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Dual-frequency band probes are needed for ultrasound (US) reverberation suppression and are use-

ful for image-guided US therapy. A challenge is to design transducer stacks that achieve high band-

width and efficiency at both operating frequencies when the frequencies are widely separated with

a frequency ratio �6:1–20:1. This paper studies the loading and backing conditions of transducers

in such stacks. Three stack configurations are presented and analyzed using one-dimensional mod-

els. It is shown that a configuration with three layers of material separating the transducers is favor-

able, as it reduces high frequency ringing by �20 dB compared to other designs, and matches the

low frequency (LF) transducer to the load at a lower frequency. In some cases, the LF load match-

ing is governed by a simple mass–spring interaction in spite of having a complicated matching

structure. The proposed design should yield improved performance of reverberation suppression

algorithms. Its suitability for reduction of probe heating, also in single-band probes, should be

investigated. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4976096]

[JFL] Pages: 1170–1179

I. INTRODUCTION

Second order UltRasound Field (SURF) imaging1,2 is a

dual-band ultrasound imaging method that requires the

simultaneous transmission of overlapping pulses at widely

separated frequencies. A high frequency (HF) imaging pulse

co-propagates with a low frequency (LF) manipulation pulse.

In medical applications, the HF may be �2–20 MHz, whereas

the LF may be�0.3–2 MHz. The HF pulse alters the propaga-

tion velocity of the HF pulse,2 and it also alters how the HF

pulse is scattered by non-linear scatterers.2,3 The HF-to-LF

ratio is typically vR� 6:1–20:1. Dual-band transducers with

such a ratio are potentially also useful for combined ultra-

sound imaging and therapy, as the latter may also require the

transmission of ultrasound at widely spaced frequencies.4

Piezoelectric transducers are most efficient when driven

at resonance, so an ultrasound probe producing pulses with

widely separated frequencies should contain two trans-

ducers—one for each operating band. SURF probes, there-

fore, contain two transducers in a stacked configuration, so

that the LF pulse is transmitted through the HF transducer.

The stack design comprises three sections, as shown in

Fig. 1: (i) the HF section, (ii) the isolation section, and (iii)

the LF section, each of which may contain multiple layers of

material. The purpose of the isolation section is to prevent

transmission of HF pulses into the LF section and to match

the LF section of the probe to the load. The challenge is to

design an isolation section which minimizes HF ringing

and matches the LF section to the load, irrespective of the

HF-to-LF ratio. This paper presents three isolation section

configurations and investigates their effect on the HF and LF

performance of a SURF imaging probe. It also aims to give a

physical understanding of the design, and to provide guide-

lines for designing SURF probes, akin to those developed

for single-band probes.5 Similar designs have been described

with HF-to-LF frequency ratios of 2:1, for the purpose of

optimizing transducers for B-mode6 and Doppler color flow7

imaging in medical ultrasound.

The SURF method is used for reverberation suppres-

sion8,9 and imaging of non-linear scatterers at high frequen-

cies.3,10 Its usefulness in estimating tissue elasticity

parameters is currently also under investigation.11 In each of

these applications, it is advantageous to have a large HF-to-

LF ratio, and to have continuous overlap of the HF and

LF transmission fields within the HF imaging region. The

HF-to-LF ratio cannot be increased indefinitely. As the LF is

decreased, the LF aperture must be increased to ensure that

the LF pressure is maximally spatially invariant across the

wave front of the HF pulse.12 Decreasing the LF also

increases the mechanical index (MI) of the transmitted LF

field. SURF reverberation suppression requires that the LF

pressure is sufficiently large in order to minimize electronic

noise in the post-processed image. For a certain LF pressure

requirement, the upper bound on the HF-to-LF ratio may be

limited by MI. It is, therefore, important to be able to tailor

the HF-to-LF ratio without affecting the HF performance.

As opposed to tissue harmonic imaging (THI) or pulse

inversion (PI), which utilize the second harmonic in the

received signal(s) to suppress reverberation noise, SURF

imaging may suppress reverberations by considering only

the fundamental band. SURF probes may, therefore, have

narrower HF band than probes which are used for THI or PI.

However, large HF bandwidth is still required to have high
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radial resolution. Large HF bandwidth is also necessary in

order to achieve high suppression of reverberations in SURF

processing. Shorter HF pulses are distorted less by the pres-

ence of the LF pulse since the LF pressure varies less over

the length of shorter HF pulses compared to longer HF

pulses. A long HF pulse will counteract the benefit of having

a large HF-to-LF ratio.

This paper focuses on how the HF backing impedance

and the LF loading impedance are affected by different

isolation section configurations. Due to the large HF-to-LF

ratio, the loading condition of the LF transducer is mod-

eled using one-dimensional lumped parameter models,

whereas the HF backing impedance is modeled with a one-

dimensional distributed model. The lumped models help to

quantify and understand how and why stack parameters

affect the LF transducer performance as they are simpler to

analyze mathematically. For completeness and self-

containment, an overview of the distributed and lumped

models is presented in Sec. II, along with the lumped

parameter model error relative to the distributed model.

Readers who are well-versed in acoustic theory may con-

sider skipping Sec. II and proceeding to Sec. III, where the

models are used to analyze and compare three isolation

section configurations.

II. WAVE PROPAGATION MODELS

Figure 1 shows the structure of the stack in the dual-

band probe. Within each section, each layer of material is a

plate with lateral dimensions that are much larger than the

thickness of the plate. Each plate can be analyzed with a

one-dimensional model of wave propagation, using either a

distributed model or a lumped parameter model. The distrib-

uted model is a powerful tool for performing stack simula-

tions, but is more difficult to use for analytic discussion. At

lower frequency, the lumped models provide an approximate

description of the stack, and are more suited for analysis. An

overview of the models is given before investigating differ-

ent isolation layer configurations. Note that in this paper, the

specific acoustic impedance is referred to simply as acoustic

impedance.

A. Distributed models

The distributed model for vibration in a material is con-

structed from considering compressional pressure waves that

propagate backwards and forwards in the stack. The resulting

representation of the plate is analogous with the representa-

tion of a transmission line. The characteristic impedance of

the transmission line is in the acoustic model analogous to the

characteristic impedance of the plate material, Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
q0=j0

p
;

where q0 is the mass density and j0 is the bulk compressibil-

ity. In the acoustic case, voltage is replaced by pressure, p,

and current by vibration velocity, u.13

The acoustic impedance seen through a plate into an

arbitrary load is an important quantity in stack analysis. Let

the characteristic impedance of the plate be Z0 and its thick-

ness d0. Let x be the angular frequency and the acoustic

impedance of the structure loading the plate be ZR ¼ ZRðxÞ.
When c ¼ cðxÞ ¼ aðxÞ þ |bðxÞ is the propagation constant

of the material, the acoustic input impedance is13

ZF
D xð Þ ¼ Z0

ZRcosh d0cð Þ þ Z0sinh d0cð Þ
Z0cosh d0cð Þ þ ZRsinh d0cð Þ ; (1)

where the subscript D indicates that a distributed model is

used for the plate, and superscript F denotes that the imped-

ance is considered forwards through the plate.

In a lossless, non-dispersive material, d0cðxÞ ¼ |bðxÞd0

¼ |xd0=c0 ¼ 2p|d0=k, where k is the wavelength of the

wave and c0 is propagation speed in the medium.

In general, the loading impedance ZR(x) is complex.

However, when the plate is loaded by a semi-infinite medium,

the loading impedance is simply the characteristic impedance

of the loading medium, a real constant. In this case, neglect-

ing losses, the absolute value of Eq. (1) has critical points in

d0=k ¼ n=4; n ¼ 1; 2;…, in which the function values are

jZF
DðnÞj ¼

Z2
0=ZR; n odd

ZR; n even:

(
(2)

When considering the acoustic impedance of many plates

that are stacked on top of one another, Eq. (1) is cascaded,

leading to a complicated expression that is difficult to evalu-

ate analytically.

The transmission line can be represented by a T-model,

shown in Fig. 2, or by a P-model, shown in Fig. 3, where

both are useful for making approximations at low frequencies.

B. Lumped parameter models

When the thickness of the plate is small compared to the

wavelength, the hyperbolic functions in the T- and P-

models can be approximated by first order polynomials. The

thickness of the plate, d0, can be written as a fraction of the

wavelength at a reference frequency f0, so that

d0 ¼ �0

c0

f0
¼ �0k0: (3)

In the lossless, non-dispersive case, the plate is approxi-

mated by two inductors and a capacitor, as shown in the

FIG. 1. Cross-sectional view of the structure of the transducer stack. From

left to right, the stack consists of a backing, a low frequency section, an iso-

lation section, and a HF section. Note that the illustration of the stack is not

to scale, and that each of the sections may consist of multiple layers of

materials.
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bottom panels of Figs. 2 and 3. The hyperbolic components

of the top panels simplify to

tanhðcd0=2Þ ¼ | tan ðpd0=kÞ � �0|px=x0; (4)

sinhðcd0Þ ¼ | sin ð2pd0=kÞ � �0|2px=x0; (5)

so that the values of the reactive components in the two

models are

L ¼ 1

2
LP ¼

px
x0

�0Z0; (6)

C ¼ 2CP ¼
2p
x0

�0

Z0

: (7)

The inductance in Eq. (6) depends on the mass per unit area

of the plate, whereas the capacitance in Eq. (7) is inversely

proportional to the compliance of the plate. These are valid

models when the thickness of the material is small compared

to the wavelength of the vibrations.14 The acoustic input

impedance of a T-model with a loading impedance ZL(x) is

ZF
T xð Þ ¼ ZRB xð Þ þ ZR xð Þ

ZC xð Þ þ ZRB xð Þ þ ZR xð ÞZLB xð Þ

þ ZLB xð Þ þ ZRB xð Þ þ ZR xð Þ
ZC xð Þ þ ZRB xð Þ þ ZR xð Þ ZC xð Þ; (8)

where ZLB(x) and ZRB(x) are the impedances in the left and

right branches of the T-model, respectively. ZC(x) is the

shunt impedance. Using Eq. (8), two special cases may be

noted. Let =f�g denote taking the imaginary component of a

complex number. When ZLBðxÞ � ZCðxÞ and

=fZLBðxÞ þ ZRBðxÞg � =fZRðxÞg, the plate may be

approximated by a single capacitor. Equation (8) reduces to

ZF
T xð Þ � ZR xð Þ

ZC xð Þ þ ZR xð ÞZC xð Þ; (9)

which is the expression describing the impedance of ZC(x)

and ZR(x) connected in parallel. When ZLBðxÞ � ZCðxÞ
and jZCðxÞj � j½ZRBðxÞ þ ZRðxÞ�j, the plate may be

approximated by a single inductor. Equation (8) reduces to

ZF
T ðxÞ � ZLBðxÞ þ ZRBðxÞ þ ZRðxÞ; (10)

which is the expression describing the impedance of

ZLBðxÞ; ZRBðxÞ; and ZR(x) connected in series. Using Eqs.

(6) and (7) to express ZLB(x) and ZC(x) for the lumped

model, it is found that the common requirement for these

special cases, ZLB (x)� ZC(x), also implies

ZLB xð Þ � ZC xð Þ ! x2 � 1

2

x0

p�0

� �2

: (11)

The second requirement for modeling the plate using a

single capacitor is generally true when the reactive compo-

nent of ZR(x) is inductive and larger than the inductive com-

ponent of the plate,

2px�0Z0=x0 � =fZRðxÞg; (12)

meaning that the load is more massive than the plate.

Interpreting the second requirement for modeling the plate

an inductor is more involved since, in general, ZR(x) is a

complex quantity. However, imposing the stricter require-

ment that jZRBðxÞj þ jZRðxÞj � ZCðxÞ, results in the

requirement that

jZR xð Þj � Z0

xH

2p�0x
1� 1

2

2p�0x
xH

� �2
" #

; (13)

FIG. 3. P-model equivalent circuit for a resonant slab of material, repre-

sented with a distributed (top) and lumped (bottom) model. The subscript R

indicates the loading material, and subscript B indicates the backing mate-

rial. The superscript F denotes the impedance which is seen forwards,

towards the load side of the plate, at a certain point. The superscript B

denotes the impedance which is seen backwards, towards the backing side

of the plate, at a certain point.

FIG. 2. T-model equivalent circuit for a resonant slab of material, repre-

sented with a distributed (top) and lumped (bottom) model. The subscript R

indicates the loading material, and subscript B indicates the backing mate-

rial. The superscript F denotes the impedance which is seen forwards,

towards the load side of the plate, at a certain point. The superscript B

denotes the impedance which is seen backwards, towards the backing side

of the plate, at a certain point.
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which, by applying the requirement in Eq. (11), simplifies to

jZR xð Þj � Z0

xH

2p�0x
¼ jZC xð Þj: (14)

In summary, thin plates of stiff or dense material, with a

high characteristic impedance, can be modeled as masses

when the loading impedance is low. Thin plates of compliant

or light materials, with low characteristic impedance, are

well approximated as springs when the loading impedance is

high. Examples of the model error are shown in Fig. 4 for

jaj ¼ jZRðxÞ=Z0j ¼ 1 and �0¼ 0.5. Note that the errors

decrease as �0 is decreased. Furthermore the error in the

capacitor model decreases as jaj is increased, whereas the

inductor model error increases as jaj is decreased. The P-

filter model in Fig. 3 has approximately the same perfor-

mance as the T-model in Fig. 2. Having all of the above

models available is useful when modeling and performing

mathematical analysis of a transducer stack.

III. ISOLATION SECTION ANALYSIS

The configuration of the layers in the isolation section

of the stack is investigated with the mathematical tools from

Sec. II. The purpose of the isolation section is to (i) mini-

mize the amount of HF ringing due to multiple reflections

within the LF and isolation sections, and (ii) to optimize the

loading conditions of the LF transducer.

A. Configurations

Sections III B and III C show how the three different iso-

lation section configurations, shown in Fig. 5, affect the HF

and LF transducers. In the analysis, the layers are enumer-

ated from front to back, as shown in Fig. 5, with layers 1 and

2 denoting two matching layers in front of the HF trans-

ducer, which is layer number 3. The isolation layers are the

fourth, fifth, and sixth layers of the stack, and the parameters

of each layer are enumerated accordingly. Layer 7 denotes

the LF transducer, whereas layer 8 is the backing.

B. HF Transmit performance

When investigating the effect that the isolation section

structure has on HF performance, it is necessary to use the

distributed model of the layers, i.e., Eq. (1), since they have

thicknesses that are comparable to the HF wavelength, and

Eqs. (4) and (5) do not hold. The HF transmit performance is

evaluated by using Eq. (1) and the Mason model15 for piezo-

electric transducers. In the simulation, a voltage with a

Gaussian envelope is applied to the HF piezoelectric layer.

The vibration velocity on the transducer surface is recorded,

and shown for the three stack configurations in Fig. 6. The

full list of parameters for the simulations is given in Table I.

The isolation section should eliminate spurious transmit

pulses that occur due to reflections of the HF pulse in the

layers behind the HF transducer. In the one-dimensional

model, this can be achieved by adjusting the backing condi-

tion of the HF transducer so that total reflection is achieved

at the back face of the HF transducer.

In SURF probes, the LF section acts as a semi-infinite

medium when determining the effective backing impedance

in the HF band since the HF pulse length is less than the

thickness of the LF section. The LF section also typically

has a high impedance. This means that the backing imped-

ance for the isolation section is large at HF. Since the HF

backing impedance should be minimized, the isolation sec-

tion should have the property of being a quarter-wave

impedance transformer at HF. Letting the isolation section

be a series of k quarter-wave transformers with �k¼ 0.25 the

HF backing impedance at the HF angular center frequency,

xH, can be calculated from Eq. (1) as

FIG. 4. The error in the T-section (left), capacitor (middle), and inductor (right) models relative to the distributed model. The relative error is given in decibels,

with normalized frequency on the abscissa, and the phase of the normalized loading impedance on the ordinate. The fractional thickness of the plate is

�0¼ 0.5 and the normalized load impedance magnitude is jaj ¼ 1.

FIG. 5. Isolation section configurations considered in this paper. The back-

ing is shown in black, and the transducers are gray. The layers of the LF sec-

tion are shown with a grid pattern, whereas the layers in the HF section are

shown with a line pattern. The isolation section layers are shown in white,

without patterning.
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ZB
HkðxHÞ ¼

ZL

Yk=2

i¼1

Z2
2i�1þrð Þ

Yk=2

i¼1

Z2
2iþrð Þ

; k even

Ykþ1ð Þ=2

i¼1

Z2
2i�1þrð Þ

ZL

Yk�1ð Þ=2

i¼1

Z2
2iþrð Þ

; k odd

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(15)

where the numeric subscripts of Z denote the layer number, in

accordance with the numeration in Fig. 5, and r is the number

of layers in the HF section. Since ZL is large, and the HF

backing impedance should be low, Eq. (15) shows that an odd

number of isolation layers is the natural choice for achieving

good isolation for the HF transducer. With low impedance in

each odd-numbered layer, and high impedance in each even-

numbered layer, the backing impedance will be low at HF.

In SURF transducers, HF and LF elements may not be

perfectly aligned, meaning that any given HF element could

either be positioned in front of an LF element, or in front of

the kerf in between LF elements. ZL is high or low, respec-

tively, in these cases. A design which mitigates the effect of

variation in ZL on the HF backing impedance is needed to

ensure that the HF performance is not affected by the rela-

tive positions of the HF and LF elements.

1. Configuration I

With a single isolation layer, the HF backing impedance

at the HF center frequency is minimum when selecting

�4� 0.25, while the characteristic impedance of the isolation

layer is low. Z4 is the characteristic impedance of the first

isolation layer, and ZL is the characteristic impedance of the

LF section. Equation (15) gives the HF backing impedance

with configuration I (k¼ 1),

ZB
H1 xHð Þ ¼

Z2
4

ZL

: (16)

Figure 6 (CI) and (PI) show how configuration I produces

spurious HF transmit pulses, with amplitudes approximately

–20 to –30 dB relative to the amplitude of the main HF trans-

mission pulse. The spurious pulses originate from the back

of the LF section, irrespective of the LF section impedance,

as shown by the 1.5 ms periodicity in Fig. 6 (CI) and (PI).

With a large ZL, there are also multiple reflections within the

isolation layer, particularly for �4> 1, which is shown by the

rapid variations in Fig. 6 (PI). The simulations show that the

thickness of the first isolation layer should be �4� 0.25 in

order to minimize reflections within the isolation layer.

Furthermore, the amplitudes of the spurious HF transmis-

sions are significant with configuration I.

2. Configuration II

Increasing the number of isolation layers to two as in

configuration II can homogenize the HF backing impedance

so that the variation in the effective impedance of the LF

section has less of an impact on the HF backing imped-

ance.16 Figure 7 shows an example of how the addition of

the second isolation layer homogenizes the HF backing

impedance with �4¼ �5¼ 0.25 and Z5� Z4.

FIG. 6. Simulations of HF transmissions when using different configurations (I, II, III), when the LF transducer is purely ceramic (C), ZL¼ 35 MRayl, or

purely polymeric (P), ZL¼ 3.0 MRayl. The excitation is a Gaussian pulse with center frequency xH and a relative bandwidth of 75%. The envelopes of the

transmit wave forms are shown in the decibel scale. The ordinate shows the variation in fractional thickness of the rear isolation layer in each case. Parameters

for each case are (I) Z4¼ 2.34 MRayl, �4 varied; (II) Z4¼ 2.34 MRayl, Z5¼ 44.5 MRayl, �4¼ 0.25, �5 varied; (III) Z4¼ 2.34 MRayl, Z5¼ 44.5 MRayl,

Z6¼ 2.34 MRayl, �4¼ �5¼ 0.25, �6 varied. All layers have an acoustic quality factor of Q¼ 50.
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With two quarter-wave transformers,

ZB
H2 xHð Þ ¼

Z2
4

Z2
5

ZL: (17)

Although ZB
H2ðxHÞ / ZL, the variation of ZL is mitigated by a

scaling factor (Z4/Z5)2, which is low if Z5� Z4. However, the

difference in the impedance of the second isolation layer and

the LF section ceramic is not large, so waves are transmitted

through and reflect off the back of the LF section. This

explains the presence of spurious HF transmissions seen in

Fig. 7 (CII). With a low ZL, there is close to total reflection

behind the second isolation layer, and the amplitudes of the

rapid spurious HF transmissions originating from the first iso-

lation layer are negligible, as shown in Fig. 7 (PII). However,

as the thickness of the second isolation layer is increased, it

becomes resonant in the HF band, and produces more spuri-

ous HF transmissions, as shown by the rapid variation in Fig.

7 (PII). Again, in order to minimize the amount of spurious

HF transmissions, the thickness of the second isolation layer

should be selected so that �5� 0.25, and the characteristic

impedance should be Z5>ZL.

3. Configuration III

Figure 6 (CI), (CII), (PI), and (PII) show that the first

and second isolation layers have optimal fractional thick-

nesses of �4� �5� 0.25. Even using these optimal thick-

nesses, when ZL is large there are still spurious HF

transmissions with amplitudes of –20 to –40 dB relative to

the amplitude of the main HF transmission pulse. Being in

front of the LF section, the isolation layers have a part in

determining the LF matching. Since relatively small varia-

tions in the thickness and characteristic impedance of these

layers strongly affect HF performance, these configurations

offer little flexibility in tuning matching for the LF section.

The lack of flexibility and persistent presence of spurious HF

transmissions therefore makes it interesting to examine how

a third isolation layer affects the HF performance.

From Eq. (15), configuration III (k¼ 3) yields an HF

backing impedance

ZB
H3 xHð Þ ¼

Z2
4Z2

6

Z2
5ZL

: (18)

By selecting a low impedance material for the third isolation

layer, the backing impedance becomes very low, since Z2
5

� ðZ4Z6Þ2 and ZB
H3ðxHÞ / 1=ZL < 1. Figure 6 (CIII) and

(PIII) shows varying the thickness of the third isolation layer

affects HF transmission. The amplitudes of the spurious

transmissions are reduced to –60 to –55 dB relative to the

amplitude of the main HF transmission pulse, and the change

is relatively constant with respect to the thickness of the

layer. When the thickness of the layer is small compared to

the HF pulse length the reflections from each interface in the

isolation section interfere so that the effective backing

impedance is given by Eq. (18). Conversely, when the thick-

ness is large compared to the pulse length, the reflection

from the interface between the third isolation layer and the

LF section does not interfere with reflections from the other

interfaces in the isolation section. The effective backing

impedance is therefore given by

ZB
H3 xHð Þ ¼

Z2
4

Z2
5Z6

: (19)

With Z6�Z4, the effective backing impedance is given by

the ratio Z4=Z2
5, which is small since Z5>Z4.

C. LF load matching

All the layers in front of the LF transducer have thick-

nesses that are a fraction of the HF wavelength. Furthermore,

the HF-to-LF ratio is large, so Eqs. (4) and (5) hold in the LF

band. Lumped models are therefore used to study the effect of

the isolation layers on the LF transducer.

1. Assumptions

With reference to Fig. 5 the HF section of the probe con-

tains two matching layers and a transducer operating at half-

wave resonance. The characteristic impedances of the layer

are increasing from the loading material to the HF transducer;

ZR<Z1< Z2< Z3, according to well-known principles.5 As

stated by Eqs. (11), (13), and (14), thin plates with character-

istic impedances that are higher than the load impedance are

well approximated as masses at low frequency. The three

layers of the HF section can therefore be lumped into a single

mass component with

L1;3 ¼
2p
xH

X3

i¼1

�iZi;

where �i ¼ dik
�1
H is the fractional thickness of each layer,

referenced to the wavelength at the centre of the HF

band, kH.

The impedance loading the first isolation layer has a

large inductance relative to the inductance of the first isola-

tion layer. The normalized load impedance magnitude, a, is

large, and the phase is close to 90	. For this case, Eq. (12)

FIG. 7. (Color online) The HF backing impedance with configurations I and

II. Z4¼ 2.34 MRayl, Z4¼ 44.5 MRayl, �4¼ �5¼ 0.25, and the LF layer has

ZL¼ 3.0 MRayl (P) or ZL¼ 35 MRayl (C).
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and Fig. 4 show that the first isolation layer can be modeled

by a single capacitance with

C4 ¼
2p
xH

�4

Z4

:

However, when considering a single isolation layer, it is

straightforward to include the mass component of the layer

in a T-model, and it is therefore included in this case, as seen

in Fig. 8(I).

Due to its high characteristic impedance it is tempting to

approximate the second isolation layer as a mass. However,

as shown by Fig. 9, the impedance loading the second isola-

tion layer does not always satisfy Eq. (13). The approxima-

tion would neglect the influence of the layer on the

resonance which occurs due to the mass–spring interaction

of the first isolation layer and the HF section. In the follow-

ing it will therefore be modeled as a P-filter. The resulting

circuit model is shown in Fig. 8(II).

The loading condition of the third isolation layer is

dominated at low frequency by the inductance of the sec-

ond isolation layer and the HF section. Again, Eq. (12) and

Fig. 4 show that it can be modeled with a single capacitance

so that

C6 ¼
2p
xH

�6

Z6

;

and the resulting circuit model is shown in Fig. 8(III).

One can expect from the circuit models in Fig. 8 that

the isolation section functions as a low pass filter with a res-

onance and Q-factor given by the characteristic impedance

and thickness of each layer. It is therefore to be expected

that the expression for the acoustic impedance loading the

LF transducer, ZF
L ðxÞ, is the ratio of two complex polyno-

mial functions. The loading impedance can be analyzed

simply by determining the location of the first pole of the

undamped impedance. At resonance, the loading impedance

will be real, and the LF transducer will be efficiently

matched to the load, depending on the Q-factor of the

resonance.

To increase readability, the following quantities are

defined and will be used in later expressions:

Zi;j ¼
Xj

n¼i

�nZn; Yi ¼
�i

Zi
;

fk
i;j ¼ 1þ �lZl

2Zj;k
; !j

i ¼ 1þ Yj

2Yi
;

fR ¼
�5Z5

Z1;3
; !R ¼

Y6

Y4

!5
6

!5
4

;

fT ¼ 1þ fR; !T ¼ Y4!
5
4Y6!

5
6;

xa ¼ 2px=xH:

(20)

Zi,j describes the total mass of layers i through j. Yi is the

compliance of a layer i. fk
i;j is a term containing the ratio

between the mass of layer k to the total mass of layers i
through j. When layer k has a negligible mass in compari-

son to layers i through j, fk
i;j ! 1. !j

i is a term containing

the ratio between the compliances of layers i and j. fR is the

ratio of mass between the second isolation layer and the HF

section of the stack, to which fT is also related. !R is

approximately the ratio of compliances between the first

and third isolation layers, modified by the compliance of

the second isolation layer. !T is the product of these com-

pliances. xa is the normalized angular frequency.

2. Loading impedance

a. Configuration I. Using the lumped parameter model,

the loading conditions of the LF section can be analyzed

though circuit analysis of the circuits in Fig. 8. Starting with

isolation section configuration I, the loading impedance of

the LF section of the stack can be expressed as

FIG. 8. The circuit models used to analyze the loading conditions of the LF

transducer with the isolation section configurations from Fig. 5.

FIG. 9. (Color online) Magnitude of the LF acoustic loading impedance for

three isolation section configurations. The impedances are normalized to the

characteristic impedance of the HF layer. The solid lines show the result cal-

culated using the distributed model, whereas the dashed lines show the result

using lumped parameters. Parameters for each case are (I) Z4¼ 2.34 MRayl,

�4¼ 0.25, (II) Z4¼ 2.34 MRayl, Z5¼ 44.5 MRayl, �4¼ �5¼ 0.25, (III)

Z4¼ 2.34 MRayl, Z5¼ 44.5 MRayl, Z6¼ 2.34 MRayl, �4¼ �5¼ �6¼ 0.25.
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ZF
L xð Þ ¼

ZR 1� x2
a�

2
4=2

� �
þ |xaZ1;4

1� x2
aZ1;3f

4
1;3Y4 þ |xaZRY4

: (21)

When the isolation layer is optimized for HF perfor-

mance, �4Z4� Z1,4, and ZF
LFðxÞ has two distinct resonances.

By evaluating the minimum of the denominator in Eq. (21),

the damped parallel resonance, x̂4, with purely resistive load

is found at

x̂4 �
xH

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Z1;3f
4
1;3

1

Y4

� 2Z2
R

Z1;3f
4
1;3

 !vuut : (22)

Omitting the characteristic acoustic impedance of the load-

ing material, ZR¼ 0, the undamped resonance is found at

x4 �
xH= 2pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y4Z1;3f

4
1;3

q : (23)

An example of the loading impedance in Eq. (21) is

shown in Fig. 9 alongside the impedance calculated with a

distributed model. As expected, the impedance increases

from xa¼ 0 to a peak at x4, before decreasing. The

lumped model follows the distributed model closely at

lower frequency, but overestimates the impedance magni-

tude around the peak. This deviation is caused by regard-

ing the layers of the HF section as a pure mass. Including

the compliance for each of these layers rectifies the over-

estimation problem, but complicates the mathematical

analysis.

The location of the resonance in the loading impedance

is dependent on the compliance of the isolation layer, Y4,

and the total mass of the HF section, Z1,3. The dependency

of x4 on �4 is illustrated in Fig. 10. As shown in Fig. 6 (CI)

and (PI), the first isolation layer should be a quarter of the

HF wavelength in order to minimize spurious transmit

pulses. The parameters that define the loading impedance in

Eq. (21) are therefore fixed according to the HF section of

the probe, and the resonance frequency x4 is also given by

HF design considerations.

b. Configuration II. Configuration II is modeled by the

middle circuit in Fig. 8. By circuit analysis, the loading

impedance can be expressed as

ZF
L xð Þ ¼

�
ZR 1� x2

a�5Z5Y4!
5
4

� 	

þ |xaZ1;3 fT � x2
a�5Z5Y4!

5
4

� 	




"

1þ |xaZRY4!
5
4 1þ Y5

2Y4!
5
4

� x2
a�

2
5=2

 !

�x2
aZ1;3Y4!

5
4 1þ Y5fT

2Y4!
5
4

� x2
a�

2
5=2

 !#�1

;

(24)

where several definitions from Eq. (20) have been utilized.

From Fig. 6, minimizing spurious HF transmission requires

�5� 0.25. Additionally, when xa is small, the term

x2
a�

2
5=2� 1. In this case the denominator is equivalent to

the denominator of an LC-circuit, where the equivalent

capacitance is proportional to the sum of the compliances

Y4þ Y5, and the inductance is proportional to the modified

sum of the mass of the second isolation layer and the HF sec-

tion, Z1,3þ 2�5Z5(1þ Y4/Y5). The impedance resonance fre-

quency is therefore approximately governed by the

combined compliance of the two isolation layers, and the

combined masses of the HF section and the second isolation

layer. The full expression for the resonance frequency of the

loading impedance in Eq. (24) is

x5 ¼
xH= 2pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�5Z5Y4!

5
4

q
"
fT þ 1þ 2

Y4

Y5

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fT þ 1þ 2

Y4

Y5

� �2

� fR 1þ 2
Y4

Y5

� �s #1=2

;

(25)

which reduces to

x̂5 ¼
xH= 2pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5Z5Y4!

5
4

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fT þ 1þ 2

Y4

Y5

r
; (26)

by neglecting the term x2
a�

2
5=2. Introducing the second isola-

tion layer causes the impedance resonance to shift down-

wards in frequency from x4 by a factor 1þY5(1þ fT)/2Y4.

The shift is given by the ratios fR, from Eq. (20); and the

ratio of the compliance in the two isolation layers, Y4/Y5.

The null of the numerator also shifts downwards in fre-

quency, in particular, when Z5 is large. This causes asymme-

try in the impedance resonance peak, as seen in Fig. 9,

FIG. 10. (Color online) Resonance frequency of the LF load impedance as a

function of fractional thickness, for three configurations. For each configura-

tion, the thickness of the rear layer is varied, while the thickness of each

other layer is kept constant at �¼ 0.25. The resonance is calculated using

lumped (dashed) and distributed (solid) models. The parameters for each

case are equal to those in Fig. 6.
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which shows an example of the loading impedance. The

lumped model follows the distributed model closely below

resonance, where it overestimates the impedance. This error

occurs due to the omission of the compliance of the layers in

the HF section.

The variation in the location of the impedance reso-

nance with �5 is shown for a fixed �4¼ 0.25 in Fig. 10. For

large Z5 the resonance is relatively constant with �5, up to a

certain thickness, where it starts to decrease as the thickness

increases. As Z5 is decreased, x5 becomes linearly decreas-

ing with �5. Further decreases in Z5 decreases the mass and

stiffness of the layer, and the two isolation layers combine to

act as a single spring.

Again, Fig. 6 (CII) and (PII) show that the spurious HF

transmissions are minimized when the fractional thickness

of the second isolation layer is �5 � 0.25. Selecting the layer

thickness to optimize HF performance therefore limits the

choice for �4 and �5, and Z4 and Z5. With �4¼ 0.25, and a

large ratio Z5/Z4, the difference x5 – x4 is not large, and

mainly depends on fR according to Eq. (26).

c. Configuration III. Configuration III is modeled by the

bottom circuit in Fig. 8. The LF loading impedance is found

from circuit analysis and can be written as

ZF
L xð Þ ¼

�
ZR 1� x2

a�5Z5Y4!
5
4

� 	

þ|xaZ1;3 fT � x2
a�5Z5Y4!

5
4

� 	




"

1þ |xa�5Z5ZR!T

1þ !R

�5Z5Y6!
5
6

� x2
a

 !

�x2
a�5Z5Z1;3!T

1þ fT!R

�5Z5Y6!
5
6

� x2
a

 !#�1

; (27)

where the parameter !T, defined in Eq. (20), denotes the

product of the model capacitances from Fig. 8. !R from

Eq. (20) denotes the ratio between the capacitances. The

numerator is no different than in Eq. (24), but the denomi-

nator is modified by the addition of the third isolation

layer, meaning that the location of the resonance peak is

moved. The distance between the maximum and minimum

of the impedance is increased, and the resonant peak

becomes more symmetric, similar to the peak of configura-

tion I. An example is shown in Fig. 9, where there is good

agreement between the lumped and distributed models

except at the resonance. The undamped resonance fre-

quency of Eq. (27) can be found at

x6 ¼
xH= 2pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�5Z5Y6!

5
6

q �
1þ fT!R

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fT!Rð Þ2 � 4fR!R

q 
1=2

: (28)

The location of the resonance is dependent on the mass of

the second isolation layer, �5Z5; the ratio between the mass

of the second isolation layer and the HF section, fR, fT; the

compliance of the third isolation layer, Y6; the ratio between

the compliance of the second and third isolation layers !5
6;

and the ratio of the compliance of the first and third isolation

layer, !R.

Equations (27) and (28) are involved expressions as

they must account for the case where Y6< Y4. However, by

letting Y6>Y4, e.g., �6>�4, the expressions simplify since

the resonant behavior of Y4 and Z1,3 can be neglected. In this

case the impedance loading the third isolation layer can be

approximated by the two inductances, L5 and L1,3 in Fig. 8,

and the impedance is simply governed by the mass–spring

interaction between the compliance of the third isolation

layer and the total mass of the layers in front. Equation (28)

is approximated by

x̂6 ¼
xH= 2pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5Z5Y6!

5
6

q fR

fT

� �1=2

¼ xH= 2pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5Z5 þ Z1;3ð ÞY6!

5
6

q : (29)

The variation in Eq. (28) with �6 is shown for a fixed

�4¼ �5¼ 0.25 in Fig. 10. The behavior is similar to that of

varying �4 in configuration I, but the resonance is lower due

to the added mass of the heavy second isolation layer. This

confirms the dominance of the mass–spring interaction of

Eq. (29), for Y6> Y4. As �6 increases, the model error

increases due to the omission of the mass of the third isola-

tion layer and the compliance of the layers in the HF

section.

With configuration III, Fig. 6 (CIII) and (PIII) show

that the HF performance is not sensitive to the selection of

the thickness of the third isolation layer. Y6 can therefore

be selected by varying the fractional thickness of the third

isolation layer, �6, without significant loss in HF perfor-

mance, meaning that the HF backing impedance optimiza-

tion and the LF loading impedance optimization are

decoupled.

IV. CONCLUSIONS

The HF-to-LF ratio in a dual-band ultrasound probe is

important in SURF imaging. It is a challenge to design a

probe with a specific HF-to-LF ratio while maintaining the

performance of the HF and LF transducers in the probe. This

paper shows how a stack design using three layers of mate-

rial in between the HF and LF transducers tackles this chal-

lenge. It shows that the layers in the isolation should have

alternating low and high characteristic impedance in order to

minimize spurious HF transmission. The low-loss simula-

tions in Fig. 6 show that spurious HF transmission ampli-

tudes are reduced to –60 to –55 dB relative to the amplitude

of the main HF transmission pulse.

With a single, low impedance layer in the isolation sec-

tion, the HF-to-LF ratio is typically �6:1, as shown by Fig.
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10. Adjusting the HF-to-LF ratio by varying the thickness of

the single isolation layer is detrimental to HF performance,

as shown by Fig. 6. In theory, this ratio can be increased

indefinitely by using three isolation layers, as shown by Eqs.

(28) and (29) and Fig. 10. However, the authors hypothesize

that very large ratios, vR> 20:1, are more efficiently

obtained by increasing the number of layers in the isolation

section, since very thick layers with low impedance may

introduce a large amount of absorption. Furthermore,

increasing the thickness of the third isolation layer causes

the magnitude of the loading impedance peak to decrease to

a point where the LF transducer is no longer efficiently

matched to the load.

Equations (21), (24), and (27) show that the loading

condition of the LF transducer follows closed form expres-

sions which are useful for design purposes. In certain cases

these expressions reduce to simple equations describing a

mass–spring interaction between layers with low characteris-

tic impedance and layers with high characteristic impedance,

as shown by Eqs. (23), (26), and (29).

The addition of a high impedance material in the

acoustic stack may open new possibilities for controlling

the temperature of the probe. Copper is a material with high

thermal conductivity, large characteristic impedance, and

large sound speed. Consequently, the thickness of a copper

layer is relatively large when used in the isolation section

of the probe. The combination of the relatively large thick-

ness and large thermal conduction makes the copper layer

suitable as a heat sink. Efficient use of such a heat sink

would increase the ability of a probe to withstand high

power transmissions.

It has not escaped the authors’ notice that the isolation

section may also be included in single-band probes. Using

two isolation layers between the backing and the transducer

in a single-band probe would enable cooling of such a probe.

The authors recommend that the possibilities for probe cool-

ing with the proposed design should be investigated, particu-

larly in light of recent developments in ultrasound mediated

drug delivery.
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APPENDIX: SIMULATION PARAMETERS

The parameters in Table I are used to generate the

examples of Figs. 6, 7, 9, and 10. Note that the isolation

layer thicknesses are given for �k¼ 0.25, but these are

varied in the various examples. See the relevant figure

caption for more details on the parameters in each

example.
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TABLE I. Parameters used to generate examples. HF and LF piezo have piezo-

electric constant h¼ 14.3
 108 V/m and relative dielectric constant �r¼ 103.

Layer # Z (MRayl) c (m/s) Q l (mm)

Backing 8 2.50 2500 50

LF piezo 7 20.00 3500 50 3111.50

Isolation 3 6 2.34 2500 50 69.44

Isolation 2 5 44.50 4500 50 125.00

Isolation 1 4 2.34 2500 50 69.44

HF piezo 3 20.00 3500 50 172.86

Matching 2 2 6.87 2500 50 69.44

Matching 1 1 2.36 2500 50 69.44

Load 0 1.65 1540 50
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