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AbstratThis work onentrates on the ow properties when one uid displaes anotheruid in a network of pores and throats. We onsider the sale where individualpores enter the desription and we use a network model to simulate the dis-plaement proess. The network model, representing the pores and the throatsin the porous medium, onsists of a square lattie of ylindrial tubes.Network models together with experimental work on real porous systems,have been suessful in desribing important properties of the uid-uid dis-plaement. In this thesis we study the interplay between the pressure build upin the uids and the displaement struture during drainage. Drainage is whena nonwetting uid displaes a wetting uid in porous media.We have found that our network model properly desribes the burst dy-namis and the pressure buildup due to apillary and visous fores in thedisplaements. With respet to the loal apillary pressures of menisi in thenetwork, we model the tubes as if they were hourglass shaped. This has shownto make the model loser to the dynamis of real displaements in porous media.There is also good orrespondene between the simulated temporal evolution ofthe uid pressures and earlier results from experiments and simulations in slowdrainage.We have used the network model to study the stabilizationmehanisms whena stable front develops. We onsider two-dimensional horizontal displaementswhere the visous fores stabilize the front and gravity might be negleted. Inpartiular, we have alulated the pressure di�erene between the uids, thatis the apillary pressure, along the invasion front. We �nd that the apillarypressure between two points along the front varies almost linearly as funtion ofheight separation in the diretion of the displaement. This is quite surprisingsine the visous fore �eld is expeted to be inhomogeneous due to the trappingof wetting uid and to the fratal displaement struture.We present an alternative view on the displaement proess based on theobservation that nonwetting uid ows in separate strands (paths) along thefront were wetting uid is displaed. We show that the strands are looplessbeause wetting uid may be trapped in single tubes surrounded by nonwettinguid. By using the alternative view we, present arguments about the pressurebehavior in the front. The arguments are supported by numerial results, andwe also show that they might inuene the saling relation between the frontwidth and the injetion rate. As a onsequene of our �ndings, we onlude thatearlier suggested theories whih do not inlude the e�et of nonwetting uidowing in strands, are not ompatible with drainage when strands dominatethe displaement proess.
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11 IntrodutionThis thesis is about pore-sale numerial simulations of drainage displaementsin two-dimensional (2D) porous media. The papers forming the main part ofthis thesis, all report and disuss the results obtained from the simulations aswell as desribe the simulation model that was used.Two-phase displaements in porous media have reeived muh attention dur-ing the last two deades. In modern physis, the proess is of great interest dueto the variety of strutures obtained when hanging the uid properties likewettability, interfaial tension, visosities and displaement rate. The di�erentstrutures obtained have been organized into three ow regimes: visous �nger-ing [1,2℄, stable displaement [3℄, and apillary �ngering [4{6℄. Visous �ngeringis haraterized by an unstable front of �ngers that is generated when nonwet-ting and less visous uid is displaing wetting and more visous uid at relativehigh injetion rate. The �ngering struture is found to be fratal with fratal di-mensionD = 1:62 [1,2℄. Stable displaement is named after the relative at andstable front that generates when a nonwetting and more visous uid displaesa wetting and less visous uid at relative high injetion rate. The last senario,apillary �ngering, is obtained when a nonwetting uid very slowly displaes awetting uid. At suÆiently low injetion rate the invasion uid generates apattern similar to the luster formed by invasion perolation [4, 7{9℄. The dis-plaement is now solely ontrolled by the apillary pressure, that is the pressuredi�erene between the two uids aross a menisus in a pore.Fluid ow in porous media has also been intensively studied beause ofimportant appliations in a wide range of di�erent tehnologies. The most im-portant areas that to a great extent depend on properties of uid ow in porousmedia, are oil reovery and hydrology. In oil reovery, petroleum engineers areontinuously devolving improved tehniques to inrease the amount of oil theyare able to ahieve from the oil reservoirs. In hydrology, the on importantonern is often to avoid pollution of ground water from human ativity.1.1 Bakground and motivationThe simulation model used in this thesis is developed to study the dynamis ofthe temporal evolution of the uid pressures when a nonwetting uid displaesa wetting uid at onstant injetion rate. With the model we study the pressurein the uids aused by the visous fores as well as the apillary fores due tothe menisi in the pores. The model porous medium onsists of a tube networkwhere the tubes are onneted together to form a square lattie.Numerial simulations of uid ow in porous media using a network of tubeswas �rst proposed by Fatt [10℄ in 1956. Sine then a large number of publia-tions related to network models and pore-sale displaements have appeared inthe literature [1,3,11{23℄. Often mentioned is the lassi work of Lenormand etal. [3℄ who were the �rst to systematially lassify the displaement struturesinto the three ow regimes: visous �ngering, stable displaement and apil-lary �ngering. Their network model onsisted of pores and throats, situated



2 1 INTRODUCTIONrespetively at the sites and bonds of a regular 2D square lattie. The poreswere spherial and represented the porosity of the network while the throatshad resistane to ow but no volume. Eah throat was assigned a apillarythreshold pressure P, and nonwetting uid was only allowed to enter a throatif the pressure drop aross the throat exeeded P. The nonwetting uid invadedthe network by ompletely �lling one pore eah time step, and menisi betweenthe nonwetting and wetting uids in the throats were only allowed to move inthe forward diretion. It is obvious that Lenormand et al. did seriously sim-pli�ations ompared to real porous networks. However, they were able to runsystems of typially 100� 100 nodes whih were an order of magnitude largerthan omparable work [11℄ at that time.A ouple of years before Lenormand et al. presented their network model,Dias and Payatakes [12℄ formulated a model based on throats (tubes) that hadsinusoidal shape. They let the apillary pressure hange when a menisus invadea tube, and typially 10 steps were neessary to solve the motion of a menisusmoving through a tube. As the reader will observe later in this thesis, the ideaof Dias and Payatakes with respet to the apillary pressure, is similar to theapproah in our network model.It appears that most network models have been used to study statistialproperties of the displaement strutures or to alulate marosopi propertieslike uid saturations and relative permeabilities. Some have also been used toalulate apillary pressure urves as funtion of uid saturation whih oftenis used as input data in reservoir simulations for the oil industry. As far asthe author know, it is only van der Mark et al. [21℄ that present a networkmodel simulating the pressure buildup in the uids, similar to what our modeldoes. They onlude that the simulated pressure is omparable to experimentalresults when visosity mathed uids are used, but that there is room for im-provement when the visosity ontrast between the uids is large. Their modelis an improved version of the network model developed by Lenormand et al. .There have also been several attempts to simulate the displaement pro-ess by using di�erent types of growth algorithms. In 1983 Wilkinson andWillemsen [9℄ formulated a new form of perolation theory, invasion perolation(IP), that exatly orresponds to slow drainage. In 1984 Paterson [24℄ was the�rst to disover the remarkable parallels between di�usion-limited aggregation(DLA) [25℄ and visous �ngering. He also showed similarities between anti-DLAand stable displaement. The disadvantage with the growth algorithms is thatthey do not ontain any physial time and they have so far not been suitableto study the ross over between the di�erent ow regimes. However, attemptshave been made to use DLA and IP to study dynamis of visous �ngering [26℄and slow drainage [27, 28℄, respetively.In slow drainage it is observed that the invasion of nonwetting uid ours ina series of bursts aompanied by sudden negative drops in the pressure alledHaines jumps [27{29℄ (see Fig. 1). This type of dynamis is very important forthe temporal evolution of the pressure during drainage, and in most networkmodels the e�et is negleted. Consequently, few network models have been usedto study the interplay between uid pressures and displaement strutures, and



1.2 Organization of the introdutory setions 3
Figure 1: Nonwetting uid (white) invades a 2D porous medium initially �lled withwetting uid (shaded). As the nonwetting uid is pumped into the system the menisimove into narrower parts of the pore neks and the apillary pressure inreases. Duringa burst the invading uid overs new pores and the neighboring menisi readjust bakto larger radii and the apillary pressure dereases everywhere [27℄.many questions addressing this topi are still open. We will try to answer someof them in this thesis, by making a model whose properties are loser to thoseof real porous media. To model the burst dynamis, we have been motivatedby the hourglass shaped pore neks in Fig. 1. As a result we let the tubes inour network model behave as if they were hourglass shaped with respet to theapillary pressure. Thus, the apillary pressure of a menisus starts at zerowhen the menisus enters the tube and inreases towards a maximum valueat the middle of the tube where the tube is most narrow, before the apillarypressure dereases to zero again when the menisus leave the tube.The advantage of the above approah is a network model that reproduesthe burst dynamis and the orresponding pressure evolution. We are alsoable to study in details the apillary pressure of eah menisi along the frontas they move through the network. Similar measurements an hardly be doneexperimentally, and our numerial results onerning the apillary pressure, havegiven new insight about the displaement proess. In partiular, we have foundthat the apillary pressure between two points along the front varies almostlinearly as funtion of height separation in the diretion of the displaement.The numerial results support theoretial arguments taking into aount theevidene that nonwetting uid displaes wetting uid in separate strands. Thearguments we present di�er from earlier suggested views [30{33℄ that do notinlude the e�et of nonwetting uid owing in strands. Therefore, we onludethat earlier views are inompatible with drainage when nonwetting strands areimportant.Unfortunately, the detailed modeling of the moving menisi and their apil-lary pressures makes the model omputationally heavy and redues the systemsize that is attainable within feasible amount of CPU time.1.2 Organization of the introdutory setionsThe following setions briey disuss the main results from the papers thatare inluded at the end of this thesis. Setion 2 presents the network modelwhih is published in Paper 1. Setion 3 disusses the evolution of the pressure



4 2 SIMULATION MODELduring drainage aording to the results in Paper 2. This setion also ontainswork on the burst dynamis due to Paper 3. Setion 4 presents simulationresults and theoretial arguments about stabilization mehanisms of the frontduring drainage, and the setion is supposed to over Papers 4 and 5. At theend, Setion 5 summaries the most important results and makes suggestions onfurther work.2 Simulation modelThe network model is thoroughly disussed in Paper 1, and it has also beenpresented briey in Papers 2{5. Therefore, only its main features are desribedin this setion.The porous medium is onstruted upon a square lattie oriented at 45Æto the horizontal where the distane between eah intersetion in the lattie isof unit length. In Paper 1 and 2 we put a ylindrial tube of length d andradii r between eah intersetion in the lattie. The disorder in the system isintrodued by assigning di�erent radii to the tubes. The radii are hosen atrandom from the interval [�1d; �2d℄ where 0��1<�2�1. The tubes representthe porosity of the system and they are onneted together at the intersetions(nodes) having no volume.In Papers 3{5 we have in addition to above lattie, made a distorted squarelattie of tubes. The distorted lattie is onstruted by drawing irles of radius� around eah intersetion. To avoid overlapping irles we hose � in theinterval 0���1=2. A node without volume is plaed at random in eah irleand the nodes inside the nearest neighbor irles are onneted by ylindrialtubes. Thus, the disorder in the system is introdued by the random positionof the nodes resulting in di�erent lengths d of the tubes. The radii of the tubesare given by r = d=2� where � is the aspet ratio between the tube length andits radius. The reason for making a distorted lattie of tubes is to get loser toa real pore-throat geometry as shown in Fig. 1 (see Paper 5 for further details).Figure 2 shows an example of a displaement struture that is obtained fromone simulation. The nonwetting uid (blak) of visosity �nw is injeted alongthe inlet and displaes the wetting uid (grey) of visosity �w. The uids owfrom the bottom to the top of the lattie, and there are periodial boundaryonditions in the orthogonal diretion. We assume the uids are immisible andinompressible.A menisus is loated in the tubes where nonwetting and wetting uids meet.The apillary pressure p of a menisus in a ylindrial tube of radius r is givenby Young-Lapae law like p = 2r os �; (1)under the assumption that the prinipal radii of the urvature of the menisusare equal to the radius of the tube. � denotes the wetting angle between theylinder wall and the wetting uid, i.e. 0Æ � � < 90Æ in drainage.



5

Figure 2: Example of a displaement struture from one simulation. The nonwettinguid (blak) is injeted from below and displaes the wetting uid (grey) that esapesalong the top row.In the network model we treat the tubes as if they were hourglass shapedwith respet to the apillary pressure. Therefore, we let the apillary pressuredepend on where the menisus is situated in the tube. In stead of Eq. (1) welet p of a menisus vary in the following way:p = 2r [1� os(2� xd )℄ : (2)Here we assume that the wetting uid perfetly wets the medium, i.e. � = 0. Inthe above relation x denotes the position of the menisus in the tube (0 � x � d),giving that p = 0 at the entrane and the exit of the tube and reahes amaximum of 4=r in the middle of the tube (x = d=2). Pratially, the wettingangle of a menisus and thereby its apillary pressure may generally be di�erentdepending on whether the menisus retires from or invades the tube. To avoidnumerial ompliations this e�et is negleted in the present model.We solve the volume ux through eah tube by using Hagen-Poiseuille owfor ylindrial tubes and Washburn's approximation [34℄ for menisi under mo-tion. Let qij denote the volume ux through the tube from the ith to the jthnode, then we have qij = ��ijkij�ij 1dij (�pij � p;ij): (3)Here kij is the permeability of the tube (r2ij=8) and �ij is the ross setion (�r2ij )of the tube. �ij denotes the e�etive visosity, that is the sum of the volumefrations of eah uid inside the tube multiplied by their respetive visosities.The pressure drop aross the tube is �pij = pj � pi, where pi and pj is thepressures at node i and j, respetively. The apillary pressure p;ij is the sumof the apillary pressures of eah menisi [given by Eq. (2)℄ that are presentinside the tube. A tube partially �lled with both liquids is allowed to ontain atmaximum two menisi. For a tube without menisi, p;ij = 0. We only onsiderhorizontal ow, and therefore we neglet gravity.



6 2 SIMULATION MODELWe have onservation of volume ux at eah node givingXj qij = 0: (4)The summation on j runs over the nearest neighbor nodes to the ith node whilei runs over all nodes that do not belong to the top or bottom rows, that is,the internal nodes. Eqs. (3) and (4) onstitute a set of linear equations whihwe solve for the nodal pressures pi, with the onstraint that the pressures atthe nodes belonging to the upper and lower rows are kept �xed. The set ofequations is solved by using the Conjugate Gradient method [35℄.In the simulations we impose the injetion rate Q, therefore we have to �ndthe pressure aross the lattie �P , that orresponds to the given Q. Havingfound �P we use this pressure to alulate the orret pi's. In short, we �nd�P by onsidering the relationQ = A�P +B: (5)The �rst part of Eq. (5) results from Dary's law for single phase ow throughporous media. The seond part omes from the apillary pressure between thetwo uids (i.e. B = 0 if no menisi are present in the network). Eq. (5) hastwo unknowns, A and B, whih we alulate by solving Eq. (4) twie for twodi�erent applied pressures �P 0 and �P 00, aross the lattie. From those twosolutions we �nd the orresponding injetion rates Q0 and Q00. Inserting Q0,Q00, �P 0, and �P 00 into Eq. (5) results in two equations whih we solve for Aand B. Finally, we �nd the orret pressure due to the imposed Q by rewritingEq. (5), giving �P = (Q�B)=A. See Papers 1 and 2 for further details on howpi is alulated after �P is found.In the literature di�erent methods have been suggested to obtain a solutionwhere the injetion rate is held �xed [3,12,21℄. However, it appears that none ofthem solve the ontribution to the pressure due to visous and apillary foresseparately. In Eq. (5) the apillary ontribution to the pressure is �B=A andthe visous amount is Q=A. This evidene is thoroughly disussed in Paper 2and summarized in Se. 3.Given the orret solution of pi we alulate the volume ux qij through eahtube in the lattie, using Eq. (3). Having found the qij 's we de�ne a time step�t suh that every menisus is allowed to travel at most a maximum step length�xmax during that time step. Eah menisus is moved a distane (qij=�ij)�tand the total time lapse is reorded before the nodal pressures pi, are solved forthe new uid on�guration. Menisi that are moved out of a tube during a timestep are spread into neighboring tubes as desribed in Papers 1 and 2.Numerial simulations show that in order to simulate the apillary pressurevariations when menisi pass through the \hourglass shaped" tubes we musthose �x � 0:1d where d is the tube length. In most of our simulations �x =0:1d, giving that at least 10 steps must be taken to move a menisus from theinlet to the outlet of a tube. This makes the model omputationally heavy due



7to an enormous amount of time steps, typially 105, that is required before thenonwetting uid penetrates a network of 40� 60 nodes.Most network models treat the tubes as if they where straight and let thenonwetting uid ompletely invade one pore or throat during every time step.Consequently, the total number of time steps is redued to the number of tubesthat the nonwetting uid invades. In a network of 40� 60 nodes this is about103 tubes whih should be ompared to the 105 time steps that are required inour model. This is the main reason why we are limited to rather small systemsizes of 25� 35 and 40� 60 nodes.3 Temporal evolution of uid pressureIn Paper 2 we disuss the temporal evolution of the pressure due to apillary andvisous fores at various injetion rates and uid visosities. The main resultsfrom that paper is summarized in Se. 3.1, while Se. 3.2 provides a little aboutburst dynamis due to the results in Paper 3.To haraterize the di�erent uid properties used in the simulations, weuse the apillary number Ca and the visosity ratio M . The apillary numberindiates the ratio between visous and apillary fores and in the simulationsit is de�ned as Ca � Q�� : (6)Here Q is the injetion rate of the nonwetting uid, � is the maximum visosityof the nonwetting and wetting uid, � is the ross setion of the inlet and  isthe uid-uid interfae tension.The visosity ratio M , is de�ned asM � �nw�w ; (7)where �nw and �w is the visosity of the invading nonwetting uid and thedefending wetting uid, respetively.3.1 Interplay: pressure buildup and trapped uidThe pressure aross the system is found from Eq. (5) giving�P = QA + Pg ; (8)where Pg � �B=A de�nes the global apillary pressure of the system. As willbeome lear below, Pg ontains the apillary pressures of the menisi sur-rounding the trapped wetting uid (luster menisi) and the apillary pressuresof the menisi along the invasion front (front menisi).Figure 3 shows the simulated pressures �P and Pg during drainage atCa = 4:6�10�3 and M = 100. The front width was observed to stabilizeafter some time ts, and a typial ompat pattern of lusters of wetting uid



8 3 TEMPORAL EVOLUTION OF FLUID PRESSURE
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3.1 Interplay: pressure buildup and trapped uid 9
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Figure 4: Pf (a) and Pg (b) as funtion of injetion time at Ca = 3:5�10�4 andM = 1:0�10�3. To avoid overlapping urves Pg was subtrated by 1000 dyn=m2before it was normalized.In the speial ase when M = 1 (visosity mathed uids) the total re-sistane, 1=A, was found to be onstant independent of the injetion rate ordisplaement struture. This somewhat surprising result might be explained bythe following onsideration. When M = 1 the e�etive visosity �ij , of eahtube is independent of the amount of wetting and nonwetting uid that ou-pies the tube. Hene, eah tube has a onstant ondutivity of kij=�ij giving aonstant total resistane of the network.At low Ca we approah the regime of apillary �ngering and the visous dragon the lusters beomes negligible. Hene, Pg is no longer a linear funtion ofthe injetion time, but redues to that desribing the apillary pressure alongthe front. This is observed in Fig. 4 where we ompare Pg with the alu-lated average apillary pressure along the front, Pf . In the simulations, Pf isalulated by taking the mean of the apillary pressures of the front menisi.From the �gure we see that Pg ' Pf , as expeted. The big jumps in thepressure funtions in Fig. 4 are aused by the apillary pressure variations ofmenisi passing through the \hourglass" shaped tubes. The negative jumps areidenti�ed as bursts where the invading uid proeeds abruptly [27,29℄ (see alsoSe. 3.2 for further details).From the above disussion we onlude that the behavior of Pg at largetimes (t > ts) may be formulated asPg = �mh+ Pmf ; (9)where �m is the proportionality fator between Pg and h due to the visousdrag on the lusters, and Pmf is the apillary variations when the invasionfront overs new tubes. h denotes the average front position after the front hassaturated, i.e. hs < h < L, where hs is the average front position at ts and L is



10 3 TEMPORAL EVOLUTION OF FLUID PRESSUREthe length of the system. Sine the injetion rate is held �xed, h is proportionalto the injetion time t. In the limit of very low injetion rates, �m ! 0.When the average front position has reahed the outlet, i.e. h = L in Eq. (9),only invading uid ows through the system and Pmf = 0. In this limit Dary'slaw applied on the nonwetting phase gives U = (Ke=�nw)(�P=L), where Ke isthe e�etive permeability of the nonwetting phase. From Eqs. (8) and (9) we�nd that �P = Q=A+�mL, whih inserted into Dary's law givesKe = �nw1=�T +�m=U : (10)Here �T � AL=� denotes the total ondutivity of the lattie. Thus, we mightonsider the e�etive permeability of the nonwetting phase as a funtion of theondutivity of the lattie and an additional term due to the visous drag onthe lusters (�m=U). Note that the U dependeny in Eq. (10) only indiateshanges in �m between displaements exeuted at di�erent injetion rates.The behavior when the ow rate hanges during a given displaement is notdisussed here.3.2 Burst dynamisIn invasion perolation (IP) [36℄ where eah site is assigned a random numberf , an ideal burst is de�ned as the onneted struture that is invaded followingone root site of random number f0 along the invasion front. All the sites in theburst have random numbers smaller than f0, and the burst stops when f > f0is the random number of the next site to be invaded [37℄. The size of a burst isthe number of sites s in the onneted struture inluded the root site.The distribution of burst sizes N(s) has been found to obey the salinglaw [38,39℄ N(s) / s�� 0g(s�(f0 � f)): (11)Here f is the perolation threshold of the system and g(x) is some salingfuntion whih deays exponentially when x� 1 and is a onstant when x! 0.� 0 is related to perolation exponents like � 0 = 1 +Df=D � 1=(D�) [39℄ whereDf and D is the fratal dimension of the front and the mass of the perolationluster, respetively. Df depends on the de�nition of the front, that is, Dfequals De for external perimeter growth zone [36,40℄ and Dh for hull perimetergrowth zone [36, 41℄. � is the orrelation length exponent in perolation theoryand � = 1=(�D) [36℄.In 1995 Maslov [42℄ dedued a saling relation for the hierarhial burst sizedistribution by integrating Eq. (11) over all f0 in the interval [0; f℄. Thus,the hierarhial burst size distribution ontains all ideal bursts inluding thehierarhial smaller ones that might be within eah ideal burst (see Fig. 5).Let Nall(s) denote the hierarhial burst size distribution, then aording toMaslov [42℄ Nall(s) / s��all ; (12)where �all = 2.
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Figure 5: The pressure as funtion of injetion time for one simulation at low Ca ina narrow time interval. The horizontal line de�nes the valley of a single burst. Notethat a burst may ontain a hierarhial struture of smaller bursts within the valley.The vertial line indiates the size of a loal pressure jump �p inside the valley.In Ref. [28℄, � 0 and �all were estimated for simulations and experiments inslow drainage. The simulation model used in [28℄ was a modi�ed IP algorithmdesigned to study the burst dynamis of apillary �ngering. To hek that theburst dynamis are properly modeled in our network model we alulate � 0 and�all from simulations performed in the limit of low injetion rates. In addition,we ompute the hierarhial burst size distribution at higher injetion rates toobserve a possible rate dependeny of �all. Below a summary of the results isprovided.In the simulations a burst starts where the pressure drops suddenly, due to anunstable menisus, and stops where the pressure has raised to a value above thepressure that initiated the burst. Thus, a burst may onsist of a large pressurevalley ontaining a hierarhial struture of smaller bursts inside, as indiatedin Fig. 5. From the simulations we ould have alulated the geometrial sizeof the region being invaded during a burst. That would orrespond to theburst size s in Eqs. (11) and (12). However, we want to ompare our resultsto experimental work in [28℄ where the geometrial size is hard to measure.Therefore, we alulate the burst sizes in analogy to de�nitions in [28℄.Aording to [28℄ we de�ne the burst size as the sum of the pressure jumpsinside the valley of the burst (see Fig. 5). We all the sum of the pressurejumps the valley size given as � � Pi�pi. Here the index i runs over all thepressure jumps �pi inside the valley. In order to alulate the valley sizes atlarge Ca we subtrat the average drift in the pressure funtion due to visousfores, suh that the pressure beomes a funtion utuating around some meanpressure. We assume that the valley size �, is proportional to the geometrialsize of the region being invaded during a burst [28℄, and therefore � beomes
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Figure 6: The hierarhial valley size distributionsNall(�), for six simulations betweenlow and high Ca with M = 1 (Æ , ,�) and M = 100 (4 ,/ ,5). The slope of thesolid line is �1:9. Inset: The umulative valley size distribution N(�>��), for burststhat start in a narrow pressure strip for the simulation performed at Ca = 1:6�10�5and M = 1. The slope of the solid line is �0:5.roughly proportional to s.In Fig. 6 we have plotted the hierarhial valley size distribution Nall(�), forsix simulations between low and high Ca with M = 1 and 100 on a lattie of40 � 60 and 25� 35 nodes, respetively. Sine we assume that � / s, Nall(�)orresponds to Nall(s) in Eq. (12). The slope of the solid line in Fig. 6 is �1:9,and we onlude from the simulations that �all = 1:9� 0:1. At low � in Fig. 6,typially only one tube has been invaded during the burst and we do not expetthe power law to be valid.Our alulated �all is lose the theoretial predition in Eq. (12) and theresult of simulations and experiments in [28℄ at low Ca. We might have intro-dued some errors when we ompare � with the burst sizes s whih may explainwhy our result deviates a little from the exat value �all = 2. From Fig. 6 wenote that our estimated �all does not depend on Ca. Even at high Ca where aat front generates we �nd �all = 1:9 � 0:1. In [42℄ �all was pointed out to besuper universal for a broad lass of self-organized ritial models inluding IP.Our result indiates that the simulated displaement proess might belong tothe same super universality lass even at high injetion rates where there is nolear mapping between the displaement proess and IP.In the inset of Fig. 6 we have plotted the umulative valley size distributionN(�>��) for bursts starting in a narrow strip between 2800 and 3100 dyn=m2where 3100 is the maximum pressure during the displaement. From Eq. (11) wehave that N(s) / s�� 0 , for bursts that start lose to the perolation thresholdf. In our simulations f orresponds to the maximum pressure. In the inset
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Figure 7: The umulative pressure jump distribution funtion N(P >P �), for simula-tions performed with visosity mathed uids (M = 1) on a lattie of 40 � 60 nodes.The dashed lines are �tted exponential funtions.of Fig. 6 we have plotted N(� > ��) versus �� in a logarithmi plot for onesimulation performed at low Ca = 1:6�10�5 with visosity mathed uids on alattie of 40�60 nodes. If we assume a power law behavior our best estimate is1� � 0 = �0:5 whih is indiated by the slope of the solid line in Fig. 6. In [28℄simulations and experiments gave 1� � 0 = �0:45�0:10. We need larger systemsizes and more simulations to improve our statistis. However, our result seemsto be onsistent with [28℄.We have also alulated the umulative pressure jump distribution funtionN(P >P �) for simulations at various injetion rates and visosity ratios. Thepressure P = �p=h�pi, where h�pi is the mean of the pressure jumps �p(see Fig. 5). In Fig. 7 we have plotted the result for two simulations, one athigh and the other at low Ca. Both were performed with visosity matheduids on a lattie of 40 � 60 nodes. The distributions have been �tted toexponentially dereasing funtions plotted as dashed lines in Fig. 7. At lowCa we �nd N(P >P �) / e�1:38P� whih is onsistent with the results in [28℄.At high Ca the distribution funtion was �tted to e�1:02P� . The pre-fator inthe exponent of the exponential funtion seems to hange systematially fromabout 1.4 to 1.0 as Ca inreases. Similar results were obtained from simulationsperformed with M = 100 on a lattie of 25� 35 nodes.From Figs. 6 and 7 we onlude that the results of our network simulationsare in agreement with experiments and simulations performed in [28℄ at slowdrainage. This supports the evidene that the burst dynamis are well desribedby our network model.4 Stabilization of drainage displaementsPapers 4 and 5 disuss the stabilization mehanisms of drainage displaementsdue to visous fores and present new theoretial arguments about the pressure



14 4 STABILIZATION OF DRAINAGE DISPLACEMENTSbehavior along the front. Below, a briey review of earlier work on stabilizationof drainage displaements is provided, before the arguments and the supportingnumerial results are presented in Se. 4.1. At the end, Se. 4.2 investigates thegeneral validity of the arguments and raises important questions going beyondthe disussion in Se. 4.1.When the displaements are oriented out of the horizontal plane, gravityating on the system, may stabilize the front due to density di�erenes betweenthe uids. Several authors [30,43{45℄ have on�rmed, by experiments and sim-ulations, that the saturated front width ws sales with the strength of gravitylike ws / Bo��=(1+�). Here Bo (Bond number) is the ratio between gravita-tional and apillary fores, given by Bo = ��ga2=, where �� is the densitydi�erene between the uids, g the aeleration due to gravity, a the averagepore size, and  the uid-uid interfae tension. Furthermore, � denotes theorrelation length exponent in perolation. The above saling relation may bededued from IP by applying a gradient proportional to �Bo to the randomnumbers of the sites in the perolation lattie. This will ause the invasion frontto stabilize [30, 44, 46℄.A similar onsensus onerning the stabilization mehanisms when the dis-plaements are within the horizontal plan has not yet been reahed. Here visousfores replae gravitational fores, and in the literature there exist di�erent sug-gestions about the saling of ws as funtion of Ca. The apillary number Cais the ratio between visous and apillary fores aording to the de�nition inSe. 3. In 3D, where trapping of wetting uid is assumed to be of little im-portane, Wilkinson [30℄ was the �rst to use perolation to dedue a power lawlike ws / Ca�� where � = �=(1 + t � � + �). Here t and � is the ondu-tivity and order parameter exponent in perolation, respetively. Later, Bluntet al. [32℄ suggested in 3D that � = �=(1 + t + �). This is idential to theresult of Lenormand [31℄ �nding a power law as funtion of system size for thedomain boundary in the Ca{M plane between apillary �ngering and stabledisplaement in 2D porous media.More reently, Xu et al. [33℄ used a similar approah as Wilkinson and foundthat the pressure drop �Pnw aross a height di�erene �h in the nonwettingphase of the front should sale as �Pnw / �ht=�+dE�1��=� . Here dE denotesthe Eulidean dimension of the spae in whih the front is embedded, i.e. inour ase dE = 2. The pressure drop in the wetting phase �Pw , was argued tobe linearly dependent on �h due to the ompat phase there. In [32℄ Bluntet al. also suggested a saling relation for �Pnw , however, in 3D they found�Pnw / �ht=�+1. This is di�erent from the result of Xu et al. when dE = 3.In Se. 4.1 we present an alternative view on the displaements from thoseinitiated by Wilkinson [30℄, but inlude the evidene that nonwetting uid owsin separate strands. The alternative view leads to another saling of �Pnw thanthe one suggested by Xu et al. [33℄, and we show that it may inuene � in thesaling between ws and Ca.
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Figure 8: Two displaement strutures of simulations at high Ca = 3:9�10�4 (left)and low Ca = 1:6�10�5 (right) before breakthrough of nonwetting uid. The lattiesize is 40 � 60 nodes and M = 1. The nonwetting uid (dark grey and blak) isinjeted from below and wetting uid (light grey) ows out along the top row. Theblak tubes denote the loopless strands where nonwetting uid ows and the dark greytubes indiate nonwetting uid unable to ow (i.e. dead ends) due to trapped regionsof wetting uid. Note the few uid supplying strands from the inlet to the frontalregion at low Ca ompared to the ase at high Ca.4.1 Loopless strandsFigure 8 shows two typial displaement strutures that were obtained fromsimulations at low and high Ca on a lattie of 40 � 60 nodes with M = 1.From the �gure we observe that the nonwetting uid (dark grey and blak)generates patterns ontaining no losed loops. That means, following a path ofnonwetting uid will never bring us bak to the starting point. The nonwettinguid also ows in separate loopless strands, indiated as blak tubes in Fig. 8.The loopless strutures in Fig. 8 are a diret onsequene of the evidene that atube �lled with wetting uid and surrounded on both sides by nonwetting uid istrapped due to volume onservation of wetting uid. We note that this evidenemay easily be generalized to 3D, and therefore our arguments should apply theretoo. Similar loopless features were also pointed out in [47℄ for site-bond IP withtrapping and in [48℄ for a loopless IP algorithm.From Fig. 8 we may separate the displaement patterns into two parts. Oneonsisting of the frontal region ontinuously overing new tubes, and the otheronsisting of the more stati struture behind the front. The frontal region issupplied by nonwetting uid through a set of strands that onnet the frontalregion to the inlet. When the strands approah the frontal region they are morelikely to split. Sine we are dealing with a square lattie, a splitting strandmay reate either two or three new strands. As the strands proeed upwardsin Fig. 8, they split repeatedly until the frontal region is ompletely overed bynonwetting strands.On IP patterns with trapping [47℄ and without loops [48, 49℄ the length l ofthe minimum path between two points separated an Eulidean distane R sales



16 4 STABILIZATION OF DRAINAGE DISPLACEMENTSlike l / RDs where Ds is the fratal dimension of the shortest path. We assumethat the displaement patterns of the frontal region for lengths less than theorrelation length (in our ase ws) is statistially equal to IP patterns in [47℄.Therefore, the length of individual nonwetting strands in the frontal region,is proportional to �hDs where �h is some vertial length less than ws. If weassume that every tube in the lattie on average has the same mobility (kij=�ij),we obtain that the uid pressure within one strand must drop like �h� where� = Ds. Let us now onsider the e�et on the pressure when strands split. If weassume that the strands are straight (Ds = 1), then by following a path wherestrands split would ause the pressure to drop as �h� where � < 1. This isbeause the volume uxes through the new strands must be less than the uxin the strand before it splits, due to volume onservation of nonwetting uid.From Fig. 8, we note that at high Ca the lengths of individual strands in thefrontal region approah the minimum length due to the tubes. Therefore, inthis limit �nite size e�ets are expeted to ause Ds ! 1.The two results (� = Ds and � < 1) predit that the pressure drop in thenonwetting phase of the frontal region, �Pnw, should sale as �Pnw / �h�where � � Ds. In 2D two di�erent values for Ds have been reported: Ds =1:22 [48, 49℄ for loopless IP patterns growing around a entral seed, and Ds =1:14 [47℄ for the single strand onneting the inlet to the outlet when nonwettinguid perolates the system. We note that the result in [47℄ is essentially equalto Dmin = 1:13 [36, 50℄, that is the fratal dimension of the minimum pathin 2D perolation where loops generally our. Aording to Xu et al. [33℄,� = t=� + dE � 1 � �=� � 1:9 in 2D where we have inserted t = 1:3, � = 4=3,� = 5=36, and dE = 2. Thus, our arguments based on the loopless strands ofnonwetting uid are inompatible with the result in [33℄.To on�rm the above arguments giving � � Ds, we have alulated thedi�erene in apillary pressure �P between menisi along the front in thediretion of the displaement using our network model. �P as funtion of �hwas alulated by taking the mean of the apillary pressure di�erenes betweenall pairs of menisi separated a vertial distane �h along the front (see Paper 5for details). Figure 9 shows �P as funtion of �h for simulations performedat various Ca, M , and system sizes. The left �gure shows �P for simulationsperformed on systems of 25 � 35 and 40 � 60 nodes where M = 100 and 1,respetively. We did 10{30 simulations at eah Ca to obtain reliable averagequantities.To the right in Fig. 9, we have plotted log10(�P) versus log10(�h) forsimulations performed on four patterns generated at systems of 200�300 nodesby an IP algorithm. In these simulations the tubes in the network model wereinitially �lled with nonwetting and wetting uid aording to the generatedIP patterns. The network model was started from this point and ran a limitednumber of time steps while �P was reorded. By this way, we were able to study�P on large systems in the low Ca regime, beause we saved the omputationtime that would have been required if similar displaement patterns should havebeen generated by the network model. Instead, the patterns were generated by amuh faster IP algorithm. To make this method self-onsistent we had to assume
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Figure 9: Left: �P as funtion of �h for three di�erent Ca's with M = 100 and 1 onlatties of 25 � 35 and 40 � 60 nodes, respetively. Right: log10(�P) as funtion oflog10(�h) for simulations initiated on IP patterns at Ca = 9:5�10�5 and M = 100.The slope of the solid line is 1.0.that the IP patterns were statistially equal to orresponding strutures thatwould have been generated by the network model. See Paper 5 for details aboutthe IP algorithm and how the network model was initiated by the generatedpatterns.From the results in Fig. 9 we onlude that �P inreases almost linearlywith �h. Assuming a power law behavior like �P / �h�, our best estimate ofthe exponent is � = 1:0�0:1. We have also performed simulations on IP patternsat Ca = 2�10�6 with M = 1 and 100. The results of those are onsistent withthe plot to the right in Fig. 9. The behavior of �P is onneted to �Pnwthrough �P ' �Pnw � �Pw . Here �Pw is the pressure drop in the wettingphase of the frontal region and varies linearly as funtion of height �h. Theabove relation was suggested in [33℄ and it is also on�rmed by our simulations.Hene, our simulations giving � ' 1:0 support the arguments �nding � � Dsin �Pnw / �h�. Therefore, we onlude that earlier proposed theories [30{33℄whih do not onsider the evidene that nonwetting uid ows in strands, areinompatible with drainage when strands are important.The evidene that � � Ds may inuene the exponent � in ws / Ca��.Assuming Dary ow where the pressure drop depends linearly on the injetionrate, we onjeture that � bP / Ca�h�. Here � bP denotes the apillary pressuredi�erene over a height �h when the front is stationary. That means, � bPexludes situations where nonwetting uid rapidly invades new tubes due toloal instabilities (i.e. bursts). The above onjeture is supported by simulationsshowing that in the low Ca regime � bP / Ca�h� where � ' 1:0. Note, that� bP 6' �P in Fig. 9 sine the latter inludes both stable situations and bursts.At suÆiently low Ca where only the strength of the apillary pressure de-ides whih tube should be invaded or not, we may map the displaement proessto perolation giving � bP / f � f / ��1=� [30, 44, 46℄. Here f is the random



18 4 STABILIZATION OF DRAINAGE DISPLACEMENTSnumbers in the perolation lattie, f is the ritial perolation threshold, and� / ws is the orrelation length. Combining the above relations for � bP givesws / Ca�� where � = �=(1 + ��). In 2D � = 4=3 and by inserting � = 1:0 weobtain � � 0:57. Note that this is di�erent to results suggested in [30, 32, 33℄giving � � 0:37{0:38 in 2D.At highCa the nonwetting uid is found to invade simultaneously everywherealong the front, and onsequently the front never reahes a stationary state (seePaper 5). In this limit simulations show a nonlinear dependeny between � bPand Ca. Therefore, in the high Ca regime it is not lear if the above mappingto perolation is valid, and we expet another type of behavior between ws andCa.Frette et al. [51℄ have performed 2D drainage experiments where ws wasmeasured as funtion of Ca for visosity mathed uids (M = 1). Their bestestimate on the exponent in ws / Ca�� was � = 0:6� 0:2. This is onsistentwith the above onjeture (� = 0:57), however, orresponding simulations on40 � 60 nodes latties give � = 0:3 � 0:1 (see Paper 5). The simulations areperformed at Ca � 1:0�10�5 while most of the experiments where done atCa � 1:0�10�5. Sine the range of the two does not overlap it is diÆult toompare the result of the simulations with those of the experiments. However,the hange in � from 0.6 to 0.3, might be onsistent with a rossover to anotherbehavior at high Ca aording to the above disussion. We also note, that forthe simulations at Ca ' 1:0�10�5, the front width approahes the maximumwidth due to the system size, making it diÆult to observe any possible � � 0:57regime at low Ca. We emphasize that more simulations on larger systems andat lower Ca are needed before any onlusion on � an be drawn.4.2 Range of validityThe evidene that the nonwetting uid displaes the wetting uid in a set ofloopless strands opens new questions about the displaement proess. Returningto Fig. 8 it is striking to observe the di�erent patterns of strands at high andlow Ca. At low Ca few strands are supplying the frontal region with nonwettinguid, and the strands split many times before the whole front is overed. At highCa the horizontal distane between eah strand in the stati struture is muhshorter, and only a few splits are required to over the front. We onjeturethat the average horizontal distane between the uid suppling strands dependson the front width. However, further investigation of the displaement patternsis required before any onlusions an be drawn.So far the arguments in Se. 4.1 only onsider displaements where the non-wetting strands ontain no loops. A very interesting question that has to beanswered is: What happens to � when di�erent strands in the front onnetto generate loops. In ordinary bond or site perolation loops generally o-ur. Loops are also observed in experiments orresponding to those of Frette etal. [51℄. In the experiments it is more diÆult to trap wetting uid due to themore omplex topology of pores and throats (see Fig. 1). Consequently, loopswill more easily generate there, than in the ase of a regular square lattie.



19Loops might also be reated when neighboring menisi along the front overlapand oalese depending on the wetting properties of the nonwetting uid [5, 6℄.As a �rst approximation we onjeture that reation of loops will not ause� to hange signi�antly. Note that in the front the di�erent nonwetting strandsonneting to eah other to reate loops, must at some later time split. Other-wise suessive onnetions will ause the di�erent strands to oalese into onesingle strand of nonwetting uid. Moreover, after the front width has saturated,the number of plaes where di�erent strands onnet must on average be equalto the number of plaes where strands split. Therefore, we believe that theinuene on � due to onnetions (i.e. loops) will be ompensated by the splitsand the overall behavior of � will remain the same. We emphasize that furthersimulations and experiments are required to investigate the e�et of loops on �.Hopefully, that will on�rm the above onjeture.Aording to the disussion in Se. 4.2, the evidene that the displaementpatterns onsist of loopless strands may easily be generalized to 3D. Thereforewe onjeture that our arguments giving � � Ds, might be valid in 3D as well.Note also that in 3D it is less probable that di�erent strands meet. Hene, evenif they were supposed to onnet to reate loops, the number of reated loopsare expeted to be few. In 3D the fratal dimension of the shortest path forloopless IP is Ds = 1:42 [48℄ whereas for regular perolation Ds = 1:34 [36, 50℄.5 Summary and further workWe onlude that our 2D network model properly simulates the temporal evo-lution of the pressure in the uids during drainage. We have found that themodel reprodues the typial burst dynamis at low injetion rates and we havesimulated the behavior of the apillary pressure along the front. The latter anhardy be measured experimentally.Simulations show that the apillary pressure di�erene �P between twopoints along the front varies almost linearly as funtion of height separation �hin the diretion of the displaement. The numerial result supports argumentsbased on the observation that nonwetting uid ows in separate strands wherewetting uid is displaed. From the arguments we �nd that �P / �h� where� � Ds. Here Ds denotes the fratal dimension of the nonwetting strands. Itis interesting to observe that despite the small system sizes of our simulations,we are able to use the numerial results to grasp new physis and on�rm ourarguments.Several attempts have been made to desribe the stabilization mehanismsin drainage due to visous fores, however, none of them onsider the evidenethat nonwetting uid displaes wetting uid through strands. Therefore, weonlude that earlier suggested theories fail to desribe the stabilization of theinvasion front when strands dominate the displaements.Aording to Se. 4.2 there are still work to be done about the stabilizationmehanisms in drainage. Espeially, the indiation that the arguments giving� � Ds in 2D, might apply in 3D too, should be thoroughly heked. The



20 REFERENCESe�et on � of possible loops should also be investigated further. Partiularly,a loser study of loops being reated in drainage experiments, are neessary.Presumably one will �nd that di�erent strands in the experiments may onnetto reate loops. However, the overall piture of nonwetting strands that split toover the front, should remain.In the literature, di�erent values of Ds in 2D have been reported (seeSe. 4.1), and a loser examination of the fratal dimension of the strands arerequired in order to �nd the orret Ds for our problem. It is also of partiularinterest to develop another numerial sheme of simulations whih are able tosimulate the displaements on larger latties in the low Ca regime. Hopefully,this will on�rm the onjetured � = �=(1 + ��) in the power law ws / Ca��from Se. 4.1.Another issue that the literature ontains little information about, is thee�et on the displaement patterns when hanging the pore size distribution.In [1℄ the pore size distribution was varied in some experiments and simula-tions in the regime of visous �ngering. The e�et of hanging the pore sizedistribution has also been disussed in onnetion with the transition from self-similar fratal to faeted growth when varying the wetting angle of the invadinguid [6℄. It appears that no one has yet systematially studied the e�et of thefront width when hanging the pore size distribution in drainage displaements.The network model presented in this thesis only simulates drainage. Theimbibition mehanism like �lm ow is not inluded and the methods we applywhen moving menisi into neighboring tubes are motivated by displaementmehanisms observed in drainage [52℄ (see Paper 1 for details). A ontinuation ofthis projet ould be to improve the model by inluding imbibition mehanisms.Still, modeling of the uid pressures due to apillary and visous fores duringimbibition is an outstanding problem [53℄.Referenes[1℄ J.-D. Chen and D. Wilkinson, Phys. Rev. Lett. 55, 1892 (1985).[2℄ K. J. M�al�y, J. Feder, and T. J�ssang, Phys. Rev. Lett. 55, 26881 (1985).[3℄ R. Lenormand, E. Touboul, and C. Zarone, J. Fluid Meh. 189, 165(1988).[4℄ R. Lenormand and C. Zarone, Phys. Rev. Lett. 54, 2226 (1985).[5℄ M. Cieplak and M. O. Robbins, Phys. Rev. Lett. 60, 2042 (1988).[6℄ M. Cieplak and M. O. Robbins, Phys. Rev. B. 41, 11508 (1990).[7℄ P. G. de Gennes and E. Guyon, J. Me. (Paris) 17, 403 (1978).[8℄ R. Chandler, J. Koplik, K. Lerman, and J. F. Willemsen, J. Fluid Meh.119, 249 (1982).
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