical description of
its critical fluctuations or topological defects in terms of
a theory isomorphic to H(q = 0, uφ) describing a similar
but neutral condensate, and vice versa5. In this sense, a
charged condensate has neutral vortices with only short-
ranged steric interactions, while a neutral condensate has
charged vortices with long-ranged interactions. In the
former case, the long-ranged interactions between vortex
segments are rendered short-ranged by fluctuations of the
gauge-field in the original theory, i.e. the dual gauge-field
is massive with mass given by the charge of the original
problem5.

The anomalous dimension η for the φ field is defined
via the relation

G(x,y) = 〈φ(x)φ†(y)〉 =
G(|x − y|/ξ)

|x − y|d−2+η
, (2)

where G(z) is some scaling function, ξ is a correlation
length, and d is the spatial dimension of the system. This
correlation function has a geometric interpretation, yield-
ing the probability amplitude of finding any particle-path
connecting x and y. In the present work, the particle tra-
jectories correspond to vortex lines.

For a random walk of length N in d = 3, the probabil-
ity of going from x to y is given by7

P (x,y; N) =

(

3

2πN

)3/2

exp

[

− (x− y)
2

2N

]

. (3)

The correlation function G(x,y) of the corresponding
gaussian field theory is found by summing up P (x,y; N)
for all N

G(x,y) =
∑

N

P (x,y; N) ∝ 1

|x − y| . (4)

1



Comparing this with Eq. 2, we find η = 0, as expected.
The random walker traces out a fractal path with Haus-
dorff dimension DH . Moreover, in general the distance
between two points x and y N walks apart is given by

〈|x − y|2〉 ∝ N2∆, (5)

where ∆ is the wandering exponent which for the gaus-
sian 3D case is ∆ = 1/2. Inverting Eq. 5, we find that
the total length of the random walker scales with linear
size as L1/∆, hence the Hausdorff dimension of the ran-
dom walker is given by DH = 1/∆. If we set x = y in
Eq. 3 we find that the unnormalized distribution D(N)
of loops of perimeter N , at the critical point, is given by

D(N) ∝ 1

N

∑

x

P (0; N) ∝ N−α, (6)

with α = 5/2 for purely random walkers. The extra fac-
tor N−1 in Eq. 6 comes from the arbitrariness in defining
the starting position along the loop. Hence, for the case
of strict random walkers in 3D, described by a gaussian
field theory H = m2

φ|φ|2 + |∇φ|2, the corresponding set
of values for the two geometric and one thermodynamic
exponents is given by (∆, α, η) = (1/2, 5/2, 0).

Beyond the gaussian case, exact exponents can not be
obtained analytically, however we will derive scaling re-
lations for them. When Eq. 5 is invoked, a generalized
probability function P (x,y; N) may be written on the
form

P (x,y; N) ∝ 1

Nρ
F

( |x − y|
N∆

)

, (7)

where F (x) is a scaling function, and normalizability of
P implies ρ = d∆. From Eq. 6, we find that P (x,y; N)
should scale with N as N1−α, which yields the scaling
relation ρ = α − 1. Conversely, summing over all N in
Eq. 7 to find the correlation function G(x,y), we obtain

G(x,y) =
∑

N

P (x,y; N) ∝ 1

|x− y|
ρ−1

∆

, (8)

giving the scaling relation η = ρ−1
∆ + 2 − d. Combining

the above, we find

η + DH = 2, DH =
d

α − 1
. (9)

A computation of the geometric exponent α yields the
thermodynamic exponent η and the Hausdorff dimension
DH . Note that both η and DH are sensitive functions
of α, ∂η/∂α = −∂DH/∂α = d/(α − 1)2, such that a
precise determination of η and DH requires great pre-
cision in the determination of α. The above reinforces
the statement that a geometric transition of the vortex
tangle at criticality of the gauge theory Eq. 1 can be
assigned a genuine thermodynamic order parameter via
a dual formulation of the original theory in three spatial

dimensions2,3. The random walker is represented by a
gaussian theory, Eq. 1 with (uφ = 0, q = 0), for which
η = 0. This corresponds to DH = 2, such that the ran-
dom walker in three dimensions traces out a path that
precisely fills a cross-sectional area of the system. Note
that DH < 2 ↔ η > 0, while DH > 2 ↔ η < 0.

The Hamiltonian Eq. 1 with (uφ 6= 0, q 6= 0) has a dual
field theory corresponding to Eq. 1 with q = 0 describing
the neutral vortex tangle of a charged superconductor5.
The |φ|4-term in Eq. 1 represents a steric repulsion, i.e.
the vortex loops can not overlap, leading to a random
walk problem with self-avoiding links (but not necessar-
ily self-avoiding sites), in the sense that parallel vor-
tex segments repel, perpendicular vortex segments can
cut8, while antiparallel vortex-segments can annihilate.
Hence, this is not a standard self-avoiding path problem.
However, we expect ∆ > 1/2 or equivalently DH < 2,
since steric repulsion should result in a vortex-loop tangle
packing space less densely than for the non-interacting
case, so that η > 0. The repulsive interaction between
parallel vortex segments also leads to a more efficient sup-
pression of long loops than for the non-interacting case,
so that α > 5/2.

Consider next Eq. 1 with (uφ 6= 0, q = 0) for d = 3,
which has a dual field theory corresponding to Eq. 1
with q 6= 0 describing the charged vortex tangle of a
neutral condensate5. A long-ranged (anti) Biot-Savart
interaction is mediated by the gauge-field. This is a rel-
evant perturbation, in renormalization group sense, to
a steric contact repulsion9. The geometric properties of
the charged vortex tangle are a result of a balance be-
tween attractive forces mediated by the gauge field, and
the steric repulsion. As the numerical simulations show,
we find ∆ < 1/2, corresponding to DH > 2 which means
that the vortex tangle is more compact than the ensemble
of pure random walkers, due to the fact that an attractive
long-ranged Biot-Savart interaction between oppositely
oriented vortex segments overcompensates the steric re-
pulsion so as to contract the vortex-loop tangle not only
compared to the pure |φ|4-case, but even compared to the
noninteracting case. The tangle thus packs space so that
it more than fills a cross-sectional area of the system.

The fluctuation-dissipation theorem provides a bound
on η via the susceptibility χφ =

∫

ddxG(x) ∼ ξ2−η, which

is bounded by the volume Ld of the system, L2−η =
Ld · L2−d−η < Ld, so η > 2 − d. Eq. 9 gives a geometric
interpretation of this bound. Specializing to d = 3, η =
−1 corresponds to topological excitations with DH = 3,
an upper limit.

For d = 3, the continuous phase transition in a su-
perfluid or extreme type-II superconductor has recently
been demonstrated to be driven by a proliferation of vor-
tex loops3,5. From the above, η = −1 means that a single
vortex loop at Tc packs space completely, i.e. its perime-
ter N scales as N ∝ L3, implying that the vortex-tangle
collapses on itself, rendering the transition discontinuous.
This may be been seen from the standard scaling rela-
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tion β = ν (d− 2+ η)/2 for critical exponents. Formally,
this implies that the limit η → (2 − d)+ corresponds
to the limit β → 0+, characteristic of a discontinuous
transition. More informally, a collapse of a vortex tan-
gle may be viewed as mediated by an effective attractive
vortex interaction, a situation akin to what is known in
type-I superconductors. Deep in the type-I regime, it is
known that superconductors suffer a weakly discontinu-
ous transition10.

Monte Carlo simulations have been performed on the
lattice version of Eq. 1 in the phase-only approximation,
to determine precise values of α, both for q = 0 and q 6=
0. We have also performed simulations on pure random
walkers described by the theory H(q = 0, uφ = 0). They
reveal that a determination of α is less fraught with finite-
size effects than a determination of DH . Thus, we focus
on determining α. The model we consider is

H = −J
∑

<i,j>

cos(θi − θj − qC hij) +
1

2
(∇× h)2, (10)

where the site-variable θi is the phase of the complex
matter field φ = |φ| exp(iθ) of Eq. 1, when the system
is discretized, J is essentially a bare phase-stiffness, and

the link-variable hij =
∫ j

i
dl · h. The charge qC is the

(original) charge entering in the simulations. Up to this
point we have considered a general charge q irrespective
of whether it couples to the original condensate or the re-
sulting vortex tangle. The numerical simulations are per-
formed on the phase of the condensate, hence the concept
of original and dual are fixed in terms of the numerical
simulations. Consequently we introduce the charges qC

for the condensate and qV for the vortices.
¿From the phase distributions of the matter field we

can extract vortex loops3. These loops have charge qV

and are described by the field theory H(qV, uφ)5. Hence,
we can study the critical properties of the charged field
theory H(qV, uφ) by considering the geometric properties
of the thermally excited vortex-loop tangle at the criti-
cal temperature in the 3DXY model. Conversely, the
geometric properties of the vortex tangle with qC 6= 0
yield the critical properties of the neutral field theory
H(qV = 0, uφ) of Eq. 1.

The simulations with qC = 0 are described elsewhere3,
while for qC 6= 0 the simulations proceed as follows.
For every site on the lattice a phase change θi → θ′i
is attempted, and accepted or rejected according to the
Metropolis algorithm. Then a change in hij → hij + δh
is attempted, and accepted or rejected according to the
Metropolis algorithm. When updating hij we update all
the link variables on a randomly oriented elementary pla-
quette containing hij as one of its four edges. Updating
of h in this fashion guarantees that the gauge-fixing con-
dition ∇ · h = 0 is enforced at all times. For qC = 0, the
simulations were performed for a system of size L×L×L
with L = 180, while those for qC 6= 0 were performed with
L = 64.

During the simulations we have sampled the distribu-
tion function D(N), Eq. ??, obtaining α. The results
are shown in Fig. 1 and listed in Table I. The value of α
obtained for qC 6= 0 (dual neutral), which is the hardest
system to simulate, gives a value for η in good agreement
with high-precision results for η of the pure φ4-theory11.
This serves as a useful benchmark on our method of ex-
tracting η. For qC = 0 we have simulated much larger
systems than for qC 6= 0. The deviation from the gaus-
sian value α = 5/2 is substantial, and of opposite sign

compared to qC 6= 0. Given the size of the system we
consider for qC = 0, it is unlikely that this is a finite-size
artifact. An α < 5/2 guarantees η < 0 for the qC = 0
(dual charged) case, contrary to the value of η > 0 for
qC 6= 011,3. In particular, the inset of Fig. 1 lends strong
support to the proposition that η(qC 6= 0) > 0, while
η(qC = 0) < 0.

The value η < 0 obtained for the original neutral, dual
charged case, is significant: It implies that DH > 2 for
this case. Whether DH > 2 or DH < 2 is of great import
to the possibility of having a genuine phase-transition

driven by a vortex-loop unbinding even in the presence
of a finite background field such as magnetic induction in

type-II superconductors. A vortex system accesses config-
urational entropy more easily if it is compressible than if
it is incompressible. For the charged case the gauge-field
fluctuations render the system compressible. In the neu-
tral case, the system expands screening strings of closed
vortex loops to a larger extent than for the charged case,
as substitutes for the gauge-field fluctuations. This is
why DH(qC = 0) > DH(qC 6= 0). There is an infinitely
larger amount of screening vortex-strings in the neutral
case (dual charged) than for the charged case (dual neu-
tral), which is the true significance of the fact that η
is smaller for qC = 0 than for qC 6= 0. The possibility
of the zero-field vortex-loop blowout transition surviving
the presence of a finite field is much greater in a neutral
superfluid or an extreme type-II superconductor, than in
a charged condensate with a priori good screening.

Given the significance of DH > 2, we elaborate on the
fact that for the neutral (dual charged) case, we find η <
0. The Lehmann-representation of the Fourier transform
G̃(p) of Eq. 2, is sometimes used to argue that η obeys
the strict inequality η > 0. The Lehmann-representation
of G̃(p) is given by

G̃(k) =

∫ ∞

0

dµ2 ρ(µ2)

k2 + µ2
, (11)

where 1 =
∫ ∞

0
dµ2ρ(µ2), and ρ(µ2) = Zδ(µ2 − m2

φ) +

σ(µ2). The propagator for the gaussian case would be

G̃(k) = 1/(k2+m2
φ), where m2

φ refers to the bare masspa-
rameter in Eq. 1. Thus, η > 0 follows if 0 < Z < 1, which
holds for a uniformly positive ρ(µ2). However, in theo-
ries with a local gauge symmetry, the two-point correla-
tion function is a gauge-dependent quantity. Thus, σ(µ2)
may in principle be made negative for certain values of µ
by a gauge-transformation. This invalidates the reason-
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ing leading to the strict inequalities Z < 1 and η > 0.
A negative η, as found here and in other simulations3,5

all representing basically exact results, agrees with a re-
cent non-perturbative RG calculation12, which also gives
ν = ν3DXY at the charged critical point.

At the critical point, the relevant fluctuations are
transverse phase-fluctuations, or vortices2,3,5. Ignoring
amplitude fluctuations yields an effective Hamiltonian
governing the transverse θ-fluctuations, whose Fourier-
transform F we denote by Sk, F((∇θ)T ) = Sk =
−2π i (k × nk)/k2, where nk is the Fourier-transform
of the local vorticity. We find, after integrating out the
transverse gauge-field, that H = Ξ2(k) Sk · S−k, where
Ξ2(k) = k2/(k2 + 2q2). For q = 0, we have Ξ2(k) = 1,
while limk→0 Ξ2(k) ∼ k2 for q 6= 0. The coupling to
a fluctuating gauge field softens the transverse phase-
fluctuations, providing the effective phase-stiffness with
an extra power k2 compared to the q = 0-case. Thus,
G̃−1(k, q = 0) = k2+Σ(k) and G̃−1(k, q 6= 0) = k4+Σ(k).
In both cases, the k → 0-limit of the self-energy Σ(k) is

given by Σ(k) ∼ k2−η. We thus have limk→0 G̃−1(k) ∼
k2−η provided η > 0 for q = 0 and, when invoking
the absolute lower bound, η > −1 for q 6= 0. For
a pure |φ|4-theory, the Lehmann-representation coupled
with positive-definiteness of ρ(µ2), holds.
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FIG. 1. The vortex-loop distribution function
D(N) ∼ N−α as a function of loop-perimeter N , at the
critical point for the charged (qC 6= 0, qV = 0) and neutral
(qC = 0, qV 6= 0) cases. Numerical results for the exponents
(α, DH , ∆, η) are given in Table I. The system size is L×L×L,
with L = 180 for qC = 0, and L = 64 for qC 6= 0. Inset
shows simulation results for N5/2D(N) ∼ N5/2−α on a dou-
ble-logarithmic scale. Top: qC = 0, L = 180 (dual charged).
Middle: Noninteracting vortex loops (gaussian case), L = 64.
Bottom: qC 6= 0, L = 64 (dual neutral). The results demon-
strate that 5/2 − α > 0 for qC = 0 (dual charged), while
5/2 − α < 0 for qC 6= 0 (dual neutral). Hence, by Eq. 9,
DH > 2, η < 0 for qC = 0, while DH < 2, η > 0 for qC 6= 0.
The latter agrees with other high-precision results for η, see
Ref. 11. Note that the gaussian result α = 5/2 is obtained to
high precision, for L = 64.

Exponent Gaussian qC = 0, qV 6= 0 qC 6= 0, qV = 0

α 5/2 2.312 ± 0.003 2.56 ± 0.03

DH 2 2.287 ± 0.004 1.92 ± 0.04
∆ 1/2 0.437 ± 0.001 0.52 ± 0.01
η 0 -0.287 ± 0.004 0.08 ± 0.04

TABLE I. The loop distribution exponent α, as deter-
mined from Monte-Carlo simulations. The remaining expo-
nents have been determined from Eq. 9. Symbols are ex-
plained in the text.
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We present results from large-scale Monte Carlo simulations on the full Ginzburg-Landau (GL)
model, including fluctuations in the amplitude and the phase of the matter-field, as well as fluctu-
ations of the non-compact gauge-field of the theory. From this we obtain a precise critical value
of the GL parameter κtri separating a first order metal to superconductor transition from a second
order one, κtri = (0.76±0.04)/

√
2. This agrees surprisingly well with earlier analytical results based

on a disorder theory of the superconductor to metal transition, where the value κtri = 0.798/
√

2
was obtained. To achieve this, we have done careful infinite volume and continuum limit extrapola-
tions. In addition we offer a novel interpretation of κtri, namely that it is also the value separating
type-I and type-II behaviour.

PACS numbers: 74.55.+h,74.60.-w, 74.20.De, 74.25.Dw

I. INTRODUCTION

The character of the metal to superconductor transi-
tion is an important and long-standing problem in con-
densed matter physics. The critical properties of a super-
conductor may be investigated at the phenomenological
level by the Ginzburg-Landau (GL) model of a complex
scalar matter field φ coupled to a fluctuating mass-less
gauge-field A. The GL model in d-dimensions is defined
by the functional integral

Z =

∫

DAiDφ exp(−S(Ai, φ))

S =

∫

ddx

[

1

4
F 2
ij + |Diφ|2 +m2|φ|2 + λ|φ|4

]

(1)

where Fij = ∂iAj − ∂jAi, Di = ∂i + iqAi, q is the charge
coupling the condensate matter field to the fluctuating
gauge-field, λ is a self-coupling, and m2 is a mass param-
eter which changes sign at the mean field critical tem-
perature. This model is also used to describe a great
number of other phenomena in Nature, including such
widely separated phenomena as the Higgs mechanism in
particle physics,1 phase transitions in liquid crystals,2,3

crystal melting,4 the quantum Hall effect,5,6 and it is also
used as an effective field theory describing phase transi-
tions in the early Universe.7

The GL model may conveniently be formulated in
terms of two dimensionless parameters y = m2/q4 and
x = λ/q2 when all dimensionful quantities are expressed
in powers of the scale q2. Here, y is temperature-like
and drives the system through a phase transition, and
x = κ2 is the well known GL parameter. These param-
eters are related to the standard dimensionful textbook8

coefficients α, β of the GL model by

y =
m∗c2

128π2α2
sk

2
BT

2
α, x =

1

8παs~c

(

m∗c

~

)2

β = κ2

(2)
where αs is the fine structure constant35 and m∗ is an
effective mass parameter.

At the mean-field level Eq. 1 reduces to the well known
GL-equations and the model exhibits a second order
phase transition when the temperature (or y) is var-
ied through some critical value. In a seminal paper by
Halperin, Lubensky and Ma9 it was shown that by ig-
noring spatial fluctuations in φ, and then integrating out
the A field exactly, one gets a term |φ|3 in the effective φ
action. Treating this action at the mean field level leads
to the prediction of a first order transition in the charged
model for any value of the charge, or equivalently for
any value of the GL parameter. The first order character
of the transition is most strongly pronounced for large
values of the charge (small κ), but even then it is very
weak. For κ ≪ 1 (type-I) the neglect of spatial varia-
tion in the matter field φ is a reasonable approximation,
whereas for κ & 1 (type-II) fluctuations in φ must be
taken into account. By doing a one-loop RG calculation
using ε-expansion it was shown9 that no stable infrared
fixed point could exist unless the number N of compo-
nents of the order-parameter was artificially extended to
N > Nc = 365, far beyond the physically relevant case
of N = 2. Consequently, the conclusion was that gauge
field fluctuations change the order of the phase transition
to first order irrespective of the value of κ.

These predictions were difficult to test experimentally
on superconductors since the predicted jump across the
first order transition is very small in physical units, even
if the effective theory in Eq. 1 has a strong first order
transition. See e.g. Appendix A in Ref. 10. For conven-
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tional superconductors the critical region where mean-
field behavior breaks down is extremely narrow, conse-
quently it is very difficult to distinguish a small finite
jump from continuous behavior. However, there exists
an isomorphism between the phase transition in super-
conductors and the smectic-A to nematic transition in
liquid crystals.11 On the latter systems experiments can
be carried out in the critical regime,12 and second or-
der phase transitions are found. This contradicts the
ǫ-expansion argument above, and presumably indicates
a breakdown of the expansion for this gauge-field theory,
since ε = 4 − d = 1.

In Ref. 13 it was shown, using duality arguments and
Monte Carlo simulations, that the GL model should have
a second order transition for large κ. However, what re-
mains true is that deep in the type-I regime, the transi-
tion is first order. There should therefore be a tricritical
point κ = κtri where the transition changes order.

A first estimate for κtri was obtained by Kleinert in
Refs. 14,15 by developing a disorder theory formulation
from which he calculated the value

κtri =
3
√

3

2π

√

1 − 4

9

(π

3

)4

≈ 0.798√
2

analytically36. Subsequently16 this picture of a tricritical
point separating first and second order transitions was
given further support by Monte-Carlo simulations, and
moreover an attempt was even made to determine κtri,
giving κtri ≃ 0.4/

√
2. However, the problem turns out to

be extremely demanding even by present day supercom-
puting standards, and not too much emphasis can be put
on the precise numerical value obtained in this early at-
tempt. To our knowledge, this is the most recent attempt
to find a precise value for κtri numerically, although large-
scale simulations have been performed much more re-
cently for κ2 = 0.0463 and κ2 = 2, giving first order and
continuous transitions, respectively.10,17

The one-loop ε-expansion result of Halperin et al.9 has
subsequently been improved to two-loop order,18 drasti-
cally reducing the value of Nc to 32, but still Nc ≫ 2.
Eventually, an infrared stable fixed point was found even
for the physical case N = 2 by combining two-loop
perturbative results with Padé-Borel resummation tech-
niques.19 From this latter work one can also get an esti-
mate of the critical κ from κ∗ =

√

u∗/6f∗ ≈ 0.62/
√

2.
Since Padé-Borel techniques are rather uncontrolled, only
simulations can tell if such a resummation is allowed here.

From the above we can conclude that a tricritical κ,
separating first and second order transitions exists, how-
ever a precise value remains to be determined..

We would also like to mention the distinction between
type-I and type-II superconductors, which is related to
the response to an external magnetic field. When an
external field is increased beyond a critical field Hc it
enters a type-I superconductor, and superconductivity
is destroyed. For type-II superconductors the magnetic
field enters as a flux line lattice when H > Hc1, and su-
perconductivity is still present in this mixed state. At

the mean-field level type-I and type-II superconductors
are differentiated by κ = 1/

√
2. However there is á priori

no reason to assume that this numerical value is robust
against fluctuation effects, and we will argue that the crit-
ical κ separating first and second order phase transitions
coincides with the κ separating type-I and type-II super-
conductors at yc.

II. THE ORDER OF THE TRANSITION

The model in Eq. 1 has a phase transition for y = yc.
For y < yc the system is in its superconducting (broken)
phase while for y > yc it is in the normal (symmetric)
phase. Note that here, broken/symmetric does not re-
fer to a breakdown of the local gauge symmetry present
in Eq. 1. Elitzur’s theorem20 states that a local sym-
metry can never be spontaneously broken and therefore
no local order parameter (in general any non-gauge in-
variant order parameter) can exist. On the other hand,
one can explicitly break the gauge symmetry by a gauge-
fixing, thereby facilitating a meaningful definition of a
local order parameter. This should nonetheless be cho-
sen in a formally gauge-invariant manner to get gauge-
independent results. In our simulations, we have chosen
not to fix the gauge37.In this case a phase transition must
be found either by using non-local17,21 order parameters
or by looking for non-analytic behavior in local quanti-
ties,10 as we have done. E.g. the quantity 〈|ψ|2〉 will
have a jump at a first order transition, but it will not
disappear in the symmetric phase as a proper order pa-
rameter should. At a second order transition there will
be no jump, but the susceptibility χ|ψ|2 will still have a
peak.

In principle, we could therefore decide the order by
looking for a jump in some local quantity as 〈|ψ|2〉, but
in finite systems the discontinuity will be rounded. In our
case this is particularly problematic since the first order
transitions are very weak, giving small jumps, even in
infinite systems. At a first order transition ordered and
disordered phases coexist and have the same free energy.
In a finite system there will therefore be oscillations be-
tween the different phases. Because of the surface energy
between the two pure states the probability of finding the
system in an intermediate mixed state is lower than for
either of the pure states, and histograms of an arbitrary
observable will show a pronounced double peak structure.
This is in contrast to a second order transition where the
diverging correlation length forbids coexistence since the
whole system is correlated. The histograms then have a
single peak. Typical histograms are shown in Fig. 2.

Thus, when these histograms have a double peak struc-
ture which becomes more pronounced when the system
size increases, the transition is first order, otherwise
not.22

More precisely, we have the following scaling for the
difference in free energy between the mixed and pure
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phases for sufficiently large L > Lscaling

∆F (L) = lnP (X,L)max − lnP (X,L)min ∼ Ld−1, (3)

where P (X,L) is the probability for a given observable
X in a system of size Ld, and Ld−1 is the cross-sectional
area between the ordered and the disordered phase. Near
the tricritical value of κ such scaling is difficult to achieve
since we are interested in the limit of vanishingly weak
first order transitions. Consequently, a very large L is re-
quired in order to observe proper scaling. Only for quite
strong first order transitions have we been able to observe
proper scaling as predicted by Eq. 3, however we have
generally taken a monotonous increase in ∆F (L) with
system size as a signature of a first order phase transi-
tion. For the weakest first order transitions ∆F (L) will
typically decrease for small L and then start to increase.
It is therefore important to observe monotonic behavior
through several system sizes before a conclusion can be
drawn from the histograms38.

III. PHASE DIAGRAM

We are searching for the point in the (x, y) plane where
a first order and a second order line meet, i.e. according
to the rather loose definition39 of Lawrie and Sarbach23

we are looking for a tricritical point. At a tricritical point
two coupling constants must be fine-tuned to nontrivial
values, and consequently a tricritical theory can be de-
scribed with the mean-field free energy

f ≈ |∇ψ|2+c1(y−ytri)|ψ|2+c2(x−xtri)|ψ|4+c3|ψ|6. (4)

Right at the tricritical point the coefficients in front of
both |ψ|2 and |ψ|4 vanish simultaneously. The upper crit-
ical dimension for this model is d∗ = 3 and mean-field
theory should be valid (up to logarithmic corrections).
When approaching the tricritical point from the first or-
der side, mean-field theory predicts that the jump ∆ |ψ|2
will vanish as

∆ |ψ|2 ∼ (xtri − x) . (5)

We will make use of the above scaling in section VI
to estimate xtri. For further information about tricritical
points, we refer to an extensive review by Lawrie and
Sarbach.23

In Fig. 1 we have assumed that the tricritical point
separating first order and second order phase transitions
coincides with the point separating type-I and type-II su-
perconductivity. In principle the line of second order
transitions could extend into the type-I region, with an
intermediate state of type-I superconductivity with a sec-
ond order phase transition to the normal state. This
would be the case if the mean field value κI/II = 1/

√
2

was not renormalized by fluctuations. We have not fo-
cused on the aspect of type-I/II superconductivity in our

(x)

point

y

0.5

Type−II

Superconductor

Normal state

xx tri

Superconductor
Type−I

xc(y)

y c

Tricritical

triy

FIG. 1: A conjectured phase diagram in the (x, y) plane in

the vicinity of the tricritical point. The thick solid line is a
line of first order transitions separating type-I superconduc-
tivity and the normal (metallic) state, the thin solid line is
a second order line separating type-II superconductivity from
the normal (metallic) state. The dashed line separates type-
I and type-II superconductivity. The dotted horizontal and
vertical lines indicate the coordinates of the tricritical point
(xtri, ytri) ≃ (0.30, 0.03).

simulations, we will however argue that the overall struc-
ture of the phase diagram shown in Fig. 1 is correct in
the vicinity of the tricritical point.

The microscopic difference between type-I and type-
II superconductors lies in the sign of the effective vortex-
vortex interaction. In d = 3 there exists a dual formula-
tion of the GL-model which is given by a complex scalar
matter-field φ coupled minimally to a massive gauge-
field. This gauge-field can thus safely be integrated out
to yield an effective local |φ|4-theory, where the coeffi-
cient of the |φ|4-term gives the effective vortex-vortex in-
teraction. A positive such term signals vortex-repulsion,
i.e. type-II behavior, while a negative term signals type-I
behavior. This vortex-vortex interaction term is propor-

tional to κ − κtri where κtri is indeed to be identified
with our tricritical value of κ.14 Using the dual formu-
lation of the GL theory, it then becomes clear that κtri

is at the same time the value that separates first order
and second order behavior, and the value that separates
attractive from repulsive effective vortex-vortex interac-
tions, i.e. type-I from type-II behavior.

An independent argument for why the transition be-
tween the normal state and type-I superconductivity
must be first order, is based on the geometrical prop-
erties of a vortex tangle: In a recent paper24 we have cal-
culated the fractal dimension of vortex loops, and found
the scaling relation β = ν (d−DH) /2, where β is the
order parameter exponent, ν is the correlation length ex-
ponent and DH is the fractal dimension of the loops. If
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we formally extend this relation to the first order regime,
i.e. let β → 0+, we find that the fractal dimension of the
vortex loops DH → d, i.e. the vortices collapse on them-
selves (filling space completely), rendering the transition
discontinuous. This collapse is what we would expect
from vortices interacting attractively (i.e. type-I ), and
by turning the argument above around we conclude that
type-I superconductors must have a first order transition
to the normal state.

We emphasize that the detailed shape of the line xc(y)
remains to be determined. We have presented argu-
ments above that it ends in the tricritical point (xtri, ytri).
Moreover, deep in the broken regime, mean-field theory
should apply. Consequently, we expect that the line xc(y)
converges towards the mean field value xI/II = 1/2 in the
y → −∞ limit.

IV. LATTICE MODEL

To perform simulations on the model in Eq. 1 we define
it on a numerical lattice of sizeN×N×N with lattice con-
stant a. The physical volume is then V = L3 = (Na)

3
.

By introducing a lattice field given by

|φ(cont)|2 = βH |ψ(latt)|2/2a, (6)

where βH so far is an arbitrary constant, Eq. 1 takes the
form

Z =

∫

DAiDψ exp(−S(Ai, ψ))

S = βG
∑

~x,i<j

1

2
F 2
ij − βH

∑

~x,i

Re

(

ψ∗(~x)Ui(~x)ψ(~x + ı̂)

)

+
βH
2

[

6 +
y

β2
G

]

∑

~x

|ψ|2 + βR
∑

~x

|ψ|4 (7)

where we have defined αi(~x) = aqAi(~x), Ui(~x) = eiαi(~x),
βG = 1/aq, Fij = αi(~x) + αj(~x + ı̂) − αj(~x) − αj(~x + ̂),
and βR = xβ2

H/4βG. Fij is essentially a lattice curl of the
fluctuating gauge-field, and aq = aq2 is a dimensionless
lattice constant. To obtain correct continuum limit re-
sults, we will ultimately be interested in the limit aq → 0.
It is furthermore possible to select a value of βH such that
the action can be written on the form

S = βG
∑

~x,i<j

1

2
F 2
ij − βH

∑

~x,i

Re

(

ψ∗(~x)Ui(~x)ψ(~x+ ı̂)

)

+
∑

~x

|ψ|2 + βR
∑

~x

[|ψ|2 − 1]2. (8)

This is achieved provided βH satisfies the relation
(βH/2)[6 + y/β2

G] + 2βR = 1.
The amplitude and gauge-invariant phase difference

∆ = arg
(

ψ∗(~x)Ui(~x)ψ(~x + ı̂)
)

are coupled through the
second term in Eq. 8. The ordered state is characterized
by cos∆ . 1 and |ψ| close to the minimum in the po-
tential energy, whereas in the disordered state cos∆ ≈ 0.

In the disordered state the amplitude behavior is deter-
mined by x; for small x the coupling to ∆ dominates
and |ψ| deviates significantly from the minimum in the
potential, whereas for large x amplitude fluctuations are
suppressed.

Given the fact that the theory in Eq. 1 is a continuum
theory, one has to perform an ultraviolet (short-distance)
renormalization, and thus m2 = m2(q2) has to be inter-
preted as a renormalized mass parameter at a given scale
q2 within a given renormalization scheme, e.g. the mini-
mal subtraction (MS) scheme. Since this continuum the-
ory should represent the a→ 0 limit of the lattice theory
in Eq. 8, the parameter y must be varied when a is being
varied. In our case the leading terms in a can be obtained
by requiring that some physical correlator calculated in
both lattice and continuum perturbation theory should
coincide. Thus we have to make the substitution25,26

y → y − 3.1759115(1 + 2x)

2π
βG

−
(

−4 + 8x− 8x2
)

(ln (6βG) + 0.09)− 1.1 + 4.6x

16π2

+ O(1/βG) (9)

In addition, the continuum and lattice condensate matter
fields are related by

〈φ∗φ〉cont

q2
=
βHβG

2
〈ψ∗ψ〉latt

− 3.175911βG
4π

− log(6βG) + 0.668

8π2
+ O(1/βG).

(10)

In Eq. 10 the first term comes from Eq. 6, while the
second and third terms are linear and logarithmic diver-
gences due to renormalization.

Note that the complicated counterterms in Eq. 9
merely affect the value of yc separating the normal from
the superconducting state for a given x, not the over-
all structure of the phase-diagram. The divergences in
Eq. 10 in the continuum limit are constants that cancel
when the jump in 〈φ∗φ〉 across a first order phase tran-
sition is calculated.

V. DETAILS OF SIMULATIONS

In order to use Eq. 8 to study the continuum theory
of Eq. 1, it is necessary to carefully take two limits sep-
arately. First, the infinite volume limit L→ ∞ is taken,
thereafter the continuum limit a→ 0. For reliable results
one should have a ≪ ξ ≪ L, where ξ is a typical corre-
lation length for the problem. In statistical physics, the
continuum limit is usually not considered, either because
the models are inherently lattice models, or the models
are studied around a second order critical point where
there exists at least one diverging length scale. Under
such circumstances the short length-scale properties, like
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TABLE I: The lattice sizes N3 used for each (aq, x)-pair. For
each lattice size typically between three and eight y-values
were used. The symbols are defined by:
◦ Not simulated
⋆ Simulated
• Simulated and results shown in Fig. 2.

aq x N
8 12 16 20 24 32 40 48 64 96

5.0a 0.10 ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
0.15 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ◦ ◦ ◦ ◦
0.16 ⋆ ⋆ • • • • ◦ ◦ ◦ ◦

0.17, 0.18, 0.19 ⋆ ⋆ • ◦ • • • ◦ ◦ ◦
2.0 0.10 ⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

0.15 ⋆ ⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ◦
0.20 ⋆ ⋆ ⋆ ◦ ⋆ ⋆ ⋆ ◦ ◦ ◦
0.22 ◦ ◦ • ◦ • • • ◦ ◦ ◦

0.23, 0.24, 0.25 ◦ ◦ • ◦ • • • ◦ • ◦
1.0 0.08 ⋆ ⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ◦

0.10 ⋆ ⋆ ⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦
0.12, 0.13, 0.14 ⋆ ⋆ ⋆ ◦ ⋆ ⋆ ◦ ◦ ◦ ◦
0.15, 0.16, 0.17 ◦ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ◦ ◦ ◦

0.18, 0.20 ⋆ ⋆ ⋆ ◦ ⋆ ⋆ ⋆ ⋆ ◦ ◦
0.22 ⋆ ⋆ ⋆ ◦ ⋆ ⋆ ⋆ ⋆ ⋆ ◦

0.24, 0.25, 0.26, 0.27 ⋆ ⋆ • ◦ • • • • • ◦
0.30 ⋆ ⋆ ⋆ ◦ ⋆ ⋆ ⋆ ⋆ ◦ ◦
0.50 ◦ ◦ ⋆ ⋆ ⋆ ⋆ ⋆ ◦ ◦ ◦

0.5 0.16 ◦ ◦ ◦ ◦ • • • • ◦ ◦
0.20, 0.24 ◦ ◦ ◦ ◦ • • • • • ◦
0.26, 0.28 ◦ ◦ ◦ ◦ • • • • • •

0.30 ◦ ◦ ◦ ◦ • • • • • ◦

a
In Ref. 16 the lattice spacing corresponds to aq = 5.0. The

system sizes used were 9
3

and 15
3
.

the lattice constant, are rendered irrelevant when study-
ing universal properties. On the other hand, if one wants
to study non-universal properties (such as critical cou-
pling constants) or first order transitions without a di-
verging length scale, details of the system even on the
shortest length scales have to be correctly taken into ac-
count in order to give reliable results.

The Monte-Carlo simulations are performed on Eq. 8,
updating phases, amplitudes40, and gauge-fields. We
have used periodic boundary conditions and non-
compact gauge-fields without any gauge fixing. To reduce
autocorrelation times we have added global updating of
the amplitude and overrelaxation of the scalar field27,28

such that one sweep consists of: (1) conventional local
Metropolis updates for phase, amplitude and gauge field,
(2) global radial update by multiplying the amplitude
uniformly with a common factor (acceptance accord-
ing to Metropolis dynamics) and (3) 2-3 overrelaxation
“sweeps” updating both the amplitude and the phase of
the scalar field. The acceptance ratio in the Metropo-
lis steps is kept between 60-70% as long as possible by
adaptively adjusting the maximum allowed changes in
the fields. For further details of the technical aspects of
the simulations, see Refs. 27,28.

We have performed simulations for the parameters in
Table I. The simulations have been done in a hierarchical
manner: For a given x we have first kept aq and N fixed,
and simulated on typically three to eight y values. These
runs have been combined with Ferrenberg-Swendsen29,30

reweighting techniques, and a (pseudo)critical y has been

located by requiring that the reweighted histograms have
two equally high41 peaks. Then the system size has been
increased to access the infinite volume limit, and finally
we have varied aq to determine the continuum limit. At
the transition the number of sweeps was chosen so that
the system oscillated back and forth between the ordered
and disordered state about ten times. Depending on sys-
tem size and x-value (i.e. the strength of the first order
transition) this resulted in about 105 to 106 sweeps. All
computations were performed on an SGI Origin 3800 at
the Norwegian High Performance Computing Center, us-
ing up to 32 nodes in parallel for the largest systems. A
total of about 5·104 CPU hours were used, corresponding
to ≃ 1.5 · 1017 floating point operations.

VI. RESULTS

To find xtri = κtri
2 our strategy has been to start at

x ≪ xtri where the transition is clearly first order, and
then slowly increase x into the problematic tricritical area
where x . xtri. During the simulations we have sampled
the lattice amplitude

|ψ|2 =
1

N3

∑

~x

|ψ(~x)|2 (11)

and histograms of this quantity constitute the raw data
for most of the subsequent analysis42. The connection
between continuum and lattice condensates is given by
Eq. 10.

Histograms reweighted to the critical y-value are shown
in Fig. 2. We have used two different methods to find
xtri(aq) from the histograms, and finally at the end of
this section we have extrapolated these values to aq = 0
to find the continuum limit.

A. Extrapolation of ∆|ψ|2 to zero

The distance between the peaks of a histogram gives

∆|ψ|2(N), and by computing this for several different
system sizes one can compute the infinite volume limit

limN→∞ ∆|ψ|2 of the discontinuity at the transition.
Then one can (in principle) extrapolate to larger x and
find the value xtri where the discontinuity disappears.

Results for limN→∞ ∆|ψ|2 as a function of x are shown
in Fig. 3.

For small x the curves in Fig. 3 show a distinct positive

curvature, but when approaching xtri we find that ∆|ψ|2
vanishes as ∝ (xtri − x), in accordance with mean-field
theory, Eq. 5. Also in the original attempt to locate xtri

with Monte Carlo simulations16 this extrapolation was
done, however the extrapolation was done starting from
quite small x values, and the resulting xtri was much
smaller than the one we calculate.

The extrapolated results for xtri are shown in Table II.
The values found should provide a reasonable upper limit
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FIG. 2: Normalized histograms P (|ψ|2) as a function of |ψ|2 for a) aq = 0.5, b) aq = 1.0, c) aq = 2.0, d) aq = 5.0. For each
lattice spacing the histograms for the smallest x are correctly placed horizontally. For larger x they are offset horizontally in
steps of 1 for clarity. For system sizes see Table I.

TABLE II: xtri found from extrapolation of limN→∞
∆|ψ|2 to

zero and finite size scaling of ∆F (N).

aq xtri (from ∆|ψ|2) xtri (from ∆F (N))
5.0 0.174±0.002 0.175±0.005
2.0 0.246±0.002 0.235±0.005
1.0 0.286±0.010 0.260±0.010
0.5 0.294±0.005 0.280±0.020

for xtri(aq).

B. Finite size scaling of ∆F (N)

It is also possible to study the height of the peaks in the

histograms [P (|ψ|2)max] relative to the minimum between

them [P (|ψ|2)min]. This constitutes the best method of
determining whether a transition is first order or not,
but one cannot extrapolate to find xtri. In Fig. 4 we
show some typical results for ∆F (N) = lnPmax− lnPmin

as function of system size N for aq = 0.5.
For x = 0.16 we clearly see the scaling ∆F (N) ∝ N2

for N & 40. This is expected since the histograms in
Fig. 2 show a very pronounced double peak structure.

For larger x this becomes less clear. Our estimates of xtri

for the different lattice constants are given in Table II.
The results are consistently somewhat below those found
with method A and give a reasonable lower limit for xtri.

C. Other methods

Finite-size scaling of the maximum in susceptibilities of

the quantities |ψ|2 and L gives results that are consistent
with the above conclusions.

χS = Nd
(

〈

S2
〉

− 〈S〉2
)

∼ Nσ, S ∈ {|ψ|2, L} (12)

where σ = d(< d) for first(second) order transitions.
However, these results are more ambiguous than those
from the histograms, and we have therefore chosen to
work mainly with the histograms.

D. Final result for κtri

It is clear that it becomes increasingly difficult to ob-
tain good estimates of κtri(aq) when the lattice constant
is reduced. This is easy to understand since the phys-
ical volume (Naq)

3 will be drastically reduced for the
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FIG. 3: limN→∞
∆|ψ|2 as a function of x = κ2 for the lattice constants a) aq = 5.0, b) aq = 2.0, c) aq = 1.0, d) aq = 0.5. The

line li(x), i = 1, . . . , 4 is a fit to Eq. 5 where xc is given in Table II.
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FIG. 4: ∆F (N) = lnPmax(N) − lnPmin(N) for aq = 0.5. The line is ∝ N2 which is the scaling in Eq. 3 (for d = 3).

same lattice size in lattice units. The size of N necessary
to access the scaling regime is (approximately) inversely
proportional to the lattice constant aq.

In Fig. 5, we show xtri(aq) found from extrapolation

of ∆|ψ|2 to zero and from finite size scaling of ∆F (N)
as given in Table II. A linear fit to the data gives
limaq→0 xtri(aq) = 0.287 ± 0.004 with a confidence level
of 25%. This is probably an underestimate of the error,

since we have no particular reason to assume a linear be-
havior. Since the errors in xtri(aq) increases considerably
when we reduce aq one cannot rule out other behaviors,
as quadratic. From the “worst case scenario” shown by
the dotted lines in the figure we get limaq→0 xtri(aq) =
0.295 ± 0.025. This in all likelihood gives a more realis-
tic estimate of the error, and we therefore give our final
estimate of κtri as limaq→0 κtri(aq) = (0.76 ± 0.04)/

√
2.
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FIG. 5: Plot of xtri(aq) using the results from extrapolation of

∆|ψ|2 to zero and from finite size scaling of ∆F (N) given in
Table II. The solid line is a linear fit giving limaq→0 xtri(aq) =
0.287±0.004. The dotted lines indicate “worst case scenarios”
giving limaq→0 xtri(aq) = 0.295 ± 0.025.

VII. CONCLUSION

In summary, we have presented results from large scale
Monte Carlo simulations showing that the critical value
of the Ginzburg-Landau parameter that separates first
order from second order behavior at the superconductor-
normal metal transition point, is κtri = (0.76±0.04)/

√
2.

This is in remarkable agreement with the first estimate
of κtri obtained by Kleinert14 using a mean-field theory
on the dual of the Ginzburg-Landau model, but differs
almost by a factor of two from the subsequent early sim-
ulation results of Bartholomew.16

The reason for the remarkable agreement with our re-
sult and those of Ref. 14, is that for small to intermediate
values of κ, the original problem is in the strong coupling

regime and is mapped onto a weak-coupling problem in
the dual formulation. The dual model is then expected
to yield rather precise results at the mean-field level.14

The dual description of the Ginzburg Landau model has
recently met with considerable success in predicting the
phase-structure of extreme type-II superconductors, even
in magnetic fields.31,32,33,34 We interpret the good agree-
ment between our results and those of Ref. 14 as further
support to the dual description of the Ginzburg-Landau
model, now also in the intermediate-κ region.

We have also argued that this κtri coincides with the κ
separating type-I and type-II superconductivity. In the
superconducting regime for κ ∈ (κtri, 1/

√
2) we thus pre-

dict the possibility of going from type-I to type-II super-
conductivity by increasing the temperature. This could
in principle be possible to observe by studying the vor-
tex structure of a superconductor with such intermediate
values of κ by small-angle neutron scattering, when low-
ering the temperature through the line xc(y). However,
more work is needed to elucidate the properties of the
line xc(y) in Fig. 1.
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Vortex Interactions and Thermally Induced Crossover from Type-I to Type-II

Superconductivity
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We have computed the effective interaction between vortices in the Ginzburg-Landau model from
large-scale Monte-Carlo simulations, taking thermal fluctuations of matter fields and gauge fields
fully into account close to the critical temperature. We find a change, in the form of what appears
to be a crossover, from an attractive to a repulsive effective vortex interactions in an intermediate
range of Ginzburg-Landau parameters κ ∈ [0.76, 1]/

√
2 upon increasing the temperature in the

superconducting state. This corresponds to a thermally induced crossover from type-I to type-II
superconductivity around a temperature TCr(κ), which we map out in the vicinity of the metal-
to-superconductor transition. In order to see this crossover, it is essential to include amplitude
fluctuations of the matter field, in addition to phase-fluctuations and gauge-field fluctuations. We
present a simple physical picture of the crossover, and relate it to observations in Ta and Nb
elemental superconductors which have low-temperature values of κ in the relevant range.

PACS numbers: 74.55.+h,74.60.-w, 74.20.De, 74.25.Dw

I. INTRODUCTION

The nature of the phase-transition in systems of a
scalar matter field coupled to a massless gauge-field has
a long history in condensed matter physics, dating at
least back to the introduction of the Ginzburg-Landau
(GL) theory of superconductivity1. At the mean-field
level, ignoring spatial variations in gauge fields as well
as matter fields leads to the prediction of a second order
phase transition in the model, with classical mean-field
exponents for all values of the GL parameter κ. The
first attempt to seriously consider the role of fluctuations
on the order of the metal-to-superconductor transition
was made by Halperin, Lubensky, and Ma2, who found
that ignoring matter-field fluctuations entirely, and treat-
ing gauge-field fluctuations exactly, resulted in a perma-
nent first order transition for all values of κ, since the
gauge-field-fluctuations produced an extra term ∼ −|φ|3
in the matter field sector of the theory in three spatial
dimensions, where the complex matter field is denoted
by φ and represents the condensate order parameter. (In
the context of particle physics, Coleman and Weinberg3

studied the equivalent problem of spontaneous symme-
try breaking due to radiative corrections in the Abelian
Higgs model in four space-time dimensions, finding the
additional term φ4 ln(φ2/φ2

0), where the real matter field
is denoted φ and represents a scalar meson.)4. Subse-
quently, Dasgupta and Halperin5 found, using duality
arguments in conjunction with Monte-Carlo simulations,
that when gauge-field fluctuations and phase fluctuations

of the scalar matter field are taken into account, but am-
plitude fluctuations are ignored, the phase transition is
permanently second order5. Bartholomew6 then reported
results from Monte-Carlo simulations for the case when
also amplitude fluctuations are taken into account, con-
cluding that the phase transition changes from first to
second order at a particular value of the GL parame-
ter κ ≈ 0.4/

√
2. As far as this numerical value is con-

cerned, note that the problem of finding a tricritical

value κtri separating first and second order transitions
is extremely demanding even by present day supercom-
puting standards7 (see below). Using ingenious duality
arguments, Kleinert8 obtained that the change from first
to second order transition should occur at κ ≈ 0.8/

√
2.

The value of κ that separates a first order (discontinuous)
transition from a second order (continuous) one, defines
a tricritical point9, and will hereafter be denoted κtri.
Note that to obtain the above result, it is necessary to
allow for amplitude fluctuations in the superconducting
order parameter, which become important for small to
intermediate values of κ, but are totally negligible in the
extreme type-II regime κ >> 1.

The critical properties of a superconductor may be
investigated at the phenomenological level by the GL
model of a complex scalar matter field φ coupled to a
fluctuating massless gauge field A. It is this feature of
the gauge field that makes the GL model so difficult to
access by the standard techniques employing the renor-
malisation group2,11. The GL model in d spatial dimen-
sions is defined by the functional integral

Z =

∫

DAνDφ exp[−
∫

ddx

[

1

4
F 2

µν + |(∂ν + iqAν)φ|2 +m2|φ|2 + λ|φ|4
]

(1)
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where Fµν = ∂µAν − ∂νAµ, q is the charge coupling the
condensate matter field φ to the fluctuating gauge field
Aµ, λ is a self coupling, and m2 is a mass parameter
which changes sign at the mean field critical temperature.
When all dimensionful quantities are expressed in powers
of the scale represented by q2, the GL model may be
formulated in terms of the two dimensionless parameters
y = m2/q4 and x = λ/q2. In this case, y is temperature
like and drives the system through a phase transition, and
x = κ2 is the square of the Ginzburg-Landau parameter.
Depending on the value of x, the transition is either first
order for x < xtri, or continuous for x > xtri

6,7,8.
In a recent paper7, we have determined xtri = 0.295±

0.025. This corresponds to a tricritical value of the GL
parameter κtri = (0.76 ± 0.04)/

√
2, in rather remark-

able agreement with the results of Ref. 8. Moreover in

Ref. 7 it was also argued that this value of x or κ is the
demarkation value which separates type-I and type-II su-

perconductivity, rather than the classical mean-field value
κ = 1/

√
2. The connection can be made when one real-

izes that criticality at the metal-to-superconductor tran-
sition requires that topological defects of the matter field
in the form of vortex loops are stable. On the other hand,
there is a connection between critical exponents and geo-
metric properties of a tangle of such vortex loops14. The
fractal dimension DH of the vortex-loop tangle is con-
nected to the anomalous scaling dimension ηφ

13 of the
matter field in a field theory of the vortex-loop gas, a
theory dual to the original GL theory12,13 by the relation
DH + ηφ = 2. Since the anomalous scaling dimension is
connected to the order parameter exponent β of the dual
matter field by the relation 2β = ν(d − 2 + ηφ)13,14, it
follows that a collapse of the vortex-loop tangle implies
DH = d and hence β = 0 indicative of a first order tran-
sition. Here, d is the spatial dimension of the system.
Now, a collapse of the tangle in turn implies an effec-
tive attraction between vortices, or type-I behavior. On
the other hand, a stable vortex-loop tangle at the critical
point, with fractal dimension DH < d, implies first of all
type-II behavior, but also ηφ > 2 − d and β > 0, and
hence a second order transition.

The above assertion, that the tricritical value of
κ separates first order from second order metal-to-
superconductor transition, and moreover also separates
type-I from type-II behavior when the system is on the
phase-transition line yc(x), is in contrast to the conven-
tional wisdom that type-I and type-II superconductiv-
ity is separated by x = 0.5. Based on the above argu-
ments, we have proposed the phase diagram shown in
Fig. 1 of Ref. 7 which contains a new line separating
type-I and type-II superconductivity. The shape of this
line was inferred from the observation that far from the

phase transition, mean-field estimates of the boundary
between type-I and type-II should be precise, and hence
this boundary should asymptotically approach x = 0.5
from below as the temperature is reduced.

It is the purpose of this paper to show directly, by com-
puting the effective thermally renormalized interaction
between vortices via large-scale Monte-Carlo simulations,
that this quantity changes from being repulsive to attrac-
tive in the intermediate regime κ ∈ [0.76, 1]/

√
2. Since

the sign of the vortex-interaction is the microscopic diag-
nostics, in terms of vortex degrees of freedom, for distin-
guishing type-I from type-II superconductivity, the large-
scale simulations we present in this paper confirm the
above conjectures and plausibility arguments of Ref. 7.

In an external field the GL model has classical so-
lutions in terms of Abrikosov flux tubes15, or Nielsen–
Olesen vortices16, and the concept of type-I versus type-
II superconductivity is based on the interaction between
these vortices. For type-I superconductors they attract
each other, whereas for type-II superconductors the in-
teraction is repulsive. Abrikosov15 showed that at the
mean field level type-I and type-II superconductors are
separated at κ = 1/

√
2. We will refer to the value of κ

separating type-I from type-II behavior at κI/II, which
we find varies with y. It is not a sharply defined quan-
tity, since it represents a crossover line. The excep-
tion is at y = yc, x = xtri, where κI/II = κtri. Elabo-
rate calculations of vortex interactions have been carried
out17,18,19,20,21, but none of these approaches take ther-
mal fluctuations into account. A recent overview of su-
perconductors with κ close to 1/

√
2 can be found in Ref.

22, see also Ref. 23.

Superconductors with κ ≈ 1/
√

2 were studied exten-
sively in the 1960s and 1970s22, and in particular mea-
surements on the metals Ta and Nb demonstrated that
the notion of a temperature independent value of κI/II was

incorrect24. At the time, this was explained with a mean-
field theory involving three GL parameters25. Thermal
fluctuations, not addressed at the mean-field level, offer
an alternative and above all simpler explanation for the
observations of crossovers from type-I to type-II behav-
ior in one and the same compound as the temperature is
increased.

We have performed large scale Monte Carlo (MC) sim-
ulations on the lattice version of Eq. 1, with two vortices
penetrating the sample in the ẑ direction. By measuring
the interaction between these two vortices we have de-
termined the value of κI/II, in particular how this value
is affected by thermal fluctuations close to the critical
point.
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II. MODEL, SIMULATIONS AND RESULTS

To perform simulations on Eq. 1, we have defined a discrete version as follows27:

Z =

∫

DαDψ exp(−S[α, ψ])

S[α, ψ] = βG

∑

x,i<j

1

2
αij(x)2 − 2

βG

∑

x,ı̂

Re
[

ψ∗(x)eiαi(x)ψ(x + ı̂)
]

+ β2

∑

x

ψ∗(x)ψ(x) +
x

β3
G

∑

x

[ψ∗(x)ψ(x)]2 . (2)

In Eq. 2 αi(x) = aqAi(x) and αij = αi(x) + αj(x + ı̂) − αj(x) − αj(x + ̂). βG and β2 are related to the continuum
parameters x and y and the lattice constant a,

βG =
1

aq2
(3)

β2 =
1

βG

[

6 +
y

β2
G

− 3.1759115 (1 + 2x)

2πβG
−

(

−4 + 8x− 8x2
)

(ln 6βG + 0.09)− 1.1 + 4.6x

16π2β2
G

]

. (4)

Note that β2 contains the effect of ultraviolet renormal-
ization in the continuum limit when the lattice constant
a → 07,26. The model Eq. 2 is defined on a numerical
grid of size Nx × Ny × Nz, corresponding to a physical
size of Lx ×Ly ×Lz, with Li = Nia. All our simulations
have been on cubic systems with βG = 1.

To impose an external magnetic field27, we modify the

action Eq. 2 by changing the field energy along one stack
of plaquettes located at x0, y0 in such a way that the
action is minimized for α12(x0, y0, z) = −2πn instead of
zero, corresponding to forcing a number of n flux quanta
through the system. Hence, the action S [α, ψ;n] for n
flux-quanta forced through the system, is given by

S [α, ψ;n] = S [α, ψ; 0] +
∑

z

(

2πnα12(x0, y0, z) + 2π2n2
)

. (5)

The second term in Eq. 5 corresponds to forcing a flux
ΦB through the lattice in the negative z-direction

α12(x0, y0, z)

q
= a2q (∇× A(x0, y0, z))z = −2πn

q
. (6)

The crucial point is that, due to periodicity, the total
flux through the system must be zero, i.e.

∑

x,y

α12(x, y, z) = 0 ∀z.

Consequently, the n flux-quanta of the total flux 2πn/q
must return in the +z direction. This flux returns in a
manner specified by the dynamics of the theory,27 and
it is this response which is the topic of interest in the
current paper.

The experimental situation corresponds to applying an
external magnetic field H , and then study the magnetic
response of the superconductor to this field. Hence, a
suitable thermodynamic description is coached in terms
of a potential Φ(H), which is a function of the inten-

sive field variable H . In the simulations we have fixed n,
which is analogous to fixing the magnetic induction, and

a description based on the extensive field variable B is
more appropriate. The two approaches are related by a
Legendre transformation27. In principle the simulations
could also be performed in an ensemble with fixed mag-
netic field. Technically this would be achieved by adding
the term

HLz2πn/q

to the action in Eq. 1. This would promote n to a
dynamical variable of the theory, and be more in ac-
cordance with the experimental situation. However, a
change n→ n± 1 would require a global relaxation, and
this would give very low acceptance rates, i.e. inefficient
simulations.

For type-I superconductors, superconductivity van-
ishes for H > Hc. For type-II superconductors, a flux
line lattice is formed at H = Hc1

, for smaller fields the
magnetization in the sample vanishes due to the Meissner
effect. By fixing n one can not study these effect directly,
however it is possible to determine a corresponding field
strength from n, see Ref. 27.

On the basis of simulations performed using the
modified action Eq. 5, we have determined the effec-
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tive temperature-renormalized interaction between two
vortex-lines, and searched for the value of the GL pa-
rameter, or more precisely its square, xI/II, where this
interaction changes character from being effectively at-
tractive to being effectively repulsive. In section II A we
have fixed n = 2 and studied the distance between the
flux lines. In section II B we have generalized to real n,
and used this to calculate a free energy difference be-
tween states containing one and two vortices. This is
also a measure of the sign of the effective vortex interac-
tion, and hence an indication of whether we have type-I
or type-II behavior.

To obtain the results in Figs. 1, 2, and 5 we have
performed simulations on cubic systems of size N =
8, 12, 16, 24, 32, 48, with βG = 1.00. All simulations
have been performed in the broken symmetry state
y < yc, with particular emphasis on the values y =
−0.04,−0.10,−0.20,−0.30,−0.40. For the two largest
system sizes the final datapoints are averages of approx-
imately 106 sweeps, whereas approximately 105 sweeps
have been performed for the four smallest system sizes.

The simulations leading to the results of Fig. 4 are
quite different. They are performed for the fixed system
parameters N = 24 and βG = 1.00, and for each value
of m, we have performed from 2.5 · 104 to 2.5 · 105 MC
sweeps through the lattice. One sweep through the lattice
consists of (1) conventional local Metropolis updates of
ψ and A, and (2) global radial updates of |ψ| combined
with overrelaxation28,29 of ψ.

A. Effective vortex interaction

We first clarify what is meant by effective vortex in-

teraction in this context. In the Ginzburg-Landau model
at zero temperature, one may compute a pair-potential
between two vortices which consists of an attractive part
due to vortex-core overlap, and a repulsive part due to
circulation of supercurrents (or magnetic fields) outside
the vortex core. Ignoring fluctuation effects, this fur-
nishes an adequate way of distinguishing between type-I
and type-II behavior, by asking when the attractive core-
contribution dominates the magnetic field contribution
or vice versa. By effective interaction, we mean a ther-
mally renormalized pair interaction which fully takes en-
tropic contributions into account. At low temperatures
the effective interaction will revert back to the standard
pair-interaction described above, but will deviate as tem-
perature is raised, and this is particularly relevant as the
critical temperature is approached, as we shall see be-
low. We also comment further on this in the Discussion
section, where we elaborate on what we perceive to be a
crossover between type-I and type-II behavior.

In our simulations, the value of n has been fixed to
n = 2. This corresponds to the case of two field-induced
vortices which move around in the system under the in-
fluence of their mutual effective interaction. During the
simulations, we have measured the transverse position

r⊥(z) of these two vortices labelled by 1 and 2, and the
average distance between them.

d =
1

Nz

∑

z

∣

∣r1⊥(z) − r2⊥(z)
∣

∣ . (7)

For type-I superconductors this distance should be in-
dependent of system size, whereas for type-II we expect
that this distance scales with the system size. Finite size
scaling of d for various points in the (x, y) phase diagram
is shown in Fig. 1.
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FIG. 1: The ensemble averaged separation 〈d〉 between the
two vortices, as a function of system size. The two upper
figures are indicative of type-I behavior, whereas the two lower
ones indicate type-II behavior.

In the part of phase diagram which we focus on, namely
the region defined by the dotted line in Fig.1 of Ref. 7, the
vortex lines are generally directed and almost straight,
well defined line objects. This can be seen either by di-
rectly taking snapshot pictures of the vortex-line con-
figurations of the system, or by computing the mean-
square fluctuations around a straight-line configuration,
〈|ri

⊥(z)−ri
⊥(0)|2〉, for one vortex line. This is in contrast

to the situation in the vicinity of the critical part of yc(x)
in Fig. 1 of Ref. 7, where the vortex lines loose their line
tension via a vortex-loop blowout12,13. Consequently, we
can consider the theory as an effective theory for an inter-
acting pair of straight vortex lines which interact with the
dimensionless potential V (d). If we make this assump-
tion, the probability of finding the vortices separated by
a distance d in a system of N3 lattice points with periodic
boundary conditions, is given by

PN (d) =
e−V (d)ΩN(d)

Zd

, (8)

where ΩN (d) is the number of configurations with a
transverse vortex-vortex distance of d, and Zd is just a
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normalisation factor. ΩN (d) can be calculated, either
analytically in the continuum limit

ΩN (d) =

{

2πd d < N
2

2N
(

π
2 − 2 arccos

(

N
2d

))

N
2 < d < N√

2
,

(9)

or by simple geometric counting in the case of a lattice.
In the case of noninteracting vortices, i.e. V (d) = 0, the
expectation value of d is determined only by ΩN (d), and
we find the numerical value

d0 ≡ 〈d〉 =
1

Zd

∫ N
√

2

0

dd ΩN (d)d ≈ 0.38N. (10)

The separation d0 defined in Eq. 10 will be used to es-
tablish a numerical value of xI/II. Namely, we can com-
pute the averaged distance between vortices at fixed x
varying y, or vice versa. In the latter case, we will use
the criterion that if 〈d〉 exceeds som value cd0 where c is
some fraction, then we have type-II behavior, otherwise it
is type-I. The quantity 〈d〉 at fixed y will turn out to be an
S-shaped curve as a function of x, increasing from small
values to large values as x is increased. We interpret this
as yet another manifestation of the crossover from type-
I to type-II behavior, and we have chosen to locate the
crossover region xI/II at the value of x where the curves
change most rapidly, which is roughly when 〈d〉 ≈ d0/2.
As we shall see (see Fig. 6), different crossover criteria
give consistent results. The quantity PN (d) can be es-
timated from histograms, and then we can use Eq. 8 to
determine the pair potential. Depending on whether we
consider type-I or type-II superconductors we expect to
see an attractive or a repulsive potential. Fig. 2 shows the
potential V (d) for the same points of the phase diagram
as Fig. 1.

B. Free energy

In Eq. 5 we have used n to indicate an integer number
of flux tubes, but in principle there is no reason to limit
n to integer values, and we will use S[α, ψ,m] to denote
a generalisation to real n.

We have considered the free energy difference between
a state containing zero vortices, i.e. m = 0 and a state
containing n vortices. We can not measure absolute val-
ues of the free energy, but by differentiating27

e−F (m) = Tre−S(m) (11)

with respect to m, and then integrating up to n, we can
calculate ∆F (n) = F (n) − F (0),

∆F (n)

Lzq2
=

2πβG

∫ n

0

dm

[

2m+
1

πNz

〈

∑

z

α12(x0, y0, z)

〉

m
︸ ︷︷ ︸

≡W (m)

]

. (12)
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FIG. 2: The effective interaction potential between vortices
V (d) as determined from Eq. 8. Observe the difference in
vertical scale, in the lower panels (type-II) the interactions are
much weaker than in the upper panels (type-I). The graphs
correspond to the same points in (x, y) as those in Fig. 1.
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FIG. 3: W (m) The straight line corresponds to 2m/NxNy

which according to Eq. 13 should be satisfied for m integer.

To calculate ∆F , we have then varied m in steps of
∆m = 0.05, and performed the integration in Eq. 12
numerically. Using shift symmetries, it can be shown27

that W (n) is equal to

W (n) =
2n

NxNy
, (13)

and the behavior for intermediate real values is shown
in Fig. 3. Increasing n from 0 to 1 costs a free en-
ergy ∆F (1), and adding two vortices costs an amount
∆F (2). We will always have ∆F (2) > ∆F (1), but the
question is whether ∆F (2) ≷ 2∆F (1). We may regard
F (n+2)+F (n)−2F (n+1) as the discrete second deriva-
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tive of the free energy with respect to particle number,
which is nothing but the inverse compressibility K−1

of the vortex-system. In the thermodynamic limit this
quantity can never become negative. However, its van-
ishing signals the onset of phase-separation of the vortex
system, which we again interpret as a lack of stability of
the vortex-loop tangle, characteristic of type-I behavior.

C. Vortex compressibility, separation, and

crossover

We next define a quantity ∆T by the relation

∆T =
∆F (1)

Lz
− ∆F (2)

2Lz
, (14)

which means that ∆T measures the relative free-energy
difference between adding one vortex to the system and
half of that adding two vortices to the system. Intuitively
it is therefore clear that it measures the sign of the vortex
interactions, and hence determines whether we are in the
type-I or type-II regime. ∆T > 0 signals attractive in-
teractions, i.e. type-I behavior, whereas ∆T ≤ 0 signals
repulsive interactions, i.e. type-II behavior. We have cal-
culated ∆T by using Eq. 12 and Eq. 14, the results are
shown in Fig. 4. The main qualitative result from these
simulations is again that xI/II(y) is a declining function

of y. Note also that K−1 = −∆T , and hence a posi-
tive ∆T clearly implies phase-separation and instability
of the vortex system, characteristic of type-I behavior.
This is precisely what we see for small x in Fig. 4.
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FIG. 4: ∆T (x) for different values of y. The attraction
vanishes for xI/II < 0.5, and xI/II(y) is an increasing function
of |y|.

Finite size scaling of 〈d〉 and studies of ∆T differentiate
nicely between strongly type-I and type-II superconduc-
tors, but it is difficult to locate a value of xI/II(y) with
any great precision. Fig. 5 shows 〈d〉(x) for different val-
ues of y, along with a horizontal line at d0/2, where d0

is the average separation between vortices had they been

non-interacting. We have found that d0 ≈ 0.38N in our
simulations. We have, rather arbitrarily, taken the inter-
ception of this horizontal line with the curve 〈d〉(x) as
xI/II.

0
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Y = -0.04
Y = -0.10
Y = -0.20
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FIG. 5: The ensemble averaged distance between a
pair of vortices, 〈d〉, as a function of the square of the
Ginzburg-Landau parameter x = κ2, for various values of the
temperature-like variable y. The horizontal line is at d0/2.
Increasing y amounts to increasing the temperature.

The curves of 〈d〉(x) do not get significantly sharper
with increasing system size, and there are no particu-
lar sharp features in S[α, ψ, 2] as x is increased beyond
xI/II. Fig. 6 shows the intercepts from Fig. 5. Due to the
features in the curves of Fig. 5, and how the results of
Fig. 6 are obtained from them, we tentatively conclude
that the computed line of Fig. 6, corresponding to the
dashed line of Fig. 1 in Ref. 7, is a crossover and not a
phase transition. However, we comment further on this
in the concluding section.

As already indicated, there is some arbitrariness in the
location of xI/II(y) in Fig. 6, however the four points
labelled by (IA, IB) and (IIA, IIB) clearly are in the type-
I and type-II regimes, respectivly. This is demonstrated
in Figs. 1 and 2.

III. DISCUSSION

From Figs. 1 and 2 we conclude that there is a crossover
line separating effective attractive vortex interactions
from effective repulsive ones, i.e. type-I and type-II. This
line can either be crossed by changing x, i.e. IA → IIA, or
by changing the temperature i.e. IB → IIB in Fig. 6. This
means that for x values in a suitable range, we can have
in principle have a temperature induced crossover from
type-I to type-II superconductivity. Finally, we note that
xI/II(y) deviates significantly from the mean-field value
of xI/II = 0.5.

Deep in the type-I regime, we find clear evidence of at-
tractive interactions. In the type-II regime the repulsive
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FIG. 6: The computed crossover line yI/II(x) separating
type-I and type-II superconductivity. The black circular filled
points are given by the intercepts between d0/2 and the curves
in Fig. 5. The four points labelled by (IA, IB, IIA, IIB) are
the ones that were considered in detail in Figs. 1 and 2. The
point marked T is the tricritical point in Fig. 1 of Ref. 7, see
the discussion of finite size effects in section IIIA. The solid
line connecting the points is purely a guide to the eye. The
computed line above corresponds to the dotted line of Fig. 1
in Ref. 7 in the vicinity of (xtri, ytri).

interactions appear to be weak, and the results are es-
sentially also consistent with two randomly placed vortex
lines, i.e. not interacting, but not consistent with an at-
tractive force between the vortices. Therefore, what the
results unequivocally show is that by fixing the material
parameter x and varying the temperature-like variable y,
the character of the effective pair-potential is altered in-
side the superconducting regime, significantly away from
the critical line.

A. Simulations

The simulations with n = 2, and the simulations with
a real m ∈ [0, 2] are quite different, and we will discuss
them in turn. An important feature of all the simulations

in the present work is slow dynamics.
For the n = 2 simulation, where we have monitored

d, we find that deep in the type-I regime the simulations
are quite straightforward, the vortices stay close together
with only small fluctuations, and a moderate number of
sweeps is sufficient to get good statistics. However when
we increase x towards xI/II the effect is not that d sta-
bilises at a higher value, instead we get get fluctuations
between a type-I like state where the two vortices are
close together, and a type-II like state with large vortex-
vortex separation. This picture persists as x is increased
into the type-II regime, the only difference is that the
fraction of time spent in the type-I like state state de-
creases. In fact the results of Fig. 1 and Fig. 2 are in
the type-II region quite close to what we would get from

noninteracting vortices. What makes the simulations dif-
ficult is that moving a vortex line in the transverse direc-
tion is a global change, and thereby very slow. Timeseries
of d show characteristic time scales of 104 sweeps, so long
simulations ∼ 106 sweeps over the lattice are required to
obtain acceptable accuracy. A truly high-precision deter-
mination of xI/II(y) would surely benefit from a special-
ized algorithm for the MC updates.

To get good results one should take the N → ∞ limit.
The conclusions from the results of Fig. 1 are based on
this limit, whereas those drawn from Figs. 2,5 and 6 are
based on the fixed system size N = 48. We have not
performed a systematic study of finite size effects, but
the curves in Fig. 5 do have subject to finite size effects
in them. The trend is that curves move to the right
upon increasing system size, this very likely explains the
apparent discrepancy between the tricritical point (where
the N → ∞ limit has been applied), and the remaining
points in Fig. 6.

Note that Eq. 1 is a continuum field theory, and
xI/II(y) is not a critical point, hence the continuum limit
βG → ∞ should be taken. Our experience from the
large-scale simulations performed in Ref. 7 indicates that
βG = 1.00 provides conditions in the simulations already
quite close to the continuum limit. We have therefore
chosen to work with βG = 1.00 and focused our efforts
on considering large systems and long simulations.

The Monte-Carlo computations of ∆T have been even
more time consuming, because we have had to do the
simulations for 41 different values of m. We have there-
fore limited ourselves to considering only the system
L = 24, βG = 1.00, for a discussion of finite N / finite βG

effects see Ref. 27. The relaxation time for these simu-
lations has been particularly long in the limits m → 1−

and m → 2−1, and we therefore have performed much
longer simulations in these limits than for intermediate
values of m. From Fig. 3 and Eq. 13 it is seen that W (m)
is a quantity of order O(N−2) whose finiteness originates
in the difference between two O(1) quantities. Conse-
quently, it is difficult to get numerically precise results.
This has in particular been the case in the limits m→ 1−

and m→ 2−.

B. Crossover

The physical picture that emerges for the thermal
renormalization of the vortex interactions, is the follow-
ing. At low temperatures, for the κ-values we consider,
the system is in the type-I region with a fairly deep min-
imum in the effective pair-potential between vortices at
short distances, leading to an attractive interaction. At
very short distances, we find a steric repulsion on the
scale of the lattice constants in the system due to the
large Coulomb barrier that must be overcome to occupy
a link with two or more elementary vortex segments. This
lenght scale represents the size of the vortex core in the
problem. Upon increasing the temperature to the vicinity
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of the line yc(x), we do not find large transverse mean-
derings of the individual vortex lines as we move along
each vortex line, rather the vortex lines are essentially
straight. Therefore, we believe that it is not entropic re-
pulsion due to the bare steric repulsion in the problem, of
the type which it seems reasonable to invoke for strongly

fluctuating elastic strings30,31 that renormalizes the vor-
tex interactions in the way that is seen in Fig. 2. Rather,
what appears to happen is that the vortex lines slosh
back and forth in the minimum of the effective potential
well as essentially straight lines. Hence, to a larger and
larger extent as temperature is increased, they experience
the hard wall in the interactions at small distances, and
the weak attraction at large distances, effectively wash-
ing out the minimum in the potential, thus making it
effectively more repulsive.

This is also seen in our simulations (not shown in any of
the figures) when we monitor the transverse meandering
fluctuations of each vortex line, 〈|r⊥(z) − r⊥(0)|2〉, as
well as the mean square fluctuations of the intervortex
distance, 〈d2〉 − 〈d〉2, where d is defined in Eq. (7). The
former is small deep in the superconducting regime, and
remains small as the line yc(x) in Fig. 1 of Ref. 7 is
approached, while the latter increases dramatically as the
dotted crossover line is crossed. It is precisely this fact
which makes the simulations extremely time consuming.

One should however keep in mind that, since we are
considering the full GL theory in our simulations, and
not the linearized London limit, it is in any case a drastic
simplification to view the effective interaction between
vortices as a simple pair potential.

Finally, we note that, although our present simula-
tions, which by necessity are on finite-sized systems, in-
dicate that the change from type-I to type-II behavior is
a crossover, we cannot rule out the possibility that it is
elevated to a true phase-transition in the thermodynamic
limit. More work is needed to clarify if this is indeed the
case, but this will have to await the next generation of

massive parallell computers. Questions that need to be
addressed in this context, are: What is the order param-
eter of such a transition, and what symmetry, if any, is
being broken.

IV. CONCLUSION

We have considered the effective interaction between
two vortices in the full GL model, and how this effec-
tive interaction is influenced by thermal fluctuations. We
have included fluctuations in the gauge fields, as well
as the phase- and amplitude-fluctuations of the complex
scalar matter field of the problem. We have found that
the effective interaction changes from being attractive
to being repulsive at xI/II. This means a change from
type-I to type-II behavior. We have found that xI/II is
below the standard quoted value of 0.5, and is a func-
tion of the temperature-like parameter y. This means
that at the critical point, the value of the GL parame-
ter that separates type-I from type-I behavior is smaller
than 1/

√
2. The line xI/II(y) appears to be a crossover,

and not a true phase transition. The above seems to
offer a simple explanation for the experimental obser-
vation that elemental Ta and Nb superconductors show
a crossover from type-I to type-II behavior as the tem-
perature is increased towards Tc. Previous explanations
based on mean-field theories and not involving thermal
fluctuations required two additional temperature depen-
dent κ-values to be defined25.
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