


Abstract

Critical properties of U(1) symmetric gauge theories are studied in 2+1 dimensions,
analytically through duality transformations and numerically through Monte Carlo sim-
ulations. Physical applications range from quantum phase transitions in two dimensional
insulating materials to superfluid and superconducting properties of light atoms such as
hydrogen under extreme pressure. A novel finite size scaling method, utilizing the third
moment M3 of the action, is developed. Finite size scaling analysis of M3 yields the
ratio (1 + α)/ν and 1/ν separately, so that critical exponents α and ν can be obtained
independently without invoking hyperscaling. This thesis contains eight research papers
and an introductory part covering some basic concepts and techniques.

Paper I [1]: The novel M3 method is introduced and employed together with Monte
Carlo simulations to study the compact Abelian Higgs model in the adjoint representa-
tion with q = 2. We find that α and ν vary along the critical line of the theory, and
propose that it is a fixed line theory. The results are related to a recent microscopic
description of zero temperature quantum phase transitions within insulating phases of
strongly correlated systems in two spatial dimensions. We propose the above fixed line
theory to be that of the quantum phase transition from a Mott-Hubbard insulator to a
charge fractionalized insulator in two spatial dimensions.

Paper II [2]: We study phase transitions in the compact Abelian Higgs model for
fundamental charge q = 2, 3, 4, 5. Various other models are studied to benchmark the M3

method. For q = 3 we find a phase transition line which is first order below a tricritical
point, and second order above. For all other integer q ≥ 2 we have considered, the entire
phase transition line is critical. The q = 2 results of Paper I are given in greater detail
and at a higher level of accuracy.

Paper III [3]: This is a proceeding paper based on a talk given by F. S. Nogueira
at the Aachen EPS HEP 2003 conference. A review of the results from Paper I and
Paper II on the compact Abelian Higgs model together with some results on q = 1
obtained by F. S. Nogueira, H. Kleinert, and A. Sudbø is given.

Paper IV [4]: The effect of a Chern-Simons (CS) term in the phase structure of two
Abelian gauge theories is studied. For the compact Maxwell-Chern-Simons theory we
obtain that for values g = n/2π of the CS coupling with n = ±1,±2, . . . the theory is
equivalent to a gas of closed loops with contact interaction, exhibiting a phase transition
in the 3DXY universality class. We also employ Monte Carlo simulations in combination
with M3 analysis to study the non-compact U(1) Abelian Higgs model with a CS term.
The critical exponents α and ν vary continuously with the strength of the CS term.

Paper V [5]: We study the critical properties of the N -component Ginzburg-Landau
theory. The model is dualized to a theory of N vortex fields interacting through a
Coulomb and a screened potential. The model with N = 2 components exhibits two
anomalies in the specific heat. From the critical exponents α and ν, the mass of the gauge
field, and the vortex correlation functions, we conclude that one anomaly corresponds to
a charged inverted 3D XY fixed point, while the other corresponds to a neutral 3D XY
fixed point. For arbitrary N there are N fixed points, one corresponding to an inverted
3D XY fixed point and N − 1 corresponding to neutral 3D XY fixed points.



IV

Paper VI [6]: We consider the vortices in the 2-component Ginzburg-Landau model
in a finite but low magnetic field. The ground state is a lattice of co centered vortices
in both order parameters. We find two novel phase transitions. i) A “vortex sub-lattice
melting” transition where vortices in the field with lowest phase stiffness (“light vor-
tices”) loose co centricity with the vortices with large phase stiffness (“heavy vortices”),
entering a liquid state. Remarkably, the structure factor of the light vortices vanishes
continuously and this transition is in the 3D XY universality class. ii) A first order
melting transition of the lattice of heavy vortices in a liquid of light vortices.

Paper VII [7]: The phase diagram and critical properties of the N -component
London superconductor are studied in zero and finite magnetic field. Direct and dual
gauge field correlators for general N are given. The model with N = 3 exhibits three
anomalies in the specific heat. We demonstrate the existence of two neutral 3D XY fixed
points and one inverted charged 3D XY fixed point. For the general case, we explicitly
identify one charged vortex mode and N−1 neutral vortex modes. The model for N = 2
and equal bare phase stiffnesses corresponds to a field theoretical description of an easy
plane quantum antiferromagnet. In this case, the critical exponents are computed and
found to be different from 3D XY values. The N -component model in an external
magnetic field, is shown to have a novel feature of N − 1 superfluid phases arising
out of N charged condensates. In particular, for N = 2 we point out the possibility
of two novel types of field induced phase transitions in ordered quantum fluids: i) A
phase transition from a superconductor to a superfluid or vice versa, driven by tuning
an external magnetic field. This identifies the superconducting phase of liquid metallic
hydrogen as a novel quantum fluid. ii) A phase transition corresponding to a quantum
fluid analogue of sub-lattice melting, where a composite field induced Abrikosov vortex
lattice is decomposed and disorders the phases of the constituent condensate with lowest
bare phase stiffness. Both transitions belong to the 3D XY universality class. For
N ≥ 3, there is a new feature not present in the cases N = 1 and N = 2, namely a
partial decomposition of composite field induced vortices driven by thermal fluctuations.

Paper VIII [8]: We study the phase structure of a 2-component superconductor
in a high magnetic field. We identify a regime where first, at a certain temperature a
field induced lattice of co centered vortices of both order parameters melts, causing the
system to loose superconductivity. In this state the system retains a broken composite
symmetry and we observe that at a higher temperature Tc it undergoes another phase
transition where the disordered composite vortex lines are “ionized” into a “plasma”
of constituent vortex lines in individual order parameters. This is the hallmark of the
superconductor-to-superfluid-to-normal fluid phase transitions projected to occur in e.g.
liquid metallic hydrogen.



Acknowledgment

First I want to express my deepest gratitude to Professor Asle Sudbø for giving me
the opportunity to be his doctorate student. Asle is extremely dedicated and passionate
when it comes to physics, and I have been very fortunate to work on problems to which
Asle has been dedicated. This has given me almost unlimited access to his time, and I
am indebted for everything that he has taught me and for promoting my research. I am
confident that I could not possibly have received better guidance.

During my entire Ph.D. period I have been rooming and collaborating closely with
Jo Smiseth. This has been a true pleasure. I strongly believe that we have accomplished
far more together than twice the amount that I could have managed on my own. I
have really appreciated his company these years, and I am happy that I will continue
cooperating with him in the future.

Figure 1: Our group as it appeared August 26th. 2005. From the left: Egor Babaev,
Eivind Smørgrav, Kjetil Børkje, Lars Erik Walle, Martin Grønsleth, Jo Smiseth, Asle
Sudbø, Eskil Kulseth Dahl, Steinar Kragset, and Joakim Hove.

Next I want to acknowledge a number of people that have contributed to this thesis
in various ways. Egor Babaev is acknowledged for introducing me to the exciting field
of liquid metallic hydrogen and the multi component Ginzburg-Landau theories. Egor
has also been entertaining me late evenings at the office by sharing his opinions on
everything from anthropology to second hand cars. Joakim Hove gave me the softest
possible transition to my scientific career, by generously donating his computer code
and patiently introducing me to everything from parallel computing to vortex physics.
Flavio Nogueira is acknowledged for close collaboration on the first four articles. Kari
Rummukainen is acknowledged for generously letting me use his Ferrenberg-Swendsen
reweighting software, without which most of this work would have been impossible.

V



VI

Neil Ashcroft has had an indirect, but important influence on the last four articles
through Egor, and he generously met with Jo and me at the 2005 APS March meeting.
Vilde Tingleff, Øyvind Tingleff, Kjetil Børkje, and Steinar Kragset are acknowledged for
helping me with this manuscript. Finally a warm thanks goes to all coffee drinkers and
lunch eaters for a jolly good time. I am indebted to each and every one of you.

The Department of Physics at NTNU is gratefully acknowledged for financing this
work through a university fellowship. Moreover, I thank The Research Council of Norway
and NTNU for funding a huge amount of computation time, roughly 1200 000 CPU-hours
in total, on the SGI Origin 3800 parallel computers.
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1 Introduction

Physics is about describing and explaining nature in terms of mathematics. Successful
physical theories have in common the ability to pinpoint the important features of the
problem and ignore the unimportant details. Usually, there is a whole hierarchy of
different theories offered at different levels, describing the same phenomenon. For some
purposes it suffices to treat a system classically, and for others a more microscopic
approach, such as a quantum mechanical description, is appropriate. In this context
effective theories have had an enormous success. The most notable example in solid
state physics is perhaps the Fermi liquid theory of metals. The ingenious assumption that
the electrons in an ordinary metal such as aluminum can essentially be approximated
by a renormalized noninteracting electron gas with quantum numbers in one-to-one
correspondence with the true noninteracting system, has given a tremendous insight in
the physics of metals. The Fermi liquid theory is the corner stone in solid state physics,
and it is hard to see how the alternative, ab initio calculations on all different metals,
could have achieved the same success. Another notable example is the Landau-Ginzburg-
Wilson theory approach to phase transitions and critical phenomena. This motivates the
use of effective models in physics, even in the cases where there is no direct microscopic
foundation, but where the theory is written down purely on symmetry grounds.

Some of the most fascinating phenomena in physics today are associated with strongly
correlated systems in which collective quantum effects play a dominating role, leading to
a breakdown of the Fermi liquid theory. Prominent examples of this are high temperature
superconductivity and the quantum Hall systems. A main thrust of modern condensed
matter physics is to characterize and explain these exotic phenomena. Typically, a solid
state system consists of 1023 particles that interact in some fashion, thus an excellent
framework to describe these strongly interacting degrees of freedom is field or gauge the-
ory. Traditionally, gauge theories have been the domain of high energy physics, but with
the discovery of the high temperature superconductors and the quantum Hall materials
in the 1980s, it has become an important tool in solid state physics. The gauge theo-
ries of condensed matter physics basically come in two categories; the phenomenological
theories written down on symmetry grounds such as the Ginzburg-Landau (GL) theory
of superconductivity, and the emergent gauge theories deduced from some underlying
microscopic model. In the former case the gauge field is typically the electromagnetic
vector potential that couples minimally through the charge of a particle, whereas in the
latter case the gauge field is typically some emergent field enforcing a local constraint.

This thesis is about critical properties of various U(1) gauge theories in 3 or (2+1)
dimensions. We have studied the compact Abelian Higgs model in Paper I [1], Paper
II [2], and Paper III [3]. For fundamental coupling q = 2 this is an effective theory for
two types of bosons hopping on a two dimensional lattice. In Paper IV [4] we studied

1



2 CHAPTER 1. INTRODUCTION

the effect of a Chern-Simons term on the critical properties of two different U(1) gauge
theories. In Paper V [5] and Paper VII [7] we studied the 2-component GL model
and its N -component generalization in zero magnetic field. Finally in Paper VI [6] and
Paper VIII [8] we studied the 2-component GL model in an external magnetic field.

The N = 2 GL model can be thought of as a phenomenological model of a supercon-
ductor with two individually conserved matter fields. One candidate system with these
properties is liquid metallic hydrogen, projected to become superconducting with both
electronic and protonic Cooper pairs at extreme pressure [9,10]. An ordinary supercon-
ductor may set up a dissipationless supercurrent of charges when it is subjected to a DC
current or a magnetic field. A superfluid, like 4He, is able to set up a dissipationless flow
of mass in a rotating container. We show that the 2-component GL model possesses
two modes, one neutral mode resembling the theory of a superfluid and one charged
mode resembling the theory of a superconductor. The physical consequence of this is
that the system is able to sustain both dissipationless co directed and counter directed
flows of superconducting electrons and protons protected by the neutral and charged
modes, respectively. When this system is exposed to an external magnetic field, it can
sustain four different phases. At low temperature and low magnetic field it may sustain
both superfluidity and superconductivity. This means that if the system is subjected
to a DC current or a magnetic field it may set up a counter directed flow of electrons
and protons. On the other hand, if the system is rotated it will set up a co directed
supercurrent of electrons and protons, where there is no net transport of charge but
dissipationless transport of mass. Thus, this system cannot be characterized exclusively
as a superfluid or as a superconductor; it is a novel quantum fluid combining the two
properties. Another phase at high magnetic field and intermediate temperature sustains
superfluidity in a metallic background. Thus if the state of liquid metallic hydrogen is
ever realized, it should display two novel quantum fluids; the superfluid superconductor
and the metallic superfluid.

The same model describing the liquid metallic hydrogen, but with equal phase stiff-
nesses for the two condensates, is suggested as an effective model for an easy plane
quantum antiferromagnet in two dimensions at zero temperature [11–14]. In this case
the matter fields originate with a bosonic representation of spin operators, and the the-
ory is claimed to describe a transition from a Neél state to a paramagnetic valence bond
ordered state.

The surprising fact that two such apparently disparate physical systems can be de-
scribed by the same theory displays the strength and beauty of gauge theories. Critical
properties and phase structure of physical systems are largely independent of micro-
scopic details, but rely on a few important aspects such as symmetries and dimension-
ality. Thus, in writing down the field theory of a system one is forced to sort out these
questions. Once this is done, the field theory provides a clean model to study these
matters analytically or numerically on a computer.

The outline of this thesis is as follows. First I give a brief introduction to some models,
concepts, and techniques necessary to understand the papers listed above. Chapter
2 covers phase transitions, Chapter 3 covers topological excitations and duality, and
Chapter 4 covers Monte Carlo techniques including some post processing techniques.
In Chapter 5, I give a tour of the results obtained on the N = 2 GL model and its
application to liquid metallic hydrogen. In my opinion, this is the most exotic and least
known of the physical systems we have investigated. Thus it should be of interest to
most readers, and yet it captures the essential physics needed to understand the topics
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2 Phase Transitions

Matter appear in many different states such as solids, liquids, and vapors, metals can
become ferromagnetic or antiferromagnetic and some even become superconducting. A
main thrust of condensed matter physics is to identify, characterize, and explain the
different states of matter and the transitions between them. Some of these transitions,
like the boiling and freezing of water, are every day phenomena vital to life as we know
it. The modern investigation of phase transitions can be said to start in 1869 with
the discovery of Thomas Andrews that there is a special point for CO2 at about 31◦C
and 73 atmospheres pressure where the liquid phase and the vapor become indistin-
guishable [15]. Curiously enough, CO2 becomes opaque in the vicinity of this point.
Thirty years later Pierre Curie discovered that iron also displays a special point which
is the highest temperature in zero magnetic field where iron can remain permanently
magnetized [16]. Curie realized the parallel between the density-temperature curves of
CO2 and his magnetization-temperature curve for iron, and denoted such points critical
points.

The theory of phase transitions can roughly be divided into two types of problems;
what are the interactions responsible for a particular transition, and how should one
characterize and handle a transition once the governing forces are known. In this chapter
I will mainly deal with the latter question. First I will introduce some necessary notation
from statistical mechanics, then I will introduce some models, and finally go through
some important concepts that are used throughout this thesis. The general references
that I have used for this chapter are [17–23].

2.1 Statistical Mechanics

The difficulty associated with phase transitions is that they occur in ensembles of many,
say 1023, particles. Instead of solving the equations of motion for all these particles, sta-
tistical mechanics attempts to treat them in a probabilistic way by considering macro-
scopic quantities such as pressure, magnetization, and density. The central quantity
is the Hamiltonian H , which gives the total energy of the system in a given state. In
thermal equilibrium with a reservoir at temperature T the microscopic states {Ψ} are
distributed according to the Boltzmann probability

pB =
1

Z e
−βH[Ψ], (2.1)

5



6 CHAPTER 2. PHASE TRANSITIONS

where β = 1/kBT is inverse temperature and kB is the Boltzmann constant. The nor-
malization constant Z is the partition function defined by

Z =

∫
DΨe−βH[Ψ], (2.2)

which is a functional integral over all states Ψ of the system. All possible physics of a
system is encoded in the partition function, and thermodynamic quantities such as the
internal energy U = −∂ lnZ/∂β, the specific heat CV = −kBβ

2∂2 lnZ/∂β2, and the
Helmholtz free energy F = − 1

β lnZ ,

F = U − TS, (2.3)

are directly related to it. Thus, the problem of understanding phase transitions can be
reduced to calculating the partition function for various Hamiltonians.

At the simplest level, phase transitions can be understood from Eq. (2.3) in the
following way; a phase is stable if the free energy F has a minimum and is a smooth
analytic function for the particular temperature regime. Minimizing F can be done in
one of two ways. At low temperature it is done by lowering the internal energy U , which
means ordering the system. At higher temperatures F is minimized by increasing the
entropy S, which is done by disorganizing the system. However, achieving both low U
and high S are conflicting goals, and phase transitions may emerge from the competition
between the two. The low temperature phase will be denoted the ordered state and the
high temperature phase will be denoted the disordered phase.

TTM

O First Order

TTc

O Continuous

Figure 2.1: The order parameter O plotted against temperature for a first order (left
panel) and a continuous phase transition (right panel).

The system abruptly changes its macroscopic behavior when temperature is tuned
through a phase transition. Whereas stable phases have analytic and smooth thermo-
dynamic variables, phase transitions are associated with singularities and non-analytic
behavior in these variables. There are basically two ways that such a transition can oc-
cur. The first possibility is that the two different phases coexist at the phase boundary.
Since the distinct phases have different macroscopic properties, these must be discontin-
uous at the phase transition. Such transitions are denoted discontinuous or first order
phase transitions, and are associated with a latent heat which is released as the system
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passes through the transition from below. The other possibility is the continuous or sec-
ond order phase transitions where the two phases become alike at the phase boundary.
These transitions are characterized by a diverging correlation length ζ, which means
that fluctuations are correlated at all length scales. This forces the system to be in one
unique critical phase and the differences in macroscopic variables on both sides of the
transition go smoothly to zero.

2.2 Spontaneous Symmetry Breaking

Let G be the symmetry group containing all the symmetry operations under which the
Hamiltonian H is invariant. This means that if G is a representation of G and

H(GΨ) = H(Ψ), (2.4)

H possesses the symmetries of G. In general the high temperature disordered phase is
invariant under the same symmetry group as the Hamiltonian. All observables that are
affected by operations in G have zero thermal averages. Ordered phases are distinguished
from disordered phases by the appearance of thermodynamic averages of observables O
which are not invariant under G. This means that the symmetry group of the ordered
state Go is smaller than G, and the symmetry ∆G = G − Go is said to spontaneously
broken. The observables O are called order parameters, see Fig. 2.1.

2.2.1 Ising Model

TTC

h

h

M

h

M

Figure 2.2: Left panel: the phase diagram of the 2D Ising model. Middle panel: the
magnetization M(h) for a fixed temperature below Tc experiences a discontinuity at
h = 0, corresponding to a first order phase transition. Right panel: the magnetization
M(h) for a fixed temperature above Tc is continuous across h = 0.

The Ising model is a microscopic model for an easy axis ferromagnet, where spins
can point either up or down on a regular lattice. The spins interact with their near-
est neighbors so that it is energetically favorable to point in the same direction. The
Hamiltonian is given by

H = −J
∑

〈i,j〉

SiSj − h
∑

i

Si, (2.5)

where Si ∈ {1,−1} is the spin at site i, 〈i, j〉 means sum over nearest neighbors, J > 0 is
the ferromagnetic coupling constant, and h is a magnetic field parallel to the axis of the
magnet. The Ising model is a sort of minimal model in the theory of phase transitions,
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in the sense that it captures the essential physics of the phenomenon. Lars Onsager
solved this model analytically in d = 2 dimensions for h = 0 through a tour de force in
1944 [24].

The magnetization

M =
1

N

〈
∑

i

Si

〉
, (2.6)

where N is the total number of spins and 〈 〉 means thermal average, is a good order
parameter for this system. The h− T phase diagram is shown in the left panel of Fig.
2.2. Above the line h = 0 spins collectively align up and below h = 0 they align down.
The line h = 0 for T < Tc corresponds to a first order phase transition, where the
magnetization is discontinuous when h is varied across this line. The line h = 0 for
T > Tc is not associated with any singularities and the magnetization is continuous
when crossing this line. At T = Tc however, the first order line ends at a critical point,
i.e. a second order phase transition. For h = 0 the Hamiltonian Eq. (2.5) is invariant
with respect to flipping all spins

Si → −Si ∀ i ∈ [1, . . . , N ]. (2.7)

This is a global Z2 or Ising symmetry. In the disordered phase the magnetization is
invariant under the Z2 symmetry, but when temperature is lowered across Tc the spins
spontaneously align in some arbitrary direction, the Z2 symmetry is broken, and M
attains an expectation value.

2.2.2 XY Model

The XY model describes an easy plane ferromagnet where spins are free to rotate in the
xy plane

H = −J
∑

〈i,j〉

Si · Sj = −J
∑

〈i,j〉

cos (θi − θj), (2.8)

where Si is a two-component vector with length |Si| = 1. Alternatively, superfluid
helium may be described by this model, through a macroscopic condensate wave function
ψ(r) = |ψ|eiθi . The Hamiltonian Eq. (2.8) is invariant with respect to rotating all spins
an angle ϕ

θi → θi + ϕ ∀ i ∈ [1, . . . , N ]. (2.9)

This is a global U(1) symmetry. The Mermin-Wagner theorem states that a continuous
symmetry cannot be spontaneously broken in a system with dimensionality less than
or equal to 2 [25]. Nevertheless, the 2D XY model exhibits the famous Berezinskii-
Kosterlitz-Thouless transition [26,27], in which the low temperature ordered phase with
power law correlation functions evolves into the disordered phase which exhibits ex-
ponentially decaying correlation functions. In d = 3 dimensions the XY model goes
through a second order phase transition in which the spins spontaneously align in an
arbitrary direction to spontaneously break the U(1) symmetry. A global order parame-
ter for this transition is the helicity modulus Υ [28–30], which probes the stiffness with
respect to a twist in the phase. Formally it is defined as the second derivative of the free
energy with respect to a twist δθ,

Υ =
1

3N

〈
∑

iµ

cos (∆µθi)

〉
− Jβ

3N

〈


∑

i,µ

sin (∆µθ)




2〉

, (2.10)
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where ∆µ is the lattice differential operator. In the case of superfluidity, Υ may be
viewed as the superfluid density. When Υ > 0 there is global phase coherence and when
Υ = 0 this coherence is lost, thus Υ probes the superfluid to normal phase transition in
helium.

2.2.3 Ginzburg-Landau Model

The Ginzburg-Landau (GL) model was originally written down based on symmetry and
physical intuition by Vitaly Ginzburg and Lev Landau in 1950 [31]. The theory describes
a charged condensate, i.e. a superconductor, through a local complex matter field Ψ(r)
which couples minimally to the electromagnetic gauge field A(r),

H =

∫
dr

[
α(τ)|Ψ(r)|2 +

u

2
|Ψ(r)|4 +

1

2m
|(∇− ieA(r))Ψ(r)|2 +

1

2
(∇×A(r))2

]
,

(2.11)
where α(τ) = α0(T − TMF) is the temperature dependent coupling constant that drives
the system through the phase transition, TMF is the mean field transition temperature,
e and m are the effective charge and mass of a Cooper pair, and u is a temperature
independent GL parameter1. The amplitude |Ψ(r)|2 is to be interpreted as the local
density of Cooper pairs. The model can be shown to have two length scales

λ(τ) =

√
mu

4e2α(τ)
, ξ(τ) =

√
1

2mα(τ)
, (2.12)

where λ is the magnetic penetration length which sets the scale for the screening of
a magnetic field and ξ is the correlation length which sets the scale over which |Ψ(r)|
varies. The Ginzburg-Landau parameter κ = λ/ξ is a dimensionless parameter in the
problem.

The Ginzburg-Landau Hamiltonian Eq. (2.11) is invariant with respect to a local
U(1) symmetry (U(1) gauge symmetry)

Ψ(r) → Ψ(r)eiϕ(r) A(r) → A(r) +
1

e
∇ϕ(r). (2.13)

This means that the symmetry operation may be performed in a local region in space,
involving a finite number of variables. Elitzur’s theorem states that a local symmetry
cannot be spontaneously broken, since non gauge invariant quantities are bound to zero
by symmetry [32]. Consequently, a phase transition in a system with local symmetry
cannot have a local order parameter. For κ > κtri the Ginzburg-Landau model Eq.
(2.11) exhibits a second order phase transition in which the gauge field A attains a
mass mA through the Anderson-Higgs phenomenon [33, 34]. For κ < κtri, the phase
transition is first order [35]. In reference [35], it was furthermore established that the
difference between type I and type II behavior is the same as the difference between
superconductors exhibiting first and second order phase transitions. The mean field
value of κtri = 1/

√
2. Through large scale MC simulations, the tri-critical value of κ has

been determined to be κtri = (0.76± 0.04)/
√

2 [35].

1Note that c, ~, and µ0 have been put to one for notational convenience.
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2.2.4 London Model

For strong type II superconductors, i.e. large κ, the fluctuations in the amplitude |Ψ(r)|
can be neglected and the matter field takes on the form Ψ(r) = |Ψ|eiθ(r). This is the
London approximation which leads to the London superconductor model

H =

∫
dr

[ |Ψ|2
2m

(∇θ(r) − eA(r))2 +
1

2
(∇×A(r))2

]
. (2.14)

This Hamiltonian exhibits the local U(1) symmetry

θ(r) → θ(r) + ϕ(r) A(r) → A(r) +
1

e
∇ϕ(r). (2.15)

In d = 3 dimensions the London model Eq. (2.14) always undergoes a second order
phase transition in which the gauge field A attains a mass mA.

The mass of the gauge field mA is a global quantity that may be extracted from
correlators. The local magnetic field B(r) = (∇ × A(r)) is a gauge invariant operator
which can attain a nonzero expectation value. Its correlator is defined by

GB(r) = 〈B(0) · B(r)〉 , (2.16)

and the Fourier transform is defined by

GB(q) = 〈B(−q) · B(q)〉 . (2.17)

The general structure of GB(q) is

GB(q) ∼ 2q2/β

q2 + Σ(q)
, (2.18)

where Σ(q) is the self energy of the system. Close to the critical point this can be fitted
to the Ansatz [36]

Σ(q) = m2
A +A|q|2−η + O(|q|δ), (2.19)

where η is a critical exponent which is to be discussed later. Thus mA can be obtained
from

m2
A = lim

q→0

2q2

β
G−1
B (q). (2.20)

Since GB(q) is the correlator of the magnetic field, mA may be identified as the inverse
of the magnetic penetration length λ. Thus the Higgs mechanism is in fact synonymous
with the Meissner effect in this case. In Chapter 3 it will be shown how to relate mA to
vortex correlators.

2.3 Critical Exponents

The critical behavior of systems near a second order phase transition turns out to be
insensitive to microscopic details, and the different models fall into a handful of differ-
ent classes. These universality classes are characterized by global features such as the
symmetries of the order parameter and the dimensionality of the system. The diverging
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Table 2.1: Definitions of the Critical Exponents.

Definition
CV ∝ ∂2F/∂T 2 ∼ |T − Tc|−α T → T±

c h = 0
χ ∝ ∂2F/∂h2 ∼ |T − Tc|−γ T → T±

c h = 0
M ∝ ∂F/∂T ∼ |T − Tc|β T → T−

c h = 0
M ∝ ∂F/∂T ∼ |h|1/δ T = Tc h→ 0±

Γ ∝ 〈S(0)S(r)〉 − 〈S〉2 ∼ r−(d−2+η) T = Tc h = 0
ζ ∝ e−r/ζ ∼ |T − Tc|−ν T → T±

c h = 0

correlation length ζ and other thermodynamic properties exhibit power law dependen-
cies with respect to their distance from the critical point. These powers are denoted
critical exponents, and the complete set of these determines the universality class of the
system.

In the language of the Ising model, the behavior of the specific heat CV as the critical
point is approached along the line h = 0 is governed by the critical exponent α,

CV ∼ |T − Tc|−α. (2.21)

For most models α > 0 and CV diverges at the transition, but typically α is small and
the divergence is slow. For the 3D XY model for instance, α is negative, which means
that CV is finite across the phase transition. Thus a better scaling Ansatz [18] for the
specific heat would be

CV ∼ 1

α

(
|T − Tc|−α − 1

)
. (2.22)

Away from the phase transition and for large distances r the spin-spin correlation func-
tion behaves like

Γ(r) ≡ 〈S(0)S(r)〉 − 〈S(0)〉2 ∼ exp (r/ζ). (2.23)

At the critical point however, the correlation length ζ diverges with critical exponent ν

ζ ∼ |T − Tc|−ν , (2.24)

and the correlation function itself goes as a power law determined by the anomalous
dimension η

Γ(r) ∼ r−(2−d−η). (2.25)

Altogether there are six critical exponents, and these are summarized in Table 2.1.

The exponents α, β, γ, δ, ν and η are in fact not independent of each other. There
are four relations between them. This should really be shown within the framework
of the renormalization group, but I will refer the reader to the general literature on
this [17, 18], and use the homogeneity postulate of Widom [37],

Fs(|τ |, h) ∼ b−dFs(|τ |b1/ν , hbλh), (2.26)

assumed to be valid in the vicinity of the critical point. Here Fs is the singular part of
the Helmholtz free energy Eq. (2.3), τ = T − Tc, b is some arbitrary scaling factor, and
λh yet another constant. By differentiating Eq. (2.26) in various ways and equating the
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results with the proper definitions from Table 2.1, the following relations emerge

α+ 2β + γ = 2 (2.27)

α+ β(δ + 1) = 2 (2.28)

(2 − η)ν = γ (2.29)

2 − α = dν. (2.30)

Eq. (2.30) is called the hyperscaling relation and it couples the behavior of CV with the
behavior of the correlation function. The hyperscaling relation is known to be violated
above the critical dimension dc = 4 and in some systems in the presence of dangerously
irrelevant operators. In these cases the operators influence the scaling of the free energy
but not the correlation function [17].

2.4 Quantum Phase Transitions

Quantum critical phenomena are phase transitions in a quantum mechanical system
that are driven by tuning a parameter in the Hamiltonian. Typically this parameter
determines the strength between two non-commutative parts of the Hamiltonian. Within
the formulation of functional integrals [38] the partition function of such a system is given
by

Z =

∫
DΨe−S

S =
1

~

∫ β

0

dτ

∫
ddrL,

(2.31)

where S is the action of the system which is to be integrated over the d spatial dimensions
and the imaginary time dimension τ . At T = 0 the imaginary time dimension takes on
the form of an Euclidean dimension, and the above partition function Eq. (2.31) exactly
resembles the classical partition function Eq. (2.2) in D = d + 1 dimensions where a
coupling constant plays the role of the classical temperature. Thus a quantum mechanical
problem at T = 0 may be mapped onto a classical problem in one higher dimension [39].
In Paper I [1] and Paper II [2] we study classical models in 3 dimensions as effective
models for two-dimensional quantum mechanical problems.



3 Topological Objects and

Duality

The origin of the strong fluctuations that are responsible for the destruction of order
and the phase transitions described in the previous chapter is topological defects. In
this chapter I will show that these objects play a key role in understanding the nature
of these phase transitions. First I will introduce the concept of topological objects, and
then show how the proliferation of these governs the various transitions. Next I will
present the concept of duality and duality transformations. Finally, I will demonstrate
in detail how the London model can be transformed into a theory of interacting vortex
loops in the grand canonical ensemble. The details of the same transformation applied
to the N -component London model are found in Appendix B of Paper VII [7]. The
general references used in this chapter are [20, 40–49].

Figure 3.1: The left figure shows the topological defect of the 2D Ising model which is a
domain line separating spins of different orientation. The figure to the right illustrates
a lattice dislocation.

3.1 Topological Excitations

Topological defects are configurations that are able to destroy order at long distances
at a fairly low cost of energy. The nature of the defects are non-local and therefore
dependent of macroscopic properties such as dimensionality and symmetries. In general
they can be characterized by some core region where order is destroyed, surrounded by

13
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a large region in which the field varies smoothly in space. Since the defect only can be
removed by varying a large number of variables around the center of the object, it is said
to be topologically stable. Although there is an energy cost associated with creating the
object, the configurational entropy will eventually exceed this when the temperature is
increased. This leads to a permanent destruction of the order through a phase transition.

Topological defects have different names depending on the particular system in which
they appear and the symmetry they break. In Ising models the defects are domain
lines in d = 2 separating regions of oppositely aligned spins, as shown in Fig. 3.1,
and domain walls in d = 3. In periodic solids they are called dislocations and are
responsible for a wide range of mechanical properties of metals. In U(1) theories the
topological excitations are denoted vortices and vortex lines in two and three dimensions,
respectively.

Figure 3.2: Left panel: one possible spin configuration of a vortex in the 2D XY model.
Right panel: the spin configuration of a vortex pair in the 2D XY model.

The phase θ of the spin variables in a U(1) theory changes continuously by an integer
times 2π around the core of the vortex, which is a point in d = 2 and a line in d = 3.
Mathematically we can define a vortex as a configuration for which the line integral of
∇θ along a closed path C surrounding the core

∮

C

∇θ(r) · dl = 2πn, (3.1)

where n is the winding number of the vortex. The motivation for such a definition is
that we are looking for a stable object which increases entropy at a low cost. Since the
angle of the spin changes continuously around a vortex the energy cost is not too large.
If we place the vortex depicted in Fig. 3.2 left panel, in the center of the coordinate
system and use polar coordinates r = {ρ, ϕ}, we get the following expression for the
phase of the vortex: θ(r) = ϕ+ π/2. We see that ∇θ(r) = 1

ρ êϕ, and the total energy of
one vortex is

E ∼
∫ R

ξ

(∇θ)2ρdρdϕ = 2π

∫ R

ξ

dρ

ρ
= 2π ln

R

ξ
, (3.2)

where ξ is the radius of the core and R is the size of the system. The logarithmic
divergence with respect to system size R means that there is associated an infinite
energy cost in inserting a single vortex in an infinite system. A pair of vortices of
opposite winding however, only affects spins in a limited region around the pair, as
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shown the right panel of Fig. 3.2. The energy of such a configuration is finite and this
is therefore the relevant excitation in the 2D XY model. In the 3D XY model closed
vortex loops are the relevant topological objects.

The vortices of the Ginzburg-Landau model Eq. (2.11) are magnetic flux tubes.
They can be either field induced field lines penetrating the sample or thermally induced
closed vortex loops. To avoid divergences in ∇θ, |Ψ| goes to zero inside the core of a
vortex. The length scale over which |Ψ| varies is given by ξ in Eq. (2.12), and thus
this sets the size of the core. The magnetic field associated with the vortex is shielded
over the magnetic penetration depth λ, Eq. (2.12). Since the vortex has a finite range
determined by λ, the total energy of a single vortex

E ∼
∫ λ

ξ

(∇θ)2ρdρdϕ = 2π

∫ λ

ξ

dρ

ρ
= 2π ln

λ

ξ
, (3.3)

is finite.

2 λ

2 ξ

|ψ|
B

r

Figure 3.3: Schematic illustration of the size of the core of a vortex determined by ξ,
and the range of the vortex determined by λ.

The equation for the supercurrent J is obtained by varying Eq. (2.11) with respect
to A

J(r) = −e|Ψ(r)|2
m

(∇θ(r) − eA(r)). (3.4)

Currents flow in a superconductor either close to the surface or close to the center of a
vortex. Thus, along a closed contour around a vortex, we have J = 0 and hence

∮
A · dl = Φ =

2πn

e
. (3.5)

This means that the fluxoid carried by a vortex is quantized to Φ0 = h
2e = 2.067 ·

10−15 Tm2 (where the Planck constant h has been reinstated).
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3.2 Vortex Loop Blowout

In the London approximation |Ψ| is taken to be a constant over the superconductor,
and the correlation length is effectively zero. The vortices in this limit are δ-function
vortices with zero core size. In zero field the superconductor to normal phase transition
is governed by a proliferation of these one dimensional topological objects with quantized
flux [40, 50–55]. Snapshots of the proliferation of vortices for the London model taken
from a Monte Carlo simulation are shown in Fig. 3.4. For T < Tc there are few vortices
indicating a high degree of order and low entropy. At T = Tc the line tension, i.e.
the energy cost associated with extending the length of a vortex, goes to zero and all
of a sudden there are vortices at all length scales. Consequently the order and the
global phase coherence are lost. For even higher temperature the vorticity increases
even further.

T < Tc T = Tc T > Tc

Figure 3.4: Snapshots from a Monte Carlo simulation of the vortex loop blowout in the
London model Eq. (2.14) for zero field and e = 1/

√
2. Left panel: T = 1.25 (T < Tc)

deep into the ordered phase there are few vortices and they are of short length. Middle
panel: T = 1.70 (T = Tc) at the transition there are vortices of all lengths and this
destroys the order in the system. Right panel: T = 3.33 (T > Tc) in the disordered
phase the system is packed with vortices.

3.3 Vortices of the GL Model in an External Field

The behavior of a type II superconductor exposed to an external magnetic field is quite
exotic. This can be seen from the schematic phase diagram given in Fig. 3.5. In the
Meissner phase below Bc1(T ) all magnetic flux tubes are expelled from the supercon-
ductor and the system is perfect diamagnetic with zero magnetic field [56]. But above
Bc1(T ) and below Bc2(T ) some flux lines are allowed into the sample. This phase is
called the mixed state or the Abrikosov phase, named after Alexei Abrikosov who in
1957 showed that for κ > 1/

√
2 the vortices of the GL model interacted repulsively

with each other and that they might form a stable hexagonal lattice [57]. The flux
line lattice (FLL) phase between the two solid lines in Fig. 3.5 is characterized by a
transverse triangular crystalline order and a finite phase coherence. A rough picture1 of

1The complete story of the behavior of a type II superconductor exposed to a magnetic field is quite
involved and still controversial, but this is beyond the scope of this thesis. Some literature on this topic
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T

B

Tc

Bc1(T )

Bc2(T )FLL

Vortex Liquid Normal State

Meissner State

Figure 3.5: Schematic B−T phase diagram for a type II superconductor. The Abrikosov
vortex lattice is melted upon crossing the line separating the FLL and the vortex liquid
state to destroy superconductivity. The mixed state is between Bc1(T ) and Bc2(T ).

what happens to this system upon heating is illustrated by the snapshots of the vortex
configurations taken from a Monte Carlo simulation in Fig. 3.6. At low temperature
the vortices fluctuate gently around their ground state positions in the FLL. Eventually
at T = TM the thermal fluctuations of the vortices get too strong and the crystalline
lattice melts into a vortex liquid phase in which the flux tubes are free to move about.
The broken translational symmetry is restored and the transition is a weak first order
phase transition [30, 58, 59, 63]. The global phase coherence along with the ability to
carry supercurrents in any direction is lost at this point [55,61]. The line tension of the
vortices, however, is finite all the way up to a transition line TL(T ) [54, 55, 61], where it
disappears. This line may in fact be thought of as a definition of Bc2(T ) in the presence
of fluctuations, thus elevating it from a cross over line to a true phase transition line (see
Fig. 14 of [55]).

3.4 Dualization of the Lattice London Model

A duality transformation can be defined as a mathematical mapping of a theory ex-
pressed in one set of variables onto another set of variables. Usually this new set of
variables is related to the topological objects of the theory. More rigorously, a duality
transformation D is an operation such that when this is applied to the dual theory Hdual

is [54,55,58–62].
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T = 0 T < TM

T > TM T = TL

Figure 3.6: Snapshots from a Monte Carlo simulation of the London model Eq. (2.14)
for finite field. Upper left panel: T = 0 the field induced vortices are arranged in a
FLL. Upper right pane: T = 0.4 (T < TM) small thermal fluctuations from the FLL.
Lower left panel: T = 0.67 (T > TM) the thermal fluctuations has melted the FLL and
superconductivity is destroyed. Lower right panel: T = 1.66 (T = TL) the line tension
of the vortices are lost at this temperature.

the original theory Horg is recovered;

DHorg = Hdual

DHdual = Horg.
(3.6)

Unfortunately there is a tendency in the field to denote almost any version of the theory
expressed in the topological objects as a dual theory.

Duality in the sense described above was pioneered by Kramers and Wannier in
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1941 [64] when they showed how the 2D Ising model can be mapped onto another 2D
Ising model. Later on Wegner [65] neatly showed how the technique could be generalized
to other models and lattices. Since the new set of variables are the disorder fields, they
per definition have small fluctuations when the original variables have large fluctuations
and vice versa. Therefore the original and the dual theories have had their high and low
coupling regimes interchanged. In the case of Kramers and Wannier their dual theory of
the 2D Ising model turned out to be of the same form as the original theory, a so called
self-duality. Since the coupling constant of the dual theory is expressed in terms of the
original coupling constants, they could easily set them equal to each other and solve for
the transition temperature.

There are several reasons for why a duality transformation may be useful. First of all,
the dual theory is a description of the topological excitations of the problem, and these
constitute the important fluctuations when it comes to destroying the ordered phase. A
duality transformation may therefore facilitate a better understanding of the underlying
physics of the critical behavior. Second, there might be things that are easier to do
with the dual theory than with the original. Perturbation techniques, for instance, are
useful in weak coupling regimes, and since the strong and weak coupling regimes are
interchanged, other regions of coupling space are accessible for this kind of treatment
after a duality transformation.

The following duality transform of the London model Eq. (2.14) is most rigorously
done on the lattice, and apart from the Villain approximation it is exact. The Villain ap-
proximation is harmless in the sense that it preserves critical properties but renormalizes
the coupling constants. Some references to this transformation are [40,42,43,52,53,66].

The London model Eq. (2.14) on a 3 dimensional lattice with lattice spacing a = 1
is given by the following action and partition function

Z =

∫ ∞

−∞

DA

∫ π

−π

Dθe−S

S0 = −β
∑

iµ

[ |Ψ|2
2m

cos(∆µθi − eAµ,i) −
1

2
(∆ ×Ai)

2
µ

]
,

(3.7)

where ∆ is the lattice differential operator defined by ∆µf(x) = f(x+ êµa)−f(x). First
the cosine terms are replaced by a set of quadratic terms with the help of an auxiliary
field ni. This is the Villain approximation [67] which shifts the temperature scale but
conserves the critical properties of the model [40],

S1 = β
∑

i

[ |Ψ2|
4m

(∆θi + 2πni − eAi)
2 +

1

2
(∆ ×Ai)

2

]
. (3.8)

The next step of the transformation is to perform the Hubbard-Stratonovich decou-
pling [68, 69], which basically linearizes the coupling between the phase θi, the gauge
field Ai, and the Villain field ni by introducing an auxiliary field vi in such a way that
when vi is integrated out, the original expression is recovered

e−
β|Ψ|2

4m
(∆θi−eAi−2πni)

2 ∼
∫ ∞

−∞

dvie
−

h

m

β|Ψ|2
v2

i −ivi(∆θi−eAi−2πni)
i

. (3.9)

Next a partial summation over the lattice moves the differential operator from θi to vi
∑

i

vi · ∆θi = −
∑

i

(∆ · vi)θi. (3.10)
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By neglecting the surface terms this gives the following action

S2 =
∑

i

[
m

β|Ψ|2 vi · vi + i(∆ · vi)θi + i2πni · vi − ieAi · vi +
β

2
(∆ ×Ai)

2

]
. (3.11)

The Poisson summation formula

n=∞∑

n=−∞

e2πinv =

v̂=∞∑

v̂=−∞

δ(v̂ − v), (3.12)

where n, v̂ ∈ Z and v ∈ R, constrains vi to take integer values denoted v̂i. We integrate
out θi to produce the constraints ∆·v̂i = 0. These constraints are automatically enforced
by choosing v̂i = ∆ × ĥi, where ĥi is an integer field

S3 =
∑

i

[
m

β|Ψ|2 (∆ × ĥi)
2 − ieAi · (∆ × ĥi) +

β

2
(∆ ×Ai)

2

]
. (3.13)

Again we use the Poisson formula Eq. (3.12) to replace the fields ĥ with a real valued
dual field h at the expense of introducing the term 2πih · m

S4 =
∑

i

[
m

β|Ψ|2 (∆ × hi)
2 − ieAi · (∆ × hi) +

β

2
(∆ ×Ai)

2 + 2πihi ·mi

]
. (3.14)

The integer field mi is nothing but the vortices in the theory. In Eq. (3.13) ĥi possesses
a gauge symmetry which must be preserved so that Eq. (3.14) is invariant with respect
to hi → hi + ∆χi. This requires the term

∑
i 2πi∆χi · mi to be zero, which is fulfilled

if ∆ · mi = 0. Hence the vortex field mi is an integer valued field with zero divergence,
i.e. closed loops.

At this point it is customary to express the theory in the Fourier representation

S5 =
∑

q

[
m

β|Ψ|2 (Qq × hq)(Q−q × h−q) + πi(hq · m−q + h−q · mq)

− ie

2
[Aq · (Q−q × h−q) + A−q · (Qq × hq)] +

β

2
(Qq ×Aq) · (Q−q ×A−q)

]
,

(3.15)

where Qq = eiq·ê−1 is the Fourier representation of the lattice difference operator. The
functional integration over Aq are plain Gaussian integrals which give

S6 =
∑

q

[
m

β|Ψ|2 (Qq × hq)(Q−q × h−q) + πi(hq · m−q + h−q ·mq) +
e2

2β
hq · h−q

]
.

(3.16)
Finally by integrating out hq we obtain a theory of self interacting integer vortex loops
defined in the grand canonical ensemble

Z =
∑

{m}

δ∆·m,0 e−S7

S7 = 2π2β
∑

r,r′

m(r)V (r − r′)m(r′),
(3.17)
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where δx,y is the Kronecker-delta function, r and r′ are positions on the dual lattice, and
the discrete Fourier transform of the vortex interaction potential V (r − r′) is given by

Ṽ (q) =
1

|Qq|2 +m2
0

, (3.18)

where m2
0 = e2|Ψ|2/2m defines the bare mass of the problem. This formulation Eq.

(3.17) of the theory has been extensively used in Monte Carlo simulations in Paper IV,
Paper V, Paper VI, and Paper VII.

The London model expressed in the original variables, Eq. (2.14), has long range
interaction mediated by the gauge field A, but its vortices have a finite interaction range
determined by the bare massm0. However, for systems with e = 0 like the 3D XY model
or a |φ|4-theory the interaction in the original variables is local, but the interaction among
the vortices has infinite range. To shed more light on this it is instructive to formulate a
continuum field theory for the vortices, along the lines pioneered by Thomas et al. [43]
and Hagen Kleinert [40, 53]. Starting from Eq. (3.16) one may introduce a complex
matter field φ representing the vortices. This matter field couples minimally to the dual
field h

H =

∫
dr

[
m2|φ|2 + |φ|4 + |(∇− ih)φ|2 +

(∇× h)2

β|Ψ|2/m +
e2

2β
h2

]
, (3.19)

where a core energy term and a steric repulsion term between the vortices have been
added. A renormalization group treatment of the term (e2/2β)h2 yields

∂e2

∂ln l
= e2, (3.20)

and hence this term scales up to suppress the dual field h. Thus, the dual theory of the
London model is a neutral |φ|4-theory. On the other hand, the dual theory of a neutral
model (e = 0) contains no such massive term for h. In this case h possesses a true gauge
symmetry, and the dual theory of an original neutral model is a charged theory [70,71].

3.5 Gauge Field Correlators

Gauge field correlation functions are useful objects to study when considering the critical
properties of gauge theories. The main reason is that they provide non-local gauge
invariant order parameters for the theories, which in turn enable reliable determination
of critical exponents, including anomalous scaling dimensions.

The gauge field propagator GA(q) can be related to GB(q), Eq. (2.17) [7, 36]. To
express GB(q) and GA(q) in terms of vortex correlators one adds source terms Jq in Eq.
(3.15) which minimally couple to the gauge field (for details, see Appendix C Paper
VII). Then one performs the Gaussian integrals over A and h to obtain ZJ , and finally
one differentiates

〈AµqAν−q〉 =
1

ZJ
δ2ZJ

δJµ−qδJ
ν
q

∣∣∣∣
J−q=Jq=0

. (3.21)

The same thing may be done for Gh(q) and the results are

GA(q) = 2/β
|Qq|2+m2

0

(
1 + π2βe2|Ψ|4

2m2|Qq|2
〈mq ·m−q〉

|Qq|2+m2
0

)
, (3.22)

Gh(q) = β|Ψ|2/m
|Qq|2+m2

0

(
1 − π2β|Ψ|2

m
〈mq ·m−q〉

|Qq|2+m2
0

)
. (3.23)
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In the Higgs phase the gauge field mass mA scales according to the Ansatz [36] given
by Eq. (2.18) and Eq. (2.19)

GA(q)−1 2

β
= m2

A + C|q|2−ηA + O(|q|δ), (3.24)

with a corresponding Ansatz for mh in the disordered phase

Gh(q)−1 β|Ψ|2
m

= m2
h + C|q|2−ηh + O(|q|δ). (3.25)

The masses of A and h are therefore defined through the q → 0 limit of the respective
Ansätze

m2
A ≡ lim

q→0

2

βGA(q)
,

m2
h ≡ lim

q→0

β|Ψ|2/m
Gh(q)

. (3.26)

Thus the gauge field masses can be found by measuring vortex correlators followed by a
fit for small q to their respective Ansätze.

The dual field theory of an original neutral model is a charged theory describing
an incompressible vortex tangle [70]. The leading behavior of the vortex correlator
〈mq·m−q〉 in this case is [70]

lim
q→0

〈mq·m−q〉 ∼






[1 − C2(T )]q2 ;T < Tc

q2 − C3(T )|q|2+ηh ;T = Tc

q2 + C4(T )q4 ;T > Tc,

(3.27)

where ηh is the anomalous scaling dimension of the dual gauge field h. For T < Tc the
mass of the dual gauge field given by Eq. (3.23) and Eq. (3.26) (with e = 0 and m0 = 0)
is zero, however for T > Tc the q−2 terms in Eq. (3.23) cancel out exactly and the mass
mh attains an expectation value. The anomalous scaling dimension of the dual gauge
field is ηh = 1 in this case.

For the London model, the effective field theory of the vortices is a neutral theory.
The vortex tangle is compressible with a scaling Ansatz for the vortex correlator

lim
q→0

〈mq·m−q〉 ∼






q2 ;T < Tc

|q|2−ηA ;T = Tc

c(T ) ;T > Tc,

(3.28)

where c(T ) is a nonzero constant. Consequently, from Eq. (3.22) and Eq. (3.26)
(with e 6= 0), as 〈mq·m−q〉 changes its asymptotic behavior from q2 to a constant
when the vortex loop proliferation transition occurs at Tc, the mass mA drops from a
finite value to zero. Likewise, from Eq. (3.23) and Eq. (3.26) (with e 6= 0) it follows
that the mass of the dual vector field mh is finite for all temperatures and has a kink
at Tc [70]. This is the Anderson-Higgs phenomenon for this system. A mean field
ε = 4− d expansion [72], a more thorough one-loop renormalization group investigation
of the particular case d = 3 [73], as well as investigations of truncated non-perturbative
renormalization group flow equations [74, 75] all yield the exact result ηA = 4 − d,
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where d is the dimensionality, for this transition. Recently this result has also been
verified numerically [36, 70]. Moreover, in reference [73] for the first time the physical
consequence of ηA = 1 for a three dimensional system, was formulated. Namely, the
magnetic penetration length λ scales with coherence length

λ ∼ ξ
d−2
2−ηA . (3.29)

For d = 3, we thus have λ ∼ ξ when ηA = 1 and λ ∼ √
ξ when ηA = 0.

Thus, the phase transitions in U(1) symmetric models in d = 3 with one matter field
are governed by the proliferation of vortex loops. Models with local U(1) symmetry
are said to have phase transitions belonging to the inverted 3D XY ( or inverted U(1))
universality class with anomalous dimension ηA = 1 and dual anomalous dimension
ηh = 0. Whereas models with a global U(1) symmetry have transitions belonging to
the 3D XY universality class with anomalous dimension ηA = 0 and dual anomalous
dimension ηh = 1. Moreover, the mechanism which destroys the Meissner effect in type
II superconductors is the thermally driven proliferation of vortex loops [54, 55, 70]. The
mass of the gauge field A and hence the Meissner phase is destroyed by this proliferation.





4 Monte Carlo Methods

It was shown in Chapter 2 that phase transitions are characterized by non-analyticities
in the partition function, which is an integral over all possible configurations of the
system. Exact solutions to such integrals are rare, and in general one must resort to
some approximation to extract the wanted information from these systems. The largest
and most important class of numerical methods used for this statistical physics problem
is the Monte Carlo method. The basic idea of Monte Carlo simulations is that, instead of
doing the sum over all configurations, to utilize random numbers to mimic the thermal
fluctuations of the system from state to state on the computer and then perform simple
measurements just as in a real experiment.

The idea of using random processes to solve problems dates back to at least the
18th century with the “Buffon’s needle” experiment, consisting of dropping a needle
repeatedly onto a piece of paper with evenly spaced lines to calculate the numerical
value of π. Later on, under the name of “statistical sampling”, it was used to estimate
poorly behaving integrals [76]. The modern method of Monte Carlo was developed at
Los Alamos during the end of World War II by Nicolas Metropolis, Stanislaw Ulam,
and John von Neumann while working on neutron transport in the hydrogen bomb1.
These calculations were classified information, however, and never published. The first
description of the new method and the use of the name Monte Carlo appeared in 1949
[77].

There are a number of excellent books available on Monte Carlo methods. In writing
this chapter, I have used references [76, 78–81]. In section 4.1 I sketch the basic idea
of Monte Carlo. In section 4.1.1, I explain the celebrated Metropolis algorithm. In
section 4.2, I discuss various post processing techniques that we have used. These in-
clude error estimates using the Jackknife method, Ferrenberg-Swendsen multi histogram
reweighting, and how to extract critical exponents from finite size scaling.

4.1 Doing Integrals with Monte Carlo

To illustrate the idea behind the Monte Carlo procedure I start by showing how one may
approximate a simple integral

I =

∫ b

a

f(x)dx. (4.1)

The traditional way of doing this integral numerically is to divide the area under the
curve into rectangles with equal base as illustrated in Fig. 4.1, and then perform the

1Enrico Fermi supposedly developed the exact same method 14 years earlier but never published his
results [76].
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sum

IN =
b− a

N

N∑

i=1

f(xi) xi = a+ (i− 1

2
)
b− a

N
. (4.2)

The Monte Carlo approach to this is that, instead of choosing xi sequentially according
to Eq. (4.2), to choose xi randomly according to xi = a+ (b− a)ςi where ςi ∈ [0, 1〉 is a
random number. As N grows the sum Eq. (4.2) will converge towards I .

xa b

f(x)

Figure 4.1: The sum of the areas of the rectangles serves as an approximation to the
integral I of Eq. (4.1).

In statistical physics we are often interested in integrals of the type

〈O〉f =

∫ ∞

−∞

O(x)f(x)dx, (4.3)

where O(x) is an observable and f(x) is the probability distribution of x. If xi is chosen
randomly according to f(x) we may approximate the integral Eq. (4.3) by the arithmetic
mean

ON =
1

N

N∑

i=1

O(xi). (4.4)

The standard deviation of the estimator ON will then be given by

σ2
N =

1

N

N∑

i=1

O2(xi) −
[

1

N

N∑

i=1

O(xi)

]2

. (4.5)

Now imagine that the important part of O(x) is in a region where f(x) is small and
vice versa. The Monte Carlo procedure sketched above will then be inefficient in the
sense that much time will be spent on sampling rather unimportant parts of the integral,
which again will drive the uncertainty high. One way to circumvent this situation is to
introduce a so called importance density g(x) and then redefine the observable

Õ(x) = O(x)
f(x)

g(x)
. (4.6)
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The expectation value of the new observable Õ(x) given by

〈Õ〉g =

∫ ∞

−∞

Õ(x)g(x)dx, (4.7)

is the same as 〈O〉f . However, the standard deviation of the new observable

σ̃2
N =

1

N

N∑

i=1

Õ2(xi) −
[

1

N

N∑

i=1

Õ(xi)

]2

, (4.8)

is not the same as σ2
N . A smart choice of g(x) may therefore reduce the variance

dramatically. This concept of reducing the variance is denoted importance sampling. A
specific example of this is the Metropolis algorithm.

4.1.1 The Metropolis Algorithm

The statistical physics problem is represented by the evaluation of integrals of the type

〈O〉 =

∫
DψO(ψ)e−βH[ψ]

∫
Dψe−βH[ψ]

, (4.9)

where Z =
∫
Dψe−βH[ψ] is the partition function. The number of possible configurations

to trace grows exponentially with the system size, thus naive tracing is impossible even
for modern day computers. The states ψ are distributed according to the Boltzmann
distribution pB(ψ) = Z−1e−βH[ψ]. This is a sharply peaked function, which means that
only a few important states account for a dominant part of Eq. (4.9) leaving a huge
amount of unimportant states. The strategy is to choose the important states randomly
according to pB by mimicking a physical system with thermal fluctuations. This is
done by creating a chain of states where one state evolves stochastically into the other
according to some transition rules. Such a chain is called a discrete time Markov chain.
The probability of the occurrence of a particular state ψi at Markov time n is denoted
p(ψi, n), and the transition probability from state ψi to state ψj is denoted P(ψi → ψj).
The transition probability P(ψi → ψj) should satisfy the following criteria:

1.
∑
j P(ψi → ψj) = 1

2. P(ψi → ψj) should not depend on Markov time n.

3. P(ψi → ψj) should only depend on the properties of the two states ψi and ψj , not
the history of these.

A discrete time Markov chain will fulfill the following master equation

p(ψi, n+ 1) =
∑

j 6=i

P(ψj → ψi)p(ψj , n) + [1 −
∑

j 6=i

P(ψi → ψj)]p(ψi, n), (4.10)

which basically states that the probability of being in state ψi at time n+1 is equal to the
probability that the system was in state ψj at time n and went to ψi plus the probability
that the system was in state ψi and stayed there. Since we want p(ψi, n+1) = p(ψi, n) =
pB(ψi), we get the requirement

∑

i

P(ψj → ψi)p(ψj) =
∑

i

P(ψi → ψj)p(ψi). (4.11)
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The common way to ensure that Eq. (4.11) is fulfilled is to insist on so called detailed
balance defined by

P(ψj → ψi)p(ψj) = P(ψi → ψj)p(ψi). (4.12)

It is straight forward to show that a Markov chain that fulfills the detailed balance
criteria Eq. (4.12), approaches the correct distribution of states p(ψi) as n increases [76].
In addition to these requirements the Markov chain should also meet the condition of
ergodicity. That is, it should be possible for any state to evolve into any other state in a
finite number of Monte Carlo time steps. The obvious reason for this is that according
to the Boltzmann distribution any state ψi has a finite probability pB(ψi) to occur.
If ergodicity is broken and certain states cannot be reached, the Markov chain cannot
approach the proper distribution of states.

Rewriting Eq. (4.12) yields

P(ψi → ψj)

P(ψj → ψi)
=
p(ψj)

p(ψi)
= e−β(H[ψj ]−H[ψi]), (4.13)

thus the transition probabilities can be expressed in terms of the difference in energy in
the two states. The original choice by Nick Metropolis [82] was

P(ψi → ψj) = min{1, e−β(H[ψj]−H[ψi])}, (4.14)

which along with the algorithm sketched below constitutes the Metropolis algorithm.

1. Start with some initial configuration ψi

2. Create a new candidate configuration ψj at random

3. Accept the new configuration with probability P = min
{
1, e−β(H[ψj ]−H[ψi])

}

4. Perform measurements

5. Repeat steps 2 - 5 until the results have converged

4.2 Post Processing of Monte Carlo Data

To utilize the output from Monte Carlo simulations efficiently we store time series of
various observables such as the energy in files. Afterwards we perform error estimates and
reweighting. In this way we do not have to guess equilibration times and autocorrelation
times in advance, we merely measure and take care of such things later.

4.2.1 Error Estimates Using Jackknifing

To estimate the accuracy of the Monte Carlo results one traditionally use expressions for
the standard deviation such as Eq. (4.5). However Eq. (4.5) is only valid for statistically
independent measurements, whereas the Markov chain Monte Carlo procedure produces
states that are correlated. Especially around phase transitions temporal correlation is a
severe problem. It is possible to account for the correlations [83] by modifying Eq. (4.5)
to

σ2
N =

1 + 2τ/∆t

N − 1




N∑

i=1

O2(xi) −
(

1

N

N∑

i=1

O(xi)

)2


 , (4.15)
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where τ is the autocorrelation time and ∆t is the time between consecutive measure-
ments. Alternatively one may try to break the dataset down to something which is
statistically independent. One such method is the Jackknife method [76, 84, 85].

The idea behind the Jackknife method is to divide the dataset {O} of N measure-
ments into J subsets {O1,O2, . . . ,OJ}. If the number of measurements in each subset
is larger than the autocorrelation time, the subsets will be statistically independent of
each other. Each dataset is then resampled J times by introducing new Jackknife vari-
ables and sequentially removing one of the subsets at the time. This may seem like an
unnecessary heavy arsenal to pull out just for calculating error bars, but if one is to
calculate expectation values and errors of non-linear functions of the observable f(〈O〉),
this is one of the few ways to do it. First introduce the Jackknife variable Ai which is
the average over all subsets except the one labeled i

Ai =
J

N(J − 1)

∑

j /∈Oi

Oj , (4.16)

then evaluate the function f in these variables

fi = f(Ai). (4.17)

The following Jackknife estimators can then be used to estimate f(〈O〉) and σ2(f(〈O〉))

fJ(〈O〉) =
1

J

J∑

i

fi

σ2
J (f(〈O〉)) =

J − 1

J

J∑

i=1

(
fi −

1

J

J∑

k=1

fk

)
.

(4.18)

4.2.2 Ferrenberg-Swendsen Reweighting

Ferrenberg-Swendsen multi histogram reweighting is a powerful technique that signifi-
cantly improves the quality of Monte Carlo results. Reweighting takes measurements
sampled at one temperature and extrapolates it to other temperatures. The multi his-
togram method interpolates reweighted results from several Monte Carlo simulations at
different temperatures. The idea of reweighting was originally put forward in 1959 [86],
but did not catch any attention until Alan Ferrenberg and Robert Swendsen [87] showed
how effective the technique could be. The multi histogram technique was then developed
shortly afterwards [88,89]. The reason why it is called histogram reweighting is presum-
ably that at the time Ferrenberg and Swendsen developed these methods disk storage
was limited, and instead of storing entire time series of measurements to disk they used
histograms. Nowadays disk storage is no major limitation and the reweighting methods
are usually implemented without invoking histograms.

Recall the definition of the expectation value of an observable in the notation of
statistical physics and how it is sampled in a Monte Carlo simulation

〈O(β)〉 =
1

Z(β)

∑

{ψ}

O(ψ)e−βH[ψ] =
1

N

∑

i

Oi, (4.19)

the sum over {ψ} means trace over all possible states whereas the sum over i runs over
all measurements from the Monte Carlo simulation. Now consider the expectation values
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Figure 4.2: Three energy histograms of the 3D XY model for a 4 × 4 × 4 lattice.
Reweighting of Monte Carlo data is only reliable between temperatures for which his-
tograms overlap significantly.

of the following observables Oe−(β1−β)H and e−(β1−β)H

1

N

∑

i

Oie
−(β1−β)Hi =

1

Z(β)

∑

{ψ}

O(ψ)e−(β1−β)H[ψ]e−βH[ψ]

1

N

∑

i

e−(β1−β)Hi =
1

Z(β)

∑

{ψ}

e−(β1−β)H[ψ]e−βH[ψ].

(4.20)

The crucial thing to notice is that the ratio of these two observables are

∑
i Oie

−(β1−β)Hi

∑
i e

−(β1−β)Hi
=

∑
{ψ}O(ψ)e−β1H[ψ]

∑
{ψ} e

−β1H[ψ]
, (4.21)

which is precisely the definition of the expectation value 〈O(β1)〉 at inverse temperature
β1. Thus from a series of measurements {Oi} and {Hi} collected at one temperature,
one may extrapolate the result onto other temperatures by Eq. (4.21). Errors can be
estimated exactly the same way as if the results came from a simulation. There is no free
lunch however, so this will only work well in a narrow temperature regime. More precisely
for reweighting to be reliable from one temperature to another the energy histograms
at the two temperatures should overlap significantly. Examples of such histograms for
three different coupling constants for the 3D XY model are shown in Fig. 4.2. The
histogram for β2 overlaps with both the histogram for β1 and for β3. Thus reweighting
of data from β2 to the range between β1 and β2 should work properly. An example of
this is shown in Fig. 4.3. The panel to the left shows the specific heat for the 3D XY
model with the raw data from the Monte Carlo simulation. In the middle panel the data
sampled at β2 = 0.48 is reweighted to coupling constants ranging from β1 to β3. Note
how the error bars increase as the distance over which the data is reweighted increases.
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The width of such energy histograms typically decrease with the size of the system, so
the larger the system, the smaller range can be successfully reweighted.
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Figure 4.3: The specific heat CV for the 3D XY model on a 4×4×4 lattice is shown as an
example of the output from a Monte Carlo simulation, before and after post processing.
The left panel shows CV calculated directly from the raw data. The middle panel shows
an example of plain resampling. The measurements obtained at coupling β2 = 0.48 is
reweighted to the other values of β. The right panel is an example of full Ferrenberg-
Swendsen multi histogram reweighting, for which all of the raw data shown in the left
figure is reweighted to all other couplings and then solved self-consistently. Please note
the dramatic increase in accuracy after the Ferrenberg-Swendsen reweighting.

The multi histogram method joins together several sets of Monte Carlo data, run
at different temperatures, in an optimized way. This relies on estimating the density of
states which is a temperature independent quantity. The outline of this is rather involved
and for details I refer to the references [76] and [88–90]. Assuming that simulations have
been performed on R different couplings βi with i ∈ [1, .., R], each consisting of Ni
measurements labeled αi ∈ [1, Ni]. The free energy Fβ = − 1

β lnZ(β) at reweighted
temperature β can be expressed in terms of

e−Fβ =

R∑

i=1

Ni∑

αi=1

g−1
i e−βH

αi
i

∑R
j=1 Njg

−1
j e−βjH

αi
i +Fj

, (4.22)

where gi = 1 + 2τi and τi is the autocorrelation time for run number i. Together with
the equation e−Fi = e−Fβi , Eq. (4.22) is solved self-consistently for Fi by some iterative
method such as the Newton-Raphson method. The expectation value of an operator O
at reweighted temperature is then given by

〈O〉β =

R∑

i=1

Ni∑

αi=1

Oαi

i g
−1
i e−βH

αi
i −Fβ

∑R
j=1Njg

−1
j e−βjH

αi
i +Fj

. (4.23)

The right panel of Fig. 4.3 illustrates the tremendous strength of the multi histogram
method. The raw data shown in the left panel is reweighted to the other temperatures
and the set defined by Eq. (4.22) is then solved self-consistently. Please note the dramatic
enhancement of the data and the decrease in the error bars.
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4.2.3 Finite Size Scaling and the Third Moment of the Action

The physics coming out of a computer simulation have size effects just as real experi-
ments. Divergences at phase transitions are smeared out to finite values, discontinuities
are rounded, and critical temperatures are shifted. A systematic treatment of these ef-
fects can reveal important information of the system. Such an analysis is called finite
size scaling (FSS) [17,79], and we have used it extensively to compute critical exponents
in all our papers. In particular, we have suggested and benchmarked a new method that
utilizes the third moment of the action to extract critical exponents α and ν.
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Figure 4.4: The specific heat CV and the third moment of the action M3 for the 3D
XY model on a 4× 4× 4 lattice is shown. The peak to peak value of M3 denoted ∆M3

scales with system size according to L(1+α)/ν and the width between the peaks denoted
∆β scales according to L−1/ν .

Recall from Chapter 2 that the correlation length ζ diverges at the critical point
according to ζ ∼ |T − Tc|−ν . In a finite system ζ is confined to the size of the system L,
so that ζ → L as T approaches Tc, and thus

|T − Tc| ∼ L−1/ν . (4.24)

At the same time the divergence in the specific heat was determined by

CV ∝ ∂2F

∂T 2
∼ |T − Tc|−α, (4.25)

and by combining Eq. (4.24) and Eq. (4.25) we get

CV ∼ Lα/ν . (4.26)

Thus by performing simulations on different system sizes one can in principle extract α
and ν, as illustrated in Fig. 4.4, left panel. Scaling relations such as Eq. (4.26) are valid
for asymptotically large systems and sufficiently close to the critical point. For small
systems there are usually sub-dominant corrections to the leading behavior [17, 91, 92].
This is particularly true for the specific heat for which impractically large systems sizes
are needed to bring out the asymptotic behavior [1, 2], see Fig. 4.5.

To get rid of this unwanted analytic background and bring out the leading non-
analytic behavior more clearly, we proposed in Paper I and Paper II [1,2], to take one
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Figure 4.5: FSS plot for the 3D XY (N) and the 3D Ising model (◦). Upper panel:
FSS plots of the second moment of the action M2. Due to large corrections to scaling
very large system sizes are necessary to obtain the asymptotic behavior for this quantity.
Lower panel: FSS of the peak to peak value ∆M3 and the width between the peaks ∆β
of the third moment of the action M3. The asymptotic behavior for ∆M3 and ∆β are
achieved for much smaller system sizes than for M2.

further derivative of the free energy with respect to the temperature

∂3F

∂T 3
∼ |T − Tc|−(1+α) ∼ L(1+α)/ν . (4.27)

We denote this quantity the third moment of the action M3, and identify it as the third
fluctuation cumulant of the action S = βH

M3 =
〈(S − 〈S〉)3〉

V
. (4.28)
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Fig. 4.4 right panel shows the scaling properties of M3. The peak to peak value scales
with system size according to L(1+α)/ν and the width between the peaks scales according
to L−1/ν . This provides independent measurements of (1 + α)/ν and 1/ν, hence it is
possible to calculate both α and ν without invoking the hyperscaling relation Eq. (2.30).

Finite size scaling plots of the second and third moment of the action for the 3D XY
and 3D Ising model are given in Fig. 4.5. It is evident that the sub-dominant corrections
to scaling are more pronounced for the M2 scaling plots in the upper panel, than for
∆M3 and ∆β from the lower panel. Impractically large system sizes are necessary to
bring out the asymptotic critical behavior of M2. Although it is possible to account for
the corrections to scaling by invoking a more advanced Ansatz [91]

M2 ∼ ALα/ν
[
1 +BL−∆/ν

]
+K, (4.29)

where K originates in the analytic contribution to the free energy and ∆ is a correction-
to-scaling exponent, this requires more fit parameters and is usually not very successful.
The M3 scaling method on the other hand suffices to bring out the singular part of the
free energy more easily. Since the ∆M3 is defined as the difference between the top and
the bottom value of the M3 curve, see Fig. 4.4, the analytic background term in the
Taylor expansion of the scaling function for this quantity cancels altogether. This is the
main reason why FSS of the third moment of the action works so well.

Another advantage is that unlike most other successful FSS methods, such as Binder’s
4th cumulant method, the M3 method does not invoke order parameters. Many gauge
theories do not have a well defined order parameter, and even in the cases where an
order parameter is defined it is usually hard to compute numerically. The third moment
of the action is a purely thermodynamic quantity which is always easily accessible from
MC simulations.

4.2.4 Lee-Kosterlitz Method

First order transitions are hard to deal with on the computer. As opposed to second order
phase transitions these have no diverging length scale and one cannot simply rely on the
fact that the physics of the shorter wave lengths are unimportant. Since discontinuities
are rounded off by the finite size of the system, it is very problematic to distinguish
a weakly first order transition from a second order transition by a purely numerical
method. First of all, first order transitions are characterized by the coexistence of the
ordered and the disordered phase at the phase transition. In practice this means that
some parts of the system are in the ordered state and other parts of the system are in
the disordered state. The different parts are separated by some domain surface with
dimensionality d− 1. At the transition there is an equal probability to be in either the
ordered or the disordered phase. Lee and Kosterlitz have developed a neat finite size
scaling method to determine the order of a transition, based on this idea [93, 94].

They proposed to consider the histogram of the energies N(E;β, L) given by

N(E;β, L) = N ρ(E,L)e−βE

Z(β, L)
, (4.30)

where N is the number of Monte Carlo samples, E is the energy of a configuration, L is
the system size, ρ(E,L) is the density of states, and Z(β, L) is the partition function. For
a first order phase transition the histogram will have a double peak structure, with equal
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height for the two coexisting phases. It is clear that A(E;β, L,N ) = − 1
β lnN(E;β, L) is

a free energy like quantity which only differs from the Helmholtz free energy F by an
additive constant. At the transition

A(EM ;β, L,N ) −A(EO ;β, L,N ) = ∆F (L) =
1

β
ln

(
N(EO)

N(EM )

)
, (4.31)

where EM is the energy of the mixed state, EO the energy of the pure ordered state,
and ∆F (L) is the free energy barrier separating the two phases. For a first order phase
transition this barrier is associated with the tension of the d − 1 dimensional surface
separating the two coexisting phases and this should scale with system size as Ld−1.
Whereas for a second order transition this barrier should go to zero, i.e. be independent
of the system size. Thus to determine the order of a phase transition one should perform
finite size scaling of this quantity and if ∆F (L) ∼ Ld−1 the transition is first order and
otherwise if ∆F (L) ∼ L0 the transition is of second order. In Paper II we used this
method to determine the nature of the transition in the q = 3 Abelian Higgs model [2].
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Figure 4.6: Left panel: A time series from a MC simulation of the 3 dimensional Z3

gauge model [2]. At the transition temperature the system oscillates between the two
coexisting phases. Right panel: A histogram of the energy clearly shows the double peak
structure which is the hallmark of a first order transition. The free energy like quantity
∆F , defined by Eq. (4.31), can be used to determine the order of the transition by finite
size scaling.





5 Liquid Metallic Hydrogen

Hydrogen is the most abundant element in the universe, accounting for about 3/4 of
its visual mass. Although atomic hydrogen is the simplest and most understood of
the atoms, its condensed states have received remarkably little attention. Condensed
hydrogen is projected to have some spectacular features due to its light mass which makes
it highly susceptible to quantum effects. In 1935 Eugene Wigner and Hillard Huntington
[95] predicted that at a pressure of 25GPa solid molecular hydrogen should dissociate
into a monoatomic metal with a bcc structure. Since 1935 the high pressure phases of
hydrogen has been projected to exhibit some even more exotic properties. In 1968 Neil
Ashcroft predicted that this system would support high temperature superconductivity
[96], and in 1974 Brovman, Kagan, and Kholas discussed the possibility of a liquid
metallic ground state [97].

Figure 5.1: The mantles of the giant planets Jupiter and Saturn largely consist of liquid
metallic hydrogen. This accounts for their luminosity and large magnetic field. The
temperature in the mantles of the planets is too high for superconductivity. Credit: L.
Rudnick, University of Minnesota.

At atmospheric pressure molecular hydrogen is an insulator with a band gap of 15eV,
but this gap is expected to close at high pressure to produce an insulator to metal phase
transition. For high temperatures both the insulating state and the metallic state are
liquid. High temperature liquid metallic hydrogen (LMH) is believed to exist in the
mantles of the giant planets Jupiter and Saturn as well as in some extrasolar planets.

37
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Jupiter for instance, consists of 90% hydrogen at pressures up to 10TPa, and it is widely
accepted that a circulating conducting fluid in the mantle can account for the luminosity
and the high magnetic field of the planet [98,99]. Thus the interest in LMH is not merely
an academic mind-game, but also a quest to explore the inner structure of the giant gas
planets.

The controversy of LMH is related to the projected existence of a liquid metallic
ground state [100, 101]. At low temperature and low pressure hydrogen is a molecular
solid, and at extreme pressure it is generally assumed that it will form a metallic alkali-
like monoatomic crystal [102, 103]. As the density of protons increases with pressure,
the zero-point energy increases whereas the ordering energies arising from interactions
decrease. In combination with the light mass this has lead to speculations that, like
in 4He, there might be a range of densities where hydrogen exhibits a liquid ground
state. This liquid metallic state would have to be between the molecular solid and the
monoatomic solid phase. A schematic phase diagram for hydrogen is shown in Fig. 5.2.

T (K)

P (GPa)

500

1000

100 200 300 400 500

Solid H2

Solid Metallic H

Liquid Metallic H

Liquid H2

Figure 5.2: A schematic temperature versus pressure phase diagram for hydrogen. The
dotted line represents the metal-insulator transition, but only a few points around
140GPa and 3000K confirm this line experimentally. The projected quantum liquid
with superconducting phases, including protonic superconductivity, should appear be-
tween the solid insulating H2 phase and the solid metallic H phase. The solid metallic
H phase could exhibit electronic superconductivity [96].

The electron charge distribution of the hydrogen molecule in its ground state is
shown in Fig. 5.3. As H2 molecules are packed tighter and tighter under compression,
the tails of the charge distributions of the molecules will start to overlap. This transfers
charge density from the molecular bond to intermolecular regions. Finally, at the critical



39

Wigner-Seitz radius rs = 1.33, defined by

1

ρe
=

4π

3
r3sa

3
0, (5.1)

where a0 = ~
2

mee2
is the Bohr radius and ρe is the electron density of the system, the

molecular hydrogen is projected to dissociate into a monoatomic state [100, 104–106].
Depending on the exact pressure versus density curve, rs = 1.33 amounts to about
400GPa. Interestingly, hydrogen may become metallic prior to the dissociation of the
molecules [106, 107]. Thus, as the molecules disintegrate they enter a liquid state con-
sisting of dissociated electrons and protons. Obviously, for LMH to occur at T = 0
the melting line of the solid molecular hydrogen, when temperature is plotted versus
pressure, would need to have a maximum value and approach zero. This melting line
was recently calculated for pressures up to 250GPa by Stanimir Bonev et al. in an ab
initio molecular dynamic simulation [107]. They predict a maximum at about 82GPa
and a negative slope for higher pressures. Furthermore, they provide strong evidence
that above 300GPa the molecular solid melts into a metallic liquid and that a quantum
fluid will appear at about 400GPa.

Figure 5.3: The electron charge density of the ground state of a free H2 molecule. The
distance between the two nuclei is 1.4a0 = 0.74Å.

Experimental realization of LMH in the laboratory has been pursued along two lines;
the solid state at low temperature is investigated with static pressure in diamond anvil
cells, while the liquid state at high temperature is investigated with dynamic pressure
pulses using shock-wave compression. The shock-wave pulses are able to produce an
extreme pressure for a short period of time. Conductivity measurements performed by
Weir et al. [108] show evidence of metallization at 140GPa and 3000K. More recent ex-
periments that combine the diamond anvil cell and the shock wave compression support
these findings [109].

Since pressure is simply force divided by area, enormous pressure can be generated
by anvils with a very small tip. A diamond anvil cell is depicted in Fig. 5.4. Hydrogen is
squeezed in the small container between the tips of the two diamonds and the pressure
is applied mechanically by tightening the anvil and fine tuned by inserting gas into
membranes surrounding the diamonds. The pressure in the sample is estimated using
the ruby scale. The spectral lines of ruby is directly dependent on pressure, and this
dependency is measured up to 80GPa and estimates of it is believed to be valid to
about 550GPa [102, 110, 111]. Powdered ruby is stored with the sample and the shift
in the spectral line can then be used as a pressure calibrant. The limiting factor to
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obtain extreme static pressure in the GPa-range is that diamonds break due to crystal
imperfections. Recently a breakthrough in diamond synthesis technique was announced
at the Carnegie Institution of Washington [112]. With a new homoepitaxial chemical
vapor deposition technique single crystal diamonds can be produced at a rate up to 1mm
an hour. This new technique also allows for better control of the shape of the diamonds,
which opens up the possibility to custom make diamonds for anvil cells. Hopefully this
will increase the range of pressure from todays record of 320GPa to about 1TPa [113,114].

Paul Loubeyre and coworkers used a diamond anvil cell to perform the most successful
high pressure experiment so far. In an optical study they reached a pressure of 320GPa
at 100K. At 290GPa the hydrogen sample started to gradually change color from trans-
parent yellow to orange to red and finally to turn completely opaque at 320GPa [115].
The closing of the optical band gap is a sure sign that something interesting is going
on at these extreme pressures. The melting curve of hydrogen on the other hand has
been measured up to 44GPa [116, 117], and the results are in excellent agreement with
simulations [107].

Figure 5.4: A diamond anvil cell is used to compress hydrogen to extreme pressure.
Hydrogen is squeezed in the small container between the tips of the two diamonds and
the metal gasket. The highest static pressure achieved for hydrogen with this type
of experimental setup is 320 GPa, but a promising new homoepitaxial chemical vapor
deposition technique will hopefully make it possible to custom make diamonds that can
sustain a pressure in the TPa range. Credit: EAS, Cornell University.

5.1 Superconductivity in LMH

According to references [9,10,96,105,118–120] the quantum liquid consisting of dissoci-
ated protons and electrons in LMH should exhibit superconductivity in two channels. At
Tc ∼ 100K electrons should pair up in Cooper pairs [118,119,121] and at a significantly
lower but finite temperature protons should do the same [9, 10, 100,120]. The BCS the-
ory predicts that a fermionic system is unstable with respect to perturbations involving
pairs of attractive particles at the Fermi sea [122]. The electron electron pairing mech-
anism in LMH can be explained by invoking a Born-Oppenheimer approximation, by
claiming that the dynamics of the protons is slow enough to sustain a sort of electron
phonon interaction. The origin of the proton pairing is more controversial however. One



5.1. SUPERCONDUCTIVITY IN LMH 41

approach is to write down a theory for a general system of electrons and protons with
Coulomb interaction. This can be Hubbard-Stratonovich decoupled to give four coupled
BCS gap equations. A mean field solution to these equations indeed opens up for at-
tractive interaction between identical particles for wave vectors around to the Fermi sea
at finite temperatures [9, 120]. In this case the mechanism is the excitonic interaction.
Alternatively, a spin exchange mechanism similar to that of superfluid 3He has also been
suggested [101].

Given a system with two superconducting condensates of electrons and protons, one
should be able to write down a Ginzburg-Landau functional with two complex scalar
wave functions Ψ(1)(r) and Ψ(2)(r), corresponding to protonic and electronic super-
conducting condensates, respectively. Since the condensates are charged they must be
minimally coupled to an electromagnetic gauge field A

H(Ψ(1),Ψ(2),A) =

∫
dr

[ |(∇− ieA)Ψ(1)(r)|2
2m(1)

+
|(∇− ieA)Ψ(2)(r)|2

2m(2)

+ V (Ψ(1)(r),Ψ(2)(r)) +
1

2
(∇×A)2

]
.

(5.2)

Since Cooper pairs of protons cannot tunnel onto Cooper pairs of electrons and vice
versa, there should be no Josephson coupling term in the functional. For this reason the
potential term V is a function of |Ψ(1)|2 and |Ψ(2)|2 only. Moreover it is predicted in
the literature that this system is a type II superconductor for a certain temperature and
pressure range [118,119]. In this case one may consider wave functions of the particular
form Ψ(α)(r) = |Ψ(α)| exp {iθ(α)(r)} α ∈ {1, 2}, thus freezing out amplitude fluctuations
in each individual matter field. The potential term V reduces to a constant from which
the global values of |Ψ(α)|2 are determined. In fact, for reasons that will become apparent
later on, the London approximation will be valid for the low temperature physics of this
system no matter if the system is a type I or a type II superconductor. This happens
because at low temperature the system is governed by a neutral mode with an infinite
penetration depth λ just as for superfluid 4He. Within these assumptions Eq. (5.2) may
be rewritten to

H =

∫
dr

[ |Ψ(1)|2
2m(1)

(∇θ(1) − eA)2 +
|Ψ(2)|2
2m(2)

(∇θ(2) − eA)2 +
1

2
(∇×A)2

]
, (5.3)

which is the N = 2 component London model1.
In references [123,124] it was shown that Eq. (5.3) may be exactly rewritten to the

following form

L =
1

|Ψ(1)|2

2m(1) + |Ψ(2)|2

2m(2)

[ |Ψ(1)|2
2m(1)

∇θ(1) +
|Ψ(2)|2
2m(2)

∇θ(2) − e

( |Ψ(1)|2
2m(1)

+
|Ψ(2)|2
2m(2)

)
A

]2

+

|Ψ(1)|2

2m(1)

|Ψ(2)|2

2m(2)

|Ψ(1)|2

2m(1) + |Ψ(2)|2

2m(2)

[
∇θ(1) −∇θ(2)

]2
+

1

2
(∇×A)2,

(5.4)

where H =
∫
drL. This form of the theory explicitly identifies one charged and one

neutral mode. That is, the particular combination θ(1)−θ(2) does not couple to the elec-
tromagnetic vector potential, i.e. it acts as the theory of superfluid helium, whereas the

1The theory Eq. (5.2) is invariant with respect to the transformation (e → −e) and
(θ(α)

→ −θ(α)) for either of the components. Thus it is not necessary to explicitly account for the fact
that electrons and protons have opposite charge.
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combination |Ψ(1)|2

2m(1) θ
(1) + |Ψ(2)|2

2m(2) θ
(2) does couple to the vector potential and behaves like

the theory of a superconductor. Physically, the neutral and charged modes correspond
to co flows and counter flows of superconducting electrons and protons, respectively.

5.2 Results

In Paper V, Paper VI, Paper VII, and Paper VIII this model Eq. (5.3) and its
N -component generalization is studied. Paper V and Paper VII discuss the critical
properties of this model in zero magnetic field, whereas Paper VI, Paper VII and
Paper VIII discuss the model exposed to an external magnetic field. In this section I
give a brief tour of our findings.

By applying the technique described in Chapter 3 (see Appendix B in Paper VII),
the general N -equivalent of Eq. (5.3) can be rewritten or dualized into a theory of N
vortex species m(α) that interact according to an interaction matrix D(α,η)(r) [5, 7]

Z =
∑

m(1)

· · ·
∑

m(N)

δ∆·m(1),0 · · · δ∆·m(N),0

× exp


−

∑

r,r′

∑

α,η

m(α)(r)D(α,η)(r − r′)m(η)(r′)


 ,

(5.5)

where δx,y is the Kronecker delta function. The vortex interaction potential D(α,η)(r) is
the inverse discrete Fourier transform of

D̃(α,η)(q) =
π2β|Ψ(α)|2
m(α)

[
λ(η)

|Qq|2 +m2
0

+
δα,η − λ(η)

|Qq|2
]
, (5.6)

where λ(α) = |Ψ(α)|2/2m(α)

P

N
η=1 |Ψ(η)|2/2m(η) , m

2
0 = e2

∑N
α=1

|Ψ(α)|2

2m(α) , and |Qq|2 is the Fourier repre-

sentation of the lattice Laplace operator. Thus, for N = 2 there are two vortex fields
that interact with each other through a screened Yukawa potential and an unscreened
Coulomb potential. The continuum field theory for this system can be written down
along the lines sketched in Chapter 3 by introducing a complex matter field φ(α) for
each vortex species which minimally couples to the dual gauge field h(α)

Hdual =

∫
dr

[
N∑

α=1

(
m2
α|φ(α)|2 + |(∇− ih(α))φ(α)|2 +

(∇× h(α))2

β|Ψ(α)|2/m

)

+
e2

2β

(
N∑

α=1

h(α)

)2

+
∑

α,η

g(α,η)|φ(α)|2|φ(η)|2
]
.

(5.7)

For N = 1 the term (e2/2β)h2 scales up and suppresses the h field. Thus for N = 1
the dual theory of the London model is a neutral |φ|4-theory and vice versa. Assuming

the same to hold for N = 2, the sum
∑2
α=1 h(α) is suppressed so that h(1) = −h(2)

and we end up with a gauge theory of two complex matter fields minimally coupled to
one gauge field. This was precisely the starting point and so the theory is self-dual for
N = 2 [5,7, 13, 14].
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Figure 5.5: MC results of the specific heat CV (�) and helicity modulus Υ (+) computed
from Eq. (5.3) in zero magnetic field. Two anomalies can be seen in CV at Tc1 and Tc2,
corresponding to a neutral fixed point and a charged Higgs fixed point, respectively. Note
how the shape of CV reveals the nature of the anomalies, at Tc1 it has the characteristic
λ-shape of a 3D XY transition and at Tc2 it has the characteristic inverted λ-shape of
an inverted 3D XY transition. Υ drops to zero as an order parameter at Tc1.

5.2.1 Zero Field

In Paper V and Paper VII we performed MC simulations on this model Eq. (5.5)
for N = 2 and |Ψ(1)|2/2m(1) 6= |Ψ(2)|2/2m(2), the case that is relevant to LMH. The
specific heat CV , shown in Fig. 5.5, exhibits two anomalies at Tc1 and Tc2. FSS analysis
of the third moment of the action shows that both anomalies are associated with second
order phase transitions with critical exponents α and ν, in agreement with the 3D XY
universality class. To determine whether the critical phenomena at Tc1 and Tc2 are that
of neutral fixed points (3D XY universality class) or of charged fixed points (inverted 3D
XY universality class), we used vortex correlators to extract the mass mA of the gauge
field A. Fig. 5.6 clearly shows that the gauge field becomes massive at Tc2 indicating
that this is a charged Higgs fixed point with anomalous scaling dimension ηA = 1. At Tc1

mA is finite but has a kink, thus this is a neutral fixed point associated with the neutral
mode in the theory. Since mA is inversely proportional to the magnetic penetration
depth λ, this effect should be directly observable in LMH. To characterize the onset of
the neutral mode at Tc1 further, we calculated the helicity modulus Υ analogous to Eq.
(2.10), defined as the second derivative of the low temperature expansion of the free
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Figure 5.6: MC results of the massmA (�) andmΣh (+) computed from Eq. (5.5) in zero
magnetic field. Two non-analyticities can be seen in mA at Tc1 and Tc2, corresponding
a neutral fixed point and a charged Higgs fixed point, respectively. An abrupt increase
in mΣh due to vortex condensation is located at Tc2. Please note that the temperature
scale is different from Fig. 5.5 as CV and Υ are computed from Eq. (5.3) and mA is
computed using Eq. (5.5).

energy with respect to a twist in θ(1) − θ(2) [8]

Υ =
1

3L3

〈
∑

r,µ

cos (∆µ(θ
(1)(r) − θ(2)(r)))

〉

−
β |Ψ(1)|2|Ψ(2)|2

4m(1)m(2)

6L3( |Ψ
(1)|2

2m(1) + |Ψ(2) |2

2m(2) )

〈[
∑

r,µ

sin (∆µ(θ
(1)(r) − θ(2)(r)))

]2〉
.

(5.8)

The results for Υ are given in Fig. 5.5. We see that Υ is finite below Tc1 and that it
drops to zero as an order parameter at the transition. The appearance of the global
phase coherence in θ(1) − θ(2) at Tc1, proves that this point is indeed associated with the
spontaneous breaking of the global U(1) symmetry of the neutral mode. Thus the low
temperature phase of LMH should sustain both superfluidity and superconductivity. It
is quite surprising and highly unexpected that a neutral superfluid mode may arise out
of a system consisting of two charged condensates. [11–14]. The

5.2.2 Application to Quantum Antiferromagnets

In Paper VII we also investigated the N = 2 model with equal phase stiffnesses
|Ψ(1)|2/2m(1) = |Ψ(2)|2/2m(2). This is the model which is proposed as an effective
theory for an easy plane quantum antiferromagnet. The specific heat CV and the he-
licity modulus Υ is given in Fig. 5.7, and the mass of the gauge field mA is given
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Figure 5.7: MC results of the specific heat CV (�) and helicity modulus Υ (+) computed
from Eq. (5.3) in zero magnetic field for |Ψ(1)|2/2m(1) = |Ψ(2)|2/2m(2). One anomaly
can be seen in CV at Tc. Note that the shape of CV is more symmetric than the anomalies
for |Ψ(1)| 6= |Ψ(2)| in Fig. 5.5, this reflects that this is a self-dual transition. The helicity
modulus drops to zero as an order parameter at Tc.

in Fig. 5.8. An important point to notice is that when the two anomalies in CV for
|Ψ(1)|2/2m(1) 6= |Ψ(2)|2/2m(2) in Fig. 5.5, one inverted λ and one λ shaped, are collapsed
onto one anomaly for |Ψ(1)|2/2m(1) = |Ψ(2)|2/2m(2), the result is a symmetric anomaly.
One would perhaps have guessed from Eq. (5.3) that since one has two decoupled vortex
modes, one neutral mode exhibiting a phase transition in the 3D XY universality class
and one charged mode exhibiting a phase transition in the inverted 3D XY universality
class, that at |Ψ(1)|2/2m(1) = |Ψ(2)|2/2m(2) one would have two such phase transitions
superimposed on each other to give a transition in the 3D XY universality class. How-
ever, there is a principal distinction from the case when |Ψ(1)|2/2m(1) 6= |Ψ(2)|2/2m(2).
In the latter case the upper phase transition is always a charged critical point because
the neutral mode is not developed. Thus at the upper transition the interaction of vor-
tices is of short range, while at the lower transition there is a proliferation of vortices
with long range interaction. However, in the case |Ψ(1)|2/2m(1) = |Ψ(2)|2/2m(2), then
below the single phase transition both vortex modes have neutral vorticity along with
charged vorticity and thus this phase transition cannot be mapped onto a superposition
of a neutral and a charged fixed point. Also, the fact that the transition is described by
self-dual theory invalidates the naive superposition conjecture, since either the 3D XY
or the inverted 3D XY phase transitions are self-dual.

The critical exponents for this transition are found to be α = 0.03 ± 0.04 and ν =
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Figure 5.8: The mass of the gauge field mA (�) and 1−m0/mΣh (+) for |Ψ(1)|2/2m(1) =
|Ψ(2)|2/2m(2). One non-analyticity can be seen in mA at Tc, corresponding to a fixed
point which is not in the 3D XY or inverted 3D XY universality class. An abrupt
increase in mΣh due to vortex condensation is located at Tc = 2.7(8). Please note that
the temperature scale is different from Fig. 5.7 as CV and Υ are computed from Eq.
(5.3) and mA is computed using Eq. (5.5).

0.60± 0.02, which is not in agreement with any known universality class. Even though
the value of ν appears to be in good agreement with the 3D Ising value, we observe
that the 3D Ising model is not self-dual either, and the new type of critical point for
|Ψ(1)|2/2m(1) = |Ψ(2)|2/2m(2) can therefore not be in the 3D Ising universality class.
The origin of the novel exponents is therefore essentially topological, showing that when
the vortex loop blowouts of the neutral and charged modes are not well separated, they
interact in a non-trivial fashion. Another point worth noticing is that there is an extra
symmetry in the problem since one in Eq. (5.3) for |Ψ(1)|2/2m(1) = |Ψ(2)|2/2m(2) may
interchange the labels of the two condensates. This was pointed out by Senthil et al. [11]
which argue that the phase transition in this case falls outside the Ginzburg-Landau-
Wilson classification scheme, and that it is an example of a new deconfined quantum
critical point.

The question of determining the order of the above mentioned phase transition in
the degenerate case |Ψ(1)|2/2m(1) = |Ψ(2)|2/2m(2) is highly non-trivial. A recent article
by Kuklov et al. [125] argue that it is a first order transition. We have pursued this
further and we have indications that this might be true for some range of coupling
constants. To settle this question is extremely numerically demanding and it warrants
further investigation.
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5.2.3 External Magnetic Field

The exotic phenomena that are encountered when this system is exposed to an external
magnetic field are even more spectacular than the one mentioned above. This comes
about because the neutral mode should be unaffected by the magnetic field whereas
the charged mode should be highly susceptible to the field. Ordinary N = 1 type II
superconductors subjected to an external magnetic field are known to form a hexagonal
Abrikosov lattice of flux lines [57]. This flux line lattice melts in a discontinuous phase
transition to destroy superconductivity [59].

T

B

Metallic
Superfluid

Superconducting
Superfluid Superconductor

Normal Metal

Proliferation of
Neutral Mode

FLL melting

Figure 5.9: The phase diagram of the N = 2 model in an external magnetic field contains
four phases: a metallic state, an electronic superconducting state, a superfluid super-
conducting state with both electronic and protonic superconductivity, and a metallic
superfluid phases where dissipationless co directed flow of electrons and protons carry
no net charge. The latter phase is an entirely novel phase featuring frictionless mass
flow and ohmic electronic resistance.

By varying Eq. (5.3) with respect to A just as in Chapter 3, we obtain the equation
for the supercurrent for the system

J(r) = −
2∑

α=1

[
e|Ψ(α)|2
m(α)

∇θ(α)(r) − e2
|Ψ(α)|2
m(α)

A(r)

]
. (5.9)

If we consider a closed path C surrounding a single vortex such that only the phase of



48 CHAPTER 5. LIQUID METALLIC HYDROGEN

the matter field labeled α have a 2π winding

Φ(α) =

∮

C

A · dl = Φ0
|Ψ(α)|2/m(α)

|Ψ(1)|2/m(1) + |Ψ(2)|2/m(2)
, (5.10)

we see that a single vortex carries fractional flux. The energy of one such field induced
individual vortex is logarithmically divergent with respect to the size of the sample. A
pair of vortices however, one electronic and one protonic vortex sitting on top of each
other, carries integer valued flux. Since the neutral mode θ(1) − θ(2) exactly cancels out

Figure 5.10: Detailed illustration of the low temperature thermal fluctuations in an
Abrikosov lattice of composite vortices. A local excursion of the vortex component with
lowest bare phase stiffness (protonic vortex) away from the composite vortex lattice may
be viewed as a protonic vortex loop superposed on the composite Abrikosov lattice.
The composite vortex line does not interact with a vortex with non-trivial winding in
∆γ = ∆(θ(1) − θ(2)). A splitting transition of the composite Abrikosov lattice, as is
depicted in Fig. 5.12 may thus be viewed as a zero field vortex loop proliferation of
protonic vortices, with a phase transition in the 3D XY universality class.

for these co centered vortices, they interact with other vortices only through the screened
part of the potential Eq. (5.6). For this reason, they have finite energy. Thus the co
centered vortices behave just as the vortices of the type IIN = 1 superconductor, aligning
in an Abrikosov lattice in the ground state and melting to destroy superconductivity at
some temperature. From the case N = 1, the melting temperature of the FLL is known
to decrease as the strength of the magnetic field is increased, see Fig. 3.5. The onset
temperature of the neutral mode should be unaffected by this. Thus the two lines in the
phase diagram, associated with melting of the FLL and the onset of the neutral mode,
should cross at some point to span out four different phases [10]. A schematic B − T
phase diagram is given in Fig. 5.9.

To track the superconducting properties of this system we probe the lattice ordering
of the vortices by computing the planar structure function S(α)(k⊥) of the local vorticity
n(α)(r), given by

S(α)(k⊥) =
1

(fL3)2
〈|
∑

r

nαz (r) eik⊥·r⊥ |2〉, (5.11)



5.2. RESULTS 49

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

2.0

2.5

3.0

3.5

4.0

4.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

S(2) S(1)

ΥxCV

T T

Tc1 TM

TM Tc

Low Field High Field

Figure 5.11: Monte Carlo results for the low- (left panel) and high field case (right panel).
Low field: the structure factor S(1)(K) (red) for K = (π/4,−π/4) drops continuously to
zero at Tc1. The helicity modulus Υx also goes to zero at Tc1, and thus both superfluidity
and protonic superconductivity are lost. An anomaly in CV is associated with this
transition. At TM S(1)(K) (red) drops to zero discontinuously. High field: S(1)(K) (red)
and S(2)(K) (blue) for K = (π/4, 2π/5) drop to zero discontinuously at TM where the
system looses its superconducting properties, but retains superfluidity, as evidenced by
a finite helicity modulus Υx. At Tc Υx drops to zero. CV has an anomaly associated
with this. Note how, in the high field case, there exists a window of temperatures where
the structure functions of both the electronic and protonic vortices vanish, while the
helicity modulus of the neutral mode remains nonzero. This is the metallic superfluid.

where r runs over sites of the dual lattice and k⊥ and r⊥ are perpendicular to h and f
is the magnetic filling fraction. When vortices form a lattice, this function will exhibit a
six-fold symmetric Bragg structure, whereas it will feature a characteristic ring structure
in the vortex liquid phase. In ordinary N = 1 superconductors, the melting of the vortex
lattice amounts to a complete destruction of dissipationless currents. To obtain insight
into the fate of the superfluid mode of this 2-component system, we measure the ordering
in the phase difference γ = θ(1) − θ(2). The global phase coherence in this variable is
probed by the helicity modulus Υx, which essentially is the superfluid density, given by
Eq. (5.8), in a direction perpendicular to the field.

In the lower part of the phase diagram Fig. 5.9, below the point at which the melting
line of the FLL and the line defined by onset of the neutral mode cross, the ground state
consists of co centered vortices arranged in an Abrikosov lattice. Snapshots of the vortices
are shown in Fig. 5.12 and the MC results are presented in the left panel of Fig. 5.11.
Upon increasing the temperature for a fixed magnetic field, the protonic vortices start to
tear themselves off the electronic vortices. At Tc1 there is a critical point where both the
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T = 0 T < Tc1

Tc1 < T < TM T > TM

Figure 5.12: Snapshots of the states of vortex matter in the case of low magnetic field
generated from MC simulations, taken at four different temperatures: T = 0, T =
0.25 (T < Tc1), T = 0.37 (Tc1 < T < TM), and T = 2.5 (T > TM). Upper left frame:
the ground state consists of electronic (blue) and protonic (red) vortices arranged in
a co centered lattice. Upper right frame: for T < Tc1 protonic vortices only perform
small excursions from the lattice. This is the superconducting superfluid phase. Lower
left frame: for Tc1 < T < TM the protonic vortex lattice has melted and the protonic
superconductivity is lost, but the electronic vortices are still arranged in a lattice. Lower
right frame: for T > TM the electronic superconductivity is lost.

structure factor S(1) and the helicity modulus Υx vanish continuously. The specific heat
has an anomaly associated with this temperature and in Paper VI we showed that the
critical exponents α and ν of this fixed point were those of the 3D XY universality class.
The reason for this can be understood by the following physical picture; a small thermal
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excursion of a protonic vortex from the FLL can be viewed as a unitary loop of a protonic
vortex superimposed on the undistorted FLL, as illustrated in Fig. 5.10. The constituent
vortices interact with each other through both a Coulomb and a screened interaction,
but with the composite vortices they interact only through the screened interaction. The
long distance physics is completely dominated by the Coulomb interaction, and for this
reason the process of tearing the protonic (red) vortices off the FLL can be viewed as a
proliferation of protonic vortices in zero magnetic field.

In the ground state both the superfluid and the superconducting modes are excited,
and the system may be characterized as a superconducting superfluid. At Tc1 the su-
perfluid property is lost and the system is only able to sustain superconductivity in
the electronic condensate. Upon increasing the temperature further, the electronic FLL
softens and at TM it melts to destroy the electronic superconductivity. The most re-
markable among this series of events is probably the sub-lattice melting of the protonic
vortex lattice which happens in a continuous phase transition. Usually melting of me-
chanical systems are associated with enthalpy and first order transitions, but in this case
the broken translational symmetry is not restored until both lattices have melted at TM.

For high magnetic field, in the upper part of the phase diagram Fig. 5.9, above the
point at which the melting line of the FLL and the line defined by onset of the neutral
mode cross, the opposite series of events occur. The MC results are given in the right
panel of Fig. 5.11 and snapshots of the different states of vortex matter are given in
Fig. 5.13. Upon increasing the temperature from the ground state, both sub-lattices
melt at TM, and superconductivity in both channels is destroyed. The vortices stay co
centered however, and the system is able to sustain superfluidity, as witnessed by the
finite Υx. This phase is another novel quantum fluid that should be characterized as
a superfluid metal. It features frictionless mass flow while at the same time featuring
ohmic resistance to flow of charge. At a higher temperature Tc the co centered vortices
split, Υx drops to zero, and the system goes normal.

In conclusion, due to recent advances in diamond synthesis technology, the pressure of
400GPa where hydrogen is projected to become a metallic liquid, appears to be close to
realization in diamond anvil cells. If the new state of liquid metallic hydrogen material-
izes, it should exhibit two novel states that cannot be characterized exclusively as either
superconductors or superfluids. The superconducting superfluid state should be able
to sustain both co- and counter directed flow of electronic and protonic supercurrents.
That is, if the system is exposed to a magnetic field it would set up counter directed
supercurrents of electrons and protons at the surface, thus dissipationless transport of
charge and mass. On the other hand if the system is rotated it would set up co directed
supercurrents of electrons and protons. In this way there will be dissipationless flow of
mass, but no net transport of charge. The metallic superfluid state should be able to
sustain dissipationless transport of mass in the background of a metallic system. Thus,
liquid metallic hydrogen may very well be the next mile-stone within quantum liquids;
the next super state of matter.



52 CHAPTER 5. LIQUID METALLIC HYDROGEN

T = 0 T < TM

TM < T < Tc T > Tc

Figure 5.13: Snapshots of the states of vortex matter in the case of high magnetic
field generated from MC simulations, taken at four different temperatures: T = 0,
T = 0.5 (T < TM), T = 0.72 (TM < T < Tc), and T = 0.86 (T > Tc). Upper left frame:
the ground state consists of co centered protonic (red) and electronic (blue) vortices in
a FLL. Upper right frame: for T < TM the vortices are arranged in a co centered lattice.
Protonic and electronic vortices only perform small excursions from each other. Lower
left frame: for TM < T < Tc the composite vortex lattice has melted. The electronic and
protonic vortices perform stronger excursions from each other, although they essentially
remain co centered. This is the superfluid metallic phase in which co directed currents
of protonic and electronic Cooper pairs can propagate dissipationless. Lower right frame:
for T > Tc the superfluidity is lost and the electronic and protonic vortices are no longer
co centered.
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[90] E. P. Münger and M. A. Novotny, Phys. Rev. B 43, 5773 (1991).



BIBLIOGRAPHY 57

[91] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev.
B 63, 214503 (2001).

[92] M. Hasenbusch, K. Pinn, and S. Vinti, Phys. Rev. B 59, 11471 (1999).

[93] J. Lee and J. M. Kosterlitz, Phys. Rev. Lett. 65, 137 (1990).

[94] J. Lee and J. M. Kosterlitz, Phys. Rev. B 43, 3265 (1991).

[95] E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).

[96] N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

[97] E. G. Brovman, Y. Kagan, and A. Kholas, Sov. Phys. JETP 35, 783 (1972).

[98] J. J. Fortney, Science 305, 1414 (2004).

[99] T. Guillot, Phys. Today 57, 63 (2004).

[100] N. W. Ashcroft, J. Phys.: Condens. Matter 12, A129 (2000).

[101] N. W. Ashcroft, J. Phys. A: Math. Gen. 36, 6137 (2003).

[102] H.-K. Mao and R. J. Hemley, Rev. Mod. Phys. 66, 671 (1994).

[103] N. W. Ashcroft, Condensed matter at higher densities, in Fenomeni ad alte
pressioni, Rendiconti della scula internazionale de fisica ”Enrico Fermi”, edited
by R. J. Hemley and G. L. Chiarotti, Societá italiana di fisica, Bologna, 2002.
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