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Chapter 1

Basis

1.1 Introduction

The noble aim of statistical mechanics is to provide the link between macro-
physics and microphysics. A particular important task is to connect the
equation of state for a substance with the interactions between its molecules.

For liquids and dense gases this is particularly difficult, since one lacks a
simple model, like the ideal gas or the perfect crystal, as the starting point®.

The concern of this thesis is precisely to calculate the properties of a clas-
sical fluid, in particular near its critical point, the endpoint of the liquid-gas
phase transition (Fig. 1.1(a)) at which the coexisting liquid and gas be-
come identical. Due to the long-ranged density fluctuations which make the
compressibility diverge (Fig. 1.1(b)), this is undoubtedly the most difficult
situation.

To meet the challenges several methods have been developed, some rather
recently. These methods may not be well known, and the thesis therefore
contains a rather lengthy introduction to the field, with concise descriptions
of those methods that will be relevant for the calculations to follow. I hope
this makes the thesis more self-contained.

In Sec. 1.2 T review the similarities between fluid and magnetic systems.
Definitions of correlation functions and the recipes for calculating the equa-
tion of state for a discrete system are given in Sec. 1.3. Chapter 2 deals

!Croxton in his book [1] says that “Liquid state physics no longer has the luxury
status of an intellectual plaything —a kind of purgatory between gas and solid, a statistical
mechanical jungle populated only by the foolhardy and/or academics”.
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Figure 1.1: Phase diagrams for a pure substance of simplest kind with a
solid, a liquid, and a gasous phase: (a) Projection of the surface of state
in the pressure-temperature (P7') plane, with (b) corresponding isothermal
cross-sections in the fluid regime. The gas-liquid coexistence curve terminates
in the critical point denoted (p., V., T¢.), where p., V,, and T, are the critical
pressure, critical volume, and critical temperature, respectively. Following
the dashed line in (a) one sees that there is no clear division between a gas
and a liquid.

with approximation methods for calculating the correlation functions. The
situation close to the critical point is reviewed in Chapter 3. In Secs. 4.1 and
4.2 we deduce the SCOZA partial differential equation and in Secs. 4.3-4.5 it
is solved numerically in three, two, and one dimensions, respectively. These
latter calculations supplement those reported in the papers.

1.2 The lattice gas and the analogy with Ising
spins

A variety of physical systems exhibit critical phenomena similar to the gas-
liquid transition. Theoretically the magnetic ones have been of great impor-
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Figure 1.2: (a) Projection of the equation of state for a ferromagnetic sub-
stance in the magnetic field-temperature (HT') plane, with (b) corresponding
isothermal cross-sections (projection in the field-magnetisation (H M) plane).
The coexistence curve for H = 0 terminates at the critical point, 7' =T, and
M = 0.

tance.

Analogous to increasing the density by compressing a fluid, a magnetic
field H applied to a ferromagnetic material will increase its magnetisation
M. 1In a sense H and M correspond respectively to the pressure p and
the density p in the fluid case [2]. At the critical point the fluctuations in
the magnetisation will increase enormously and the isothermal susceptibility
will diverge. Below the critical temperature, and in zero field, one gets
spontaneous magnetisation and equilibrium between the positively and the
negatively magnetized phase, =My (T) (Fig. 1.2).

The well-known Ising model is the simplest model of a ferromagnetic sub-
stance. The N dimensionless spins, situated on a periodic lattice, are allowed
to point either up or down (s; = £1) along an easy axis of magnetisation
defined by the applied magnetic field H (in the Hamiltonian (1.1) below, H
is the orientational energy of one spin in the field). With ferromagnetic pair
interaction J;; between spins ¢ and j the Hamiltonian and canonical partition

3



4 Basis

function for a given spin configuration {s} read

H({s}) = ZJZ]SZSJ HESZ (1.1)

1<J

and
T) = 2 e AU (1.2)
{s}
where 5 = 1/kgT, kp is the Boltzmann constant, and 7T is the absolute
temperature. The magnetic field H regulates the net magnetisation

M =< Z Mgg—gm (1.3)

In spatial dimension higher than one a critical point is achieved. In zero
magnetic field, above the critical temperature, there is no net magnetisation
due to random spin flipping, while below 7T, one gets spontaneous magneti-
sation and symmetry breaking with coexistence between the spin up and the
spin down phase. Thus the scalar spontaneous magnetisation describes the
ordered phase analogous to the density difference |p, — p.| in the gas-liquid
transition (Fig. 1.3). Both theoretically and experimentally the gas-liquid
phase transition has been found to have the same critical behavior as the
Ising model [3].

The lattice gas is a discrete version of the gas-liquid system analogous to
the Ising model with spin variables s; = 1. In the grand canonical ensemble
the volume V is divided into NV cells each with volume vy = V//N. The cells
form a lattice. These cells are so small that at most one particle can occupy
a cell, which gives a particle-hole symmetry that corresponds to the up-down
symmetry in the spin case. By defining the occupation number

n; =1,0 (1.4)

denoting an occupied and empty cell, respectively, and again assuming pair
interaction ¢;; between particles ¢ and j, the potential energy for a given
occupation configuration {n} equals

{TL} Z¢zynzn] (15)

1<j

Here a chemical potential u regulates the mean particle numbers (n;) and
hence the the number density p, analogous to how the magnetic field in-
fluences the magnetisation in the Ising model. In terms of the fugacity

4
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Mﬂ

Figure 1.3: Projection of the equation of state for a ferromagnetic substance
in the magnetisation-temperature (MT) plane (or H = 0 cross-section). Be-
low the critical temperature T, and in zero magnetic field, the ferromag-
net has a residual or spontaneous magnetisation +=My(7) in the coexisting
phases.

z = ePr/A3, where A = h/\/2rmkgT is the thermal de Broglie wavelength,
the grand canonical partition function is

2, T) = Y (zv9) 2" VD)

{n}

5 - Ty amns sl mison ] S}
{n}

(1.6)

Except for an unimportant prefactor, Eq. (1.6) equals Eq. (1.2) when one
makes the substitutions

n; = %(1 +51) (1.7)
by = —4Jj :
Ap=p—p(T) = 2H (1.9)
where 1
Mo(T) = 5 Z (bij — kBTlIl(U()/AS). (110)

3(#9)
The term ;.. ¢i; is considered to be independent of the position ¢ in the
thermodynamical limit. For subcritical temperatures Ay gives the deviation
in chemical potential from the gas-liquid coexistence curve pg(7"), in the
same way as the H-field measures the vertical distance from the coexistence

5



6 Basis

line H = 0 in the phase diagram for the Ising model (see Fig. 1.2(a)). In a
spatially homogeneous system one gets from Eqgs. (1.7) and (1.3) the mean
number density

1 1
p=p ” 2vo( + < s >) 2vo( +m) (1.11)

with the mean magnetisation per spin m = M /N for an N-spin system.

1.3 Correlation functions

In the canonical ensemble for a continuum fluid the probability of finding
any two particles in volume elements dr; and dr, at positions r; and 7, is

[ e BV ™) gp(N-2)

05\27)(7“17 ro)dridry = N(N — 1)drdr, On(V.T) (1.12)

The normalization is provided by the configurational integral
Qn(V,T) = /e‘ﬁVN(’"N’drN (1.13)
where we are using the notation [4] » = {ry,ry,...,7x}. pg\%)(rl,'r‘z) is

the two-particle probability density, which for an ideal gas without interac-
tions has the value p*(1 — 1/N). In the thermodynamic limit N — oo this
independent particle value equals p?. For a homogeneous system the scaled
(dimensionless) pair distribution function g](VQ)(rl, ro) is defined as

PN (r1, ) = oY (r1, ). (1.14)
If the system is isotropic, g](g)(rl, ry) = gﬁ)(m — 73|), the pair distribution
function is usually called the radial distribution function g(r). For distances
much larger than the range of the particle interactions, ¢g(r) approaches 1.
At shorter distances, the deviations from this complete lack of structure is
described by the pair correlation function

h(r) =g(r) — 1. (1.15)
With pair interactions V (r"V) = i]\;j v(r;;) the internal energy per particle,
excess to the ideal gas contribution, becomes

u= lf:;: = %p/v(r)g(r) dr. (1.16)
6




1.3 Correlation functions 7

This result is called the energy equation.

To study the correlations between the fluctuations dp(r) = p(r) — (p(r))
in the local particle densities p(r) = XN, 6(r — ;) at positions r and 7/, one
has to use a grand canonical ensemble. They are measured by the density-
density correlation function

d(p(r))
L(r,r') = (0p(r)op(r')) = ———, 1.17
(r,7") = (dp(r)dp(r')) 5B () (1.17)
which is the response of the equilibrium density at position 7, é{p(r)), to
an external perturbation d¢e.:(r') at position r'—included in the chemical
potential p*(r') = p — dest(7') (see section 2.1). In a homogeneous and
isotropic system, I'(r, ') = I'(|r — r'|). Writing

L(r) = p*h(r) + pd(r), (1.18)

the density-density correlation function is expressed by pair correlations h(r)
and the particle correlations with themselves. The Fourier transform (de-
noted by tilde) S(k) = I'(k)/p is the so called static structure factor, mea-
sured in elastic scattering experiments by the intensity of radiation scattered
in the k-direction: 5

S(k) =1+ ph(k). (1.19)

By neglecting surface effects we have

(0) = /1"(7") dr = (%L S (%)T, (1.20)

or

~ ap
S(0) =1+ ph(0) (35P>T (1.21)
in the macroscopic limit. Eq. (1.21), or equivalently Eq. (1.20), is known as
the fluctuation theorem or compressibility equation. They give the equation
of state from the pair correlation function h(r), or equivalently, from the pair
distribution function g(r). Unlike the “energy route” (1.16), the “compress-
ibility route” (1.21) is not restricted to pair interactions. The correlation
length £ is loosely defined as the range of h(r). More specifically, in the limit

k — 0,
;_<%

S ap>T(1+§k +--) (1.22)

7
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serves as a definition.
The Ornstein-Zernike integral equation [5] (here for a homogeneous sys-
tem),

Mr—v') =clr =)+ p [ e(r =" )h(r" — ') dr',  (1.23)

defines the direct correlation function c(r). In this way the total correlation
is given by the direct correlation plus the indirect ones via other particles:

h(r—7r") = c(r—7r")+ p/c(r —r"e(r" —r')dr" +

pQ//C(,r _ ,rll)c(,rll _ ,r./l/)c(,rl/l _ ,rl) d,rlld,rlll _|_ .. (124)

The infinitely long chains of c-bonds make it possible for the direct correlation
function to have a finite range even when the pair correlation function has
an infinite range at the critical point (where the reduced compressibility
(0p/0Bp), in Eq. (1.21) diverges). Inserting the Fourier transform of (1.23)

~ 1
1+ ph(k) = —— 1.25
+oh() = 7 s (1.25)
into the fluctuation theorem, we obtain
. 8610)
1 —pc(0) = <— . 1.26
0=(%,). (1.26)

This shows that ¢(0) = [ ¢(r) dr ~ 1/p near the critical point. So ¢(r) has to
fall off at least as fast as r 2 for the integral to exist. The original assumption
of Ornstein and Zernike [5] was that the range of ¢(r) was the same as the
range of the inter-particle potential, which for realistic pair potentials would
correspond to something like ¢(r) ~ 7% In this way the Ornstein-Zernike
equation (1.23) is a useful tool for obtaining the pair distribution function
g(r), inferring the form of the direct correlation function ¢(r) from the pair
potential v(r).



Chapter 2

Approximation methods

The equation of state for a pair-interacting spin model, Eq. (1.1), or lattice
gas, Eq. (1.5), is obtained from the pair distribution function via the dis-
crete versions of the internal energy equation (1.16) or the compressibility
equation (1.21). But to calculate the pair distribution g(r) from Eqgs. (1.12)
and (1.14) is a complicated many-particle problem, and some approximation
scheme is called for. For a dilute gas it is convenient to expand g¢(r) in the
density. A systematic approximation scheme for studying long-range pair
potentials consists of perturbing a known short-range repulsive system with
an attractive tail interaction. To lowest order the tail is made infinitely long-
ranged and infinitesimally weak, which produces a mean-field approximation.
The mean spherical approximation includes the first-order correction to this
mean-field approximation.

2.1 The virial expansion

The grand canonical partition function = for a homogeneous one-component
monoatomic gas with pair interactions v(r) can be expressed as a diagram-
matic expansion in the fugacity z, with coefficients ()5 being functionals
of v(r). The graphs consist of field points with an e-bond, e(r) = e=#v("),
linking each pair of points:

— > 2N —ﬂZN,v(rij) N 2 3 4
::Nz_jom/e i< drV =1+4ezte 2+ A 2+ D20+ (2.0)

In the presence of an external field ¢, (7;), the fugacity is considered to be
a function z*(r;) = ze #?=t(M) attached to the field point r;. Therefore the

9



10 Approximation methods

graphs will become functionals of z*(r) as well for the inhomogeneous gas.
Functional differentiation of Eq. (2.1) with respect to a z*-point gives the
single-particle density

02 dIlnE
62*(r)  Slnz*(r)

N
[1] /-i
3

P (r) = (2:2)

In the homogeneous case z = z*(r) and p = p!)(r). By inverting the fugacity
expansion of the single-particle density and eliminating the fugacity z in
Eq. (2.1), the corresponding virial expansion is obtained. The excess part of
Helmholtz free energy is then given by all simple! irreducible graphs (i. e.
graphs who can not become disconnected by removal of a point):

VA= g =eap + AP+ (L] + A+ XD+ (23)
where the bonds here and below are f-bonds,
fr)=e P 1. (2.4)

f(r) is called the Mayer function and has the same range as the potential
v(r). Helmholtz free energy gives the pressure p via

0 0 ;
5p=p+(1—p8—p)A=p+ZBi(T)p (2.5)
i=2
with virial coefficients

1 —1
I

Bi(T) = — Bia(T), 1>2 (2.6)
in terms of the irreducible Mayer cluster graphs §;(7"). These are the topo-
logically distinct graphs given by (2.3), but with one field point replaced with
a root point (in accordance with an intensive pressure p).

From Egs. (1.14) and (1.12) the canonical pair distribution function is
expressed as a functional derivative of the canonical excess Helmholtz free
energy with respect to a v-bond
QN OFgF I(—PF5)

2 zze(r) =9 N — 9p(p) N7 2.7
) =20y sy~ v ) >0

INo pair of points is linked by more than one bond.

10



2.2 Mean-field theory 11

Weighting both sides of this equation with the probability of finding exactly
N particles in a grand canonical ensemble and summing over all pair contri-
butions N > 2 then yields

palr) = 2er) 5555 = Pelr) 1+ A g

+( I+ + XK+ N+ D27+ (2.8)

i. e. all graphs without connecting? field points and with an e-bond connecting
the two root points labelled 0 and 7. (This e-bond prohibits hard spheres to
overlap). Consistent with the Ornstein-Zernike equation (1.23) connecting
¢(r) to h(r) = g(r) — 1 given by Eq. (2.8), the direct correlation function
results from functional differentiating the excess Helmholtz free energy twice
with respect to single particle densities

8V A
) = S0 ~ TP

+(d++ XN+ X+ ]+ D7+ (29

Irrespective of bond type, these graphs are the ones for g(r), Eq. (2.8),
plus those multiply connected?® lacking the bond connecting the root points.
Since all graphs apart from the single f-bond in Eq. (2.9) are at least doubly
connected

c(r) ~ f(r) = —pov(r) (2.10)

to leading order in r. That the range of ¢(r) is the same as for the pair
potential v(r), is in agreement with the Ornstein-Zernike approximation.

2.2 Mean-field theory

In absence of pair interactions v(r), the virial expansions for the pressure and
the pair distribution, Egs. (2.5) and (2.8), reduce to the ideal gas results Sp =
pand g(r) = 1. To calculate the equation of state for a pair-interacting lattice
gas via the virial expansion is in practice impossible beyond the first few
terms. That means that the virial expansion is useful only for low densities.

2Removal of a connecting point causes the graph to become disconnected.
3A graph is multiply connected if there exists at least two independent paths between
any pair of points.

11



12 Approximation methods

When one tries to sum over all particle configurations {n} in the partition
function (1.6), the obstacle is the interaction term. With inhomogeneous
chemical potentials ;, Eq. (1.6) in non-interacting form reads

=3 P Limillnhns (2.11)
{n}

with a configuration-dependent chemical potential acting on particle no. ¢

pi({n}) = Z Pij;- (2.12)

Since the term % In(vg/A?) in Eq. (1.6) does not depend on density, and hence
will not qualitatively alter the subsequent treatment, it is omitted here. In
mean-field theory the configurations n; are approximated by their averages
pj (vo = 1). Thus the configuration-dependent chemical potential seen by
particle 7 is replaced with the effective chemical potential

- > dijpj, (2.13)
J(#1)

causing the corresponding effective grand partition function to take the form
of a hard-core lattice gas, i. e.

—H (1 + ePr). (2.14)

The particle densities p; are unknown and are determined self-consistently
from the coupled set of equations (2.13) and

Oln=¢ ePri
i = = = 2.15
p B¢ 1 + ePri (2.15)

Here Su¢ as a function of p; is antisymmetric around p; = 1/2. This behavior
reflects the spin up-spin down antisymmetry in the H-field of the Ising model.
By switching to “Ising language”, Ap; = m; = 2p; — 1, it is easy to uncover
the qualitative aspects of the solution in the homogeneous case Ap = Ap;.
The set of Egs. (2.15) and (2.13) is then reduced to

Ap = tanh(Bu°/2) (2.16)
ut = Ap+alp, (2.17)

12



2.2 Mean-field theory 13

where .

J(#1)
is a positive constant for an attractive potential. With chemical potential
fo = —a along the coexistence line (Eq. (1.10) with the temperature de-

pendent term dropped), Ay = pu — po subcritically gives the deviation from
coexistence. For the system to be materially stable, (Op/0p)v,r > 0. In phase
equilibrium, Ay = 0, Eq. (2.16) has materially stable solutions Ap = 0 and
Ap = xAp for T > T, and T = T" < T,, respectively. Hence the critical
point is given by the density p. = 1/2 and the temperature 7, as

kpT, = g (2.19)

With nearest-neighbor attractive interaction —w < 0 and coordination num-
ber* ¢ = 2d the critical temperature is

kT, = % (2.20)

Solved with respect to the chemical potential, Eq. (2.16) gives
Ap = p" — alp, (2.21)

with hard core contribution

Bute = In (%) : (2.22)

This expression is diverging at close-packing p = 1, in agreement with the
construction of the lattice-gas model, Eq. (1.4). Correspondingly the pressure
is
p=7p"—ap’ (2.23)
where
Bp' = —1In(1—p). (2.24)

The mean-field approximation (2.13) treats the density fluctuations and
hence the critical properties in a brutal and inaccurate way. By smoothing
and infinitely stretching the interactions, collective effects are exaggerated

4on a hypercubic lattice

13



14 Approximation methods

and disruptive fluctuations suppressed. For instance, Eq. (2.19) predicts
incorrectly a phase transition in the one-dimensional (d = 1) lattice gas (or
Ising model).

On the other hand the mean-field theory approximates the equation of
state rather accurately outside the narrow critical region, where the isother-
mal compressibility ~ (0p/00p)r is finite. See Fig. 1.1(b). At high densities,
1 — p < 1, the fluctuation theorem (1.21) shows that the hard cores (2.24)
provided by the lattice gas, “screen” the long-range mean-field correlations;

L+ ph(0) = (9p/08p)r = (1 = p)[L +28ap(1 — p) + -] (2.25)

At sufficiently low densities, the ideal gas law, i. e. (0p/08p)r = 1, approx-
imates the equation of state (2.23) well. Only in the critical region, where
(0p/0Bp)r becomes very large, the role of the long-range attractive forces
is crucial. Therefore the mean-field approximation becomes less important
with regard to producing a qualitatively correct phase diagram.

Beyond thermodynamical quantities, the mean-field equations (2.13) and
(2.15) give the detailed correlations of the occupation number fluctuations
dn; = n; — (n;) (the discrete version of Eq. (1.17)), consistent with the
compressibilty equation of state (1.21):

p;
Iy = (0nidny;) = DBy pi(1 = pi) (635 — B D biplpj)- (2.26)
J p(#19)

In a spatially homogenous phase, p; and p; are replaced with p and p. When
one specializes to nearest-neighbor interaction on a hypercubic lattice (with
lattice constant b), the long-range Fourier components

br = 2(—w) zcos(kib) ~ —w(q — b’k?) (2.27)

inserted into the Fourier transform of Eq. (2.26),

. 1 —
foo_ Pl=p) , (2.28)
1+ Bp(1 = p)dr
give the asymptotic form
Tp X —— 2.29
RO g (2:29)

14



2.3 The y-expansion 15

close to the critical point. We have expanded in kb < 1. On the spinodal
curve, and more specifically at the critical point (Eq. (2.20), we have

1-Bp(l=plqw T -T.
b 2 — = —
(<) Bp(l = p)w T.

This causes the range 1/¢ of I';; to diverge although the theory itself ne-
glects all fluctuations. This result is consistent with smoothing and infini-
tially stretching all fluctuations, taken care of by the term 7,z ¢ipl'p; in
Eq. (2.26), and hence forcing a phase transition on the system.

Qualitatively the critical behavior is unchanged when the interaction is
extended to n’th-nearest neighbors. But quantitatively the critical tempera-
ture and the correlation length are increased by factors n¢ and n, respectively,
for n large. With interaction strength —w between each pair of interacting
lattice sites, kT, ~ +An%w and Egs. (2.30) now reads

— — d —
1—Bp(1 — p)An‘w _ AT -T, _o, (2.31)
Bp(1 — p)Bniw B T.

where A and B are positive constants.

As we all know, the idea of representing a fluid as a system of hard spheres
moving in a uniform, attractive potential stems from van der Waals and leads
to his equation of state (2.23). But for continuum fluids only approximate
expressions for the hard-core pressure p are known in dimensions higher
than one.

0. (2.30)

(enb)? ~

2.3 The y-expansion

Due to the finite range of interaction there will be corrections to mean field
or van der Waals theory. The work by Kac, Uhlenbeck, and Hemmer [6] on
an exactly solvable one-dimensional model initiated a new method. They
considered the Kac interaction —yaexp(y|x|), where the parameter +y is the
inverse range of interaction. In the limit v — 0 van der Waals equation of
state, Eq. (2.23), is obtained.

2.3.1 The expansion procedure

More generally, this method [7] consists of dividing the intermolecular po-
tential,
o(r) = vo(r) + w, (r), (2.32)

15



16 Approximation methods

Figure 2.1: The pair interaction v(r) for the vy-ordering as a function of
distance r. Here a gas of hard d-dimensional spheres with diameter R is
chosen to be the reference system. The long-range perturbation has range
~~! and strength ~¢.

into a short-range repulsion vy(r), the reference potential, whose properties
are considered known, and a d-dimensional, weak, and long-ranged attraction

w, (1) = =6 (yr). (2.33)

If Ry is the range of the reference potential (for instance a hard core diame-
ter), the dimensionless parameter of expansions is ¢ = (vRy)?, roughly equal
to the ratio of the reference interaction volume to the perturbation interac-
tion volume. (See Fig. 2.1.). Next the virial expansion is rearranged such
that contributions will appear in increasing order of ¢ (i. e. to each order in
¢, graphs are summed to infinite order in density).

With the separation (2.32), the Mayer function (2.4) is represented by at
most one reference Mayer function fy(r) = e (") — 1 and any number of
potential functions

B(r) = —u, (r) (2.34)
in parallel, i. e.
> 1

flr) = e Puo(r)+e(r) _ 1 — fo(r) +[1+ fo(r Z ' . (2.35)

Inserting this Mayer expansion into the bonds of the Helmholtz free energy
graphs, Eq. (2.3), the corresponding 7-ordering

A=A+ Z A(i) (2.36)

1=0

16



2.3 The y-expansion 17

is given by the free energy of the reference system Ay whose graphs contain
only reference bonds fy, and contributions A, of order (y%)". To lowest
order ¢ = 0 there is only one graph, namely

1 1 1
Aw) = 370" = 5[)2/‘1)(7') dr = §Bp2/'yd¢(7r) dr = Bap®,  (2.37)
with a solid line denoting the ®-bond and mean field constant (2.18) a =
—1 Jwy(r) dr. From (2.5) we have to lowest order

8=+ (1= 30 ) (Ao + Aw) = o — B (2.38)

where the irreducible reference graphs Ay give exactly the pressure Spg of
the reference system. So in the limit v — 0, van der Waals equation of
state (2.23), together with the Maxwell construction to ensure non-negative
compressibility, is exact.

The first-order contribution i = 1 is given by the ring graphs®

VAp = (v + o= )P + (AN AP+ + T T+ Dot +- (2.39)

Due to topological reduction of the fy-bonds in Eq. (2.36) in terms of refer-
ence pair correlation bonds hy (denoted by dotted lines), none of the rings
contains two successive ho-bonds. Only two of the graphs in (2.36) contain
a single potential bond ®(r) ~ . Hence they give to lowest order the high
temperature correction

anr = - (ve + o) 2 = =557 [[1 4 Bl (r) dr, (2.40)

to the free energy Ay, leaving the pair distribution (2.7) unaltered by the
perturbation and equal to the reference pair distribution function;

gur(r) = go(r) = 1+ ho(r). (2.41)

5Topologically speaking the first graph is no ring because of its lack of bond symmetry.
But what matters here is that they are the only graphs having one more ®-bond of order
74, than “free” integrations over volumes v~ ¢. 1. e. the integrations are of the same kind
as the one in the last integral of Eq. (2.37), not restricted by a short-range reference bond.
Thus their contributions are of order ¢ = 1 due to the excess ®-bond. Otherwise the
first graph does not cause any difficulties since it will be treated separately via the high
temperature contribution agr. (See Eqgs. (2.40), (2.43), and (2.44) below.).

17



18 Approximation methods

In order to study structual influences from the attractive forces, the ring
graphs are grouped with respect to the number of ®-bonds. To each number
n > 2, every possible combination of inserted hg-bonds in the field points,
will occur in Eq. (2.39). So with reference system hypervertices (drawn as
big open circles with two terminals) representing

Fo(r) = pd(r) + p*ho(r), (2.42)

we have
.A = AO +apr + Qring (243)

to first order in v%. Using the convolution theorem, the contribution to the
free energy from the ring graphs becomes

Vaying = @—i—@ +@ 4.

~ () /ZZn (k)]" dk

_ / {Fo(k)®(K) + In[1 — Fy(k)D(Kk)]} di. (2.44)

By removal of a ®-bond, Eq. (2.8) gives the pair distribution function with
its long-range part to first order included:

6Vam~ng

2 = p? 2 2.4
p°g(r) = p°go(r) + 55(r) (2.45)
i. e. the chain bonds
9 5Vamng
p?C(r) = 5(1)() = Ova0 + Ov—eOn—e0> + OrsOv—e0s—e0 + -+ . (2.46)

Fourier transforming and summing the chains gives the corresponding pair
correlation function h(k) via

2 Fﬂ(k)
p+ phik) = I (2.47)
and the direct pair correlation function (Egs. (1.25) and (2.34))
c(r) = co(r) — Bwy(r). (2.48)

18



2.3 The y-expansion 19

Since the perturbation contains the long-range part of the potential (Eqs.
(2.32) and (2.33)), this first-order approximation is asymptotically correct
at large distances, as shown by Eq. (2.10). But the perturbation has to be
sufficiently weak (the temperature sufficiently high) or the density sufficiently
low to ensure Fy(k)®(k) < 1 for all wave numbers. Without this condition
fulfilled, the structure factor (1.19) becomes negative for some range of k [4].

Expressions (2.44) and (2.47) can be simplified [8] noting that the long-
range potential picks out the Fourier transform ®(k) = S¢(K) with K =
k/~. Thus to leading order in v one can replace Fy(k) = EFy(K~) with Fy =
Fy(0). In this way the second graph of the high-temperature contribution
(2.40) drops out from the free energy to O(y4), Eq. (2.43)6. Forr 2 O(Ry) the
reference system correlations ho(k) will dominate the correlations, Eq. (2.47).
But for distances of order of the range of the potential, r = O(y~'), the ho(k)
will fall off so much that the chain bond contribution dominates;

. . F3Bo(K
ho(k)] = 0B¢(~ ) )
1 - FyBo(K)
Taking the inverse Fourier transform gives a contribution of order ¢ and
range 7! since the right-hand side of (2.49) is a function of K. Via the

fluctuation theorem (1.21) the constant Fy can be directly related to the
compressibility of the reference system

11 1o
Fo  p+p2he(0) p Op

(2.49)

(2.50)

So by putting k = 0 in Eq. (2.47) (or equivalently K = 0 in Eq. (2.49)), the
equation of state reduces to the van der Waals or mean field result (Eq. (2.38))

13(519) 1 & _ 13(5190)
SO o~ §(0) = — Y
p Op

—28a 2.51
oy T R B (2.51)

to O(7°). At the critical point the pair correlation function (2.47) will di-
verge, since

1 — Fy®(0) = 0. (2.52)

S1. e. one simplifies by writing ¢(0) = 0. But this contribution is not crucial with respect
to critical properties and is incorporated later. Besides it is obvious on physical grounds
that the true properties of the fluid must be independent of the choice of perturbation for
r< Ro.

19



20 Approximation methods

Thus the main contribution to h(k) near the critical point comes from K = 0,
and the denominator of Eq. (2.49) is expanded around K = 0 through the
spherically symmetric perturbation:

d(k) = 5&(1{)=5/[1+iK.R—%(K.R)2+~- #(R)dR

~ A1) + 5K2(0)] (2.53)

provided that ¢"(0) = —% [ R?¢(R) dR is finite (R = 7). This holds for the
Lennard-Jones potential, but the series expansion in K? can not be continued.
Putting this expansion into Eq. (2.49) increases the range of h(r) by a factor

1/e,

TR B a op 4

Pl o)) = S o e (254
with

o2 1-FR®(0) 2 19(8p) (2.55)

Bl-¢"(0)]  Fo  [=¢"(0)]Bp Op
vanishing at the critical point. Finally, in d = 3 dimensions (2.54) yields
a 1 0p e
h(r) = ho(r) + 7' ————= :
(r) = ho(r) +7 m[—¢"(0)] p O(Bpo) r

The conclusion is that the first-order correction (i = 1) to mean-field theory
is exponentially decaying except at the (mean-field) critical point ¢ = 0,
where the correlation length ¢ = 1/(e) and the fluctuation integral h(0)
diverge”.

In one and two dimensions, however, the inverse Fourier transform of
(2.54) diverges when ¢ — 0. This first-order correction is therefore not
meaningful in d = 1 and 2. In the lattice case Fy = p(1 — p) and with
nearest neighbor interactions the first-order y-expansion is equivalent to the
Gaussian approximation [11] for the Ising model.

(2.56)

2.3.2 Thermodynamic inconsistency
and critical renormalization

Including the ring graphs (2.44) to get the pressure (2.5) to order i = 1 (when
dropping the second graph of agr, Eq. (2.40), from the free energy (2.43)),

"This form of the pair correlation function is exactly the same as the one predicted by
the Ornstein-Zernike approximation, Eq. (1.25) with ¢(r) ~ w,(r) at large separations.

20



2.3 The y-expansion 21

one immediately faces the general problem of thermodynamical inconsistency
for approximative liquid-state theories [4]. That is, the energy route adds
the first-order correction beyond the mean field pressure (2.51) from the
compressibility route:

10(8p) 1 - *aring
PP D $(0) — —rng 2.57
STy (0) 72y (2.57)
where to dominating order
Gring = 271' / Z S Fod (k)" dk. (2.58)
Differentiating once with respect to density (denoted by a prime),
O0aring 1
— — VK (0 2.
fs = SRK() (2.59)
with .
1 Fo[®(k)]?
K(0) = d/ GG (2.60)
(2m) 1 — Fy®(k)
This is the chain bond
K(r) = oe00 + o—sOn—Ov—0 + o—eOr—40s—sOv—0 + - - - (2.61)
evaluated at 7 = 0. Differentiating (2.58) once more gives
82a7«mg 1
%, = §[F6’K(O) + F K (0)']. (2.62)

In principle the mismatch will be corrected by including higher-order
terms. However, a more serious problem originates in the divergence of the
integrals a,;,, and K (0). The divergence takes place at the mean-field critical
point (2.52),

(2.63)

where (2.62) adds a positive term to (2.51) since K(0) > 0, Fj = 0, and
F} < 0. Here the last two relations follows from the conditions 8%p/dp* = 0
and p/dp® > 0 on Eq. (2.51). Thus the added term (2.62) indicates a
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22 Approximation methods

lowering ~ 2 of the (mean-field) critical temperature T, (2.63), as (2.57)
gives

=~ ~ 1 82am~ng
B(0) = ud(0) = 7= =
But the divergence makes the expressions invalid inside the mean-field spin-
odal curve. To partly remedy the divergence one can try to carry it along
with the shift of the critical point. One then notes that at the (mean-field)
critical point the last term of (2.62) vanishes where Fjj = 0 and K (0) has its
maximum. Thus adding (2.62) to (2.51) one obtains a renormalized hyper-
vertex Fj. such that
1oBp) 1

p dp  Fy
where (when deleting the last term of (2.62))

(2.64)

— ®(0) (2.65)

F()c - F() + F(;’F()FOCK(O)/Q (266)

The last expression takes the short-range part of the long-range pair corre-
lations (the chain bonds (2.61) at » = 0) into account. Chain bonds with
endpoints Fy and Fp,. are attached to the two extra root points appearing
when functional differentiating Fy twice with respect to p [7, 9]. An exact
treatment would involve four-body correlations [8]. Finally the range of the
vertex is again regarded as a d-function when integrating over these two root
points. Consistent with the renormalization of Fy, K(0) is replaced by
1 Fo.[®(k))?

KO) = G / i (2.67)

~ i | 7 PO - ) ae= (L) o),

where likewise -
~ F;.®(k
,OQC(’C) — 0 (~ )

1 — Fo.®(k)
replaces the chain bonds (2.46). Note that the single ®-bond (or literally
the one with Fj.-endpoints) is subtracted in (2.67) as it will not contribute
anyway when ¢(0) = 0, and this is consistent with the neglect of the second
graph of ayr, Eq. (2.40), in (2.57).

With (2.66), or actually using [8, 9]

Fo. = Fy + FIF2K(0)/2, (2.69)

(2.68)
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2.3 The y-expansion 23

the new critical point can be calculated directly from the divergence of the
integrand in (2.67). Although the renormalized ~y-ordering gives results valid
in the critical region, things remain somewhat inconsistent, and isotherms
become “irregular” such that for instance critical indices can not be defined.
Nevertheless the singular behavior seen in real fluids is clearly reflected in a
realistic interacting three dimensional continuum fluid [9]. For instance the
coexistence curve is flattened on the top, relative to the mean-field result,
due to the lowering of the critical point. Furthermore, using the fluctuation
theorem to study the singularity of the integral K (0) (Eq. (2.67)), Hoye finds
that [9]

A(BFy.) = [constAT + COHSt(Ap)2]2 (2.70)

for deviations from critical values. Inserted in the equation of state (2.65),
one obtains the asymptotic behavior

A ~ (a0 ana P ary: (.11)

P

along the critical isotherm and isochor, respectively. This gives the critical
exponents (to be defined in chapter 3) 6 = 5 and v = 2. These values are
also found in the mean spherical approximation, to be dealt with in the next
section. From (2.70) Hgye shows that the “irregular” isotherms originate
from the last term of (2.62) not encountered by the critical renormaliza-
tion. That is, near the critical point Fj ~ Ap and K(0)" ~ Ap such that
—F}K(0) ~ —(Ap)%. When added to (2.65), this is associated with a con-
tribution A(Sp) ~ —(Ap)? in the pressure. For sufficiently small Ap this
term will dominate the fifth-order form in (2.71), and makes dp/dp < 0 on
the critical isotherm. There is no easy way to remove this kind of inconsis-
tency. With respect to nonuniversal critical properties, the high-temperature
contribution ayr is included via the reference system, to avoid interference
with the critical renormalization. Formally agy is of higher order in v, but
due to correlations of hard particles at liquid densities it is of substantial
magnitude. The main effect is a significant shift of the critical temperature,
with a resulting 7T, comparing favorably with the experimental value for Ar
[8].
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24 Approximation methods

2.4 MSA

The mean spherical approximation (MSA) for continuum fluids [10] is the so-
lution of the Ornstein-Zernike integral equation (1.23) with closure relations

h(’l”) = —1 r < Ry
c(r) = —po(r) r> Ry (2.72)

for particles with a hard-core diameter Ry and pair potential v(r) outside
Ry. The hard core condition on h(r) is exact, while the condition on ¢(r)
is approximative although asymptotically correct (Eq. (2.10)) for large r.
These relations are generalizations of the MSA closures for lattice gases with
extended hard cores [10]. So with lattice vector =, (2.72) applies to the lattice
case as well. In fact the MSA originates from the spherical model for spin
systems [11].

MSA is nothing but the first-order contribution in y-ordering (2.47) with
hypervertices

Fy(k) = ?’;O(k) (2.73)
and perturbation )
O(k) = c(k) — co(k) (2.74)

given by the solution ¢y (k) of the Percus-Yevick (PY) equation for hard
spheres. PY is another solution of the Ornstein-Zernike equation, with clo-
sure relation ¢(r) = [1 —e#*™M]g(r) in addition to the hard core condition. So
co(r > Ry) = 0 and ho(r < Ry) = —1 for hard spheres of diameter Ry. This
solution is analytic [12], and it shows that the PY equation for hard spheres
is the special case of MSA (2.72) with the potential tail v(r) absent. If one
identifies —co(r)/3, Eq. (2.48), as the potential inside hard cores satisfying
the hard core condition, then

c(r) = =Blo(r) = co(r)/P] (2.75)

is compatible with both MSA closure relations (2.72). Furthermore, from
(2.34) and (2.48) we have identified the perturbation ®(r) = —pw,(r) as
—pBu(r) in (2.75), which leads to (2.74). Inserting (2.74) into the Ornstein-
Zernike equation (1.25) immediately gives the pair correlation (2.47) with
PY-hypervertices (2.73). By this identification MSA is the first-order contri-
bution in the y-expansion where the perturbating potential inside hard cores
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2.4 MSA 25

is specified such that the hard core condition is fullfilled. MSA can therefore
be regarded as an optimization of the first-order y-expansion, in which the
hard core reference system is treated exactly. Hence, MSA plays a crucial
role as the leading correction to mean-field theory, Eq. (2.23).

In the lattice case, MSA and the renormalized y-ordering share critical
properties established in the previous section. This can be understood from
Eq. (2.69) for the renormalized hypervertex Fi.. From the hard core pressure
(2.24), the reference system hypervertex (2.50) equals

Fy = pl1-p). (2.76)
Thus Fj = —2 in (2.69), and together with Eq. (2.67) we have

1 F
_ 2 _ Oc
Fo = Fu+0°C0) = (555 / T dk. (2.77)

This is nothing but the MSA core condition, since from (2.47) with Fy(k)
replaced by Fy,,

1 Fi. 1 ~
(2 1= Fd) ™ = (20 [ o+ phe)] ak
= p[1+ ph(0)] = p(1 - p). (2.78)

But due to the remaining thermodynamic inconsistency associated with the
critical renormalization, MSA is rather inaccurate for the nearest-neighbor
Ising model: For instance on a simple cubic lattice Fy = 1.516. .. Fj.. Hence
Eq. (2.63) with Fy replaced by Fy. lowers T, by as much as 34% compared to
the mean-field result. According to series analyses of the Ising model [13] the
actual lowering of T, is about 25%, which shows the substantial perturbative
influence of higher order terms in the y-expansion.
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Chapter 3

Critical properties

3.1 Ciritical exponents

At continuous phase transitions (Figs. 1.1 and 1.2) critical phenomena are
observed. A characteristic feature of critical points is that asymptotically
close to them a number of quantities show power-law behavior.

The critical exponent 3 describes how the order parameter vanishes as
the critical point is approached from below along the curve of coexistence
(Fig. 1.3). In the fluid case, the density difference Ap = p(T) — py(T)
between the liquid and gas phases, plays the role as order parameter. For
a homogeneous lattice gas with unit cell volume vy = 1 and critical density
pe = 1/2, the asymptotic behavior

Ap ~ (=) (3.1)
defines (3, where
T-T,
t = 2
- 32)
Ap = p;pC:2p—1 (3.3)

are small relative density and temperature deviations from the critical point.

Moreover, the sub- and supercritical divergences of the isothermal compress-

ibility Ky = — (%—‘;)T seen in Fig. 1.1(b), are described by the exponents'

!To avoid confusion, the inverse range of interaction (Sec. 2.3) will from now on be
denoted ;..
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28 Critical properties

~v and 7', respectively. Above critical point, v is defined along the critical
isochor, while below, 7/ is defined along the coexistence curve?. Thus

=1, t>0
K ~ { (_t)_,yl , < 0 (34)

Similarly the specific heat exponents o and o' are defined by the relations

o >0

Cv ~ { (=), t<0 (35)

along the critical isochor p = 1/2. Subcritically Cy is calculated as the mean
value of the contributions from the symmetric branches of the coexistence
curve in the lattice case®>. The degree of flatness of the critical isotherm

T = T., drawn in Fig. 1.1(b), is measured by an exponent d, i. e.
p = pe ~ |Ap|’sgn(Ap), t=0. (3.6)

Finally the exponents v, v/, and 7 refer to the behavior of the pair corre-
lation function h(r) in the critical region. The asymptotic behavior

t7" , t>0
o { (—t)™ , <0 (3.7)

defines exponents v and ¢/ for the correlation length (1.22) along the critical
isochor and the coexistence curve, respectively, as before. At the critical
point T' = T, the correlations extend over all length scales, and the power-
law decay of these correlations with respect to distance r, is given by 7. In

d dimensions
const
~ )
rd—2+n

h(r) t=0. (3.8)

In case of the first-order result for the 7,-expansion, Eqgs. (2.54) and (2.55)
shows that n =0 and v =2r = 1.

2Both paths correspond to H = 0 (Fig. 1.2(b)) in the magnetic case.
3In the symmetric magnetic case Cyy—g = C—o(—M) = Cpy—o(M). So definitions
(3.4) and (3.5) both refer to the same situation with no external field or coupling, H = 0.
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3.2 Classical fluctuations 29

3.2 Classical fluctuations

Essentially all theories with an analytic equation of state give the same set
of critical exponents. The mean-field theory, section 2.2, is an example of
such a theory. The corresponding exponents are called classical. Averag-
ing out the inhomogeneities in the occupation configurations {n}, leaves the
deviation in chemical potential from coexistence Ap an antisymmetric func-
tion of the spatially homogeneous order parameter Ap, Egs. (2.16), (2.17),
and (3.3). Equivalently the corresponding deviation in Helmholtz free energy
AA, BAp = —2(0AA/0Ap), is symmetric in Ap. Thereby the qualitative
influence of a fluctuating order parameter on a continuous phase transition,
is neglected. Expanding AA in even powers of Ap yields the classical critical
exponents @ = o = 0 (discontinuity), § = 1/2, v =+ = 1, and 6 = 3.
Moreover, v = v/ = 1/2 and n = 0 follow from Egs. (2.29) and (2.30).

The phenomenological Landau theory [3] is based on constructing a free
energy AF symmetric in the small order parameter Ap near the critical point,
taking the classical nature of the phase transition for granted. Minimization
with respect to the order parameter gives the equilibrium state of the sys-
tem. However, at the critical point, the stiffness against fluctuations in Ap,
OAp/OAp ~ D2AF[OAp?* ~ 1/T(0), determined by the fluctuations of long
wavelength (Eq. (1.20)), disappears and makes the assumption of analyticity
of AF in Ap a suspect one. The Landau-Ginzburg theory represents a min-
imal extension of the classical theories, by allowing the order parameter to
fluctuate. Landau free energy then becomes a functional, in which even pow-
ers of local densities Ap(r) are integrated over space. Including the simplest
possible free energy cost due to spatial inhomogeneities, we have [3]

AFp)] = [ {51920 + S80() + FAp] +--} dr, (3.9

for a finite lattice with an infinitesimal cell volume vy = V/N. g, ¢, and
u are here positive constants while r = ¢t to lowest order in the relative
temperature deviation (3.2). The square gradient term immediately identifies
the long-wavelength fluctuations as the energetically inexpensive and most
important fluctuations. For the purpose of comparing the strengths of the
different terms, it is convenient to measure the fluctuations Ap(r) in units
of 1/\/g (Sec. 6.1. in [14]) by which ¢ — 1, r — ' = r/g, and u —
u' =wu/g? in (3.9). From a statistical mechanical point of view, the Landau-
Ginzburg functional (3.9) can be regarded as an effective Hamiltonian for
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30 Critical properties

these fluctuations. By prescribing the long-wavelength Fourier components of
the configuration-dependent occupation numbers 7({n}) to take the values
px for all k with |k| < ko, they are singled out for careful treatment. Here
ko is a cut-off parameter, small on the microscopic scale set by the lattice
constant b, i. e., kgb < 1. For T' > T, with Au = 0, the spontaneous density
difference or “magnetisation” vanishes, and Ap(r) is itself the fluctuation
dAp(r). To second order in the fluctuating quantities

1

Hepy = o7

B )80 Ay, (3.10)
where the prime denotes summation over all k with |k| < ko. With this
effective Hamiltonian, the long-wavelength correlation function I'’(r,r') =

(0Ap(r)dAp(r')) can be calculated:

fz,k/ - Vék',—kfz (3].1)

with ,
Mm=——. 12
k TI + k? (3 )

Thus the fluctuating modes are Gaussian and will behave independently of
each other. This reproduces the classical result, Eqs. (2.29) and (2.30), with

2= =t (3.13)

or, by identifying /g being proportional to the range of interaction nb o 7, !,
Eq. (2.31). In order to have a sound Gaussian approximation, the relative
strength of the second-order term [, d’r’%[Ap(’r’)]2 has to be large compared
to that of the neglected fourth order term f, dr[Ap(r)]* in Eq. (3.9). With
spatial extent £ = 1/¢, the integral over the spontaneous fluctuations yields

that )
[ dre0)2n(r) ~ T~ (3.14)

must be considerable smaller than ﬁ\p2§d, where ﬁ\p is the value of Ap at
which the two competing terms in (3.9) are equal:

ZI\OQ _ 127"’

(3.15)

u/
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3.2 Classical fluctuations 31

This means that

1 o n-df
or
(r"(4=D/2 > 4 (3.17)

So in dimension d < 3, the Ginzburg criterion [15, 16] (3.17) delimits classical
theories and fluctuations to a region not too close to criticality. I. e., the
temperature region scales with the inverse range of interaction =, as

£ %u2/(4—d) g8 — const 424/ (3.18)

Similarily
£ <yt g2/=d) — congt oY/ (3.19)

for the spatial extent ¢ = 1/v/7' of the decoupled fluctuations.

Strictly speaking the Ginzburg criterion is only satisfied for long-range
interactions 7, < 1 in d < 3. For the sake of simplicity let us put const = 1
and v, = 1 in (3.18) to consider a short-range potential. With ¢ defined
by (3.2), t = —1 at T = 0, and according to (3.18) the whole two-phase
region is obviously more or less “critical”. I. e., in view of the v,-expansion,
deviations from the mean-field equation of state are not negligible. And
in some distance from the critical point, the effective critical behavior of
such a system does not resemble the classical one (« = 0, § = 1/2, etc.).
However, at supercritical temperatures (3.2), the Ginzburg criterion (3.18)
cannot unambiguously be utilized since ¢ > 1 also for the “regular” high-
temperature behavior of a short-range system. The reason for this is lack of
scale; t — oo when T — o0o. A more natural definition of ¢ should therefore
be

1-T.)T , T>T,
t= { ~(1-T/T)), T<T. (3.20)

Close to the critical point [t| < 1, (3.2) and (3.20) are essentially equal.
Due to the configurational energy connected with the fluctuations (3.12)
the specific heat diverges in accordance with

o= 4;—d. (3.21)

31



32 Critical properties

3.3 Relations among the critical exponents

3.3.1 Exact inequalities

The only rigorous relations between the critical exponents are a set of in-
equalities.
From the thermodynamic relation

oM\* [ OH
cu-cu-r(20) (28). a2

and the requirement of thermodynamic stability, C; > 0, Cy has to be
greater than or equal to the right hand side of Eq. (3.22). For subcritical
temperatures T' < T, and in the limit H — 0, this implies

o +20+4" > 2. (3.23)

Here we have used the definitions (3.1), (3.4), and (3.5) of the critical ex-
ponents 3, 7/, and o/, translated to magnetic quantities by Eqgs. (1.9) and
(1.11). Whenever Cy is dominant compared to C)y, the inequality (3.23)
reduces to an equality. Another inequality based on pure thermodynamical
arguments is

o+ B(1+06) > 2. (3.24)

In addition a series of other inequalities appear when certain less fundamental
assumptions are made [2].

3.3.2 Scaling laws

A natural generalization of the phenomenological Landau or classical theory,
section 3.2, is due to Widom [17]. Rather than using the quasi-thermo-
dynamic construction of Landau, he focused upon the singular part of the
equilibrium free energy itself. By this, the exponents inequalities in the
previous section turn into equalities, reducing the number of independent
critical exponents to two. As a result, the equation of state in the critical
region is a two-sided analytic function, expressed by scaled chemical potential
and density. But the values of the two independent exponents are otherwise
left unspecified.
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3.3 Relations among the critical exponents 33

In terms of reduced temperature ¢t and chemical potential Ay, an arbitrary
scaling factor A\, and constants a and b, Widom postulated that the singular
part of the appropriate free energy obeys the homogeneity relation

F,(\t, \’Ap) = AFy(t, Ap) (3.25)

close to the critical point (¢, Ap) = (0,0). For our materially open system, Fy
is the singular part of the grand canonical potential, Q2 = F' — uN. Whence
the number of particles N = —(9§2/0u)y,r and the specific heat in constant
chemical potential is C,, = —T(9?Q/0T?)v,,. By choosing the value \* =
1/|t|, one obtains

Fy(t, Ap) = [tV F(t/ [t Ap/ 1) = [t 0L (Ap/[t]9), (3.26)

since in zero external “field” (Eq. (3.5)) C ~ 0°F,(t,0)/0t* ~ [t|'/*~2. Thus
we have
a=ad =2-1/a. (3.27)

Note that the first argument ¢/|t| of F, can only take the values +1 for T’ 2 T..
Furthermore

f=2—a—"b/a (3.28)

follows from a non-vanishing order parameter Ap below the critical temper-

ature:
OF;

OAL

Similarly the isothermal compressibility in zero “field”, Au = 0,

Ap~ = [ttt (Ap/ ). (3.29)

1 8,0 82Fs 2—a—2b
- —(Z£) ~ = [t|>~o= /29" (0 3.30
RT ,02 (aﬂ)T 8AILL2 | | :|:( ) ( )
gives
y=9"=-2+a+2b/a. (3.31)

To extract the critical exponent ¢, defined on the critical isotherm ¢ = 0, one
has to assume that ®,(x) has power-law behavior for large z. In order for
Ap to have a finite limit as [¢| — 0, one from Eq. (3.29) must have

b/a

5:2—a—b/a'

(3.32)
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Eliminating b/a between (3.27), (3.28), (3.31), and (3.32), gives finally the
scaling laws

a+28+y = 2 (3.33)
a+p(1+95) = 2, (3.34)

reducing the number of independent critical exponents to two. We note that
the classical exponents from section 3.2, obey the scaling laws.
If for instance 8 and § are known, the equation of state (3.29) can be

written A A
P M
= (). )

The density, Ap(t, Ap), is in general a function of two variables. In the criti-
cal region, however, the scaled density difference Ap/|t|® can be represented
by the two functions (3.35). They refer to each side of the critical temper-
ature, T Z T, and they depend on the scaled chemical potential Ap/[t|?
alone. Therefore different isotherms close to the critical point will fall onto
two single universal curves, when properly scaled order parameters and re-
spective conjugate thermodynamic variable are used when plotting. This is
known as data collapse, and is experimentally demonstrated for five different
fluids and a ferromagnet in Figs. 3.1 and 3.2, respectively.

In figure 3.1 Green et al. [18] have plotted a series of isotherms in a range
of about +50% of the critical densities and within 0.5% below to 3% above
the critical temperatures. On each side of T,, the nearest isotherms are as
close as [t| ~ 107°. To have the curves of the different fluids to coincide
in the plot, dimensionless density Ap (Eq. (3.3)) and chemical potential
Ap = [p(p,t) — p(pe, t)]pe/pe are used in the scaled variables. With exponent
values # = 0.35 and 6 = 5, the scaled isotherms fall somewhat scattered on
two universal curves. In agreement with the scaling relation

v =B(6-1) (3.36)

(which follows by subtracting (3.34) from (3.33)) and the values of § and
0 used, Green et al. found v = +' = 1.40 to be not in conflict with the
experimental data. While the value of J was taken from elsewhere, a separate
analysis of isotherms close to the critical showed that § = 5.06 4 0.06.

The measurements of Kouvel and Comly [19] on the metallic ferromag-
net Ni are plotted in Fig. 3.2 as the square of the scaled magnetisation,
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3.3 Relations among the critical exponents 35

m?, versus the ratio h/m between the scaled magnetic field and the scaled

magnetisation. From (1.9) and (1.11), with magnetisation m in (1.11) re-
placed by o used by Kouvel and Comly, m = o/|t|® and h = H/[t|*°. Hence
h/m = (H/o)/|t]", Eq. (3.36). The isotherms approximately cover a range
of £35% of the saturation magnetic moment (at zero temperature) and a
temperature range within 2% above and below the critical temperature. But
in this plot |t| ~ 1072* for the isotherms nearest to T,, shrinking the inac-
cessible temperature range on both sides (7' 2T, «) with about two and a half
decade in comparison to Fig. (3.1) of Green et al. Kouvel and Comly found
experimentally the critical exponents § = 0.378 £0.004, v = 1.344+0.01, and
d = 4.58 £ 0.05 for Ni. These values are consistent with (3.36).

35



36 Critical properties

T T MrrrT T 1 1 17T T T
. _
®©
. MDEG  REF MOEG  REF
SLOPE NO - 12 ¢ a €0~ 10 ¢ b
5
0\ 5 - 6% g - 630 e b 3
=y t 8ea - 30 e b o
— + 19 <g - 10 v a |
=\, + 30> a - 10 v c
-\ + 3 = g - 5 e g
| A + 6l ¢ a + 58 ¢ |
- + 117 = a b1 e ¢
. ‘1\. + 165 ¢ a + 13 o g
10" = \ (Cfy — 66 © a + 180 0 b o
- s - 2% s 0 + 80 s b T
- . + 199 a + 40 s b ]
- . + 3Baa + 1010 » b o
- + 1035 » b
o, + 3680 x b |
B o + 9040 + b
SFg — 120 e d
U‘ 6
0* = W, - W d o
- &, + 40 o d =
- ‘; + 130 ¢ d
- w XE - 5 e
- va r'd + [0 o e —
° e
:‘;1 + 30 - e
B 4 %o, + 800 o e |
P s + 1800 x e
? i
e ox e
— :e »:‘u .
L : - _
— s b-d % ® —
I/t : o
» q-le
° g +4 ®
. e 2
IOE . £ 3
i i
|
1
T R (TSN N TR
10 e g 8x10™

lapl/ti?

Figure 3.1: Scaled chemical potential Au/[t|?° versus scaled density Ap/|t|?
in the critcal region of several fluids, using 8 = 0.35 and 6 = 5. After Green
et al. [18].
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region for the ferromagnet nickel, using 5 = 0.378 and v = 1.34. m (emu/g)
is the scaled magnetization and h (Oe) is the scaled magnetic field. After

Kouvel and Comly [19].
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Chapter 4
SCOZA

As demonstrated in subsection 2.3.2, in the critical region there is no obvious
way to improve the equation of state beyond the renormalized ~,-ordering or
MSA (section 2.4). Hgye and Stell proposed an a priori thermodynamically
self-consistent theory building directly upon the MSA; the self-consistent
Ornstein-Zernike approximation (SCOZA) [20]. With a pair potential com-
posed of a hard core and a tail of Yukawa form, they derived equations neces-
sary for solving the self-consistency problem for continuum fluids. Moreover,
preliminary numerical studies of a simplified version for the 3-dimensional
lattice gas shows supercritical behavior that mimics fairly well the expected
exact critical behavior.

4.1 From MSA to SCOZA
In the simple form used here, SCOZA builds on the MSA-like closure scheme

h(’f') = -1 r < Ry
c(r)y = =Pelp, Bw(r) r > Ry (4.1)

for the Ornstein-Zernike equation. With pair-potential tail w(r) (compare
Eq. (2.32)) outside the hard core, w(r < Ry) = 0, and direct pair correla-
tion function cy(r) inside the core chosen in such a way that the exact core
condition is fulfilled (co(r > Ry) = 0), Eq. (4.1) is equivalent to

c(r) = co(r) = Belp, B)w(r). (4.2)
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40 SCOZA

By choosing S.(p, 5) = 5 (4.2) embodies the mean-spherical approximation
(2.75). More generally, however, the effective inverse temperature fS.(p, 3)
can be a function of density p and inverse temperature 5. This degree of free-
dom enables us to demand self-consistency between two independent routes
for obtaining the equation of state. Both the inverse reduced compress-
ibility (08p/0p)r and the internal energy pu, Eqgs. (1.21) and (1.16), can
be expressed in terms of the same pair correlation function h(r). Using the
Ornstein-Zernike equation (1.23), h(r) is eliminated in favour of ¢(r) in which
Be occurs more directly, Eq. (4.2). Thus the thermodynamic relation

o (9pp) O
7 (8_/)) =g (pu) (4.3)

provides us with a closed partial differential equation for the adjustable “pa-
rameter” [.(p, ) whose solution will give the same thermodynamics via ei-

ther the compressibility or energy routes. Together with the Ornstein-Zernike
form (4.2), this is called SCOZA.

With the SCOZA approach one expects improvements compared to the
MSA itself or, in the lattice case, the renormalized ~,-ordering. This is
easily seen from (4.3), which, with pu = —0.A/95 (A given by (2.43)) and
integration with respect to [, reduces to the first order result (2.57) for the
compressibility. Thus the crucial term —3Fj'K(0) incorporated via (2.62),
will to leading order in 7, correctly determine 7., Eq. (2.66). In addition,
the second term —3FK (0)' of (2.62) prevents SCOZA from developing first
order “irregular” isotherms of the type described at the end of subsection
2.3.2. So in view of the v,-ordering, SCOZA gives higher order corrections
to the thermodynamics. And to each order this is done self-consistently,
e. g. all mismatches in the location of the spinodal, resulting from using the
two different routes, disappear and all “irregularities” in the isotherms are
“smoothened” out. Therefore SCOZA gives a well-defined thermodynamic
description in the critical region superior to the one given by the MSA.
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4.2 The basic PDE for the lattice gas 41

4.2 The basic PDE for the lattice gas

4.2.1 Deduction

For a lattice gas, the Ornstein-Zernike form (4.2) simplifies since the on-site
direct correlation function is a constant ¢y. Thus

c(k) = co + Beyp(K), (4.4)
where ()
P(r) = 20) (4.5)

is positive, normalized to one (1(0) = 1), and has a vanishing on-site value
(¥(0) = 0, Eq. (4.2)). Here we have included the positive interaction strength
—w(0) as a multiplicative constant in (., and in the following energies and
temperatures are measured in units of —w(0) and —w(0)/kp, respectively’.
Together with the hard-core condition (h(0) = —1) and the Fourier trans-
formed Ornstein-Zernike equation (1.25), (4.4) gives ¢p’s dependence on p
and 3, and provides us with a relation between ¢y and 3, :

1 ~ 1 dk
1—p = o) /[1 + phik)] dk = (27) / 1 — pc(k)
1
- 1-— ,OCOP(Z)’ o
where the integral Plz) = 1 / dk (4.7)
D) T wy |

for an infinite regular d-dimensional lattice, is evaluated over the first Bril-
louin zone and is a function of the variable

z = PP .
1 — pcoy

(4.8)

We are now in position of expressing the partial differential equation (PDE)
(4.3) in terms of the single state-dependent quantity z(p, ). From Eq. (1.26)

'In Papers I and II energies are measured in units of the nearest neighbor interaction
strength w = —w(0)/q. To compare with those used here, inverse temperature 8 and
energies u in Papers I and II should be replaced by 8/q and qu (g is the coordination
number), respectively.
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42 SCOZA

the inverse reduced compressibility equals

1—-2)P
(1—2)P() (4.9)
I—p
Next, Egs. (1.16) and (1.15) give the excess internal energy per unit volume,

1
pu==5p"3_ $(r)g(r) = puo+ pur, (4.10)

as the sum of the mean-field contribution (—0.A()/98 with a = 3[—w(0)],

Eq. (2.37)) 1
puy = —§p2, (4.11)

plus the amount due to correlations, i. e.

1

pu = 57 S () =~ p S () [5(r) + ph(r)]

_ 11 v(k)

— T 2Pan) / 1= pet) *

1 P(z)—1

- _zp(l_p) ZP(Z)
Inserting (4.9), (4.10), (4.11), and (4.12) into (4.3), the SCOZA PDE for the

unknown function z(p, 5) is

0 _ 0% [1 P(z)—1
210 = 2PE) = =1 = ) {1 ro [5;)(1 _ p)T(Z)] } (4.13)

(4.12)

4.2.2 Boundary conditions

Via the structure factor (1.19) z is related to the correlation length £, Eq.
(1.22). On a cubic lattice, Fourier transforming the potential gives the
isotropic result

(k) =14 =¢"(0)k* + O(kY) (4.14)

| =

with a negative? coefficient

P"(0) o< — > rp(r). (4.15)

assuming a predominantly ferromagnetic interaction ¥ (r).

2

42



4.2 The basic PDE for the lattice gas 43

Inserting for 1(k), the Ornstein-Zernike form (4.4) implies (via (1.25) and
(1.19)) that the correlation length is equal to the range of the potential mul-

tiplied by the density and temperature dependent factor y/z/(1 — z). L e.,

2
1—2z

1 ~
& = 2 [-i(0) (4.16)
In the physically acceptable region 0 < z < 1. Eqs. (4.6) and (4.8) combine
to

2P(z) = p(1 — p)pe. (4.17)

So z = 0 corresponds to the high temperature limit 5 = 0 and the density
boundaries p = 0 and 1, where £ vanishes. As z, for a possible finite value of
B (via Be(p, B)), grows toward 1 from below, & and the compressibility will
diverge. That is, the inverse compressibility given by

95y B Pl - 1 dk
=p7; = 1=2)P() = (27r)d/1+ﬁ[1—1/~1(k)]
1O € (4.18)

vanishes, which is seen from the approximative integral

() = (2;)01 / 1+d?2 . (4.19)

Since the integrand is isotropic, the integration is performed spherically sym-
metric over a finite d-dimensional sphere. Depending on the magnitude of
the cut-off radius (kg), the integrand of I(£) does not necessarily approxi-
mate the exact integrand of (1 — 2)P(z) very well over the whole range of
integration (k < ko). But for small k, i. e. £2k* < 1, the correct form for
the integrand is kept. And for large &, i. e. £ky > 1, this region gives the
dominant contribution to the integral. The asymptotic result for £ — oo is

M-~k a=3
I(€) ~ ghné , d=2 (4.20)
¢, d=1
3
with A = 7/2k,. But in one and two dimensions
2
2P(2) ~ ———E21(£), € — 00 (4.21)
[=4"(0)]
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do not converge. In one dimension 7, = 0, i. e. . diverges when [, ~
¢ does, Eq. (4.17). So in view of the well-known phase transition for the
two-dimensional Ising model, we have the strange situation with a diverging
(although very slowly) . ~ In{. Hence, we are not guaranteed to get a
non-zero critical temperature below three dimensions.

4.3 Calculations for the three-dimensional case

4.3.1 A simple asymptotic approximation

SCOZA gives corrections to MSA which are small outside the narrow critical
region. Therefore we first concentrate on the asymptotic behavior close to
the critical point to capture the essential features exhibited by SCOZA. From
Egs. (4.21) and (4.20)

P(z)~1—AJ¢ (4.22)

is finite at the divergence of &, and via (4.16)
1—z2~1/€% (4.23)

Hence P(z) is no longer tied to the detailed interaction structure ¢ (k), Eq.
(4.7), other than through multiplicative constants in front of equalities (4.22)
and (4.23). This eliminates P(z) and z in favour of the correlation length
¢ in the PDE (4.13). With such a contracted asymptotic description Hgye
and Stell [21] expects the precise form of the function P(z) to be of minor
importance.

P(z) and 1— 2z depend crucially on the range of interaction v, !, Eq. (2.33)
with w(r) = w,, (r). In the limit 7, — 0 the range of the potential extends
over all length scales and the discrete Fourier transform of (4.5) equals the
continuous transform

" (K
dk) = 2K, (4.24)
¢(0)
a function of K = k/v,. Repeating the asymptotic analysis of the last section
one gets

1—2ih(k) ~ (1—2)(1+&K?, K—0
L[ P0) L e
= 2[ 55(0)] (2 + K?) (4.25)
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4.3 Calculations for the three-dimensional case 45

for the denominator of P(z), Eq. (4.7). Here we have included the 7,-
dependence of the correlation length (4.16) into K*:

& =&/ (4.26)
where

& =

(4.27)

¢(0)
The exact integrand of P(z) falls off towards a constant value 1 as K in-
creases. L. e., when &ZK? > 1. Therefore, as z — 1, the dominant con-
tribution to P(1) — P(z) will come from small values of K, 2K? < 1, and
the integration can be performed over the whole K-space. Treating the im-
portant region correctly and having a negligible tail contribution, Eq. (4.25)
yields for €5 — 0 the asymptotic result

1 l_ qB"(O)] 2

1
2 1—2 €&

P(1) - P(z) =~ 2[ ¢(0)]4ﬂ—ﬁ/ooo<i— ! >K2dK

(0] (27)? K2 &+ K?
o dx
3 3
x 7r60/0 Tz X o (4.28)

Finally, subtraction of the limiting level for the integrand of P(1) again
permits an infinite integration

- 1 ° z/;(k) 2
P1) -1 =~ (27()3/0 Amk2dk

. o o 2 3
= By /0 1_$(K)/$(0)47TK dK o 3. (4.29)

This gives us the asymptotic expression
P(2) =1+ By (1 - Ce) (4.30)

where B and C are positive constants.
Instead of performing the announced elimination we actually eliminate
the internal energy function (Eq. (4.12))

_1P(z) -1

P& =5

(4.31)

45



46 SCOZA

sitting on the right hand side of the PDE (4.13), in favour of its left hand
side; the inverse compressibility function (Eq. (4.9))

e2=(1- p)a—p = (1-2)P(2). (4.32)
It is readily seen from Eqs. (4.27) and (4.30) that asymptotically ¢ — 0,
€ ~ €y ~ /1 — z. Thus, with another constant D, we proceed with

P(z) =1+72(1 - De). (4.33)

The precise value of constant B in (4.30) is irrelevant as it will only rescale
v and is therefore put equal to one. As argued in the beginning of this
subsection we now approximate F'(z) over the whole region 0 < z < 1 by
using the asymptotic expression (4.33). To lowest order in ~,,

1
F() = 401 —<) (434)
will do, since the internal energy due to correlations, pu; ~ F(z), vanishes
exactly at z = 0 (i. e. by putting D = 1 in (4.33)). In the present ap-
proximation (4.34) the SCOZA PDE (4.13) for the unknown function £(p, )
reads

g—gg =—p(1=p) {1 + %7?88—; [p(1 = p)(1 ~ 5)]} : (435)

From (4.32) 0 < ¢ < 1, with boundary values e =1 at § = 0, p = 0, and
p =1, and e = 0 along the spinodal curve. In addition (4.35) immediately
incorporates the range of interaction ~, !, the effect of which upon ¢ and thus
upon the critical properties we have studied.

It is clear that SCOZA does not scale in agreement with the scaling laws
of subsection 3.3.2. The asymptotic behavior of the compressibility and the
internal energy close to the critical point, given by Eqs. (4.32) and (4.34),
implies that & ~ t7/2 ~ t'=® as t — 0%. This follows from the definitions
of the critical exponents v and « on the critical isochor (Egs. (3.4) and
(3.5)) where the mean-field internal energy (4.11) does not contribute to the
specific heat above T,. 1. e.

v=2(1-a), (4.36)

which is in conflict with relations (3.33) and (3.34).
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4.3 Calculations for the three-dimensional case 47

4.3.2 The MSA solution

In view of the v,-ordering it is now of interest to establish the MSA solution
and to consider its critical properties using the procedure in the previous
subsection.

With B.(p, 5) = 3, Egs. (4.31), (4.32), and (4.34) give the solution

1 1 2
€= —ifyf’a: + \/(57337) — (1 =93z +1, (4.37)
where from (4.17)
= p(1— p)p. (4.38)
The critical temperature
1

given by € = 0, incorporates the first order correction to the mean-field result
(2.20). By use of the scaled temperature deviation

T-T.

t
T

(4.40)

instead of (3.2), ¢t and (Ap)? (Eq. (3.3)) will appear in a symmetric way in
the variable

Te— T t , Ap=0

Az = =1-[1-(Ap?(1—-1t) = { (Ap? . =0 (4.41)

Le

So the solution (4.37) is the same function of Az = ¢ (¢ > 0) along the critical
isochor as of Az = (Ap)? along the critical isotherm. To lowest order in 72

(4.37) is the function
1 -
£=3 <\/1 +4Az — 1) , (4.42)

given in terms of scaled quantities

E=c¢/y} (4.43)

T

and
Ku = Aa ()2, (4.44)
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Close to the critical point (t, (Ap)? < 1) Az = [t + (Ap)*]/(1})* = T+
(Ap)® to lowest order in ~,. The solution (4.42) has a qualitatively different
behavior for large and small Ax:
_ L _
- vAx<1—§E+--~), Az >1 (445)
A_x(l—A_x+---) , Ar <kl

Hence the MSA critical exponents v and d, given by the inverse compress-
ibility (~ £2) along the critical isochor (Az = t) and the critical isotherm
(Az = (Ap)?), respectively, take the values 2 and 5. Outside the criti-
cal region (Az > 1) the mean-field approximation €2 = Az (Egs. (2.23)
and (2.24)) is reproduced. In this region apparent or “effective” exponents
v =1 and 0 = 3 is observed. Indeed this behavior is in agreement with the
Ginzburg criterion (3.18) that the temperature region with classical fluctua-
tions is limited to the region ¢ > (v3)2.

Effective critical exponents we define (although not uniquely) by the
logarithmic derivative of the quantity in question. Here we will use v =
dlne?/dInt and 6 = 1+ d1Ine?/d1n Ap, which relate directly to the solution
(4.37).In figure 4.1 the function f(Az) = dlne/dIn Az, capturing values of
72 up to 0.34 (see the next subsection), is plotted versus log;y Az. Thus the
effective exponents v and § are given by 2f(¢) and 1+4f[(Ap)?], respectively.
When 72 — 0 the curves approach the asymptotic solution given by (4.42).
(See the dashed curve.) The “crossover” situation from mean-field to critical
MSA behavior, described by (4.45), is clearly seen. With larger values of 3
no clear mean-field region is seen.

By (4.36) the effective exponent « is given by o = 1 — /2 =1 — f(¢).
Hence a = 0 at the critical point. But outside the critical region for small
73 the effective v takes the Gaussian value 1/2, Eq. (3.21), instead of the
classical value 0. The reason is that the mean-field internal energy (4.11)
does not contribute to the specific heat above T,. 1. e.,

_ 1 3y o Lo ave
pu=—o(L+%)+(n)% (4.46)
along the critical isochor p = 1/2 (as follows from Eqs. (4.10)—(4.12), (4.31),
(4.34), and (4.43)). Therefore
oo Olpm) 10 -(Pifes 11
VTOAT T2 1— ot 2/1+4t 4T
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Figure 4.1: The effective exponent function f(Ax) = dIn&/dIn Az plotted
versus log;o Az. From right to left the different curves correspond to 73
values 0.34, 0.2, 107!, 1072, and 1073, respectively. The dashed graph is
the asymptote in the limit 7, — 0. The supercritical effective indices are
given by a = 1 — f(f) and v = 2f(#) along the critical isochor Az = #, and
§ =1+ 4f[(Ap)?] along the critical isotherm Az = (Ap)?2.

for the specific heat per cell (or unit volume) to zeroth order in 3, Eq.
(4.42). At the critical point ¢ = 0 the specific heat reaches the maximal
value 1/[2(1 — ~2)] corresponding to v = 0. And pu, = —5(1 4 ?) is the
same as for the SCOZA.

For t > ¢(72)? (c a constant) we expect the MSA behavior to approximate
the exact result well. But when ¢ S ¢(7?)? the MSA will be too inconsistent
and modifications from higher order terms (i > 1 in Eq. (2.36)) become
important. The irregular thermodynamic behavior caused by these inconsis-
tencies is clearly seen in figure 4.2. Here the equation of state, represented
by chemical potential isotherms, is calculated via the internal energy. For
the MSA in the lattice case one generally has F' = F(z) (Eqgs. (4.31) and
(4.38)) and

BAp = B + Buo[1 — 2F (x)], (4.48)
where Sy = —% BAp is the mean-field term. Inserting for the solution (4.42)
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Figure 4.2: Isotherms for the chemical potential BAu plotted as function of
density Ap, close to the critical temperature £ = 0 (Eq. (4.49)). The inset
shows the locus of the zeroes of BAu (dashed lines) and d3Au/0Ap (solid
lines), respectively. The dotted line bounds the region ¢ < —1/4 — A_p2 where
BAp is complex.
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4.3 Calculations for the three-dimensional case 51

via (4.34) gives the asymptotic result

BAp = 2Ap [t_+ %(A_p)2 — 5‘]

_ 2 — —
= Ap [1 + 2t + g(Ap)Q — \/1 + 4t + 4(Ap)?| , (4.49)

for the scaled chemical potential BAu = BAp/(v2)? (O(BAp) ~ 2e20Ap =
2(v2)3820Ap, (Ap)? < 1) in the limit v, — 0. With respect to the inverse
compressibility £2 = 198Apu/0Ap, (4.49) is identical to (4.42) along the
critical isochor Ap = 0. But along the critical isotherm ¢ = 0, the consistency
with the compressibility route (4.45) only holds outside the critical region to
leading order in Ap. Le., BAu = %A_pg —2Ap o2 = Apt—28p4- -
when |Ap| > 1. Inside the critical region, |Ap| < 1, BAu = —%A_p3+2A_p5+
-+ in agreement with Hgye’s description of the “irregular” critical isotherm
(Sec. 2.3.2). Furthermore the nontrivial (Ap # 0) solution for BAu = 0
splits up in two solutions, instead of giving a regular subcritical solution of
the type (3.1). L e., with Ap > 0, £ = 3(£V6Ap — A_pQ) for ¢ < 1/2 and
0 >t > —5/8, respectively (£). See the inset in Fig. 4.2 where also the
solution for 3Au/0Ap = 0 is drawn. Above the critical temperature these
cross-sections explain the extra “loop” for the isotherms in the main plot.
The onset of this irregular behavior occurs at ¢ ~ 0.61 where the tangent
becomes horisontal at Ap ~ 0.86.

Alternatively one may obtain the chemical potential by integrating the
compressibilty with respect to the density. Of course there will be no “ir-
regularities” at supercritical temperatures (¢2 > 0). But it is impossible to
match the high and low density branches for the isotherms without violat-
ing the high and low density behavior. As checked numerically this effect
grows rapidly close to the critical point. So with respect to thermodynamic
consistency the situation is even worse for the compressibility route.

Sufficiently below the critical temperature the energy-route (4.49) yields
a well-defined two-phase region. To leading order —¢ > 1, corrections due
to correlations (the & term) do not contribute to the (mean-field) coexis-
tence and spinodal curves. I e., (Ap)? = =3t (BAu = 0) and (Ap)? = —¢
(0BAp/0Ap = 0), respectively. Including the corrections due to a finite
range of interaction leads to mean-field/Gaussian effective critical properties
analogous to the supercritical ones. To lowest order this is accomplished by
simply using the mean-field approximation &2 = Az = £+ (Ap)? = —2f or
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2(Ap)?. From the full form (4.49)
_ 2 2 - o\'/2
—of = gApQ —2 <§Ap2> (4.50)

gives the locus for SAu = 0. The outer branch matching the mean-field
coexistence curve is the solution

Ap = \/§<1+\/1—72£> = \/—735+ \/§+ O(—1)~2 (4.51)

By insertion into (4.42)

3

L+ y1—28= /20 [1+ (—28) 2+ O(-2)"]. (4.52)

In equilibrium between the symmetric high and low density branches +Ap
the mean-field internal energy (4.11) becomes pug = —3[14(Ap)?]. To zeroth

order in 4?2 this gives a contribution Cyo = —1d(Ap)?/dt = 3(1+1/v1 - 2t)

to the specific heat. Likewise the correlation part pu; = —[1—(Ap)?]y2(1—
e) gives Cyy = 3d&/dt = —1/(2/1 — 2t). In sum

Cy ==+ = + O(—28) %2, (4.53)

2 1—2t

3 1 3 n 1

2 V-2t
Outside the critical region, —t > 1, (4.53) gives a Gaussian correction (3.21)
to the plain mean-field value 3/2. With the irregular thermodynamic be-

havior in mind we observe that Cy = 5/2 — (—t) + - - - close to the critical
temperature ¢t = 0.

.

4.3.3 Nearest neighbor interaction

Recently Dickman and Stell [22] were the first to develop a method for solv-
ing SCOZA numerically below 7. and to obtain the prescribed well-defined
phase transition. With an iterative procedure for 5, (Eq. (4.1)) they were
able to integrate the consistency relation (4.3) for the three various types of
cubic lattice gases with nearest-neighbor attractive interactions. Compared
to analytic and numerical estimates for the Ising model, they obtained re-
markably accurate thermodynamic and structural predictions. E. g. critical
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4.3 Calculations for the three-dimensional case 53

temperatures were within 0.2% of the numerically exact values and the gen-
eral behavior in the critical region described by effective critical exponents
was close to such estimates.

For a lattice gas with attractive nearest-neighbor interactions the poten-
tial (4.5) is

0, r=0
w(r) =< 1/q , r anearest-neighbor lattice vector . (4.54)
0 , otherwise

The coordination number ¢ for the specific type of cubic lattice is the num-
ber of nearest neighbors to a lattice site. Fourier transforming (4.54) and
inserting into P(z) (Eq. (4.7)) gives the Green’s function for the Helmholtz
equation on the lattice. In case of the simple cubic lattice (¢ = 6)

(k) = %(cos ky + cos ky, + cos k), (4.55)

which leads to the product formula [23]

P L2 KKk 4.56
()= 5 (5) KK (k). (456)
Here
, 1 1 1
k:l: = §:|21372\/4—372—1(2—372)\/1—372
11, 1 [
e — — - — ]__ 2 ]___ 2
€ 2-!—62 2\/ z 97:
To = l‘l/(ﬂfl—l) (457)
and /2 &0
K (k :/ O 458
(%) 0 1 —k2sin%0 ( )

is the complete elliptic integral of first kind. Indeed the cusp singularity at
z=1,

P(z)=P(1) — 37\/5\/1 — 24+ 0(1 - 2), (4.59)
with
P(1)=1516..., (4.60)
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confirms the asymptotic treatment of the subsection 4.3.1, Eqs. (4.22) and
(4.23), or equivalently, (4.32) and (4.33). In order to follow the recipe of
Dickman and Stell, the exact PDE (4.13) is solved with respect to the internal
energy due to fluctuations, Eq. (4.12). Therefore one has to tabulate the
function (4.31) (given by (4.56) for the simple cubic lattice gas) numerically.

The inverse range of interaction, ,, the free parameter of the simplified
PDE (4.35), can in principle be adjusted to give the same critical point as
the exact one (4.13) for the three cubic types of nearest-neighbor interacting
lattice gases. If the expectation in subsection 4.3.1 is fulfilled, that the precise
form of P(z) is of minor importance except its asymptotic behavior close to
the critical point, the two solutions should differ insignificantly over the whole
region 0 < e < 1. By choosing v, in such a way that the approximate internal
energy equals the exact value at criticality, one gets less than 0.7% deviation
in T, for the three cases. That is, from (4.31) and (4.34),

1 3
2F(1)=1- P o (4.61)
is chosen. So for the SC lattice (4.60) v2 = 0.3405 . .. which we just will refer
to as 0.34 in subsection 4.3.5.

Eq. (4.13), as well as (4.35), was first solved with an implicit and thus
unconditionally stable finite-difference method developed by Pini, Stell, and
Dickman [24]. With less computational effort their method offered accurate
computations close to criticality and results in fully agreement with those
previously reported by Dickman and Stell. Furthermore they found excellent
overall agreement between the approximated version (4.35) and (4.13) for
the SC lattice with 4} chosen as mentioned above.

4.3.4 Numerical method

In this part I will first review the numerical integration of the PDE (4.35)
developed by D. Pini. This method is described in detail in Ref. [24] for the
exactly treated nearest-neighbor interaction for Eq. (4.13).

First Eq. (4.35) is rewritten as a nonlinear diffusion equation, with p and
B corresponding to position and time in a diffusion process, respectively. To
remove “convection” terms proportional to de/dp, Pini combines the factor
p(1 — p) with & by introducing the new unknown function ¢(p, 8):

v =p(l = pe. (4.62)
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In terms of ¢, (4.35) reads

L 3 30 Iy 3 3

— 1-— — =2p—+(1— 1- . 4.63

57 lP(L = p)] o w85-+( )lp(1 = p)] (4.63)
With “coefficients” depending on p only via p(1 — p) besides ¢ itself, one
immediately realizes that ¢ preserves particle-hole symmetry:

e(p) = (1 —p). (4.64)

(Which also is the case for z in the original equation (4.13)). This is used
to restrict the range of integration for (4.63) to 0 < p < %, with bound-
ary conditions ¢(p = 0,8) = 0 and (5 + Ap,B) = (3 — Ap,B). Apis
here the constant grid spacing in the p-direction. The initial condition is
p(0<p<1,8=0)=p(l-p).

The primitive way to solve a diffusion equation numerically is just to
integrate the time derivative of the solution stepwise forward in time, for
every position grid. As is well known, with a diffusion constant D, this
explicit method is not stable unless the time steps are made smaller than a
certain value proportional to (Ap)?/D. But as one bumps into the spinodal
curve ¢ = 0 for T' < T, the diffusion “constant”

p_ Gl =p)

" (4.65)

of (4.63) will diverge. This causes difficulties. Dickman and Stell [22] had
to be careful to avoid oscillations, using very small steps AS and an unusual
difference formula when calculating the second derivative with respect to p.
The more advanced implicit methods take the backward time derivative of
the solution into account. They lead to a coupled set of equations, involving
all position grid points, to be solved simultaneously at each new time step.
This is an unconditionally stable procedure. If the original PDE is nonlinear,
the equation set will be nonlinear as well. However, (4.63) is quasilinear.
That is, the “coefficients” are functions of the variable p in addition to the
unknown function ¢ itself. A predictor-corrector scheme specially adapted
to this kind of PDE [25], first predicts the solution and thus the coefficients
in the middle of two consecutive time steps. These coefficients are finally
used to correct the solution at the new step. With 8%¢/dp* approximated
by the standard central difference, Eq. (4.63) is solved by a linear tridiagonal
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set of equations at a computationally low cost. The accuracy is of second
order both in density and temperature.

The critical point terminates the critical isochor p, = 1/2 at the temper-
ature T' = T, where the isothermal compressibility diverges. Numerically we
find the inverse critical temperature S. by gradually decreasing A until the
reduced inverse isothermal compressibility

opp _ ¢

dp  p*(1-p)¥
reaches a small prescribed minimum value along the critical isochor. Below
the critical temperature, the broadening spinodal curve pgpi,(3) at which
©(pspin, B) = 0, gives the location of diverging compressibility. Thus the
non-negative compressibility region of integration is reduced to the p-interval
(0, pspin). Wherever the solution ¢ at the high-density boundary becomes
negative gives the spinodal within the accuracy of the grid, and the p-interval
is reduced by one grid point in the next S-step.

The pressure is found by integrating the reduced inverse isothermal com-
pressibility (4.66) with respect to density. At the high-density side, % <p<
1, the integration is achieved by exploiting the particle-hole symmetry of
(0Bu/0p) = (0Bp/0p)/p. To avoid possible loss of accuracy while summing,
we only integrate the part excess to the hard-core contribution 1/(1 — p)
which dominates at close-packing p — 1. Finally the exact hard-core pres-
sure (2.24) is added. Above the critical temperature the integration can be
done straight-forward from p = 0. But subcritically the spinodal makes this
impossible. Therefore one integrates on the high-density branch from p =1
where the mean-field or van der Waals result, Eq. (2.23) with a = 1/2, ap-
plies. This follows from the Helmholtz free energy containing the mean-field
term plus a particle-hole symmetric term due to correlations, analogous to
the internal energy equations (4.11) and (4.12). As the hard-core pressure di-
verges at p = 1, we have to integrate from the penultimate grid point 1 —Ap.
Corrections to the mean-field result are obtained from expanding the excess
part of (08p/dp) in powers of p. That is, from the virial expansion (2.5) and
the corresponding expansion for the hard cores (2.24),

(4.66)

0 oBphe ) )
aif = ?; +2B,yp+ 3B3p* + ... (4.67)
in the “excess” virial coefficients
B, =B, — B" =B, —1/i. (4.68)
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By using the particle-hole symmetry argument for (08p/9dp)/p again, we end
up with the high-density expansion

Bp = —ln(l—p)—%6—23’2(1—p)+(3’2—%Bg)(l—pﬁo (1=p)*). (4.69)

The coefficients B; are found by solving the self-consistency relation (4.3)
successively in orders of p. By calculating the limiting p — 1 pressure (4.69)
to second order in 1 — p, this procedure gives

B, = —f
By = 26+ (2} - 1) (1.70)

where f = W%(e%%% —1). As checked numerically by Pini [24], the pressure
obtained from this (compressibility) route is the same as the one from the en-
ergy route, that is, the pressure obtained by integrating 9fp/98 = p*du/dp
with respect to 5. Finally the phase equilibrium can be found from the low-
and high-density pressure branches with a Maxwell construction. Due to
the particle-hole symmetric coexistence curve peye; (), this reduces to find-
ing the density p..e; such that the pressures at each branch coincide, i. e.
p(pcoeo:, 5) = p(l — Pcoexs 5)

With regard to the determination of the phase coexistence, some details
of the numerical integration have to be mentioned. We use the Simpson
rule to obtain the pressure at every other grid point in the p-direction, with
an accuracy of order (Ap)*. Furthermore, the high-density boundary value
(4.69) is calculated with an accuracy of order (Ap)?. Due to the resulting
inaccuracy, the pressure at p = 1/2 would differ slightly for 7" > T, when
integrating from both sides; puign(5,8) — Piow(5, 5) = Ap(B). In order to
calculate Ap(f) we have to have an even number of grid spaces Ap on the
interval 0 < p < % and to start the high-density integration from the third
largest density grid point 1 — 2Ap. To eliminate the mismatch Ap(f8), to
which the determination of the phase equilibrium is very sensitive close to T,
we simply subtracted Ap(/3) from the high-density branch ppign(p, 3). Below
T. we use the constant Ap(f,) since the integrand (4.66), the boundary value
(4.69), and hence the mismatch Ap(/3), will essentially stay constant under
small changes in temperature near 7, where this is important.
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4.3.5 Numerical results

Section IV of Paper I* mainly deals with the critical properties of the numeri-
cal solution of Eq. (4.35). One of the main points of the present subsection is
to go more deeply into the general thermodynamic properties of the SCOZA
PDE (4.35). Another is to give a more precise description of items only men-
tioned briefly, left out, or calculated less accurately in Secs. IV and V of
L.

In Fig. 4.3 the inverse compressibility £? (4.32) along the critical isochor
(T > T,) is plotted for v3 =1073,1072,0.1,0.2, and 0.34. For v < 1072 the
curves are apparently linear in § — [, and they vanish close to the mean-
field critical point (2.20). For larger 72 values the isochores curve and the
curvature is strongest close to the critical point .. Fig. 4.4 shows that the
SCOZA critical temperature 77 is higher than the MSA value T (Eq.
(4.39)) and that the ratio between the two increases approximately linearly
with (72)% for 43 S 0.5. Numerically we find T°¢/TM ~ 1 + 1.2(72)? for
73 < 0.5. The deviation in chemical potential from its critical value, SApu,
along the critical isotherm (T = T,), is shown in Fig. 4.5. For this plot the
values of v2 are 107%,1072,0.1,0.2,0.3,0.34,0.4,0.5,0.6,0.7, and 0.8, which
span the whole range for which we could get reliable results. Similar to the
isochors of Fig. 4.3 we see that for v2 < 1072 the isotherms lie very close to
a single cubic curve, viz. the mean-field critical isotherm. And by increasing
73 the curves flatten around the critical density p. = 1/2.

The observed behavior in Figs. 4.3 and 4.5 for small 72 is qualitatively
similar to the corresponding critical isochors and isotherms given by the MSA
solution (4.37). This is easily seen by comparing the plots of the effective
critical exponents v and 9, Figs. 1 and 2 in I, with the MSA plot Fig. 4.1.
First Figs. 1 and 2 in I show that SCOZA has critical exponents v = 2 and
§ = 5. Next the range of the critical region scales as function of 72 in the
same way that the asymptotic MSA solution (4.42) does. 1. e., for t < (v?)?
and Ap < 72 the effective exponents v and ¢ approach their asymptotic
values, analogous to the limiting MSA behavior, Eq. (4.45) with Az < 1.
Outside this region mean-field behavior with effective exponents v = 1 and
§ = 3 is observed, as Eq. (4.45) with Az > 1. So the curves in Figs. 4.3
and 4.5 are, respectively, linear and cubic functions of the deviations A/ and
Ap from their critical values, except within a narrow critical region where
they flatten and become quadratic and fifth-order functions, respectively. In

3Hereafter Paper I and II are referred to as I and II, respectively
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Figure 4.3: Reduced inverse compressibility £? along the critical isochor (T >
T,) as function of inverse temperature 3. The curves correspond to 2 values
1073, 1072, 0.1, 0.2, and 0.34, respectively, starting with the lower curve for
1073,

2.2 - .

TSC/TM
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Figure 4.4: The ratio between the SCOZA and the MSA critical temperature
T5¢/TM plotted versus (v2)2 For 42 £ 0.5 the ratio is approximately linear
in (72)% and the line T59/TM =1+ 1.2(72)? gives a good fit in this interval.
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0.2 |

BAw

1/2 1

Figure 4.5: The deviation SAu in chemical potential from its critical value
along the critical isotherm (7" = T.) as a function of density p. Here
73 =107%,10"2,0.1,0.2,0.3,0.34,0.4,0.5,0.6,0.7, and 0.8, respectively, start-
ing with the lower left curve. The two dashed curves correspond to values
73 =102 and 0.34.
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addition we observe in Fig. 1 that with respect to ¢ the range of the critical
region is reduced considerably compared to MSA, with about two decades
or a factor 100. A striking feature is that the band of curves in Fig. 1 seem
to approach a single curve for 73 — 0 analogous to the MSA curves in Fig.
4.1. This is also the case for the corresponding effective § curves. But due
to the results for 6 shown in Fig. 2 of I this feature is somewhat modified
at larger densities since the curves diverge at saturation Ap = 1. § is found
from the non-symmetric pressure (Eq. (3.6)), for which the curves will be
lifted compared to using the compressibility directly (as in Fig. 4.7 below).
More conspicuously the characteristic behavior along the ¢ and Ap axis is
gathered in Figs. 4.6 and 4.7. In Fig. 4.6 the scaled solution (4.43) is shown
as a function of the scaled variable

Az = Ax/(72)? (4.71)

along the critical isochor and isotherm, i. e.,

t ., Ap=0
Az = { (Ap)? tp: . (4.72)

The MSA solution is the same in either direction (Egs. (4.37) and (4.41)). As
73 — 0 the MSA solution approaches the asymptotic solution (4.42) drawn as
a single dashed curve in the correctly scaled plots Figs. 4.6 and 4.7, Eqs. (4.43)
and (4.44). Analogously the SCOZA curves approach distinct solutions in
either direction when 72 — 0. Along the critical isotherm (Az = (Ap)?) and
asymptotically for small and large Ap SCOZA coincides with the asymptotic
MSA (4.45). This is also the case for large ¢ along the critical isochor (Az =
t). But for small £ SCOZA is shifted in comparison to the universal MSA
and approaches & ~ 7t. The critical amplitude (i. e. 7) is found with a
relative numerical accuracy of about 1072. Using a similar technique to
that used below for finding effective exponents, the corresponding effective
amplitudes would converge to well-defined values in the limit v2 — 0. In
Fig. 4.7 the slopes of the curves in Fig. 4.6, or the effective exponent function
f(Az) = dIng/dIn Az, are calculated. The effective critical exponents a, 7,
and ¢ (Figs. 1, 2, and 3 of I) are given by 1 — f(£), 2f(f), and 1+ 4f[(Ap)?],
respectively (with £ = t/(72)% and Ap = Ap/~2). This plot also offers better
resolution and shows that the curves with 42 = 1073 and 1072 are barely
distinguishable for Az 2 10*2. Compared to the asymptotic MSA solution
both the critical and the mean-field region are slightly reduced with respect
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Figure 4.6: The scaled solution £ plotted as a function of the scaled vari-
able Az (see Egs. (4.43) and (4.71)) along the critical isochor (Azr = 7)
and the critical isotherm (Az = (Ap)?). The curves correspond to 2 =
1073,1072,0.1,0.2 and 0.34, respectively, starting with the upper curves at

the lower left ends. The dashed curve is the universal MSA solution (4.42).

log;o Az

Figure 4.7: The slopes f (Az) of the curves in Fig. 4.6 above, plotted versus
log,; Az. Notation as in Fig. 4.6. The curves are systematically lowered as
73 decreases.
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to Ap. E. g. the crossover region is enlarged by a factor of about 2. But along
the ¢t axis a more dramatic change is seen. The critical region is reduced by
as much as a factor 230 such that the cross-over into the mean-field region is
much slower. In Fig. 3 of I a similar effect to that of § in Fig. 2 of I results
when calculating « from the heat capacity (Eq. (3.5)), giving curves that
diverge in the high-temperature limit.

The spinodal and coexistence curves are shown in Fig. 4.8 for a wide range
of values of 3. Again, for v2 < 1072, results close to the corresponding mean-
field behavior are obtained. I. e., the curves are parabolic close to the critical
point in accordance with (2.31) (¢ = 0) and phase equilibrium Ap = 0, Eqgs.
(2.21) and (2.22). Increasing 72 makes the spinodals sharper at the top and
the coexistence curves flatter, compared to the parabolic ones. In Fig. 4.9 the
scaled deviations, i. e. Ap as a function of ¢, are shown for the same curves in
alog-log plot. AsinIweuset = (T.—T)/T. > 0 for subcritical temperatures.
One finds that the curves fall on single limiting curves for small 2 (— 0). For
larger 72 one starts to see some deviations as especially the coexistence curves
become broader. Also for larger ¢ (further away from the critical point) the
curves start to separate as one should expect since then p — 1 (or 0). (Due
to the scaling used, decreasing 72 moves the endpoints of the curves drawn to
the right.) For small 72 and outside the critical region (£ > 1 and Ap > 1)
both sets of curves approach the mean-field result: straight lines with slope
1/2. More precisely, using values of 72 as small as 1075, shows that the
asymptotic curves are given by Ap, .. ~ /2 and Ap,,,, ~ v/3¢'/%, within a
relative accuracy of about 1 x 10™* and 5 x 107%, respectively. These curves
are in agreement with the MSA result € = 0 (Eq. (4.42)) and with the mean-
field coexistence curve (Eqs. (2.21) and (2.22)). In Fig. 4 of I the effective
exponent [ for the coexistence curves is shown. As ¢ — 0, the limiting value
B = 0.35 is independent of v2. Actually Pini, Stell, and Dickmann [24] and
Hgye [8] have recently shown analytically that Sy, = 3/4 and Seeer = 7/20.
Straight lines with slopes 3/4 = 0.75 and 7/20 = 0.35 have been drawn in
Fig. 4.9 (dashed) to indicate the asymptotic behavior close to the critical
point. With an accuracy of about 3% in the amplitudes, the corresponding
curves are found to be Ap,,;,, =~ 3.58%* and Ap,,,, ~ 1.6¢7/2° as 42 — 0.
Due to the greatly reduced extent of the critical region for decreasing 72,
the spinodal and coexistence curves would easily deviate from the regular
pattern shown in Fig. 4.9 for large values of 77, since close to the critical
point the numerical solution becomes inaccurate. For instance, the curves
with 42 = 1072 have been cut at ¢ ~ 1071% and ¢ ~ 1072 respectively. But

63



64 SCOZA

0.25
0.20

0.15

0.10

Figure 4.8: Temperature T" versus density p for the coexistence and spinodal
curves. Here v = 107%,1072,0.1,0.2,0.3,0.34,0.4,0.5,0.6,0.7, and 0.8, re-
spectively, starting with the upper curves. For each value of 72 the broad
branches of the coexistence curve envelop the spinodal curve. The dashed
curves correspond to values v2 = 1072 and 0.34.
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thanks to the regular behavior and strong convergence (when 2 — 0) close
to the critical point, the remaining parts can be extrapolated with the aid of
the curves with larger 2.

The value of & (Eq. (4.43)) along the coexistence curve as function of
temperature ¢ is shown in Fig. 4.10. These subcritical curves are like the
supercritical ones shown in Fig. 4.6 on the right-hand side while different
slopes on the left-hand side reflect different indices v and +'. Analogous to the
value of the critical exponent [ the subcritical slope is found from Fig. 5in I to
be 7'/2 = 0.70 (while v/2 = 1 in Fig. 4.6). Therefore v # +/, in disagreement
with the scaling hypothesis, Eq. (3.31). On the other hand & encounters no
spurious singularity when passing the critical isotherm 7' = T,. See Fig. 4.11
where isotherms both above and below the critical one are drawn for the case
73 = 1072 (As indicated by the previous figures this case should represent
the universal limiting behavior 42 — 0 well.) Indeed the “subcritical” scaling
relation 7' = (6 — 1) (Eq. (3.36) with ~ replaced by +') is fulfilled with the
critical exponent values found above [24]. I e., close to the critical point,
£ goes like (Ap)? along the critical isotherm as well as (Ap)? ~ #2# along
the coexistence curve. Moreover & approaches (2.5 4 0.1)Z/' in the limit
73 — 0. Within the numerical accuracy of the limiting (72 — 0) critical
amplitudes along the critical isotherm (£ = D (Ap)0=Y/2 D ~ 14 1073)
and the coexistence curve (Ap = B1® and & = I'"#7'/?), this means that also
the coefficients of the (Ap)? terms for £ are the same. 1. e., they obey the
amplitude relation

DBO-1/2 =7, (4.73)

In Fig. 4.11 the intersections of the subcritical isotherms with the coexistence
curve have been marked with circles. And for # < 10~! these points approach
the limiting critical (72 — 0 and # < 1) expression indicated by crosses. (One
may conjecture IV = B2 = 5/2 for which the crosses have been drawn.) As
noted above serious numerical inaccuracy is encountered for ¢ < 1073 and
significant deviations from the crosses are seen. Outside the critical region &
approaches the mean-field result /2 /2 = \/%A_p (Egs. (2.21) and (2.22))
in the limit 2 — 0. This relation is shown as a dashed-dotted straight line
with crosses matching the actual temperatures plotted in Fig. 4.11.

The specific heat Cy, along the coexistence curve is plotted as function of ¢
in Fig. 4.12. As we see from the figure C'y; has a maximum at a temperature
close to T, not at T, itself. This temperature is approximately given by
t ~ 10727 for the values of 72 plotted. In the limit v — 0, Cy converges
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Figure 4.9: The scaled spinodal and coexistence curves, plotted as log,, Ap
versus log;, . The curves correspond to 72 = 1073,1072,0.1,0.2 and 0.34.
Dashed straight lines with slopes 0.75 and 0.35 indicate the critical behaviour.

Figure 4.10: The scaled solution & along the coexistence curve, plotted as
function of the scaled temperature . The values of 42 are the same as in
Fig. 4.9. The dashed straight line has slope 0.70.
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Figure 4.11: Log-log plot showing isotherms for the scaled solution & as a
function of the square of the scaled density Ap. Here 42 = 1072 and the scaled
temperatures used both above and below critical are £ = 103,102,...,1075.
The critical isotherm T' = T is “squeezed” continuously between supercritical
and subcritical isotherms as ¢ decreases. Crosses and various dashed lines
indicate the limiting (2 — 0) asymptotic behaviour for small and large Ax
(Egs. (4.71) and (4.72)). See the text. E. g., the intersections of the isotherms
with the critical isochor (Ap =0, T > T.) and the spinodal (¢ =0, T < T,)
have been marked for £ < 1072 and ¢ > 10'. Circles mark the intersections
with the coexistence curve.
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log,o Cv

log,,

Figure 4.12: Log-log plot of the specific heat C'y along the coexistence curve
as a function of the scaled reduced temperature £. The values of 72 are the
same as in Fig. 4.9. For increasing 72 the curves are systematically shifted
to the left. After reaching a maximum, Cy vanishes as 7~ with o/ = —0.10
as t — 0. This is indicated by the dashed straight line.

to a value close to 2.60. Very close to the critical point (i. e. for £ S 107%)
the Cy curves in the log-log plot come close to straight lines with slopes
approaching 0.10. As in Fig. 6 of I Fig. 4.12 shows that the asymptotic
(t — 0) value o/ = —0.10 is independent of 7. Although a # o’ the value
of o/ is in agreement with the “subcritical” scaling relation o/ + 25 + ' = 2,
Eq. (3.33). According to Refs. [24] and [8] the analytic values for o and +" are
indeed —1/10 and 7/5, respectively. Hence the configurational specific heat
along the coexistence curve vanishes when 7" — 7' since in our evaluation no
constant has been subtracted from C'y,. However, it is only in the immediate
vicinity of the critical point that Cy drops sharply (but Cy > 0). E. g., with
73 = 0.34 the maximum of Cy is at the reduced subcritical temperature
t ~ 10736, Outside the critical region mean-field behavior is seen for small
v3. 1. e., consistent with Ap and & found numerically to lowest order in £
along the coexistence curve, curves in Fig. 4.12 would intermediately reach
a plateau Cy ~ 3/2 before they vanish at 7' = 0. See also Fig. 4.13. For
T > T, the specific heat along the critical isochor encounters the MSA-like
cusp at the critical point (o = 0 corresponds to a maximum). As v2 — 0 this
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4.3 Calculations for the three-dimensional case 69

cusp becomes infinitely sharp and its height approaches 3.5 consistent with
(4.47) and ¢ found numerically along the critical isochor. Therefore Cy will
undergo a jump discontinuity when passing through the critical point. This
is shown in Fig. 4.13 where C is plotted versus 1" both below and above
the critical point T.. The supercritical specific heat does not describe the
asymptotic critical behavior very well either, as the true o ~ 0.1 [24]. But as
noted in Ref. [24] the supercritical saturation of Cy is not seen until ¢ ~ 104
for the nearest neighbor interaction. Compare this with Fig. 4.7 for 42 = 0.34
and Az = £. Disregarding the tiny critical region, the variation of Cy with
T has the X\ shape characteristic for both fluids and magnets. In Fig. 4.14
SCOZA results are compared with specific heat measurements for argon [26]
in the interval from the melting point to well above the critical point. To
make the comparison we have subtracted the ideal gas contribution from the
experimental points and rescaled the axes for SCOZA. 1. e., for each value of
73, T is scaled to get the critical point 7T, to coincide with TA" = 150 K. And
CY is scaled such that the curves intersect the rightmost experimental point.
Apart from a nearly constant difference below T, the curve for 42 = 0.34
seems to qualitatively describe the Ar data fairly well. Quantitatively the
curve for 42 = 0.2 gives the best over-all agreement.

For large values of 72 (i. e. ¥2 £ 0.1) the solution no more embraces a
mean-field region outside the critical region. For example the curves in Fig.
4.7 (or Fig. 1 in I) for the effective exponent v flatten towards a minimum
whose value gradually rises as 2 increases. This minimal value of vy very well
describes the ¢t dependence of the inverse reduced compressibility (~ 2 ~ t7)
in a wide temperature interval outside the critical. Due to the logarithmic
t axis the narrow critical region is emphasized in Fig. 4.7. Hence a small
increase of the effective v above the minimal strongly reduces the temperature
interval for which the effective 7 is of relevance. This is illustrated in Fig.
4.15 where €%/ is plotted as a function of 3, for the solution with 7> = 0.34
(6. = 5.3484). In this case the minimal effective v &~ 1.23, corresponding
to t &~ 107982 (B ~ 4.53) in Fig. 4.7, for which the lower curve in Fig. 4.15
is plotted. The upper curve is plotted for v = 1.30 which is the effective
value at ¢t ~ 107%™ (8 ~ 5.25). A dashed straight line has been drawn
through the critical point and the one corresponding to the minimum of the
effective v (marked by a circle). Only within a region ¢ £ 1072 (for which
the inset has been drawn) the lower curve deviates from the line, where the
upper curve gives a better description (linearity). The situation is similar
for the other effective exponents, see Figs. 1-6 in 1. Subcritically the curve
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Figure 4.13: The specific heat along the critical isochor C'y as a function of
the temperature 7. The values of 7} are the same as in Fig. 4.9. All the
curves undergo a jump discontinuity when T passes their respective critical
point T, from a maximum on the supercritical side to zero at the subcritical
side. However, Cy, reaches a subcritical maximum close to T,. See the inset
of the curve with 72 = 0.34 shown for temperatures within about +107%6
relative to T,.. The subcritical maximum points have been marked with points
to distinguish them from the supercritical branches of the curves. Horisontal
bars mark the endpoints of our numerical results 7' — T.". Compare Fig.
4.12. And dashed lines have been added to indicate the extrapolations of the
subcritical branches into the critical points. In the calculation with 42 = 1073
we could not reach the subcritical maximum of Cy (£, ~ 107!). Due to
the coincidence shown in Fig. 4.12 we have just plotted the corresponding
ordinate for 72 = 1072 onto this curve.
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Figure 4.14: The excess molar specific heat Cy,, of Ar along the critical
isochor versus absolute temperature 7" [26] (circles). These experimental data
are compared with our rescaled numerical results. Solid curve: 72 = 0.34.
Dash-dotted curve: 72 = 0.2. Dashed curve: 42 = 0.34 lifted subcritically.
The horisontal bars indicate the maximal SCOZA values on each side of the
critical point.
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Figure 4.15: €7 along the critical isochor as a function of inverse temper-
ature . Here 72 = 0.34, and effective values of v are 1.23 (lower curve)
and 1.30 (upper curve). Compare Fig. 4.4. The almost linear lower curve is
compared with the dashed straight line.

for the effective exponent § flattens (in a maximum, see Fig. 4 in I and thus
serves as a definition of the subcritical “effective” temperature region. I. e.,
for t ~ 10726 (8 ~ 5.36) o’ ~ 0.06, 3 ~ 0.378, and ' ~ 1.27. And along
the critical isotherm ¢ is minimally 4.29 at Ap ~ 0.4. With these values
for the critical exponents, it is clear that SCOZA (72 = 0.34) gives a close-
to-scaling solution in a region much larger than the critical region 4. E. g.,
compare v = 7' (Eq. (3.31)) and the inequalities 7' > (6 — 1) ~ 1.24 (Egs.
(3.23) and (3.24)) and o/ + 25 + ' ~ 2.09 > 2. Furthermore, with “exact”
values a >~ 0.1, f ~ 0.33, v ~ 1.24, and ¢ ~ 4.8 [27] estimated for the Ising
model, the accuracy with regard to exponent values a and v is much better
within the effective region than close to the critical point. Generally, reducing
the range of interaction (increasing 72) reduces the effective temperature and
density regions and brings the corresponding exponents closer to their critical
values. Conversely, extending the range of interaction infinitely (72 — 0)
makes the effective solution approach the mean-field solution which scales

“Here 7' and § are calculated from the particle-hole symmetric solution ¢ in order to
compare with scaling relations outside the critical region.
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4.3 Calculations for the three-dimensional case 73

perfectly outside an infinitely narrow critical region.

In Fig. 8 in I we compare the scaled equation of state (Eq. (3.35)) for
SCOZA (72 = 0.34) with the experimental results for CO, taken from Fig.
3.1 after Green et al. [18]. To correct for a miscalculated pressure Ap =
(p2 — p1)/2p. (Eq. (17) in I) this figure is here redrawn as Fig. 4.16, using
the same exponents f = 0.38 and § = 5 for the SCOZA results (while Ref.
[18] used f = 0.35 and 6 = 5). Instead of using the critical pressure p,. in the
denominator of Ap, we in I incorrectly used the pressures along the critical
isochor (7' > T.) and along the coexistence curve (7' < T.). As a result the
isotherms most far away from the critical point were shifted vertically by a
small amount compared with the corrected ones in Fig. 4.16. Apart from the
isotherms closest to the critical point, left out in Fig. 4.16, an even better
coincidence between the SCOZA and the CO, curves is now obtained. Like
SCOZA one notes that the CO, results, contrary to the assumption in Ref.
[18], do not scale as they do not fall on a single curve in the region covered.
Thus we find reason to believe that standard scaling must be limited to a
more narrow region for real systems. For the temperatures left out, Refs. a
and c in Fig. 3.1 (i. e. 3 supercritical and 2 subcritical in Fig. 8 in I), the
experimental results wiggles more around the SCOZA solution. It should
also be noticed that the isotherms kept are all taken from the same reference
[28] (Ref. b in Fig. 3.1) and that Green et al. in their subsequent article
[29] used exclusively the same data when analyzing CO, separately. (Due
to systematically deviating results when including all data sources they in
[29] omitted Refs. a and ¢ in Fig. 3.1, suspecting systematic experimental
errors.) The most striking coincidence displayed in Fig. 4.16 refers to the
linear regime in the lower left corner x < 0.4, i. e. for data close to the critical
isochor away from the critical temperature. With variables z and y along
the axes (Eq. (16) in I) we from defenition (3.4) have

Y~z tA, (4.74)

where Ay = v—[(§—1) is the difference between the temperature dependent
effective v and the one given by the scaling relation (3.36) in terms of the val-
ues 3 and 6 used for plotting. If Ay = const < 0, the prefactor 27 increases
as t decreases. For SCOZA t27 reaches a maximum at ¢t ~ 10~1¢ whereas the
shift of the curves in the figure (including a t-dependent amplitude in (4.74))
is connected to the sign of Ay. I. e. Ay < 0 for t £ 1073, (Compare Fig. 7 in
I.) Finally one should note that the original CO, curves are shifted —0.013
decade horizontally and —0.16 decade vertically in order to optimalize the

73



74 SCOZA

- symbol log;,t

T>T, —1.53
—-1.92
—2.47
—2.48
—2.80
—3.04

—3.34

10*

O % e D>+ 00

Ap/th°

0.2 1 7
Ap/t?

Figure 4.16: The scaled equation of state for SCOZA with 72 = 0.34 (dashed
curves) compared to the experimental results for CO, (solid curves) taken
from Ref. b [28] in Fig. 3.1. Start and endpoints for both sets of curves
are indicated with symbols corresponding to the temperatures (given in the
inset).
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4.4 Calculations for the two-dimensional case 75

coincidence. In scaling language this corresponds to adjusting two system
dependent critical amplitudes. I. e., in analogy to the scaling relations for
the critical exponents by which two exponents can be chosen independently,
the scaling hypothesis implies relations (ratios) between the corresponding
critical amplitudes [30] defined by the coefficients in front of proportionality
relations (3.1), (3.4), (3.5), and (3.6). But as we in fact are comparing a
lattice-gas with a continuum fluid such a shift should be expected anyway.

4.4 Calculations for the two-dimensional case

As shown in II for the two-dimensional lattice gas, SCOZA does not give a
critical point at a non-zero temperature. Nevertheless major improvements
of MSA are achieved especially at low temperatures where the MSA fails
severely. E. g., in case of nearest neighbor interactions on the square lattice,
the internal energy along the critical isochor follows the exact solution in
zero magnetic field very closely. Only near the critical point of the exact
solution there is a small deviation. The corresponding maximum of the
specific heat was located less than 0.3 % above the exact critical temperature.
And near this maximum thermodynamic quantities show effective critical
behavior which seems to mimic the exact critical behavior fairly well. In this
section new and more accurate results for long-range interactions are given.
A comparison with some recently reported Monte Carlo simulations is made.

4.4.1 Variable interaction range

In order to study long-range interactions on a square lattice we use the
method due to Hgye and Stell [31]. By this prescription the exact near-
est neighbor interaction ¢ (r), Eq. (4.54), is replaced by a new interaction,
parametrized with respect to the range of interaction. With a parameter «
analogous to the density in the convolution (1.25), the new interaction is

1 1
pk)=A|——— I, =14+ =¢"(0)k* 4 - --. 4.75
o0) = A [ = 1| =14 520 (475)
The constants A and I, ensure that ¢(0) = 1 and ¢(0) = 0, respectively, such
that the new integral P(z) can be calculated from (4.7) with ¢(k) replacing

(k). (See Egs. (21) and (22) in Sec. III of II.) The second moment ¢”(0) in
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(4.75) determines the range of interaction, v, '. 1. e., defined in units of the
range for the nearest neighbor interaction, v, ! is given by

o _V"0) 1-a
0 a

From (4.18) and (4.20) it follows that 42 ~ 1 — a as @ — 1. In the opposite
limit, @ = 0, I, = 1 + ca” + O(a?) shows that (k) — Y (k) and 72 — 1.
Thus a = 0 yields the nearest neighbor interaction while o = 1 corresponds
to an infinitely long-ranged and weak potential.

1—(1—a)L]. (4.76)

4.4.2 Asymptotic relations

In this section we will study the asymptotic behavior at low and high temper-
atures, and near the extreme densities p = 0 and 1. Furthermore we derive
the equation of state for small ~,.

The P(z), given by Eq. (22) in II, diverges weakly as z — 1. It can be
shown that

™ lﬁ] +B+0((1-2)In(1-2), (4.77)
where
B=1-(-a)l. (4.78)

(4.77) generalizes (15) in IT°. We now relate the compressibility to the internal
energy (4.12), or, more specifically, to the internal energy function

P(z)—1 2
= — = ———pu. (4.79)
2P(z) p(1—p) "
As z — 1, y — 1, and by inverting the series expansion for 1 — y one obtains
8 T 1

to leading order. At the same time the inverse compressibility function (4.32)
behaves as

8 s 1 as1 1 s y)
2
e~ —exp | —= | B— —— ~ ——exp|———]. (4.81
71—y lv?( 1—y>] 1—y (731—y (48D)

Swhere the correction term should be the same as in (4.77)
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4.4 Calculations for the two-dimensional case 77

In the limit 7, — 0 (o = 1) we have used

1
B:l——731n<%>+m. (4.82)
™ gl

r

z — 1 at low temperatures and densities not too far from the “critical”
isochor Ap = 0. The (implicit) temperature and density dependence become
more evident by noting that®

v = 2P(z) = 3(1 — AP, ~ ﬁ (4.83)

extracts the leading dependence upon Ap (Eq. (4.17)). I e., the relation

1 —y = (1—¢?)/x gives an exponentially small correction to 1 —y ~ 1/z.
One may therefore replace 1 —y by 1/x in (4.81) to obtain

1 8 T
l—y~——— —(B — . 4.84
y= 1= Sew | T -0 (484

T

In case of nearest neighbor interactions, the exact low-temperature behavior
for the internal energy (4.79) along p = 1/2 follows from Onsager’s solution
(see Eq. (18) in II):

1—y=4e27 4+ 0 (). (4.85)

The corresponding exact coexistence curve Ap(f) [32] obeys
1—Ap? =4e737 + O (759 (4.86)

at low temperatures. To leading order (4.85) and (4.86) also hold for the
mean-field phase equilibrium Ap = 0, Egs. (2.21) and (2.22), with y replaced
by Ap? in (4.85) (symmetric mean-field term (4.11)).

At high temperatures or near the limiting densities p = 0 and 1, z is small
and

P(z) =1+C2*+ 0O(2%). (4.87)
We find
B 1—a 12 E(a) 9
¢= ll —(1- a)[a] l%l —a? Ia] ’ (4.88)

6For simplicity we write Ap? instead of (Ap)2.
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where [, is defined in Eq. (21) of II, and

w/2
E(a) = /o V1 —a?sin®6 df (4.89)

is the complete elliptic integral of second kind. For the nearest neighbor
interaction C' = 1/4 while C' ~ 2 /7 when v, — 0. (4.87) relates y to 1 — &2
via the definitions (4.79) and (4.81). To lowest order in 1 — 2,

y~ C(1—¢e?%). (4.90)

Insertion of (4.90) into the self-consistency relation (4.3) eliminates the in-
ternal energy in favor of the inverse compressibility. Solving to first order in
the density (or 1 — p) then yields

, 1
B, = %(1 — ) (4.91)
for the second “excess” virial coefficient (4.68). The mean field value B, =
—3/2 is obtained for high temperatures or small values of 72, C3 < 1, and
corresponds to putting z = p(1 — p)p.

Globally the mean-field equation of state is obtained by letting v, — 0
and putting z = p(1 — p)B. L e, aslongas 1 — 2> e ™% say 1 — z ~ P
with p > 0,

1

P(z)=1—=[zIn(1 — 2)] >+ -, (4.92)
7r
for which €2 ~ 1 — 2, x ~ z, and
1,
y~—— In(1 — 2) (4.93)

to lowest order in 7,. The last expression gives the first order ~y-correction
to the absent mean-field value and with z = p(1 — p)f this is the Gaussian
approximation. Furthermore x ~ z shows that the leading corrections given
by the MSA (B, = f in (4.83)) are negligible outside the mean-field spinodal
curve 1 — p(1—p)S = 0. Beyond the Gaussian approximation, z = p(1—p)_,
(4.93) relates the compressibility to the internal energy y ~ 72| In?| < 1 as
follows

2~ e/ (4.94)
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One checks that the expressions (4.77) and (4.87), valid in the limits z — 1
and z — 0, respectively, are consistent with (4.92) when ~, — 0. Conse-
quently (4.81) relates £? and y correctly to lowest order in v, for all temper-
atures and densities.

In conclusion, MSA approximates the SCOZA solution well at high tem-
peratures. The exact asymptote (4.85) provides via (4.83) an explicit be-
havior at low temperatures near the critical isochor. In view of the accuracy
obtained for the nearest neighbor interaction in zero magnetic field, this gives
us a hint what to look for in the numerical results.

4.4.3 Numerical results

In analogy to Fig. 4.3 for the three-dimensional case, Fig. 4.17 shows the
inverse compressibility function 2 along the critical isochor p = 1/2 as a
function of the inverse temperature . The values of o used to calculate
the curves in the figure are 0 (nearest neighbor interaction), 0.3, 0.6, 0.9,
0.99, and 0.999, respectively. Despite the absence of a critical point, the
situation looks qualitatively much the same as for the three-dimensional
case (Fig. 4.3). In both cases the graphs start out linearly for small /3
and curve before they apparently vanish at finite values of . The crosses
mark the point on each curve for which the corresponding specific heat along
the critical isochor reaches its maximal value. See Fig. 4.19 below. Com-
pared to the MSA a much faster decay of 2 is obtained for large 3. While
e? ~ ie”/ﬁﬁ exp(—#ﬁ) for the MSA, the SCOZA results for £2 seem to fall
off approximately like exp[—% exp(k20)] (k1 and ko positive constants). In
fact we have used k; = 7/4 and ky = 1/2 when plotting the dotted straight
line —In(—921Ine?) = —Ink; — k28 (graph (a) in Fig. 4.17). This corresponds
to dropping the prefactor 8 exp(7B/72)/[v(1—y)] in (4.81) and using (4.85)
for the internal energy difference 1 — y in the remaining exponential. Equiv-
alently the same expression is obtained from the effective MSA-exponential
exp(—#ﬁe) with 8, = e2?, Eq. (4.83). The prefactor omitted above repre-
sents a weakly 7,-dependent logarithmic correction to the straight line (a)
in Fig. 4.17. But using (4.85) the full asymptote (4.81) gives only a limited
improvement whereas the one for MSA (5, = 3, Eq. (4.83)) matches the solu-
tion perfectly at large . See graphs (b) and (c) in Fig. 4.17 which both have
been calculated with o = 0. A separate numerical analysis shows that &2
and y are related by (4.81) including values £ at least up to the specific heat
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maximum (crosses in Fig. 4.17). In particular this relationship is demon-
strated by the curves for the long-range interactions. As a — 1, SCOZA
approaches the asymptotic solution — In(—92Ine?) = — In[ry/(1 — y)] (com-
pare (4.81)) given by the mean-field phase equilibrium y = Ap(5)?. (See the
dashed graph in the lower plot.) Along the critical isochor, Figs. 4.18 and
4.19 show the normalized internal energy y = —8pu; and the specific heat
per particle (spin) Cy = —(1/8)0y/JT, respectively. Here also the exact
results for the nearest neighbor interacting lattice gas, Eq. (18) in II, are
shown. Apart from the MSA result, all the curves seem to coincide at
low temperatures. The inset of the lower plot in Fig. 4.18 clearly shows how
the mean-field and the exact nearest neighbor solution approach the low-
temperature asymptote (4.85) drawn as a dotted straight line. For small ~,
the SCOZA curves practically overlap the mean-field result. As v, increases,
the convergence towards the asymptote gradually slows down compared to
the convergence of the exact nearest neighbor solution. Above the mean-field
critical point (8 < 4) the Gaussian approximation gives the asymptotic be-
havior in the limit & — 1. See the lower plot in Fig. 4.18 where (4.93) with
z = [3/4 is the dashed graph. Furthermore the over-all agreement between
SCOZA (for a = 0) and the exact result for nearest neighbor interactions is
good. As in II the “critical point” for SCOZA is defined by the maximum of
the specific heat and the corresponding “critical” quantities are denoted by
the subscript c¢. In case of nearest neighbor interactions we find 5. = 7.033
and y. = 0.7097, as compared with the exact values S. = 7.05098... and
Yo =/2/2=10.707106 ... (Egs. (18) and (19) in II).

Fig. 4.20 shows a whole range of isotherms for the nearest neighbor inter-
action (a = 0). The inverse compressibility € and the “magnetic” internal
energy’ Ap? + (1 — Ap?)y are plotted as functions of the density difference
Ap = (p — pc)/pe. For “subcritical” temperatures both sets of curves be-
come extremely flat in a region around the critical density Ap = 0.  The
flat regions correspond to regions where the asymptotic relation (4.81) ap-
plies. This is illustrated in Fig. 4.21 where isotherms for — In(—~2In&?) and
—In(1—y) are plotted as functions of In(1—Ap?). For each temperature cov-
ered (8 =9,11.5, and 14) curves calculated with o = 0,0.3,0.6, 0.9, and 0.99
have been drawn. From the lower plot in Fig. 4.21 the highly linear behavior
(slope 1) around Ap = 0 shows that /3, is more or less independent of density

Tequal contributions from the high and low density side, subtracted a constant, and
normalized
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Figure 4.17: Normalized inverse compressibility €2 along the critical isochor
as function of inverse temperature 5. Solid curves: SCOZA corresponding to
a values 0, 0.3, 0.6, 0.9, 0.99, and 0.999. Short dashes: Asymptotic solution
a — 1. Crosses: Points corresponding to the maximum for the specific heat,
running from right to left for increasing «. Long dashes: MSA with o = 0
and @ — 1 (only @ = 0 in the upper plot). Dotted lines (b) and (c): Low-
temperature expression (4.81) for a = 0 using 1 —y = 4e %/ and 1 —y = 4/,
respectively. The straight line (a) is tangent to (b) when § — co.
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Figure 4.18: Internal energy y (4.79) along the critical isochor shown as
function of inverse temperature . Dash-dotted curve: Exact solution for
two-dimensional Ising model with nearest neighbour interactions. Dotted
line: Low-temperature asymptote (4.85) for the exact and the mean-field
solution. Notation otherwise as in Fig. 4.17.
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Figure 4.19: Specific heat per cell/spin Cy shown as a function of inverse
temperature [ along the critical isochor. Notation as in Figs. 4.17 and 4.18.

in this linear region. L. e., with yo = y(Ap=0), 1 —y ~ (1 — ) /(1 — Ap?)
when 1 — Ap? > 1 — vy, such that 8, ~ 4/(1 — y), Eq. (4.83). Hence
the internal energy Ap* + (1 — Ap?)y =~ yo stays nearly constant inside
the region bounded by the exact coexistence curve, Eqgs. (4.85) and (4.86),
1—Ap? ~1—yy~ 4e2f. With z = (1 — Ap?)/(1 — yo) and numerical
constants yy we have plotted the asymptotes (4.81) and (4.84) for « = 0 and
a — 1in Fig. 4.21. (See curves (a) and (b) for § = 14.) Only close to the in-
tersections with their respective exact coexistence curves will there be visible
deviations from the SCOZA solution. (See the vertical lines (c¢) and (d) for
8 = 14, which have been placed at values Ap calculated from the mean-field
and nearest neighbor phase equilibrium, respectively.) As § and/or « in-
creases, SCOZA resembles the mean-field phase equilibrium more and more.
In particular, €2 and y vanish at the mean-field coexistence curve. Close to
the boundaries Ap? = 1 the truncated virial expansion e? = 1+ 1B)(1—Ap?)
applies, consistent with the linear graphs in the upper plot of Fig. 4.21. In
the limit @ — 1 this linear graph is the mean field solution and it extends
all the way to the exact mean-field coexistence curve. At the same time the
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Figure 4.21: Isotherms showing — In(—v2Ine?) and —In(1 — y) as functions
of In(1— Ap?). At inverse temperatures 3 = 9,11.5, and 14, the solutions for
a =0,0.3,0.6,0.9, and 0.99 have been plotted. Dotted curves (a) and dashed
curves (b): Asymptotic behaviour at small densities Ap, for &« = 0 and o — 1,
respectively. Vertical lines (c) and (d) mark the densities corresponding to
exact phase coexistencies a = 0 and 1, respectively.

85



86 SCOZA

internal energy y (lower plot) is described by the Gaussian approximation
(4.93) (with z = 13(1 — Ap?)) outside the mean-field coexistence curve.

When v, — 0 (a 2 0.99) the SCOZA curves in Figs. 4.17 and 4.18 ap-
proach the mean field ones and at the same time the locations of the specific
heat maxima approach the mean-field critical point; 8. — 4, ¢, — 0, and
Y. — 0. The ratio between the SCOZA critical temperature and the mean-
field value T" = 1/4 is plotted in Fig. 4.22 as function of the inverse range
of interaction squared (4.76). Results to compare with can be found in [16],
in which Luijten et al. report a Monte Carlo simulation for an Ising model
on the square lattice with variable interacting range. In their model each
spin interacts equally strongly (J;; = J) with its z neighbors lying within a
radius R, (in units of the lattice spacing). By Eq. (23) in [16] their effective
range of interaction is

2y (i — T

R? =
2 i(#i) Jig

Iy 1
)i = > i — v, with 7 < Ry,
J(#)

Since R? gives the coefficient (4.15) in the Fourier series (4.14), and R? =
72 = 1 in case of nearest neighbor interactions (2 = 4, R, = 1), this
definition matches (4.76), R? = ~, 2. However, the shape of their potential
is different from our. Tables I and II in [16] contain critical temperatures

corresponding to values of R up to 1/7594/109 ~ 8.3 (or z = 436). In Fig.

4.22 these results are marked by crosses. The curves for T,/TM" versus 2
approach unity with a finite slope when 7, — 0. But a slight curvature
is seen all the way down to 7, = 0. This was first noticed by Mon and
Binder [33] who conjectured a logarithmic correction factor. However, the
early MC-simulations of Mon and Binder covered only values up to R ~ 3.7.
Indeed our results and the results of Luijten et al., for much more long-
ranged interactions, strongly suggest the presence of a logarithmic correction
term. See the inset in Fig. 4.22 where the dotted straight lines indicate the
asymptotic behavior

(1= T/T") /72 = a+bln~2, (4.95)

when 7, — 0. The numerical constants are a ~ 0.535 and b ~ —0.324 for
SCOZA, and a =~ 0.288 and b ~ —0.301 for the MC-data. Several perturba-
tion schemes [34] in the region around the mean-field critical point support a
shift of O(721n+?). Using renormalization theory Luijten et al. derive (4.95)
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Figure 4.22: The ratio between the critical temperature 7, and the mean-field
value TM* shown as a function of the inverse range of interaction squared
72. Circles: SCOZA results. Crosses: MC-data after Luijten et al. [16]. For
small 72 the dotted lines in the inset indicate a logarithmic correction to the
shift TMF — T, ~ O(2).
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by studying leading corrections to scaling. For the corresponding shift in the
critical internal energy we find the same asymptotic functional dependence
upon 7,. L. e., with y™* = 0, the normalized critical internal energy vy, is
given by

Ye/ 77 = ¢+ dlny, (4.96)

with ¢ ~ 1.91 and d ~ —0.319. At the same time £2/72 ~ 2.39 x 107® and
Cy. ~ 2.26 for small values of v, (Fig. 4.19). The values of ¢, d, and &2 /~?
agree well with the asymptotic relation (4.94):

eo= e = e (yy) T (4.97)

By this the numerical value found for £2/42 corresponds to ¢ ~ 1.92 and
d=—-1/m~ —0.318.

4.4.4 Effective critical behavior

Fig. 4.23 shows the magnetic susceptibility above T, for various interaction
ranges. In order to compare with the Monte Carlo results of Luijten and
Bléte [35] we have plotted the scaled susceptibility

X = X7, (4.98)
where oM 5
_ _ 2

as a function of the scaled temperature deviation
T =71/, (4.100)

where
r=(T-1T.)/T., (4.101)

Egs. (3.2) and (3.18). For large interaction ranges (« < 0.99) a data collapse
is seen. At high temperatures 7 > 1 (7 > 1/42), x ~ 3/4 ~ ./47 and the
curves approach straight lines with slope —1; x = 5./47. As v, — 0 these
lines gradually coalesce with the classical critical asymptote y = 1/7 drawn
as a dashed line in the plot. So far Fig. 4.23 looks almost identical to Fig. 4
in Ref. [35], in which interaction ranges 1.2 < R < 22 (0.7 2 42 2 0.002) have
been included. As SCOZA fails to give a critical point, x reaches a finite
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Figure 4.23: Scaled magnetic susceptibility x along the critical isochor plot-
ted as function of the scaled temperature deviation 7 (T' > T,). The « values
0,0.3,0.6,0.9,0.99,0.999,0.9999 and 0.99999 run from the top down and the
curves for a > 0.99 collapse. Short dashes: Mean-field critical asymptote.
Dash-dotted curve: Critical asymptote for the nearest neighbour Ising model
(slope —7/4). Long dashes: Ising-like critical asymptote obtained from MC-
simulations [35].

value and the curves in Fig. 4.23 become horizontal when 7 — 0. But before
this effect sets in, effective critical behavior resembling the exact critical one
is observed. 1. e., in a region around 7 ~ 10793, the effective critical exponent
v = —0log x/0log T is not very different from the exact exponent 1.75. (See
Fig. 4.24.) Furthermore we compare the magnitude of the susceptibility with
critical Ising asymptotes y = I'7~7/*. From Fig. 4 in Ref. [35] we find I" ~ 1.7
for the MC-data (all interaction ranges), whereas I' = 0.96258.. .. is known
exactly for the nearest-neighbor Ising model [36, 35]. It is clear from Fig. 4.23
that around 7 ~ 107%° SCOZA gives a slightly higher susceptibility than the
one given by the Monte Carlo simulations (dashed line). Fig. 4.24 shows the
effective exponents 7 calculated from the curves in Fig. 4.23. The dashed
graph is an average of the six different curves (R values) in Fig. 5 of Ref.
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Figure 4.24: Effective critical exponent v for the susceptibility curves in
Fig. 4.23. The a values 0,...,0.99999 run from left to right. The dashed
curve shows the unique (7, independent) crossover curve obtained from MC-
simulations [35].

[35], and shows the crossover from mean-field to Ising-like critical behavior
obtained from the strictly collapsed MC suceptibility data. The uncertainty
of this average graph easily amounts to as much as 0.1 units in the vertical
direction. Thus the collapsed SCOZA curves (a % 0.99) are consistent with
the universal MC-crossover for 7 < 1.

In analogy to Figs. 4.23 and 4.24, Fig. 4.25 shows the specific heat Cy
and the associated effective critical exponent o = —dlog Cy/0logT. (The
critical index « should not be confused with the interaction parameter « in
(4.75).) At high temperatures, 7> 1, y ~ $Cf (from (4.87) with z = 3/4)
and Cy ~ $Cf? ~ ==Cp2/7. This behavior gives straight lines with slope
—2 to the right in the upper plot of Fig. 4.25, and for large interaction ranges
(C'~~%/m and 3. ~ 4) these lines are given by Cy ~ 1/(27v272), 7 > 1/~2.
At the critical point Cy reaches a finite value whereas the exact Cy for the
nearest neighbor Ising model diverges logarithmically. (See the dash-dotted

lines in both figures for which 7 measures the distance from the ezact T..)
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Figure 4.25: Specific heat C'y along the critical isochor and correspond-
ing effective critical exponent « plotted as functions of the scaled tem-
perature deviation 7 (T > T.). The « values (interaction parameters)
0,0.3,0.6,0.9,0.99,0.999,0.9999 and 0.99999 run from left to right. Dash-
dotted curve: Exact solution for the nearest neighbour Ising model. Dashed
line: Asymptotic behavior v, — 0 for 7 > 1.
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SCOZA (with o = 0) approximates the exact solution very well for 7 <

107%% =~ 0.3 (compare Fig. (4.19)) and the saturation of Cy does not become
evident until 7 ~ 1072, As v, — 0 the curves in Fig. 4.25 collapse except at
the high-temperature asymptotes and an interval where Cy ~ 1/(277) and
the effective exponent « takes the Gaussian value 1, Eq. (3.21), opens up
outside the critical region. (See the dashed lines.) This result follows from
(4.93) if one replaces 1 — z with 7. It is clear that this behavior is only seen
for very large interaction ranges (72 £ 107°) for which the effective exponent
a =~ 1. Moreover the crossover from the Gaussian region to the critical one
is nonmonotonic. I. e., the universal curve for the effective o varies smoothly
from 1 to 0 but has a maximal value ~ 1.2 at 7 ~ 1. However this special
behavior develops continuously for increasing interaction range and may be
connected to the deviation between the exact nearest neighbor solution and
the one for SCOZA (with o = 0) close to the critical point. Since the internal
energy satisfies the exact high and low temperature limits (y = 0 and 1),
the specific heat integrates up to the exact value [;° Cy(8)dfS. Possibly,
with Cy ~ 1/(2n7) for 7 > 1 (7, — 0), the effective exponent « exceeds
1, 7 ~ 1, to compensate for the exact divergence, 7 < 1. The effective
critical behavior of the specific heat below T, is shown in Fig. 4.26. At low
temperatures C'y ~ iﬁ%_%ﬂ vanishes due to saturation Ap? — 1, Egs. (4.85)
and (4.86), for which the curves in Fig. 4.26 approach vertical asymptotes at
—7 = 1/92. As 72 — 0, SCOZA is accurately described by the mean field
outside the critical region. Hence a data collapse onto the maximal mean-
field value CF" = 3/2 (dashed asymptote (a) in Fig. 4.26.) is to be expected
in the region 1 < —7 < 1/92. But due to numerical limitations at low
temperatures, we were barely able to reach the maximum of C'y for o« = 0.999.
However a clear tendency towards a unique asymptotic solution ~, — 0 is
seen for our largest interaction ranges. Thus, for o 2 0.99 and —7 <1071, Cy
approaches a maximal plateau. And outside the “critical” region mean-field
theory seems to give a good description. (See the dashed curves calculated
for « = 0.9, 0.99, and 0.999.) In case of nearest neighbor interactions the
SCOZA result follows the exact solution closely for —7 2 1071,

4.4.5 The MSA solution

Also for the MSA one has €2 ~ 1 — 2z ~ ~2 at the critical point defined by
the SCOZA solution. This follows from z = 2P(z2) = 8/4 =1+ O(y*In~?),
Eqgs. (4.92) and (4.95). Via z(1 —y) = 1 — &2 and the asymptotic relation
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Figure 4.26: Specific heat (' along the critical isochor plotted as function of
the scaled temperature deviation 7 (T' < T.). The a values 0,0.3,0.6,0.9,0.99
and 0.999 run from left to right. Dash-dotted curve: Exact solution for the
nearest neighbour Ising model. Dashed curves: Mean-field solution for a =
0.9,0.99, and 0.999. Dashed line (a): Classical critical asymptote v, — 0.

(4.94) we therefore use

1
2(1+=72lne*)=1-¢°
m

(4.102)

to find the MSA solution e(x) in the limit 7, — 0. In order to have an

asymptotic (i. e. v,-independent) solution we introduce
&=/,

and one immediately realizes that

where

(4.103)

(4.104)

(4.105)
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Note that there is no natural choice of zero for Az since a shift Az — Az —a
does not bring us outside the critical region z = 1+ O(72 In~?). By inverting
(4.104) for large and small £2 one gets

L Aol 1< <y
g =

_ _ ) , (4.106)
emAw (1 — meTAT 4+ .. ) , ln’y? < Az < -1

respectively. These conditions follow from dropping higher order terms in
(4.102). In particular Az > Inv? stems from demanding the smallest term
kept to be dominant compared to the corrections of O(v2), Eq. (4.104). So by
neglecting the term &2 in (4.104), we obtain &2 ~ ¢™% at “subcritical” values
—1/7? < Az < —1, in agreement with the asymptotic behavior z — 1 and
v — 0 (Eqgs. (4.81), (4.84) and (4.105)). For large Az > 0 (4.106) reproduces
the classical critical asymptote &2 = Az in accordance with the Ginzburg
criterion (3.18). Provided that Az = 0 yields the dominant contribution to
the shift (4.95) for SCOZA (i. e. (1—1/z)7,? = —(1/7) In? corresponding to
b= —1/m), (4.106) shows that MSA is capable of renormalizing the first-order
y-expansion (diverging at x = 1) although Az = 0 does not correspond to a
critical point. With W (f) defined as the inverse function of f(W) = We"
(Lamberts W function [37]) and W, being the only (real) branch for f > 0,
the general solution of (4.104) is

1 _
=2 _ = TAx
&= W (rema). (4.107)
Correspondingly
1 1 11 1 Int—1 _
Cy SO f>1,  (4.108)

T 1+ Wolned) 27 2 2 T

for the specific heat along the critical isochor.

Beyond the classical result &2 = Az, (4.106) gives the leading deviation
outside the critical region. Assuming b = —1/7 and measuring Az relative
to SCOZA’s critical point, Az — Az — a,

- 1 _ -
&2 — Az~ ——InAzx —aq, 1< Ar < 1/92 (4.109)
m

In Fig. 4.27 we have shown the deviation (4.109) for SCOZA along the critical
isochor (Az = t) and critical isotherm (Az = Ap?). As the MSA gives the
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Figure 4.27: Deviation from the classical critical asymptote &2 = Az along
the critical isochor (Az = ¢ > 0) and critical isotherm (Azx = Ap?). Az
is measured from the critical point for SCOZA. Solid lines: SCOZA with
the same values « as used in Fig. 4.23. Endpoints at 8 = 0 and Ap? = 1
(circles) run from left to right for increasing . Short dashes: The asymptotic
behaviour (4.109). Long dashes: The asymptotic MSA solution (4.107).

same solution along either direction, the constant a in (4.109) effectively
increases for SCOZA along the critical isotherm. See Fig. 4.27 where the
two straight lines, representing the asymptotic behavior (4.109), have been
drawn with a = 0.583 (Az = t) and a = 1.23 (Az = Ap?). The exact value
of the constants b and d defined by (4.95) and (4.96) is in fact —1/7 for any
long-range potential 7. — 0 on the square lattice. This follows from the
MSA “critical” point 1 — z = const y?> — 0, and from (4.92), which gives the
exact result P(z) = 1— (1/7)y2In~v? + O(~?). See the proof in Appendix A.
With respect to the linear fitting performed on the SCOZA results one should
note that d ~ —0.319 is quite accurate while b &~ —0.324 (in combination
with a &~ 0.535) is less precise. On the other hand the straight line (4.95)
with @ = 0.583 and b = —1/7 = —0.318 intersects our leftmost (smallest ;)
point in the inset of Fig. 4.22, and this indicates that 42 typically has to be
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less than 10™* for the asymptotic result (4.95) to be valid. Presumably this
explains the somewhat inaccurate Monte Carlo value b ~ —0.301 (my own
fit) as 72 2 1072 for those data.

With the successful renormalization (4.105) and the energy-compressibility
relation (4.94) the energy route (4.48) leads to

BAp =2Ap (£+ %A_pQ 1 ln§2> : (4.110)
™

for the scaled chemical potential BAp = BAu/v? to zeroth order in 2,
In this way the mean-field phase coexistence is recovered outside the critical
region —t >> 2, or, more precisely, Ax ~ —2f > 1. Furthermore an irregular
thermodynamic behavior similar to the one found for the three-dimensional
MSA solution (Sec. 4.3.2) is obtained close to the critical point || £ 2. With
Az =T+ Ap’, Egs. (4.107) and (4.110) yield

_ 2 - 2 2 -
2t =2Ap" —Zmn (gApQ) ) (4.111)
m

for the coexistence curve SAp = 0. (Outlined in Appndix B.) Ap as a
function of ¢ has a branch-point at ¢ = [In(2/7) — 1]/7 ~ —0.46, Ap’ = 3/x,
analogous to the point £ = 1/2, Ap” = 3/2 in d = 3, Eq. (4.51). To recover
the mean-field result one must choose the outer branch W_; of the Lambert
function,

2 - 2 -
gApQ = — Wi [~(7/2)e"] (4.112)
Correspondingly it follows from (4.104) and (4.111) that
L, 29 9
£ = §A'0 = —2t+ =In(—2t) +---. (4.113)
m

To zeroth order in 72 the mean-field configurational energy gives a contribu-
tion Cyy = —%d(A_pQ)/df ~ 3/2 + (3/7)(—2t)~" to the specific heat. Sim-
ilarly Cyy = 5-dIng?/dt ~ —(1/7)(—2¢)~" comes from the excess part of
configurational energy along the coexistence curve. As found in d = 3, Eq.
(4.53), the Gaussian correction (3.21) to the simple mean-field term 3/2 in
the specific heat is positive. lL.e.,

11+ 3W_i[—(n/2)e]
C 2 1+ W[ (n/2)em]

3 2 1 -
— 4+ - 4 —f>1. (4.114
2 + (=2t ’ > ( )

Cv
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At the top of the coexistence curve (4.111) Cy (> 0) diverges. In fact the
leading behavior close to the branch-point is qualitatively equal to that de-
scribed by Eqs. (4.51)—(4.53) in d = 3.

It is evident from the SCOZA results shown in Fig. 4.27 that the log-
arithmic correction term follows selfconsistently from the MSA also along
the critical isotherm (MSA is fully thermodynamic selfconsistent along the
critical isochor). More specifically the energy route yields

o _ 1 (0BAp co 1.9 2

€ _2<8A_p )Ezo—Ap 7rlnAp 7r+~~~. (4.115)
Eq. (4.106) cannot account for the constant 2/7 ~ 0.637. As this term in fact
almost equals the height 1.23 — 0.583 = 0.647 between both sets of SCOZA
curves Az = Ap? and Az =t in Fig. 4.27, (4.115) demonstrates how close
the SCOZA is to yield a MSA-like phase coexistence (energy-route) just by
lowering the critical point ¢ — ¢ — a. With regard to selfconsistency the
situation along the coexistence curve BAp = 0 is exactly the same, and
the logarithmic term in the compressibility result (4.113) is reproduced by
22 = L95Au/05.

Unfortunately the numerical integration of the basic PDE (4.13) breaks
down before reaching the asymptotic regime® ¢ << —1. However, as outlined
in the previous paragraph we know that SCOZA will only have perturbative
effects upon the MSA solution in this region. To compare with the subcrit-
ical results obtained from the Monte Carlo simulations of Luijten et al. [35]
we therefore concentrate on the MSA solution. A special feature obtained
by these simulations is the nonmonotonic variation of the effective critical
exponent 7. I. e., 7' drops below the interval set by the mean-field and Ising
limits 1 and 1.75, respectively. (See Fig. 4.28.) This effect is well described
by the MSA solution. By lowering the critical point ¢ — ¢ — a, and taking
the logarithmic derivative of (4.113), we obtain

g 2w rma—t
s (—2t)

Whereas the correction term in (4.116) is dominated by the denominator
both for large and small values of —t, its sign is essentially governed by the
logarithm. At In(—2¢) = 2 — 7a, corresponding to — log,o(—t) ~ —0.17 for

> 1. (4.116)

8due to extremely small numbers which the computer cannot handle.
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Figure 4.28: Effective subcritical exponent ~' for the compressibility, shown
as function of reduced temperature ¢. Points with error bars: Monte-Carlo
results after Luijten et al. [35]. Curves: MSA solution (4.116) for a/ay. =
0.5,1,1.5 with o decreasing with increasing a. Here a,, = 0.288 is taken
from Fig. (4.22). +' varies nonmonotonically between the mean-field value 1
and the Ising value 1.75 for the MC-data.

the MC value a,,c ~ 0.288, 7' takes the minimum value 1 —2e™~2 /7 ~ 0.79.
From the MC-data shown in Fig. 4.28 it is clear that this is not a bad estimate
although higher order terms in (4.116) dominate for —¢ < 1. (See the solid
line drawn with a = ayce.) We have also plotted (4.116) with the values
a/aye = 0.5 and 1.5. Judging from the curvature seen for the MC-data in the
inset of Fig. 4.22, one should suspect the numerical value a,,. to be somewhat
high. With slope b = —1/7 the straight line with a = 0.215 intersects the
leftmost MC-point in Fig. 4.22. If so, a slightly better agreement between
the MSA solution and the MC points is obtained for —¢ 2 1. But inside the
critical region, —t S 1, where the MSA anyway becomes inconsistent, a worse
coincidence is obtained.

Also for the other effective critical exponents following from the MSA
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4.4 Calculations for the two-dimensional case 99

energy route, there will be deviations from the asymptotic mean-field value.
But only the exponents «, 7/, and v/ are pushed outside the “classical /Ising”
interval and hence show a nonmonotonic variation. For ¢/ this is obviously
so since 7' =~ 2/ in the critical region (72 ~ &% ~ 1 — 2z ~ 72, Eq. (4.16)).
Furthermore

1lnt+ wa — 2
e E L

t 1 4.117
s t ’ > 5 ( )

a=1+

follows from (4.108) and the shift ¢ — ¢ — a. With @ = 0.583 the truncated
series (4.117) gives an excellent fit to the tail of the collapsed SCOZA solution
¥, — 0 shown in Fig. (4.25). Its maximum point In¢ = 3—ma (log,, ¢ = 0.51),
a =1—€""3/1 = 1.10 does not reach the top of the SCOZA solution though.

As we have seen the size of the leading MSA deviations from the mean-
field behavior depend upon a. But their sign (direction) does not. The shift
a of the critical point depends upon details of the interaction as demon-
strated in Fig. 4.22. Therefore the MSA solution indicates that while the
nonmonotonic variation of a, 7/, ¢/, and the monotonic variations of the
other effective exponents, represent universal behavior, the shift of the criti-
cal point does not. With one exception® exactly the same indications can be
seen from the three-dimensional MSA solution in Sec. 4.3.2. However, with
a “nonmonotonic” minimum value 7' &~ 0.996 obtained from our SCOZA
results!® (72 = 1072 and 107?) it is clear that the influence of the MSA
is very different in d = 3. In renormalization-group theory effective criti-
cal exponents are viewed as smooth crossover functions linking the classical
and the Ising critical regime. Above the critical point several attempts have
been made to calculate crossover functions [38]. They all suggest that the
crossover behavior is universal. In discussing experiments on micellar solu-
tions (Ising universality class), corresponding to 7' > T, in our case, Fisher
[39] claims that nonmonotonic variations of effective critical exponents can
be incorporated in standard scaling.

90nly for a > 1/4 the effective exponent a exceeds the Gaussian value 1/2 in d = 3.
10T his effect is barely visible in Fig. 5 in I. Here the classical critical asymptote, repre-
sented by the lower solid curve, is intersected by the curve with 2 = 1073.
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4.5 Calculations for the one-dimensional case

4.5.1 Asymptotic relations

Also in the one-dimensional case we use the construction (4.75) to build up
long-range interactions. Thus, with I, = 1/v/1 — o? (Eq. (28) in Sec. IV of
IT), the range of interaction, v, !, is given by (4.76). But instead of measuring
in units of the effective nearest neighbor range we here multiply the right-
hand side of (4.76) by a factor 2 to keep the asymptotic form (30) in Sec. IV
of I. So with B defined by (4.78), we define

=0l % (4.118)
As z — 1, P(z) diverges as
1 1
P(z) = = B+0O(V1—-=z). 4.11
()= grg=+B+ (Vi=2) (4.119)

Repeating the manipulations performed in Sec. 4.4.2 here leads to
1
1—z= 771 —y) [1+2B+ 10—y +--], (4.120)

and
e = 373(1—@ [1+2B+ 1)1 —y)+-]. (4.121)

Therefore, unless 7, = 0, there will be finite corrections to z = (1 —&?)/(1 —
y) ~ 1/(1 —y) to all orders in 1 — y, Eq. (4.83). The other way around one

gets

1 1,1 1 1
1—y== 1——2—[1 2B= 0—]}. 4.122
y=-{1- 37 [1+2B_+0() (4122)

As shown in the appendix in II SCOZA gives the exact solution for nearest

neighbor interactions (y? = 2 and B = 0). From Eq. (A7) in II'!,

B/ B2

—2
VI-AZ “1-Ap

Hwhere 8 must be replaced with 3/4 in the present units.

1—yn~2 (4.123)

100



4.5 Calculations for the one-dimensional case 101

at low temperatures near the critical isochor Ap = 0. Due to the non-singular
relation (4.121) the PDE (4.13) can be linearized near y = 1 to yield

0¢ 2 282gb
in terms of the unknown function
¢=p(1-p)(1-1y). (4.125)

For the constant C, defined by (4.87) and used to calculate the second
virial coefficient (4.91), we have

1 1—aas 1
= - ~ —,. 4.12
¢ N1¥a — 1/ (4.126)

P(z) =1+ % (\/% - 1) z %+ O2) (4.127)

for small .. Aslong as 1 — z ~ 72, with 0 < p < 2, (4.127) leads to the

mean-field equation of state (compare the two-dimensional analogue in Sec.
4.4.2) and

Generally

2 \V1—-2

for the internal energy (4.79). Hence the asymptotic relation between the
compressibility €2 ~ 1 — z and y ~ v!7?/2 < 1 turns out as

1,1
2 ~ 2_

e R (4.129)
Furthermore this relation matches the bracket (times the prefactor ifyf) in
(4.121) to first order in 1 —y and lowest order in ~, (since B =1— 17, +-- ).

Le,withl—z>c¢q?and c< 1 (p=2),y is no longer small and
1 ,1—y

2 1 o

generalizes (4.129) by including the low-temperature behavior (4.121) at least

to order (1 — y)2. By some joinery

2~ ( il )2(1 —y) (4.131)

3%ty
also picks up the high-temperature relation (4.90) without violating (4.130).

y = L <# — 1) Y + O3, (4.128)

e (4.130)
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4.5.2 Numerical results

We start the numerical investigations in one dimension by studying the con-
figurational energy along the “critical” isochor p = 1/2. In Fig. 4.29 we
have drawn both the internal energy function (4.79) and the specific heat
per volume as functions of inverse temperature. The curves are calculated
for « = 0,0.3,0.6,0.9,0.99,...,0.9999999, and the crosses mark the specific
heat maxima (same notation as in Sec. 4.4). With a finite interaction range
the main qualitative difference compared with the two-dimensional situation
(compare Figs. 4.18 (upper plot) and 4.19) merely reflects the absence of
a critical point in one dimension. For SCOZA this means that the specific
heat varies very smoothly as function of temperature instead of displaying
a relatively sharp maximum. Moreover the low-temperature behavior shows
a continuous variation between the nearest-neighbor and the mean-field re-
sults, Eqgs. (4.123) and (4.85) (to leading order), respectively. This is shown
more precisely in the upper plot of Fig. 4.30 where the negative logarithm
of the small saturation difference 1 — y is plotted versus 5. The lower plot
in Fig. 4.30 focuses upon high temperatures. As a — 1 SCOZA approaches
the Gaussian approximation, Eq. (4.128) with z = /4, above the mean-field
critical point (8 < 4). (See the curve drawn with short dashes.) The essen-
tial features for the inverse compressibility along p = 1/2 are exhibited in
Fig. 4.31. Here we have plotted In(g%/~2) versus 3 to capture the asymptotic
behavior v, — 0 and the exponential decay at low temperatures implied by
(4.121). Below the mean-field critical point and in the limit & — 1, the
SCOZA result approaches the dashed curve calculated numerically from the
mean-field phase equilibrium y = Ap(8)? and (4.130). To zeroth order
in 7,, €2 ~ 1 — /4 above the mean-field critical point, giving rise to the
characteristic curves in the upper left corner of the figure.

The upper plot in Fig. 4.32 shows isotherms for both the inverse com-
pressibility €2 and the internal energy y at inverse temperature 3 = 10. With
a values 0, 0.3, 0.6, 0.9, 0.99, and 0.999, 2 and y are plotted versus 1 — Ap?
close to the boundary |Ap| = 1. The figure illustrates the continuous change
of the mean-field equation of state as & — 1. (See the dashed lines.) . e.,
g2 =1—(1—Ap*B/4 and y = 0 outside the intersections with the mean-
field coexistence curve Apy(f). More precisely, y is given by the Gaussian
approximation (4.128) with z = }(1—Ap?)S. (See the inset in the lower plot,
Fig. 4.32.) Inside Apy, e =0and y =1 — (1 — Ap3)/(1 — Ap?), Eq. (4.83).
In contrast to the low-temperature situation in two dimensions, [, for finite
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Figure 4.29: Internal energy y (upper plot) and specific heat per volume
Cy (lower plot), along the critical isochor, shown as functions of inverse
temperature 5. Solid curves: SCOZA corresponding to « values 0,0.3, 0.6,
and 1—-107", withn = 1,2,...,7. Short dashes: Asymptotic solution o — 1.
Crosses correspond to the maximum for the specific heat, running from right
to left for increasing «. Long dashes: MSA with =0 and o — 1.
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Figure 4.30: Internal energy y along the critical isochor, as function of inverse
temperature $. Notation as in Fig. 4.29.
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Figure 4.31: The inverse compressibility function 2 along the critical isochor,
as function of inverse temperature 3. Notation as in Fig. 4.29.

interaction ranges depends strongly upon density near the critical isochor
Ap = 0. In Fig. 4.32 this is seen as deviations from the dashed straight
line with slope 1 in the lower plot, representing the mean-field asymptote
—In(1 — y) =In(B./4) + In(1 — Ap?), with 8, = 4/(1 — Ap?). In particular,
we have 3, ~ 2¢%/*/\/T — Ap? for nearest neighbor interactions. Although
f = 10 is not a really low temperature for short interaction ranges (in the
lower plot the curve for a = 0 has slope ~ 0.46 at Ap = 0), the numerical
results suggest that 8, ~ (1—Ap?)~? with v varying continously between 1/2
and 0 as « takes values between 0 and 1. L. e., with K small (decaying expo-
nentially as function of ), put 1/x ~ K(1—Ap*)"~! (Eq. (4.83)) into (4.122).
For finite interaction range and density deviation Ap, the expression between
braces in (4.122) gives corrections to — In(1—y) = —In K+ (1—v) In(1—Ap?),
corresponding to a straight line in the lower plot in Fig. 4.32.

Indeed there exists a scaling solution

1—y~s (4.132)
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Figure 4.32: The inverse compressibility €2 and the internal energy y at
inverse temperature 3 = 10 plotted as functions of 1 — Ap?. For both quanti-
ties isotherms corresponding to « values 0, 0.3, 0.6, 0.9, 0.99, and 0.999 have
been drawn. Dashed lines: Mean-field equation of state obtained in the limit
a — 1. Vertical line (a): Intersection with the mean-field coexistence curve.
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4.5 Calculations for the one-dimensional case 107

with
2e~ /4

V1—Ap?

for the asymptotic SCOZA equation, Eqs. (4.124) and (4.125). Solving
(4.124) to zeroth order in Ap? one obtains for the index w a ~,-dependent
equation whose solution is

1
5= =2e P11 + §Ap2 + o), (4.133)

2

= —. 4.134
YT It Le (4.134)

Since putting 1 — y ~ s? directly into (4.124) (via (4.125)) makes the right-
hand side disappear (¢ ~ e #/2[1 4+ O(Ap*)]), (4.132)(4.134) demonstrates
how SCOZA produces the low-temperature behavior (4.85) in the limit v, —
0. Moreover w = 1 corresponds exclusively to 72 = 2 (nearest-neighbor
interaction). With an arbitrary value 7, this means that there is no possi-
bility of having a cross-over situation 1 — y ~ ¢;s + ¢55%, from mean-field to
nearest-neighbor behavior, as T'— 0. As mentioned above the curves in Fig.
4.32 have slopes (at Ap = 0) somewhat below those given by (4.132). The
deviations are typically 10%, 1%, and less than 0.1% when « is less than,
equal to, and greater than 0.9, respectively. Needless to say the thermody-
namically inconsistent MSA deviates severely at low temperatures as (4.132)
corresponds to 8, ~ e?/4[p(1 — p)]zv1.

4.5.3 The MSA solution

In Sec. IV of IT our treatment of the one-dimensional lattice gas with long-
range interactions reduces to calculating the pair correlation function at the
mean-field critical point. Starting with the MSA we now examine the equa-
tion of state outside the critical region.

From Eqs. (34) and (41) in IT it follows that 2 ~ 1 — 2 ~ 272/3~42/3 for the
MSA at the mean-field critical point. Using the asymptotic relation (4.129)
one therefore has

Yr 2
1——)=1- 4.1
w12y =1-2 (4.135)

analogous to the two-dimensional version (4.102). In terms of scaled quanti-
ties 22 and Az defined by
2 =22/ and Az =+3Ar=1-u, (4.136)
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the asymptotic equation for now reads
O (4.137)
5" .

For large and small &2 this gives

Ar[1+1807P 1087 . 1< An <1/
2 _ . . (4.138)

o [1+1A27+0(A27%)], —1/7f < Az < -1
T

respectively. At supercritical temperatures, 1 < < 1/7%/3, (4.138) is
identical to the exact result along the critical isochor Az =t =1— /4, Eq.
(22) in [40]. But along the critical isotherm Az = Ap?, 1 < Ap” < 1/~2/3,
the leading correction beyond the mean-field asymptote 2 = Az vanishes
in the exact solution. This can be shown from the first-order result (23) in
Ref. [40] for the equation of state in the one-phase region. Unfortunately
one has to go to O(?2) in the one-phase region (not reported) if higher order
corrections are to be found. Note that a systematic derivation of &(Ax)
beyond the asymptotic relation (4.129) used in (4.135) gives a ~,-dependent
term which dominates the contribution of O(A_x_g) when Az > 1/~15. 1. e.,
including the two leading v,-dependent terms, we have

_ 1 - - 1 - 1 -
&2 = Az 1+§AZE 3/2—57}/3A:p 1—§AZL' it

%77}/3A_x_5/2 + O(A_x_g/Q, VBAEY] . (4.139)
At the boundaries Az = &2 = 1/72/3 (8 = 0, |Ap| = 1) the v,-dependent
terms provide the pairwise cancellation needed.

As a final exercise we study the two-phase region implied by the energy
route. From Eqs. (4.48), (4.129) and (4.136) the chemical potential FApy =
BAp/7, becomes

/- 1 - 1
BAw =2Ap <t + gApQ + 2—5_) (4.140)

to zeroth order in v2/3. Via the solution £(Ax) of the cubic equation (4.137)
it can be shown that

2 2 9\ 1/2
—9f = §A,02 + (gApQ) (4.141)
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is the locus of Az = 0. With a branch-point at —f = Ap° = 3/2%/3 ~ 0.94
the outer branch

Ap = \/—735— %\/gﬁ + O(—2t)75/? (4.142)

matches the mean-field solution outside the critical region — > 1. Again
(compare Secs. 4.3.2 and 4.4.5) the asymptotic relation between the com-
pressibility and the MSA variable Az = £ + A_pz, in combination with the
locus for BAp =0 (Eqgs. (4.137) and (4.141)), implies the generalized mean-
field result &2 = %A_pQ. Hence

_ 1 _
2= 90— —— + O(=2t)72 4.143
e T +O=2) (4.143)

By analogy with the two- and three-dimensional treatments we find Cyo =
—%d(ApQ)/df ~ 3/2 + (3/4)(—2t)7%/% and Cy, = —1d(e7h)/dt ~ —(1/4)
x (—2t)73/% along BAu = 0. Altogether

3 1 _ _
Cy=-+-——aps +O0(=2t)% —t>1. 4.144
Correspondingly we obtain
11 P
CV: gm-FO(t) y t > 1, (4145)

which agrees both with the exact result'? [40] and the numerical solution
obtained for SCOZA. However, for —t > 1, the exact result becomes
3 1

Cy =% -

1
_—— 4.146
3 T A(=2n)pr " (4.146)

This result follows from the MSA if one drops the contribution due to the
deformation of the mean-field coexistence curve (the second term in Cyy), or,

equivalently, if one only uses the simple mean-field result A_p2 = —3t to cal-
culate both contributions Cyy and C'y. With some knowledge of the solution

12Tn Ref. [40] Ac, is given per particle and the specific volume at the critical point I, = 3
in our units. To compare with our Cy one must divide A¢, by 3kp. Furthermore vy and
13 correspond to our —t and %A_p2 (since mean-field coexistence curve is 4v, = I3 in the
continuum case).
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of the Kac integral equation in the critical region this result should not be
unreasonable. I. e., in zeroth approximation the van der Waals equation plus
the Maxwell rule appears exactly without any “deformations”. But higher
order perturbations are extremely weak for —¢ > 1, although sufficient to re-
move the zeroth order phase transition. (See Sec. Il in [40].) For instance the
specific heat becomes extremely flat inside the mean-field coexistence. I. e.,
for fixed £ < —1, Cy = Cy(Ap = 0) — %\/—_273(::Xp[—(—2t_)3/2]A_p2 + -
This means that the MSA cannot handle the corrections to the mean field
quantitatively correct and the price to pay is that even the sign is wrong. In
one dimension there is no critical point and (4.146) smoothes out the discon-
tinuity which follows from the mean-field equation of state (the step from 0
to 3/2 at T.) whereas the MSA (4.144) sharpens it. To see the thermody-
namic inconsistency connected to this inaccuracy compare (4.143) with the
energy route result

5‘2=1<—85%"> = 2+
2\ 0Ap FAp=0

One should also note that along the critical isochor &2 = %8@/6&% =
t + 1/(2£), which is identical to the compressibility equation (4.137). But
close to the critical point £ = 0 things get inconsistent outside Ap = 0 and
the MSA becomes inaccurate.

‘ —
I

+ O(—2t)7% (4.147)

W~ ot

—2t

4.5.4 Effective critical behavior

In Fig. 4.33 we have plotted the relative deviation from the classical critical
asymptote £2 = Az along the critical isochor (Az = t) and critical isotherm
(Az = Ap?). Az measures the distance from the mean-field critical point. As
it turns out numerically SCOZA gives the same leading ~,-dependent term as
the MSA (4.139), $7/% has been added to £% in the ordinate. Thus we avoid
using £2/Ax —1 which becomes negative along the critical isotherm for A_pQ R
1/(v/2~Y). 1. e., for the asymptotic (7, — 0) solutions (€% + 37}/%)/Az — 1
we find ~ 1773/2 and ~ i(A_pQ)_?’ along the two directions. (See the dashed
lines in the figure.) This means that &2 ~ Ap’ + iA_p_4 along the critical
isotherm when 1 < Ap° < 1/416. Hence SCOZA agrees with the exact
results mentioned in the previous subsection. The other advantage of using
the ordinate in Fig. 4.33 is that the endpoints (circles) at § = 0 and |Ap| =1
lie on the asymptote (Az = t) for the critical isotherm. To be specific
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Figure 4.33: Relative deviation from the classical critical asymptote &2 = Az
(see the text) along the critical isochor (Az = t) and along the critical
isotherm (Az = Ap?). The curves are calculated with o = 1 — 10~ where
n=0,2,4,...,12. Circles: Endpoints at f = 0 and |Ap| = 1, running from
left to right for increasing n. Dashed lines: Asymptotic behaviour in the
limit @ = 1 (7 — 0).

(62 + 123 JAx —1 = LA2™? = Ly, for 22 = Az = 1/72/%. To fulfill the
boundary conditions the critical isotherms are almost horizontal close to the
endpoints. So &2 ~ (1 + %’yr)A_p2 — 194/ for Ap’ > 1/413. At the critical
point &2 — a?, v, — 0, with a ~ 0.756 (Eq. (42) in II). This correponds to
the dashed line 21na — In Az in the upper left corner of Fig. 4.33.

With respect to thermodynamic selfconsistency the leading correction
term along the critical isotherm follows from the MSA solution. It is readily

seen that each order in Az %% = A_p_?’ beyond the leading mean-field term
in the compressibility (4.138) corresponds to a term of order one higher via
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the energy route. E. g., by dropping the 7,-dependency in (4.139),
9 . 1 - 30 1o 3
corresponds to the superior energy route result

o 1 (0B8AR - 3 3 15 —9p
2:— _ :A 1 — —_ — ) .
2= ( o >t-:o x( + IR R (4.149)
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Chapter 5

Summary

We have applied the thermodynamically self-consistent Ornstein-Zernike ap-
proximation (SCOZA) to lattice gases with attractive pair interactions of
arbitrary interaction range.

In the case of nearest neighbor interaction in three dimensions the SCOZA
yields remarkably accurate predictions for the overall thermodynamics, the
critical point, and the phase coexistence. Its critical properties are such
that the equation of state does not scale in the standard way. Above the
critical temperature the critical exponents are those of the mean spherical
approximation &« = 0, v = 2, and 6 = 5 while below they are o/ = —1/10,
g =17/20, and v = 7/5. Away from the critical point one obtains effective
critical exponents consistent with experimental ones. Likewise the deviation
from scaling also seems to be a feature of real systems. This is demonstrated
by comparison with experimental data for COy where by closer inspection
one finds that different isotherms lie on different curves in a scaling plot.
In two dimensions SCOZA does not give a critical point. But the deviation
from the Onsager solution is only appreciable close to the exact critical point.
However, the sharp maximum of the specific heat along the critical isochor
may be identified with the location of the critical point. Compared with the
Onsager solution this maximum is less than 0.3% away from the exact critical
temperature. Also the extrapolated index 7 is near the exact value 7/4. For
nearest neighbor interaction in one dimension the SCOZA is exact.

As a function of inverse range of interaction vy the critical region has an
extension that agrees with the Ginzburg criterion. In the limit v — 0 the
SCOZA solution describes a unique crossover from mean-field to SCOZA-like
critical behavior. However, for larger v there is not a full crossover to mean-
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field exponents, consistent with more recent analysis. Similar results, also in
agreement with MC simulations, are found in 2 dimensions, and likewise in 1
dimension, comparing with exact results in the latter case. To leading order
in v the shift of the critical temperature compared to the mean-field limit,
agrees with previous estimates. Far away from the critical point the mean
spherical approximation gives the leading deviations from the simple mean-
field behavior. In two dimensions this leads to a nonmonotonic variation
of the effective critical exponent «' for the susceptibility below the critical
temperature. This effect agrees well with the one originally observed in MC
simulations.

The SCOZA yields an accurate equation of state over the whole tempe-
rature-density plane, and is not restricted as to dimensionality or any specific
type of interaction.
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Appendix A

Exact result in two dimensions

In this appendix we show that for any long-range potential (v, — 0)

@(k):1—1<5>2+-~ (A1)

4\,

on the square lattice, the leading correction to the mean-field result P(z) = 1
(integral (4.7)) is given by

1
P(z) =1 — =»2In~2 + const 2 + O(v}), (A.2)
™

when
1—2z= O(fyf). (A.3)

7! is the range of interaction in units of the effective range for the nearest

neighbor interaction (Eqs. (4.75) and (4.76) with ¢ (0) = 1/2).
Following the same line of reason as in Sec. 4.2.2 for the integral I(£) we
then have

z 1 dk
P(z) -1~ A4
(2) 1—2(2m)?2 1+ e2k? (A4)
k<ko
with

€2 =4(1 - 2)72 (A.5)

For (A.4) to be a good approximation we must have
B> (1- 22, (A.6)
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Without specifying the cut-off kg, we have

P(z)—lzl %?lnl

k2 /4
VA O/

(1 - 2)

This result is essentially (4.77) for the limit z — 1, and higher order terms
like (4.82) are needed for (4.77) to be consistent with the ,-expansion (4.92).
Such corrections are beyond the scope of this simple calculation. To extract
merely the leading contribution (A.2) one must shrink the cut-off &y without
violating (A.6). For small values of 7?2 this is carried out by choosing

] +0 (v(1 = 2)/K3) . (A.7)

k3 = const (1 — z). (A.8)
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Appendix B

The MSA phase equilibrium in
two dimensions

In this appendix we show that
2 -5 2 2 _ o
o= SN2 2 (—A ) B.1
S = —In(3Ap (B.1)
is the locus of the phase equilibrium
_ 1 - 1
I+ -Ap' = =Ine (B.2)
3 T

for the two-dimensional MSA (4.110).
Taking the logarithm of 7 times (B.2) and inserting for the solution
(4.107) we have

Y = Wy(X), (B.3)
where
X =mexp [We”(ﬂd”z)] and Y = mexp [we”(ﬂéd”z)] : (B.4)
From the definition of Lamberts W function
X=Ye" (B.5)
or
X =mhY+Y. (B.6)
Inserting for X and Y and deleting the common factor r,
%A_pQ = exp [71’ <t_+ %A_p2>] , (B.7)

from which (B.1) follows.
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The self-consistent Ornstein—Zernike approach (SCOZA) is solved numerically, and its properties
in the critical region are investigated for the lattice gas or Ising model in three dimensions. We
especially investigate how critical properties depend upon the inverse range of interaction. We find
effective critical indices that depend upon this range. However, the SCOZA does not fulfill scaling.
Nevertheless, comparing with experimental results for fluids and magnets we find good agreement.
Away from the critical point we find that SCOZA yields deviations from scaling that seem similar
to experiments. © 1998 American Institute of Physics. [S0021-9606(98)50211-5]

I. INTRODUCTION

Recently Dickman and Stell succeeded in numerically
solving the self-consistent Ornstein—Zernike approach
(SCOZA) partial differential equation such that a well-
defined solution was also obtained below the critical tem-
perature T, where one has phase coexistence.! They consid-
ered the Ising model or the equivalent lattice gas in three
dimensions with nearest-neighbor interactions. A striking
feature of their results was the accuracy with which the best
estimates for Ising model thermodynamics were approxi-
mated for the three possible types of cubic lattices. This ac-
curacy is present both in the values of T'., which were within
0.2% of such estimates, as well as the general behavior in the
critical region with effective critical exponents close to the
best analytic estimates.

The critical region has been an especially complicated
region to treat more accurately by statistical mechanics. Usu-
ally theories have been restricted to various types of mean-
field or Van der Waals-like theories. In this way density
fluctuations that are important and crucial in the critical re-
gion have been neglected. Thus mean-field theories are most
inaccurate in this region, and they are in no way able to
capture the singular behavior experienced by thermodynamic
quantities as the critical point is approached. This singular
behavior is again connected to the correlation length that
grows to infinity.

New insight and major progress towards understanding
the mechanism of critical behavior was obtained by Widom?
and Kadanoff® by introduction of homogeneity from which
the well-known scaling relations followed. Further on, renor-
malization group methods were introduced by Wilson,* after
which Wilson and Fisher’ showed how quantitative predic-
tions of critical exponents could be obtained as expansions in
4—d where d is dimension.

However, globally more accurate treatments of systems
at thermal equilibrium have been less developed. But some
work has been performed as was done by one of the authors
in his thesis.® This work was based on the vy ordering for
long-range forces that was used by Hemmer’ and by Lebow-
itz er al® to obtain corrections to the well-known Van der
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Waals equation of state for fluids. From this study it became
clear that corrections to mean-field theory (or here a three-
dimensional version of Van der Waals equation) beyond the
usual high-temperature contribution were relatively small ex-
cept in a region around the critical point where corrections
due to the finite range of interaction would be crucial. A
noteable problem with the critical point is its singular nature
such that corrections to mean field tend to diverge. To some
extent this was rectified by a resummation or renormalization
of the leading contribution beyond mean field. In this way
results that quantitatively compared well with experimental
results for Ar were obtained using the Lennard—Jones poten-
tial. However, close to the critical point remaining thermo-
dynamic inconsistencies were crucial in the sense that iso-
therms became ‘‘irregular’” by which, for instance, the gas—
liquid phase equilibrium no longer remained well defined.
But nevertheless, extrapolation of results towards the critical
point indicated a critical index B~ 1/3 for the phase equilib-
rium while the one for the critical isotherm was 6~S5.

For the lattice gas it later became clear® that the re-
summed 7y ordering above was essentially the MSA (mean
spherical approximation). Thus the critical properties were
those of the MSA. However, the MSA result is less satisfac-
tory in the latter case with nearest-neighbor interaction. In
the view of the above analysis this can be understood from
the correction to mean field. For the Lennard—Jones fluid the
lowering of T, was less than 10% compared to the 7. from
the high-temperature result while the lattice gas case yields a
lowering of 34% for the simple cubic lattice. That is correc-
tions and thus inconsistencies will be considerably larger in
the latter case.

The MSA for fluids and modified versions of it were
studied extensively by Chandler er al.,>”'? and accurate re-
sults were obtained outside the critical region. However,
critical properties remained mean-field-like. This is the case
with MSA for continuum fluids which is thermodynamicly
inconsistent in such a way that the divergence of the corre-
lation function will take place inside the two-phase region
from the energy route and not at the critical point itself.
Further various integral equations methods have been devel-

© 1998 American Institute of Physics
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oped and refined to describe fluids.”> Héye and Stell then
proposed to apply thermodynamic self-consistency in con-
nection with the MSA solution for fluids.'* Further they fully
developed equations necessary for solving the self-
consistency problem. Preliminary numerical results sug-
gested that the SCOZA approach might yield rather accurate
thermodynamic results,'> which recently was verified.! The
high accuracy actually found may be surprising. But as ar-
gued by Héye and Stell'® there is reason to believe that this
accuracy partly can be connected to the fact that in three
dimensions the critical index # for the correlation function is
close to zero. Thus the spatial dependence of the assumed
MSA form of the correlation function is close to the exact
correlation function too. So the main defect of the MSA
itself is apparently its thermodynamic inconsistency which is
remedied by the SCOZA.

Recently another theory of global accuracy has also ap-
peared. This is the hierarchical reference theory (HRT) of
Parola and Reatto.!”® This theory is based on renormaliza-
tion group ideas that build in scaling, but is not self-
consistent in our sense. However, it results in a similar nu-
merical problem of solving a nonlinear partial differential
equation of diffusion type.

In view of the accuracy of the results obtained' we found
reason to believe that SCOZA will yield accurate informa-
tion about properties in the critical region too as there is not
much room for corrections due to higher-order perturbing
terms. As is already clear, the SCOZA will not yield exact
critical indices very close to the critical point. However,
away from this very small region there seems to be an effec-
tive critical behavior near the exact one as reported.! One
purpose of this work is to investigate this more closely by
performing more accurate and detailed evaluations especially
in the critical region. Another purpose is to investigate the
effect upon critical properties when varying the range of in-
teraction. According to vy ordering, results should be more
accurate and reliable the smaller the inverse range of inter-
action is.

In view of standard scaling theory we understand that
critical properties are expected to be independent of the
range of interaction, i.e., they are universal. However, the
preliminary SCOZA results indicated that effective critical
exponents were sensitive to interaction range. For example,
by comparing the results of Refs. 1 and 15 one got an indi-
cation that the effective supercritical index vy for the inverse
susceptibility had such a behavior as results obtained dif-
fered. Also some previous unpublished numerical work by
one of the authors in connection with a student project indi-
cated the same."” In this latter case the continuum fluid with
Yukawa interaction whose range could be varied was con-
sidered. By the more precise and accurate evaluations per-
formed here we actually find such a dependence upon the
range of interaction. This sensitivity to interaction range for
effective exponents may be related to the expected crossover
behavior as one approaches the critical point, with the cross-
over occurring at a ‘‘Ginzburg temperature’’ that depends
upon the sixth power of the inverse potential range y, .22
That is, inside this crossover temperature which turns out to
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be very small, our results indicate universal behavior while
outside effective critical exponents vary.

In Ref. 15 the presence of scaling solutions of the
SCOZA were shown. However, the results of Ref. 1 were not
in accordance with these as the index y approached the MSA
value 2 and not the scaling value 1 close to T,.. Thus the
boundary conditions of the SCOZA are in conflict with the
family of possible scaling solutions. Later analytic work by
Héye er al.** shows the presence of a solution with index y
=2 where scaling is not present. What seems to happen is
that the true solution approaches the trivial scaling solution
that does not contain temperature and is thus nothing but the
critical isotherm near the critical density.

In Sec. II we sketch the SCOZA theory, and in Sec. III
we discuss the numerical method. In Sec. IV we discuss
numerical results for critical indices while in Sec. V results
for the equation of state and its deviations from scaling are
discussed. We have evaluated the various critical indices for
thermodynamic quantities and our results are presented in
the figures. The indices, defined as slopes of curves in log-
log plots, are evaluated for various ranges of interaction.
Also the equation of state with scaled variables is evaluated
and then compared with experimental results for fluids and
magnets. Although SCOZA does not scale it turns out to be
close to scaling in the part of the critical region usually cov-
ered by experimental results. This is also the region best
described by effective exponents. In fact a closer examina-
tion of the experimental results indicate a similar deviation
from scaling. That is the nonscaling properties of SCOZA
seem to describe the exact behavior in a way that goes be-
yond previous descriptions. However, deviations from and
corrections to scaling are nothing new as considerable effort
has been devoted to this to describe properties close to the
critical point.?>** Furthermore, crossover has been studied by
Fisher® and by Bagnuls and Bervillier”® using renormaliza-
tion group methods while Anisimov et al.*” have used a phe-
nomenological approach, Mon and Binder®® have performed
Monte Carlo simulations, and Parola and Reatto'” have used
a liquid-state theory.

Il. THEORY

As mentioned in the Introduction SCOZA builds upon
the MSA by combining it with thermodynamic self-
consistency where one can utilize the thermodynamic rela-
tion

aBx~") 3 (pu) W
B ap*

where px~! is the inverse compressibility dp/dp. Here 8

=1/kgT, p is the pressure, p is the density, and u is the

average energy per particle which has a contribution of

mean-field form uy=—(g/2)p and a contribution from cor-
relations u .
u=uptu. (2)
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Here we incorporate the coordination number ¢ as used in
Ref. 1. For the Ising model p, x !, pu, and pu are replaced
by %(ler), JdH/dm, U, and U():*(I/Z)m2 as done in
Ref. 15.

For an interaction — ¢(r) the SCOZA pair correlation
function 4 (r) has Fourier transform

- 1
+ =—
14 ph(K) = T— ()
where the direct correlation function ¢(k) is assumed to be
of MSA form

&Ky =co+e P(k). 4)

Equation (3) is nothing but the Fourier transform of the usual
Ornstein—Zernike equation. Approximation (4) for ¢(r) or
its Fourier transform ¢(k) is of Ornstein—Zernike form as-
suming ¢(r) to be of a range corresponding to the range of
the potential. (This relation to Ornstein—Zernike? theory ex-
plains the name SCOZA of our approach.) At the same time
we utilize the MSA form to define ¢(k) explicitly except for
¢, which is determined by thermodynamic self-consistency
via Eq. (1) that yields Eq. (12) below. As in Ref. 1 we nor-
malize (r) such that $(0)=g. The core condition
h(0)=—1 then implies

1 -
17p:(27)3[(1+ph(k))dk: e, P ®)
where
1 dk
= - 6
P(z) (sz -z (kg ©
with
_pcig gp(1—p)ey
= l—pcy  P(2) ?

From the pair correlation function one can now obtain
the equation of state in two different ways. First the internal
energy due to correlations becomes

_ 1 1 e ~
PNE TS Ty f (p+p~h(k)) (k) dk

=—qp(l—p)F(z), (®)
where by use of Egs. (5) and (7)
P(z)—1
F(z)= 2P0 ©)

Second, from the compressibility relation we further get

—1_1 _ _ e
Bx = (1—00(0))*m, (10)
where with (5) and (7) [¢(0)=cy+qc,]
e€=(1-z)P(2). (11)

The SCOZA partial differential equation now follows by in-
serting (8), (2), and (10) into (1) to obtain
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9€* a
ﬁ—*qp(lfp) 1+ﬁ—pz[p(1*p)F(2)] . (12)
The solution of this equation along with relations (6),
(9), and (11) will determine the parameter ¢, in Eq. (4) and
all other quantities of interest in Eqs. (2)—(11) above. This
also includes the pair correlation function 4(r) [or ﬁ(k)] in
Eq. (3). Note that the whole influence of the pair interaction,
besides the mean-field piece 1, goes via the function P(z)
as given by Eq. (6) which is not restricted to dimensionality
three as studied here.

lll. NUMERICAL SOLUTION

The preliminary SCOZA results reported by Héye and
Stell in Ref. 15 were limited to supercritical temperatures as
the problem of going below the critical temperature T,
turned out to be nontrivial. The SCOZA equation is math-
ematically equivalent to a highly nonlinear diffusion process
which becomes seriously instable by numerical solution
when one tries to go below T'.. The reason is that the € in
Eqgs. (10) and (12) goes towards zero at the critical point and
continues to stay at this value along the on beforehand un-
known spinodal curve below T'.. Close to €é=0 the F(z) is
linear in € (not €?) due to the singular nature of integral (6)
when z—1. From Eq. (12) this means that one will have a
diffusion constant D~1/e— which creates numerical
problems along an unknown curve, inside which the equation
will be invalid.

Originally we started our numerical work by using the
form of the SCOZA equation established in Ref. 15. There a
quantity S, that is essentially Helmholtz free energy, was
used as the quantity to solve for. In terms of S the € used
here is essentially its second derivative 3*S/dp>. By numeri-
cal differentiation errors in S amplify seriously when one
also takes the square root to obtain € near the spinodal €
=0. Although we otherwise developed a stable numerical
procedure the determination of the spinodal did not stabilize
as far as we went. In the meantime the numerical results of
Ref. 1 were obtained. The crucial step taken in this work was
to use Eq. (1) as basis for the SCOZA equation instead of
relating u and x via Helmholtz free energy and its deriva-
tives. In this way the € comes out directly from solution, not
via a second derivative, and the determination of the spin-
odal é=0 becomes a stable procedure, although care has to
be shown.

The numerical procedure used in Ref. 1 was not stable
unless very small steps in B direction were used. To rectify
this Pini developed an unconditionally stable, accurate, and
efficient numerical procedure based on previous experience
in related work using a predictor-corrector method.'®3* Qur
continued work is thus based directly upon programs devel-
oped by Pini. Then we solved Eq. (12) with respect to pu; as
given by (8) expressing other quantities in Sec. II including
the derivatives of Eq. (12) in terms of it by numerical tabu-
lation in the general case. [However, pu, and € are essen-
tially the same and no separate tabulation is required when
using expression (13) below.] To obtain accurate results
close to the critical point we had to show special care in
order to keep accuracy high.
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2.0

logyyt

FIG. 1. Effective critical index y for the susceptibility along the critical
isochor versus log, t where t=1—T_/T. The different curves correspond
to . values 1073, 1072, 0.1, 0.2, 0.3, 0.34, 0.4, 0.5, 0.6, 0.7, and 0.8,
respectively, starting with the lower dashed curve for 1073, The solid line
y=1 is the mean-field result y,—0 (i.e., we used yf=10_5 to run the
program). In Figs. 2—6 below the same set of yi values (including y,—0)
and corresponding dashed curves are used. (The 7y, is the inverse range
parameter.)

The properties of the function F(z) follow from the in-
teraction and depend crucially on its range and dimensional-
ity. With inverse range 7, the latter can be written as ¢(r)
= yff( v,r). Its Fourier transform is zZ(k) =f(k/7,,)=a
—b(k/y,)>+-- in the continuum case. In the lattice case
this will be modified slightly as integration is replaced by
summation. Inserted in (6) this lz;(/() (l:/;(O)/q= 1) by inte-
gration yields F(z)~P(z)—1= yf(A —Be+--+) for small
€—0 or z—1 in three dimensions. (The quantities a, b, A,
and B are constants.) Thus to simplify during the greater part
of our work we approximated the internal energy function
(8) by

F(z)=37,(1-e). (13)

Here and below we write 7y, for the inverse range of inter-
action to distinguish it from the critical index y. Via (9) this
function approximates integral (6) for P(z) and yields the
proper form of its singularity near the critical point at €
=0. In addition it immediately incorporates the inverse range
of interaction vy, , the effect of which upon critical properties
we want to study. It can be noted that vy, is the same as the
range parameter 7y introduced by Uhlenbeck er al.>' in their
works on one-dimensional systems using the Kac potential
ye~ ™ to obtain a model that is exactly solvable in the form
of an integral equation that was analyzed obtaining Van der
Waals equation in the limit y— 0. This parameter y was then
also introduced in the more general situation considered in
Refs. 6-8.

One might think that the precise form of F'(z) would be
important. But from previous analysis of y ordering6 and
preliminary numerical work by Pini** we had reason to be-
lieve that this was not the case. However, in the present work
we also performed detailed SCOZA computations to evalu-
ate effective critical indices using the correct P(z) for
nearest-neighbor interaction on the SC lattice as done in Ref.
1. And in accordance with the above assumption the results
were near those with y>=0.34. By near we mean that with
the choice 'yf:O.3405..., which gives the SC value P(1)
=1.516..., the critical temperature was nearly the same
(0.7% deviation) and corresponding curves for the various
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FIG. 2. Effective critical index & for the critical isotherm versus log;,Ap,
where Ap=|(p—p.)/p.|(p.=1/2) (notation as in Fig. 1).

critical indices were essentially the same. (For example, in
Fig. 1 the curve for v in the SC case was shifted about a
distance 0.2 to the right of the 'yf =0.34 curve for t=<0.1 and
the minimum value for y was lowered about 0.03. On the
other hand it nearly coincided the 'y§= 0.4 curve in the same
region.) Doing the same for the BCC and FCC lattices gave
essentially the same results for the indices although a some-
what smaller 'y? would be more appropriate to yield the cor-
rect T,. That is, details of the pair interaction have minor
influence compared with its range, and with respect to criti-
cal properties there will be no influence in the qualitative
sense. Thus to investigate how effective critical indices de-
pend upon 'y? we kept form (13). Clearly it is possible to 7,
parametrize the correct nearest-neighbor function too.>? But
we did not do so here as this will not change our conclusions
as just argued.

IV. NUMERICAL RESULTS

Above T, evaluations were relatively straightforward to
perform with high accuracy. For the critical indices y and &
for the susceptibility at critical density and the critical iso-
therm, respectively, the asymptotic values 2 and 5 were eas-
ily verified.!*> However, away from the critical point one
finds effective values and these vary with the 73 parameter,
as can be clearly seen from Figs. 1 and 2. Here and below
effective critical indices are defined by the logarithmic de-
rivative of the quantity in question. That is, «
=d(log C,)/«log 1), 8= d(log(p,—p1))/dlog Ap), etc. where
C, is the configurational specific heat, and p, and p; are the
pressures on the critical isotherm at densities p,=p.(1
+Ap) and p;=p.(1—Ap), respectively. For example, the
curves for 7y typically each have a minimum that defines an
effective exponent that dominates the critical region except
very close to T';, i.e., the effective exponent dominates when
=102 for 'nyO.34 that is near to the Ising model with
nearest-neighbor interaction. Here r=1—T,/T for T>T,
while for T<T. we use t=1—T/T.. As in Ref. 1 we find y
near 1.25 in good agreement with best estimates. Here we
find it interesting to note that the best estimate y~1.25 co-
incides well with the dominant effective SCOZA vy for
nearest-neighbor interaction (or 7,3. ~(0.34). However, when
'y? is changed the effective y changes too. Thus we find
reason to ask ourselves whether this latter nonuniversal be-
havior is accidental or will estimates for more long-ranged
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0.4
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logygt

FIG. 3. Effective critical index « for the specific heat along the critical
isochor versus log), ¢ where 1=1—T_/T (notation as in Fig. 1). (Note a
=1/2 in the mean-field limit as long as 75 is kept finite by which configu-
rational internal energy ~y2 is finite.)

interactions also follow effective SCOZA values. As far as
we can understand this feature has not been investigated,
although the universality hypothesis will say that the true y
is fixed. The situation is similar with the exponent & as seen
in Fig. 2.

In view of the accuracy of SCOZA as shown in Ref. 1
we find reason to expect that this nonuniversal behavior
away from the critical point is part of the exact behavior as
discussed in Sec. V. But as we do not know about indepen-
dent investigations in this respect we cannot check to which
extent the SCOZA results are correct. Although this behavior
is a type of correction to scaling we do not find it directly
comparable to previous work.?>>*

In the way Fig. 1 (and other figures) are presented one
may ask why a value of y close to the minimum of the curve
can define a dominant effective exponent. The reason is that
it represents a stationary point of the slope of the suscepti-
bility versus ¢ on a log-log plot. And restricting the latter to
the region 10”*4<r<1 as done in Ref. 1 one sees almost a
straight line that curves somewhat on the end. (That is, y
~1.25 is restricted to 10" 2<r<1.) Our computations have
been made accurate much closer to the critical point, how-
ever, to capture crossover phenomena for varying 73 and to
obtain the SCOZA limiting values that we find independent
of 'yf. Due to this the tiny region more or less unattainable
by experiments covers a dominating part of our figures when
using logarithmic variables while the easily attainable region
where effective exponents vary with yf, is less dominating.

loggt

FIG. 4. Effective critical index S for the coexistence curve versus logq ¢
where 1=1—T/T, (notation as in Fig. 1).
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logygt

FIG. 5. Effective subcritical index " for the susceptibility along the coex-
istence curve versus logy, ¢ where 1=1—T/T, (notation as in Fig. 1).

Note that as one might expect, the effective exponents
change smoothly into the mean-field behavior as y,—0.
How this ‘‘crossover’” to mean-field behavior takes place
more precisely can be seen from the figures. However, for
small yf one generally has MSA behavior for rz(‘('yf)2
where ¢ is a constant (T>T,). Typically the effective MSA
exponents change with ¢ and they become the mean-field
ones as ¢ increases. For t>C('yf)2 we expect this MSA be-
havior to be close to the exact result. But for 150(72)2 the
MSA will be too inconsistent, and modifications from
SCOZA become important. These latter, however, are not
exact either, but we expect them to represent the exact be-
havior well as was demonstrated with nearest-neighbor
forces.! The condition I‘Sc(yf)2 is also in accordance with
the Ginzburg criterion that tells that crossover from mean-
field behavior takes place when entering this region.zo‘22
Crossover from mean-field behavior to limiting SCOZA be-
havior in accordance with this criterion can be clearly seen in
Figs. 16 for small >. For larger ¥, there is no clear mean-
field region that separates out.

The MSA solution

e=—yxt (702 =2(1-y)x+1 (14)
with x=1gp(1—p)B follows from Egs. (7), (9), (11), and
(13) with ¢;= B inserted. From (14) follows the MSA criti-
cal temperature (e=0)T"=(g/4)(1— 7). For the SCOZA
critical temperature 7.~ we numerically found the shift
T5€/T™~1+0.9(y?)? for y><0.5. Also it should be noted
from Fig. 1 that in the SCOZA the critical exponent 7y ap-
proaches its asymptotic value 2 much more slowly than in
the MSA where it follows from (14). For values of y=1.5
the ratio between corresponding values of 7 is about a factor

0.6

0.4

FIG. 6. Effective subcritical index a’ for the specific heat along the coex-
istence curve versus log,, ¢ where 1=1—T/T, (notation as in Fig. 1).
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100. That is in SCOZA y=2 is located in a much smaller
region by which this asymptotic value of y will have a small
influence upon the general accuracy.

Concerning the critical index « for the specific heat it is
clear from Fig. 3 and Ref. 1 that it does not follow best
estimates so well as the other indices ('yfIO.34). This ac-
curacy of « is connected to the way SCOZA in its present
form closely ties « to 7 since for susceptibility we here have
€2~ and for change in internal energy e~¢!~% as t—0.
Thus a=1— %y by which it varies along with yin a way not
dictated by scaling. So this is a clear defect of the SCOZA.

For subcritical temperatures the numerical evaluations
are more challenging with respect to accuracy to determine
the phase transition once one has a numerically stable pro-
cedure. Due to symmetry around p= 1/2 it is sufficient to use
either equal pressures or chemical potentials for this purpose.
We used the former as in Ref. 1 obtaining the pressure p by
integration of the susceptibility from both p=0 and p=1.
(Alternatively one could go via Helmholtz free energy by
integration of the internal energy.) To determine the constant
of integration one notes that the mean-field result is exact for
p=0 and p=1. (Due to division by zero one must start in-
tegration at neighboring values of p=0 and p=1 where ana-
lytic exact expansions are also used to maintain desired ac-
curacy.) However, due to numerical inaccuracy (using the
Simpson rule) the p values will differ slightly at p=1/2 for
T>T. when integrating from both sides. To eliminate this
error to which determination of phase equilibrium is very
sensitive close to 7. we corrected for the difference obtained
at T, and kept this correction as an added constant below T, .
The justification for this is that the error of integration will
stay essentially constant as the integrand is almost the same
by small changes in temperature near 7', where this is im-
portant.

Near 7. the determination of phase equilibrium turned
out very sensitive to numerical accuracy. Thus some of our
preliminary values for the critical exponent S for the curve of
coexistence was misleading. That is, for t—0, 8—1/5 when
¥2>0.5. This we later found wrong by performing a sensi-
tive check of consistency using the thermodynamic relation
for magnetic systems

co-cu=1{ 0] [ 2] 13
frommear ) \om |,

where the derivatives are taken along the curve of coexist-
ence. With this relation fulfilled the results became accept-
able. Close to T this relation would easily fail especially for
larger values of >, Increasing the number of grid points
improved upon this situation. Thus we typically used 10°
(and in a few cases up to 10%) grid points for the density in
the region from zero density to p, .

For the effective critical exponents B, ¥', and a’ one
from Figs. 46 sees that they also vary with .. Down to
'yf~0.1 the variation is relatively slow, but from there on the
change to mean-field effective exponents is more rapid. As
far as the accuracy of our computations went using standard
double precision, it seems clear that each of these exponents
has a common asymptotic or universal value as r—0 inde-
pendent of 'yf as long as it is finite. Figs. 4—6 show that these
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asymptotic values are something like 8~0.35, y'~1.40, and
a’~—0.10. [These values are related via the usual scaling
relation &’ +2B+y'=2 that follows from Eq. (15) when-
ever Cy is dominant compared to C, .] We find these values
interesting especially the one for 8 which is close to best
estimates of its exact value. Somehow, for some reason
SCOZA tries to aim for something near the exact S.

Concerning the asymptotic value a’~—0.10 one must
expect this to be a defect of SCOZA as a negative a’ does
not seem reasonable as an exact value. Thus the value y’
~1.40, which is connected to a’ via the scaling relation
above, is somewhat large too. However, away from 7', the
v' lowers its value such that more reasonable values for the
effective y' are then obtained. (Corresponding values ob-
tained by the HRT theory of Ref. 18 are 8~0.345 and vy’
~1.378.)

The asymptotic exponents can be given some additional
comments. For example, the limiting value y=2 itself is no
improvement over the MSA value. However, instead the im-
provement is the major increase in general accuracy such
that the asymptotic region with y=2 has moved about two
decades closer to the critical point as discussed below Eq.
(14).

However, for the exponent B (and to some extent y’) the
situation is more spectacular as the asymptotic value S
~(0.35 is in fact close to best estimates that can vary some-
what depending on approach.>** Thus the 8 is clearly no
longer tied to mean-field and spherical model value 8=0.5.
(As indicated in the Introduction the MSA defines no B, as
meaningful phase coexistence is destroyed near T..)

The specific heat exponent a—0.5 in the mean-field
limit 'yf—>0 needs a special comment (Fig. 3). The reason
for this Gaussian model value is that kinetic energy is not
included, and the mean-field configurational energy does not
contribute to the specific heat above T,.. Thus only the cor-
rection to it contributes, and from Egs. (8), (9), and (14) one
has u;~y>\i(y,—0) or C,~>/\i. So @=0.5, but on the
other hand C, itself vanishes anyway along with vy, .

From the viewpoint of scaling it is clearly unsatisfactory
that y# y" and a# a'. However, again this is of most con-
cern in the small asymptotic region close to the critical point
where it is clear that SCOZA fails anyway.

The nonuniversal behavior of effective exponents de-
pending upon 'yf may look strange and be unexpected in
view of scaling. As discussed in Sec. V this may be part of
the exact behavior too such that true scaling will be present
only very close to the critical point, i.e., for something like
<1073 for real systems.

V. NONSCALING AND SCALED EQUATION OF STATE

As mentioned in the Introduction the SCOZA does not
yield a scaled equation of state in the critical region due to its
boundary conditions. Despite this SCOZA seems to yield
very accurate results as verified by the results obtained for
the three-dimensional Ising model in Ref. 1. Thus we were
lead to speculate that somehow the SCOZA would yield
something close to a scaling solution in a relatively large
region that may fit into experimental results. To do this com-



4522 J. Chem. Phys., Vol. 108, No. 11, 15 March 1998

105E T T — T
3 Symbal logot
[| T>T. o -13 ]
. :
al i
10% . E
F * 3
F 3 ]
[ X
[ X ]
1% | 7<1 % E
w F Qo E
1f . ]
=T A 1
a1 v 1
0 E
PE v
F A ! 3
r - ' 1
e ! i
1.7 t

~1tenl

0.1 Ap/t@ 1

FIG. 7. Equation of state for SCOZA with ¥} =0.34 using scaled variables.
Symbols designating the various supercritical isotherms are plotted on the
various curves. For T<T_ the symbols on the curves have been omitted
since the curves are so close together.

parison we chose the yf: 0.34 case that gave results close to
the ones for the Ising model with nearest-neighbor interac-
tion on the SC lattice. To plot SCOZA results we then intro-
duced scaled variables in Figs. 7 and 8. (These variables
were not used in the SCOZA equation itself as it does not
scale.) They are

x=Ap/tB,
(16)
y=Ap/t,
[ Symbal  loggt 7. ]
r T>T. O /A
° 9
]04_ + —2.47 -
E R E
F * 2% ]
F MY ] p
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[ v —4.37 1
L X -4.40 4
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FIG. 8. Scaled equation of state for SCOZA with v} =0.34 (dashed curves)
compared to experimental results for CO, (solid curves) taken from Ref. 34.
Start and end points of both sets of curves are indicated with symbols
corresponding to the actual temperatures (see inset). (The solid curves are
somewhat wiggly as they connect various experimental points.)
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with
Ap= Pc— P .
Pe (17)
P27 D1
Ap=——,
p 2p.

where p; and p, are the coexisting densities and p, and p,
are the corresponding pressures. (Alternatively we could
have used the corresponding chemical potential, or in spin
system language the magnetic field, which is fully symmetric
around p,..)

We found experimental results with which to compare in
the work by Green er al.3* where the equation of state for
various fluids were plotted using the scaled variables above.
With some spreading these points fall along scaling curves,
and they represent various isotherms with given deviations
from their critical temperatures. Thus the range of ¢ values
and Ap values covered is easily estimated, and the corre-
sponding region (extended somewhat) using the SCOZA re-
sults was plotted. From Fig. 7 one sees that isotherms with
small separations are obtained, and these lines fall within the
experimental points as shown in Fig. 8. The only change
from the experimental results in this log-log plot is a minor
translation in position which we have performed. Such a
shift in position should not be unexpected since we are in
fact comparing experimental data for continuum fluids with
SCOZA results for lattice gases. Also for the lattice gas con-
sidered here we obtained the critical ratio B.p./p.
=0.227... which is somewhat lower than usually found ex-
perimentally for fluids. The SCOZA results we have drawn
with indices 6=35 and B=0.38 gave the best fit while Ref.
34 used B=0.35. When the results in Fig. 7 are extended
beyond the temperature region considered there, they start to
spread markedly on the lower left side. Thus for the region
plotted SCOZA yields an equation of state that is close to a
scaled equation which would yield two single lines on such a
plot.

We have also compared our SCOZA results with experi-
mental results for the magnetic system Ni that has a FCC
structure.’ (Thus the extreme anisotropy in the z direction of
the Ising model interactions is clearly not present.) In Ref. 35
scaled magnetization m=M/|t|? and scaled magnetic field
h=H/|t|P? is used. In Figs. 2(a) and 2(b) of Ref. 35 subcriti-
cal and supercritical results, respectively, are plotted on log-
log plots. In the subcritical case mz—m(z) is plotted as a func-
tion of #/m while in the supercritical case m? is plotted as a
function of h/m—hy/my. The my and hy/m are limiting
t—0 values of m and h/m in the two cases, and are deter-
mined by Fig. 1 of Ref. 35. By suitable choice of parameters
we find that the SCOZA results coincide fully with the ex-
perimental ones except for a small shift in position. Due to
this coincidence we have not drawn here these figures that
can be found in Ref. 35. There is quite a bit of flexibility
with respect to choice of such parameters as within certain
limits a choice of yf can be compensated by a choice of
effective B and y. For example, we found full agreement
with these experimental results with the two sets of choices



J. Chem. Phys., Vol. 108, No. 11, 15 March 1998

y2=034 B=0371 y=1.33,

(18)

y2=025 B=0382 y=128,

for T>T,, while for T<T, a small deviation beyond experi-
mental uncertainty can be seen. On the other hand the ex-
perimental results for Ni for 7>T, shown in Fig. 3(b) in
Ref. 36, slightly different from those in Ref. 35, agrees fully
with the choice of parameters yf=0.2, B=0.388, and y
=1.26. Unlike the results for CO, presented in Fig. 8 we do
not see significant nonscaling in the result for Ni and simi-
larly the corresponding SCOZA curves are very close to-
gether along a single line in the relatively narrow region of
temperature and density covered in this case. (Outside this
region the SCOZA curves start to diverge somewhat with
respect to density.) However, a choice of parameters differ-
ent from (18) will easily yield curves that spread quite a bit.
Also it should be mentioned that the determination of the
SCOZA values for mq and h defined above yield values
somewhat different from the dimensionless ones reported in
Table 1 of Ref. 35. For the SCOZA ('yfIO.34) we find
my=1.76 and hy=~2.38 while from Ref. 35 m,=1.487 and
ho=1.524 for the Ising model, and my=1.422 and h,
=1.037 for Ni. Why especially the value for 4, disagrees
significantly is unclear (as we recover the mean-field values
my=ho=v3 when y>—0).

One can ask why SCOZA despite its nonscaling proper-
ties nevertheless almost scales in a region with available ex-
perimental values. If one follows the shift in isotherms by
changing ¢ one notes that first the isotherms are shifted in
one direction and then the shift is returned as can be seen
from Fig. 7 where the end points of the curves are marked
for T>T,. Thus this shift goes through a stationary point
(like passing through an extremum). Accordingly a whole
range of isotherms locate themselves close to a single line.
The range of these values for some reason coincides rather
well with the one covered by the experimental data used.
(For T<T, the situation is similar but cannot be directly seen
in Fig. 7 since the curves are already so close together.)

In view of the accuracy demonstrated by SCOZA' we
found reason from the above to speculate whether the type of
corrections to scaling present in SCOZA might be present in
real fluids too. The plotting made in Ref. 34 assumed full
scaling in the region considered such that all deviations from
a single line could be regarded as experimental uncertainties.
On the basis of our SCOZA results we found it possible that
part of these deviations might be related to the nonscaling
properties found in SCOZA. Thus we made a closer exami-
nation of the experimental data where several isotherms for
CO, were plotted using different symbols. These were not
easy to identify in the figure in Ref. 34. However, by scruti-
nizing it we were able to identify points belonging to the
same isotherm. Then for changing ¢ one, in Fig. 8 actually
sees (by looking carefully), a clear tendency of the same
systematic shift of lines as found above from SCOZA. (That
is in Fig. 8 one sees that the various symbols for end points
of curves mostly occur pairwise.) Thus it seems that this
nonscaling behavior of the SCOZA represents properties of
real fluids too away from the critical point. As mentioned in
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the Introduction corrections to scaling is nothing new and
close to the critical point such corrections have been worked
out and used to compare with experimental data and to make
estimates of critical exponents.”>** However, the specific
features exhibited by the SCOZA solution do not seem to
have been noticed before.

VI. CONCLUSION

As demonstrated in Ref. 1 the SCOZA yields accurate
results. Its critical properties are such that the equation of
state does not scale. Except very close to the critical point
this does not seem to be a defect or inaccuracy of the
SCOZA but instead seems to represent properties that would
be present by an exact treatment too as demonstrated in Figs.
7 and 8. Furthermore, except very close to the critical point
this leads to nonuniversal behavior and thus effective critical
exponents that vary with the inverse range of interaction as
demonstrated by Figs. 1-6. However, very close to the criti-
cal point the SCOZA will fail somewhat as the expected full
scaling cannot be obtained. But, nevertheless, the SCOZA
critical exponents =5 and 8~0.35 (as t—0) are near es-
timated exact values.
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We evaluate numerically results for the self consistent Ornstein—Zernike approximation (SCOZA)
for the Ising model or the lattice gas in one and two dimensions where exact results are known. The
cases we consider thus include the Ising model with nearest-neighbor interaction in two dimensions,
and in one dimension the cases with a Kac interaction or exponential potential in the infinite range
limit and the one with nearest- and next-nearest neighbor interactions. As earlier found for the
three-dimensional Ising model, results with high general accuracy are found, although the phase
transition of the two-dimensional Ising model is smeared out a bit, as SCOZA at least in its present
form, does not yield a phase transition in two dimensions. In the two-dimensional case more long-
range interactions are also considered to see to what extent SCOZA approximates the expected
universal critical behavior. By extrapolation we find our numerical results quite consistent with a
value near the exact one y=1.75 for the supercritical exponent of isothermal susceptibility. In the
case with the nearest- and next-nearest neighbor interactions a situation that clearly favors
ferromagnetic configurations is needed. Otherwise the present version of SCOZA will fail, i.e., the
solution becomes less accurate and finally ceases to exist. © 1998 American Institute of Physics.
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Self consistent Ornstein—Zernike approximation compared with exact
results for lattice gases in one and two dimensions

[S0021-9606(98)01921-7]

I. INTRODUCTION

Earlier the SCOZA was solved for the three-dimensional
case, and results with high accuracy compared with best es-
timates have been generally obtained so far. The first results
in this respect were those of Dickman and Stell that were
able to solve the SCOZA partial differential equation also
below the critical temperature 7. (Ref. 1). They considered
the three-dimensional Ising model with nearest-neighbor in-
teraction on the various cubic lattices, and the values of T',
obtained were within 0.2% of best estimates. Recently a
more detailed investigation of the critical region of three-
dimensional systems was performed by the authors, and
again results close to expected exact behavior were
obtained.? (Also the influence of the range of interaction was
then investigated, and away from the critical point, effective
critical indices that varied with this range were found.) Fur-
ther SCOZA evaluations for the three-dimensional Ising
model with nearest-neighbor interaction have also been per-
formed by Pini, Stell, and Dickman, and again new results
with good accuracy were obtained.?

As the SCOZA is not restricted to lattice systems it can
be extended to continuum systems too. In this respect the
situation with interaction of Yukawa type besides hard
spheres has been considered by Pini, Stell, and Hdye, and
numerical results again seem close to real fluid behavior (in-
cluding the critical region) and previous estimates.*

The SCOZA has also been generalized to D-dimensional
spins and continuous spins.5 However, so far numerical re-
sults have not been published for the latter.

A strength of the SCOZA is that it is not tied to a spe-
cific interaction or dimension. It is closely related to the
MSA (mean spherical approximation) upon which it builds.

0021-9606/98/108(21)/8830/8/$15.00 8830

One then imposes thermodynamic self-consistency that gives
rise to an effective temperature that depends upon tempera-
ture and density. As SCOZA will be applicable in quite gen-
eral situations for fluids and lattice gases, it is of interest to
test its general accuracy more precisely in various situations.
In this respect comparisons with known exact results are use-
ful, and the purpose of the present work is to do so for lattice
gases, in which we must restrict ourselves to one and two
dimensions where three different situations are considered.
Thus in Sec. III we consider the two-dimensional Ising
model with n. n. (nearest-neighbor) interaction where the ex-
act solution is known in zero magnetic field.%” In Sec. IV the
situation with Kac (exponential) interaction in one dimension
is considered and compared with the known exact result (be-
yond mean field) in the infinite long-range limit. In Sec. V
we compare with exact results for the one-dimensional Ising
model with nearest- and next-nearest neighbor interactions.
In Sec. II we reestablish briefly the SCOZA equation and
relations connected to it.

Il. THE SCOZA EQUATION

In lattice gas language the SCOZA self-consistency is
based upon the thermodynamic relation,'

aBx~") 3 (pu)
T e v

where py~! is inverse compressibility, 8= 1/kgT, p is den-
sity, and u is average energy per particle. The latter can be
written

u=uytu;, 2)

© 1998 American Institute of Physics
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which has a mean-field contribution uy,=—(1/2)gp and a
contribution from correlations u; where the coordination
number ¢ as used in Refs. 1 and 2 is incorporated. In Ising
model language the p, x !, pu, and pu, are replaced by
(1/2)(1+m), dH/dm, U, and Uy=— (1/2)m>.

For an interaction — ¢(r) the SCOZA pair correlation
function 4 (r) has a Fourier transform

1+ ph(k)= (3)

1—pc(k)’

where the direct correlation function ¢(k) is assumed to be
of MSA form,

c(ky=co+c (k). 4
As done in Refs. 1 and 2, we normalize (r) such that

(0)=g. The core condition #(0)=—1 implies (d is dimen-
sionality),

1 _
1_,,:Wf(1+ph(k)) dk= 17PCOP(z), )
where
1 dk
_ , 6
P(@) (2m)¢? J 1—zg(k)/q ©
with
_pcig_gp(l1—p)c, )

= l—pcy  P(2)

The internal energy due to correlations is then

o :_;;fmwzﬁ(k))@(k) dk
1 2 (27T)d

=—qp(1-p)F(2), ®)
where by use of Egs. (5) and (7),
P(z)-1
F)= % ©)

From the compressibility relation we have
2

Bx = (1-pi(0)) = — (10)
p p(

p(1=p)°
where with (5) and (7),
£2=(1—z)P(z). (11)
Inserting (8), (2), and (10) into (1), the SCOZA partial dif-
ferential equation is obtained,

2 02
W:—qp(l—p) 1+9—p2[p(l—p)F(2)] . (12)

The SCOZA equation can now be solved, for instance,
with respect to the parameter & in terms of which F(z) can
be expressed via the relations above. However, as before, our
present work is based upon programs developed by D. Pini,
who worked out an unconditionally stable, accurate, and ef-
ficient numerical procedure based upon previous
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experience.&9 Thus we followed the latter and used F'(z) as a
quantity for which to solve, expressing other quantities in
terms of it using numerical tabulation.

Ill. THE TWO-DIMENSIONAL ISING MODEL

For the two-dimensional case with nearest-neighbor in-
teraction on the square lattice (¢ =4), the interaction Fourier
transformed is

tZ(k) =1q(cos(k,)+ cos(ky))=gq cos(u)cos(v), (13)
where the Fourier variables &, and k, are replaced by
u:%(kx+ky)’ U:%(kxiky)’

such that du dv=(1/2)dk, dk,. To obtain P(z), the k, and
k, are integrated over a full period (— m, ). In terms of u
and v only half of the same two-dimensional region will be
covered. Extending both the u and v to a full period each
will double the integral, and one finds

P(g)= J’ du dv
()= (2m)? ) 1=z cosu cos v

=2k (14)
== — =" K(2),

mJo J1—-z*sin*u T
where K(z) is the complete elliptic integral of first kind
which is tabulated or can be obtained numerically. As z
— 1 the P(z) diverges logarithmically and one has

P(z):%ln(lgfz)JrO(lfz), (15)

which we used in this limit to obtain satisfactory accuracy.

As P(z) diverges, although slowly when z—1, it be-
came clear that a sharp phase transition could not be ob-
tained, which is the case with the MSA too. From this view-
point the situation looked worse for the SCOZA in two
dimensions compared with three, where the phase transition
and critical properties are described with good accuracy.'?
Therefore, the present case is also a test on how SCOZA acts
under conditions where it clearly will give a wrong predic-
tion. A crucial question in this connection is to what extent
this wrong qualitative feature will affect the general accuracy
and, for instance, to what extent the corresponding MSA
solution will be improved.

The MSA follows by putting ¢;= g in Eq. (4), and by
combining Egs. (7)—(9), this yields

1 P(z)—1
UMSA—Pul—*E—B s (16)

with

qp(l—p)B=:zP(z).
In zero magnetic field p=(1/2)(1+m)=1/2 such that (g
=4),

B=zP(z), (17)

and U\ga 1s then also the full energy, as the mean field piece
Uop=—(1/2)gm* mentioned below Eq. (2) is zero. With
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FIG. 1. Internal energy per spin U in zero magnetic field vs B for the
two-dimensional Ising model on the square lattice. The solid curve is the
SCOZA result, while the dashed curve is the exact result. The dashed-dotted
curve is the MSA result.

P(z)=(2/m)K(z) from Eq. (14), both Uypsa and B are easily
evaluated as functions of z by which the MSA result
Uysa(B) can be plotted.
The exact result for the internal energy U., as first ob-
tained by Onsager® is given by,’
2
1+ —«'K(k)
™

1
Ua==7 coth(3/2) , (18)

with
2 sinh(B/2)
=— "
cosh?(3/2)
and
k'=2tanh?(B/2)— 1.

In Fig. 1 we have plotted the internal energy in zero
magnetic field comparing the MSA and SCOZA results with
the exact result. From this figure it is clear that the SCOZA
result follows the exact one very closely. Only near the criti-
cal point of the exact solution is there a visible deviation on
the figure. Further, this deviation changes sign almost pre-
cisely at the critical point where the SCOZA solution is
smoothed out a bit compared to the exact one. Compared
with the MSA result the SCOZA is clearly a great improve-
ment in accordance with the earlier results for three-
dimensional systems.? Thus enforcing thermodynamic self-
consistency along with the MSA or Omstein—Zernike form
of the direct correlation function seems crucial to obtain ac-
curate results. And even near the critical point in two dimen-
sions, remarkably accurate results are obtained, despite the
fact that SCOZA does not yield a critical point, i.e., the
corresponding singularity is smoothed out a little bit. (An
obvious fault in the critical region is that SCOZA, as treated
here, is missing a long-range piece in the direct correlation
function. In two dimensions such a piece will be crucial to
obtain a phase transition.) One can integrate the internal en-
ergy to obtain the free energy and then we find that the
deviation from the exact solution integrates out to zero when
B— . Thus the SCOZA free energy, as well as the internal
energy, is exact in the low temperature limit. [This can be
understood from the fact that as T—0 there will be a phase
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FIG. 2. Deviation between the SCOZA and the exact internal energy per
spin AU vs B for the two-dimensional Ising model. The circle is the value
of AU at the critical point of the exact solution.

transition with coexistence of m=1 and m=—1 (or p=0
and p=1) that can be described by the mean field, which
SCOZA faithfully preserves.]

In Fig. 2 the difference between the SCOZA and exact
internal energies is shown more clearly. Although SCOZA
does not yield a critical point one may use it to predict its
location by prescribing it to be where the maximum of the
specific heat Cy=(dU/dT)y is. By doing so we find S,
=1.758 28 compared with the exact value 8.=1.762 75 that
follows from’

sinh(B./2)=1. (19)

In view of the accuracy obtained for u,, it is also of
interest to study the inverse susceptibility, comparing its ex-
actly known critical behavior with critical index y=1.75, i.e.
in Fig. 3 x/” where x is the inverse susceptibility is shown
as a function of B. And with y=1.75 we find an almost
straight line that curves a bit near 8., as SCOZA does not
give a sharp phase transition. Further, for 8>, the y ap-
proaches O rapidly in an exponential way (e.g., for 8=2.0
the y~5.5X 10"%). In this connection it also was of interest
to investigate the properties of the SCOZA ‘‘critical’” iso-

02

0.8 1 1.2 1.4 1.6 1.8

FIG. 3. Inverse susceptibility x raised to the power 1/ plotted vs 3. For the
critical index y the exact value 1.75 is used for the two-dimensional Ising
model. A straight line through the SCOZA results extrapolates into the
critical point of the exact solution marked by the dashed line.
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FIG. 4. Effective critical index &, defined below (19) vs Ap. The solid
curve is for the “‘critical isotherm’ T=T, or r=0. The dashed curves are
neighboring isotherms with logo¢ equal to —1.6 and —2.0 for 7>T_ and
equal to —2.0, —1.6, —1.4, and —1.2 for T<T,.

therm at 8= B,. For small m the exact one behaves like y
~m?®~! where §=15. The SCOZA isotherm will have a fi-
nite slope for m =0 that can be subtracted. Then the loga-
rithmic derivative is taken of the remainder A y to obtain an
effective critical index §,— 1 =d(In m)/d In Ay. In Fig. 4 it is
shown how this index varies with m, and it shows that &,
peaks at a value not so far below the exact value §=15. (To
see how neighboring SCOZA isotherms behave close to 3
=f., some additional &, for isotherms are also drawn in
Fig. 4.) Thus extrapolated SCOZA results indicate critical
properties that resemble the exact ones.

Since critical properties are expected to be universal we
found it of interest to investigate more long-range interac-
tions in two dimensions too. Building upon the nearest-
neighbor interaction this can be done by the prescription of
Héye and Stell'® such that the new integral P(z) can be
expressed in terms of the one for nearest neighbors that here
we can call Py(z). The interaction is then

1
_ 1, 20
1—ai(k)/q ) 20

where in the present case (k) is as given by Eq. (13). Fur-
ther,

cE(k)=qA(

A 11—«
1-(1—-a)l, @1
[,=Py(a).

The constant 7, is used in (20) to make ¢(0)=(0)=0 as
was assumed when deriving the relations for the SCOZA
equation, and A is determined such that ¢(0)=g. With this
new interaction the integral of interest becomes

(22

1 z
= +
PO= A | T =zaa ) P |

where
W o AL
“¥T—zA(1-1,)

In two dimensions the inverse range of interaction is now
¥,~ (1 —a)2. With various values of a we then studied the
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FIG. 5. Inverse susceptibility x using interaction (20) with @=0.5, raised to
the power 1/y and plotted vs 8 where the different curves correspond to
y-values 1.55, 1.65, 1.75, 1.85, and 1.95, respectively, from below. The
straight line through the y=1.75 curve goes through the ‘‘critical’’ point
(vertical line) as defined by the maximum of the SCOZA specific heat.

inverse susceptibility y in zero magnetic field as was done in
Fig. 3 (i.e., for «=0). If one considers all values of 3 below
an estimated critical value B, one finds an exponent 7y that
changes with 7y, and approaches its mean-field value y=1 as
v,—0. A somewhat similar situation was found in Ref. 2,
where critical properties in three dimensions were studied.
However, if one focuses upon the region close to B, one sees
a more universal behavior. The estimated value for 8, can be
determined by the maximum of the specific heat, which as
found above gave a value close to the exact one with nearest-
neighbor interaction («=0). Then x” can be plotted using
various values of y as done in Fig. 5 for the case @=0.5.
Studying the behavior in the critical region near 3., one then
sees that the curve with y=1.75 most accurately extrapolates
with a straight line that crosses the y=0 axis at B=f,.
Thus in Fig. 6 the temperature dependent index 7y defined as
the logarithmic derivative

sl N S S
7
A A
y 5 r / K\ N
N
wsf /) /:Q
! Sy
Wil
T o2s —20

FIG. 6. Effective critical index 7y for the susceptibility in zero field as
defined by (23) vs log,gf (+=1—T,/T) for varying range of interaction. The
various curves correspond to a-values [see Eq. (20) and below] 0 (nearest-
neighbor interaction), 0.1, 0.2, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99,
respectively, from above down along the right-hand side of the figure.
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_dIny
T dlnt

Y (23)
with r=1— B/ B, has been plotted for various «. For small 8
(i.e., large t) the vy has a nonuniversal behavior approaching
the mean-field value y=1 as a— 1. But for small r—0 the
vy rises, reaching a maximum value around 1.80 before it
drops. This yields a universal plateau for y with an effective
value of 7y near its universal exact value 1.75. So somehow
SCOZA for some unknown reason seems to aim for the ex-
act behavior before it fails close to 3.

Altogether our conclusion is that the Ornstein—Zernike
or MSA form of c¢(r) also describes two-dimensional sys-
tems well except close to B, . As mentioned before, the latter
is connected to the divergence of P(z) (z—1) by which a
sharp phase transition is excluded. This contrasts somewhat
the situation in three dimensions where a well defined phase
transition with a critical point was obtained.” Furthermore, in
the critical region, behavior close to the exact one was found
although standard scaling was not obtained. But one striking
result was the value 8=0.35 for the critical index of the
coexistence curve. So although the Ornstein—Zernike form
used in SCOZA can not describe critical correlations or fluc-
tuations correctly, the error, especially in three dimensions,
must be small. However, in two dimensions ¢(r) must de-
velop a long-range tail to create a critical point. But clearly
this tail can only give small corrections to thermodynamic
quantities, although it will be crucial for determining the
exact universal critical behavior for Ising systems or lattice
gases in two dimensions.

IV. KAC INTERACTION IN ONE DIMENSION
The Kac interaction is the exponential
u(x)=—rvy,e" el (24)

With this interaction in addition to hard cores, Kac, Uhlen-
beck, and Hemmer showed that an exact solution could be
obtained in terms of an integral equation in the continuum as
well as the lattice case.!! Explicit analytic solutions of this
integral equation are not so easily obtained, but there is a
nontrivial one upon which we will concentrate. This explicit
result is the pair correlation function at the mean-field critical
point in the limit y,—0 for the lattice case which is given
by'* (r=|x]),

h(r)=y2P[0.656 exp(—0.754*>r)
+0.0019 exp(—2.91y{"r)
+0.000 06 exp(— 5.6y r)+-+]
=~ y?3(0.656+ 0.0019+0.000 06+ - ). (25)

In the limit y,—O0 this immediately gives the internal energy
correction to mean-field (p=1/2),

puy=—y2(0.656+0.0019+- )= —0.1645y*> . (26)

The MSA and thus SCOZA give a simple exponential like
the first term in (25) which is by far the dominating one. So
the SCOZA can in no way give the exact result due to the
correction terms in (25). So the question is to what extent
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SCOZA can approximate the leading term and the internal
energy (26). Also, the MSA form enforces a certain relation
between coefficients which, as will be seen, is not quite ful-
filled by the leading term.

As in Sec. II the Kac interaction (24) can be expressed in
terms of the nearest-neighbor interaction whose Fourier
transform in one dimension is (¢=2),

J(k)=q cos k 27)

[when normalized as before such that 17/(0)251]. Use of re-
lations (20)—(22) then give the expressions needed for solu-
tion of the SCOZA equation (12). With expression (27) one
finds for Po(W) [like the first integration in (14)]

1 (= dk 1
Po(W)=—— f (28)

27 Jml—Wcosk Ji—w?

For small 7, interaction, (24) is easily Fourier transformed,
as one can integrate to obtain

2y}
vk

u(k)=— (29)

Comparing this with Eq. (20) when Eq. (27) is inserted, one
finds the identification (cos k=1—(1/2)k>+--+)
(7,—0), (30)

with @(k)=—(1/2)qu(k). Using Eqs. (3)—(7) replacing
17/(k) with @(k), one now finds for the pair correlation func-
tion,

yi=2(1-a)

p(1—p) 1

AL e .

(31

At the mean-field critical point, which we want to investi-
gate, we have P(z)—1 as y,—0. Thus by expanding (31) in
k? with critical density p= 1/2 inserted we find (i.e., formally
regarding k<<y, and z close to 1),

1 1 1 v
4 i A (-2 ik
1—z 5
vtk

p*h(k)=

(32)

Inverting the transform by comparing Egs. (24) and (29) one
finds (y,—0),

1
phr)= o 72 expl—avin, 63

where

a=\1—z/y". (34)

By determination of the coefficient ¢ this can be compared
with the exact result (25). Here one notes that (33) can not
coincide fully with the dominating term of the exact result as
the two coefficients in the latter will correspond to two
slightly different values of a that differ nearly 1%.

In this connection it is of interest to rederive the known
MSA result.'> Then P(z), which is most easily obtained via
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the internal energy, is needed. Integrating Eq. (8) in r-space
(one dimension) one then has [p=1/2, the p-term does not

contribute as [ (k) dk=(0)=0],

1 P(z)—1
pu1=—7f (p&(r)+p*h(r))e(r) dr=—% ZZZP(Z) :
(35)

Now A(r) as given by (33) (with « finite) is more long
ranged than ¢(r) and can thus be regarded as a constant
during integration (y,—0). Also with z—1 and P(z)—1,
expression (33) inserted in (35) thus yields [ @(0)=¢],

1
P(z)=1==8pu /= 57" (36)

This latter result can be checked in an independent way via
evaluation of W as given by (22). With (28) one then has
I,=1N1— A= 1/7y, and thus A=(1/2) 'yf. So expanding in
1 —z one finds

W=1-X1-2)9% (37)

which inserted in (28) and (22) then yields result (36) with a
given by (34).
In MSA the coefficient ¢, = 8 such that Eq. (7) yields

P(z)z=qp(1—p)c;=qp(1—p)pB. (38)

At the mean-field critical point (8=p8., vy,=0) P(z)=1
and z=1, ie., gp(1 —p)B.= 1. Thus with B, unchanged for
finite y, we still must have

P(z)z=1, (39)
or

I=(1+(P()=1)(1=(1-2))

=1+(P(z)=1)=(1—2)+,

(P(2)=1)=(1-2) )

1—z=P(z)— 1.

Inserting from Egs. (34) and (36) we obtain
1

2.2B3_ 23

azy, 2a7r ’

a=1/2"%=0.7937, (41)

which is the known MSA result.

By doing SCOZA computations one (at critical density
at least) generally finds an effective inverse temperature 3,
=c> . This will make P(z)z>1 by which the value of a
becomes lower in direction of the exact result (25).

Numerically one can not put =1 or y,=0 directly, as
deviation from a mean-field result is wanted. So « has to be
chosen close to one, i.e., y, close to zero. The « turned out to
vary quite a bit close to y,=0, and to obtain a reliable esti-
mate we had to make 'y,2.=2(1 —a) as small as possible.
With standard double precision we found our results signifi-
cant down to 1 —a=107"'°, Thus in Fig. 7 we have plotted a
as a function of (1— a)'® by which we find a straight line as
1 —a—0. By extrapolation down to 1 — @=0 we obtain the
SCOZA value,

a=0.756=0.001. (42)
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FIG. 7. The constant ¢ defined by Eq. (34) for the SCOZA pair correlation
function at the mean-field critical point for the one-dimensional model with
exponential interaction plotted vs (1 —a)'° [see Eq. (30)]. The points cor-
respond to (1—«)-values 1073, 1074, ...,107'°. The straight line is ex-
trapolation down to 1 —a=0 which is the limit of infinitely long-ranged
interaction.

The a can also be obtained via a similar plot using the inter-
nal energy (36). Extrapolation of the latter gave a=0.756
+0.002.

As a conclusion one sees that the SCOZA value (42)
agrees closely with the exact result (25) when comparing
exponents. For the coefficient in front of expression (26) the
SCOZA via (36) yields (apart from sign)

81_a =0.1654=*0.0004, (43)
which again is near to the exact result. The same is the case
when relating (25) to (33). In view of the comment below
Eq. (26), it seems like the SCOZA result is a kind of best
possible approximation to the exact result when using a
single exponential term for A(r).

V. NEAREST- AND NEXT-NEAREST NEIGHBOR
INTERACTION IN ONE DIMENSION

With nearest- and next-nearest neighbor interaction the
Fourier transform of it can be written

(k)=

T lta

(cos k+ a cos 2k), (44)

where g=2 was used. To solve the SCOZA problem one
again needs to evaluate integral (6) to obtain P(z). As
cos 2k=2 cos® k—1 the resulting integrand can be split in
two (partial fractions) that give integrals like (28). Altogether
we find

Piy=c| 2 v ) (45)
2)=C| —=— ——],
ViI-w3  J1-w?
where
Clta WoW_
T 2az W_—W,’
1 ) (It+a)8a
YW,=——|1=\/1+8a2+ ———|.
da z

In the case with nearest-neighbor interaction only it is clear
that SCOZA in fact yields the exact solution. This is con-
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B

FIG. 8. Deviation between the SCOZA and the exact internal energy per
spin AU vs B for the one-dimensional Ising model with nearest- and next-
nearest neighbor interactions. The curves correspond to a-values [see Eq.
(44)]0.1, 0.5, 1.0, 2.0, and 10 drawn with increasing length of line segments
for increasing « such that the fully drawn curve is for a=10.

nected to the known property that the exact direct correlation
function is restricted to nearest-neighbor sites which then is
its SCOZA form too. In this case a=0 such that P(z)
=1/y1—22, and in the Appendix we verify that the exact
solution is obtained. This was further used to test the accu-
racy of the numerical evaluation. When doing this for m
=0 (or p=1/2) we found a deviation for the internal energy
that had a maximum near 8~ 13. This deviation, which was
negative, had the form of a ‘‘bump”” of width A B~ 10, and
its height went down such that it extrapolated to zero when
increasing the number of grid points in the B- and/or
p-directions. (In Fig. 8 using 1000 gridpoints for 0<p
=<1/2 this error will be barely visible as its height corre-
sponds to 0.06 units and its area when integrated will be
something like 0.5 units on the figure.)

The next-nearest neighbor interaction can now be added,
solving the SCOZA problem with P(z) given by (45), and
comparing it with the exact solution. For H=0 or m=0 the
exact result is'*

N=2¢%PK cosh?(BJ)— 2 sinh(2 BK)

+[e*PK sinh®(2 BJ) +4 cosh?®(BJ)]'2, (46)

where M7 is the partition function for N spins. When related

to interaction (44) we here have 4/=1/(1+a) and 4K
=af(1+a). The internal energy per spin is thus
—(1/2)d(In \)/dB. (The exact solution could also be consid-
ered for m# 0, but then the exact \ is rather complex de-
pending upon the solution of a quartic equation, and further-
more m should be substituted in favor of the magnetic field
H. Due to this we have not tried such a comparison here.)
In Fig. 8 we have plotted the difference between the
SCOZA internal energy and the exact one for «
=0.1,0.5,1.0,2.0,10 (m=0). Quite similar to the two-
dimensional case in Fig. 2 one sees that the deviation is
largest somewhat above the mean-field critical point B.gq
=4 ie., B.=2 (with ¢=2) where it typically also changes
sign. The relative magnitude of the error AU/U is reaching a
maximum of about 1%. [For =0 the exact internal energy
is — (1/2)tanh(B/4).] Note that total area of the error when
integrated with respect to 3 is zero (within numerical accu-
racy) when subtracting the «@=0 inaccuracy discussed
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above. This means that as in the two-dimensional case the
SCOZA free energy as well as the internal one becomes
exact when S—x.

One can also evaluate the specific heat which is the de-
rivative of the internal energy with respect to temperature.
The error in this latter quantity that follows from the slope of
the curves in Fig. 8 will of course have a relative magnitude
that is greater than the one for the internal energy simply
because derivation will always magnify ‘‘bumpy’” behavior.
The maximum of the latter is about 3%—7%.

Note that the exact solution again is recovered when «
— as then there will be no nearest-neighbor interaction,
and the next-nearest one alone on a sublattice is equivalent to
the nearest one.

One can also make « negative, and one finds that
SCOZA works for not too large |a|. However, the error is
getting larger and at o= — 1/4 the SCOZA starts to break
down. This then also shows the limitation of SCOZA as
defined here. Relation (4) for ¢(k) is adapted to and thus
works well when ferromagnetic arrangements are clearly fa-
vored. It is easily understood from integral (6) for P(z) that
SCOZA will start to fail seriously at = — 1/4. The reason is
that the maximum and thus the divergence of the integrand
in (6) will no longer be at k=0 when a< —1/4. (This for
instance will prevent z— 1 or £2—0.) Thus in the latter situ-
ation the simple assumption (4) is too much in conflict with
the exact c(r).
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APPENDIX: EXACT SOLUTION WITH NEAREST-
NEIGHBOR INTERACTION

We will show that with nearest-neighbor interaction in
one dimension the SCOZA yields the known exact solution.
Using the standard transfer matrix method one has the eigen-
values

N+ =eP(cosh(BH) = \sinh*(BH ) + e ~*F7), (A1)

where using Ising spin language H is the magnetic field, and
J is the nearest-neighbor interaction. The )\’X is the partition
function from which one can obtain the magnetization per
spin m = d(In N\, )/ BH). When rearranged this yields the re-

lation
‘ m2e— 487
sinh?(BH)=

1-m (A2)

7
which is used below to substitute SH by m to establish the
SCOZA solution.

The exact spin correlation function and its Fourier trans-
form is now

T'(n)=(1—-m? o"’",

(n)=( ) (A3)

~ ) 1-o?
I'(k)y=(1-m )—2 ,
1+0°—20 cos k
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with
o=N_/\;.

In Ising spin language mentioned below Eq. (2), the SCOZA
equation (12) reads [p=(1/2)(1+m) putting g=41,

(A4)

7 =) 1+ ()
- = —m e —m zZ N
B om?

with other relations unchanged. As the solution of this equa-
tion is expected to be consistent with Eqs. (A1)—(A3) the
value of the parameter z suggests itself comparing (6) and
(A3) as

(AS)

20

z= . (A6)

1+0°
With this z using (A1), (A2), and (A4), one then obtains the
following explicit expressions,

P(z)= 1 l+d?
= ==~ 1
(1= )P(2)= O <’ (A7)
e =(1—-z)P(z)= = s
l+to  1-m?(1—e 2P)
P(z)—1 C(V1=m*(1—e?P)—e™F)?

Fz)= B 2(1—m?)(1—e"25) ’
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where here the interaction has been normalized such that

2J=1, which corresponds to #(0)=¢g=4. When inserted
one finds that these expressions solve Eq. (12). They are also
the exact ones, as their dependence upon o is consistent with

(A3) [TO)=(1—-mHe % and T(1)=2(1—-m>F(z)].
[One can also differentiate (A1) to obtain & and F(z) as

given above from 2(In \,)/dBH)*=T(0)"" and a(In \,)/
aB=—1/2ym*~T(1).]
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