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Preface

This report contains the work and results from the Master’s thesis in Marine Technology at
NTNU. The topic of the thesis is to develop a low- cost observer and an normalized adaptive
autopilot. The topic was chosen based on my interest i nonlinear control, the experience from
the Amos DP Research Cruise (ADPRC’16) and from several discussions with my supervisor.

The report includes relevant work made in specialization courses and from the thesis project. In
addition, experiences from ADPRC’16 will be presented and discussed throughout the thesis.
The thesis was done in the spring semester of 2017, between January and July.

For understanding the report there no need of extensive knowledge of Marine Control Systems.
However, basic engineering knowledge is an advantage. This is a standalone report and every
subject will be properly introduced and described thoroughly throughout the text.

Trondheim, 2017-07-17

.......................................

Alexander Mykland
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Summary

In this thesis a signal-based observer and a path-following autopilot design will be derived and
implemented on the model vessel C/S Enterprise I. Using scaling methods the goal is to transfer
the controllers into a full scale model of R/V Gunnerus without extensive tuning or redesign.
The control system will be designed to fulfill a low-cost concept using a signal-based observer
and adaptive controllers. This is done in order to avoid using model parameters, which often
require lengthy and expensive sea trials. This may facilitate testing which now to a greater
extend can be done using laboratories and models instead of actual full-scale vessels. Finally,
a guidance loop will be integrated in the control system which will make both vessels able to
follow predetermined paths using the low-cost control system.

By using maneuvering theory the 3 DOF vessel model of C/S Enterprise was reduced into
uncoupled models for surge-speed, sway-yaw- and yaw-motion. Using normalization methods,
these models were tested with respect to scaling, simplicity and performance. Comparison were
done with the full-scale 6 DOF R/V Gunnerus model. This resulted in that the surge-speed- and
the 1st order Nomoto- model for heading control were chosen as basis for the controller.

Next, a signal-based (or kinamtic) observer design was derived, implemented and tested with
and without noise on the acceleration measurements. It proved that the integrator filters worked
as expected and that the errors converged towards zero. For the control design, MRAC was cho-
sen as the preferred control scheme. Two different normalized heading controllers in addition
to a normalized surge-speed controller were derived and simulated based on the maneuvering
models chosen earlier. Tests, were done with and without robustification for the C/S Enterprise
I and with scaling on R/V Gunnerus. The simualtions produced satisfying results showing that
the scaled adaptive controllers could easily be transferred to a full-scale vessel.

Finally, guidance was added to the autopilot design. Path generation for both regular- and
parameterized paths were generated and path-following as well as path-tracking algortihms.
Extensions were also implemented in order to cope with current effects. Simulations for both
C/S Enterprise I and R/V Gunnerus proved that the vessels were able to follow these paths even
when current forces acting were on the vessels. These simulations tested the whole control
system developed throughout the thesis and the overall results were satisfying. As a conclusion,
the scalable low-cost autopilot design and signal-based observer were succesfully implemented
and simulated for both vessels, yielding good results.
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Sammendrag

I denne masteroppgaven skal det utvikles en signalbasert estimator og en autopilot med integrert
kursgenerering og kursfølging. Disse skal først implementeres for modellskipet C/S Enterprise
I. Deretter skal kontrollerne skaleres for bruk på en fullskalamodell av R/V Gunnerus ved mini-
mal bruk av tuning og endring av design. Kontrolldesignet følger et såkalt lavkost konsept som
gjør at man vil holde kostnadene nede ved å unngå dyre og langvarige sjøprøver for å bestemme
modelparameterene. Dette betyr at estimatoren som brukes har et kinamtisk design og at kon-
trollerene er adaptive som gjør at de kan estimere enkelte modelparametere selv. I tillegg vil
normalisering bli brukt slik at man kan overføre kontrolldesignet mellom skip med forskjellig
størrelse ved hjelp av skalering. Dette gjør at testing i laboratorier kan erstatte store deler av
sjøprøver som bidrar til lavere kopstnader. Til slutt skal skipets integrerte kursfølger utvikles
for at skipet skal kunne følge forutbestemte ruter ved hjelp av kontrollsystemet.

Først skal en modell av C/S Enterprise I med 3 frihetsgraders forenkles ved hjelp av manøvre-
ringsteori. Disse forenklede manøvreringsmodellene skal deretter simuleres for å avgjøre hvilke
som var lettest å bruke og hadde de beste egenskapene i forhold til skalering og ytelse. Disse
simuleringene gav en hastighetsmodell i jag. Videre ble førsteordens Nomotomodell valgt for
beskrivelse av bevegelse i giring.

Deretter ble observeren presentert, implementert og testet med og uten støy på akselerasjons-
målinger. Simuleringne viste at integrasjonsfilteret fungerte bra og at feilen i estimatene kon-
vergerte mot null over tid. For de adaptive kontrollerne ble MRAC valgt som adaptivt design og
kontrollerne bygget videre på manøvreringsmodellene som ble utviklet tidligere. To kontrollere
for giring samt en for hastighetskontroll i jag ble presentert, implementert og testet for C/S En-
terprise I med gode resultater både med og uten robustifisering. I tillegg ble disse skalert for
bruk på fullskala modellen av R/V Gunnerus. Dette førte også til gode resultater og lite behov
for tuning for å tilpasse kontrollerne.

Til slutt ble kursfølging implementert for kontrollsystemet. Generering av både vanlige og
parametriserte ruter ble implementert samt kursfølging og kompensasjon av strømkrefter for
autopiloten. Simuleringer ble gjort ved bruk av lavkost autopiloten og viste at hele kontrollsys-
temet fungerte godt sammen. De genererte kursene ble fulgt både med og uten påvirkning av
havstrøm på skipene. Dette bekrefter på mange måter at den normaliserte lavkost autopiloten
og den signalbaserte estimatoren ble presentert, implementert og testet med gode resultater.
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Terms and Concepts
• Adaptive Control is a control design in which design parameters can be estimated online

while controlling a craft or a process.

• Autopilot is an automatic control function for steering a moving craft.

• Controllers are what makes the vessel move. It relates the actual- and the commanded-
states to thrust and steer the vessel towards the desired values.

• Dynamic Positioning System is a control system that is used for maintaining postion
and heading for marine crafts. It can also be used for navigating at very slow velocities
to desired setpoints. The Dynamic Positioning System is controlled by computers.

• Equilibrium is the point in which the observers or controllers stabilizes to with or without
disturbances acting on them.

• Heading Control refers the controllers ability to steer the craft to the desired yaw angle.

• Maneuvering Model is a mathematical description for a relatively fast moving vessel
(faster than for seekeeping or DP models).

• Path-Following for a marine vessel is the ability to follow paths without any constraints
on time.

• Path-Tracking for a marine craft allows the vessel to track a desired path with constraints
on duration.

• Surge-speed Control is ability to make the vessel follow a certain speed in surge using a
controller.

• Stability in control design is that the errors converges towards zero both with and without
disturbances. If the errors in the control signals fail to converge the system is said to be
unstable.

• State Estimator or observer is a vital part of a control system which is used to reconstruct
unmeasurable states and also to act as backup in case of signal failure.

• Underactuated Vessels have control inputs in less DOFs than its workspace. For a sur-
face vessel moving in 3 DOF an underactuated vessel have control inputs in for instance
surge and yaw while sway input is not available.
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Chapter 1
Introduction

This thesis presents the analysis of non-dimensional adaptive autopilot designs, a signal-based
observer and guidance for a under-actuated path following marine vessel. The first chapter is
meant for introducing the topics, ongoing research, the scope of this report and contributions
resulting from this study.

1.1 Motivation and Background

1.1.1 Motivation

The first control systems for marine crafts date back to the 19th century for steam powered
engines, but it was not until the early nineteen-hundreds when the first gyrocompass was im-
plemented on a US war ship that the first autopilot was designed. In 1922 the engineer Nicolas
Minorsky published the first theoretical analysis for a Proportional-integral-derivative (PID)
controller and implemented an automatic steering device on USS New Mexico. This paved way
for modern ship autopilots and control theory. Nowadays the autopilot is widely used in a wide
range of vehicles, from space crafts and planes to cars and marine vessels. It contributes to
easier and safer maneuvering operations and requires less onboard crew to operate. For marine
applications the dynamic positioning (DP) systems and ship autopilots are the most known ap-
plications.

Recently, as the marine control systems are becoming more accurate, reliable and safe, the idea
of a completely unmanned vehicle has emerged and become a reality. Autonomous underwater
vehicles (AUV) were used for mapping the seabed and for monitoring underwater structures
to prevent diving accidents in offshore operations. For surface vessels the autonomy is also
growing and fully autonomous surface vehicles (ASV) have been developed. This tendency for
autonomy makes the development of improved controllers important leading to the introduction
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of automatic path generation and guidance control. Together they can make ship navigation
safer, more environmentally friendly and efficient.

A new aspect of autonomous vessels is the cost versus performance since control systems have
become part of most commercial ships. This has huge influence on the control designs as most
of them uses physical vessel parameters and gains determined by expensive and lengthy sea
trials.

In order to fulfill the constraints on the cost and performance one must find other ways to
determine these parameters. This can be done using controllers that are able to estimate and
adapt to the required parameters. Including a state estimator, or observer, the cost of additional
sensors on board is reduced and it can provide a certain level of redundancy should any of the
remaining sensors fail. Following the model-free control design a kinematic observer suits the
purpose and assists the control systems in estimating unmeasurable states.

1.1.2 Underactuated Marine Vessels

Most vessels are underactuated. This is because it simplifies the control system design, reduces
cost and consumes less energy. As described in Fossen (2011), underactuated control refers to
when a craft is operating in more degrees of freedom (DOF) than it has control inputs.

For a conventional autopilot model for a 3 DOF surface vessel model, only one control input
(in yaw) is needed to control the heading. In order to solve the path-following control objective
for the same vessel model an additional control input in surge is needed. The main challenge
for underactuated vessel is that the sway dynamics are not controlled and are very responsive to
disturbances. The sway equation must be stabilized in order to make the whole system stable.
For this thesis underactuated vessel models will be used for as a basis for developing the control
system.

1.1.3 Modeling of Marine Vessels

In order to develop control systems for marine crafts mathematical models are essential. Us-
ing accurate mathematical models together with better computers and simulation tools like the
hardware-in-the-loop (HIL) simulators can reduce the risk of accidents as well as time. These
mathematical descriptions are often formulated in two different complexity levels (Sørensen
(2013)). A process plant model (PPM) or a simulation model (Fossen, 2011) is a detailed de-
scription of the vessel. It is used to simulate real plant dynamics and requires a lot of computer
power and time in order to obtain results with a certain level of accuracy. For a control system,
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however, it is normal to utilize a simplified model which includes only the most important phys-
ical properties of the vessel in study. This is called the control plant model. It can be applied to
the controllers itself or be used in analytic stability analysis. A third model approach exists for
observer design. Although similar to the simulation model its main purpose is to reconstruct un-
measured states, noise and waves in addition as being a fail-safe option in case of sensor failures.

All mathematical models for marine crafts are designed with respect to the operational condi-
tions. Low-velocity (seekeeping) models are often used for applications of Dynamic positioning
(DP) while the high-velocity maneuvering models (Fossen, 2011) are applied for operational
conditions which require faster moving vessels. For an autopilot model the latter one is applied
for simulations. This is because the vessel is assumed to be moving at a cruising speed far
greater than the desired speed for seekeeping purposes.

A useful extension of the maneuvering models is to normalize them as described in Fossen
(2011). It is a useful tool in order to simplify the transition from a small model to the full
scale vessel or using the same controller on similar vessels. By normalizing the maneuvering
models, the controllers can also be made non-dimensional. More time can therefore be used
in laboratories with a model vessel because the maneuvering models and the controllers are
scalable. This reduce the duration of implementation, cost of sea trials and tuning.

1.1.4 Adaptive Control

For the control purpose an adaptive design is chosen. According to Ioannou and Sun (2012)
adaptive control is described by the controllers ability to adapt to changing conditions. While
doing this the controller input is modified to change the vessel dynamics and estimates unknown
disturbances in order to remove them from the true dynamics. This does not necessarily mean
that the estimates represent true parameter values nor the actual disturbances. There exists two
main branches in adaptive control design. The first one, called indirect adaptive control, esti-
mates system parameters for which it calculates the controller parameters at each time step. The
second method is called direct adaptive control. In contrast to the indirect method, the plant is
parameterized in terms of the unknown model parameters calculating the control parameters in
one step.

Adaptive control emerged with the advances in control theory in the 1950s. One of the first
methods to be developed was called Model Reference Adaptive Control (MRAC). MRAC can
be applied with both direct and indirect adaptation and is still one of the preferred techniques for
adaptive control and will be the method of choice for this thesis. In short, this method forces the
system output to track a bounded reference signal estimating model parameters giving the de-
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sired response (Lavretsky and Wise, 2012). Robust control can be achieved for MRAC similarly
to other adaptive techniques. Robust control guarantee boundedness of the output signal even
with plant uncertainties and bounded disturbances. Two common methods for robustification
are the Dead zone modification which stops adaptation when the reference is tracked properly
and the Projection operator which prevents drifting of the estimates. Both are described in
Ioannou and Sun (2012) and Lavretsky and Wise (2012).

1.1.5 Path-Following Control for Marine Surface Vessels

Path-following is a widely used control function for maneuvering. The goal is to make the
vessel follow predefined paths without any time constraints. For underactuated vessels this can
be done by controlling the heading and adjusting it in order to minimize the cross track error.
Line-of-sight guidance is the most common way to handle the path-following control problem.
It uses the controlled heading to compensate for the lack of control input in sway in order to
follow the desired path even with environmental disturbances such as current and wind. In
(Fossen, 2011) these forces are handled by calculating the sideslip angle and making the course
angle compensate in order to reduce it.

This thesis, however, focuses on the ILOS guidance presented in Børhaug (2008). Here a new
approach to handle constant ocean currents without the need of the sideslip angle is discussed.
In short, an integral state multiplied with a tunable gain is added into the heading equation in
original line-of-sight guidance. If this integral term is used it can be tuned to compensate for
constant disturbances.

1.1.6 State Estimator

Reconstructing unmeasured states is very important on board a marine vessel. As mentioned in
Section 1.1.1, it can reduce costs of additional sensors and provide redundancy if any problems
occur.

The chosen design is a signal-based or kinematic observer and uses gyro measurements of
velocity and acceleration to estimate the velocities and attitude of the vessel (Brodtkorb et al.,
2016). The attitude and translation part of the observer are separated as two fundamentally
different components only connected by the estimated accelerations in North-East-Down (NED)
frame and the wave frequency state.
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1.1.7 Target Vessels

For this thesis the path-following autopilot and the signal-based observer will be implemented
on a medium-high maneuvering model of R/V Gunnerus, NTNUs research vessel. For HIL sim-
ulations, scaling controllers and for practical experiments in the Marine Cybernetics Laboratory
(MC Lab) the C/S Enterprise I (CSEI) will be used.

Figure 1.1: The C/S Enterprise I model vessel

The CSEI vessel is shown in Figure 1.1. It is 1m long (Lpp) and weighs 14.79 kg. It has 3
actuators, one bow thruster and two Voight Schneider propellers at the aft. It was originally
built in 2009, but later modified in 2011 (NTNU (2016)). The vessel is used for experiments in
the MC Lab for both Master’s and PhDs students.

For testing of the controllers in full-scale a vessel model of R/V Gunnerus is used in this thesis.
The modelled vessel measures 29.8 m (Lpp) and weighs 743888.94 kg. R/V Gunnerus is the
NTNU reasearch vessel and is used for many different applications including control system
design and biological research. The real vessel also has a bow thruster, but its main actuators
are two azimuth thrusters. A picture of the vessel is shown in Figure 1.2.

Using the simulation models for each vessel, the input to the models will be thrust forces and
moment. Thrust allocation will only be applied for physical experiments in the MC Lab. Both
models are taken directly using NTNU (2016) and Perez and Fossen (2004) for CSEI and R/V
Gunnerus respectively.
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Figure 1.2: Photo of R/V Gunnerus taken from the ADPRC’16

1.1.8 AMOS DP Research Cruise 2016

During two weeks of October and November 2016 a sea trial in cooperation between NTNU
and Kongsberg Maritime (KM) called the AMOS DP Research Cruice 2016 (ADPRC’16) was
held. This was a first-of-its-kind sea trial were NTNU granted KM access to R/V Gunnerus
for testing their DP and autopilot systems. In return PhD candidates in addition to myself were
able to test different controllers, observers and autopilot models for the full scale vessel using
the KM control system on board. The experiences from these cruises will be used in this thesis
to improve the autopilot focusing on how to prevent the implementation issues that occurred
and how to improve the controllers. Figure 1.2, is taken during the last cruise and shows the
research vessel in Brekstad port.

1.2 Objective and Scope

The topics presented above are well known and widely used in marine control applications.
However, there is a slight gap in the study of normalized adaptive autopilot designs. By ap-
plying the experience gained during APDRC’16 and using existing literature this topic will be
investigated in order to prove if normalized adaptive autopilots may reduce the cost on a surface
vessel while still being able to perform at a high level. The scopes are throughout the thesis
divided into:
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1. Perform a literature survey on the relevant subjects

2. Establish an appropriate underactuated simulation model for R/V Gunnerus for medium-
high speeds.

3. Assess, simulate and compare different adaptive control design models for autopilot de-
sign.

4. Discuss normalization and scaling methods and how it affects the control behaviour.

5. Study the MRAC design, normalize the controllers and discuss their applicability to scal-
ing.

6. Assess and simulate a signal-based/kinematic observer design with respect to the autopi-
lot design.

7. Implement path generation and add guidance as an outer loop in the autopilot using the
ILOS method for path-following purposes.

8. Define test scenarios and perform simulations in MATLAB/Simulink, HIL and if possible
of practical experiments in the MC Lab.

1.3 Limitations

The thesis is limited to underactuated surface vessels moving in 3 DOFs, adaptive controllers
and signal-based observers. Two vessel models will be used for simulations and for comparison
of the results. These vessels are CSEI and R/V Gunnerus. Both models will be tested in MAT-
LAB/Simulink but, only the CSEI will be used in HIL and in laboratory exercises as no model
vessel exists for R/V Gunnerus.

The CSEI was broken for almost the entire semester as well as being used in lab exercises for
an advanced marine control course. This meant that there were not enough time for physical
experiments. In addition, the model parameters in the given model were inaccurate and some
even completely wrong, resulting in that some modifications needed to be done in order to
get stable maneuvering models. The absence of physical tests opportunities made the need of
extensive HIL simulation less necessary. Since the same inaccurate vessel models were used in
the HIL software as in MATLAB simulations yielding the same results, HIL was used only as
proof of that the control system worked with the software that is used in the MC Lab.
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1.4 Contributions of this Thesis

Apart from studying and presenting a less known topic within autopilot design this thesis in-
cludes practical contributions such as:

• Implementation of a working low-cost normalized adaptive autopilot model for CSEI,
including path generation, tracking and a signal-based observer. The autopilot can be
scaled for application on a full scale simulation model of R/V Gunnerus.

1.5 Outline of the Thesis

The rest of this thesis will be organized as follows:

Chapter 2: describes how the modeling of kinetics and kinematics are done. Further, the ma-
neuvering models will be derived and simulations of these designs will be tested in order to
find the most suited models for this thesis. Finally, the normalization will be applied for the
maneuvering models.

Chapter 3: Presents the procedure of simulations, HIL testing and full scale test. In addition,
the methods for monitoring and gathering of results are discussed.

Chapter 4: will look closer into the kinematic observer complete with robustification. Stability
properties will be discussed and results from simulations will also be presented.

Chapter 5: presents various MRAC designs for the autopilot model with stability proofs, ro-
bustification techniques and results from simulations using MATLAB/Simulink and HIL tests.

Chapter 6: extends the autopilots control system into including path generation, path-following
and path-tracking of underactuated marine vessels. Relevant simulations and proof of HIL test-
ing will also be presented.

Chapter 7: analyses the overall results of the thesis in a discussion.

Chapter 8: concludes the thesis based on the discussion and also provides topics for further
work.
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Chapter 2
Mathematical Modeling

In order to develop mathematical models for the two target vessels their operational purposes
must be determined. In Section 1.1.3 the different classification of these models were presented
according to Fossen (2011) and Sørensen (2013). For an autopilot a CPM is preferred as it is
less computationally expensive and sufficient for controlling purposes. As both target vessels
are operating at the surface only, a natural simplification is to reduce the 6 DOF simulation
model to a 3 DOF model which the maneuvering models will be derived from. Fossen (2011)
and Fossen (1994) will be used as a base for model derivation.

Mathematical models for marine vessels must include both dynamic theory and hydrostatics.
Dynamics is usually divided into kinematics and kinetics. Kinematics describes motion from a
geometrical point of view; defining coordinate frames, how they relate and how they move with
respect to one another. Kinetics however, focuses on how forces affects the motions of a vessel.
It is common to model moving vessels as mass-spring-damper-systems. Hydrostatics focuses
on the restoring (or spring) forces caused by gravity and buoyancy, based on Archimedes Prin-

ciple. As the vessels are assumed to be moving at a constant speed, the mass and damper terms
are found through maneuvering theory. It is worth noticing that added mass, Coriolis forces,
linear and non-linear damping are all included in the mathematical models.

For a underactuated surface vessel, the main issue is how to handle the sway dynamics. As
presented in Section 1.1.2 a constant thrust in surge in adition to control input in yaw is suffi-
cient to steer the ship along a desired path. The 1 DOF Nomoto model (Nomoto K. and Hirano,
1957) is one of the most widely used autopilot design models and builds on this principle. The
second order Nomoto model was first derived from a 2 DOF linearized sway-yaw subsystem
developed by Clarke and Horn (1997) and Fossen (1994). Further simplifications resulted into
a first order model, depending on only a time constant and a controller gain. Extensions to the
Nomoto models have been made to include non-linear effects as presented in Norrbin (1963)
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and Bech (1969).

Determining which of the maneuvering models to chose and which extensions are to be in-
cluded, is done by assessment of directional stability. The models that can keep the same
heading after disturbances are said to be directionally stable and is explained in Fossen (2011,
Chapter 12). In Nomoto (1972) the Nomoto model is discussed in light of directional stability.
In Saout and Ananthakrishnan (2011) a similar study for the coupled sway-yaw motion is done
for underwater vehicle close to the free surface.

For some path-following and path-tracking purposes and for maneuvering, an additional input
in surge is required in order to control the velocity. Due to starboard-port symmetry no coupling
effects exists between surge and the two other DOF (sway and yaw). Hence, the surge equation
can be treated separately to the 2 DOF sway-yaw subsystem and the Nomoto models.

Finally, the maneuvering models will be normalized in order to facilitate scaling between similar
vessels with different sizes. Two such techniques are known as Prime-scaling (SNAME, 1950)
and Bis-scaling (Norrbin, 1971) and can be applied for derivation of scalable controller design.
In this thesis the focus will be on the Bis-scaled normalization method.

2.1 Derivation of Mathematical Vessel Models

In this section the vessel kinematics and kinetics will be described according to Fossen (1994)
and Fossen (2011), starting with a 6 DOF model before simplifying it to fit the purpose of this
thesis. The notation throughout will follow Fossen’s Robot-like Vectorial Model for Marine
Crafts first introduced in Fossen (1991).

2.1.1 Kinematics

There are several ways to look at the motion of a surface vessel. One way to look at it is by
studying the vessel from a Earth-centered coordinate frame. The Earth-centered Earth-fixed
(ECEF) frame has its origin at the center of the Earth. Its x-axis is pointing through the inter-
section of 0◦ longitude and latitude, the z-axis points straight upwards and the y-axis lies in the
direction which fulfills the right-hand-rule. This frame rotates along with the Earth, which for
marine purposes can be ignored. Instead, an Earth-centered Inertial (ECI) frame is used. It is
a non-accelerating coordinate system in which Newton’s laws of motion does apply. The ECI
frame has its origin and z-axis as for the ECEF frame, but its x-axis points through the vernal
equinox. The y-axis points as in the ECEF frame and is placed such that the right-hand-rule is
satisfied.
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A more common way for looking at motion is using a geographical frame with origin on the
surface of the Earth. The North-East-Down (NED) frame defines the x-axis as true North, y-
axis as East and z-axis pointing downwards towards the center of Earths reference ellipsoid
(World Geodetic System, 1984). The body-fixed (BODY) frame has its origin midships on the
mean waterline, x-axis pointing straight forward, y-axis pointing starboard and z-axis is defined
positive downwards.

Having defined the coordinate systems, the 6 DOF kinematic differential equation relating po-
sition in NED coordinates to velocities in body frame can be written as

η̇ = J(η)ν (2.1)

where,

J(η) =

Rn
b (θnb) 03×3

03×3 TΘ(θnb)

 (2.2)

is the 6 DOF velocity transformation matrix. η and ν represents the the position in NED frame
and the body-fixed velocities, respectively and they are written out as shown in (2.3) and (2.4)
below.

η = [pnb/nΘnb]
> = [N,E,D, φ, θ, ψ]T (2.3)

ν = [vbb/nω
b
b/n]> = [u, v, w, p, q, r]T (2.4)

pnb/n represents the NED coordinates, Θnb the attitude in Euler angles while vbb/n and ωbb/n rep-
resent the linear and angular velocity decomposed in BODY coordinates.

The two velocity transformation matrices in (2.2) build on Euler’s Theorem of Rotation (ex-
plained in Fossen (2011)) which states the relative orientation between two different frames can
be made by rotating one of them with respect to the other. A rotation matrix Rλ,β will rotate
the frames according to a rotation (β) about the λ axis as shown in (2.5), where

Rλ,β = I3×3 + sin(β)S(λ) + [1− cos(β)]S2(λ). (2.5)

Here, λ is the unit vector parallel to the axis of rotation and S(λ) is a skew-symmetric matrix
defined as (2.6)

S(λ)3×3 = −S>(λ) =


0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0

 . (2.6)
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For the principal rotations λ is set to [1, 0, 0]>, [0, 1, 0]> and [0, 0, 1]> representing the x-, y- and
z-axis respectively. These are paired with the rotations (β) with respect to the axis (Φ,Θ,Ψ).
The linear velocity transformation is obtained by multiplying all principal rotation matrices
resulting in (2.7)

Rn
b (Θ)3×3 =


cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ

−sθ cθsφ cθcφ

 , (2.7)

where s(·) and c(·) are short for the sine and cosine functions, respectively. The inverse ma-
trix can be obtained multiplying the transposed matrices (of the principal roptations) together
according to zyx convention (Fossen, 2011)

Rn
b (Θnb)

−1 = Rn
b (Θnb)

T . (2.8)

The angular velocity transformation matrix TΘnb
can be defined from ωbb/n and the principle

rotation matrices discussed above, resulting in

ωbb/n =


φ̇

0

0

+R>x,φ


0

θ̇

0

+R>x,φR
>
y,θ


0

0

ψ̇

 := T−1(Θnb)Θ̇nb. (2.9)

By inverting the matrix (Θ−1
nb ) in the last expression of 2.9, TΘnb

is obtained and expressed as

T (Θnb)3×3 =


1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cθ/cφ

 , (2.10)

where t(·) is short for the tangent function.

Having defined the angular rotation matrix, the derivative of the linear velocity transformation
matrix can be obtained using

Ṙ
n

b (Θnb) = Rn
bS(ωbb/n). (2.11)

In (2.11) S(ωbb/n) is like (2.6) but where [λ1, λ2, λ3] is replaced by the body-fixed angular ve-
locities [p, q, r].

The problem with defining rotations using Euler angles as above is that there exist singularities.
To avoid this problem Chou (1992) introduced quaternions which are complex number consist-
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ing of a real part η and a vector of imaginary numbers ε. In vector form the unit quaternions are
defined using (2.5) defining q as

qnb =


η

ε1

ε2

ε3

 =

η
ε

 =

 cos(β
2
)

λ sin(β
2
)

 , (2.12)

where |q|2 = 1. Using quaternions the transformation matrices (2.7) and (2.10) transform into

Rn
b (q)3×3 =


1− 2(ε22 + ε23) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)

2(ε1ε2 + ε3η) 1− 2(ε21 + ε23) 2(ε2ε3 − ε1η)

2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε21 + ε22)

 (2.13)

and

T (q)4×3 =


−ε1 −ε2 −ε3
η −ε3 ε2

ε3 η −ε1
−ε2 ε1 η

 , (2.14)

which in turn modifies (2.11) transform into

q̇nb = T (qnb )ωbb/n. (2.15)

and the kinematic equation(2.1) into

η̇ = Jq(q)ν. (2.16)

2.1.2 Kinetics

The study of kinetics introduces the marine craft equations. In order to complete these equations
rigid-body forces, hydrostatics and hydrodynamics must be studied. Starting with rigid-body
kinetics (Fossen, 2011, Chapter 2) a 6 DOF vessel can be described as

MRBν̇ +CRB(ν)ν = τRB, (2.17)
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where

MRB =

 mI3×3 −mS(rbg)

−mS(rbg) Ib

 (2.18)

is the rigid-body mass matrix (m is for mass, Ib denotes mass moments of Inertia),

CRB =

[
mS(ν2) −mS(ν2)S(rbg)

−mS(rbg)S(ν2) S(Ibν2),

]
(2.19)

is the rigid-body centripetal matrix (Fossen and Fjellstad, 1995). ν, is as in (2.4), while
ν2 = [p, q, r]> and rbg are the angular velocities and the distance from the origin of the BODY
frame to the center of gravity (CG) of the craft, respectively. I3×3, is the unit matrix while S(·)
is a skew-symmetric matrix presented as (2.6). τ , is the rigid-body force vector.

The restoring terms are added to (2.17) by studying the hydrostatic forces (Fossen, 2011, Chap-
ter 4). These includes effects of gravity and buoyancy (Archimedes Principle) written in vector
notation (Fossen, 1991) as g(η) + g0, where the first term includes the restoring forces and the
second includes the gravitational ones.

Assessing the hydrodynamics of the vessel using maneuvering theory (Fossen, 2011, Chapter
6) the last terms includes added mass forces MA, linear (Dlin(ν)ν) and nonlinear (Dnl(ν)ν)
damping forces as well as Coriolis-Centripetal forces CA(ν).

Introducing other external forces acting on the vessel such as current-, wind- (τwind), waves-
(τwave) and control input-forces (τ ), the complete maneuvering equation can be written as

MRBν̇ +CRB(ν)ν +MAν̇r +CA(νr)νr +D(νr)νr

...+ g(η) + g0 = τ + τwind + τwave. (2.20)

Note that the current forces in (2.20) are included in the relative velocity components νr =

ν − νc, where νc represents the constant irrotational current vector

νc =
[
uc vc wc 0 0 0

]>
. (2.21)

As the current is assumed to be constant ν̇c = 06×1 and ν̇r = ν̇.
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2.2 Maneuvering Models

For autopilot applications there is no need to include 6 DOFs in calculations. For surface vessels
it is normal to reduce the model to motion in surge, sway and yaw. This is done under the
assumption that motions in heave, roll and pitch are small. In this way the kinematic velocity
transformation matrix (2.1) reduces to (Fossen, 2011)

η̇ = Rn
b (ψ)ν, (2.22)

where η = [N,E, ψ]T , ν = [u, v, r]T and Rn
b (ψ) is called the 3 DOF rotation matrix and is

expressed as follows:

Rn
b (ψ) =


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 . (2.23)

This reduction of DOFs applies also for the kinetics. Further simplifications are made by sum-
ming the mass components, the linear and nonlinear damping and the Coriolis-Centripetal terms
as well as neglecting the hydrostatic forces as they are zero in the horizontal plane. This implies
that (2.20) can be written as

Mν̇ +C(νr)νr +D(νr)νr = τ + τwind + τwave,∈ R3, (2.24)

where

M =


m−Xu̇ 0 0

0 m− Yv̇ mxg − Yṙ
0 mxg − Yṙ Iz −Nṙ

 (2.25)

is the combined rigid-body mass and added mass terms. Xu̇, Yu̇, Yṙ and Nṙ are added mass
components and mxg is cross terms of the mass moment. The damping matrix including both
linear and nonlinear damping becomes (Faltinsen and Sortland, 1987)

D(νr) =


−Xu −X|u|u|ur| 0 0

0 −Yv − Y|v|v|vr| −Yr − Y|v|r|vr|

0 −Nv −X|v|v|vr| −Nr −N|v|r|vr|

 , (2.26)
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and at last the 3 DOF simplified Coriolis matrix becomes

C(νr) =


0 0 −(m− Yv̇)v − (mxg − Yṙ)r

0 0 (m−Xu̇)ur

(m− Yv̇)v + (mxg − Yṙ)r (Xu̇ − Yv̇)ur (mxg − Yv̇)ur

 .
(2.27)

It is common to add the damping and coriolis matrices together as they their effects on the craft
are often hard to separate. This is usually done by (Fossen, 2011)

N (νr) = D(νr) +C(νr), (2.28)

resulting in
Mν̇ +N (νr)νr = τ ,∈ R3. (2.29)

Due to starboard and port symmetry Fossen (2011) suggests that the surge motion is assumed
decoupled from sway-yaw and that they may be treated as separate subsystems. The surge speed
model can then be written as

(m−Xu̇)u̇r −Xuur −X|u|uur = τx. (2.30)

The sway and yaw terms can be written as (2.29), but where the equations now describe a 2
DOF system where ηr = [yr, ψ]> and νr = [ur, r]

>. The first columns and rows of (2.25),
(2.26) and (2.27) are hence removed resulting in the sway-yaw subsystem (Clarke and Horn,
1997) below

Mν̇ +N (νr)νr = τ ,∈ R2. (2.31)

2.2.1 Linearized Models for Autopilot Design

The 2 DOF model from (2.31) can be further simplified to obtain a simpler maneuvering model.
One way to do that is by linearizing it about the cruise speed (u0) as the vessel motion is an
important assumption in deriving the maneuvering model. With linearization the model become

Mν̇ +N (u0)νr = τ . (2.32)

In (2.32), only linear damping and linearized coriolis terms are present in the N (u0) term by
application of (2.28). The 2 DOF linear damping and coriolis matrices are shown in (2.33) and
(2.34):

D(νr) =

[
−Yv −Yr
−Nv −Nr

]
, (2.33)
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C(νr) =

[
0 (m−Xu̇)u0

(Xu̇ − Yv̇)u0 (mxg − Yv̇)u0

]
. (2.34)

Note that the term in the lower left corner of (2.34) is a destabilizing moment called the Munk
moment. In many cases τ is written as a function of rudder angle

τ = bδ, (2.35)

where b is a gain and δ the rudder angle.

2.2.2 Nomoto Models

If only yaw rate (r) is chosen as output of the 2 DOF state-space representation of (2.32) a 1
DOF model is obtained. By applying the Laplace transformation of this system the following
equation is obtained

r

δ
(s) =

K(1 + T3s)

(1 + T1s)(1 + T2s)
. (2.36)

Ti(i = 1, 2, 3) are time constants and K is the yaw gain from the b vector in (2.35). A similar
model can be obtained for sway motion, but the gain and T3 will be different from the yaw
model. Integrating the model (dividing with s in the Laplace domain) the second order transfer
function representing the Nomoto model is obtained in the same way as done by Nomoto K.
and Hirano (1957):

ψ

δ
(s) =

K(1 + T3s)

s(1 + T1s)(1 + T2s)
, (2.37)

where ψ is the desired heading. Introducing an equivalent time constant T = T1 + T2 − T3,
(2.37) is reduced to a first order model

ψ

δ
(s) =

K

s(1 + Ts)
. (2.38)

Transferred back into time-domain (2.37) and (2.38) can be written as

T1T2ψ
(3) + (T1 + T2)ψ̈ + ψ̇ = K(δ + T3δ̇) (2.39)

and
T ψ̈ + ψ̇ = Kδ (2.40)
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2.2.3 Adding Nonlinear Characteristics

Sometimes it is preferred to include nonlinear terms in the Nomoto models. The ψ̇ terms in
(2.39) and (2.40) are replaced by a nonlinear function of r (as ψ̇ = r)

HN(r) = n3r
3 + n2r

2 + n1r + n0 (2.41)

HB(r) = b3r
3 + b2r

2 + b1r + b0 (2.42)

The first one (2.41), developed by Norrbin (1963) added nonlinearities to the first order ex-
pression. The second equation (2.42), developed by Bech (1969) did the same for the second
order model. Note that the linear models are obtained by setting HN(r) = HB(r) = r. Con-
cerning the constant values bi and ni, they depend on the maneuver characteristics of the target
vessels used in this thesis. Due to ship symmetry the terms b0 and b2 are assumed to be zero,
while b1 changes sign if it’s course-stable (positive) or unstable (negative). Their values can
be determined through Bech’s spiral maneuver (Fossen, 2011, Chapter 12.1.1). Normalizing
Bech’s parameter values, results in the equivalent parameters according to Norrbin’s theory.
This means that for course-stable vessels n1 is 1 and for course-unstable vessels n1 is -1.

2.3 Normalization

Two scaling laws are described in Fossen (2011, Chapter 7.2.5). The first one is called the
Prime system (SNAME, 1950). The second is called the Bis system (Norrbin, 1971). To show
the differences in scaling the non-dimensional time is used as an example

t′ =
Lpp
U
, (2.43a)

t” =

√
Lpp
g
. (2.43b)

The Bis scaling (2.43b) is the method chosen because of its overall validity, even at slow speed,
where the Prime system (2.43a) has a singularity. A non-dimensional model is introduced in
order to easier transfer it to other vessel models. It can be a great advantage to perform tests of
controllers on a model vessel before trying them out in full scale. The scaling should facilitate
the implementation and tuning of the control systems made using the small model vessel in the
laboratory.

2.3.1 Normalized Maneuvering Models

In order to normalize equations (2.30), (2.32), (2.39) or (2.40) all the components from the
equations must be scaled according to (2.43), Table 2.1 and Fossen (2011, Chapter 7.2.5). For
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a floating ship all normalized values are scaled with a parameter µ = 1, hence it is not included
in the equations. In addition mass, inertia, forces and moments must be normalized using

Table 2.1: Normalization of parameters in surge, sway and yaw

Surge (x) Sway (y) Yaw (ψ)

ξ xint =
√

L3

g
x”
int yint =

√
L3

g
y”
int ψint =

√
L
g
ψ”
int

η x = Lx” y = Ly” ψ = ψ”

ν u =
√
Lgu” v =

√
Lgv” r =

√
g
L
ψ”

ν̇ u̇ = gu̇” v̇ = gv̇” ṙ = g
L
ṙ”

.

m = ρ∇m” (2.44a)

I = ρ∇L2I” (2.44b)

τf = ρg∇τ ”
f (2.44c)

τm = ρg∇Lτ ”
m. (2.44d)

According to Fossen (2011) it is preferred to use dimensional time when simulating controllers.
Hence, the states and inputs are kept dimensional, while the hydrodynamical coefficients stays
nondimensional. For the 3 DOF model in (2.29), this results in:

(TM ”T−1)ν̇ +

√
g

L
(TN ”T−1)νr =

1

m
T 2τ , (2.45)

where the mass, forces and moments are normalized according to (2.44). In vector form the
components of (2.45) can be expressed by

M = mT−2(TM ”T−1), (2.46a)

N = m

√
g

L
T−2(TN ”T−1), (2.46b)

where T = diag([1, 1, 1
L

]) is a transformation matrix for the relation between angular and trans-
lational motion. As described in Section 2.2 the velocity- and input- vectors in (2.45) are ex-
pressed as νr = [ur, vr, r]

>, τ = [τX , τY , τN ]> and ν̇r = ν̇.

Surge Speed Model

Using Table 2.1 and m = ρ∇ the surge subsystem from (2.30) can be normalized into

(m” −X”
u̇)u̇−

√
g

L
(Xu +X|u|u|ur|)”ur =

1

m
τX , (2.47)
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where the damping term d”
u = (Xu +X|u|u|ur|)” is obtained by rearranging

du = m

√
g

L
d”
u. (2.48)

Note that the nonlinear term in d”
u in (2.47) varies with the relative velocity. For maneuvering

this velocity is assumed to be constant, resulting in constant damping parameters. The added
mass term Xu̇ is normalized as the mass in (2.44a).

Linearized Sway-Yaw Model

In terms of normalized coefficients (2.32) results in (2.45) with T = diag([1, 1
L

]), νr = [vr, r]
>,

τ = [τY , τN ]> and ν̇r = ν̇. The mass, and the linearized terms for coriolis and damping are
normalized as

M = mT−2(TM ”T−1), (2.49a)

N = m

√
g

L
T−2(TN ”(u”

0)T−1). (2.49b)

Normalized Nomoto Models

The two Nomoto models (2.39) and (2.40) are relatively easy to normalize compared to the
others as they only include time constants and a gain. The time constants are normalized as
shown in (2.43b) and the Nomoto gain is scaled as described in Skjetne (2016)

K =

√
g

L
K”. (2.50)

(2.39) can now be written as

L

g
T ”

1 T
”
2ψ

(3) +

√
L

g
(T ”

1 + T ”
2 )ψ̈ + ψ̇ =

√
g

L
K”(δ + T ”

3 δ̇), (2.51)

and (2.40) as √
L

g
T ”ψ̈ + ψ̇ =

√
g

L
K”δ. (2.52)

If nonlinear modifications such as (2.41) or (2.42) were to replace ψ̇ in (2.51) or (2.52), they do
not have to be scaled.
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2.3.2 Open-Loop Stability

Determining the open-loop stability for both the model vessel and the full scale target vessel
is important when scaling the autopilot models. It can explain how the scaled vessel model
behave compared to the actual vessel and will help in order to determine certain maneuvering
characteristics.

If the state matrix in a state-space representation of a maneuvering model has positive poles, the
vessel is said to be unstable. The vessel will not be able to handle any disturbances and must be
avoided.

A moving vessel is said to be straight-line stable if its path after a disturbance in yaw still is
straight (Fossen, 2011). This can mathematically be determined by looking at the poles of the
state matrix describing the vessel dynamics (in state-space form). If the uncontrolled (δ = 0)
craft has at least one negative pole and the others are maximum zero, it is said to be straight-line
stable. A more physical way of determining straight line stability is to check whether the yaw
rate (r) converges to zero after the disturbance.

Some vessel models satisfy an even stricter condition. Directional stability (course stability)
can be proven for a vessel if all the poles in the state matrix of the autopilot model are negative.
Physically, this means that the vessel heading converges to the same as before the disturbance
in yaw. Determining whether the vessel is course stable will for instance affect the coefficients
in the nonlinear extension of the Nomoto models as shown in Section 2.2.3 describing funda-
mentally different maneuvering characteristics.

2.4 Numerical Values for CSEI

For the simulations to come the following parameters and equations were used for modeling
the vessel dynamics of CSEI. Note that all these matrices are simplified versions of the ones
discussed in the sections above. Because determining the model-based parameters is not a part
of this thesis, the model taken directly from Perez and Fossen (2004), Fossen and Perez (2008)
and the MC lab handbook (NTNU, 2016) along with all relevant hydrodynamical parameters.

2.4.1 Mass Matrix

For the assembly of the mass matrix the relevant values are presented in Table 2.2 and Table 2.3
and the 3 DOF mass matrix from (2.25) is calculated to be as in (2.53)
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Table 2.2: General parameters for CSEI

Parameter Value
m(mass) 14.79
xg 0.0375
Iz 1.76

Table 2.3: Added mass parameters for CSEI

Parameter Value
Xu̇ -2.0
Yv̇ -1.0
Yṙ 0.0
Nv̇ 0.0
Nṙ -1.0

M =


16.79 0 0

0 15.79 0.5546

0 0.5546 2.76

 . (2.53)

2.4.2 Damping Matrix

The coefficients used for calculation of damping forces in vessel simulations are presented in
Table 2.4 The damping matrix can be written as below

Table 2.4: Drag coefficients for CSEI

Parameter Value
Xu -0.6555
Xu|u| 0.3545
Xuuu -3.787
Yv -1.33
Yv|v| -2.776
Yvvv -64.91
Yrv -0.805
Nr -1.9
Nr|r| -0.750
Nrrr 0
Nvr 0.08

.

D =


d11 0 0

0 d22 d23

0 d32 d33

 , (2.54)

where the damping forces are calculated according to (2.55)

d11 = −Xu −Xuuu−Xuuuu
2, (2.55a)

d22 = −Yv − Yvvv − Yvvvv2 − Yrv|r|, (2.55b)

d33 = −Nr −Nrr|r| −Nrrrr
2 −Nvr|v|. (2.55c)
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Above in (2.55), ν = [u, v, r]> represents the velocity components. The cross terms d23 and d32

of (2.54) were not correctly implemented in the given vessel model and are set equal to zero in
the simulations because determining the vessel dynamics is not part of this thesis.

2.4.3 Coriolis Matrix

Finally, a simplified version of the coriolis matrix (2.27) were assembled as follows

C =


0 0 c13

0 0 c23

−c13 −c23 0

 , (2.56)

were the two terms are calculated as

c13 = −(m− Yv̇)v − (mxg − Yṙ)r, (2.57a)

c23 = (m−Xu̇)ur. (2.57b)

2.5 Simulation Study of Maneuvering Models

For the autopilot design, linearized maneuvering models presented throughout Section 2.2 will
be scaled and compared to the higher order maneuvering models through assessment of di-
rectional stability. Their sensitivity to scaling (from Section 2.3) will also be simulated. The
simulations will be done for CSEI and then scaled in order to check their applicability of scaling
parameters to fit the larger R/V Gunnerus vessel. For the derivation of the maneuvering models
some modifications have been made to compensate for inaccuracies in the given vessel model
for CSEI. This is because the hydrodynamical coefficients from NTNU (2016) are not accurate
enough and some seem to be wrong. This will be specified throughout the next sections. After
the simulations results are presented, a brief discussion will be done in order to determine the
open-loop stability of the vessel.

2.5.1 Simulation Results using Decoupled Maneuvering Models

First, the decoupled maneuvering models from (2.30), (2.32), (2.39) and (2.40) will be com-
pared to the corresponding DOF from the 3 DOF vessel model of CSEI (2.29). All simulations
are run for 200 seconds (s) without any waves and current forces.The vessel model of CSEI is
excited by steps of 0.5 N constant thrust in surge and 1 N step (20 s) in yaw. These input forces
are summarized in Figure 2.1.

23



0 50 100 150 200
Time[s]

-1

-0.5

0

0.5

1

1.5

2

X
[N

],
Y

[N
],

N
[N

m
]

X

Y

N

Figure 2.1: Thrust input for the CSEI maneuvering models

Starting with the surge speed model from (2.30), a third term is added to the damping (2.30) in
order to make the model stable. This quadratic damping term makes the surge model stable and
it is included in the 3 DOF vessel model as in (2.55a), making the two expressions equal. The
problem is the second damping term that becomes negative for positive speed due to the sign of
X|u|u. In the surge speed model no coriolis terms are involved, resulting in when thrust exists
in other DOFs in addition to surge the models will differ. The effect the coriolis terms has on
the 3 DOF model compared to the surge speed model is shown in Figure 2.2.

The simulation of the linearized sway-yaw subsystem from (2.32) resulted in Figure 2.3, where
it is clear that the two models are very different. The coriolis terms becomes more dominant
when the nonlinear damping terms are removed. The linear damping terms are too small com-
pared to the nonlinear terms and the model behaves very different. In addition the damping
cross terms are set to zero as discussed in Section 2.4.2, making the coriolis matrix the only
term acting in the coupled motion. This makes the destabilizing effect of the Munk moment
(the term on lower left corner of (2.34) with no counter term and the vessel dynamics becomes
more unstable. The 2 DOF model is also linearized about the surge speed of 0.42 m/s which is
the cruise speed in surge, as shown in Figure 2.2 which adds to the differences.

Finally, the Nomoto models described by (2.39) and (2.40) are simulated for the same inputs
as the sway-yaw system. The gains used in the 1st order model were K = 0.45, T = 2 and
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Figure 2.2: Surge speed model compared to real 3 DOF model
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Figure 2.3: Sway-yaw subsystem compared to real 3 DOF model

similarly for the second order model were K = 2, T1 = 3, T2 = 1, T3 = 2.

The plot in Figure 2.4 shows that the two models are very much alike and well suited for
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Figure 2.4: Nomoto models compared to real 3 DOF model

modeling the yaw motion of the 3 DOF vessel. This was expected as the second order model
was designed such that T1st = T1 +T2−T3 is satisfied for the 1st order model which simplifies
tuning. The second order model should be more accurate than the 1st order model, but is harder
to tune. Since this is only a test of the models, little effort were made in order to perfectionate
the tuning. Figure 2.4 shows that the 1st order Nomoto model is sufficient in order to cope with
the yaw dynamics and will therefore be used in scaling as it is simpler to work with. As the
Nomoto models both perform better than the sway-yaw subsystem in addition of being much
simpler to work and that they do not use any of the uncertain hydrodynamical coefficients from
the given vessel model, the sway-yaw subsystem will not be scaled.

2.5.2 Simulation Results from Scaled Maneuvering Models

Now, using the scaling methods discussed in Section 2.3 the models used to obtain the results
above are to be normalized. The scaled inputs are fed both to the scaled CSEI model and to the
R/V Gunnerus vessel model in order to compare the behavior and rate each of the models. As
in the previous section simulations were made to show which models showed the best behavior
with respect to scaling and tuning. The scaled versions are therefore produced without exces-
sive tuning to tell each model apart.

Using the bis-scaled model (2.47), with the same inputs as in the previous models (see Figure
2.1) gave the control inputs as shown in Figure 2.5. Note that τX is the force input in surge and
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τN = bδ represent the output from the 1st order scaled Nomoto model.
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Figure 2.5: Thrust input for the scaled CSEI maneuvering models

The normalized surge speed model produced the response shown in Figure 2.6. As it is possible
to see, the scaling do not seem to affect the response at all. The resulting surge speed model
behaves in the same way for the CSEI and for the 6 DOF model which represents the full scale
vessel of R/V Gunnerus.
For the simulation of the scaled 1st order Nomoto model the yaw moment of Figure 2.5 is
used. The model is scaled according to (2.52) by scaling the time constant and gain according
to (2.43b) and (2.50). The scaled Nomoto model yields the results presented in Figure 2.7. It
shows that the model scaled the yaw response almost perfectly. Both the yaw angle (ψ) and the
yaw rate (r) are very similar to the full scale vessel of R/V Gunnerus. Due to its simplicity and
great initial results without a lot of tuning, the Nomoto model will be sufficient in order to make
autopilot controllers that steer the ship with the correct heading.

2.5.3 Open-Loop Stability

In Section 2.3.2 two cases of open-loop stability for autopilot models were presented. Using
the plots from the simulations above (Figures 2.3, 2.5 and 2.7), a similar stability analysis will
be done for the two vessels used in this thesis.

In this analysis the step in yaw is treated as the disturbance on the vessel. Both vessels start
with an initial heading of zero radians and at rest. During the disturbance the vessel starts turn-
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Figure 2.6: Scaled surge speed model compared to real 6 DOF model of R/V Gunnerus
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Figure 2.7: Scaled 1st order Nomoto model compared to real 6 DOF model of R/V Gunnerus

ing, increasing the yaw rates and angles. After 20 s. the yaw disturbance is over and the yaw
rates converges to zero for both vessels. The heading angles, however, do not regain their initial
values. According to Fossen (2011) this means that both vessels are proven straight-line stable,
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but not course stable.

Even though the vessel models cannot satisfy the strictest form of stability, the two vessels
behave similarly. This means that the nonlinear extensions of the Nomoto models discussed in
Section 2.2.3 will look similar. As the vessels are symmetric about starboard and port it can
be determined from (2.41) and (2.42) that the terms b2 and n2 are zero. Being course unstable
vessel the models yields b1, n1 < 0 for both.

2.6 Conclusions

To conclude this section, three maneuvering models were implemented and tested for their
applicability to describe the dynamics of the model vessel and the best were compared with
respect to scaling. The decoupled models for CSEI needed to be modified in order to be stable
as the hydrodynamical coefficients were not optimal. This resulted in a smoother curve for the
surge-speed model than for the actual 3 DOF vessel model, since the coriolis terms were not
included.It comfirmed that the surge-speed model can be used separately from the sway-yaw
subsystem, but due to problems with the hydrodynamical coefficients the linearized sway-yaw
subsystem did not satisfy the expectations. The 1st order Nomoto model, however, proved suffi-
cient in order to define the yaw dynamics of the model vessel. This will make the tuning process
easier and allow the use of simpler heading control designs.

Scaling the CSEI vessel model to the dimensions of R/V Gunnerus, yielded varying results.
The scaled surge speed- and the scaled 1st order Nomoto- model were successful in achieving
good results with almost no tuning. For the sway-yaw system, however, scaling was not done
because of its inaccurate representation of the vessel dynamics. In addition, most autopilot
models require only that the heading is controlled and the sway motion (from current etc.) can
be compensated by adjusting the heading angle using guidance algorithms such as LOS with
sideslip compensation or ILOS which are briefly introduced in Section 1.1.5.
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Chapter 3
Simulations and Experiment Setup

In this chapter the procedure and setup for the simulations and experiments will be described.
The procedure is divided into three parts and results from different test scenarios will be re-
peated for each step. The goal is to simulate all stages of the control system development. First
the controllers will be derived and put through initial tests in a safe environment using MAT-
LAB. Then, simulations in real-time using HIL will be done. Finally, the control design will
be tested in a physical model. Note that HIL simulations and physical experiments will only be
done for CSEI as one of the thesis’ main objectives is to prove that scaling of the control system
facilitates implementation on the full scale vessel as described in Section 1.2. The controllers
for the full scale target vessel model of R/V Gunnerus will be scalable controllers originally
developed for CSEI. A complete description of the MC Lab, HIL testing and equipment in the
lab can be found in NTNU (2016).

3.1 Simulations using MATLAB/Simulink

The first tool to be used in order to develop the control- and observer-designs is the MAT-
LAB/Simulink (version 2016b, 2015a for HIL) software developed by MathWorks. The ma-
neuvering models presented in Setion 2.2 are implemented for both vessel models described in
Section 2.1. Based on the results presented in Section 2.5 the control system will be developed
and tested on this software. At this point the complete vessel models and control system exist
as single initialization scripts and Simulink diagrams (for each vessel) for which simulations
are done by simulating predefined test scenarios.

3.2 Hardware-in-the-Loop Simulations

After making sure that the control system works with the use of mathematical modeling of the
vessels, it is time to implement the controllers on the software used to control the vessels in
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the laboratory. This software is developed by National Instruments (NI) and is called Veristand
(version 2014, service pack A). Using a real time embedded controller called a compact RIO
(cRIO) the same test scenarios as simulated in MATLAB/Simulink are repeated, for the CSEI
model. The vessel model is divided into a series of different Simulink models connected through
mapping of input- and output- ports. In theory the single Simulink model could be applied for
HIL simulations with an easy mapping. However, by using the same setup as for the actual
vessel the step from HIL to physical experiment is simplified. A monitoring station (see Figure
3.1) for starting and stopping simulations, tuning gains, plotting and logging is developed in
order to control and record the tests. If the control systems performance during HIL simulation
is adequate, the control system can be simulated on the physical model.

Figure 3.1: Screenshot of the workbench used for monitoring HIL simulations and lab experiments

3.3 Physical Experiments

To ensure that everything works as planned the control system must be tested in a physical
experiment. This is the last chance for testing the control system on the software that is assumed
to be used on both target vessels. Often, these experiments revile problems that did not occure
during computer simulations and can be very useful.

3.3.1 The MC Lab

In order to perform physical tests of the model vessel, the MC Lab was used. It consists of
a water filled basin, as shown in Figure 3.2, measuring L × B × D = 40 m × 6.45 m ×
1.5 m, advanced instrumentation for simulation above and underneath the surface, a towing
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carriage with on board computer, wave generator and a control room equipped with computers
for controlling tests and with tools to fix the vessels.

Figure 3.2: The Marine Cybernetics Laboratory

3.3.2 Experiments on the CSEI Model Vessel

Having done HIL simulations one can use the workbench (or monitoring station) developed
during HIL simulations. The only difference is that the position inputs are taken from a po-
sitioning system and the controller inputs are sent through a thrust allocator to the real vessel
actuators. Tuning, monitoring and logging of the results will therefore be done in the same way
as for HIL tests.

As the positioning system uses high-speed infrared cameras with a certain range, the vessels
cannot move far from them. The most efficient way to test an autopilot design and path fol-
lowing will then be to either move in a circle or similarly between way point in a triangle or
square, keeping the vessel within range of the cameras. For drop out of the signals an observer
is a must for not risking loosing control of the vessel. In order to simulate current the towing
carriage (on which the cameras are mounted) can be driven at a constant speed in one direction,
thus compensating for not having a current generator.
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3.3.3 Notes on Physical Experiments with CSEI

Since the actual vessel of CSEI does not work because of a faulty bow thruster, HIL simula-
tions are done in order to debug the control system. These simulations will replace the physical
experiments of the control system with the actual model. As it uses the same software as the
HIL, the verified control system can be assumed to work on the actual vessel by only minor
adjustments.

Several HIL simulations were run for testing the control system. Since the same model used
in MATLAB and Simulink is included in these simulations, the results will be very similar, if
not equal. Therefore, more work have been done to develop and explain complex scenarios
in MATLAB and Simulink rather plotting every result from HIL simulations. The results of
HIL that are included in this thesis will act as proof that simulations were done using the HIL
software and that the control system is ready for use in physical experiments when the model
vessel is fixed.
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Chapter 4
Low-Cost Observer Designs

In Section 1.1.3, the model-based observer design was presented shortly as one of three math-
ematical models of the vessel. However, for this thesis the model parameters will be treated as
unknown or estimates making the model-based design less accurate. Therefore, the preferred
observer will be a signal-based observer. Another aspect discussed in sections 1.1.1 and 1.1.6
is to keep the costs of testing and implementation at a minimum. This makes the latter ob-
server preferable as it can be tuned using sensors in a laboratory and does not necessarily need
extensive tuning during sea trials. An observer is important also for testing in the laboratory
for the same reasons as on an actual vessel. The positioning system may drop out, destroying
simulations completely. With an observer, at least the damage can be reduced.

One of the most well-known estimators are based on Kalman (1960) and Kalman and Bucy
(1961) where the linear Kalman filters for continuous- and discrete-time were developed. Later,
in Schmidt and McGee (1985) these were applied to nonlinear applications linearizing the sys-
tems about the state estimates at each time step. These are the Extended Kalman filters (EKF).
These can be applied for both model-based systems as in Fossen (2011, Chapter 11.3) and
for signal-based systems (Vik, 2014). These designs are more intuitive and was used to get an
overview of the underlying ideas behind state estimators and how to build signal-based observer
models. For nonlinear filters Khalil (2015) is recommended for description of similar estima-
tors, mathematical examples and stability analysis.

For this thesis a kinematic approach is chosen. The observer consists of two interconnected
parts. The first one, an attitude estimator was first developed by Grip et al. (2013), and is based
on Grip et al. (2012) and Mahony et al. (2008). The second part of the observer is for the
translational motion similar to Bryne et al. (2014), but is made time-invariant as in Bryne et al.
(2015) and Brodtkorb et al. (2016). It is a 6 DOF kinematic observer design, using Inertial
Measurement Units (IMU) for angular velocity-, specific force- and a compass for heading-
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measurements. In addition, Global Navigation Satellite System (GNSS) is used for position
updates in the translation part of the observer. Stability for the chosen observer is proved using
Grip et al. (2012) and Bryne et al. (2015). It also includes a Virtual reference unit (VRU) which
is used to transform the position from a GNSS receiver to the coordinate frame of the IMU.
General information in addition example of similar integration filters for IMU and GNSS with
and without VRUs can be found in Fossen (2011, Chapter 11.5).

The observer is in this thesis mainly used as a separate part of the control system. It is used
for recreating states and works according to the separation principle (Sørensen, 2013). A short
simulation study will be done for the observer studying how accurate the states can be recreated
and how noise affects the accuracy and stability of the kinematic observer.

4.1 Kinematic Observer

For strap down Inertial Navigation System (INS) the following NED representation can be
applied (Bryne et al., 2015)

ṗn = vn (4.1a)

v̇n = Rn
bf

b + gn (4.1b)

For the chosen observer design quaternions are preferred and introduces a third equation similar
to (2.15)

q̇nb = T (qnb )ωbb/n. (4.2)

In (4.1), pn = [N,E]>, vn = [un, vn] is the velocities decomposed in NED frame, qnb is the
quaternion vector, f b is the specific force vector decomposed in BODY coordinates and gn is
the gravity vector. If Euler angles is preferred (2.11) can be applied instead of (4.2).

The instrumentation follows Brodtkorb et al. (2016). The position measurements is obtained
from GNSS, heading measurements from a compass, angular velocity and specific force from
an IMU. This is represented in the following equations

pn = [N,E]> (4.3a)

ψc = ψ (4.3b)

ωbimu = ωb + bg (4.3c)

f bimu = R(Θ)(v̇n − gn). (4.3d)

In (4.3a), ψc is the compass heading, bg is the gyroscope bias term and R(Θ) is the linear
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velocity transformation matrix as represented in (2.7).

4.1.1 Attitude Observer

Estimating the attitude is done by implementing model from Grip et al. (2013), Bryne et al.
(2015) and Brodtkorb et al. (2016):

˙̂q
n

b = T (q)(ωbimu − b̂g + σ̂) (4.4a)
˙̂
bg = Proj(b̂g, kIσ̂), (4.4b)

where
σ̂ = k1c

b ×R>(q̂nb )cn + k2f
b
imu ×R>(q̂nb )f̂

n ∈ R3 (4.5)

is a correction term, {q̂nb ∈ R4}, is the quaternion estimate, {b̂g ∈ R3} estimated gyro bias
and {f̂n ∈ R3} is the specific force estimate vector decomposed in NED. {R(qnb ) ∈ R3×3}
is the linear velocity transformation matrix (2.7) in terms of quaternions. cn = [1, 0, 0]> and
cb = [cos(ψ),− sin(ψ), 0] are reference vectors. k1 > kp, k2 > kp, kp > 0 and kI > 0 are
scalar gains.

4.1.2 Translational Observer

In Bryne et al. (2015) the translational observer equations are presented as:

˙̂pnI = p̂nz + kpipip̃I (4.6a)

˙̂p
n

= v̂n + θ

02×1 Kpp

kppi 01×2

p̃I
p̃

 (4.6b)

˙̂v
n

= f̂
n

+ gn + θ3

02×1 Kvp

kvpi 01×2

p̃I
p̃

 (4.6c)

ξ̇f = −R(qnb )S(σ̂)f bimu + θ4

02×1 Kξp

kξpi 01×2

p̃I
p̃

 (4.6d)

f̂
n

= R(q̂nb )f bimu + ξf . (4.6e)

{p̂nI ∈ R} is the scalar integral value estimate of the position, {p̂z ∈ R} is the estimated
virtual reference (Bryne et al., 2014), {p̂n, v̂n ∈ R2} are the position and velocity estimates
and {ξ̂f ∈ R2} is a correction vector for acceleration. kpipi, kppi, kvpi and kξpi are scalar
gains all greater than zero, θ ≥ 1 is a high-gain. Kpp,Kvp,Kξp ∈ R2×2 are gain matrices.
p̃I = pI − p̂I = 0− p̂I ∈ R an p̃ = pn − p̂n ∈ R2 are called the driving errors. {f̂n ∈ R3} and
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{R(qnb ) ∈ R3×3} are the same as in Section (4.1.2), {S(σ̂) ∈ R3×3} is the skew symmetric
matrix (2.6) in terms of the correction term (4.5). Finally, the specific force estimates from the
IMU is denoted as {f̂ bimu ∈ R3} and the gravity vector as {gn ∈ R3}.

4.2 Stability Analysis

Stability analysis is of great importance in both linear and nonlinear control theory. For nonlin-
ear observers Khalil (2015) analyses a variety of examples including the EKF. The main goal is
to be able to guarantee that the region of attraction is as big as possible with one or more stable
equilibrium and reducing any unstable regions to a minimum.

In (4.4b), Proj(·) refers to the projection operator which is a well known and widely used ro-
bustification tool in nonlinear control- and observer-theory. It is most often applied to adaptive
systems in order to guarantee boundedness of solutions, but can be applied to other observer
designs as well (Krstic̀, 1995). The projection function applied for this observer design is de-
scribed in Grip et al. (2012, Appendix)

The complete observer of (4.4) and (4.6) is proven to have uniformly semi-global exponentially
stable (USGES) equilibrium by Grip et al. (2013). Later, its region of attraction is also proven
to be almost globally uniformly attractive (Bryne et al., 2014). To compare the stability of this
observer, one of the best known observer designs for nonlinear systems, the EKF, is also proven
USGES. This, because it is a linearized observer preventing it from being uniformly globally
exponentially stable (UGES). The region of attraction in the kinematic observer is however
bigger as the EKF dynamics are not accurate further away from the value which the filter was
linearized around.

4.3 Simulations of the Kinematic Observer

In order to test the observer design, the position vector in addition to angular velocity and accel-
eration in yaw is fed from the vessel model to the observer. Based on these values it is supposed
to estimate the velocities and attitude of the vessel. A simple test scenario will be designed
and simulated in order to verify that it works. Further, this test will be used to investigate what
happens when noise is added to the velocity and acceleration estimates. Simulations will be
done according to the procedure in Chapter 3. Due to the complexity of the observer and to
make the plots big enough to show the results only the ones relevant for the discussion of the
observers performance will be presented.
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As the observer depends only on position and gyro measurements there is no need for scaling it
to be suited for the larger R/V Gunnerus model. If the sensors are similar and as reliable as for
the model vessel there should be no difference in the accuracy.

4.4 MATLAB/Simulink Simulations

The 3 DOF vessel model of CSEI (with values as described in Section 2.4) is set in motion
using a combination of thrust in surge and yaw as described by Figure 4.1 for a period of 500
seconds. It is also assumed that the virtual reference p̂z is zero for simplified simulations.
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Figure 4.1: Thrust input for the observer study

4.4.1 Estimation using Noiseless Signals

For the translational part of the observer, the position and velocity estimates from (4.6) along
with the true values from the vessel model are shown in Figure 4.2. This figure shows that the
estimates are close to the real values. It is important to note that the estimated velocities (4.6c)
are transformed into BODY frame before plotting the results. This is done for comparing them
with the corresponding true velocity components from the model which are in BODY frame.
The corresponding errors are shown in Figure 4.3 and shows that the translational observer is
successful in estimating the correct values and making the error converge to zero.
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Figure 4.2: Position and velocity estimates without noise
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Figure 4.3: Position and velocity errors without noise

The attitude part of the observer is used to calculate the rate of orientation and the attitude of
the vessel according to (4.4). Since this is a 6 DOF observer it can also estimate the motion in
roll (φ, p) and pitch (θ, q), but since input is only fed from a 3 DOF model (angular motion only
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from yaw (ψ, r) measurements), their accuracy will not be perfect. The estimated velocities can
are shown in Figure 4.4. It shows that the yaw rate is by far the most dominant term and that
the motion in the other 2 rotational DOF are negligible, as expected. Only at about 200- and
300- seconds they become relevant when the vessel does a sharp turn as can be seen in Figure
4.1. Comparing the results in Figure 4.1 with the actual yaw rate for the 3 DOF vessel model
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Figure 4.4: Estimated angular rates without noise

results in the following plot shown in Figure 4.5. From the plot it is obvious that the estimated
rate are slower and less peaked than the actual value. Since the estimated values need some
time to be calculated, the actual yaw rate stabilizes which means that the estimated states do the
same. Therefore, the peaks are at the same points, but with lower values for the estimates. The
difference, however, is small and the tendency of the plots are similar.

For the roll and pitch angles there is no comparable data as the states are assumed to be negligi-
ble in the 3 DOF vessel model. Figure 4.4 can at least strengthen this assumptions by showing
that the values are way lower than for the yaw. A good sign is that the yaw rates converges
to zero over time, meaning that the estimates are stable and together with the error plot in 4.5
concludes that the angular velocity estimates are accurate. In order to find the attitude of the
vessel the rates are integrated, resulting in Figure 4.6. Comparing the estimated yaw angle with
the true values shows that the error is small confirming that the attitude observer in fact works
as expected. The latter is seen from figure 4.7.
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Figure 4.5: Yaw rate error without noise
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Figure 4.6: Attitude without noise

4.4.2 Estimation using Noisy Signals

In this section noise will be added to the gyro- and to the accelerometer- measurements from
the IMU in order to see how the observer performs with disturbances. The noise is assumed to
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Figure 4.7: True and estimated yaw angle with the error for noiseless test

have zero mean value (white noise) and the noise power used in the simulations were chosen
as 10−7. If the observer works as it should the noisy inputs will be filtered through integration
and the offset minimized by the estimator. In order to be successful, the observer should per-
form almost as well as without noise and at least make the errors converge to zero. The same
simulation as before were done, with thrust inputs according to Figure 4.1. The results from the
simulations are presented in the following figures 4.8, 4.9, 4.10 and 4.11.

Starting with the translational observer and Figure 4.8 the noise does not seem to affect the
performance at all, but by looking at the corresponding errors in Figure 4.9 it is obvious that the
noise increases the error. The velocity estimates are now noisy, but with much smaller peaks
than the noise that was added to the specific force measurements. The same can be seen for
the position errors, with only extremely small oscillations resulting from noise. The observer is
still stable and the errors converge to zero, with estimates that have reduced noise compared to
the measurements.

The results from the attitude part of the observer shows similar results. Figure 4.10 shows how
the estimates now relates to the true values showing how the noise on the angular velocity in
yaw affects the attitude estimates. Appart from the noise added to the signals the estimated yaw
angle seems to be similar to the results achieved without noise (see Figure 4.6). In Figure 4.11,
the errors from the estimates are shown. It is worth noticing that the error in heading is greater
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Figure 4.8: Estimated postion and velocity from simulations with noise
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Figure 4.9: Error in postion and velocity estimates from simulations with noise

than without noise, but also that the estimated signals have smaller peaked noise than the yaw
rate.
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Figure 4.10: Estimated heading and yaw rate from simulations with noise
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Figure 4.11: Errors in heading and yaw rate from simulations with noise

4.4.3 HIL Simulation of Observer

Figure 4.12 shows how the position and heading of CSEI varies over time in one of the HIL
simulations. This simulation is done without any noise on the measured signals. The estimated
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signals are accurate representations of the true values and the errors cannot be seen from this
plot. Here steps in input forces in surge and yaw were added in order to induce vessel motions.
Using Figure 4.13 the corresponding errors are shown and confirm that the observers work well,
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Figure 4.12: Estimated position and heading from HIL simulation

just as in the simulations shown in the previous sections.

The plots shown in Figures 4.12 and 4.13 shows that the observer worked well in HIL simu-
lations and is ready for application on the physical model vessel of CSEI, when the vessel is
fixed.

4.5 Conclusions

In this chapter a kinematic observer has been developed and simulated. The observer is built
as an integrator filter which removes oscillating noise by integration. This makes the signal
smoother and easier to use in controllers. Simulations were done with and without white noise
on the specific force inputs to investigate whether the observer worked as expected. When no
noise was added the results proved very accurate with smooth estimates and errors that rapidly
converged to zero. Since the observer is a 6 DOF vessel angular motion in roll and pitch could
be estimated through the inputs in x, y- and ψ. These were estimated to be at their largest when
the vessel changed heading which was as expected.
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Figure 4.13: Errors in position and heading estimates from HIL simulation

Adding noise to the specific force measurements did not change the results too much. The ob-
server removed the largest amplitudes of the noise out through integration and was able to adjust
for the bias caused by integration of the disturbances. The estimates did also look significally
smoother than the noisy measurements.

From HIL simulations the same results were obtained as the observer managed to estimate the
motion with the same accuracy as the other simulations as the model and all controllers used in
HIL were the same. The simulation study proved that this observer work well, that it is ready
for use on the MC Lab and for being used on a physical model of R/V Gunnerus.
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Chapter 5
Model Reference Adaptive Control

As presented in Section 1.1.4, MRAC is one of the most known approaches in adaptive con-
trol (Ioannou and Sun, 2012). As this approach has been widely used in various applications
there are several variants of applying the MRAC algorithms. In short, the common goal of all
MRAC models is to make the output of the plant track a generated reference signal. The signal
is made by a known reference plant model. This is called the model reference control problem
(Lavretsky and Wise, 2012). During this process the objective is to keep the error between plant
and reference at a minimum, while estimating and adapting to unknown parameters. The closed
loop plant consists of an ordinary feedback control law consisting of the plant, a controller and
the tuning mechanism for the parameter estimates.

MRAC schemes can be further divided into direct or indirect and as regular control models
they can be normalized (Sørensen, 2015). Direct MRAC refers to the adaptive law updating the
parameter vector directly. The indirect method updates the same vector only when an algebraic
equation which relates the vector to on-line plant parameter estimates is solved (Ioannou and
Sun, 2012). In this thesis two direct- and one indirect MRAC- model will be investigated. The
first direct adaptive controller is based on vectorial MRAC with integral action. The second will
be designed with a baseline control law and for the indirect adaptive controller a scalar system
will be implemented. One requirement for both methods of MRAC is extensive knowledge of
the plant and the requirements needed for good performance. In Figure 5.1 the different MRAC
designs are shown. These figures are based on Ioannou and Sun (2012)

The controllers, or more precisely, the reference plants will be based on the normalized maneu-
vering models developed in Section 2.5. These normalized control laws are used to facilitate
scaling. For the heading controllers, Skjetne (2016) and Lavretsky and Wise (2012) are used
as the main references. For the surge controller Ioannou and Sun (2012) and Fossen (2011) are
studied in order to develop a similar normalized control design.
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(a) Indirect MRAC scheme (b) Direct MRAC scheme

Figure 5.1: Two different designs of MRAC

In order to achieve robustness of the adaptive controllers, two modifications are included in the
control design (Ioannou and Sun, 2012). These are the dead-zone modification and the projec-
tion operator. Dead-zone modification prevents the controller from over-estimating parameters
when the error between plant and reference is low. On the other hand, the projection guarantees
an upper bound (same as for the observer in Section 4.2) for the estimates, reducing parameter
drifting. Robustification techniques are also used as basis for developing certification of adap-
tive controllers as done for the projection function in Campbell et al. (2010).

In the following sections the MRAC methods will be further explained using the normalized
controllers as examples. The derivations of each controller will be explained methodically and
a simulation study will be done in order to test the different controllers and robustification tech-
niques. Simulations will be done separately for each controller and for the two combinations
of surge and yaw controllers together. In addition, relevant issues from the ADPRC’16 cruise
(Section 1.1.8) will be discussed in light of the simulation results.

5.1 Heading Controllers

5.1.1 Direct MRAC Design with Integral Action

The heading controllers are built using the normalized first order Nomoto model, developed in
Section 2.3. According to Lavretsky and Wise (2012) the standard state space representation
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for a general MRAC design including integral action is:

ẋia = Aiaxia +BiaΛ(δ + Θ>Φ(x0, t)) +Brefycmd (5.1a)

yia = Ciaxia. (5.1b)

xia = [ξ,x0]> is the extended state vector, x0 the original state and ξ is the integral state
calculated as

ξ̇ = y − ycmd. (5.2)

Aia,Bia are the system- and input matrices, respectively. Λ is a unknown diagonal matrix with
strictly positive elements, making the pair (Aia,BiaΛ) controllable. δ is the controller input, Θ

is a vector of unknown parameters, Φ(x0, t) is a known regressor vector, Bref is the reference
input matrix and ycmd is the input from the reference model. In (5.1b) yia is the regulated
output, Cia the output matrix.

Plant Model

The maneuvering model used for heading control will be the normalized first order Nomoto
model (2.52) using nonlinear extensions from Bech (1969). This is the same model developed
through sections 2.2 and 2.3 as well as tested in simulations in Section 2.5. Skjetne (2016)
shows that it can be expressed in scalar form and with integral action as

ξ̇ = ψ − ψcmd
ψ̇ = r (5.3)

ṙ = −
√
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In this form it is possible to write (5.3) in matrix form as (5.1a) using
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0 1 0

0 0 1

0 0 −
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 , (5.4b)
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resulting in

ẋia = Aiaxia + biaΛ(δ + Θ>Φ(x0, t)) + brefycmd (5.5a)

yia = ciaxia. (5.5b)

Note that some uppercase letters from the general state space representation are changed into
lower case. This is done in order to show that these are vectors and not matrices in this specific
case.

Reference Model

The reference model can be written a similar way as (5.3)

ξ̇ref = ψref − ψcmd(t)

ψ̇ref = rref (5.6)

ṙref = −
√
g

L

1
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0
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By writing the reference system matrix according to

Aref =

√
g

L
H−1A”

refH (5.7)

and the normalization matrix as

H =
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√

g
L

0 0

0 1 0

0 0
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L
g

 , (5.8)

state space representation of the reference system can be written as

ẋref = A”
refH

−1xref + brefycmd (5.9a)

yref = cxref . (5.9b)

In (5.6), ycmd = ψcmd is the commanded input and the expression in brackets can be written in
matrix form as [√

g

L
K”
i ξref +K”

pψref +

√
L

g
K”
drref

]
= HKT”

pid = K>PID, (5.10)

where K>PID = [Ki, Kp, Kd] is a vector of proportional-intergral-derivative (PID) controller
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gains that are tuned in order to make the reference behave as desired. It is assumed that the
unknown gain K>x is assumed to be ∈ R3 with K>PID as initial value. The reference system
matrix is then assumed to be written in terms of the plant system as

Aref = (Aia − biaΛK>x ), (5.11)

(5.12)

which means that the nondimensional Lyapunov equation of (5.13)

P ”
refA

”
ref +A”

refP
”
ref = −Q”

ref , (5.13)

(5.14)

can be solved for P ”
ref = P ”T

ref > 0 givenQ”
ref = Q”T

ref > 0.

Control- and Update- Laws

In order to simplify the derivation of the control laws the nondimensional matrices are scaled
back according to

Aref =

√
g

L
H−1A”

refH (5.15a)

P ref = HP ”
refH . (5.15b)

Using (5.5) whereAia is Hurwitz, (5.11) and that the DC gain from ycmd → yref the following
control law is proposed (Skjetne, 2016)

δ = −K̂>xx− Θ̂
>
Φ(x0, t). (5.16)

where K̂
>
x and Θ̂

>
are the unknown gains to be estimated in the controller. By applying (5.16)

into (5.5) and defining the parameter errors as

K̃x = K̂x −Kx (5.17a)

Θ̃ = Θ̂−Θ, (5.17b)

the (5.5a) can be written as

ẋia = Arefxia + brefycmd + biaΛK̃
>
xxia + biaΛΘ̃

>
Φ(x0, t). (5.18)

53



To derive the control laws, the error dynamics (eia = xia − xref ) must be investigated further

ėia = Arefeia + biaΛK̃
>
xxia + biaΛΘ̃

>
Φ(x0, t). (5.19)

We let (5.15b) be the solution to the Lyapunov equation, givenQref = QT
ref > 0 following

P refAref +ArefP ref = −Qref (5.20)

and define a Lyapunov function candidate (LFC)
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Differentiating (5.21) yields
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, (5.22e)

resulting in the update laws

˙̂K
>

x = Γxxe
>P refbia (5.23a)

˙̂Θ = ΓθΦ(x0, t)e
>P refbia. (5.23b)

This results in the negative semi-definite function

V = −e>Qrefe ≤ 0 (5.24)

which can prove that the equilibrium of the closed loop system (e,K>x , Θ̃) = (0, 0, 0) is uni-
formly globally stable (UGS). This is done by applying LaSalle-Yoshisawa which shows that
e(t) → 0 as t → ∞ (explained in Fossen (2011), Skjetne (2016) and Khalil (2015)). It is
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possible to extend (5.16) including a direct stabilizing term resulting in

δ = −K̂>xx− Θ̂
>
Φ(x0, t)− kpb>iaP ref (xia − xref ) (5.25)

5.1.2 Direct MRAC Design by Augmenting a Baseline Control Law

For a baseline augmented MRAC design the starting point is similar to (5.1) with an extra term
Lavretsky and Wise (2012)

ẋbl = Ablxbl +BblΛ(δ + Θ>Φ(x0, t)) +Brefycmd (5.26a)

ybl = Cblxbl +DblΛ(δ + Θ>Φ(x0, t)), (5.26b)

whereAbl,Bbl,Cbl andDbl are known matrices. δ, Θ, Φ(x0, t) and Λ are defined as in (5.1).

Now, Λ = I and Θ = 0 is applied to (5.26) simplifying it to

ż = Az +Bv (5.27a)

y = Cz +Dv. (5.27b)

For this system, a baseline control law is designed as a linear quadratic regulator (LQR) cost
function

J =

∫ ∞
0

(
z>Qz + v>Rv

)
, (5.28)

for which the optimized PID-control law for the baseline controller is given as

v = −R−1B>Pz = −K>lqrz = −K>i ξ −K>p x0, (5.29)

whereQ = Q>,R = R> are chosen such thatP = P> is the solution of the algebraic Riccatti
equation (ARE)

PA+A>P − PBR−1B>P = 0. (5.30)

This results in the baseline control law

δbl = −K>lqrx. (5.31)

Plant Model

The plant model is still based on the nonlinear extension of the Nomoto model shown in (5.3).
As D = 0 the plant dynamics are expressed in the same way as (5.5), with the same matrices as
described in (5.4). Since the system has three states the LQR controller from (5.31) will include
a derivative term making it similar to (5.10).
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Reference Model

The reference model is very similar to the one presented in (5.9), but is extended with an ad-
ditional term. This model is referred to as an observer-like model (Lavretsky and Wise, 2012)
(Skjetne, 2016) and is as follows
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g

L
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√
g

L
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yref = cxref , (5.32)
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v(A

”T
ref ) +A”

ref (P ”
v)− σP ”

v(R
”
v) +Q”

v = 0 (5.36)

and σ enables state feedback in reference filters if σ = 1 (if feedback is disabled, σ = 0).

Control- and Update- Laws

The control law chosen for (5.5) is the sum

δ = −δbl + δad, (5.37)

where δbl is the baseline control input and δad is the adaptive correction term.

Inserted into (5.5) results in

ẋ = Ablxbl + bblΛ
(
δad + δbl + Θ>Φ(x0, t)

)
+ brefycmd + bblubl − bblubl (5.38a)

= Arefxbl + bblΛ
[
δad +K>δ δbl + Θ>Φ(x0, t)

]
+ brefycmd (5.38b)

= Arefxbl
[
δad + Ω>Υ(x, t)

]
+ brefycmd, (5.38c)
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whereKδ = Λ−1 − 1 is a unknown gain,

Ω =

[
Kδ

Θ

]
, Υ(x) =

[
δbl

Φ(x0, t)

]
(5.39)

In order to choose the update law for Ω we use the solution of (5.36), e = xbl − xref and the
LFC

V = e>blP
−1
v ebl + Tr

(
Ω̃Γ−1

Ω Ω̃Λ
)
. (5.40)

Differentiating it yields

V̇ = 2e>blP
−1
v Avebl + 2e>blP

−1
v bvΛΩ̃Υ(x, t) + 2Tr

(
Ω̃Γ−1

Ω
˙̃ΩΛ
)

(5.41)

= −e>bl
(
P−1
v QvP

−1
v − σR−1

v

)
e+ 2Tr

(
Ω̃
>[

Υ(x, t)e>blP
−1
v bbl − Γ−1

Ω
˙̃Ω
]
Λ
)
.

Looking at the last term of (5.41) the update law is chosen as

Ω̇ = ΓΩΥ(x, t)e>P−1
v bbl (5.42)

which cancels out the last term resulting in

V̇ = −e>bl
(
P−1
v QvP

−1
v − σR−1

v

)
ebl ≤ 0. (5.43)

Applying LaSalle-Yoshizawa proves UGS for the closed-loop equilibrium (e, Ω̃) = (0, 0) (Fos-
sen, 2011) (Khalil, 2015).

5.2 Surge Controller

The MRAC for the surge controller was chosen for a scalar plant using the linearized surge-
speed model (2.30) with unknown parameters. The system is similar to the scalar examples in
Skjetne (2016) and Ioannou and Sun (2012), and is written as

u̇ind = (a0 + a1uind + a2|uind|uind) + bδ

= φ(uind)
>θ + bδ, (5.44)

where θ = [a0, a1, a2]> consists of the unknown parameters andφ(uind) = [1, uind, uind|uind|]>

is a known regressor vector and the sign of b is assumed to be known.
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Using normalized parameters (5.44) can be written as

u̇”
ind = (a”

0 + a”
1u

”
ind + a”

2|u”
ind|u”

ind) + b”δ

= φ(u”
ind)

>θ” + b”δ, (5.45)

which can be transformed to a expression using dimensional surge speed and input (here: bias,
as δ is nondimensional) as in (2.47) resulting in

u̇ind =

√
g

L
(a”

0 +
a”

1√
Lg
uind +

a”
2

Lg
|uind|uind) + bδ

= φ(uind)
>θ + bδ, (5.46)

where θ = [a”
0,

a”1√
gL
,
a”2
gL

]> consists of the unknown scaled parameters and the regressor vector
becomes φ(uind) = [1, uind, |uind|uind]>. The sign of b is still assumed to be known.

In state space form the plant dynamics of a scalar system is written as

uind = −apuind + bpδ, (5.47)

where ap and bp represents φ(uind)
>θ and b from (5.46).

A surge-speed reference model from Fossen (2011) is described as

u̇ref = −kpuref − kpud + u̇d. (5.48)

In (5.48) kp is a proportional gain, uref is the reference surge speed ud = ycmd and u̇d = ẏcmd is
the desired acceleration. This reference model can also be written as a function of normalized
parameters. For dimensional velocity and input forces (5.48) can be written as

u̇ref = −
√
g

L
k”
puref −

√
g

L
k”
pud + u̇d. (5.49)

From equation (5.49) the following system scalars and vectors can be obtained by (5.50)

aref =

√
g

L
k”
p, bref = [−

√
g

L
k”
p, 1], ycmd = [ud, u̇d]

>. (5.50)

(5.49) can then be written as

u̇ref = −arefuref + brefycmd (5.51)
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and the following control law is proposed

δ = −k(t)uind + l(t)yref , (5.52)

= ρα(uind, t) (5.53)

where

k(t) =
aref + âp

b̂p
, l(t) =

bref

b̂p
. (5.54)

aref and bref are as in (5.50). âp and b̂p are estimates of the unknown plant from (5.47). ρ = 1

b̂

such that ρ̃ = ρ̂− ρ can be expressed by

bρ̃ = 1− bρ̂, (5.55)

which can simplify the expression and avoid using the estimates in the denominator.

The unknown plant can be written as (5.56)

uind = âpuind + b̂pδ, (5.56)

Now the arefuind is addedboth sides of (5.46) as shown in (5.57)

u̇ind = −arefuind + (aref + ap)uind + bδ. (5.57)

The same is done for the estimated plant dynamics accordingly by adding aref ûind to both sides

˙̂uind = −aref ûind + (aref + âp)ûind + b̂pδ. (5.58)

By application of the Laplace transformation uind and ûind can be expresed as

uind =
1

s+ aref
[(aref + ap)uind + bδ] (5.59)

ûind =
1

s+ aref
[(aref + âp)uind + b̂δ] (5.60)

Now, the error dynamics of the actual and estimated plants is written as

e = uind − ûind (5.61)

=
1

s+ aref
[(ap − âp)uind − (bp − b̂p)δ] (5.62)

(5.63)
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using eind = uind − uref , ãp = ap − âp and b̃p = b− b̂p the derivative of the error becomes

ė = arefe− ãuind − b̃δ. (5.64)

Now ap and ãp are replaced by Φ>(uind)Θ and Φ>(uind)Θ̂ as in the original equation (5.44).

By replacing b̃p with (5.55) and choosing the LFC as

V =
1

2

(
e2 + θ̃

>
Γ−1θ̃ +

|b|
γb
ρ̃2
)

(5.65)

and differentiating (5.65) results in

V̇ = −kpe2
ind + θ̃

>
Φ(uind)uind − bρ̃α(uind, θ̂)u− θ̃>Γ−1 ˙̂θ − |b|

γb
ρ̃ ˙̂ρ (5.66a)

= −kpe2
ind + θ̃

>[
φ(uind)eind − γ−1 ˙̂

θ
]
− ρ̃|b|

[
sgn(b)α(uind, θ̂)eind +

1

γb
˙̂ρ
]
. (5.66b)

The update laws for (5.66a) are chosen as

˙̂
θ = Γφ(u)eind (5.67)
˙̂ρ = −γbsgn(b)α(uind, θ̂)eind (5.68)

and renders the equilibrium (eind,θ, ρ) = (0, 0, 0) UGS proven using LaSalle-Yoshizawa as

V̇ = −kpe2 ≤ 0 (5.69)

5.3 Robustification Methods

For parameter estimation it is important to include robustification. The first method that will be
presented is the dead-zone modification.

5.3.1 Dead-zone Modificator

This modification reduces chattering from noise and sudden drifting of estimates when the
tracking error between plant and reference is small. It simply shuts down the estimation of pa-
rameters, until the error becomes significant. Lavretsky and Wise (2012), presents the following
scalar function for the dead-zone modification

µ(|e|) = max
(

0,min
(

1,
|e| − δe0

(1− δ)e0

))
, (5.70)
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where 0 < δ < 1, 0 < e0 � 1 are positive scalars. The robustification term µ(|e|) is multiplied
to the update laws of the estimates and ensures Uniformly Ultimate Boundedness (UUB) for
the tracking error e.

5.3.2 Projection Operator

In Section 4.2, the projection operator was introduced in order to guarantee boundedness of
parameters in a kinematic observer design. This is also the case for robustification of adap-
tive update laws in control design. Lavretsky and Wise (2012, Chapter 11.4) and Krstic̀ (1995)
shows the procedure of implementing a projection function.

For a bounded parameter θ ∈ Rp, where |θ| ≤ θmax a convex function is presented as

f(θ) =
(1 + ε)θ>θ − θ2

max

εθ2
max

(5.71)

and the gradient of (5.71) is

∇f =
2(1 + ε)

εθ2
max

θ. (5.72)

Using (5.71) and (5.72), the projection function can then be written as

Pr(θ,Γy) =

Γy − Γ∇f>(∇f)
(∇f)Γ(∇f)

Γyf if f > 0 and y>Γ(∇f)

Γy elsewhere,
(5.73)

where Pr(θ,Γy) is the modified update law for the parameter θ̇ = Γy.

Defining the two sets Ω0 and Ω1, where

Ω0 : = {θ ∈ Rp : f(θ) ≤ 0} =

{
θ ∈ Rp : |θ| ≤ θmax√

1 + ε

}
(5.74)

Ω1 : = {θ ∈ Rp : f(θ) ≤ 1} =

{
θ ∈ Rp : |θ| ≤ θmax

}
, (5.75)

(5.76)

ensure that if θ(0) ∈ Ω0, then θ(t) ∈ Ω1∀t ≥ 0 (Lavretsky and Wise, 2012).

5.4 Simulation Study of the Controllers

In this section the three types of MRAC algorithms will be simulated in order to show that
they can be used to steer the two vessels CSEI and R/V Gunnerus. The controllers will first be
implemented for the CSEI model vessel. Then some practical examples of how to robustify the
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controllers will be presented before finally scaling the controllers in order to check whether the
R/V Gunnerus vessel can be controlled with the same controllers as the CSEI model.

5.4.1 MRAC for CSEI

The first thing to do is to define the test scenario for which the controllers are simulated. In this
initial simulation with CSEI using MATLAB/Simulink the desired surge velocity will be 0.2
m/s while the heading angle will be implemented as a step function varying the desired heading
between 0◦ and 60◦ as shown in Figure 5.2
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Figure 5.2: Desired surge velocity and heading for CSEI

The heading can be controlled by either the vectorial MRAC with integral action from 5.1.1 or
the MRAC augmented with a baseline controller from Section 5.1.2. For the first simulation, the
vectorial MRAC with integral action was chosen and by implementing the control law (5.16)
together with the update laws (5.23) the following results were obtained, shown in Figure 5.3

Figure 5.3, shows the reference model from (5.6) together with the true values and Figure 5.4
shows the estimated parameters for the same simulation.
As it is possible to see from Figure 5.3, the reference frame is being tracked accurately for the
whole simulation time in all states. This proves that the controller is able to control CSEI to
the right heading. The estimated parameters from Figure 5.4 shows that the Kest = K̂x esti-
mates stays close to its initial condition throughout the simulation while the θest = θ̂ parameters
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Figure 5.3: Reference states together with the corresponding measured states
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Figure 5.4: Parameter estimates for MRAC with integral action

slowly diverge away from zero. This divergence is so small that it does not affect the perfor-
mance in any way.
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The surge speed is controlled by the indirect adaptive controller presented in Section 5.2. The
desired surge speed is set constant to 0.2 m/s for the whole simulation and the result is shown
in figures 5.5 and 5.6.
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Figure 5.5: Surge reference model compared to actual values

Starting in Figure 5.5 it is possible to see that the reference model is quick to get to the desired
value. The controller, however, does not manage to keep up with the reference. This can be
fixed by tuning the controller to make it more aggressive. Also, the spikes in the plot is not due
to errors in the simulations, but because of the heading changes.

Figure 5.6 shows how the surge parameter estimates evolve during the simulation. They may
look rough-edged, but looking at how the heading changes in Figure 5.2 it is clear that this is
what makes the estimates making the small jumps in value.
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Figure 5.6: Estimated controller gains ρ̂ and θ̂i

Finally, the vectorial MRAC with integral action is replaced with the augmented baseline MRAC.
The results are quite similar to the other heading controller as can be seen from figures 5.7 and
5.8, but with larger errors and more drift in the parameter values. With better tuning, this con-
troller will most likely be as good as the vectorial MRAC with integral action.
The controller input from the simulation is summed up in Figure 5.9.
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Figure 5.7: Reference states together with the corresponding measured states for baseline MRAC
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Figure 5.8: Parameter estimates for the baseline MRAC

5.4.2 Robustification of the Controllers

In Figure 5.10 the adaptation gains have been turned as high as possible in order to provoke
instabilities. The plots are from a separate simulation, but is used here to prove how the robus-
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Figure 5.9: Control inputs for the simulation

tification methods affect the stability and ensures boundedness of solutions.
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Figure 5.10: Chattering on parameter estimates

From about 750 s in Figure 5.10, small oscillations appear. This is called chattering and seem to

67



have little effect in terms of instability. However, this induces a lot of oscillations to the control
inputs which again makes the whole system gradually less stable. After 1500 s the estimated
Kx-terms (K̂x) seem to drift off from their previous fixed values. The estimated θ (θ̂) terms are
smaller in magnitude, but chattering can also be seen in the same figure from about 800 s.

By applying the dead-zone modification the chattering is removed. It stops adaptation when
the error between reference plant and actual plant is small. The projection operator bounds the
estimates and prevent drifting. The results of applying robustification can be seen in Figure
5.11.
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Figure 5.11: Chattering removed by dead-zone modification

5.4.3 HIL Simulations of the MRAC

Figures 5.12 and 5.13 are the results of a HIL simulation in which the desired surge speed is
kept constant as the commanded heading is changed in steps. From previous simulations it is
clear that the controllers work very well and this is yet again proved in this HIL simulation. The
true speed and heading converges to the desired values with no sign of instabilities.

This means that also the controllers are ready for implementation on the physical model. Since
they worked in HIL tests, the path towards physical testing will be short. This is because the
software used in HIL simulations is the same as in physical experiments.
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Figure 5.12: Desired and actual surge velocity from HIL simulation
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Figure 5.13: Desired and actual heading from HIL simulation

5.4.4 Simulating Scaled Controllers on the R/V Gunnerus Model

In this section the controllers that was successfully tested on CSEI in the sections 5.4.1 and
5.4.2 are going to be scaled with the length of R/V Gunnerus in order to see if the controllers
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work when scaled. The test scenario is similar to what is done in previous simulations using
steps to regulate the desired surge speed and heading angle. The commanded velocity of the
vessel is increased to 4 m/s and will also make to steps during the simulation time. The heading
angle is still varied between 0◦ and 60◦ in steps as before. Figure 5.14 shows how the two set
points varies during the simulation. The simulations are done using the robustified control laws
from Section 5.4.2.
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Figure 5.14: Desired surge velocity and heading for CSEI

Beginning with the heading from the vectorial integral action MRAC, Figure 5.15 shows how
the controller manages to keep track of the commanded heading. The middle plot shows that
the desired heading is reached and that the actual heading, heading rate and the integral term
follow the reference plant as it is supposed to.

The estimates from the controller are shown in Figure 5.16. This plot shows that the estimates
for K̂x are constant throughout the simulations, but the θ̂ parameters vary at each step. Their
values are too small to be affected by robustification which means that the gains can be tuned
much higher if necessary.

The MRAC algorithm with a baseline control law yields similar results as shown in Figures
5.17 and 5.18. Note that this controller is slightly more aggressive in terms of yaw rate at each
turn. Still, the results do not vary a lot between the heading controllers.
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Figure 5.15: Results from scaled vectorial heading controller with integral action
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Figure 5.16: Estimated paremeter values for integral action MRAC for R/V Gunnerus

Finally, the surge speed model is scaled for R/V Gunnerus and shows that it too is able to work
well with both vessels. This is shown in the Figures 5.19 and 5.20. These figures shows that
one almost cannot separate the reference (in blue) and the true value (in red). Compared to (5.5)
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Figure 5.17: Results from scaled MRAC with a baseline control law for R/V Gunnerus
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Figure 5.18: Estimated paremeter values for MRAC with a baseline control law for R/V Gunnerus

the difference is much smaller and does not have any spikes in the signal when the vessel turns
or accelerates.
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Figure 5.19: Results from scaled indirect MRAC for the surge-speed of R/V Gunnerus

0 500 1000 1500 2000
Time[s]

1

1.5

2

2.5

3

E
st

im
at

ed
 p

ar
am

et
er

, 
es

t

est

0 500 1000 1500 2000
Time[s]

-0.06

-0.04

-0.02

0

0.02

E
st

im
at

ed
 p

ar
am

et
er

s,
 

es
t

est
1

est
2

est
3

Figure 5.20: Estimated paremeter values for the indirect surge-speed MRAC for R/V Gunnerus
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5.5 Implementation Issues on a Full Scale Test with R/V Gun-
nerus

During the sea trial with Kongsberg the MRAC studied in Section (5.1.1) was implemented on
the full scale vessel of R/V Gunnerus. Although the simulations on the software seemed to work
fine, problems occurred when testing the controller on the actual vessel. Firstly, the integrator
increased in value as the parameters were set making it large before even the controller was put
in close loop. The first thing to occur in closed-loop control is that the vessel turned far more
than the actual commanded heading. After some time it stabilized and the integral value started
dropping, making the heading close in to the commanded value. However, due to very little
time for testing more could not be verified from the full scale tests.

This problem was solved by implementing a reset of all the control outputs. This meant that all
the parameters could be set while the controller was running in open loop, before resetting the
output when the controller was ready to go.

The second problem with the controllers on the cruises were that they had problems crossing
±180◦ heading. pipi2infinf -functions were added and although they had worked in simulations,
they did not work well with the Kongsberg systems. This resulted in a sudden rotation of the
vessel from +180◦ to -180◦ and vice versa, depending on which direction 180◦ was crossed.

In order to fix this problem the range of angles were first changed from [−π, π] to [0, 2π]. Now
by noticing in which direction the limits (0 or 2π) were crossed another 2π was added or sub-
tracted from the original angles. Making it increase or decrease continually from [−inf, inf ].
The vessel could now turn freely without risking the controller to make a sudden jump in head-
ing angle.

5.6 Conclusions

Looking at the results from Section 5.4 all controllers performed very well even without robus-
tification, both for the CSEI and the scaled controllers for R/V Gunnerus. This means that either
of the heading controllers could be applied for heading control with satisfying performances.
The surge-speed controller did also work very well, but could be tuned to be slighly more ag-
gressive in order to reach cruise speed faster.

By adding strong disturbances to the vessels in form of current forces made the parameters
drift. To prevent this dead-zone modification and the projection operator were included to the

74



control laws. These robustification successfully reduced the drifting of parameters, making the
controllers more reliable even when affected by disturbances.

To conclude, all controllers were successfully simulated and robustified. The scaling of pro-
cedure proved to work very well. It took some time to tune the scaled controller in order to
perform well, but nontheless not as much as designing a new controller or identifying model
parameters on a sea trial.

HIL simulations were done in order to test whether or not the controllers would work in the MC
Lab with the physical model. The results were the same as for the rest of the simulations with
both the heading controllers and the surge-speed controller providing promising results.
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Chapter 6
Guidance

In this chapter guiding of underactuated surface vessels will be discussed. According to Fossen
(2011) we divide guidance into three main categories. These are called set-point regulation,
trajectory tracking and path following. In set-point regulation the aim is to move from one
way-point to another. The attitude and the position of the next way-point are chosen as con-
stants. For trajectory tracking a predefined moving reference is tracked along the desired path.
In path-following, the goal is to follow a predefined path independent of time constraints. For
this thesis path following and path tracking will be further investigated.

To able to navigate using guidance it is important to know in which direction, for how long and
along which path. Therefore, it is necessary to start with making the actual paths that the vessel
is going to follow. For straight-lines heading control is enough in order to steer the vessel to the
next position (Fossen, 2011). A normal extension to straight line paths between desired points
is to make smooth turns along circular arcs when the vessel is in range of the next way-point.
These path types are called Dubin paths (Dubins, 1957). For path following and trajectory
tracking the normal way of generating paths is through parameterization, genreating the paths
at a given rate. The path generation presented in this thesis build mainly on Skjetne (2005),
Fossen (2011), Lekkas (2014) and Dubins (1957).

Having generated the paths it is time to make the vessel follow them. In this thesis one guidance
laws will be discussed. It is called Line-of-sight guidance calculates a correction term for the
heading which gradually converges to zero when the vessel is on the path. This way, the vessel
points towards the path while being far away from the path moving fast towards it, before
gradually converging to the path. For this guidance law, current compensation can be added to
the LOS algorithm either by introducing the sideslip angle (Fossen, 2011) or by Integral LOS
(Børhaug, 2008). Here, the compensation term is multiplied with a gain inside the convergence
term. This gain can be set to zero when no current is present, reducing the ILOS algorithm to
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the conventional LOS method. Lekkas (2014) and Skjetne et al. (2011) can be used in order to
develop an understanding of LOS guidance. LOS and ILOS are going to be applied for straight-
line- and for curved- paths using the procedure presented in Skjetne (2005), Caharija (2014),
Caharija et al. (2016), and Lekkas (2014).

6.1 Steering Laws for Regular Paths

In this section the different trajectories and guidance laws for time independent path-following
applications will be derived. LOS guidance will be derived for the generated paths in order to
minimize the cross-track error.

6.1.1 Straight-lines Between Waypoints and Circular Paths

This thesis focuses on straight line paths in addition to circular paths. First, trajectories are
designed by controlling the heading for path following objectives.

Waypoints and Straight Lines

Waypoints are defined as coordinates in on the 2-dimensional surface plane as

pn0 = [x0, y0]> (6.1)

pn1 = [x1, y1]>, (6.2)

where pn0 is the initial position or previous waypoint of the vessel and pn1 the next waypoint.
The heading of the path can be calculated as

αk = atan2

(
y1 − y0

x1 − x0

)
. (6.3)

(6.1) and (6.3) contains enough information in order to navigate between waypoints. However,
by introducing circular arcs at the endpoints (Dubins (1957), Fossen (2011)) a smoother way
of moving between desired positions is developed. Within a distance of the desired waypoint
the heading is changed with a constant rate in the direction of the next waypoint until the vessel
exit the region of turning. The drawback is that the yaw rate will not be continuous at the
intersection between straight line and circle.

Circular Paths

For a circular path, Breivik and Fossen (2008) suggest the following. First, the origin of the
circular path is denoted pnc = [xc, yc]

> and the radius as rc > 0. Using the current position of
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the vessel pn(t) = [x(t), y(t)]>, together with the circular path coordinates the desired path can
be written as a function of the heading

χp(t) = χc(t) + λ
π

2
, (6.4)

where λ is either 1 or -1 depending on whether the path is turning clockwise motion or counter-
clockwise.

χc(t) = atan2

(
y(t)− yc
x(t)− xc

)
. (6.5)

6.1.2 Line-of-Sight Guidance

Fossen (2011), defines the velocity of a craft with 2-D planar motion as

U(t) := ||v(t)|| =
√
ẋ(t)2 + ẏ(t)2 ≥ 0 (6.6)

and the course- or steering- angle of the vessel as

χ(t) := atan2(ẏ(t), ẋ(t)),∈ S := [−π, π]. (6.7)

For straight line paths, the path-fixed coordinates can be derived by

ε =

[
s(t)

e(t)

]
= R>(αk)(p

n(t)− pnk), (6.8)

where pn(t) is the current position of the vessel and pnk is the position of the next waypoint
or the spot in the path which the vessel is currently aiming at. αk is the desired heading for
the path. The along-track error is denoted as s(t) and the cross-track error as e(t). The overall
control objective for straight line paths is that the vessel is steered along the line-of-sight vector
ensuring

lim
t→∞

e(t) = 0. (6.9)

The equation above can according to Breivik and Fossen (2008) be satisfied using one of two
methods: enclosure-based steering or lookahead-based steering. The LOS vectors and other
important parameters are shown in Figure 6.1. It is worth noticing that when no current forces
are acting β will be 0 and χd will be equal to ψd.

Enclosure-Based Steering

Enclosure-based steering is made by initially choosing a large circle (R > 0) around the vessel
position pn = [x, y]> which also intersect the desired path at two points. The intersection that
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Figure 6.1: LOS setup. [Courtesy: Fossen (2011)].

lies in the desired direction of the vessel is called pLOS = [xLOS, yLOS]> and the vector from p

to pLOS is accordingly denoted the LOS-vector. Steering the ship along this vector fulfills (6.9).

The desired course angle is then calculated using Figure 6.1 according to

χd(t) = atan2(yLOS − y(t), xLOS − x(t)). (6.10)

To calculate the target intersection, the Pythagorean theorem is applied in addition to the head-
ing of the path as shown in

[xLOS − x(t)]2+[yLOS − y(t)]2 = R2, (6.11)

tan(αk) =
yk+1 − yk
xk+1 − xk

= c, (6.12)

where c is a constant parameter. Above, (6.12) corresponds to (6.3).

Lookahead-Based Steering

Lookahead-based steering is slighly less complicated than the enclosure-based method. The
course angle is expressed as

χd(t) = χp + χr(e), (6.13)
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where χp = αk is the path tangential angle described by (6.3) and

χr = arctan

(
−e
∆

)
(6.14)

is the velocity-path relative angle. In Figure 6.1, it is the difference between αk and χd. ∆ is
called the lookahead distance and refers to the distance between the direct projection of the ves-
sel position on the path and the intersection between the LOS vector and the path. The relation-
ship between the lookahead distance and the cross-track error can be derived using Pythagorean

theorem

e(t)2 + ∆(t)2 = R2, (6.15)

which relates the two different methods, because the lookahead-based guidance with

∆(t) =
√
R2 − e(t)2, (6.16)

corresponds to the enclosure-based steering law, varying between 0 and R, when |e(t)| = R and
|e(t)| = 0, respectively (Fossen, 2011).

Steering Laws for Circles

For circles a lookahead-based approach is described in Breivik and Fossen (2008). Figure 6.2,
shows how the relevant parameters relate. From (6.4) and (6.5) the desired heading of the path
is derived. Inserting (6.4) as χp in (6.13), knowing that (6.4) satisfies (6.9), the cross-track error
for circular paths is defined as

e(t) = rc − |p(t)− pc|

= rc −
√

((x(t)− xc)− (y(t)− yc)). (6.17)

It is important to note that the lookahead distance is now expressed differently than for straight-
line paths.

6.2 Steering Laws for Parameterized Paths

In this section paths will be generated by parameterization and these will be tracked in order to
show that the path-tracking differs from path-following. Using LOS from Section 6.1.2 the goal
will be to track the moving path such that both the along-track error and the cross-track error
converge to zero. The related variables are shown in Figure 6.3
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Figure 6.2: LOS setup for circular path. [Courtesy: Breivik and Fossen (2008)].

Figure 6.3: LOS setup for parameterized paths. [Courtesy: Breivik and Fossen (2008)].
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6.2.1 Parameterization of Paths

The parameterization of the paths are done by introducing a path variable that is zero at the start-
ing point and increases as the vessel or target moves along it, constantly updating the positions.
The paths discussed in this thesis will be straight line paths between waypoints and ellipsoid
paths. Unlike shown in Figure 6.3, the parameterization variable will in this thesis be s and not
ω̄. This follows the notation of Skjetne (2005) and Skjetne (2014). Straight lines between to
waypoints as in (6.1) and (6.2) can be parameterized as

pnd(s) = (pnd,1 − pnd,0)s+ pnd,0, (6.18)

using the same constant desired heading as in (6.3). The parameterization variables goes from
0 to 1 between the waypoints. It follows that

pnd(0) = pn0 , (6.19)

pnd(1) = pn1 (6.20)

and the desired path vector can be written as

ηd =


xd

yd

χp

 =


(x1 − x0)s+ x0

(y1 − y0)s+ y0

atan2(ηsd(2),ηsd(1)).

 . (6.21)

Note that χp in (6.21) and Figure 6.3 corresponds to χd in figure 6.1. The path derivatives with
respect to the path variable are denoted as ηsd and ηs2d . For straight line paths they become

ηsd =


x1 − x0

y1 − y0

0

 and ηs
2

d =


0

0

0

 . (6.22)

For an ellipsoid path a similar parameterization can be done by

xd = r1 cos(2πs) + c1, (6.23)

yd = r2 sin(2πs) + c2, (6.24)

where r1 and r2 are the radii of the ellipsoid in x- and y- direction and c1 and c2 is the coordinates
of the origin. The desired heading angle is now a function of the path variable written as

χp = arctan(ηsd(2),ηsd(1)). (6.25)
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The complete path vector for an ellipsoid together with its derivatives are given as

ηd =


r1 cos(2πs) + c1

r2 sin(2πs) + c2

atan2(ηs(2),ηs(2))

 , ηsd =


−2πr1 sin(2πs)

2πr2 cos(2πs)

2πr1r2
r21 sin(2πs)2+r22 cos(2πs)2

 ,

ηs
2

d =


−4πr1 cos(2πs)

4πr2 sin(2πs)

4π2(r1r2(r21−r22) sin(4πs))

(r21 sin(2πs)2+r22 cos(2πs)2)2

 . (6.26)

6.2.2 Update Laws

The cross-track error for parameterized paths are calculated in the same way as in (6.8). For a
point on the parameterized path pp(s) Breivik and Fossen (2008) calculates the cross track error
as

ε(t) =

[
s(t)

e(t)

]
= R(ψd)

>(p(t)− pp(s)). (6.27)

The path-following objective is now extended from (6.9) to include along-track error, yielding

lim
t→∞

ε(t) = 0. (6.28)

In order to achieve this the control system must solve two tasks as explained by Skjetne (2005),
both the geometric- and dynamic assignments must be satisfied.

The paths presented in the previous sections are designed such that the path variable s is zero at
the initial position and 1 at the final position. Two update laws are used in this thesis: tracking
update law and gradient update law, both presented in Skjetne (2005). Note that the virtual
point replacing p in Skjetne (2014) is replaced in order to be applicable for current forces on
the vessel. For the tracking update the derivative of s, or the speed assignment is defined as

ṡ = v(s) =
ud
|psd(s)|

=
ud√

(ηsx)
2 + (ηsy)

2
, (6.29)

where ud is the desired velocity. (6.29) can be modified with a feedforward term (Skjetne, 2014)
that stops s when the cross track error is large as shown in (6.30)

ṡ =
∆

∆2 + e(p, s)2
v(s), (6.30)

where ∆ is the look-ahead distance and e(p, s) is the cross-track error between a point on the
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moving vessel (p) and the path.

The gradient update law includes a third term called the gradient update witch renders (6.30) as

ṡ =
∆

∆2 + e(p, s)2
v(s)− ωs(p, s), (6.31)

where
ωs(p, s) = −µ p

s
d(s)

|psd(s)|
(p− pd) (6.32)

and µ is a constant gain. The gradient term in (6.32) makes the vessel converge faster to a point
on the path.

6.3 Current Compensation

In this section it is assumed that a constant irrotational current acts on the vessel. This results
in that the vessel will drift if nothing is done to compensate for it. Two such methods are ILOS
and Sideslip compensation and both can be applied directly in the existing LOS algorithms.

6.3.1 Sideslip Angle

In this thesis current forces will be compensated for by adding compensation terms to the
Lookahead-based LOS method. The first method is described in Fossen (2011) and consists
of adding an extra term β to (6.13), as shown in Figure 6.1.

χp = ψd + β, (6.33)

where ψd is the commanded heading of the vessel and

β = arcsin

(
v

U

)
(6.34)

is called the sideslip angle. v is the velocity in sway and U is the vessels cruising speed as
defined in (6.6). By compensating for the additional sideslip in (6.13) the aim is to satisfy (6.9),
even when current forces are present.

6.3.2 Integral Line-of-Sight

The second method was first presented by Børhaug (2008) and consist of adding an integral
term to the path-tangential velocity term (6.14) of the lookahead equation (6.13). In addition,
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the expression for the integral term must be derived. The two equations are shown in below

χr = − arctan

(
e+ σeint

∆

)
,∆ > 0, (6.35)

ėint =
∆e√

∆2 + (e2 + σeint)
, (6.36)

where e is the cross-track error, ∆ is the lookahead distance, σ > 0 is a tunable gain and eint is
the integral state of the cross-track error. The introduction of the integral term builds up when
the ocean currents drive the vessel away from the desired path, even if the desired heading angle
is achieved. The (e + σeint) term will then be nonzero generating the necessary sideslip angle
in order to compensate for the current forces. This can be compared to a sideslip term inside
the velocity-relative angle term. Note that without ocean current, (6.35) reduces to (6.14).
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6.4 Simulations of the Path-Following Algorithms

In this section simulations will be made to test various path-following and path-tracking meth-
ods discussed above. First, simulations will be done without current and current compensation
to confirm that the algorithms works as expected. By adding current, the current compensator
terms will be included in the simulations.

All following tests will be done using the observer from Chapter 4 and controllers derived
through Chapter 5. Both vessel models will be simulated to show that everything works for
both. As the previous chapters have shown that the control system works in simulations the
following results will focus on showing the generated paths and how accurate the vessel is able
to follow them. The current compensation is done using ILOS guidance.

The simulations will begin with the vessel at the origin (x, y) = (0, 0). For straight-line paths
the vessel will read the location of the next waypoint from a sorted matrix. When all the way-
points are passed the vessel will move with the last set heading until the simulation ends.

For circular path the vessel also starts at the (x, y) = (0, 0), but the origin of the circle is set
elsewhere. The vessels must be able to generate and track the paths from far away before finally
converging to the paths.

6.4.1 Simulations of Path-Following and Path-Tracking for CSEI

First, the path generation and path-following will be tested for CSEI. Simulations will begin
without adding current forces to the vessel model. Then, after ensuring everything works well
current will be added and the results will be shown.

Path-Following

Using heading control only and with constant thrust in surge the CSEI will try to follow given
paths as derived for straight lines and circles in Section 6.1.1.

Starting with a path consisting of straight lines between four waypoints, Figure 6.4 shows that
the vessel has no problems in generating the path nor navigating along it. The waypoints lies
at the corner of the square, but in order to show the desired path between them lines have been
added. This makes it easier to analyze the cross-track error from this figure. The cross-track
error can be seen converge to zero shortly after each turn. In Figure 6.5, it is proved that this is
the case. The vessel starts at the origin and continues in the last set heading after all waypoints
are passed.
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Figure 6.4: Straight-line path in between waypoints
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Figure 6.5: Cross-track error for straight-line path in between waypoints

For the circular paths the results were as promising as for the straight line paths. Both the
path generated for clockwise- and counter-clockwise- motion were simulated and are shown in
Figures 6.6 and 6.7.
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Figure 6.6: Circular path generated in clockwise direction
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Figure 6.7: Circular path generated in counter-clockwise direction

The corresponding cross track errors are shown in Figures 6.6 and 6.7 respectively. In both of
these plots it is obvious that the cross-track error converges rapidly to zero.
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Figure 6.8: Cross-track error for circular path generated in clockwise direction
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Figure 6.9: Cross-track error for circular path generated in counter-clockwise direction

Path-Tracking

In this section the paths will be generated with respect of a path-parameterized variable which
makes the path develop as explained in Section 6.2. To begin with, a square path consisting of
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straight lines between waypoint will be generated and tracked by CSEI. This is shwn in Figure
6.10. The along-track- and cross-track- errors can be seen in Figure 6.11.
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Figure 6.10: Parameterized straight-line paths
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Figure 6.11: Epsilon for parameterized straight-line paths

From Figures 6.10 and 6.11 it can be seen that both errors converge towards zero. The jumps in
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the plots are made when the waypoints are within switching range and a new trajectory towards
the next waypoint is generated. This can also be seen in the plot of the path variable in Figure
6.12, where s does not reach its final value of 1.
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Figure 6.12: Parameterized path variable

The effect of the feedforward term of (6.30) makes the path regulate its evolving speed as shown
in Figure 6.12. When the vessel is ahead of the path variable speeds up to catch the vessel, but
is also able to wait when the vessel is far from the path as shown with the less steep part of the
curves.

This can also be seen from generation and tracking of circular path. In Figure 6.13, the param-
eterized path starts at the top of the circle. The dots in the plot are plotted with a fixed rate and
shows how the path waits for the vessel before speeding up to the desired velocity. The vessel
starts at the origin and is set to move to a circular path with origin at (x, y) = (10, 10) and a
radius of 10 m. The path moves in clockwise direction for the entire simulation time.

Figure 6.14, show the corresponding along-track- and cross-track- error plots. These plot shows
that both error terms seem to converge towards zero over time. This means that the vessel is
able to track the desired path even when starting far from the circular path.
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Figure 6.13: Parameterized circular path
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Figure 6.14: Epsilon for circular path

Current Compensation

Finally, current forces were added to the vessel model of CSEI. For these simulation a current
velocity of 0.01 m/s was included in both surge and sway. Both parameterized paths were
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simulated with current and the results are shown in Figures 6.15, 6.16 6.17 and 6.18.

-20 -15 -10 -5 0 5 10 15 20
y[m]

-20

-15

-10

-5

0

5

10

15

20

x[
m

]
Desired path
Actual path

Figure 6.15: Straight-line path with current compensation
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Figure 6.16: Epsilon for straight-line path with current compensation

These figures show that current will affect the behaviour of the vessel. Most noticeable are the
plots of straight lines between waypoints in Figures 6.15, 6.16. Due to the sudden changes of
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Figure 6.17: Circular path with current compensation
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Figure 6.18: Cross-track error for circular path with current compensation

desired waypoints it sends the vessel on a slighly different path.

The circular path does not encounter such sudden changes, but the effect of the current can be
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seen in the slope towards the circular path. Since the vessel no is pushed with a higher velocity
by the current the path does not wait as long for the vessel as without the current.

From the simulations with current it is clear that the ILOS compensation of current forces
manages to steer the vessel to towards the desired paths. This applies for both straight lines and
circles.

6.4.2 HIL Simulations for Guidance

The previous plots from HIL simulations in Section 5.4.3 are actually for a path-following
maneuver shown in Figure 6.19. This plot shows how the vessel moves in between waypoints
as simulated in Figure 6.4. This simulation is done without current. The vessel seems to move
along the path without issues, turning slightly before it reaches each waypoint at the corner of
the square. The cross-track error can be seen converge as the path becomes aligned with the grid
in the plot after each turn. Again, this proves how similar the results from HIL and simulations
in MATLAB/Simulink are and that the complete path-following autopilot is ready for physical
testing in the MC Lab.
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Figure 6.19: Square path consisting of straight lines from HIL
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6.4.3 Simulations of Path-Following and Path-Tracking for R/V Gunnerus

This section will contain the same path-following procedures as in the previous section, but for
the R/V Gunnerus vessel. As path-generation is not affected by how long the paths are, nor if
the desired velocities are higher only some of the scenarios will be presented for the full scale
vessel model.

The paths will begin at the origin and be scaled up to fit the full scale vessel of R/V Gunnerus.
Therefore, the path will be very similar to the ones in the previous sections, only larger.

Path-Following

Figure 6.20 shows the desired path and how R/V Gunnerus converges to it.
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Figure 6.20: Circular path generated in counter-clockwise direction for R/V Gunnerus

Using the cross track error from Figure 6.21 it is possible to see how the corresponding cross-
track error evolves throughout the simulation.

Figures 6.20 and 6.21, shows that the paths are successfully generated and that R/V Gunnerus
has no problems following them for the entire simulation time.
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Figure 6.21: Cross-track error for circular path generated in counter-clockwise direction for R/V Gun-
nerus

Path-Tracking

The simulations of a larger circular parameterized paths for R/V Gunnerus is shown in Figure
6.22. The corresponding along-track and cross-track errors are shown in 6.23. From these two
plots it can be seen that the parameterized path is generated successfully and that the vessel
manages to track it with almost no errors.

Figure 6.22, also shows how the path slows down until the vessel is close with the dots closer
to each other. The increasing space between them shows that the path speeds up to the desired
vessel speed.

In Figure 6.24, the developement of how the path-variable for the circular path is shown. The
negative values corresponds to that the vessel is behind the desired position, making the path
to evolve slower. An increase in s of 1 corresponds to one round in a circular path, moving in
clockwise direction.

Current Compensation

Finally, current forces are added to the R/V Gunnerus vessel model and a straight-line path is
simulated as shown in Figure 6.25. It shows that the current forces initially push the vessel
out of the desired path. This can be seen in the origin and at each corner. Then the current
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Figure 6.22: Parameterized circular path for R/V Gunnerus
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Figure 6.23: Epsilon for circular path for R/V Gunnerus

compensator term from the ILOS guidance law counteract the current and the vessel is able to
track the path with small errors.

Figure 6.26 shows how the along-track- and cross-track- errors converge to zero after each
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Figure 6.24: Path variable for circular path
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Figure 6.25: Straight-line path with current compensation

turn. Looking at both Figure 6.25 and Figure 6.25 it seems that the current is counteracted
successfully and that the full-scale vessel model is able to navigate in current.
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Figure 6.26: Epsilon for straight-line path with current compensation

6.5 Conclusions

From the results in Section 6.4, it is possible to see that the time-unconstrained path-following
simulations worked as expected for both straight-line path between waypoints and for the circu-
lar path. The cross track error was forced towards zero every time the vessel reached the desired
path or changed path towards the next waypoint.

For the parameterized paths, similar results were obtained. The cross-track error as well as the
along-track error were both forced to zero, making the vessel follow the desired path with the
desired velocity. Adding current forces caused drifting and were successfully treated by the
compensator terms added to the guidance laws.

Simulations were done for both CSEI and R/V Gunnerus. The path generation, path-following
and tracking were simulated successfully for both vessels. This was expected as path generation
is a separate module of the control system and only depends on that the controller for CSEI and
R/V Gunnerus are able to follow the desired heading and speed. In addition, the HIL simulations
showed that the control system with path generation was successfully implemented resulting in
exactly the same results making the control system ready to test on physical model vessels in
the laboratory.
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Chapter 7
Discussion

In the following chapter, an overall discussion will be done for the derivation, implementation
and simulation results for the signal-based observer and the path-following adaptive autopilot
design.

7.1 Discussing the Normalized Maneuvering Models

In Chapter 2 the mathematical modeling of the model vessel CSEI was presented. For this
model, the maneuvering models, maneuvering characteristics and normalization procedures
were derived. The complexity of the scaling procedure increased with the number of DOF.
This makes the normalization of the 2DOF sway-yaw subsystem much more complex than the
surge-speed and the Nomoto models. In addition, some modifications needed to be made be-
cause of a faulty vessel model which included a quadratic damping term to the surge speed
equation and did not include coriolis forces. Due to lack of coupled damping terms (the coeffi-
cients are wrong in given the vessel model) the destabilizing Munk moment became dominant
in the 2DOF sway-yaw subsystem. The linear damping terms were not large enough to cope
with this, yielding inaccurate results. This made the choice of desired maneuvering models
easier since the only models left were the normalized surge-speed model and the normalized
1st order Nomoto model. By application of these models for control design the most significant
errors in the hydrodynamical coefficients are avoided. By applying these simplified models the
control designs becomes less advanced. The model parameters will in further control design be
treated as unknown and are going to be estimated. This makes the controller designs completely
unaffected by the faulty parameter values in the given vessel model. Finally, by assessment of
the directional stability it is shown that the CSEI model and R/V Gunnerus are both straight line
stable. This vessels can then be said to have similar maneuvering characteristics using Norrbins
or Bechs nonlinear Nomoto models.
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7.2 Discussion Concerning the Signal-Based Observer

The signal-based observer discussed in Chapter 4 uses measurements from GNSS, compass
and IMU to estimate the attitude, translation and velocities for the vessel. For the low-cost
perspective it is preferable since it can be implemented in similar way for the CSEI model as
for the full scale vessel. In addition, there is no need for model parameters and expensive sea
trials. During tests in MATLAB and in HIL simulations, the observer managed to estimate
all the states necessary with errors converging to zero. By adding noise on the specific force
measurements, the filter effects were shown both for the attitude part and for the translational
part of the observer. With noise, the estimates were worse, but nonetheless small with errors
that converged to zero. The largest peaks of the noise were also filtered by the observer using
integration.

7.3 Discussion of the Adaptive Controllers

Throughout Chapter 5, two types of direct MRAC algorithms were developed for heading con-
trol, while one indirect MRAC was implemented for surge-speed control. The results from sim-
ulations on CSEI shows that all controllers worked well even without robustification. However,
by adding large disturbances (such as current) the parameter estimates drifted. By introduction
of the dead-zone modification chattering of the signals were removed when the tracking errors
were low. The projection operator, ensured that the parameter estimates where bounded in case
of drifting. Scaling the controllers, proved easier than expected. Only a bit of tuning was neces-
sary in order to obtain the desired response for the full scale model of R/V Gunnerus as for the
CSEI making the normalized controllers successful in keeping the low-cost perspective for the
control design. HIL simualtions proved that the controllers behaved just as for the simulations
in MATLAB/Simulink.

7.4 Discussion Based on Guidance

As an extension to the autopilot design, path generation, path-following and path-tracking was
implemented for straight lines and circles. Chapter 6, explained how these paths could be gen-
erated with and without the use of parameterization. The principle guidance law that were used
for simulations was the lookahead-based LOS guidance.This because its simplicity and overall
validity of the whole range of cross-track errors. Simulations where done for both circular and
straight lines, with and without parameterization as well as for both with and without current
forces. The controllers and observers derived in Chapters 4 and 5 were all used to perform these
simulations. Looking at the results from the simulations and from HIL tests it is clear that the
autopilot did manage to follow and track the paths properly, even with current forces acting on
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the vessel. This means that the compensation terms in the LOS algorithm worked as expected
and is ready for practical tests on CSEI in the MC Lab.
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Chapter 8
Conclusions and Further Work

8.1 Overall Conclusion

The goal of this was to design, implement and test a signal-based observer and a path-following
normalized autopilot to fulfill the low-cost goals of commercial shipping. Simplified maneu-
vering models were derived in order to determine their applicability to scaling. In this way
the basis for the normalized adaptive controllers were made. A kinematic observer design was
made as a separate part of the control system. This uses measurements from GNSS, compass
and IMU in order to estimate the vessels attitude, position and velocities. Therefore, model
parameters are not needed for estimation and avoids the need for costly sea trials. The choice
of controllers were based on the same principle of avoiding using model parameters. For this,
the MRAC design was chosen. By using reference models and control designs based on the
normalized maneuvering models, the required parameters were now treated as unknowns. The
controllers used adaptation in order to estimate these unknown values while controlling the ves-
sel. Robustification techniques were also applied to bound the estimates. Finally, a guidance
loop was added to the control system making the vessel able to move along predetermined paths
in both constrained-time and unconstrained-time path following applications.

Simulations are done throughout this thesis in order to choose the preferred models and deter-
mining the performance of each component in the control system. For the maneuvering models
the 1st order Nomoto model was chosen as the preferred heading model. The surge-speed model
was chosen for controlling the vessels speed. Using these normalized models, the control sys-
tem was first implemented and tested using MATLAB and Simulink. Then, HIL simulations
were done using the same software as in the MC Lab. Simulations proved that the control
system worked as expected. The kinematic observer was able to filter noise while keeping the
errors converging towards zero, the MRAC controllers were able to generate and track reference
signals controlling the vessel to the correct heading and to the desired speed. Robustification
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helped for special cases where large disturbances were added to the vessel models in term of
current forces. The scaling procedure resulted in controllers working on both CSEI and R/V
Gunnerus. Only minor tuning was necessary to obtain satisfying performance for the scaled
vessel, even thought the controllers were originally designed for CSEI. Finally, path-following
was simulated proving that the overall control system managed to steer the vessel along prede-
fined paths, with and without current forces acting on the vessel models.

In short, a control system that satisfy the low-cost perspective was derived, implemented and
tested through simulations with satisfying results. This shows that control systems for full-scale
vessels can be designed without lengthy and expensive sea trials. Instead, control systems can
be developed on model vessels with similar shape in laboratories.

8.2 Further Work

Continuing this topic the study can be extended into full-scale testing on vessels. It is impor-
tant to study the applicability of normalized controllers with respect to other hull shapes and
different vessels. There is a need for more similar studies in order to have a database of tests
for which conclusions can be made on whether this control design will be beneficial or not. An-
other possibility is to extend the work done in this thesis to underwater vehicles in 6 DOF. By
using normalized and adaptive controllers that do not use model parameters, a universal control
system that works for more than one vessel can be developed.

The control system can also be extended to include obstacle avoidance to increase the autonomy
of the vessel. Studies of this based on for instance LOS guidance have been made proving that it
is possible. In addition, one could connect several vessels with similar control systems in order
to be able to perform coordinated operations. This could also be useful for ships doing seismic
mapping.
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