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A novel parametric circulating temperament is presented using a constructive

approach. The temperament is optimal with respect to a heuristically chosen

set of musical requirements. It is parametric in the sense that the temper-

ing of the narrowest (i.e., closest to pure) major third can be freely chosen.

Equal temperament arises as a limiting case. The temperament is optimal in

the sense that the tempering of the widest major third and the narrowest fifth

are minimised given the size of the least tempered major third. Also, under

this constraint, the tempering of the major thirds closest to the least tempered

third along the circle of fifths are minimised. The remaining degree of freedom

is used to minimise the number of unique intervals. The resulting temperament

exhibits various symmetries, and has, in general, two differently sized fifths and

five differently sized major thirds. The temperament has no historic relevance

as such, but can find good uses within all keyboard music from early baroque

till today due to the selection of optimisation criteria that closely follow histor-

ical requirements for good temperaments. With some exercise it can be tuned

by ear.
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1. Introduction

Throughout the centuries, different cultures have been using different musical tuning

systems. In western music, it is common practice to construct scales by selecting notes

from 12-note gamuts. There are mainly two musical aspects to the selection of frequencies

for the notes of the gamut; the melodic and the harmonic. It is well established that

simple small integer ratios of frequencies, or close approximations of such, give the most

consonant combinations of sound. Of particular importance between the pure intervals

are the octave (2:1), fifth (3:2), major third (5:4), and combinations thereof. Upon the

selection of the frequencies for a 12-note gamut, it is a common design criterion that

these intervals are contained as relationships between the notes of the gamut. However,

since many of these numbers are relatively prime, it is impossible to construct a gamut

where all the contained intervals are pure in the sense that they are small integer ratios.

Instead of having some pure and some unusable intervals, it has been common practice

in western music since the renaissance to have several, or even all of the intervals slightly

impure to different degrees. This is commonly referred to as tempering, and the result

as a temperament. If the resulting temperament divides the octave into equal steps, it

is called an equal temperament. Temperaments where all intervals are musically usable,

but not necessarily to the same degree, are referred to as circulating temperaments. For

a thorough introduction to the theory of tuning and temperaments, see, e.g., Benson [1].

Many historical temperaments remain known to our time, and they have different prop-

erties in terms of to which degree they favour specific keys and tonalities, and in terms

of the number of distinct intervals. An extensive overview of historical temperaments

was provided by Lindley [2]. Recently, Duffin [3] argued strongly against the common

practice of using equal temperament for the performance of historical music. He also

argued that the number of distinct intervals in a temperament should be minimised, and

thus advocated the use of meantone temperaments [4].

Particular interest has been paid to the temperament allegedly intended by Johann Se-

bastian Bach in his “Das Wohltemperierte Clavier”. It is by now fairly well agreed that

he did not intend the use of equal temperament but instead a non-equal circulating tem-

perament. Several hypothetical reconstructions of Bach’s temperament have been made,

including the ones by Kelletat (see Benson [1]), Kellner [5], Barnes [6], Lehman [7, 8],

Jencka [9, 10] and O’Donnell [11]. Contrary to Duffin, Lehman argued that a tempera-

ment should have many differently sized intervals in order to achieve key personalities.

Amiot [12] demonstrated that Lehman’s temperament is superior to other temperaments

known to be available at Bach’s time with respect to a goodness measure based upon

the Fourier transform of the resulting musical scales, but did not compare it to other

suggested Bach temperaments.

Sethares [13] invented a system with adaptive tuning, i.e., a tuning that adapts contin-

uously and automatically to the combination of notes being played. Amongst keyboard

instruments, however, such approaches can only be used for electronic or electronically

controlled instruments. A measurement of goodness-to-fit which aims to be objective



July 27, 2013 13:9 Journal of Mathematics and Music farup˙tmam˙final

Journal of Mathematics and Music 3

was developed by Hall [14]. The measure was based on the relative importance of keys

and intervals, and was constructed as a weighted average of the tempering of these.

Goldstein [15] proposed a method to construct an optimal temperament. The goal of

the method was to minimise the impurity of all fifths and major and minor thirds. He

showed that several historical temperaments could be seen as optimal with respect to

this criterion under different constraints. Sethares [16] developed a consonance metric

based upon the perceptual data of Plomp and Levelt [17]. Sankey and Sethares [18] used

this metric to construct an optimised temperament for the music of Domenico Scarlatti.

Polansky et al. [19] followed a similar path, but introduced the use of all intervals in

all keys, and set individual priorities or weights to the keys and intervals. In this way,

they were able to reconstruct historical temperaments such as Werckmeister III, Young’s

temperament (see, e.g, Benson [1]) and equal temperament quite closely. Recently, Milne

et al. [20] developed a similarity metric for pitch collections based on the novel concept

of expectation tensors.

In the current paper, a different approach is followed. Instead of defining an objective

metric of consonance as a starting point, a set of musical requirements is chosen. The

criteria aim to follow historical temperaments, and can therefore be subject to debate.

However, it is shown that given the choice of prioritised musical requirements, a para-

metric temperament that is optimal with respect to the selected requirements can be

constructed. The following set of requirements is chosen and prioritised as follows: (1)

There should be no wide fifths and no narrow major thirds, since wide fifths or narrow

major thirds lead to unnecessarily strong tempering of other intervals. (2) There must

be a tonal centre corresponding to the least tempered major third, and the major thirds

closest to this tonal centre along the circle of fifths should have priority over the more

distant ones. (3) The temperament should be as symmetric as possible about the tonal

centre in terms of the major thirds. In other words, if C is chosen as the tonal centre,

flat keys should not be favoured over sharps or vice versa. (4) The resulting number of

unique intervals in the temperament should be kept as low as possible. (5) No interval

must be tempered more than absolutely necessary in order to obey the other criteria.

2. Developing the Temperament

2.1. Notation and Definitions

Start by numbering the twelve notes along the circle of fifths (see Figure 1), by i ∈
{0, . . . , 11}, such that C = 0, G = 1, etc., using enharmonic equivalences, e.g., D# =

E[ = F[[ etc. as commonly done for 12-note temperaments.

A temperament is completely described when, e.g., the sizes of the twelve fifths are

known. Let f(i) denote the tempering of the upward fifth starting at note i as measured

on a logarithmic scale. In particular, f(0) is the tempering of the fifth C–G. If f(i) = 0,

the fifth from note i is pure. If f(i) < 0, the fifth is narrow, and if f(i) > 0, it is wide.
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Figure 1. The circle of fifths. The numbers indicate the numbering system used throughout the

text.

In order to close the circle of fifths, the total tempering of the fifths must add up to the

Pythagorean comma (see, e.g., Benson [1]),

11∑
i=0

f(i) = −P. (1)

For convenience, the notation f̃ is introduced for the periodic extension with period 12

of the function f . In other words f̃(i) = f(i) for i ∈ {0 . . . 11} and f̃(i) = f̃(i + 12n) for

n ∈ Z.

Let t(i) denote the tempering of the upward major third starting at note i. The major

third is made up of four consecutive fifths. If these fifths are all pure, the resulting interval

is a Pythagorean major third, which is one syntonic comma, S, wide. Thus, using periodic

extensions as above,

t̃(i) = S +
i+3∑
j=i

f̃(j). (2)

Similar equations can be constructed for the other intervals of the scale when needed.

In a circulating temperament, three consecutive major thirds make up one octave. The

difference between three pure major thirds and one octave is one diesis, which equals

3S − P , as follows directly by combining Equations. (1) and (2):

2∑
j=0

t̃(i + 4j) = 3S − P ∀i. (3)
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2.2. Basic Assumptions

In constructing the temperament, some assumptions must be made. In agreement with

many (but not all) authors and historical temperaments [1, 2], it is here assumed that

no major thirds are tuned narrow, and no fifths are tuned wide, i.e.,

f̃(i) ≤ 0 ∀i (4)

t̃(i) ≥ 0 ∀i (5)

Non-equal temperaments most often have a main key of preference [1]. Without loss

of generality, it can be assumed that this is the key of C. If a different tonal centre is

desired, the temperament can easily be transposed. It is then preferred to have C–E as

the least tempered major third, and thus

t̃(i) ≥ t̃(0) ∀i. (6)

The less this major third is tempered, the less equal the resulting temperament becomes.

In order to make a parametric temperament, the tempering of this major third is left

to be specified by the user. No interval should be tempered more than necessary. This

applies in particular to the fifths. Since t(0) is the least tempered major third, the average

tempering of the four fifths constituting it will have to be the most tempered sequence of

four consecutive fifths (see Figure 1). A minimised tempering of these fifths is obtained

by distributing the total tempering t(0) evenly across the first four fifths, giving

f(0) = f(1) = f(2) = f(3) = F0, (7)

where F0 is the single parameter of choice. Thus, the tempering t(0) is expressed as

t(0) = S + 4F0, (8)

hence F0 must be chosen such that F0 ≥ −S/4 in order not to make t(0) < 0, which

would disobey the criterion in Equation (5). Also, one must have F0 ≤ −P/12 according

to Equations (1)–(3), else the assumption in Equation (6) of t(0) be the least tempered

major third will not hold true. Thus, one must have

−S/4 ≤ F0 ≤ −P/12. (9)

Similarly, the tempering of the most tempered major thirds should be minimised given

the tempering of the least tempered major third, Equation (8). According to Equa-

tion (3), a first step towards this goal can be achieved by setting

t̃(i) ≤ t(4) = t(8) ∀i. (10)

A common property for historical temperaments is that the least least tempered major
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thirds are close to each other along the circle of fifths (see, e.g., Figures 2 and 6). Since

the tempering t(4) and t(8) is already given, no major third should be wider than these.

However, in order to minimise the size of the major thirds close to the tonal centre, the

major thirds between t(4) and t(8) should be as great as possible within the limit of

Equation (10). Thus, one must have

t(4) = t(5) = t(6) = t(7) = t(8). (11)

Solving Equation (11) for the fifths, using Equation (2), gives

f(4) = f(8)

f(5) = f(9)

f(6) = f(10)

f(7) = f(11)

(12)

In total, Equations. (1), (7), and (12) constitute 9 linear equations for the tempering

of the 12 fifths, f(i). This means that three degrees of freedom remain in addition to

the designed-in freedom to select the parameter F0. The remaining freedom can be used

to set, e.g., three of the remaining major thirds t(i), i ∈ {1, 2, 3, 9, 10, 11}, or three of

the remaining fifths f(i), i ∈ {4, 5, 6, 7, 8, 9, 10, 11}, any combination of three of these, or

any other combination of three independent intervals not following from the 9 equations

already set.

Although this might seem quite some amount of freedom, the constraints formed by the

9 equations following from the assumptions turn out to be quite strict. For example, very

few of the existing temperaments known to the author obey all these constraints, the only

ones being equal temperament (with F0 = −P/12) and Johann Georg Neidhardt’s Circu-

lating Temperament no. 1 (with F0 = −P/6). This latter temperament can be described

by the vector whose components are the tempering of the fifths f(0), f(1), . . . , f(11),

f = −P/6(1 1 1 1 1
2

1
2 0 0 1

2
1
2 0 0)T . (13)

An illustration of this temperament is shown in Figure 2. The figure shows the tempering

of fifths and major thirds in cent. Cent is defined on a logarithmic scale such that one

octave equals 1200 cent, and P ≈ 23.46001038 cent.

The three remaining parameters can be used to favour keys with sharps or keys with

flats as shown in Figure 3. These temperaments were obtained as extreme cases by setting

F0 = −P/6 and f(9) = f(10) = f(11) = 0 for the first one, giving

f = −P/6(1 1 1 1 1 0 0 0 1 0 0 0)T , (14)
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Figure 2. The tempering of fifths (black) and major thirds (grey) in Johann Georg Neidhardt’s

Circulating Temperament no. 1 as measured in cent. The solid and the dashed horizontal lines

show the tempering of major thirds and fifths in equal temperament respectively.

and f(4) = f(5) = f(6) = 0 for the second one, giving

f = −P/6(1 1 1 1 0 0 0 1 0 0 0 1)T . (15)

2.3. Exploiting Symmetries

Although the possibility of constructing temperaments favouring flats or sharps can be

interesting for particular applications, there seems to be no good reason for doing so for

a general all-round temperament. Actually, for an optimal temperament, it is reasonable

to insist on it being symmetric, i.e., that it does not favour flats over sharps or vice versa.

This criterion can be formulated as the major thirds being symmetric about the tonal

centre, which in this case is C:

t̃(i) = t̃(−i) ∀i. (16)

Inserting the definitions of the major thirds, Equation (2) into (16) and solving for f̃(i)

gives the equivalent symmetry of fifths,

f̃(2 + i) = f̃(2− i) ∀i. (17)
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Figure 3. The tempering of fifths (black) and major thirds (grey) as measured in cent in con-

structed temperaments with priority for the sharp (above) and flat (below) keys. The solid and

the dashed horizontal lines show the tempering of major thirds and fifths in equal temperament

respectively. See Section 2.2 for details.

In other words, if the tempering of the major thirds is symmetric about the C–F] axis

of the circle of fifths (see Figure 1), the tempering of the fifths will be symmetric about

the D–A[ axis. This result is independent of the assumptions made in Section 2.2, but

follows directly from the definitions of the relationship between the tempering of the

fifths and major thirds, Equation (2). Similar symmetry properties can be found for the

other intervals in exactly the same way. For example, the major seconds, being made up

of two consecutive fifths, will be symmetric about the G–D[ axis in the chosen case.

The symmetries in Equation (16), or, equivalently, Equation (17) constitute six linearly
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independent equations. Together with the nine equations from the basic assumptions in

Section 2.2, there are now 15 equations for the 12 unknown fifths. However, they are not

all linearly independent, as can be seen, e.g., by writing the equations in matrix form

and calculating the rank of the system matrix. Only two of the symmetry equations are

linearly independent from the nine equations already established. Thus, even with the

symmetry criterion, there is still one remaining degree of freedom.

The general solution to the set of eleven Equations. (1), (7), (12) and (16) can be

written as

f =



F0

F0

F0

F0

F1

−F0 − F1 − P/4

−F0 − F1 − P/4

F1

F1

−F0 − F1 − P/4

−F0 − F1 − P/4

F1



. (18)

The effect of changing F0 should be familiar by now; it determines how close to pure

the best major third is. The effect of changing F1 can be studied by setting it to the

extreme values of F1 = −F0 − P/4 and F1 = 0. The resulting temperaments in this case

for F0 = −P/6 are shown in Figure 4. Only the four major thirds t(1), t(3), t(9), and

t(11), are affected. Setting F1 as low as possible, i.e., tempering the E–B fifth as much as

possible within the given constraints, results in a tempering favouring the major thirds

closest to the central key along the circle of fifths, whereas setting F1 = 0 gives priority to

the more distant major thirds at the cost of increasing the tempering of the close major

thirds. With respect to the criterion of prioritising the most central major thirds, this

should mean that the optimal temperament given F0 is found by setting F1 = −F0−P/4.

However, there is an even better way to use the remaining degree of freedom.

2.4. Number of Distinct Intervals

Duffin [4] argued strongly that the number of distinct intervals in a circulating temper-

ament should be minimised. This is particularly important when playing together with

other instruments, such as bowed string instruments without fixed pitches. Actually,

Duffin goes as far as to promote the use of 1/6-comma meantone temperament. As a

general temperament for keyboards for a broad range of music, this is not an option due
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Figure 4. The tempering of fifths (black) and major thirds (grey) as measured in cent in con-

structed temperaments with priority for the central (above) and distant (below) keys. The solid

and the dashed horizontal lines show the tempering of major thirds and fifths in equal tempera-

ment respectively. See Section 2.3 for details.

to the number of unusable (wolf) intervals, but the criterion of reducing the number of

distinct intervals can be applied also in the current setting. It should be noted that this

is completely opposite to Lehman’s requirement that a good temperament should have

as many distinct interval as possible in order to achieve key personalities [7, 8]. Here, the

Duffin criterion is chosen. Whether this is a good choice or not is a matter of taste and

practical considerations that should be left to the discretion of the performing musicians.

In a temperament, as soon as the sizes of all the fifths are known, the sizes of the other

intervals can be computed. The tempering of the major seconds equals the sum of two
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consecutive fifths, major sixths are three consecutive fifths, major thirds are four, major

sevenths are five, and the tritones are six. The remaining intervals are inversions of these.

In the general case, the temperament in Equation (18) has three different fifths (and

fourths), five major seconds (and minor sevenths), five major sixths (and minor thirds),

five major thirds (and minor sixths), five major sevenths (and minor seconds) and seven

tritones, adding up to a total of 30 different intervals, not counting inversions. This can

be reduced, and has a unique minimum, which is obtained by setting F1 = −F0/2−P/8.

In this case, the eight fifths f(4), . . . , f(11) become equal, since −F0 − F1 − P/4 =

−F0/2− P/8. The temperament is then completely described by

f =



F0

F0

F0

F0

−F0/2− P/8

−F0/2− P/8

−F0/2− P/8

−F0/2− P/8

−F0/2− P/8

−F0/2− P/8

−F0/2− P/8

−F0/2− P/8



. (19)

This particular temperament has two distinct fifths, three major seconds, four major

sixths, five major thirds, five major sevenths and five tritones, adding up to a total of 24

intervals, not counting inversions. The resulting temperament is shown in Figure 5 for

various choices of F0.

For some special choices of F0, there are other even more optimal solutions with respect

to this criterion. For F0 = −P/8 there are two ways to achieve an even lower number

of distinct intervals. Setting F1 = −P/8 in Equation (18) gives a total of 20 different

intervals, and setting F1 = 0 gives a total of 17 different intervals. These are hence referred

to as the suboptimal and optimal temperaments for F0 = −P/8. For F0 = −P/12, the

resulting limiting case is equal temperament, where there is only one version of each

interval, adding up to a total of six distinct non-unison intervals, not counting inversions.

3. Discussion

3.1. Comparison with Other Temperaments

Figure 6 shows the behaviour of well-known temperaments. As a general observation, it

should be noted that the overall behaviour is not as systematic and symmetric as for the
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Figure 5. The tempering of fifths (black) and major thirds (grey) as measured in cent for the

different choices of F0 = −S/4 (top), F0 = −P/6 (middle), and F0 = −P/8 (bottom). The

solid and the dashed horizontal lines show the tempering of major thirds and fifths in equal

temperament respectively. See Section 2.4 for details.
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proposed solution in Figure 5. This might be interpreted as the proposed solution being

superior to the historic temperaments in this respect, but it could also be taken as an

observation undermining criterion (3) in Section 1.

Properties of well-known temperaments are shown together with the proposed optimal

temperament for several choices of F0 in Table 1. The temperaments are sorted by the

size of the best (i.e., least tempered) major third, the size of the worst (i.e., most tem-

pered) major third, and the total number of distinct intervals not counting inversions,

in order of priority. The table also shows the number of distinct version of the individual

intervals. For each size of the best major third, the corresponding version of the suggested

temperament is shown. For all of the temperaments listed, the proposed solution has the

smallest size of the largest major third, and in many cases also the smallest number of

distinct intervals.

Although not the major topic of the current paper, it is interesting to compare the

hypothetical Bach temperaments in this respect. Two of the temperaments, Kelletat and

Lehman, have a very high number of distinct intervals, whereas three others, Kellner,

Barnes, and O’Donnell, have a very low number. To the best of the author’s knowledge,

this particular aspect has not been much debated in the construction of Bach tempera-

ments.

According to Table 1, the proposed temperament is superior to the other selected tem-

peraments with respect to the chosen set of musical requirements. However, this does not

necessarily mean that it is in any sense better than other temperaments. Appreciating

the subtle nuances of different temperaments is something that has to be learned and

trained, and in the end, people end up preferring different solutions. It is therefore the

author’s opinion that it does not make very much sense to perform perceptual experi-

ments with the goal of showing that some temperament is better than some other. The

only way to really judge a temperament (like any other subject of taste), is to try it

out on a real acoustic instrument and make up one’s own opinion. Thus, the following

two paragraphs solely represents the author’s personal opinion, and is not supposed to

represent any scientific result:

With F0 = −S/4, the resulting temperament in many ways resembles Kirnberger III.

The narrowest major third is pure, and there are big differences in key personalities.

However, the widest major third is less tempered than in Kirnberger III. Also, while

Kirnberger III is quite asymmetric favouring keys with sharps, the proposed solution

is much more symmetric. The major triads on E, B, and F] are somewhat better in

Kirnberger III, but all other triads sound better to the author in the proposed solution.

With F0 = −P/6, the resulting temperament shares the size of the best major thirds

with both the Valotti and Lehman temperaments. However, it differs from Valotti in

that the worst major third is much better, thus giving an improved rendering of the

keys distant from the tonal centre. It differs from the Lehman temperament in that

the key personalities are not as strong. This may be judged as drawback or as a benefit

depending on taste. The keys with sharps are generally better with the proposed solution,

whereas the keys with flats, A[ major, E[ major, and F major in particular, sound more
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Figure 6. The tempering of fifths (black) and major thirds (grey) as measured in cent for well-

known temperaments. Kirnberger III (top), Valotti (middle), and Lehman’s Bach temperament

(bottom). The solid and the dashed horizontal lines show the tempering of major thirds and fifths

in equal temperament respectively.
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pleasing in Lehman’s temperament. The E–G] major third is significantly purer in the

proposed solution compared to Lehman’s temperament. The number of distinct intervals

is also very different between these two temperaments. Thus, the melodic lines might

be less interesting, but more smooth with the proposed temperament, but, according to

Duffin [4], the proposed solution will be easier to adapt to for musicians playing bowed

string instruments.

3.2. Practical Tuning Recipe

With some training, the temperament in Equation (19) can be tuned by ear on keyboard

instruments. Here is a brief outline on how it can be achieved: Temper the major third

C–E as preferred; it should be pure or slightly wide. The choice prescribes the single

parameter F0. Then, tetrasect the major third into four equal fifths according to common

procedure (for detailed instructions on how to perform the tetrasection of the major third

by ear, see, e.g., Bavington [21]). Tune G]/A[ such that the major thirds E–G] and A[–C

are equally wide. Finally, tetrasect the major thirds E–G] and A[–C. With some exercise,

this can be performed quite accurately and rapidly by ear.

4. Conclusion

A parametric circulating temperament is constructed. It is optimal with respect to a

heuristically selected set of prioritised musical requirements, and, thus superior to other

well-known temperaments with respect to the chosen criteria. The criteria are of course

subject to debate, but if the criteria are agreed upon, the resulting temperament is shown

to be optimal. According to the author’s personal opinion, it lends itself well to a broad

range of musical genres.
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