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Abstra
tThis work 
on
entrates on the 
ow properties when one 
uid displa
es another
uid in a network of pores and throats. We 
onsider the s
ale where individualpores enter the des
ription and we use a network model to simulate the dis-pla
ement pro
ess. The network model, representing the pores and the throatsin the porous medium, 
onsists of a square latti
e of 
ylindri
al tubes.Network models together with experimental work on real porous systems,have been su

essful in des
ribing important properties of the 
uid-
uid dis-pla
ement. In this thesis we study the interplay between the pressure build upin the 
uids and the displa
ement stru
ture during drainage. Drainage is whena nonwetting 
uid displa
es a wetting 
uid in porous media.We have found that our network model properly des
ribes the burst dy-nami
s and the pressure buildup due to 
apillary and vis
ous for
es in thedispla
ements. With respe
t to the lo
al 
apillary pressures of menis
i in thenetwork, we model the tubes as if they were hourglass shaped. This has shownto make the model 
loser to the dynami
s of real displa
ements in porous media.There is also good 
orresponden
e between the simulated temporal evolution ofthe 
uid pressures and earlier results from experiments and simulations in slowdrainage.We have used the network model to study the stabilizationme
hanisms whena stable front develops. We 
onsider two-dimensional horizontal displa
ementswhere the vis
ous for
es stabilize the front and gravity might be negle
ted. Inparti
ular, we have 
al
ulated the pressure di�eren
e between the 
uids, thatis the 
apillary pressure, along the invasion front. We �nd that the 
apillarypressure between two points along the front varies almost linearly as fun
tion ofheight separation in the dire
tion of the displa
ement. This is quite surprisingsin
e the vis
ous for
e �eld is expe
ted to be inhomogeneous due to the trappingof wetting 
uid and to the fra
tal displa
ement stru
ture.We present an alternative view on the displa
ement pro
ess based on theobservation that nonwetting 
uid 
ows in separate strands (paths) along thefront were wetting 
uid is displa
ed. We show that the strands are looplessbe
ause wetting 
uid may be trapped in single tubes surrounded by nonwetting
uid. By using the alternative view we, present arguments about the pressurebehavior in the front. The arguments are supported by numeri
al results, andwe also show that they might in
uen
e the s
aling relation between the frontwidth and the inje
tion rate. As a 
onsequen
e of our �ndings, we 
on
lude thatearlier suggested theories whi
h do not in
lude the e�e
t of nonwetting 
uid
owing in strands, are not 
ompatible with drainage when strands dominatethe displa
ement pro
ess.
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11 Introdu
tionThis thesis is about pore-s
ale numeri
al simulations of drainage displa
ementsin two-dimensional (2D) porous media. The papers forming the main part ofthis thesis, all report and dis
uss the results obtained from the simulations aswell as des
ribe the simulation model that was used.Two-phase displa
ements in porous media have re
eived mu
h attention dur-ing the last two de
ades. In modern physi
s, the pro
ess is of great interest dueto the variety of stru
tures obtained when 
hanging the 
uid properties likewettability, interfa
ial tension, vis
osities and displa
ement rate. The di�erentstru
tures obtained have been organized into three 
ow regimes: vis
ous �nger-ing [1,2℄, stable displa
ement [3℄, and 
apillary �ngering [4{6℄. Vis
ous �ngeringis 
hara
terized by an unstable front of �ngers that is generated when nonwet-ting and less vis
ous 
uid is displa
ing wetting and more vis
ous 
uid at relativehigh inje
tion rate. The �ngering stru
ture is found to be fra
tal with fra
tal di-mensionD = 1:62 [1,2℄. Stable displa
ement is named after the relative 
at andstable front that generates when a nonwetting and more vis
ous 
uid displa
esa wetting and less vis
ous 
uid at relative high inje
tion rate. The last s
enario,
apillary �ngering, is obtained when a nonwetting 
uid very slowly displa
es awetting 
uid. At suÆ
iently low inje
tion rate the invasion 
uid generates apattern similar to the 
luster formed by invasion per
olation [4, 7{9℄. The dis-pla
ement is now solely 
ontrolled by the 
apillary pressure, that is the pressuredi�eren
e between the two 
uids a
ross a menis
us in a pore.Fluid 
ow in porous media has also been intensively studied be
ause ofimportant appli
ations in a wide range of di�erent te
hnologies. The most im-portant areas that to a great extent depend on properties of 
uid 
ow in porousmedia, are oil re
overy and hydrology. In oil re
overy, petroleum engineers are
ontinuously devolving improved te
hniques to in
rease the amount of oil theyare able to a
hieve from the oil reservoirs. In hydrology, the on important
on
ern is often to avoid pollution of ground water from human a
tivity.1.1 Ba
kground and motivationThe simulation model used in this thesis is developed to study the dynami
s ofthe temporal evolution of the 
uid pressures when a nonwetting 
uid displa
esa wetting 
uid at 
onstant inje
tion rate. With the model we study the pressurein the 
uids 
aused by the vis
ous for
es as well as the 
apillary for
es due tothe menis
i in the pores. The model porous medium 
onsists of a tube networkwhere the tubes are 
onne
ted together to form a square latti
e.Numeri
al simulations of 
uid 
ow in porous media using a network of tubeswas �rst proposed by Fatt [10℄ in 1956. Sin
e then a large number of publi
a-tions related to network models and pore-s
ale displa
ements have appeared inthe literature [1,3,11{23℄. Often mentioned is the 
lassi
 work of Lenormand etal. [3℄ who were the �rst to systemati
ally 
lassify the displa
ement stru
turesinto the three 
ow regimes: vis
ous �ngering, stable displa
ement and 
apil-lary �ngering. Their network model 
onsisted of pores and throats, situated



2 1 INTRODUCTIONrespe
tively at the sites and bonds of a regular 2D square latti
e. The poreswere spheri
al and represented the porosity of the network while the throatshad resistan
e to 
ow but no volume. Ea
h throat was assigned a 
apillarythreshold pressure P
, and nonwetting 
uid was only allowed to enter a throatif the pressure drop a
ross the throat ex
eeded P
. The nonwetting 
uid invadedthe network by 
ompletely �lling one pore ea
h time step, and menis
i betweenthe nonwetting and wetting 
uids in the throats were only allowed to move inthe forward dire
tion. It is obvious that Lenormand et al. did seriously sim-pli�
ations 
ompared to real porous networks. However, they were able to runsystems of typi
ally 100� 100 nodes whi
h were an order of magnitude largerthan 
omparable work [11℄ at that time.A 
ouple of years before Lenormand et al. presented their network model,Dias and Payatakes [12℄ formulated a model based on throats (tubes) that hadsinusoidal shape. They let the 
apillary pressure 
hange when a menis
us invadea tube, and typi
ally 10 steps were ne
essary to solve the motion of a menis
usmoving through a tube. As the reader will observe later in this thesis, the ideaof Dias and Payatakes with respe
t to the 
apillary pressure, is similar to theapproa
h in our network model.It appears that most network models have been used to study statisti
alproperties of the displa
ement stru
tures or to 
al
ulate ma
ros
opi
 propertieslike 
uid saturations and relative permeabilities. Some have also been used to
al
ulate 
apillary pressure 
urves as fun
tion of 
uid saturation whi
h oftenis used as input data in reservoir simulations for the oil industry. As far asthe author know, it is only van der Mar
k et al. [21℄ that present a networkmodel simulating the pressure buildup in the 
uids, similar to what our modeldoes. They 
on
lude that the simulated pressure is 
omparable to experimentalresults when vis
osity mat
hed 
uids are used, but that there is room for im-provement when the vis
osity 
ontrast between the 
uids is large. Their modelis an improved version of the network model developed by Lenormand et al. .There have also been several attempts to simulate the displa
ement pro-
ess by using di�erent types of growth algorithms. In 1983 Wilkinson andWillemsen [9℄ formulated a new form of per
olation theory, invasion per
olation(IP), that exa
tly 
orresponds to slow drainage. In 1984 Paterson [24℄ was the�rst to dis
over the remarkable parallels between di�usion-limited aggregation(DLA) [25℄ and vis
ous �ngering. He also showed similarities between anti-DLAand stable displa
ement. The disadvantage with the growth algorithms is thatthey do not 
ontain any physi
al time and they have so far not been suitableto study the 
ross over between the di�erent 
ow regimes. However, attemptshave been made to use DLA and IP to study dynami
s of vis
ous �ngering [26℄and slow drainage [27, 28℄, respe
tively.In slow drainage it is observed that the invasion of nonwetting 
uid o

urs ina series of bursts a

ompanied by sudden negative drops in the pressure 
alledHaines jumps [27{29℄ (see Fig. 1). This type of dynami
s is very important forthe temporal evolution of the pressure during drainage, and in most networkmodels the e�e
t is negle
ted. Consequently, few network models have been usedto study the interplay between 
uid pressures and displa
ement stru
tures, and



1.2 Organization of the introdu
tory se
tions 3
Figure 1: Nonwetting 
uid (white) invades a 2D porous medium initially �lled withwetting 
uid (shaded). As the nonwetting 
uid is pumped into the system the menis
imove into narrower parts of the pore ne
ks and the 
apillary pressure in
reases. Duringa burst the invading 
uid 
overs new pores and the neighboring menis
i readjust ba
kto larger radii and the 
apillary pressure de
reases everywhere [27℄.many questions addressing this topi
 are still open. We will try to answer someof them in this thesis, by making a model whose properties are 
loser to thoseof real porous media. To model the burst dynami
s, we have been motivatedby the hourglass shaped pore ne
ks in Fig. 1. As a result we let the tubes inour network model behave as if they were hourglass shaped with respe
t to the
apillary pressure. Thus, the 
apillary pressure of a menis
us starts at zerowhen the menis
us enters the tube and in
reases towards a maximum valueat the middle of the tube where the tube is most narrow, before the 
apillarypressure de
reases to zero again when the menis
us leave the tube.The advantage of the above approa
h is a network model that reprodu
esthe burst dynami
s and the 
orresponding pressure evolution. We are alsoable to study in details the 
apillary pressure of ea
h menis
i along the frontas they move through the network. Similar measurements 
an hardly be doneexperimentally, and our numeri
al results 
on
erning the 
apillary pressure, havegiven new insight about the displa
ement pro
ess. In parti
ular, we have foundthat the 
apillary pressure between two points along the front varies almostlinearly as fun
tion of height separation in the dire
tion of the displa
ement.The numeri
al results support theoreti
al arguments taking into a

ount theeviden
e that nonwetting 
uid displa
es wetting 
uid in separate strands. Thearguments we present di�er from earlier suggested views [30{33℄ that do notin
lude the e�e
t of nonwetting 
uid 
owing in strands. Therefore, we 
on
ludethat earlier views are in
ompatible with drainage when nonwetting strands areimportant.Unfortunately, the detailed modeling of the moving menis
i and their 
apil-lary pressures makes the model 
omputationally heavy and redu
es the systemsize that is attainable within feasible amount of CPU time.1.2 Organization of the introdu
tory se
tionsThe following se
tions brie
y dis
uss the main results from the papers thatare in
luded at the end of this thesis. Se
tion 2 presents the network modelwhi
h is published in Paper 1. Se
tion 3 dis
usses the evolution of the pressure



4 2 SIMULATION MODELduring drainage a

ording to the results in Paper 2. This se
tion also 
ontainswork on the burst dynami
s due to Paper 3. Se
tion 4 presents simulationresults and theoreti
al arguments about stabilization me
hanisms of the frontduring drainage, and the se
tion is supposed to 
over Papers 4 and 5. At theend, Se
tion 5 summaries the most important results and makes suggestions onfurther work.2 Simulation modelThe network model is thoroughly dis
ussed in Paper 1, and it has also beenpresented brie
y in Papers 2{5. Therefore, only its main features are des
ribedin this se
tion.The porous medium is 
onstru
ted upon a square latti
e oriented at 45Æto the horizontal where the distan
e between ea
h interse
tion in the latti
e isof unit length. In Paper 1 and 2 we put a 
ylindri
al tube of length d andradii r between ea
h interse
tion in the latti
e. The disorder in the system isintrodu
ed by assigning di�erent radii to the tubes. The radii are 
hosen atrandom from the interval [�1d; �2d℄ where 0��1<�2�1. The tubes representthe porosity of the system and they are 
onne
ted together at the interse
tions(nodes) having no volume.In Papers 3{5 we have in addition to above latti
e, made a distorted squarelatti
e of tubes. The distorted latti
e is 
onstru
ted by drawing 
ir
les of radius� around ea
h interse
tion. To avoid overlapping 
ir
les we 
hose � in theinterval 0���1=2. A node without volume is pla
ed at random in ea
h 
ir
leand the nodes inside the nearest neighbor 
ir
les are 
onne
ted by 
ylindri
altubes. Thus, the disorder in the system is introdu
ed by the random positionof the nodes resulting in di�erent lengths d of the tubes. The radii of the tubesare given by r = d=2� where � is the aspe
t ratio between the tube length andits radius. The reason for making a distorted latti
e of tubes is to get 
loser toa real pore-throat geometry as shown in Fig. 1 (see Paper 5 for further details).Figure 2 shows an example of a displa
ement stru
ture that is obtained fromone simulation. The nonwetting 
uid (bla
k) of vis
osity �nw is inje
ted alongthe inlet and displa
es the wetting 
uid (grey) of vis
osity �w. The 
uids 
owfrom the bottom to the top of the latti
e, and there are periodi
al boundary
onditions in the orthogonal dire
tion. We assume the 
uids are immis
ible andin
ompressible.A menis
us is lo
ated in the tubes where nonwetting and wetting 
uids meet.The 
apillary pressure p
 of a menis
us in a 
ylindri
al tube of radius r is givenby Young-Lapa
e law like p
 = 2
r 
os �; (1)under the assumption that the prin
ipal radii of the 
urvature of the menis
usare equal to the radius of the tube. � denotes the wetting angle between the
ylinder wall and the wetting 
uid, i.e. 0Æ � � < 90Æ in drainage.
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Figure 2: Example of a displa
ement stru
ture from one simulation. The nonwetting
uid (bla
k) is inje
ted from below and displa
es the wetting 
uid (grey) that es
apesalong the top row.In the network model we treat the tubes as if they were hourglass shapedwith respe
t to the 
apillary pressure. Therefore, we let the 
apillary pressuredepend on where the menis
us is situated in the tube. In stead of Eq. (1) welet p
 of a menis
us vary in the following way:p
 = 2
r [1� 
os(2� xd )℄ : (2)Here we assume that the wetting 
uid perfe
tly wets the medium, i.e. � = 0. Inthe above relation x denotes the position of the menis
us in the tube (0 � x � d),giving that p
 = 0 at the entran
e and the exit of the tube and rea
hes amaximum of 4
=r in the middle of the tube (x = d=2). Pra
ti
ally, the wettingangle of a menis
us and thereby its 
apillary pressure may generally be di�erentdepending on whether the menis
us retires from or invades the tube. To avoidnumeri
al 
ompli
ations this e�e
t is negle
ted in the present model.We solve the volume 
ux through ea
h tube by using Hagen-Poiseuille 
owfor 
ylindri
al tubes and Washburn's approximation [34℄ for menis
i under mo-tion. Let qij denote the volume 
ux through the tube from the ith to the jthnode, then we have qij = ��ijkij�ij 1dij (�pij � p
;ij): (3)Here kij is the permeability of the tube (r2ij=8) and �ij is the 
ross se
tion (�r2ij )of the tube. �ij denotes the e�e
tive vis
osity, that is the sum of the volumefra
tions of ea
h 
uid inside the tube multiplied by their respe
tive vis
osities.The pressure drop a
ross the tube is �pij = pj � pi, where pi and pj is thepressures at node i and j, respe
tively. The 
apillary pressure p
;ij is the sumof the 
apillary pressures of ea
h menis
i [given by Eq. (2)℄ that are presentinside the tube. A tube partially �lled with both liquids is allowed to 
ontain atmaximum two menis
i. For a tube without menis
i, p
;ij = 0. We only 
onsiderhorizontal 
ow, and therefore we negle
t gravity.



6 2 SIMULATION MODELWe have 
onservation of volume 
ux at ea
h node givingXj qij = 0: (4)The summation on j runs over the nearest neighbor nodes to the ith node whilei runs over all nodes that do not belong to the top or bottom rows, that is,the internal nodes. Eqs. (3) and (4) 
onstitute a set of linear equations whi
hwe solve for the nodal pressures pi, with the 
onstraint that the pressures atthe nodes belonging to the upper and lower rows are kept �xed. The set ofequations is solved by using the Conjugate Gradient method [35℄.In the simulations we impose the inje
tion rate Q, therefore we have to �ndthe pressure a
ross the latti
e �P , that 
orresponds to the given Q. Havingfound �P we use this pressure to 
al
ulate the 
orre
t pi's. In short, we �nd�P by 
onsidering the relationQ = A�P +B: (5)The �rst part of Eq. (5) results from Dar
y's law for single phase 
ow throughporous media. The se
ond part 
omes from the 
apillary pressure between thetwo 
uids (i.e. B = 0 if no menis
i are present in the network). Eq. (5) hastwo unknowns, A and B, whi
h we 
al
ulate by solving Eq. (4) twi
e for twodi�erent applied pressures �P 0 and �P 00, a
ross the latti
e. From those twosolutions we �nd the 
orresponding inje
tion rates Q0 and Q00. Inserting Q0,Q00, �P 0, and �P 00 into Eq. (5) results in two equations whi
h we solve for Aand B. Finally, we �nd the 
orre
t pressure due to the imposed Q by rewritingEq. (5), giving �P = (Q�B)=A. See Papers 1 and 2 for further details on howpi is 
al
ulated after �P is found.In the literature di�erent methods have been suggested to obtain a solutionwhere the inje
tion rate is held �xed [3,12,21℄. However, it appears that none ofthem solve the 
ontribution to the pressure due to vis
ous and 
apillary for
esseparately. In Eq. (5) the 
apillary 
ontribution to the pressure is �B=A andthe vis
ous amount is Q=A. This eviden
e is thoroughly dis
ussed in Paper 2and summarized in Se
. 3.Given the 
orre
t solution of pi we 
al
ulate the volume 
ux qij through ea
htube in the latti
e, using Eq. (3). Having found the qij 's we de�ne a time step�t su
h that every menis
us is allowed to travel at most a maximum step length�xmax during that time step. Ea
h menis
us is moved a distan
e (qij=�ij)�tand the total time lapse is re
orded before the nodal pressures pi, are solved forthe new 
uid 
on�guration. Menis
i that are moved out of a tube during a timestep are spread into neighboring tubes as des
ribed in Papers 1 and 2.Numeri
al simulations show that in order to simulate the 
apillary pressurevariations when menis
i pass through the \hourglass shaped" tubes we must
hose �x � 0:1d where d is the tube length. In most of our simulations �x =0:1d, giving that at least 10 steps must be taken to move a menis
us from theinlet to the outlet of a tube. This makes the model 
omputationally heavy due



7to an enormous amount of time steps, typi
ally 105, that is required before thenonwetting 
uid penetrates a network of 40� 60 nodes.Most network models treat the tubes as if they where straight and let thenonwetting 
uid 
ompletely invade one pore or throat during every time step.Consequently, the total number of time steps is redu
ed to the number of tubesthat the nonwetting 
uid invades. In a network of 40� 60 nodes this is about103 tubes whi
h should be 
ompared to the 105 time steps that are required inour model. This is the main reason why we are limited to rather small systemsizes of 25� 35 and 40� 60 nodes.3 Temporal evolution of 
uid pressureIn Paper 2 we dis
uss the temporal evolution of the pressure due to 
apillary andvis
ous for
es at various inje
tion rates and 
uid vis
osities. The main resultsfrom that paper is summarized in Se
. 3.1, while Se
. 3.2 provides a little aboutburst dynami
s due to the results in Paper 3.To 
hara
terize the di�erent 
uid properties used in the simulations, weuse the 
apillary number Ca and the vis
osity ratio M . The 
apillary numberindi
ates the ratio between vis
ous and 
apillary for
es and in the simulationsit is de�ned as Ca � Q��
 : (6)Here Q is the inje
tion rate of the nonwetting 
uid, � is the maximum vis
osityof the nonwetting and wetting 
uid, � is the 
ross se
tion of the inlet and 
 isthe 
uid-
uid interfa
e tension.The vis
osity ratio M , is de�ned asM � �nw�w ; (7)where �nw and �w is the vis
osity of the invading nonwetting 
uid and thedefending wetting 
uid, respe
tively.3.1 Interplay: pressure buildup and trapped 
uidThe pressure a
ross the system is found from Eq. (5) giving�P = QA + P
g ; (8)where P
g � �B=A de�nes the global 
apillary pressure of the system. As willbe
ome 
lear below, P
g 
ontains the 
apillary pressures of the menis
i sur-rounding the trapped wetting 
uid (
luster menis
i) and the 
apillary pressuresof the menis
i along the invasion front (front menis
i).Figure 3 shows the simulated pressures �P and P
g during drainage atCa = 4:6�10�3 and M = 100. The front width was observed to stabilizeafter some time ts, and a typi
al 
ompa
t pattern of 
lusters of wetting 
uid



8 3 TEMPORAL EVOLUTION OF FLUID PRESSURE
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Figure 3: �P (a), P
g (b), and A0=A (
) as fun
tion of inje
tion time. Ca = 4:6�10�3and M = 100. The verti
al dashed line is drawn at the saturation time, ts.developed behind the front. From Fig. 3 we observe that both �P and P
gin
reases as the more vis
ous 
uid is pumped into the system. When t > tsthey even tend to in
rease linearly as fun
tion of time.The driving me
hanism in the displa
ement is the pressure gradient betweenthe inlet and the front 
ausing a vis
ous drag on the trapped 
lusters. Atmoderate inje
tion rates these 
lusters are immobile, thus the vis
ous drag isbalan
ed by 
apillary for
es along the interfa
e of the 
luster. On average thesum of the 
apillary for
es from ea
h 
luster 
ontributes to P
g by a 
ertainamount making P
g proportional to the number of 
lusters behind the front.After the front has saturated with fully developed 
lusters behind (t > ts), thenumber of 
lusters are expe
ted to in
rease linearly with the amount of inje
ted
uid. Sin
e the inje
tion rate is held �xed we re
ognize that P
g must in
reaselinearly as fun
tion of time. The argument does not apply when t < ts, due tothe fra
tal development of the front before saturation.In Fig. 3 we have also plotted A0=A whi
h is the normalized di�eren
e be-tween �P and P
g [see Eq. (8)℄. A0 is equal to the proportionality fa
tor betweenQ and �P when only one phase 
ows through the latti
e (i.e. P
g = 0). Weobserve that A0=A tends to in
rease linearly as fun
tion of time when t > ts.From Eq. (5) we interpret A as the total 
ondu
tan
e of the latti
e, and the re-
ipro
al of that is the total resistan
e. The total resistan
e depends on the 
uid
on�guration and the geometry of the network. Lo
ally, the 
uid 
on�guration
hanges as nonwetting 
uid invades the system, however, the linear behavior ofA0=A indi
ates that the overall displa
ement stru
ture is statisti
ally invariantwith respe
t to the inje
tion time. That means, after the front has saturated(t > ts) the displa
ement stru
ture might be assigned a 
onstant resistan
e perunit length.
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Figure 4: P
f (a) and P
g (b) as fun
tion of inje
tion time at Ca = 3:5�10�4 andM = 1:0�10�3. To avoid overlapping 
urves P
g was subtra
ted by 1000 dyn=
m2before it was normalized.In the spe
ial 
ase when M = 1 (vis
osity mat
hed 
uids) the total re-sistan
e, 1=A, was found to be 
onstant independent of the inje
tion rate ordispla
ement stru
ture. This somewhat surprising result might be explained bythe following 
onsideration. When M = 1 the e�e
tive vis
osity �ij , of ea
htube is independent of the amount of wetting and nonwetting 
uid that o

u-pies the tube. Hen
e, ea
h tube has a 
onstant 
ondu
tivity of kij=�ij giving a
onstant total resistan
e of the network.At low Ca we approa
h the regime of 
apillary �ngering and the vis
ous dragon the 
lusters be
omes negligible. Hen
e, P
g is no longer a linear fun
tion ofthe inje
tion time, but redu
es to that des
ribing the 
apillary pressure alongthe front. This is observed in Fig. 4 where we 
ompare P
g with the 
al
u-lated average 
apillary pressure along the front, P
f . In the simulations, P
f is
al
ulated by taking the mean of the 
apillary pressures of the front menis
i.From the �gure we see that P
g ' P
f , as expe
ted. The big jumps in thepressure fun
tions in Fig. 4 are 
aused by the 
apillary pressure variations ofmenis
i passing through the \hourglass" shaped tubes. The negative jumps areidenti�ed as bursts where the invading 
uid pro
eeds abruptly [27,29℄ (see alsoSe
. 3.2 for further details).From the above dis
ussion we 
on
lude that the behavior of P
g at largetimes (t > ts) may be formulated asP
g = �m
h+ Pmf ; (9)where �m
 is the proportionality fa
tor between P
g and h due to the vis
ousdrag on the 
lusters, and Pmf is the 
apillary variations when the invasionfront 
overs new tubes. h denotes the average front position after the front hassaturated, i.e. hs < h < L, where hs is the average front position at ts and L is
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e the inje
tion rate is held �xed, h is proportionalto the inje
tion time t. In the limit of very low inje
tion rates, �m
 ! 0.When the average front position has rea
hed the outlet, i.e. h = L in Eq. (9),only invading 
uid 
ows through the system and Pmf = 0. In this limit Dar
y'slaw applied on the nonwetting phase gives U = (Ke=�nw)(�P=L), where Ke isthe e�e
tive permeability of the nonwetting phase. From Eqs. (8) and (9) we�nd that �P = Q=A+�
mL, whi
h inserted into Dar
y's law givesKe = �nw1=�T +�m
=U : (10)Here �T � AL=� denotes the total 
ondu
tivity of the latti
e. Thus, we might
onsider the e�e
tive permeability of the nonwetting phase as a fun
tion of the
ondu
tivity of the latti
e and an additional term due to the vis
ous drag onthe 
lusters (�m
=U). Note that the U dependen
y in Eq. (10) only indi
ates
hanges in �m
 between displa
ements exe
uted at di�erent inje
tion rates.The behavior when the 
ow rate 
hanges during a given displa
ement is notdis
ussed here.3.2 Burst dynami
sIn invasion per
olation (IP) [36℄ where ea
h site is assigned a random numberf , an ideal burst is de�ned as the 
onne
ted stru
ture that is invaded followingone root site of random number f0 along the invasion front. All the sites in theburst have random numbers smaller than f0, and the burst stops when f > f0is the random number of the next site to be invaded [37℄. The size of a burst isthe number of sites s in the 
onne
ted stru
ture in
luded the root site.The distribution of burst sizes N(s) has been found to obey the s
alinglaw [38,39℄ N(s) / s�� 0g(s�(f0 � f
)): (11)Here f
 is the per
olation threshold of the system and g(x) is some s
alingfun
tion whi
h de
ays exponentially when x� 1 and is a 
onstant when x! 0.� 0 is related to per
olation exponents like � 0 = 1 +Df=D � 1=(D�) [39℄ whereDf and D is the fra
tal dimension of the front and the mass of the per
olation
luster, respe
tively. Df depends on the de�nition of the front, that is, Dfequals De for external perimeter growth zone [36,40℄ and Dh for hull perimetergrowth zone [36, 41℄. � is the 
orrelation length exponent in per
olation theoryand � = 1=(�D) [36℄.In 1995 Maslov [42℄ dedu
ed a s
aling relation for the hierar
hi
al burst sizedistribution by integrating Eq. (11) over all f0 in the interval [0; f
℄. Thus,the hierar
hi
al burst size distribution 
ontains all ideal bursts in
luding thehierar
hi
al smaller ones that might be within ea
h ideal burst (see Fig. 5).Let Nall(s) denote the hierar
hi
al burst size distribution, then a

ording toMaslov [42℄ Nall(s) / s��all ; (12)where �all = 2.
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Figure 5: The pressure as fun
tion of inje
tion time for one simulation at low Ca ina narrow time interval. The horizontal line de�nes the valley of a single burst. Notethat a burst may 
ontain a hierar
hi
al stru
ture of smaller bursts within the valley.The verti
al line indi
ates the size of a lo
al pressure jump �p inside the valley.In Ref. [28℄, � 0 and �all were estimated for simulations and experiments inslow drainage. The simulation model used in [28℄ was a modi�ed IP algorithmdesigned to study the burst dynami
s of 
apillary �ngering. To 
he
k that theburst dynami
s are properly modeled in our network model we 
al
ulate � 0 and�all from simulations performed in the limit of low inje
tion rates. In addition,we 
ompute the hierar
hi
al burst size distribution at higher inje
tion rates toobserve a possible rate dependen
y of �all. Below a summary of the results isprovided.In the simulations a burst starts where the pressure drops suddenly, due to anunstable menis
us, and stops where the pressure has raised to a value above thepressure that initiated the burst. Thus, a burst may 
onsist of a large pressurevalley 
ontaining a hierar
hi
al stru
ture of smaller bursts inside, as indi
atedin Fig. 5. From the simulations we 
ould have 
al
ulated the geometri
al sizeof the region being invaded during a burst. That would 
orrespond to theburst size s in Eqs. (11) and (12). However, we want to 
ompare our resultsto experimental work in [28℄ where the geometri
al size is hard to measure.Therefore, we 
al
ulate the burst sizes in analogy to de�nitions in [28℄.A

ording to [28℄ we de�ne the burst size as the sum of the pressure jumpsinside the valley of the burst (see Fig. 5). We 
all the sum of the pressurejumps the valley size given as � � Pi�pi. Here the index i runs over all thepressure jumps �pi inside the valley. In order to 
al
ulate the valley sizes atlarge Ca we subtra
t the average drift in the pressure fun
tion due to vis
ousfor
es, su
h that the pressure be
omes a fun
tion 
u
tuating around some meanpressure. We assume that the valley size �, is proportional to the geometri
alsize of the region being invaded during a burst [28℄, and therefore � be
omes
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Figure 6: The hierar
hi
al valley size distributionsNall(�), for six simulations betweenlow and high Ca with M = 1 (Æ , ,�) and M = 100 (4 ,/ ,5). The slope of thesolid line is �1:9. Inset: The 
umulative valley size distribution N(�>��), for burststhat start in a narrow pressure strip for the simulation performed at Ca = 1:6�10�5and M = 1. The slope of the solid line is �0:5.roughly proportional to s.In Fig. 6 we have plotted the hierar
hi
al valley size distribution Nall(�), forsix simulations between low and high Ca with M = 1 and 100 on a latti
e of40 � 60 and 25� 35 nodes, respe
tively. Sin
e we assume that � / s, Nall(�)
orresponds to Nall(s) in Eq. (12). The slope of the solid line in Fig. 6 is �1:9,and we 
on
lude from the simulations that �all = 1:9� 0:1. At low � in Fig. 6,typi
ally only one tube has been invaded during the burst and we do not expe
tthe power law to be valid.Our 
al
ulated �all is 
lose the theoreti
al predi
tion in Eq. (12) and theresult of simulations and experiments in [28℄ at low Ca. We might have intro-du
ed some errors when we 
ompare � with the burst sizes s whi
h may explainwhy our result deviates a little from the exa
t value �all = 2. From Fig. 6 wenote that our estimated �all does not depend on Ca. Even at high Ca where a
at front generates we �nd �all = 1:9 � 0:1. In [42℄ �all was pointed out to besuper universal for a broad 
lass of self-organized 
riti
al models in
luding IP.Our result indi
ates that the simulated displa
ement pro
ess might belong tothe same super universality 
lass even at high inje
tion rates where there is no
lear mapping between the displa
ement pro
ess and IP.In the inset of Fig. 6 we have plotted the 
umulative valley size distributionN(�>��) for bursts starting in a narrow strip between 2800 and 3100 dyn=
m2where 3100 is the maximum pressure during the displa
ement. From Eq. (11) wehave that N(s) / s�� 0 , for bursts that start 
lose to the per
olation thresholdf
. In our simulations f
 
orresponds to the maximum pressure. In the inset
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Figure 7: The 
umulative pressure jump distribution fun
tion N(P >P �), for simula-tions performed with vis
osity mat
hed 
uids (M = 1) on a latti
e of 40 � 60 nodes.The dashed lines are �tted exponential fun
tions.of Fig. 6 we have plotted N(� > ��) versus �� in a logarithmi
 plot for onesimulation performed at low Ca = 1:6�10�5 with vis
osity mat
hed 
uids on alatti
e of 40�60 nodes. If we assume a power law behavior our best estimate is1� � 0 = �0:5 whi
h is indi
ated by the slope of the solid line in Fig. 6. In [28℄simulations and experiments gave 1� � 0 = �0:45�0:10. We need larger systemsizes and more simulations to improve our statisti
s. However, our result seemsto be 
onsistent with [28℄.We have also 
al
ulated the 
umulative pressure jump distribution fun
tionN(P >P �) for simulations at various inje
tion rates and vis
osity ratios. Thepressure P = �p=h�pi, where h�pi is the mean of the pressure jumps �p(see Fig. 5). In Fig. 7 we have plotted the result for two simulations, one athigh and the other at low Ca. Both were performed with vis
osity mat
hed
uids on a latti
e of 40 � 60 nodes. The distributions have been �tted toexponentially de
reasing fun
tions plotted as dashed lines in Fig. 7. At lowCa we �nd N(P >P �) / e�1:38P� whi
h is 
onsistent with the results in [28℄.At high Ca the distribution fun
tion was �tted to e�1:02P� . The pre-fa
tor inthe exponent of the exponential fun
tion seems to 
hange systemati
ally fromabout 1.4 to 1.0 as Ca in
reases. Similar results were obtained from simulationsperformed with M = 100 on a latti
e of 25� 35 nodes.From Figs. 6 and 7 we 
on
lude that the results of our network simulationsare in agreement with experiments and simulations performed in [28℄ at slowdrainage. This supports the eviden
e that the burst dynami
s are well des
ribedby our network model.4 Stabilization of drainage displa
ementsPapers 4 and 5 dis
uss the stabilization me
hanisms of drainage displa
ementsdue to vis
ous for
es and present new theoreti
al arguments about the pressure



14 4 STABILIZATION OF DRAINAGE DISPLACEMENTSbehavior along the front. Below, a brie
y review of earlier work on stabilizationof drainage displa
ements is provided, before the arguments and the supportingnumeri
al results are presented in Se
. 4.1. At the end, Se
. 4.2 investigates thegeneral validity of the arguments and raises important questions going beyondthe dis
ussion in Se
. 4.1.When the displa
ements are oriented out of the horizontal plane, gravitya
ting on the system, may stabilize the front due to density di�eren
es betweenthe 
uids. Several authors [30,43{45℄ have 
on�rmed, by experiments and sim-ulations, that the saturated front width ws s
ales with the strength of gravitylike ws / Bo��=(1+�). Here Bo (Bond number) is the ratio between gravita-tional and 
apillary for
es, given by Bo = ��ga2=
, where �� is the densitydi�eren
e between the 
uids, g the a

eleration due to gravity, a the averagepore size, and 
 the 
uid-
uid interfa
e tension. Furthermore, � denotes the
orrelation length exponent in per
olation. The above s
aling relation may bededu
ed from IP by applying a gradient proportional to �Bo to the randomnumbers of the sites in the per
olation latti
e. This will 
ause the invasion frontto stabilize [30, 44, 46℄.A similar 
onsensus 
on
erning the stabilization me
hanisms when the dis-pla
ements are within the horizontal plan has not yet been rea
hed. Here vis
ousfor
es repla
e gravitational for
es, and in the literature there exist di�erent sug-gestions about the s
aling of ws as fun
tion of Ca. The 
apillary number Cais the ratio between vis
ous and 
apillary for
es a

ording to the de�nition inSe
. 3. In 3D, where trapping of wetting 
uid is assumed to be of little im-portan
e, Wilkinson [30℄ was the �rst to use per
olation to dedu
e a power lawlike ws / Ca�� where � = �=(1 + t � � + �). Here t and � is the 
ondu
-tivity and order parameter exponent in per
olation, respe
tively. Later, Bluntet al. [32℄ suggested in 3D that � = �=(1 + t + �). This is identi
al to theresult of Lenormand [31℄ �nding a power law as fun
tion of system size for thedomain boundary in the Ca{M plane between 
apillary �ngering and stabledispla
ement in 2D porous media.More re
ently, Xu et al. [33℄ used a similar approa
h as Wilkinson and foundthat the pressure drop �Pnw a
ross a height di�eren
e �h in the nonwettingphase of the front should s
ale as �Pnw / �ht=�+dE�1��=� . Here dE denotesthe Eu
lidean dimension of the spa
e in whi
h the front is embedded, i.e. inour 
ase dE = 2. The pressure drop in the wetting phase �Pw , was argued tobe linearly dependent on �h due to the 
ompa
t phase there. In [32℄ Bluntet al. also suggested a s
aling relation for �Pnw , however, in 3D they found�Pnw / �ht=�+1. This is di�erent from the result of Xu et al. when dE = 3.In Se
. 4.1 we present an alternative view on the displa
ements from thoseinitiated by Wilkinson [30℄, but in
lude the eviden
e that nonwetting 
uid 
owsin separate strands. The alternative view leads to another s
aling of �Pnw thanthe one suggested by Xu et al. [33℄, and we show that it may in
uen
e � in thes
aling between ws and Ca.
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Figure 8: Two displa
ement stru
tures of simulations at high Ca = 3:9�10�4 (left)and low Ca = 1:6�10�5 (right) before breakthrough of nonwetting 
uid. The latti
esize is 40 � 60 nodes and M = 1. The nonwetting 
uid (dark grey and bla
k) isinje
ted from below and wetting 
uid (light grey) 
ows out along the top row. Thebla
k tubes denote the loopless strands where nonwetting 
uid 
ows and the dark greytubes indi
ate nonwetting 
uid unable to 
ow (i.e. dead ends) due to trapped regionsof wetting 
uid. Note the few 
uid supplying strands from the inlet to the frontalregion at low Ca 
ompared to the 
ase at high Ca.4.1 Loopless strandsFigure 8 shows two typi
al displa
ement stru
tures that were obtained fromsimulations at low and high Ca on a latti
e of 40 � 60 nodes with M = 1.From the �gure we observe that the nonwetting 
uid (dark grey and bla
k)generates patterns 
ontaining no 
losed loops. That means, following a path ofnonwetting 
uid will never bring us ba
k to the starting point. The nonwetting
uid also 
ows in separate loopless strands, indi
ated as bla
k tubes in Fig. 8.The loopless stru
tures in Fig. 8 are a dire
t 
onsequen
e of the eviden
e that atube �lled with wetting 
uid and surrounded on both sides by nonwetting 
uid istrapped due to volume 
onservation of wetting 
uid. We note that this eviden
emay easily be generalized to 3D, and therefore our arguments should apply theretoo. Similar loopless features were also pointed out in [47℄ for site-bond IP withtrapping and in [48℄ for a loopless IP algorithm.From Fig. 8 we may separate the displa
ement patterns into two parts. One
onsisting of the frontal region 
ontinuously 
overing new tubes, and the other
onsisting of the more stati
 stru
ture behind the front. The frontal region issupplied by nonwetting 
uid through a set of strands that 
onne
t the frontalregion to the inlet. When the strands approa
h the frontal region they are morelikely to split. Sin
e we are dealing with a square latti
e, a splitting strandmay 
reate either two or three new strands. As the strands pro
eed upwardsin Fig. 8, they split repeatedly until the frontal region is 
ompletely 
overed bynonwetting strands.On IP patterns with trapping [47℄ and without loops [48, 49℄ the length l ofthe minimum path between two points separated an Eu
lidean distan
e R s
ales



16 4 STABILIZATION OF DRAINAGE DISPLACEMENTSlike l / RDs where Ds is the fra
tal dimension of the shortest path. We assumethat the displa
ement patterns of the frontal region for lengths less than the
orrelation length (in our 
ase ws) is statisti
ally equal to IP patterns in [47℄.Therefore, the length of individual nonwetting strands in the frontal region,is proportional to �hDs where �h is some verti
al length less than ws. If weassume that every tube in the latti
e on average has the same mobility (kij=�ij),we obtain that the 
uid pressure within one strand must drop like �h� where� = Ds. Let us now 
onsider the e�e
t on the pressure when strands split. If weassume that the strands are straight (Ds = 1), then by following a path wherestrands split would 
ause the pressure to drop as �h� where � < 1. This isbe
ause the volume 
uxes through the new strands must be less than the 
uxin the strand before it splits, due to volume 
onservation of nonwetting 
uid.From Fig. 8, we note that at high Ca the lengths of individual strands in thefrontal region approa
h the minimum length due to the tubes. Therefore, inthis limit �nite size e�e
ts are expe
ted to 
ause Ds ! 1.The two results (� = Ds and � < 1) predi
t that the pressure drop in thenonwetting phase of the frontal region, �Pnw, should s
ale as �Pnw / �h�where � � Ds. In 2D two di�erent values for Ds have been reported: Ds =1:22 [48, 49℄ for loopless IP patterns growing around a 
entral seed, and Ds =1:14 [47℄ for the single strand 
onne
ting the inlet to the outlet when nonwetting
uid per
olates the system. We note that the result in [47℄ is essentially equalto Dmin = 1:13 [36, 50℄, that is the fra
tal dimension of the minimum pathin 2D per
olation where loops generally o

ur. A

ording to Xu et al. [33℄,� = t=� + dE � 1 � �=� � 1:9 in 2D where we have inserted t = 1:3, � = 4=3,� = 5=36, and dE = 2. Thus, our arguments based on the loopless strands ofnonwetting 
uid are in
ompatible with the result in [33℄.To 
on�rm the above arguments giving � � Ds, we have 
al
ulated thedi�eren
e in 
apillary pressure �P
 between menis
i along the front in thedire
tion of the displa
ement using our network model. �P
 as fun
tion of �hwas 
al
ulated by taking the mean of the 
apillary pressure di�eren
es betweenall pairs of menis
i separated a verti
al distan
e �h along the front (see Paper 5for details). Figure 9 shows �P
 as fun
tion of �h for simulations performedat various Ca, M , and system sizes. The left �gure shows �P
 for simulationsperformed on systems of 25 � 35 and 40 � 60 nodes where M = 100 and 1,respe
tively. We did 10{30 simulations at ea
h Ca to obtain reliable averagequantities.To the right in Fig. 9, we have plotted log10(�P
) versus log10(�h) forsimulations performed on four patterns generated at systems of 200�300 nodesby an IP algorithm. In these simulations the tubes in the network model wereinitially �lled with nonwetting and wetting 
uid a

ording to the generatedIP patterns. The network model was started from this point and ran a limitednumber of time steps while �P
 was re
orded. By this way, we were able to study�P
 on large systems in the low Ca regime, be
ause we saved the 
omputationtime that would have been required if similar displa
ement patterns should havebeen generated by the network model. Instead, the patterns were generated by amu
h faster IP algorithm. To make this method self-
onsistent we had to assume
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Figure 9: Left: �P
 as fun
tion of �h for three di�erent Ca's with M = 100 and 1 onlatti
es of 25 � 35 and 40 � 60 nodes, respe
tively. Right: log10(�P
) as fun
tion oflog10(�h) for simulations initiated on IP patterns at Ca = 9:5�10�5 and M = 100.The slope of the solid line is 1.0.that the IP patterns were statisti
ally equal to 
orresponding stru
tures thatwould have been generated by the network model. See Paper 5 for details aboutthe IP algorithm and how the network model was initiated by the generatedpatterns.From the results in Fig. 9 we 
on
lude that �P
 in
reases almost linearlywith �h. Assuming a power law behavior like �P
 / �h�, our best estimate ofthe exponent is � = 1:0�0:1. We have also performed simulations on IP patternsat Ca = 2�10�6 with M = 1 and 100. The results of those are 
onsistent withthe plot to the right in Fig. 9. The behavior of �P
 is 
onne
ted to �Pnwthrough �P
 ' �Pnw � �Pw . Here �Pw is the pressure drop in the wettingphase of the frontal region and varies linearly as fun
tion of height �h. Theabove relation was suggested in [33℄ and it is also 
on�rmed by our simulations.Hen
e, our simulations giving � ' 1:0 support the arguments �nding � � Dsin �Pnw / �h�. Therefore, we 
on
lude that earlier proposed theories [30{33℄whi
h do not 
onsider the eviden
e that nonwetting 
uid 
ows in strands, arein
ompatible with drainage when strands are important.The eviden
e that � � Ds may in
uen
e the exponent � in ws / Ca��.Assuming Dar
y 
ow where the pressure drop depends linearly on the inje
tionrate, we 
onje
ture that � bP
 / Ca�h�. Here � bP
 denotes the 
apillary pressuredi�eren
e over a height �h when the front is stationary. That means, � bP
ex
ludes situations where nonwetting 
uid rapidly invades new tubes due tolo
al instabilities (i.e. bursts). The above 
onje
ture is supported by simulationsshowing that in the low Ca regime � bP
 / Ca�h� where � ' 1:0. Note, that� bP
 6' �P
 in Fig. 9 sin
e the latter in
ludes both stable situations and bursts.At suÆ
iently low Ca where only the strength of the 
apillary pressure de-
ides whi
h tube should be invaded or not, we may map the displa
ement pro
essto per
olation giving � bP
 / f � f
 / ��1=� [30, 44, 46℄. Here f is the random
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olation latti
e, f
 is the 
riti
al per
olation threshold, and� / ws is the 
orrelation length. Combining the above relations for � bP
 givesws / Ca�� where � = �=(1 + ��). In 2D � = 4=3 and by inserting � = 1:0 weobtain � � 0:57. Note that this is di�erent to results suggested in [30, 32, 33℄giving � � 0:37{0:38 in 2D.At highCa the nonwetting 
uid is found to invade simultaneously everywherealong the front, and 
onsequently the front never rea
hes a stationary state (seePaper 5). In this limit simulations show a nonlinear dependen
y between � bP
and Ca. Therefore, in the high Ca regime it is not 
lear if the above mappingto per
olation is valid, and we expe
t another type of behavior between ws andCa.Frette et al. [51℄ have performed 2D drainage experiments where ws wasmeasured as fun
tion of Ca for vis
osity mat
hed 
uids (M = 1). Their bestestimate on the exponent in ws / Ca�� was � = 0:6� 0:2. This is 
onsistentwith the above 
onje
ture (� = 0:57), however, 
orresponding simulations on40 � 60 nodes latti
es give � = 0:3 � 0:1 (see Paper 5). The simulations areperformed at Ca � 1:0�10�5 while most of the experiments where done atCa � 1:0�10�5. Sin
e the range of the two does not overlap it is diÆ
ult to
ompare the result of the simulations with those of the experiments. However,the 
hange in � from 0.6 to 0.3, might be 
onsistent with a 
rossover to anotherbehavior at high Ca a

ording to the above dis
ussion. We also note, that forthe simulations at Ca ' 1:0�10�5, the front width approa
hes the maximumwidth due to the system size, making it diÆ
ult to observe any possible � � 0:57regime at low Ca. We emphasize that more simulations on larger systems andat lower Ca are needed before any 
on
lusion on � 
an be drawn.4.2 Range of validityThe eviden
e that the nonwetting 
uid displa
es the wetting 
uid in a set ofloopless strands opens new questions about the displa
ement pro
ess. Returningto Fig. 8 it is striking to observe the di�erent patterns of strands at high andlow Ca. At low Ca few strands are supplying the frontal region with nonwetting
uid, and the strands split many times before the whole front is 
overed. At highCa the horizontal distan
e between ea
h strand in the stati
 stru
ture is mu
hshorter, and only a few splits are required to 
over the front. We 
onje
turethat the average horizontal distan
e between the 
uid suppling strands dependson the front width. However, further investigation of the displa
ement patternsis required before any 
on
lusions 
an be drawn.So far the arguments in Se
. 4.1 only 
onsider displa
ements where the non-wetting strands 
ontain no loops. A very interesting question that has to beanswered is: What happens to � when di�erent strands in the front 
onne
tto generate loops. In ordinary bond or site per
olation loops generally o
-
ur. Loops are also observed in experiments 
orresponding to those of Frette etal. [51℄. In the experiments it is more diÆ
ult to trap wetting 
uid due to themore 
omplex topology of pores and throats (see Fig. 1). Consequently, loopswill more easily generate there, than in the 
ase of a regular square latti
e.



19Loops might also be 
reated when neighboring menis
i along the front overlapand 
oales
e depending on the wetting properties of the nonwetting 
uid [5, 6℄.As a �rst approximation we 
onje
ture that 
reation of loops will not 
ause� to 
hange signi�
antly. Note that in the front the di�erent nonwetting strands
onne
ting to ea
h other to 
reate loops, must at some later time split. Other-wise su

essive 
onne
tions will 
ause the di�erent strands to 
oales
e into onesingle strand of nonwetting 
uid. Moreover, after the front width has saturated,the number of pla
es where di�erent strands 
onne
t must on average be equalto the number of pla
es where strands split. Therefore, we believe that thein
uen
e on � due to 
onne
tions (i.e. loops) will be 
ompensated by the splitsand the overall behavior of � will remain the same. We emphasize that furthersimulations and experiments are required to investigate the e�e
t of loops on �.Hopefully, that will 
on�rm the above 
onje
ture.A

ording to the dis
ussion in Se
. 4.2, the eviden
e that the displa
ementpatterns 
onsist of loopless strands may easily be generalized to 3D. Thereforewe 
onje
ture that our arguments giving � � Ds, might be valid in 3D as well.Note also that in 3D it is less probable that di�erent strands meet. Hen
e, evenif they were supposed to 
onne
t to 
reate loops, the number of 
reated loopsare expe
ted to be few. In 3D the fra
tal dimension of the shortest path forloopless IP is Ds = 1:42 [48℄ whereas for regular per
olation Ds = 1:34 [36, 50℄.5 Summary and further workWe 
on
lude that our 2D network model properly simulates the temporal evo-lution of the pressure in the 
uids during drainage. We have found that themodel reprodu
es the typi
al burst dynami
s at low inje
tion rates and we havesimulated the behavior of the 
apillary pressure along the front. The latter 
anhardy be measured experimentally.Simulations show that the 
apillary pressure di�eren
e �P
 between twopoints along the front varies almost linearly as fun
tion of height separation �hin the dire
tion of the displa
ement. The numeri
al result supports argumentsbased on the observation that nonwetting 
uid 
ows in separate strands wherewetting 
uid is displa
ed. From the arguments we �nd that �P
 / �h� where� � Ds. Here Ds denotes the fra
tal dimension of the nonwetting strands. Itis interesting to observe that despite the small system sizes of our simulations,we are able to use the numeri
al results to grasp new physi
s and 
on�rm ourarguments.Several attempts have been made to des
ribe the stabilization me
hanismsin drainage due to vis
ous for
es, however, none of them 
onsider the eviden
ethat nonwetting 
uid displa
es wetting 
uid through strands. Therefore, we
on
lude that earlier suggested theories fail to des
ribe the stabilization of theinvasion front when strands dominate the displa
ements.A

ording to Se
. 4.2 there are still work to be done about the stabilizationme
hanisms in drainage. Espe
ially, the indi
ation that the arguments giving� � Ds in 2D, might apply in 3D too, should be thoroughly 
he
ked. The
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t on � of possible loops should also be investigated further. Parti
ularly,a 
loser study of loops being 
reated in drainage experiments, are ne
essary.Presumably one will �nd that di�erent strands in the experiments may 
onne
tto 
reate loops. However, the overall pi
ture of nonwetting strands that split to
over the front, should remain.In the literature, di�erent values of Ds in 2D have been reported (seeSe
. 4.1), and a 
loser examination of the fra
tal dimension of the strands arerequired in order to �nd the 
orre
t Ds for our problem. It is also of parti
ularinterest to develop another numeri
al s
heme of simulations whi
h are able tosimulate the displa
ements on larger latti
es in the low Ca regime. Hopefully,this will 
on�rm the 
onje
tured � = �=(1 + ��) in the power law ws / Ca��from Se
. 4.1.Another issue that the literature 
ontains little information about, is thee�e
t on the displa
ement patterns when 
hanging the pore size distribution.In [1℄ the pore size distribution was varied in some experiments and simula-tions in the regime of vis
ous �ngering. The e�e
t of 
hanging the pore sizedistribution has also been dis
ussed in 
onne
tion with the transition from self-similar fra
tal to fa
eted growth when varying the wetting angle of the invading
uid [6℄. It appears that no one has yet systemati
ally studied the e�e
t of thefront width when 
hanging the pore size distribution in drainage displa
ements.The network model presented in this thesis only simulates drainage. Theimbibition me
hanism like �lm 
ow is not in
luded and the methods we applywhen moving menis
i into neighboring tubes are motivated by displa
ementme
hanisms observed in drainage [52℄ (see Paper 1 for details). A 
ontinuation ofthis proje
t 
ould be to improve the model by in
luding imbibition me
hanisms.Still, modeling of the 
uid pressures due to 
apillary and vis
ous for
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