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This paper presents a discrete random-field model for forward prices driven by
the multivariate normal inverse Gaussian distribution. The model captures the
idiosyncratic risk and adequately addresses the heavy tails characterizing elec-
tricity forward prices. We fit the model to forward prices from the Nordic power
exchange using a Markov chain Monte Carlo algorithm. This is then compared
with Gaussian-based multifactor models in terms of goodness of fit to historical
log returns. Our finding is that the proposed model offers a superior fit to the
empirical distributions.

1 INTRODUCTION

In volatile markets like the electricity market, the return distribution of forward prices
is leptokurtic, ie, it has a high center peak and heavy tails (see, for example, Frestad
et al (2010) or Benth and Koekebakker (2008) for discussions). This suggests that
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Gaussian-based models will have shortcomings in representing the risk related to the
substantial market movements observed in these markets. Since risk measures and
option prices depend on the distribution used in a model, it is important to develop
models that are able to handle the non-Gaussian nature of electricity markets.

There are two main approaches to modeling forward prices: one is to specify a
stochastic model for the spot price, and from this model derive the dynamics of forward
prices based on no-arbitrage principles. The alternative is to follow the Heath—Jarrow—
Morton approach and specify the dynamics of the forward contracts directly.

Most of the existing literature focuses on developing models for the spot price. Some
examples are Lucia and Schwartz (2002), Cartea and Figueroa (2005) and Benth et
al (2007a). The Heath—Jarrow—Morton approach to modeling forward prices in the
electricity market has been proposed by several authors: Benth and Koekebakker
(2008), Bjerksund et al (2000), Clewlow and Strickland (2000) and Kiesel et al
(2009) all model the forward prices using multifactor models driven by Brownian
motion.

Empirical findings in Koekebakker and Ollmar (2005) raise doubts about the valid-
ity of low-dimensional multifactor models in electricity markets, since a substantial
amount of variation in forward prices cannot be explained by a few common factors.
This observation is pursued in Frestad (2008) using the framework of Ross (1976),
allowing common and unique factors to influence forward prices. The idea of let-
ting each forward contract have some unique risk was first proposed by Audet et al
(2004). They model weekly contracts at Nord Pool (the Nordic power exchange) using
a Gaussian random-field model with an exponential correlation function. However,
the models that directly specify the dynamics of the forward contracts ignore the fact
that the return of forward prices in electricity markets is far from Gaussian distributed.

The benefit of modeling the forward prices directly is that, in contrast to spot models,
there is no problem fitting the model to the current forward prices. In addition, since
electricity is largely non-storable, there is no cost-of-carry relationship linking spot
and forward prices. For example, Quinn et al (2005) examine spot and forward data
from the PIM! market and find that electricity forward prices are largely disconnected
from current spot prices. Benth et al (2008) draw similar conclusions when examining
spot and forward prices at Nord Pool. They find that only the contracts in the very
short end of the forward structure are highly correlated with the spot price. Their
conclusion is that different dynamics drive the spot and forward prices. Inferring the
dynamics of forward contracts from spot price models is therefore problematic.

Given the well-known shortcomings of the Gaussian distribution with regard to
modeling the return distribution of financial assets, it is natural to look for other dis-

! For the period under examination the PJM electricity market covered Pennsylvania, New Jersey,
Maryland, Delaware and the District of Columbia.
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tributions that are better capable of capturing heavy tails and skewness. Frestad et al
(2010) analyze the distribution of daily log returns of individual forward contracts
at Nord Pool and find that the univariate normal inverse Gaussian (NIG) distribution
captures the stylized facts of the returns. In this paper we develop a model for the
joint dynamics of forward prices based on the semi-heavy-tailed multivariate nor-
mal inverse Gaussian (MNIG) distribution. The modeling framework that we use is
a discrete random-field model, implying a blending of the market model setup of
Jamshidian (1997), Brace et al (1997) and others, and the random-field modeling
approach introduced by Kennedy (1994). In this approach, each forward contract is
a distinct random variable that may be correlated with the other contracts. In gen-
eral, each forward contract is therefore exposed to idiosyncratic risk, and cannot be
perfectly hedged by a portfolio of forward contracts with different maturities.

This paper is organized as follows. In the next section we present our model and
review the definition of the MNIG distribution and some of its properties. In Section 3
we investigate the empirical characteristics of forward prices at Nord Pool, choose
suitable functional forms of the correlation, skewness and volatility structure in our
model, and fit the model to forward prices. We investigate the quality of our model
with emphasis on the fit to observed log returns and covariance structure in Section 4.
In Section 5 we conclude.

2 A DISCRETE RANDOM-FIELD MODEL DRIVEN BY THE
MULTIVARIATE NORMAL INVERSE GAUSSIAN DISTRIBUTION

In this section we describe the MNIG distribution and some of its properties before
presenting the model. We will also make use of the NIG distribution in this paper.
For the definition and properties of this distribution we refer the reader to Barndorff-
Nielsen (1998).

2.1 The MNIG distribution

A d-dimensional vector X is MNIG distributed if its probability density function
reads:

S a d+1)/2
f(X)= 2((1_—1)/2[%} x exp[p(x)]K@+1)/2[eq(x)] (1

where:

q(x) =82+ (x —py Il (x —p) and p(x) =8ve>—p'EB+ B (x —p)

K4(x) is the modified Bessel function of the second kind with index 4,8 > 0,
a2 > BB, B Ry ueR?and ¥ € R¥*? is a symmetric positive semidefinite
matrix with determinant 1.
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The parameters in the MNIG distribution have interpretations relating to the overall
shape of the density as follows. The parameters « and B control the shape of the
density, § is a scale parameter and g is the location parameter as such when g = 0,
J denotes the mean of the distribution. Finally, the structure matrix X' determines the
overall shape of the covariance structure between the components of X. We will refer
to B as the skewness parameter even though the skewness of the marginal components
also depends on &, § and X.

The cumulant generating function of a d-dimensional MNIG-distributed variable
X is given by:

V(@) =io'n +8(vVo2 — BB — Vo2 — (B +iw) T(B + iw))

where i = +/—1. From the cumulant generating function we can easily derive the
mean vector of an MNIG-distributed variable X :

EIX]=p+385p(* —B'2p)~'/?
and covariance matrix:
var[X] = §(a® — B'ZB)V/2[X + (0 — B'TB) ' 2B 2] )

If the MNIG distribution is symmetric, ie, the skewness parameter § = 0, we see
from Equation (2) that the correlation matrix is solely determined by the matrix X'
For a non-symmetric MNIG distribution, however, the correlation structure depends
on the three parameters X, B and «.

The MNIG distribution is fairly complicated, but the distribution has a simple char-
acterization as a variance—mean mixture of a d-dimensional Gaussian random vari-
able Y with a univariate inverse Gaussian-distributed mixing variable Z (Barndorff-
Nielsen (1997)). Hence, an MNIG-distributed random variable X can be constructed
from:

X=p+2ZXB+VZx'?Y (3)

where Y ~ N;(0,1)and Z ~ IG[§2, «? — B’ ¥ B]. Here IG[x, ¥], x, ¥ > 0, denotes
the inverse Gaussian distribution. This observation is important because it provides
an easy way to simulate MNIG variables when pricing derivatives using the Monte
Carlo method.

From Equation (3) we see that X can be interpreted as a stochastic variable where
the inverse Gaussian variable Z represents both stochastic volatility and stochastic
mean. The term +/Z is responsible for altering the tail thickness relative to a Gaussian
distribution, while the term Z adds asymmetry to X ie, when modeling return series,
X is able to capture the fact that negative returns often have heavier tails than positive
returns.
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The multivariate Gaussian distribution is a limiting distribution for the MNIG
distribution in the limit § — oo and & — oo but such that §/a = o2 (Digard et al
(2005)). Another important special case for the MNIG distribution is the multivariate
t-distribution with one degree of freedom. This occurs when ¥ = [ and o« — 0O
(Qigard et al (2005)).

2.2 A discrete random-field model based on the multivariate
normal inverse Gaussian distribution

We consider a discrete-time forward market where trades occur on discrete dates
indexed T={t |t =0,1,...,n}. Inthe market, d different electricity forward con-
tracts are traded. Electricity forward contracts deliver a constant flow of electricity
over a specified time interval. Typical delivery periods are daily, weekly, monthly,
quarterly or yearly. It is common to encounter contracts having overlapping delivery
periods. For instance, one may buy three monthly forwards with delivery in the first
three months of a year, or a quarterly contract with delivery over the first quarter.
In order to avoid arbitrage, one needs to have certain relations between the prices
of these contracts. This means, for example, that the cost of buying a portfolio of
four consecutive quarterly forward contracts must equal the cost of buying the yearly
forward contract with the same delivery period. We restrict our attention to non-
overlapping contracts, thereby avoiding the complications that overlapping contracts
lead to. More specifically, we will consider non-overlapping synthetic forward con-
tracts obtained from a smoothed forward curve (see Fleten and Lemming (2003) or
Benth et al (2007b) for details on how to construct synthetic forward curves from
traded swaps). The forward contracts that we will work with are thus obtained by
first constructing a smooth forward curve from traded forward contracts, and then
computing synthetic forward contracts from the smooth forward curve. In this way
we can construct datasets of forward contracts with the preferred delivery structure.

Assume that we have d different forward contracts with disjoint delivery periods
(T}, TE), (15, T3], - . . [T, T, where [T, T), T? < T, denotes the delivery period
for contract ¢, ¢ = 1,...,d. Let F.(¢) denote the price of a forward contract with
delivery period [T}, T] attime ¢, 0 < ¢ < 7. Under the real-world probability mea-
sure P, the one-period return of forward contracts is assumed to have the following
dynamics:

(F(t+1)
In(——"1"

F () ) =v(t. T*) + A(t. TL(, T “)
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Here:
0<t<min{T},...,T;}
F(1) = [F1(t), F2(0), ..., Fa ()]
v(t,T%) = [v(t, Ty), v, T,), ..., u(t, T;)]’
where v(t, T}),c = 1,...,d, are deterministic scalar-valued functions, A(¢, T*) is a
diagonal matrix with A.(¢, 7)) on the main diagonal, where A.(¢, 7)), c = 1,....d,

are positive deterministic functions scaling the random price fluctuations as a func-
tion of time and start of delivery. L (¢, T°) are independent d-dimensional MNIG-
distributed column vectors with location parameter equal to zero:

L(t, T%) ~ MNIG(e, 8, . = 0, B(¢, T%), 2(. T*))

Note that the product of an MNIG-distributed vector with a non-stochastic matrix is
MNIG distributed with parameters given by Property 3 in Appendix A. Moreover,
the sum of a non-stochastic vector and an MNIG-distributed variable is also MNIG
distributed, implying that log return is MNIG distributed. Consequently, we could
embed both the drift and scaling terms in the MNIG-distributed vector L (¢, T*), but
we have chosen to extract them in order to present the model in a form similar to the
LIBOR market model.

The MNIG-distributed variables L (¢, T®) are characterized by the parameters
a, 6,0 =0, B(t,T*) and X (¢, T*). o« and § are scalars, whereas B(¢, T®) is a d-
dimensional vector and is assumed to be determined by the continuous scalar-valued
function B(-):

B(t.T*) = [B(t.T). B(t. T5)..... B(t. T

The matrix X' (¢, T*), which determines the overall shape of the correlation structure,
is assumed to be determined by a positive definite scalar-valued function R(z, T, T})
taking time and start of delivery as arguments:

E(Z,TS)J",' =R(Z‘,T§,T}S), i,j€1,2,...,d

The assumptions made above correspond to assuming an exponential model for the
forward price dynamics:

t—1 t—1
F(t) = F(O)exp(Zv(i,TS)—l—ZA(i,TS)L(i,TS)) (5)
i=0 i=0

The model states that the one-period return of forward contracts is MNIG dis-
tributed. By Property 2 in Appendix A we also know that the marginal one-period
return distribution of each forward contract is NIG distributed. However, since a sum
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of MNIG-distributed variables with different o,  or X' parameters is not MNIG dis-
tributed, the log returns over longer time periods do not, in general, have a known
distribution.

In order to avoid arbitrage opportunities, forward contracts with overlapping deliv-
ery periods must have prices that are consistent with each other. Consider, for instance,
that the prices Fg, (¢)...., Fp,(t) of four quarterly forward contracts with delivery
periods each quarter over the next year are modeled by the dynamics given in Equa-
tion (5). The following relation between the quarterly contracts and the price Fy (¢)
of a forward with delivery period over the whole next year must hold:

4
Fy(t) =) w;Fo,(t)

i=1

Here the weight function is given by:

fQi w(u) du
- Jy w(u)du

and w(u) = 1 if we assume that the settlement of the forward takes place at the end of
the delivery period (Benth and Koekebakker (2008)). Hence, if we fit the model to the
quarterly contracts, we cannot derive the distribution of the one-period log returns of
the yearly contract using no-arbitrage relationships. In order to state anything about
the distribution of the yearly contract we have to rely on Monte Carlo analysis. In
addition, it is not possible to derive any dynamics for the three monthly contracts
making up the quarterly one. That is, the MNIG dynamics of the one-period return
distribution stated by the model only applies to the contracts explicitly modeled.

Wi

3 FITTING THE MODEL TO FORWARD PRICES AT NORD POOL

The distribution of the log return of forward contracts is determined by the parameters
v(t, T%), A(t,T*),a,$, B(t, T*) and X (¢, T*). To simplify the estimation procedure
we assume that the vector and matrix parameters are determined by time-homogenous
functions: that is, the functions only depend on the time to start of delivery. It is impor-
tant that these functions are chosen such that they are in conformity with the observed
data. The aim of this section, therefore, is to investigate the empirical characteristics
of forward prices at Nord Pool, and to choose the functional forms of these functions
according to the empirical findings.

3.1 The dataset

The dataset that we consider in this section is made up of synthetic forward contracts
with a delivery period of one quarter. Coverage spans from January 2001 to December

Research Paper www.journalofenergymarkets.com
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FIGURE 1 Term structure of synthetic forward prices on January 2, 2006.
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2006, with a total of 1,478 observations. For each trading day in this period, 12 forward
contracts, each with a delivery period of one quarter, are constructed from a smoothed
forward curve as described in Section 8.2 of Benth et al (2008). For each trading day,
the first contract has start-settlement time zero and end-settlement time three months
ahead. The second contract has start settlement three months ahead and end settlement
six months ahead and so on (see Figure 1 for an illustration). We label the prices of
these forward contracts F.(t), where ¢ denotes time and ¢ = 1,..., 12 denotes the
number of quarters until end settlement.

Let r; denote the 12-dimensional vector containing the log returns of the 12 forward
contracts at time ¢ as follows:

. [ln(Fl(t-i- 1))ln(F2(t + 1))_” n (M)]
! Fi(t) F>(1) Fra(1)

According to Equation (4) and the assumptions that the parameters v (z, T *), A(¢, T*),
B(t, T*)and X (¢, T*) are determined by time-stationary functions, the return vectors
r; are independent and identical MNIG-distributed variables. Table 1 on the facing
page shows descriptive statistics of the individual forward contracts based on the
dataset ri,rz, ..., 1477.

Table 1 on the facing page shows that the empirical mean is slightly positive and
rather constant. Regarding the empirical skewness, the numbers indicate the presence,

to some extent, of negative skewness in the data. The kurtosis fluctuates a lot, but there
seems to be a trend of decreasing kurtosis as the time to delivery increases. However,
as demonstrated by Kim and White (2004), the conventional estimators of skewness
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TABLE 1 Summary statistics of log return of the individual forward contracts.

Annualized

Quartersto  Mean volatility Excess
end delivery (%) (%) Skewness kurtosis

1 0.06 48.90 -0.76 19.29

2 0.07 4512 —-1.06 12.10

3 0.07 49.72 —-0.41 36.37

4 0.06 36.40 —-0.22 17.19

5 0.07 30.54 -0.57 9.91

6 0.07 29.25 -0.83 11.19

7 0.07 29.39 -1.18 14.93

8 0.06 24.96 -0.32 6.23

9 0.06 26.56 0.07 6.21

10 0.06 30.40 —0.08 5.50

11 0.06 26.97 -0.25 7.89

12 0.05 24.79 -0.43 10.36

Volatility is annualized using 250 trading days a year.

and kurtosis are extremely sensitive to single outliers or small groups of outliers.
These estimates should therefore be interpreted with caution.

3.2 Modeling v(t, T*), A(t, T®), (¢, T%) and X(t, T*)

In our model we have assumed that the drift parameter v (¢, 7°) and the skewness
parameter B(¢, T°) are determined by time-stationary continuous functions of time
t and time to start of delivery T°; that is, (¢, T°) and v(z, T®) depend only on
T3 — ¢t. For simplicity and ease of calibration, we choose a linear function for both
B(T* —1t)and v(T* —t). Thatis, B(T® —¢t) = bo + b1(T° —¢t) and v(T® —¢t) =
ag+ay(T®—t), where by, b1, ag and a; are parameters that must be estimated. Even
though v(z, T®) and B(¢, T*®) are determined by linear functions, the expectation of
an MNIG distribution, or the skewness of the marginal distributions of an MNIG
distribution, is not necessarily a linear function of time until start of settlement.

The matrix A(z, T*) determines the overall shape of the volatility structure, whereas
the matrix X' (¢, T*) determines the overall shape of the correlation structure. From
Table 1 we observe that volatility increases as time to maturity decreases. We therefore
model the volatility as a negative exponential function of time until start of settlement.”

We assume that all forward contracts share the same time-stationary scaling func-
tion A(z, T), ¢ = 1,...,12. This seems reasonable as long as all contracts have the
same length of delivery. Motivated by the empirical findings, we want the scaling

2 Note, however, that a monotone decreasing volatility function does not fit the data perfectly.
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function to decay slowly for the first contracts and to level out relatively quickly. We
therefore choose an exponential scaling function where the time argument is squared:

MT* —1) = exp(=y1(T° = 1)*) + 12

Here y1, Y2 > 0 are parameters to be estimated. Note that it is not necessary to include
an additional parameter y3, yielding a scaling function of the form y3 exp(—y1(T* —
£)?) + 2. To see this, consider an MNIG-distributed vector X . If we multiply this
vector by the diagonal matrix I” with y on the main diagonal, it is straightforward to
see, using Property 3 of Appendix A, that the structure matrix of the resulting MNIG-
distributed vector remains unchanged. Therefore, it is possible to make the distribution
of X equal to the distribution of I" X by appropriately changing the vector and scalar
parameters of the distribution. Consequently, multiplying the scaling function by a
constant y3 would not improve the fit to historical log returns.

Next we investigate the correlation structure between forward contracts in order
to assign a suitable functional form to the time-stationary positive definite function
R(-) determining X' (¢, T®*). To estimate the correlation structure we use Spearman’s
correlation coefficient because, in contrast to the classical Pearson product—-moment
correlation estimator, it does not require the assumption that the returns have an
elliptical distribution.

Figure 2 on the facing page shows the empirical correlation between the contracts.
What is common across all plots is that the correlation decreases rapidly for the nearest
two or three quarters. For contracts in the short end of the forward curve there seems
to be a seasonal pattern in the correlation: the correlation with the other contracts
decreases steadily before it bottoms out two quarters ahead, then stays rather constant
for two quarters before again starting to decrease. In the long end of the forward curve,
the plot indicates that the correlation is lowest with the forward contracts with time of
delivery three months ahead or three months earlier. For the rest of the contracts there
is a mixed pattern in the correlation structure. After the initial rapid fall in correlation
in the two to three nearest quarters, it stays relatively constant or decays slowly. For a
more thorough empirical examination of the swap correlation structure at Nord Pool
we refer the reader to Frestad (2007).

In order to partly accommodate the remarks made above, we construct a function
which is capable of capturing a seasonal pattern in the correlation structure. Because
X (¢, T®) must be positive definite, we must restrict our attention to positive definite
functions when assigning a functional form to R(-). Since both the product and the
sum of two positive definite functions is a positive definite function, we see that the
following function is positive definite:

R(x) = (1 —k)exp(—01x?) + k———— exp(—63x7?)

sin(6,x)
92)6

The Journal of Energy Markets Volume 3/Number 3, Fall 2010



Modeling electricity forward prices using the multivariate NIG distribution

FIGURE 2 Empirical correlation between the contract in the title and the other contracts.
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Herex = |t =T7)—(—T;)|.i.j € {1.2,...,12}, whereask € [0, 1], p,q € (0,2)
and 01, 05, 63 > 0 are parameters that must be estimated from the data. The functions
exp(—6x?) and sin(fx)/0x are known to be positive definite (see, for example,
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Banerjee et al (2004)). In the proposed correlation function, the term sin(6x)/6x
is responsible for capturing the seasonal pattern, whereas the exponential functions
capture the fact that correlation decreases as time between contracts increases. The
parameter k determines how prominent the seasonal pattern is, and the parameter 63
determines how persistent the seasonal pattern is.

3.3 Estimated parameter values

Estimating the parameters of the MNIG distribution is fairly complicated, because
a direct maximization of the likelihood proves to be difficult (@igard et al (2005)).
Generally, the parameters of the MNIG distribution are most efficiently estimated
by the expectation—maximization algorithm (see McNeil ez al (2005) or @igérd et al
(2005) for details on how to implement this algorithm). However, because the elements
v(t, T%), A(t,T?®), B(t, T®) and X (¢, T*®) are determined in our model by functions,
explicit formulas for updating these parameters in the expectation—-maximization
scheme are generally not available. In this paper we therefore adopt a Bayesian
approach to parameter estimation, using the Markov chain Monte Carlo method out-
lined in Appendix B (for background on Markov chain Monte Carlo algorithms we
refer the reader to Robert and Casella (2004) or Gilks et al (1996)).

To reduce the number of parameters that must be estimated, we set the values
of the parameters p and ¢ in the correlation function equal to 1. Figure 3 on the
facing page shows the simulated Markov chains from two runs of the algorithm with
different initial values. Starting the algorithm with different initial values provides
valuable information for monitoring the convergence of the algorithm, because chains
started from different values can make lack of convergence apparent (see, for example,
Cowles and Carlin (1996) for a review on monitoring the convergence Markov chain
Monte Carlo methods).

Figure 3 on the facing page indicates that convergence to the stationary distributions
is fast and that the mixing in most cases is good. The exceptions are the chains for the
parameters by and by, where the chains are highly autocorrelated. Nevertheless, both
chains seem to have converged to the stationary distributions, and the only problem
is that the exploration of the stationary distribution is slower than desired.

In both runs of the algorithm we set the burn-in length to 2,000 iterations and obtain
the pooled estimates,? with corresponding standard deviations, as shown in Table 2
on page 14. Using a significance level of 5%, the parameters ag, bo and b; turn out
not to be significantly different from zero.

3 We have also fitted the model to monthly forward contracts. The shape of the covariance structure
is qualitatively the same, but the parameter estimates are slightly different. The interested reader
can contact the authors for additional details.
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FIGURE 3 Output from the Gibbs sampler plotted against iteration number.
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(a) k, (b) 64, (c) B2, (d) b3, () y1, (f) v2, (9) e, (h) 8, (i) ao, (j) a1, (k) bo and (1) b1. The black line shows output from
the first run, while the gray line shows output from the second run.

The solid lines in Figure 4 on the next page represent the implied correlation and
volatility structure from our model using the parameter estimates from Table 2 on the

next page. Historical correlation and volatility are represented by the dots.
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TABLE 2 Estimated parameter values with corresponding standard deviation.

Estimated Standard

Parameter value deviation
k 0.407 0.013
01 0.186 0.017
0> 7.631 0.079
03 0.792 0.032
Y1 0.554 0.058
V2 1.106 0.078
o 0.690 0.052
] 0.680 0.035
ag 0.0239 0.0278
ai 0.0217 0.0110
bo 0.0063 0.0086
by —0.0050 0.0061

FIGURE 4 Observed and modeled volatility and correlation.

Volatility (%)

2 4 6 8 10 12
Time to end settlement
(quarters)

Correlation

4 6 8 10
Distance
(quarters)

N

Volatility is annualized using 250 trading days.

4 ASSESSING THE FIT TO FORWARD RETURNS

In assessing the quality of the fit to forward returns we focus on two issues:

1) how well the MNIG model fits the univariate empirical distributions;

2) how well the MNIG model predicts the correlation and variance structure when

compared with data that was not used in the calibrating procedure.
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Issue 1) corresponds to an investigation of the in-sample fit to forward returns, while
issue 2) provides an out-of-sample examination of the fit to the correlation and variance
structure.

In order to have some relative measure of quality, we compare the MNIG model
with a market model where the log return of forward contracts is Gaussian distributed.
More specifically, under the objective probability measure P, the dynamics of forward
contracts is assumed* to have the following form:

3
ln%:t_)l)=M(1—TCS)+;@-(1—TCS)WI-, c=12,....d (6)
Here F¢(¢) denotes the price of a forward contract with delivery period [T}, T7] at time
t,0<t < T}, p(t —T))is adrift term, 0; (t — T;) and W;, i = 1,2, 3, are volatility
functions and independent standard Gaussian-distributed variables, respectively.

Let S denote the empirical covariance matrix of the dataset consisting of log returns
of the 12 forward contracts described in Section 3. By using principal components
analysis, S can be decomposed as S = VDV’, where D is a diagonal matrix whose
diagonal elements dy,1,d2 2, - . ., d12,12 are the eigenvalues of S, and V is an orthog-
onal matrix of order 12 whose i th column v; is the eigenvector corresponding to d; ;.

We estimate the volatility functions as:
oit —T) = /dive,

wherei = 1,2,3,¢ =1,...,12 and v, is the cth element of the ith eigenvector.
u(t —T7) is simply estimated as the empirical mean of the log return of the contract
with time to start of delivery ¢ — T7.

Although our proposed model is capable of modeling the joint dynamics of forward
prices, for illustrative purposes we find it more appealing to investigate how well the
model fits the univariate distributions. From Property 2 of Appendix A we can easily
deduce the marginal distribution of individual forward contracts in our MNIG model.
We then examine how well our model fits the empirical univariate distribution of the
forward contracts compared with the 3-factor model.

From Figure 5 on the next page we see that the MNIG model offers a better fit to
the observed return data when compared with the 3-factor model. The improvement
is especially visible in the tails.

From Figure 4 on the facing page we see that the model’s fit to historical variance and
correlation is not perfect. We therefore want to investigate the relative quality of this fit

4 A 3-factor model usually captures most of the term structure variation (see, for example, Litter-
man and Scheinkman (1991)). For a more dedicated discussion of the term structure of electricity
forwards see Section 7.3 of Benth et al (2008).
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FIGURE 5 Empirical log-density histograms of log-return distributions of individual forward
contracts.
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(a) F1(2), (b) F2(2), (c) F3(2), (d) Fa(2), (€) F5(2), (f) Fe(2), (9) F7(2), (h) Fe(2), (i) Fo(?), ()) F10(2), (k) F11(¢) and
() F12(2). The solid black line shows the fit from the MNIG model while the gray line shows the fit from the 3-factor

model.

using cross-validation. We exclude some of the data when calibrating the model, then
compare the covariance structure implied by the model with the covariance structure
of the dataset left out when calibrating. In order to have some relative measure of the
quality, we compare our model with the 3-factor Gaussian market model. As a second
benchmark, we include a Gaussian market model in the same form as indicated by
Equation (6), but with 12 factors instead of 3. The 12 volatility factors of this model

The Journal of Energy Markets Volume 3/Number 3, Fall 2010
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TABLE 3 Cross-validation variance prediction error for the proposed model and the factor
models with 3 and 12 factors.

Mean-squared difference between
observed and model-implied
variance structure

Year left Proposed 3-factor  12-factor

out model model model

2001 22.55 8.03 13.24

2002 23.35 36.50 28.05

2003 31.51 47.16 36.89

2004 12.91 8.56 11.13

2005 11.69 2.68 5.32

2006 2.77 5.34 2.54

Sum mean-squared 104.78 108.27 97.17

prediction error

TABLE 4 Cross-validation correlation prediction error for the proposed model and the
factor models with 3 and 12 factors.

Mean-squared difference between
observed and model-implied
correlation structure

Year left Proposed 3-factor 12-factor

out model model model
2001 0.0528 0.0476 0.1079
2002 0.0139 0.0882 0.0096
2003 0.0822 0.2693 0.0390
2004 0.0977 0.2766 0.0475
2005 0.0126 0.0680 0.0450
2006 0.0149 0.0996 0.0121

Sum mean-squared 0.2741 0.8493 0.2611
prediction error

are estimated using principal components analysis and, accordingly, this model is
capable of reproducing the historical covariance structure perfectly.

Table 3 shows that the overall variance prediction errors do not differ much, with
about 11% difference in sum mean-squared prediction error between the largest and
smallest sum mean-squared prediction error. However, when it comes to predicting
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the correlation structure of data that was not used to calibrate the model, there are
significant differences between the models. The total mean-squared correlation pre-
diction error of the 3-factor model is about 200% higher than it is for the other two
models. We also note that the cross-validating analysis of the 12-factor model indi-
cates that the covariance structure is not time stationary. Audet et al (2004) argue that
the volatility of forward contracts traded at Nord Pool is usually high in winter and
low in summer, and they use a deterministic seasonal volatility function to capture
this effect. They also note that, due to different annual hydro inflow, the volatility is
different in different years. For example, autumn 2002 was unusually dry, leading to
record high volatility levels in the winter.

5 CONCLUDING REMARKS

We have proposed the use of an MNIG distribution to model electricity forward prices.
We have shown that the MNIG model offers a superior fit to the empirical distribution
of log returns when compared with a Gaussian multifactor model. This comes as no
surprise, since the MNIG distribution nests the multivariate Gaussian distribution. We
have also demonstrated that our model, which has separate functions for determining
the volatility and correlation structure, compares favorably with a 3-factor model
when it comes to prediction of out-of-sample correlation structure.

Since the distribution of log return over each time step has a known distribution,
which can be characterized as a variance—mean mixture of a d -dimensional Gaussian
random variable with a univariate inverse Gaussian-distributed mixing variable, it is
easy to simulate from the model.

APPENDIX A: SOME PROPERTIES OF THE MULTIVARIATE
NORMAL INVERSE GAUSSIAN DISTRIBUTION

Property 1
Let X1, ..., X3s be M independent MNIG variables with common shape parameters
o, B and X but potential different location parameters w1, ..., iy and scale param-

eters 81,...,0y. Thenthe sum Y = X; + --- + X is also MNIG distributed (see
Digérd et al (2005)):

M M
Y ~ MNIG (a,ﬂ, > miy 6, 2)
i=1 i=1
Property 2

The marginal distributions of the MNIG distribution are univariate NIG distributions
(Lillestgl (2000)). If we denote the parameters of the marginal distribution of the ith
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component X; of X by «;, B;, 8; and u;, then they are related to the parameters «,
B, 6, X and p in the following way:

mi = i

81' =+ Eii(g

d
1
Bi= - > ZikBr
11 k=1

@ = ¢ @2 = BTB) +

Property 3

Assume that A is areal-valued d xd coefficient matrix and that b is a d x 1-dimensional
real vector. Then the linear transformation ¥ = b + AX of an MNIG-distributed
variable X with parameters o, 8,8, X and u is also MNIG distributed with parameters
given by (@igard et al (2005)):

a = aldetAl_l/d
B=("")B

§ = 8|det A|Y/?
L=>b+Ap

Y = AXA'|det A|72/4

APPENDIX B: SAMPLING SCHEME FOR ESTIMATING THE
PARAMETERS OF THE MULTIVARIATE
NORMAL INVERSE GAUSSIAN MODEL

In our forward-market model the parameters wv(¢, T*), B(¢,T*%), A(¢t,T*) and
XY (¢, T*®) are determined by the functions v(-), 8(-), A(-) and R(-), respectively. These
functions depend on the parameters ag, a1, bo, b1, ¥1, V2, k, p. ¢, 01, 6> and 63, as
described in Section 3. To reduce the dimension of the parameter space and, therefore,
to ease the estimation procedure, we have decided a priori to set the values of the
parameters p and ¢ equal to 1. Together with the parameters « and §, we stack the
remaining parameters in a vector = (&, §, ¥1, ¥2, 01, 62, 03, a9, a1, bg, b1, k). Our
goal is then to obtain the posterior distribution of 3 given the observed log returns
ri,¥2, ..., 1477. We now show how this can be accomplished using the Gibbs sam-
pler and the Metropolis—Hastings algorithm.

Because the log returns ry, ra, . . ., F1477 are assumed to be independent and iden-
tical MNIG distributed, the joint likelihood factorizes into a product of marginal
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likelihoods:
1477

L(ri.ra.....ruzr | =[] LG | )

i=1
Here L(r; | ) denotes the likelihood function of an MNIG distribution. Let 7 (%)
denote the prior density of 5. Bayes’s theorem relates the posterior distribution 7z (n |
r1,¥2,...,r1477) tothelikelihood function and the prior distribution via the following
formula:
a(n) [127 L(ri | )
Jam TG Lri ) dy

We are interested in obtaining an estimate of n conditional on the observations

(| ri.ra,....ray7) =

ri,F2,...,F1477. This can be obtained by finding the expectation of #:

Eln|ri,ra, ..., r1477] 2/177?(77 | ri.r2, ..., r1a77)dy

Explicit evaluations of these integrals are not possible. However, the Markov chain
Monte Carlo method provides an alternative, where we draw a sample from the pos-
terior distribution and obtain sample estimates of the quantities of interest, thereby
performing the integration implicitly.

The distributions involved above are too complex to generate samples directly.
We therefore rely on a sampling scheme like the Gibbs sampler. The Gibbs sampler
proceeds by splitting the parameter vector into groups and updating each group in
turn by a series of Gibbs transitions.

We assume that the components of parameter vector 3 are independent a priori:
that is, the prior distribution is of the form:

12

() o [ [ (m)

i=1

In the absence of good prior information, a convenient strategy is to use diffuse proper
priors. The prior distributions adopted are as follows: 7(n;) ~ N§°(1,10%), i =
L...,7, (i) ~ N(0,10%),i = 8,..., 11, 7(n12) ~ U(0, 1). Here N{°(1, 10%) is
a truncated Gaussian distribution with mean 1 and standard deviation 103. The lower
truncation limit is O and the upper truncation limit is co. N(0, 103) is a Gaussian
distribution with mean 0 and standard deviation 103, U(0, 1) is a uniform distribution
on the interval [0, 1]. With these prior specifications, parameter inferences are virtually
unaffected by the prior distributions.

Let the observed log returns ry, r», .. ., F1477 be denoted by r. The posterior dis-
tribution is then given by 7w (g | r) o< w(g)L(r | 1), where L(r | p) is the likelihood
function of the log returns. The full conditional distribution of the parameter 7;,
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pi(mi | r,n;+), is easily found by considering all the other parameters ;;, as
given constants in the posterior distribution. Unfortunately, it seems to be the case
that the full conditional distributions are not standard distributions that we can easily
generate samples from directly. Therefore, when using the Gibbs sampler to estimate
the parameters, we use a method like the Metropolis—Hastings algorithm within the
Gibbs sampler.

The sampling scheme is as follows. Give the parameter vector:

n= (01,5, V1,72, 01. 0>, 93,a0,a1,b0,b1,k)

suitable starting values such as 7@ = (@@ §© . k©) Repeat for n =
1,2,...,N.Fori = 1,2,...,12, do the following. Draw 77;" from the proposal
distribution g; (n} | 7]5”_1)) and set:

-1 -1
n* =Yl
-1 —1 -1
0™ =T R
Compute:
(n—1) *
gt | n7)
r= 2000 0 expliog(r(n® | ) — log(x(n®™ | r))]
qi(nf | n” )
If:
r=1, set nfn) =’
If:
n; with probability r,
r<1, set r]fn) =
n"™D with probability 1 — r

We use the following proposal distributions: fori = 1,...,5and 7, g; (7} | nl(”_l))

is equal to N(g’o(nl("_l), 0.05); g6 (1% | ngl_l)) is equal to N(i’o(né"_l), 0.25) fori =
8, ... 11;q:(n} | nin_l)) isequal to N(ngn_l), 0.01) and q12(n7, | 775"2_1)) isequal to
N,y n&';_l), 0.05). Here N, -) denotes a Gaussian distribution while N;*(-, -) denotes
a truncated Gaussian distribution with lower truncation limit / and upper truncation
limit u.

When obtained at iteration n, 1;(”) converges in distribution to a draw from the
true joint posterior distribution 7 (g | r). This means that, for sufficiently large n,
bigger than ng, say, {§” | n = no + 1,..., N} is a sample from the true posterior,
from which any posterior quantities of interest may be estimated. To estimate the i th
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component of  we simply use:

N
i =(N—no)™" > nf

n=ngp+1
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