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Abstract

This work concentrates on the flow properties when one fluid displaces another
fluid in a network of pores and throats. We consider the scale where individual
pores enter the description and we use a network model to simulate the dis-
placement process. The network model, representing the pores and the throats
in the porous medium, consists of a square lattice of cylindrical tubes.

Network models together with experimental work on real porous systems,
have been successful in describing important properties of the fluid-fluid dis-
placement. In this thesis we study the interplay between the pressure build up
in the fluids and the displacement structure during drainage. Drainage is when
a nonwetting fluid displaces a wetting fluid in porous media.

We have found that our network model properly describes the burst dy-
namics and the pressure buildup due to capillary and viscous forces in the
displacements. With respect to the local capillary pressures of menisci in the
network, we model the tubes as if they were hourglass shaped. This has shown
to make the model closer to the dynamics of real displacements in porous media.
There is also good correspondence between the simulated temporal evolution of
the fluid pressures and earlier results from experiments and simulations in slow
drainage.

We have used the network model to study the stabilization mechanisms when
a stable front develops. We consider two-dimensional horizontal displacements
where the viscous forces stabilize the front and gravity might be neglected. In
particular, we have calculated the pressure difference between the fluids, that
is the capillary pressure, along the invasion front. We find that the capillary
pressure between two points along the front varies almost linearly as function of
height separation in the direction of the displacement. This is quite surprising
since the viscous force field is expected to be inhomogeneous due to the trapping
of wetting fluid and to the fractal displacement structure.

We present an alternative view on the displacement process based on the
observation that nonwetting fluid flows in separate strands (paths) along the
front were wetting fluid is displaced. We show that the strands are loopless
because wetting fluid may be trapped in single tubes surrounded by nonwetting
fluid. By using the alternative view we, present arguments about the pressure
behavior in the front. The arguments are supported by numerical results, and
we also show that they might influence the scaling relation between the front
width and the injection rate. As a consequence of our findings, we conclude that
earlier suggested theories which do not include the effect of nonwetting fluid
flowing in strands, are not compatible with drainage when strands dominate
the displacement process.
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1 Introduction

This thesis is about pore-scale numerical simulations of drainage displacements
in two-dimensional (2D) porous media. The papers forming the main part of
this thesis, all report and discuss the results obtained from the simulations as
well as describe the simulation model that was used.

Two-phase displacements in porous media have received much attention dur-
ing the last two decades. In modern physics, the process is of great interest due
to the variety of structures obtained when changing the fluid properties like
wettability, interfacial tension, viscosities and displacement rate. The different
structures obtained have been organized into three flow regimes: viscous finger-
ing [1,2], stable displacement [3], and capillary fingering [4-6]. Viscous fingering
is characterized by an unstable front of fingers that is generated when nonwet-
ting and less viscous fluid is displacing wetting and more viscous fluid at relative
high injection rate. The fingering structure is found to be fractal with fractal di-
mension D = 1.62 [1,2]. Stable displacement is named after the relative flat and
stable front that generates when a nonwetting and more viscous fluid displaces
a wetting and less viscous fluid at relative high injection rate. The last scenario,
capillary fingering, is obtained when a nonwetting fluid very slowly displaces a
wetting fluid. At sufficiently low injection rate the invasion fluid generates a
pattern similar to the cluster formed by invasion percolation [4,7-9]. The dis-
placement is now solely controlled by the capillary pressure, that is the pressure
difference between the two fluids across a meniscus in a pore.

Fluid flow in porous media has also been intensively studied because of
important applications in a wide range of different technologies. The most im-
portant areas that to a great extent depend on properties of fluid flow in porous
media, are oil recovery and hydrology. In oil recovery, petroleum engineers are
continuously devolving improved techniques to increase the amount of oil they
are able to achieve from the oil reservoirs. In hydrology, the on important
concern is often to avoid pollution of ground water from human activity.

1.1 Background and motivation

The simulation model used in this thesis is developed to study the dynamics of
the temporal evolution of the fluid pressures when a nonwetting fluid displaces
a wetting fluid at constant injection rate. With the model we study the pressure
in the fluids caused by the viscous forces as well as the capillary forces due to
the menisci in the pores. The model porous medium consists of a tube network
where the tubes are connected together to form a square lattice.

Numerical simulations of fluid flow in porous media using a network of tubes
was first proposed by Fatt [10] in 1956. Since then a large number of publica-
tions related to network models and pore-scale displacements have appeared in
the literature [1,3,11-23]. Often mentioned is the classic work of Lenormand et
al. [3] who were the first to systematically classify the displacement structures
into the three flow regimes: viscous fingering, stable displacement and capil-
lary fingering. Their network model consisted of pores and throats, situated



2 1 INTRODUCTION

respectively at the sites and bonds of a regular 2D square lattice. The pores
were spherical and represented the porosity of the network while the throats
had resistance to flow but no volume. Each throat was assigned a capillary
threshold pressure P., and nonwetting fluid was only allowed to enter a throat
if the pressure drop across the throat exceeded P,. The nonwetting fluid invaded
the network by completely filling one pore each time step, and menisci between
the nonwetting and wetting fluids in the throats were only allowed to move in
the forward direction. It is obvious that Lenormand et al. did seriously sim-
plifications compared to real porous networks. However, they were able to run
systems of typically 100 x 100 nodes which were an order of magnitude larger
than comparable work [11] at that time.

A couple of years before Lenormand et al. presented their network model,
Dias and Payatakes [12] formulated a model based on throats (tubes) that had
sinusoidal shape. They let the capillary pressure change when a meniscus invade
a tube, and typically 10 steps were necessary to solve the motion of a meniscus
moving through a tube. As the reader will observe later in this thesis, the idea
of Dias and Payatakes with respect to the capillary pressure, is similar to the
approach in our network model.

It appears that most network models have been used to study statistical
properties of the displacement structures or to calculate macroscopic properties
like fluid saturations and relative permeabilities. Some have also been used to
calculate capillary pressure curves as function of fluid saturation which often
is used as input data in reservoir simulations for the oil industry. As far as
the author know, it is only van der Marck et al. [21] that present a network
model simulating the pressure buildup in the fluids, similar to what our model
does. They conclude that the simulated pressure is comparable to experimental
results when viscosity matched fluids are used, but that there is room for im-
provement when the viscosity contrast between the fluids is large. Their model
is an improved version of the network model developed by Lenormand et al. .

There have also been several attempts to simulate the displacement pro-
cess by using different types of growth algorithms. In 1983 Wilkinson and
Willemsen [9] formulated a new form of percolation theory, invasion percolation
(IP), that exactly corresponds to slow drainage. In 1984 Paterson [24] was the
first to discover the remarkable parallels between diffusion-limited aggregation
(DLA) [25] and viscous fingering. He also showed similarities between anti-DLA
and stable displacement. The disadvantage with the growth algorithms is that
they do not contain any physical time and they have so far not been suitable
to study the cross over between the different flow regimes. However, attempts
have been made to use DLA and IP to study dynamics of viscous fingering [26]
and slow drainage [27, 28], respectively.

In slow drainage it is observed that the invasion of nonwetting fluid occurs in
a series of bursts accompanied by sudden negative drops in the pressure called
Haines jumps [27-29] (see Fig. 1). This type of dynamics is very important for
the temporal evolution of the pressure during drainage, and in most network
models the effect is neglected. Consequently, few network models have been used
to study the interplay between fluid pressures and displacement structures, and
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Figure 1: Nonwetting fluid (white) invades a 2D porous medium initially filled with
wetting fluid (shaded). As the nonwetting fluid is pumped into the system the menisci
move into narrower parts of the pore necks and the capillary pressure increases. During
a burst the invading fluid covers new pores and the neighboring menisci readjust back
to larger radii and the capillary pressure decreases everywhere [27].

many questions addressing this topic are still open. We will try to answer some
of them in this thesis, by making a model whose properties are closer to those
of real porous media. To model the burst dynamics, we have been motivated
by the hourglass shaped pore necks in Fig. 1. As a result we let the tubes in
our network model behave as if they were hourglass shaped with respect to the
capillary pressure. Thus, the capillary pressure of a meniscus starts at zero
when the meniscus enters the tube and increases towards a maximum value
at the middle of the tube where the tube is most narrow, before the capillary
pressure decreases to zero again when the meniscus leave the tube.

The advantage of the above approach is a network model that reproduces
the burst dynamics and the corresponding pressure evolution. We are also
able to study in details the capillary pressure of each menisci along the front
as they move through the network. Similar measurements can hardly be done
experimentally, and our numerical results concerning the capillary pressure, have
given new insight about the displacement process. In particular, we have found
that the capillary pressure between two points along the front varies almost
linearly as function of height separation in the direction of the displacement.
The numerical results support theoretical arguments taking into account the
evidence that nonwetting fluid displaces wetting fluid in separate strands. The
arguments we present differ from earlier suggested views [30-33] that do not
include the effect of nonwetting fluid flowing in strands. Therefore, we conclude
that earlier views are incompatible with drainage when nonwetting strands are
important.

Unfortunately, the detailed modeling of the moving menisci and their capil-
lary pressures makes the model computationally heavy and reduces the system
size that is attainable within feasible amount of CPU time.

1.2 Organization of the introductory sections

The following sections briefly discuss the main results from the papers that
are included at the end of this thesis. Section 2 presents the network model
which is published in Paper 1. Section 3 discusses the evolution of the pressure
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during drainage according to the results in Paper 2. This section also contains
work on the burst dynamics due to Paper 3. Section 4 presents simulation
results and theoretical arguments about stabilization mechanisms of the front
during drainage, and the section is supposed to cover Papers 4 and 5. At the
end, Section 5 summaries the most important results and makes suggestions on
further work.

2 Simulation model

The network model is thoroughly discussed in Paper 1, and it has also been
presented briefly in Papers 2-5. Therefore, only its main features are described
in this section.

The porous medium is constructed upon a square lattice oriented at 45°
to the horizontal where the distance between each intersection in the lattice is
of unit length. In Paper 1 and 2 we put a cylindrical tube of length d and
radii r between each intersection in the lattice. The disorder in the system is
introduced by assigning different radii to the tubes. The radii are chosen at
random from the interval [A;d, A2d] where 0 < A\; < A2 <1. The tubes represent
the porosity of the system and they are connected together at the intersections
(nodes) having no volume.

In Papers 3-5 we have in addition to above lattice, made a distorted square
lattice of tubes. The distorted lattice is constructed by drawing circles of radius
A around each intersection. To avoid overlapping circles we chose A in the
interval 0< A <1/2. A node without volume is placed at random in each circle
and the nodes inside the nearest neighbor circles are connected by cylindrical
tubes. Thus, the disorder in the system is introduced by the random position
of the nodes resulting in different lengths d of the tubes. The radii of the tubes
are given by r = d/2a where « is the aspect ratio between the tube length and
its radius. The reason for making a distorted lattice of tubes is to get closer to
a real pore-throat geometry as shown in Fig. 1 (see Paper 5 for further details).

Figure 2 shows an example of a displacement structure that is obtained from
one simulation. The nonwetting fluid (black) of viscosity pn. is injected along
the inlet and displaces the wetting fluid (grey) of viscosity p,,. The fluids flow
from the bottom to the top of the lattice, and there are periodical boundary
conditions in the orthogonal direction. We assume the fluids are immiscible and
incompressible.

A meniscus is located in the tubes where nonwetting and wetting fluids meet.
The capillary pressure p. of a meniscus in a cylindrical tube of radius r is given
by Young-Lapace law like

pe = 2 cost, 1)
under the assumption that the principal radii of the curvature of the meniscus
are equal to the radius of the tube. 6 denotes the wetting angle between the
cylinder wall and the wetting fluid, i.e. 0° <6 < 90° in drainage.
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Figure 2: Example of a displacement structure from one simulation. The nonwetting
fluid (black) is injected from below and displaces the wetting fluid (grey) that escapes
along the top row.

In the network model we treat the tubes as if they were hourglass shaped
with respect to the capillary pressure. Therefore, we let the capillary pressure
depend on where the meniscus is situated in the tube. In stead of Eq. (1) we
let p. of a meniscus vary in the following way:

_ [1 —cos(272)]. (2)

DPc
Here we assume that the wetting fluid perfectly wets the medium, i.e. § = 0. In
the above relation z denotes the position of the meniscus in the tube (0 < z < d),
giving that p. = 0 at the entrance and the exit of the tube and reaches a
maximum of 47 /7 in the middle of the tube (z = d/2). Practically, the wetting
angle of a meniscus and thereby its capillary pressure may generally be different
depending on whether the meniscus retires from or invades the tube. To avoid
numerical complications this effect is neglected in the present model.

We solve the volume flux through each tube by using Hagen-Poiseuille flow
for cylindrical tubes and Washburn’s approximation [34] for menisci under mo-
tion. Let g;; denote the volume flux through the tube from the ith to the jth
node, then we have
_ ik 1

i dij
Here k;; is the permeability of the tube (r;/8) and o;; is the cross section (777;)
of the tube. p;; denotes the effective viscosity, that is the sum of the volume
fractions of each fluid inside the tube multiplied by their respective viscosities.
The pressure drop across the tube is Ap;; = p; — p;, where p; and p; is the
pressures at node ¢ and j, respectively. The capillary pressure p. ;; is the sum
of the capillary pressures of each menisci [given by Eq. (2)] that are present
inside the tube. A tube partially filled with both liquids is allowed to contain at
maximum two menisci. For a tube without menisci, p. ;; = 0. We only consider
horizontal flow, and therefore we neglect gravity.

qij = (Apij — Pe,ij)- (3)
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We have conservation of volume flux at each node giving
Z qij = 0. (4)
J

The summation on j runs over the nearest neighbor nodes to the th node while
¢ runs over all nodes that do not belong to the top or bottom rows, that is,
the internal nodes. Egs. (3) and (4) constitute a set of linear equations which
we solve for the nodal pressures p;, with the constraint that the pressures at
the nodes belonging to the upper and lower rows are kept fixed. The set of
equations is solved by using the Conjugate Gradient method [35].

In the simulations we impose the injection rate @, therefore we have to find
the pressure across the lattice AP, that corresponds to the given (). Having
found AP we use this pressure to calculate the correct p;’s. In short, we find
AP by considering the relation

Q = AAP + B. (5)

The first part of Eq. (5) results from Darcy’s law for single phase flow through
porous media. The second part comes from the capillary pressure between the
two fluids (i.e. B = 0 if no menisci are present in the network). Eq. (5) has
two unknowns, A and B, which we calculate by solving Eq. (4) twice for two
different applied pressures AP’ and AP", across the lattice. From those two
solutions we find the corresponding injection rates Q' and Q”. Inserting Q’',
Q", AP', and AP" into Eq. (5) results in two equations which we solve for A
and B. Finally, we find the correct pressure due to the imposed @ by rewriting
Eq. (5), giving AP = (Q — B)/A. See Papers 1 and 2 for further details on how
p; is calculated after AP is found.

In the literature different methods have been suggested to obtain a solution
where the injection rate is held fixed [3,12,21]. However, it appears that none of
them solve the contribution to the pressure due to viscous and capillary forces
separately. In Eq. (5) the capillary contribution to the pressure is —B/A and
the viscous amount is @) /A. This evidence is thoroughly discussed in Paper 2
and summarized in Sec. 3.

Given the correct solution of p; we calculate the volume flux g;; through each
tube in the lattice, using Eq. (3). Having found the g;;’s we define a time step
At such that every meniscus is allowed to travel at most a maximum step length
Azmax during that time step. Each meniscus is moved a distance (g;;/0:;) At
and the total time lapse is recorded before the nodal pressures p;, are solved for
the new fluid configuration. Menisci that are moved out of a tube during a time
step are spread into neighboring tubes as described in Papers 1 and 2.

Numerical simulations show that in order to simulate the capillary pressure
variations when menisci pass through the “hourglass shaped” tubes we must
chose Az < 0.1d where d is the tube length. In most of our simulations Az =
0.1d, giving that at least 10 steps must be taken to move a meniscus from the
inlet to the outlet of a tube. This makes the model computationally heavy due



to an enormous amount of time steps, typically 10°, that is required before the
nonwetting fluid penetrates a network of 40 x 60 nodes.

Most network models treat the tubes as if they where straight and let the
nonwetting fluid completely invade one pore or throat during every time step.
Consequently, the total number of time steps is reduced to the number of tubes
that the nonwetting fluid invades. In a network of 40 x 60 nodes this is about
102 tubes which should be compared to the 10° time steps that are required in
our model. This is the main reason why we are limited to rather small system
sizes of 25 x 35 and 40 x 60 nodes.

3 Temporal evolution of fluid pressure

In Paper 2 we discuss the temporal evolution of the pressure due to capillary and
viscous forces at various injection rates and fluid viscosities. The main results
from that paper is summarized in Sec. 3.1, while Sec. 3.2 provides a little about
burst dynamics due to the results in Paper 3.

To characterize the different fluid properties used in the simulations, we
use the capillary number C, and the viscosity ratio M. The capillary number
indicates the ratio between viscous and capillary forces and in the simulations
it is defined as

C, = Qu

o= (©

Here @ is the injection rate of the nonwetting fluid,  is the maximum viscosity
of the nonwetting and wetting fluid, ¥ is the cross section of the inlet and 7 is
the fluid-fluid interface tension.

The viscosity ratio M, is defined as

M=t (7)
P
where pi,, and ., is the viscosity of the invading nonwetting fluid and the
defending wetting fluid, respectively.

3.1 Interplay: pressure buildup and trapped fluid

The pressure across the system is found from Eq. (5) giving

AP = % + P, (8)
where P,; = —B/A defines the global capillary pressure of the system. As will
become clear below, P, contains the capillary pressures of the menisci sur-
rounding the trapped wetting fluid (cluster menisci) and the capillary pressures
of the menisci along the invasion front (front menisci).

Figure 3 shows the simulated pressures AP and P, during drainage at
C, = 46%x107% and M = 100. The front width was observed to stabilize
after some time ¢z, and a typical compact pattern of clusters of wetting fluid
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Figure 3: AP (a), P.g (b), and Ag/A (c) as function of injection time. C, = 4.6x1072
and M = 100. The vertical dashed line is drawn at the saturation time, ¢s.

developed behind the front. From Fig. 3 we observe that both AP and P,
increases as the more viscous fluid is pumped into the system. When ¢t > ¢,
they even tend to increase linearly as function of time.

The driving mechanism in the displacement is the pressure gradient between
the inlet and the front causing a viscous drag on the trapped clusters. At
moderate injection rates these clusters are immobile, thus the viscous drag is
balanced by capillary forces along the interface of the cluster. On average the
sum of the capillary forces from each cluster contributes to P, by a certain
amount making P,, proportional to the number of clusters behind the front.
After the front has saturated with fully developed clusters behind (¢ > t), the
number of clusters are expected to increase linearly with the amount of injected
fluid. Since the injection rate is held fixed we recognize that P., must increase
linearly as function of time. The argument does not apply when ¢ < t;, due to
the fractal development of the front before saturation.

In Fig. 3 we have also plotted Ay/A which is the normalized difference be-
tween AP and P4 [see Eq. (8)]. Ao is equal to the proportionality factor between
@ and AP when only one phase flows through the lattice (i.e. Py = 0). We
observe that Ag/A tends to increase linearly as function of time when ¢ > ¢;.
From Eq. (5) we interpret A as the total conductance of the lattice, and the re-
ciprocal of that is the total resistance. The total resistance depends on the fluid
configuration and the geometry of the network. Locally, the fluid configuration
changes as nonwetting fluid invades the system, however, the linear behavior of
Ap/A indicates that the overall displacement structure is statistically invariant
with respect to the injection time. That means, after the front has saturated
(t > ts) the displacement structure might be assigned a constant resistance per
unit length.
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Figure 4: P.; (a) and P.y (b) as function of injection time at C, = 3.5x10™* and
M = 1.0x1073. To avoid overlapping curves P., was subtracted by 1000 dyn/cm?
before it was normalized.

In the special case when M = 1 (viscosity matched fluids) the total re-
sistance, 1/A, was found to be constant independent of the injection rate or
displacement structure. This somewhat surprising result might be explained by
the following consideration. When M = 1 the effective viscosity p;;, of each
tube is independent of the amount of wetting and nonwetting fluid that occu-
pies the tube. Hence, each tube has a constant conductivity of k;;/u;; giving a
constant total resistance of the network.

At low C, we approach the regime of capillary fingering and the viscous drag
on the clusters becomes negligible. Hence, F,, is no longer a linear function of
the injection time, but reduces to that describing the capillary pressure along
the front. This is observed in Fig. 4 where we compare FP., with the calcu-
lated average capillary pressure along the front, P.;. In the simulations, Py is
calculated by taking the mean of the capillary pressures of the front menisci.
From the figure we see that P,y ~ P, as expected. The big jumps in the
pressure functions in Fig. 4 are caused by the capillary pressure variations of
menisci passing through the “hourglass” shaped tubes. The negative jumps are
identified as bursts where the invading fluid proceeds abruptly [27,29] (see also
Sec. 3.2 for further details).

From the above discussion we conclude that the behavior of P, at large
times (¢ > t;) may be formulated as

ch = Amch+mea (9)

where A, is the proportionality factor between P., and h due to the viscous
drag on the clusters, and P, is the capillary variations when the invasion
front covers new tubes. h denotes the average front position after the front has
saturated, i.e. hy < h < L, where h; is the average front position at ¢t; and L is
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the length of the system. Since the injection rate is held fixed, h is proportional
to the injection time ¢. In the limit of very low injection rates, A,,. — 0.

When the average front position has reached the outlet, i.e. h = L in Eq. (9),
only invading fluid flows through the system and P,y = 0. In this limit Darcy’s
law applied on the nonwetting phase gives U = (K. /pnw)(AP/L), where K, is
the effective permeability of the nonwetting phase. From Egs. (8) and (9) we
find that AP = Q/A + A, L, which inserted into Darcy’s law gives

Unw

Ke = 1/0T+Amc/U. (10)
Here o1 = AL/Y. denotes the total conductivity of the lattice. Thus, we might
consider the effective permeability of the nonwetting phase as a function of the
conductivity of the lattice and an additional term due to the viscous drag on
the clusters (Ap,c/U). Note that the U dependency in Eq. (10) only indicates
changes in A,,. between displacements executed at different injection rates.
The behavior when the flow rate changes during a given displacement is not
discussed here.

3.2 Burst dynamics

In invasion percolation (IP) [36] where each site is assigned a random number
f, an ideal burst is defined as the connected structure that is invaded following
one root site of random number f; along the invasion front. All the sites in the
burst have random numbers smaller than fy, and the burst stops when f > fy
is the random number of the next site to be invaded [37]. The size of a burst is
the number of sites s in the connected structure included the root site.

The distribution of burst sizes N(s) has been found to obey the scaling
law [38,39]

N(s) o577 g(s% (fo = fo)). (11)
Here f. is the percolation threshold of the system and g(z) is some scaling
function which decays exponentially when z > 1 and is a constant when z — 0.
7' is related to percolation exponents like 7' =1+ Dy/D — 1/(Dv) [39] where
Dy and D is the fractal dimension of the front and the mass of the percolation
cluster, respectively. Dy depends on the definition of the front, that is, Dy
equals D, for external perimeter growth zone [36,40] and D}, for hull perimeter
growth zone [36,41]. v is the correlation length exponent in percolation theory
and 0 = 1/(vD) [36].

In 1995 Maslov [42] deduced a scaling relation for the hierarchical burst size
distribution by integrating Eq. (11) over all fy in the interval [0, f.]. Thus,
the hierarchical burst size distribution contains all ideal bursts including the
hierarchical smaller ones that might be within each ideal burst (see Fig. 5).
Let Nap(s) denote the hierarchical burst size distribution, then according to
Maslov [42]

Nan(s) oc s~ Tt (12)

where Tall = 2.
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Figure 5: The pressure as function of injection time for one simulation at low C, in
a narrow time interval. The horizontal line defines the valley of a single burst. Note
that a burst may contain a hierarchical structure of smaller bursts within the valley.
The vertical line indicates the size of a local pressure jump Ap inside the valley.

In Ref. [28], 7' and 7,y were estimated for simulations and experiments in
slow drainage. The simulation model used in [28] was a modified IP algorithm
designed to study the burst dynamics of capillary fingering. To check that the
burst dynamics are properly modeled in our network model we calculate 7' and
Tan from simulations performed in the limit of low injection rates. In addition,
we compute the hierarchical burst size distribution at higher injection rates to
observe a possible rate dependency of 7,;. Below a summary of the results is
provided.

In the simulations a burst starts where the pressure drops suddenly, due to an
unstable meniscus, and stops where the pressure has raised to a value above the
pressure that initiated the burst. Thus, a burst may consist of a large pressure
valley containing a hierarchical structure of smaller bursts inside, as indicated
in Fig. 5. From the simulations we could have calculated the geometrical size
of the region being invaded during a burst. That would correspond to the
burst size s in Egs. (11) and (12). However, we want to compare our results
to experimental work in [28] where the geometrical size is hard to measure.
Therefore, we calculate the burst sizes in analogy to definitions in [28].

According to [28] we define the burst size as the sum of the pressure jumps
inside the valley of the burst (see Fig. 5). We call the sum of the pressure
jumps the valley size given as x = >, Ap;. Here the index i runs over all the
pressure jumps Ap; inside the valley. In order to calculate the valley sizes at
large C, we subtract the average drift in the pressure function due to viscous
forces, such that the pressure becomes a function fluctuating around some mean
pressure. We assume that the valley size yx, is proportional to the geometrical
size of the region being invaded during a burst [28], and therefore x becomes
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Figure 6: The hierarchical valley size distributions N,y (), for six simulations between
low and high C, with M =1 (0,0,¢) and M = 100 (A,<,V). The slope of the
solid line is —1.9. Inset: The cumulative valley size distribution N(x > x™), for bursts
that start in a narrow pressure strip for the simulation performed at C, = 1.6 x107°
and M = 1. The slope of the solid line is —0.5.

roughly proportional to s.

In Fig. 6 we have plotted the hierarchical valley size distribution Nay (), for
six simulations between low and high C, with M = 1 and 100 on a lattice of
40 x 60 and 25 x 35 nodes, respectively. Since we assume that x o< s, Nan(x)
corresponds to N,i(s) in Eq. (12). The slope of the solid line in Fig. 6 is —1.9,
and we conclude from the simulations that 7,y = 1.9 £ 0.1. At low yx in Fig. 6,
typically only one tube has been invaded during the burst and we do not expect
the power law to be valid.

Our calculated 7, is close the theoretical prediction in Eq. (12) and the
result of simulations and experiments in [28] at low C,. We might have intro-
duced some errors when we compare x with the burst sizes s which may explain
why our result deviates a little from the exact value 7o = 2. From Fig. 6 we
note that our estimated 7, does not depend on C,. Even at high C, where a
flat front generates we find 7,y = 1.9 £ 0.1. In [42] 7,y was pointed out to be
super universal for a broad class of self-organized critical models including IP.
Our result indicates that the simulated displacement process might belong to
the same super universality class even at high injection rates where there is no
clear mapping between the displacement process and IP.

In the inset of Fig. 6 we have plotted the cumulative valley size distribution
N(x>x*) for bursts starting in a narrow strip between 2800 and 3100 dyn/cm?
where 3100 is the maximum pressure during the displacement. From Eq. (11) we
have that N(s) o« s~ 7, for bursts that start close to the percolation threshold
fe- In our simulations f. corresponds to the maximum pressure. In the inset
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Figure 7: The cumulative pressure jump distribution function N(P > P*), for simula-
tions performed with viscosity matched fluids (M = 1) on a lattice of 40 x 60 nodes.
The dashed lines are fitted exponential functions.

of Fig. 6 we have plotted N(x > x*) versus x* in a logarithmic plot for one
simulation performed at low C, = 1.6 x10~% with viscosity matched fluids on a
lattice of 40 x 60 nodes. If we assume a power law behavior our best estimate is
1 — 7" = —0.5 which is indicated by the slope of the solid line in Fig. 6. In [28]
simulations and experiments gave 1 — 7' = —0.45 £ 0.10. We need larger system
sizes and more simulations to improve our statistics. However, our result seems
to be consistent with [28].

We have also calculated the cumulative pressure jump distribution function
N (P > P*) for simulations at various injection rates and viscosity ratios. The
pressure P = Ap/(Ap), where (Ap) is the mean of the pressure jumps Ap
(see Fig. 5). In Fig. 7 we have plotted the result for two simulations, one at
high and the other at low C,. Both were performed with viscosity matched
fluids on a lattice of 40 x 60 nodes. The distributions have been fitted to
exponentially decreasing functions plotted as dashed lines in Fig. 7. At low
C, we find N(P > P*) o e~'*8"" which is consistent with the results in [28].
At high C, the distribution function was fitted to e 192", The pre-factor in
the exponent of the exponential function seems to change systematically from
about 1.4 to 1.0 as C, increases. Similar results were obtained from simulations
performed with M = 100 on a lattice of 25 x 35 nodes.

From Figs. 6 and 7 we conclude that the results of our network simulations
are in agreement with experiments and simulations performed in [28] at slow
drainage. This supports the evidence that the burst dynamics are well described
by our network model.

4 Stabilization of drainage displacements

Papers 4 and 5 discuss the stabilization mechanisms of drainage displacements
due to viscous forces and present new theoretical arguments about the pressure
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behavior along the front. Below, a briefly review of earlier work on stabilization
of drainage displacements is provided, before the arguments and the supporting
numerical results are presented in Sec. 4.1. At the end, Sec. 4.2 investigates the
general validity of the arguments and raises important questions going beyond
the discussion in Sec. 4.1.

When the displacements are oriented out of the horizontal plane, gravity
acting on the system, may stabilize the front due to density differences between
the fluids. Several authors [30,43-45] have confirmed, by experiments and sim-
ulations, that the saturated front width ws scales with the strength of gravity
like wy o« B, “/*"). Here B, (Bond number) is the ratio between gravita-
tional and capillary forces, given by B, = Apga?/v, where Ap is the density
difference between the fluids, g the acceleration due to gravity, a the average
pore size, and <y the fluid-fluid interface tension. Furthermore, v denotes the
correlation length exponent in percolation. The above scaling relation may be
deduced from IP by applying a gradient proportional to —B, to the random
numbers of the sites in the percolation lattice. This will cause the invasion front
to stabilize [30, 44, 46].

A similar consensus concerning the stabilization mechanisms when the dis-
placements are within the horizontal plan has not yet been reached. Here viscous
forces replace gravitational forces, and in the literature there exist different sug-
gestions about the scaling of w, as function of C,. The capillary number C,
is the ratio between viscous and capillary forces according to the definition in
Sec. 3. In 3D, where trapping of wetting fluid is assumed to be of little im-
portance, Wilkinson [30] was the first to use percolation to deduce a power law
like wy x Cp,™% where @« = v/(1+t— 3+ v). Here t and (3 is the conduc-
tivity and order parameter exponent in percolation, respectively. Later, Blunt
et al. [32] suggested in 3D that @« = v/(1 + ¢ + v). This is identical to the
result of Lenormand [31] finding a power law as function of system size for the
domain boundary in the C,—M plane between capillary fingering and stable
displacement in 2D porous media.

More recently, Xu et al. [33] used a similar approach as Wilkinson and found
that the pressure drop AP, across a height difference Ah in the nonwetting
phase of the front should scale as AP,,, o« Aht/*+de—-1-6/v  Here dg denotes
the Euclidean dimension of the space in which the front is embedded, i.e. in
our case dg = 2. The pressure drop in the wetting phase AP,,, was argued to
be linearly dependent on Ah due to the compact phase there. In [32] Blunt
et al. also suggested a scaling relation for AP,,,, however, in 3D they found
APy, o< ARY/*T1 This is different from the result of Xu et al. when dg = 3.

In Sec. 4.1 we present an alternative view on the displacements from those
initiated by Wilkinson [30], but include the evidence that nonwetting fluid flows
in separate strands. The alternative view leads to another scaling of AP,,, than
the one suggested by Xu et al. [33], and we show that it may influence « in the
scaling between w; and C,.
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Figure 8: Two displacement structures of simulations at high C, = 3.9x107* (left)
and low C, = 1.6x107° (right) before breakthrough of nonwetting fluid. The lattice
size is 40 x 60 nodes and M = 1. The nonwetting fluid (dark grey and black) is
injected from below and wetting fluid (light grey) flows out along the top row. The
black tubes denote the loopless strands where nonwetting fluid flows and the dark grey
tubes indicate nonwetting fluid unable to flow (i.e. dead ends) due to trapped regions
of wetting fluid. Note the few fluid supplying strands from the inlet to the frontal
region at low C, compared to the case at high C,.
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4.1 Loopless strands

Figure 8 shows two typical displacement structures that were obtained from
simulations at low and high C, on a lattice of 40 x 60 nodes with M = 1.
From the figure we observe that the nonwetting fluid (dark grey and black)
generates patterns containing no closed loops. That means, following a path of
nonwetting fluid will never bring us back to the starting point. The nonwetting
fluid also flows in separate loopless strands, indicated as black tubes in Fig. 8.
The loopless structures in Fig. 8 are a direct consequence of the evidence that a
tube filled with wetting fluid and surrounded on both sides by nonwetting fluid is
trapped due to volume conservation of wetting fluid. We note that this evidence
may easily be generalized to 3D, and therefore our arguments should apply there
too. Similar loopless features were also pointed out in [47] for site-bond IP with
trapping and in [48] for a loopless IP algorithm.

From Fig. 8 we may separate the displacement patterns into two parts. One
consisting of the frontal region continuously covering new tubes, and the other
consisting of the more static structure behind the front. The frontal region is
supplied by nonwetting fluid through a set of strands that connect the frontal
region to the inlet. When the strands approach the frontal region they are more
likely to split. Since we are dealing with a square lattice, a splitting strand
may create either two or three new strands. As the strands proceed upwards
in Fig. 8, they split repeatedly until the frontal region is completely covered by
nonwetting strands.

On IP patterns with trapping [47] and without loops [48,49] the length [ of
the minimum path between two points separated an Euclidean distance R scales
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like I oc RP+ where D, is the fractal dimension of the shortest path. We assume
that the displacement patterns of the frontal region for lengths less than the
correlation length (in our case wy) is statistically equal to IP patterns in [47].
Therefore, the length of individual nonwetting strands in the frontal region,
is proportional to AhP+ where Ah is some vertical length less than w,. If we
assume that every tube in the lattice on average has the same mobility (k;;/ps;),
we obtain that the fluid pressure within one strand must drop like Ah* where
k = Ds. Let us now consider the effect on the pressure when strands split. If we
assume that the strands are straight (D = 1), then by following a path where
strands split would cause the pressure to drop as Ah" where x < 1. This is
because the volume fluxes through the new strands must be less than the flux
in the strand before it splits, due to volume conservation of nonwetting fluid.
From Fig. 8, we note that at high C, the lengths of individual strands in the
frontal region approach the minimum length due to the tubes. Therefore, in
this limit finite size effects are expected to cause D; — 1.

The two results (k = D, and k < 1) predict that the pressure drop in the
nonwetting phase of the frontal region, AP,,,, should scale as AP,,, o Ah”
where kK < Dg. In 2D two different values for D, have been reported: D; =
1.22 [48,49] for loopless IP patterns growing around a central seed, and Ds =
1.14 [47] for the single strand connecting the inlet to the outlet when nonwetting
fluid percolates the system. We note that the result in [47] is essentially equal
to Dpmin = 1.13 [36, 50], that is the fractal dimension of the minimum path
in 2D percolation where loops generally occur. According to Xu et al. [33],
k=t/v+ds —1— (/v ~ 1.9 in 2D where we have inserted t = 1.3, v = 4/3,
B = 5/36, and dg = 2. Thus, our arguments based on the loopless strands of
nonwetting fluid are incompatible with the result in [33].

To confirm the above arguments giving kK < Dg, we have calculated the
difference in capillary pressure AP, between menisci along the front in the
direction of the displacement using our network model. AP, as function of Ah
was calculated by taking the mean of the capillary pressure differences between
all pairs of menisci separated a vertical distance Ah along the front (see Paper 5
for details). Figure 9 shows AP, as function of Ah for simulations performed
at various C,, M, and system sizes. The left figure shows AP, for simulations
performed on systems of 25 x 35 and 40 x 60 nodes where M = 100 and 1,
respectively. We did 10-30 simulations at each C, to obtain reliable average
quantities.

To the right in Fig. 9, we have plotted log;,(AP.) versus log,;,(Ah) for
simulations performed on four patterns generated at systems of 200 x 300 nodes
by an IP algorithm. In these simulations the tubes in the network model were
initially filled with nonwetting and wetting fluid according to the generated
IP patterns. The network model was started from this point and ran a limited
number of time steps while A P, was recorded. By this way, we were able to study
AP, on large systems in the low C, regime, because we saved the computation
time that would have been required if similar displacement patterns should have
been generated by the network model. Instead, the patterns were generated by a
much faster IP algorithm. To make this method self-consistent we had to assume
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Figure 9: Left: AP, as function of Ah for three different C,’s with M = 100 and 1 on
lattices of 25 x 35 and 40 x 60 nodes, respectively. Right: log;,(AP.) as function of
log,,(Ah) for simulations initiated on IP patterns at C, = 9.5x107°% and M = 100.
The slope of the solid line is 1.0.

that the IP patterns were statistically equal to corresponding structures that
would have been generated by the network model. See Paper 5 for details about
the IP algorithm and how the network model was initiated by the generated
patterns.

From the results in Fig. 9 we conclude that AP, increases almost linearly
with Ah. Assuming a power law behavior like AP, o Ah", our best estimate of
the exponent is Kk = 1.0£0.1. We have also performed simulations on IP patterns
at C, = 2%x107% with M =1 and 100. The results of those are consistent with
the plot to the right in Fig. 9. The behavior of AP, is connected to AP,
through AP, ~ AP,,, — AP,. Here AP, is the pressure drop in the wetting
phase of the frontal region and varies linearly as function of height Ah. The
above relation was suggested in [33] and it is also confirmed by our simulations.
Hence, our simulations giving x ~ 1.0 support the arguments finding k < D,
in AP,,,, o« Ah*. Therefore, we conclude that earlier proposed theories [30-33]
which do not consider the evidence that nonwetting fluid flows in strands, are
incompatible with drainage when strands are important.

The evidence that k < D, may influence the exponent o in ws; oc C, ™.
Assuming Darcy flow where the pressure drop depends linearly on the injection
rate, we conjecture that AP, oc C, Ah”™. Here AP, denotes the capillary pressure
difference over a height Ah when the front is stationary. That means, AP,
excludes situations where nonwetting fluid rapidly invades new tubes due to
local instabilities (i.e. bursts). The above conjecture is supported by simulations
showing that in the low C, regime AP, x CyAh® where  ~ 1.0. Note, that
AP, # AP, in Fig. 9 since the latter includes both stable situations and bursts.

At sufficiently low C, where only the strength of the capillary pressure de-
cides which tube should be invaded or not, we may map the displacement process
to percolation giving AP, o f — f. o< £€71/7 [30,44,46]. Here f is the random
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numbers in the percolation lattice, fc is the critical percolation threshold, and
& o« w; is the correlation length. Combining the above relations for AP, gives
ws < Cp~% where a = v/(1 + vk). In 2D v = 4/3 and by inserting k = 1.0 we
obtain a & 0.57. Note that this is different to results suggested in [30, 32, 33]
giving a ~ 0.37-0.38 in 2D.

At high C, the nonwetting fluid is found to invade simultaneously everywhere
along the front, and consequently the front never reaches a stationary state (see
Paper 5). In this limit simulations show a nonlinear dependency between Aﬁc
and C,. Therefore, in the high C, regime it is not clear if the above mapping
to percolation is valid, and we expect another type of behavior between ws and
C,.
Frette et al. [51] have performed 2D drainage experiments where w, was
measured as function of C, for viscosity matched fluids (M = 1). Their best
estimate on the exponent in w; oc C;~% was a = 0.6 &+ 0.2. This is consistent
with the above conjecture (o = 0.57), however, corresponding simulations on
40 x 60 nodes lattices give & = 0.3 £ 0.1 (see Paper 5). The simulations are
performed at C;, > 1.0x10° while most of the experiments where done at
C, < 1.0x107®. Since the range of the two does not overlap it is difficult to
compare the result of the simulations with those of the experiments. However,
the change in « from 0.6 to 0.3, might be consistent with a crossover to another
behavior at high C, according to the above discussion. We also note, that for
the simulations at Cy ~ 1.0 x10%, the front width approaches the maximum
width due to the system size, making it difficult to observe any possible a ~ 0.57
regime at low C,. We emphasize that more simulations on larger systems and
at lower C, are needed before any conclusion on « can be drawn.

4.2 Range of validity

The evidence that the nonwetting fluid displaces the wetting fluid in a set of
loopless strands opens new questions about the displacement process. Returning
to Fig. 8 it is striking to observe the different patterns of strands at high and
low C,. At low C, few strands are supplying the frontal region with nonwetting
fluid, and the strands split many times before the whole front is covered. At high
C, the horizontal distance between each strand in the static structure is much
shorter, and only a few splits are required to cover the front. We conjecture
that the average horizontal distance between the fluid suppling strands depends
on the front width. However, further investigation of the displacement patterns
is required before any conclusions can be drawn.

So far the arguments in Sec. 4.1 only consider displacements where the non-
wetting strands contain no loops. A very interesting question that has to be
answered is: What happens to x when different strands in the front connect
to generate loops. In ordinary bond or site percolation loops generally oc-
cur. Loops are also observed in experiments corresponding to those of Frette et
al. [51]. In the experiments it is more difficult to trap wetting fluid due to the
more complex topology of pores and throats (see Fig. 1). Consequently, loops
will more easily generate there, than in the case of a regular square lattice.
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Loops might also be created when neighboring menisci along the front overlap
and coalesce depending on the wetting properties of the nonwetting fluid [5, 6].

As a first approximation we conjecture that creation of loops will not cause
k to change significantly. Note that in the front the different nonwetting strands
connecting to each other to create loops, must at some later time split. Other-
wise successive connections will cause the different strands to coalesce into one
single strand of nonwetting fluid. Moreover, after the front width has saturated,
the number of places where different strands connect must on average be equal
to the number of places where strands split. Therefore, we believe that the
influence on k due to connections (i.e. loops) will be compensated by the splits
and the overall behavior of k will remain the same. We emphasize that further
simulations and experiments are required to investigate the effect of loops on k.
Hopefully, that will confirm the above conjecture.

According to the discussion in Sec. 4.2, the evidence that the displacement
patterns consist of loopless strands may easily be generalized to 3D. Therefore
we conjecture that our arguments giving k < D;, might be valid in 3D as well.
Note also that in 3D it is less probable that different strands meet. Hence, even
if they were supposed to connect to create loops, the number of created loops
are expected to be few. In 3D the fractal dimension of the shortest path for
loopless IP is Dy = 1.42 [48] whereas for regular percolation D, = 1.34 [36, 50].

5 Summary and further work

We conclude that our 2D network model properly simulates the temporal evo-
lution of the pressure in the fluids during drainage. We have found that the
model reproduces the typical burst dynamics at low injection rates and we have
simulated the behavior of the capillary pressure along the front. The latter can
hardy be measured experimentally.

Simulations show that the capillary pressure difference AP, between two
points along the front varies almost linearly as function of height separation Ah
in the direction of the displacement. The numerical result supports arguments
based on the observation that nonwetting fluid flows in separate strands where
wetting fluid is displaced. From the arguments we find that AP, o« Ah* where
k < D;. Here D; denotes the fractal dimension of the nonwetting strands. It
is interesting to observe that despite the small system sizes of our simulations,
we are able to use the numerical results to grasp new physics and confirm our
arguments.

Several attempts have been made to describe the stabilization mechanisms
in drainage due to viscous forces, however, none of them consider the evidence
that nonwetting fluid displaces wetting fluid through strands. Therefore, we
conclude that earlier suggested theories fail to describe the stabilization of the
invasion front when strands dominate the displacements.

According to Sec. 4.2 there are still work to be done about the stabilization
mechanisms in drainage. Especially, the indication that the arguments giving
k < Dg in 2D, might apply in 3D too, should be thoroughly checked. The
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effect on k of possible loops should also be investigated further. Particularly,
a closer study of loops being created in drainage experiments, are necessary.
Presumably one will find that different strands in the experiments may connect
to create loops. However, the overall picture of nonwetting strands that split to
cover the front, should remain.

In the literature, different values of D, in 2D have been reported (see
Sec. 4.1), and a closer examination of the fractal dimension of the strands are
required in order to find the correct D, for our problem. It is also of particular
interest to develop another numerical scheme of simulations which are able to
simulate the displacements on larger lattices in the low C, regime. Hopefully,
this will confirm the conjectured o = v/(1 + v&) in the power law ws o< Cp
from Sec. 4.1.

Another issue that the literature contains little information about, is the
effect on the displacement patterns when changing the pore size distribution.
In [1] the pore size distribution was varied in some experiments and simula-
tions in the regime of viscous fingering. The effect of changing the pore size
distribution has also been discussed in connection with the transition from self-
similar fractal to faceted growth when varying the wetting angle of the invading
fluid [6]. It appears that no one has yet systematically studied the effect of the
front width when changing the pore size distribution in drainage displacements.

The network model presented in this thesis only simulates drainage. The
imbibition mechanism like film flow is not included and the methods we apply
when moving menisci into neighboring tubes are motivated by displacement
mechanisms observed in drainage [52] (see Paper 1 for details). A continuation of
this project could be to improve the model by including imbibition mechanisms.
Still, modeling of the fluid pressures due to capillary and viscous forces during
imbibition is an outstanding problem [53].
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