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The multimodal method reduces the free–surface sloshing problem to a (modal) system of nonlinear ordi-
nary differential equations. The method was originally proposed for non–impulsive hydrodynamic loads
but, recently, it was successfully extended to the sloshing–induced slamming. In the 50-60’s, the method
was employed in the Computational Fluid Dynamics (CFD) but has lost the contest the algorithms of
the 90-00’s. Nowadays, the method plays the dual role: firstly, as a unique analytical tool for studying
nonlinear sloshing regimes, their stability, and chaos as well as for simulations when traditional CFD
fails (e.g., containers with a perforated screen) and, secondly, as a source of the modal systems which
are analogies of the Kordeweg–de–Vries, Boussinesq, etc. equations but for the contained liquid. The
paper surveys the state–of–the–art and existing modal systems, specifies open problems.

1. Introduction. Coupled rigid tank–and–sloshing is a hybrid mechanical system in which the
tank moves, normally, with six degrees of freedom governed by a system of ordinary differential
equations (ODEs) but sloshing is described by a free–surface problem suggesting an infinite
number of degrees of freedom. The multimodal method introduces the hydrodynamic generali-
sed coordinates (HGCs) and derives a (modal) system (MS) of nonlinear ODEs with respect
to them. The MSs facilitate analytical studies on resonant sloshing regimes, their stability,
secondary resonance, chaos, etc. that looks questionable with traditional CFD.

The present review runs through the context of a plenary lecture delivered by the authors
to experts in differential equations on the Bogolyubov Reading (DIFF–2013, June, 2013,
Sevastopol, Ukraine) where, along with historical aspects, ideas and open problems of the multi-
modal method, the structure, dimension and features of the derived nonlinear MSs (NMSs),
their solutions vs. container shape, liquid filling (depth), and forcing were discussed. The paper
is schematically divided into three sections representing the past, the present, and the future
of the multimodal method, respectively. Readers interesting in Faraday waves are referred
to [92, 93]. Newbies in sloshing are recommended to have one of the textbooks [58, 91, 144]
whose subject indexes should help understanding the terminology.

2. The past. Perhaps, the word “multimodal” comes from [50]. However, the multimodal
method was first proposed forty years behind, in the 50–60’s, when researchers were first real
challenged by sloshing in aircraft, spacecraft and marine containers. An enthusiastic atmosphere
of these years is described in the memoir article of Abramson [3] who headed the corresponding
NASA program. A scientific heritage of the pioneering studies was systematised in [2, 34, 67,
89, 203, 209, 210] (USA) and [1, 66, 103, 110, 154, 155, 165, 166, 168, 190] (Soviet Union). An
emphasis was, primary, on theoretical linear (small-amplitude) sloshing, experimental nonlinear
sloshing phenomena, and slosh–suppressing devices. The USA collection of experiments was
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best reviewed in [2]. Experiments of the SU–scientists were conducted in Moscow, Kiev [110,
144], Dnipropetrovsk [16], and Tomsk [17,19] but they remain, mostly, unpublished.

The linear multimodal method (see, original [174, 181, 189], canonical [66, 145, 154, 214]
and contemporary [58,170] descriptions) was proposed in the 50’s to reduce the linear sloshing
problem to an infinite set of linear oscillators (ODEs) called, all together, the linear MS (LMS)
in which the inhomogeneous terms are functions of the six generalised coordinates (degrees of
freedom) of the rigid body motion but the unknowns are HGCs responsible for amplifications
(relative to the hydrostatic shape) of the natural sloshing modes. The method interprets sloshi-
ng as a conservative mechanical system with an infinite number of degrees of freedom; it needs
to know, a priori, the natural sloshing modes, ϕn, and frequencies, σn, as well as the linear
Stokes–Joukowski potentials, Ω0 = (Ω01,Ω02,Ω03). Coupling LMS and dynamic equations of
the carrying rigid container is facilitated by the linearised Lukovsky formulas which express the
hydrodynamic forces and moments in terms of HGCs. The hydrodynamic coefficients in both
LMS and the Lukovsky formulas are integrals over Ω0, ϕn, and their derivatives. This means
that having known Ω0 and ϕn, by utilising analytical and/or numerical methods of ODEs
makes it possible to find the semi–analytical solution of any linear sloshing problem (see, Ch. 5
of [58] and [59, 101, 102, 226]) and, thereby, describe the linear coupled “rigid tank–sloshing”
dynamics.

The three Stokes–Joukowski velocity potentials, Ω0i, i = 1, 2, 3, deduce the inhomogeneous
forcing terms associated with three angular degrees of freedom of the rigid tank. They are
solutions of the Neumann boundary problems in the mean (hydrostatic) liquid domain Q0

(the linear Stokes–Joukowski potential problems, LSJPPs) which were first derived by Nikolay
Joukowski (1885) [99] when examining a spatially–moving rigid body with a cavity completely
filled by an ideal incompressible liquid. Exact analytical Ω0i are a rare exception (Ch. 5 of [58]).

The natural sloshing modes are eigenfunctions of a spectral boundary problem (the natural
sloshing problem, NSP) in Q0. The spectral parameter κ appears in the mean free-surface
(Σ0) boundary condition and σn =

√
κng (g is the gravity acceleration). The traces ϕn|Σ0

define the standing wave patterns which were first described for an upright circular basin by
Mikhail Ostrogradsky. His manuscript [182] was submitted to the Paris Academy of Sciences
in 1826 and, later on, revisited by Poisson and Rayleigh [35] for other tank shapes. Rigorous
mathematical theory of NSP was created in the 60’s (Ch. VI in [66] and [39, 170]). It states,
in particular, that (i) the spectrum consists uniquely of positive eigenvalues, κn, with the
only limited point at the infinity (in contrast to the external water waves problem which
yields a continuous spectrum) and (ii) ϕn|Σ0 constitute, together with a nonzero constant, a
Fourier basis on Σ0. The fact (i) is important for understanding why the Kordeweg–de–Vries,
Boussinesq, etc. equations (sea waves) and MSs (contained liquid) follow from the same free–
surface problem but are of the different mathematical nature. The fact (ii) is a foundation stone
for introducing the HGCs. In the 60–70’s, S. Krein [106,109] (see, also [28,29]) generalised these
results to a viscous incompressible liquid, but Kopachevskii — to a capillary one (Part II in [172]
and [106,107]).

In the 50-80’s, the research focus was on constructing analytically approximate solutions of
NSP and LSJPP. Brilliant ideas were proposed (see, a collection of them in [145] and an amazing
solution for circular/spherical tank in [23]). Because of the volume conservation condition, these
solutions were, normally, obtained by the Trefftz method suggesting an analytical harmonic
functional basis exemplified by the harmonic polynomials [145] whose completeness in the
star–shaped domains was proved in [216,217]. The Trefftz solutions become especially efficient
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and provide a uniform convergence when the corner–point singularity [66, 104, 105, 223, 224] is
accounted for [59, 65]. Nowadays, the harmonic polynomials are extensively used in numerical
methods, e.g., in the Harmonic Polynomial Cell (HPC) method [197, 198]. Growing computer
facilities of the 90–00’s made finding ϕn and Ω0 no problem. An exception may be non-smooth
tanks equipped with baffles, screens, etc. that leads to the strongly singular behaviour of
∇ϕn [59–62,65,79].

The theoretical nonlinear sloshing was founded by Penny & Price [184], Moiseev [167],
Narimanov [175], and Perko [169, 185] in the 50–60’s. By adopting the perturbation theory
technique [184], Moiseev [167] showed how to construct, analytically, an asymptotic steady–
state (periodic, frequency–domain) solution of the nonlinear sloshing problem in a rigid tank
performing a prescribed horizontal and/or angular small–amplitude harmonic motion with the
forcing frequency σ close to the lowest natural sloshing frequency σ1. He assumed a finite
liquid depth of an ideal incompressible liquid with irrotational flows and proved that, if the
nondimensional forcing amplitude (scaled by the tank breadth) is a small parameter ε � 1, the
primary excited mode(s) is of the order O(ε1/3) and the matching resonant asymptotics (the so-
called Moiseev detuning) is |σ2−σ2

1|/σ2
1 = O(ε2/3). The Moiseev technique implicitly assumed

that there is no the so-called secondary resonance [22,56–58,225]. It was originally realised for
a two-dimensional rectangular tank [44,178]. Other tank shapes were considered in [11,89,151,
202]. Obtaining the Moiseev solution yields huge and tedious derivations. In the 80’s, looking
for an almost-periodic sloshing, Miles [157, 158] generalised Moiseev’s results by deriving the
so-called Miles equations which govern a slow-time variation of dominant, O(ε1/3), amplitudes
of the primary excited HGC(s). He considered a horizontal harmonic excitation of an upright
circular cylindrical tank, adopted the Moiseev asymptotic ordering and detuning; separation
of the fast and slow time scales which was done, directly, in the Bateman–Luke variational
principle [9, 84, 126]. The Miles equations were later derived for an upright rectangular tank.
Using these equations is a rather popular approach in applied mathematical studies on almost-
periodic resonant sloshing, in detecting periodic orbits and clarifying the chaos [88, 157, 158].
Both horizontal and vertical (Faraday waves) harmonic excitations were in focus [70, 71, 85,
88,158–163]; [108,199] used the Miles equations for studying the “rigid tank–contained liquid”
system with a limited power supply forcing.

By using the perturbation theory, Narimanov [175] derived a historically–first version of
weakly–nonlinear modal systems WNMSs. Narimanov did not know Mosieev’s results, but he
postulated asymptotic relationships between the HGCs and hydrodynamic generalised velocities
(HGVs) as if these may follow from the Moiseev solution. The original derivations in [175] (the
same in [204–207]) have had algebraic errors which were corrected by Lukovsky [136,140,144,
176]. Narimanov’s technique leads to huge and tedious derivations increasing, dramatically, with
increasing number of HGCs. As a consequence, all existing Narimanov’s modal systems are of
a low dimension; they couple from two to five HGCs. These systems were derived for upright
tanks of circular, annular and rectangular cross-sections, conical and spherical tanks as well as
for an upright circular cylindrical tank with a rigid–ring baffle [80, 136, 140, 176]. Nowadays,
this method is rarely employed being replaced by variational versions of the multimodal method
[127–129] based, normally, on the Bateman–Luke variational principle [9,58,84,126,144] which
deduces, in a natural way, both dynamic and kinematic relations of the sloshing problem
[58,140,195,221,222]. Most probably, such a variational multimodal method was first proposed
in 1976 by Miles and Lukovsky [140, 156] who derived, independently, a fully nonlinear
modal system (Miles–Lukovsky system, MLS) with respect to HGCs and HGVs for sloshing in
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an upright tank performing a prescribed translatory motion. Later on, Lukovsky derived the
MLS for an arbitrary rigid tank motion [50,137], proposed the so-called nonconformal mapping
technique to get the MLS for tanks with non-vertical walls [63,75,133,136,143], and derived the
so-called Lukovsky formulas for the hydrodynamic force and moment [140, 144] (Ch. 7 of [58]
gives an alternative derivation). He also showed how to use the Bateman–Luke formalism for
deriving the dynamic equations of the coupled “rigid tank–contained liquid” system [139, 140]
and to incorporate the damping into the variational formulation [141,144]. Taking asymptotic
relationships between HGCs and HGVs reduces MLS to a weakly–nonlinear form yielding what
is today called the weakly–nonlinear multimodal systems (WNMSs, [58,86,130,134,144]). Both
MLS and WNMs require that the analytically approximate natural sloshing modes, ϕn, and the
nonlinear Stokes–Joukowski potentials, Ω, are analytically continuable over Σ0. This and other
limitations are discussed in Ch. 7 of [58] and in [63,86,134].

The rare nonlinear sloshing simulations of the 60-80’s were based on the Galerkin scheme,
finite difference (maker-and-cell, etc.) and finite element methods [6,40,41,45,171,173,180,191,
200,208]. By expanding the velocity potential in a Fourier series by the natural sloshing modes,
Perko [169,185] proposed a numerical multimodal method for simulating the short–term transi-
ents. In the 70-80’s, Perko’s method was used, with modifications, by Chakhlov [18,37,38] and
Limarchenko [114–117, 119, 121]. Because Limarchenko also utilised the Lagrange variational
principle and the perturbation theory, he has proposed, in fact, a weakly–nonlinear variati-
onal numerical multimodal method which is, generally, not applicable for analytical studies but
rather for ad hoc simulations.

The CFD simulations of the nonlinear sloshing gave rise en masse only in the 90’s. The
success was initially associated with FLOW–3D which is a famous Navier–Stokes commercial
solver of the 90-00’s (numerous examples were given by Solaas [201] who discussed advantages
and drawbacks). Volume of Fluid (VoF), Smoothed Partitions Hydromechanics (SPH), and
their modifications provided, using a parallel computation, rather accurate, efficient and robust
simulations. Readers are referred to [25] which reviews the numerical sloshing of the 80–90’s.

3. The present. In the 00’s, the theoretical nonlinear sloshing split into almost–independent
numerical and analytical directions. Recent advances of the numerical sloshing are reported
in [192] (see, also introductions in [24, 42, 82, 211, 219, 227, 228]). The best CFD solvers are
based on a viscous and fully-nonlinear statement and allow, by conducting simulations wi-
th different initial scenarios (conditions), for modelling the special free–surface phenomena:
fragmentation, wave breaking, overturning, roof and wall impacts, and flip-through. These
phenomena cannot be accurately described within the framework of physical (mathematical)
models adopted by the analytical sloshing that are, typically, of the weakly–nonlinear nature,
assume ideal potential flows, and smooth instant free-surface patterns. In the XIX century, the
same splitting has occurred in the sea waves theory which is nowadays investigated, almost
independently, with CFD and approximate analytical models. The latter models are exemplified
by the Kordeweg–de–Vries, Boussinesq, etc. partial differential equations [183]. The approxi-
mate analytical models are typically not used in practical computations but rather focus on
quantifying and classifying surface waves, their stability, chaos, and others vs. the initial scenari-
os and input parameters, the cases, when the CFD is not very efficient.

Because the Perko type method pursues direct numerical simulations but employs simplified
mathematical models of the analytical sloshing, it lost the context both CFD (in an accurate
computing of the hydrodynamic loads and descriptions of the aforementioned free–surface
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phenomena) and the analytical sloshing (in the input/initial parameter studies). This explains
why the method is rarely used, today, restricted to a few fully–nonlinear simulations by MLS for
a rectangular tank [111, 196] and weakly-nonlinear ones in [47, 55, 118–120, 122–124]. Another
drawback of the Perko type simulations is that these are unrealistically stiff so that artificial
damping terms must be incorporated to damp the rising parasitic higher harmonics [47,55] and,
thereby, to facilitate computations on a relatively long time scale. Conducting the simulations
may be justified for the screen–equipped tanks when the screen–induced damping is very high
and there are no reasons in the artificial damping terms [122–124].

Reincarnation of the multimodal method as a powerful tool of the analytical sloshing is, to
some extent, explained by growing practical interest to the smooth (without internal structures)
Liquefied Natural Gas (LNG) tanks. The revolutionary paper [50] re-derived MLS and initi-
ated a series of publications on WNMSs, mostly, for upright tanks of rectangular and circular
(annular) cross–sections, when exact analytical ϕn and Ω0 exist, and liquid depths are finite.
The WNMSs were applied for description of steady–state and transient resonant waves; they
were validated by model tests.

The two-dimensional weakly–nonlinear resonant sloshing in a smooth rectangular tank
with a finite liquid depth was studied by using diverse WNMSs [50, 56, 68, 86, 87, 94, 95, 98].
The forcing was small, O(ε), and the forcing frequency σ was close to the lowest natural sloshing
frequency σ1. The system [50] was based on the Narimanov–Moiseev asymptotics. Transient
and steady–state predictions were validated for both a prescribed harmonic excitation [50] and
a coupling with external surface waves (floating tank) [112,113,193]. The steady–state resonant
sloshing was characterised by the Duffing like response curves with the theoretically soft spring
as the depth-to-breadth ratio > 0.3368... and the hard spring is for < 0.3368... so that the
theoretical nondimensional critical depth = 0.3368... [58,220]. A purely mathematical analysis
of the WNMS was reported in [68,86,87].

The Narimanov–Moiseev WNMS [50] becomes physically inapplicable with increasing the
forcing amplitude and at the critical and small (shallow) liquid depths due to the secondary
resonance , nσ ≈ σn for some n, that leads to a nonlinearity–driven amplification of the nσ
harmonics and an energy transfer from primary (σ1) to secondary (σn) excited HGCs. Handling
the secondary resonance for a finite liquid depth requires the so-called adaptive modal systems
(AMSs) [56,87] suggesting a few extra dominant (secondary excited) HGCs ∼ O(ε1/3) for which
a dominant higher harmonics contribution is theoretically predicted (nσ ≈ σn). The adaptive
multimodal method concept was extensively validated by experiments [55–57]. Whereas the
secondary resonance occurs, the response curves are characterised by double peaks at the
primary resonance zone; the peaks grow with increasing the forcing amplitude. The AMSs and
their structure are intensively discussed in Ch. 8 of [58]. Based on the AMS modelling, [87]
showed that the critical depth is a function of the forcing amplitude (0.3368... is the limit
case as ε → 0) and explains the experimental value 0.28 in [69]. The AMSs [94, 95, 98] use a
sophisticated asymptotic ordering which is not based on the the secondary resonance concept
but rather on experimental observations of the surface wave patterns.

The commensurate/almost–commensurate shallow/small depth liquid sloshing spectrum
leads to a hydrodynamic jump [218]/multiple secondary resonances [57]. Deriving the WNMS
[57] for small liquid depths in a rectangular tank needed a Boussinesq fourth–order asymptotic
ordering (combining Moiseev’s and Kordeweg–de–Vries’ asymptotics [177–179]) where all the
HGCs and the nondimensional liquid depth were the same order O(ε1/4). By truncating this
infinite–dimensional system and incorporating the linear damping terms (due to the laminar
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boundary layer and the bulk viscosity; Ch. 6 in [58] and [27,100,152,164,215]) provided a good
agreement with experiments [32, 33, 57], for both steady-state and transient sloshing. As in
Chester’s experiments [32,33,57], the theoretical response curves [5,57] had then a fingers–like
shape with many peaks at the primary resonance zone (σ ≈ σ1). Increasing the excitati-
on amplitude and/or decreasing the liquid depth made the small–depth WNMS [57] physi-
cally inapplicable due to the breaking and overturning waves, bores as well as the free-surface
fragmentation which yield an enormously large damping. A detailed experimental classification
of the shallow water sloshing (four different wave types were described), in general, and these
phenomena, in particular, was reported in Ch. 8 of [58]. Damping due to the aforementioned
free–surface phenomena is similar to that for the roof impact whose effect was included into
the WNMSs of [50,56] in [49] by using the Wagner theory.s Accounting for the damping in the
shallow water case is a challenge.

The damping due to the flow separation through a perforated screen was included into the
WNMSs [46–48,122] for sloshing in a rectangular two–dimensional tank with a finite depth. For
smaller solidity ratios of the screen, 0 < Sn < 0.5, and a relatively small forcing, utilising the
pressure drop condition [15] yielded an integral term into the existing modal systems [46,122];
the modified WNMSs showed a satisfactory agreement with experiments. A higher solidity
ratio, 0.5 < Sn < 1, also modified the natural sloshing modes and frequencies [60] and,
thereby, both linear [48] and nonlinear (increasing excitation amplitudes) [47] WNMSs changed
their analytical structure; the secondary resonance became then evident so that the secondary
resonant peaks in the primary resonant zone differed from those for the smooth rectangular
tank. Numerous WNMSs for various tanks with perforated screens were derived, studied and
validated in [83,122–125].

Generalisation of the two-dimensional results [50] to the case of a three–dimensional
rectangular tank was done in [52]. A focus was on the nearly–square cross–section leading
to the degenerating Stokes natural sloshing modes including those two for the lowest natural
frequency σ1. The corresponding Narimanov–Moiseev WNMS in [52, 54] has nine degrees of
freedom with the two dominant O(ε1/3) HGCs. The system provided an accurate classification
of steady–state regimes (planar, diagonal, nearly–diagonal, and swirling) for both longitudi-
nal and diagonal harmonic tank excitations [51, 52]. The asymptotically periodic solution of
the WNMS implies an amazing 3D bifurcation diagram, especially, when the cross–section
aspect ratio changes from one [20, 21, 54]; a good qualitative agreement with experiments was
shown, including for estimating the chaos region. On the other hand, the theoretical transient
and steady-state wave response was not quantitatively supported by experiments due to the
secondary resonance effect which becomes especially evident for swirling, even if the excitation
amplitude was small enough. Accounting for the secondary resonance effect led to the multidi-
mensional AMSs [53, 55] which well predicted swirling and its stability ranges. The numerical
stability also showed that the two stable periodic dominant HGCs could co-exist with the
unstable higher–order HGCs demonstrating an irregular character. This was an extra source of
discrepancy. Another source is that the damping is satisfactory predicted for the lowest HGCs
(Ch. 6 of [58] and [52, 55, 100, 152, 164]) but not for the higher ones. The latter damping was
strongly affected by the wave breaking and overturning observed in [51, 52, 55]. The adaptive
WNMs can also be based on a sophisticated asymptotic ordering deduced from experiments.
An example is [97] in which the resonant sloshing subject to obliquely horizontal harmonic
excitation was studied.

In the 80’s, Lukovsky [131, 139, 140] derived the five–dimensional WNMS for sloshing in
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an upright circular cylindrical tank , constructed its asymptotic periodic solutions (planar
and swirling), studied their stability by the first Lyapunov method, established the chaos in
a certain frequency range, and validated these classification results by experiments [4]. The
paper [96] re-derived this system, again, classified the steady–state regimes, and conducted the
Runge–Kutta simulations (as in [139,144]). This WNMS and the constructed periodic solutions
were also revisited in [77] and Ch. 9 of [58]. The paper [77] examined the nodal curves patterns
theoretically justifying that these are not a moving straight line. Ch. 9 of [58] showed that
the theoretical classification of the periodic regimes in [140,144] is, generally, supported by the
model tests in [194]. The fifth–order asymptotic ordering (O(ε1/5) for the two dominant HGCs)
gave a negligible contribution to this classification [148] .

Theoretically, the Narimanov–Moiseev asymptotics requires an infinite set of the second
and third order HGCs included into WNMSs for axisymmetric tanks [63, 134]. For upright
circular cylindrical tank, such a ‘complete’ WNMS was derived and analysed in [130]. The
infinite set of the higher–order HGCs did not influence the Lukovsky classification results on
the periodic steady–state solutions except for isolated liquid depths and forcing frequencies
when the secondary resonance was expected (see, the depths listed in [22, 80]). Unfortunately,
the modal systems from [140] and [130] were not able to quantify the measured steady–state
wave amplitudes in [194]. The discrepancy could be clarified by the aforementioned secondary
resonance (requiring the AMSs which were not derived for this tank shape, yet) and by the
surface tension which was neglected in the multimodal analysis, yet.

Lukovsky also derived and analysed the corresponding five–dimensional WNMS [140, 186,
187] for an upright annular cylindrical tank . It was re-derived and modified by adding some
extra third–order HGCs in [213], where new model tests were conducted as well. Comparing
the experimental and theoretical response curves, [213] showed a satisfactory agreement for
the planar wave regime but, even though speculative damping ratios were included to fit
the experimental data, a discrepancy was still evident for swirling. An attempt to derive a
Narimanov–Moiseev WNMS for a non–central pile position was conducted in [212]. Sloshing in
an upright compartment tank of circular and annular cross–sections was studied in [149,150]
by using the same research scheme as in [140,144].

For tanks with non-vertical walls, there are no exact analytical natural sloshing modes
and the normal presentation of the free surface fails. The later problem could be resolved
by utilising the nonconformal mapping technique proposed by Lukovsky [135, 136, 138, 176] in
1975. The technique was combined with the Narimanov scheme [136,176], used in the Perko like
simulations [119–121], and incorporated into the Miles–Lukovsky variational method [63, 140,
144]. However, the analytically–given multidimensional WNMSs were derived only for conical
and spherical tanks. The main difficulty for a further expansion onto other tank shapes remains
the absence of the required analytically approximate natural sloshing modes which exactly
satisfy the Laplace equation and the slip conditions on the non-vertical walls as well as allow
for an analytical continuation over the mean free surface (see, limitations of the multimodal
method discussed in [134,144] and Ch. 9 of [58]).

According to [10,11,36], the flat mean free surface in a circular conical tank was replaced
by a spherical cap and, thereby, an approximate analytical solution of NSP in terms of spheri-
cal functions was constructed. The corresponding multidimensional WNMS was derived in
[146,147]. The latter result was step-by-step improved in [73,74,76, 81,132,140,142] (see, also
references therein). Analytically approximate natural sloshing modes without the aforementi-
oned replacement were constructed in [73, 81, 132]. Based on these modes, the Narimanov–
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Moiseev type five–dimensional WNMSs for non–truncated and truncated circular V–conical
tanks were derived and studied in [75, 81]. The systems contain extra (relative to the upright
circular tank) nonlinear terms expressing the so-called geometric nonlinearity but the steady–
state analysis leads to the same qualitative results extracting the planar and swirling wave
regimes as well as the chaos in a certain frequency range. [78] focused on the nodal lines moti-
ons generalising the results from [77]. An emphasis was on the secondary resonance expectati-
ons. The theoretical secondary resonance analysis [75, 81] and a comparison of the theoretical
results with experiments [26,74,75,153] showed that the higher harmonics due to the secondary
resonance indeed matter. The ANMs are required for almost all semi–apex angles. This is a
challenge.

The required analytically approximate natural sloshing modes for circular and spheri-
cal tanks were constructed in [7, 8, 61, 62]. Based on those solutions from [8, 61], a complete
infinite–dimensional Narimanov–Moiseev type WNMS (a generalisation of [130]) was explicitly
derived in [63,64] whose steady–state solutions were classified as well. The classification results
were supported by experiments [203] for the depth–to–radius ratios ≤ 0.5. However, multiple
secondary resonances and an experimentally–observed free–surface fragmentation (accompani-
ed by overturning waves) made this WNMS inapplicable for higher tank fillings and with
increasing the forcing amplitude. The Narimanov–Moiseev type infinite–dimensional WNMS
for a circular tank was constructed but not analysed in [30]. The circular tank shape causes
multiple secondary resonances for almost all tank fillings [16,59]. This makes [30] weakly appli-
cable for strongly nonlinear sloshing.

4. The future. There are extensive and intensive challenges of the nonlinear multimodal
method. Whereas extensive challenges are mainly associated with generalisation and expansi-
on of the multimodal method onto new practically–important sloshing problems (see, e.g., in
Ch. 1 of [58] and [31, 144]), intensive ones imply improvement of the method and WNMSs
(from physical and mathematical points of view) as well as dedicated rigorous mathematical
studies (uniquely presented by [68, 86, 87] which deal with the modal systems from [50, 56]).
Obvious generalisations are related to tanks of complex shape. One should construct analyti-
cally approximate natural sloshing modes of special kind and develop the tensor algebra related
to the curvilinear coordinates [144] employed for these tank shapes. Finally, because derivations
of WNMSs for complex tank shapes are especially tedious, a challenge is to code a computer
algebra which enables a computer–based derivation as it was done for an upright circular
cylindrical tank in [72].

The two important physical challenges are an adequate account for damping and surface
tension. Ch. 6 of [58] reviews analytical methods which could be used for incorporating the
damping–related terms in WNMSs. However, these were only realised for a linear damping
due to the laminar boundary layer and the bulk viscosity, and, recently, for perforated screens
[47, 48, 122]. Damping due to baffles and piles should be the next goal. The big challenge is
to account for damping due to free–surface fragmentation, overturning and breaking waves.
For nonlinear sloshing, the surface tension requires including the dynamic contact angle effect
[13,14]. It is not clear yet, how to include this effect into the multimodal method.

Finally, we believe that the multimodal method may help to describe an attractive swirling–
induced V-constant rotation of the liquid [43] which was observed in famous experiments [12,
89,90,188,194] but is not explained yet.
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