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Abstract

A common presumption for elastomeric material behaviour is incompressibility, however, the in-

clusion of �ller particles might give rise to matrix-particle decohesion and subsequent volume

growth. In this article, the volumetric deformation accompanying uniaxial tension of particle-�lled

elastomeric materials at low temperatures is studied. An experimental set-up enabling full-�eld

deformation measurements is outlined and novel data are reported on the signi�cant volume growth

accompanying uniaxial tension of two HNBR and one FKM compounds at temperatures of �18,

0, and 23 �C. The volumetric deformation was found to increase with reduced temperature for all

compounds. To explain the observed dilatation, in situ scanning electron microscopy was used to

inspect matrix-particle debonding occurring at the surface of the materials. A new constitutive

model, combining the Bergstr�om-Boyce visco-hyperelastic formulation with a Gurson ow potential

function is outlined to account for the observed debonding e�ects in a numerical framework. The

proposed model is shown to provide a good correspondence to the experimental data, including

the volumetric response, for the tested FKM compound at all temperature levels.

Keywords: Elastomers, DIC, Volumetric deformation, Low temperatures, SEM, Matrix-particle

debonding, Constitutive modelling

1. Introduction

Particle-�lled elastomeric materials are applied in a range of industries (like automotive, aerospace,

and oil and gas) where large temperature variations can occur. As a speci�c example, elastomeric

seals can be exposed to a wide range of pressures and temperatures in subsea oil and gas equip-

ment. As these seals are critical to avoid leakages, strict quali�cation testing, possibly involving

temperatures from �18 to 150 �C and pressures up to 140 MPa [1], must be carried out prior to

installation. The lead-time and man-hour cost of obtaining a combination of elastomeric material

and seal design that would pass the quali�cation tests could be greatly reduced by introducing

numerical analyses, like �nite element simulations, into the design process. For such analyses to be
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predictive and thereby cost saving, increased understanding of the underlying mechanisms occur-

ring in elastomeric materials at various temperature and pressure levels and improved constitutive

models that capture these e�ects are of utmost importance.

A common presumption for elastomeric material behaviour is that their deformation is fully or

nearly isochoric. However, it was early shown by Gent and Park [2] and Cho et al. [3] that the

inclusion of sti� �ller particles, as done in nearly all industrially applied elastomer compounds,

could give rise to matrix-particle debonding and subsequent volume growth. In the later years, the

advances of optical measurement techniques, like digital image correlation (DIC), have facilitated

accurate quantitative measurements of the possible volume strain occurring when �lled elastomers

are loaded in tension. Le Cam and Toussaint [4] measured the volume change accompanying

uniaxial tension of �lled and un�lled natural rubber specimens by the use of DIC at one surface

and an assumption of material isotropy. They found a signi�cantly larger volume growth to occur

in the �lled specimens. The same authors also reported signi�cant volume growth in a �lled SBR

elastomer by the same experimental procedure [5]. de Crevoisier et al. [6] used two cameras for

DIC measurements to capture the complete strain �eld during uniaxial tension of a �lled SBR

material, avoiding the isotropy assumption when calculating the volume change. During cyclic

deformation, they found the volume growth of each cycle to start when the longitudinal strain

exceeded the previously obtained maximum deformation. Cantournet et al. [7] reported the

volume change of a particle �lled natural rubber to depend strongly on the deformation mode.

For con�ned and hydrostatic compression, a sti� volumetric response was reported, while matrix-

particle decohesion around ZnO particles gave a more compliant volumetric behaviour in uniaxial

tension. For a deformation mode dominated by hydrostatic tension, on the other hand, voids

were reported to nucleate unrelated to �ller particle locations. Such loading mode dependence was

later echoed by Ilseng et al. [8], studying the relation between the macroscopic volume response

in uniaxial tension and con�ned axial compression experiments and the underlying mechanism

of matrix-particle decohesion. All these previous investigations on dilatation of elastomers with

particles were carried out at room temperature. While the e�ect of temperature on the viscoelastic

behaviour of elastomers is well studied in the literature [9, 10, 11, 12], it seems that the inuence

of temperature on the volume growth obtained in �lled elastomers during uniaxial tension loading

has not been given any attention yet.

Although experimental evidence shows that particle-�lled elastomers might yield large volume

variations in certain loading modes, constitutive models commonly used for such materials neglect

this e�ect. For rate independent elastomeric behaviour, a range of di�erent hyperelastic potential

functions exists [13, 14, 15, 16]. In these models, a small volumetric contribution is added to the

isochoric potential to include slight compressibility and ensure numerical stability, however, the

large di�erence in volumetric behaviour between tension and compression loading in particle-�lled

elastomers is not accounted for. A number of models combining hyperelastic springs and strain-
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rate dependent dashpots have been proposed to include also the viscous features of elastomeric

materials [17, 18, 19, 20]. The visco-hyperelastic model of Bergstr�om and Boyce [19], combining the

eight-chain strain energy potential [16] with a non-linear viscous formulation, is one of the most

extensively applied. However, as the volumetric behaviour of these viscous models is governed

by hyperelastic potentials, they do not account for matrix-particle decohesion e�ects, and the

sti� and fully elastic volumetric response observed in hydrostatic compression experiments on

elastomeric materials [21, 22, 23] is normally used to �t their volumetric response. A few authors

have proposed constitutive models that incorporate large volume growth in elastomeric materials

[24, 25, 26]. Yet, the focus of these studies was on rate-independent theoretical considerations of

cavitation growth for loading states of large triaxial stresses, and matrix-particle debonding during

uniaxial tension was not considered. Using available constitutive models to predict the behaviour

of particle-�lled elastomers in loading modes dominated by positive hydrostatic stresses can cause

signi�cant errors [8], and new modelling formulations that account for a loading-mode dependent

volumetric behaviour are needed.

While constitutive models that capture the e�ects of matrix-particle decohesion and cavitation

growth on the macroscopic response have gained limited attention in the study of elastomers, it

is an important area of research for ductile metallic materials. In that �eld, an essential piece

of work, dealing with yielding of a rigid-perfectly plastic matrix containing a spherical void, was

put forward by Gurson [27]. The Gurson model has subsequently been modi�ed or extended in

multiple works concerned with metallic materials [28, 29, 30, 31, 32, 33], and there are also some

applications to thermoplastic polymers [34, 35, 36]. To the best of the authors' knowledge, the

Gurson formulation has not yet been applied to describe the volumetric behaviour of elastomeric

compounds.

In the present work, a new experimental set-up that enables DIC measurements of the complete

deformation �eld at low temperatures is outlined. Novel data on the volume growth accompanying

tension of hydrogenated nitrile butadiene rubber (HNBR) and uoroelastomer (FKM) materials

are obtained for a temperature range from �18 to 23 �C. An in situ scanning electron microscopy

(SEM) study was performed at room temperature to investigate the matrix-particle debonding

accompanying tension of these materials. To incorporate the volume growth in a constitutive

framework, a new model is proposed by modifying the Bergstr�om-Boyce model [19] with the use

of a Gurson ow potential function [27] for the viscous behaviour.

The article is organized as follows: In the following section the set-up and experimental results

for the macroscopic tension tests are outlined. Section 3 presents the set-up and the results

obtained for the in situ SEM investigation. Thereafter, in Section 4, the new constitutive model

including the observed viscous volume growth caused by matrix-particle debonding is presented

and compared with the macroscopic experimental results. Concluding remarks are given in Section

5.
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2. Macroscopic experiments

2.1. Materials

Two di�erent HNBR compounds and one FKM material are studied herein and are in the

following denoted HNBR1, HNBR2, and FKM. All three compounds are commercial materials

commonly used for sealing applications in the oil and gas industry. Samples were delivered from

the suppliers as dumbbell shaped specimens die stamped from 2 mm thick sheets that were obtained

by a rolling process. The dimensions of the samples were in line with ISO - 37 Type 1 and Type

2 [37]. The gauge length of the Type 1 specimen used for HNBR1 is 33 mm while the gauge

length of the Type 2 sample used for HNBR2 and FKM is 25 mm. The di�erent materials, their

dumbbell geometry, the gauge length, the measured pre-testing density, and the temperature range

and hardness values provided by the suppliers are listed in Table 1. According to the suppliers,

the lower bound of the temperature range indicates the temperature for which the materials have

fully transitioned into the glassy region. As the tested compounds are commercial, their speci�c

chemical composition cannot be disclosed.

Table 1: Tested materials, their geometries and properties

Material Geometry Gauge length Density Temperature range Hardness

HNBR1 ISO 37 - Type 1 33 mm 1.29 g/cm3 �35 to 150 �C 86 shore A

HNBR2 ISO 37 - Type 2 25 mm 1.19 g/cm3 �29 to 160 �C 89 IRHD

FKM ISO 37 - Type 2 25 mm 1.77 g/cm3 �40 to 200 �C 89 IRHD

2.2. Set-up and data processing

The macroscopic tension experiments were performed using an Instron 5944 testing machine

with a 2 kN load cell. The specimens were loaded to a machine displacement of 40 mm, and then

directly unloaded until zero force was measured by the load cell. Both loading and unloading

occurred at a deformation rate of 1 mm/s, which corresponds to a nominal strain rate of 0.03 s�1

and 0.04 s�1 for the Type 1 and Type 2 specimens, respectively. The same deformation procedure

was applied for all temperature levels and materials, and a new specimen was used for each test.

The testing was performed at temperatures of �18, 0, and 23 �C. Two tests were run for each

combination of material and temperature, with the duplicates showing consistency of the reported

results. Hence, one test for each combination of material and temperature will be addressed in the

subsequent sections.

A custom-built temperature chamber, made of 10 mm thick transparent polycarbonate (PC)

plates and connected to a supply of liquid nitrogen (LN2), was used to obtain the low-temperature

testing conditions. Stable testing temperatures were achieved by controlling the ow of LN2 using

a PID regulator. To avoid icing and condensation on the chamber walls, a tabletop fan was used

to ensure su�cient air circulation around the chamber. The temperature at the specimen surface
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was monitored throughout the deformation cycle by a FLIR SC7000 infrared camera, calibrated

for temperatures down to �20 �C. A small rectangular hole was made in the chamber to obtain

an unobstructed view between the infrared camera and the specimen. For optical deformation

measurements, two Prosilica GC2450 CCD cameras were placed outside the transparent chamber.

Camera 1 monitored the wide surface of the specimens, while Camera 2 monitored the thickness

direction. Both cameras logged images at a frame rate of 7 Hz. As the transverse deformation of

the materials tested here were shown by Ilseng et al. [8] to be anisotropic, instrumentation with

two cameras is essential to obtain quantitative volume measurements. The experimental set-up

is illustrated in Figure 1a, where the temperature chamber, specimen n and n+1, the two CCD

cameras, the infrared camera, the tabletop fan, and the LN2 container can be seen.

To use DIC to calculate the local deformations, a grey scale speckle pattern must be applied

in the gauge section of the specimens. Ilseng et al. [12] found that the traditional use of black

and white spray paint to obtain this speckle pattern was unsuited for low temperature testing,

as the paint cracked during deformation. Therefore, an alternative grease-and-powder speckle

was used herein. A thin layer of a Molycote 33 Medium low temperature grease was applied to

the specimens gauge section, and white icing sugar was thereafter sprinkled in the greased area to

create a contrast to the black specimens. A sieve with a wire mesh size of 75 µm was used to ensure

a �ne-grained and evenly distributed layer of the icing sugar. An example of the obtained speckle

is shown in Figure 1b. Opposed to traditional spray paint, the grease and icing sugar speckle

pattern did not experience cracking or other di�culties during deformation at low temperatures.

The use of the PC chamber and a grease-and-powder speckle pattern was shown by Johnsen et al.

[38] to yield similar results at room temperature as tests without the temperature chamber using

a spray painted speckle pattern.

The frames captured by the two cameras were post-processed using the in-house DIC software

eCorr [39]. An example of reference and deformed con�guration captured with Camera 1 for a test

of the HNBR1 material at �18 �C is seen in Figure 1b. For the reference frame, the initial DIC

mesh is shown; while for the deformed con�guration, a fringe plot of the �rst principal logarithmic

strain is included. The logarithmic element strains in the principal directions �ei were calculated

for each element in the DIC mesh by eCorr, with i = 1 denoting the longitudinal direction and e

representing the element number. Corresponding stretch ratios were found through �ei = exp [�ei ].

A representative principal stretch ratio was obtained by calculating the mean stretch over all n

elements as

�i =
1

n

nX
e=1

�ei (1)

and a representative logarithmic strain value was found by �i = ln�i. There was a good agreement

between the representative longitudinal logarithmic strain �1 found from the two independent yet

synchronized cameras [8]. Using the three representative principal stretch ratios �i, the volume
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ratio J was calculated as

J = �1�2�3 (2)

while the longitudinal Cauchy stress was found from

�1 =
F

A
=

F

�2�3A0
(3)

where F is the force measured by the load cell, A the current cross sectional area, A0 the initial

cross sectional area, and �2 and �3 are the transverse stretch ratios. For the uniaxial tension tests

(�2 = �3 = 0), the hydrostatic stress is de�ned as

�H =
�1
3

(4)

Finite element simulations of the thermal conditioning process, using the material parameters

and the numerical procedure outlined by Ilseng et al. [12], showed that 8 minutes of thermal

conditioning should be su�cient to cool the centre of the sample from room temperature to nearly

�18 �C. During the experimental testing, specimen n+1 was placed in the temperature chamber

for cooling at the same time as sample n was mounted in the testing machine. Moreover, a 10-

minute conditioning period was included between mounting a sample in the machine and the start

of the deformation cycle. During this period, the machine was set to retain zero force in the load

cell to account for thermal contraction of the specimen. Before the �rst test at a new temperature

level, a 30-minute tempering period was included to ensure su�cient cooling of the steel grips of

the testing machine.

2.3. Results

2.3.1. Stress - strain

The Cauchy stress - logarithmic strain behaviour in the longitudinal direction of the three

materials is shown in Figure 2. As expected, a clear increase of sti�ness and strength for the loading

process can be seen to take place for all materials as the temperature is reduced. During unloading,

however, the temperature had limited inuence on the material response. The signi�cant dip in

stress level seen to occur at a strain of about 0.4 in the HNBR1 material at low temperatures was

previously discussed by Ilseng et al. [12], where brittle matrix-particle debonding was suggested

as a plausible physical mechanism. It can be noted that the slight wobbling in the loading curve

for the HNBR2 and the FKM materials at �18 �C coincided with the injection of liquid nitrogen

into the chamber, and was likely caused by small temperature variations in the specimens.

2.3.2. Volume growth

The volume ratio vs longitudinal logarithmic strain data are shown for all materials and tem-

peratures in Figure 3. For the large strain regime, a clear trend is that the volumetric deformation

increases as the temperature is reduced, leading to a signi�cant maximum volume growth at low

temperatures for all three compounds, although somewhat more modest for the HNBR2 material
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(a)

(b)

Figure 1: (a) Experimental set-up used in the macroscopic tension experiments, (b) DIC frames from Camera 1

for a test on HNBR1 at �18 �C. The white arrow on the reference con�guration indicates tension direction, while

the black horizontal lines in the speckle pattern were used to match the location of the mesh between images from

Camera 1 and Camera 2. The fringe plot indicates the value of the �rst principal logarithmic strain. A 2 mm bar

is included for scale.
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Figure 2: Longitudinal Cauchy stress - logarithmic strain data for all three temperatures (a) HNBR1, (b) HNBR2,

and (c) FKM. Arrows indicate the direction of the loading cycle.

compared with the two other ones. In addition, all materials show a volume ratio close to unity at

low strains, while the volume increase sets on after a critical strain level is reached. This behaviour

is in line with a matrix-particle debonding theory, where a certain amount of strain/stress would

be needed for the bonding between the matrix and the particles to break, and thereby the volume

to start increasing. In general, the obtained critical strain level is lowered as the temperature is

reduced.

The onset of volume growth for the HNBR1 material, as illustrated in Figure 3a, is observed

to coincide with the stress dip seen in Figure 2a, supporting a theory of brittle matrix-particle

debonding at low temperatures. In addition, a clear loop in the loading-unloading behaviour

can be seen for this compound, with the volume ratio being clearly larger for the same strain

level during unloading compared with loading. Further, the maximum volume growth of the

HNBR1 material is strongly temperature dependent, with the volume variation being only a few

percent at 23 �C, while more than 20 % volume growth was obtained for the test at �18 �C. The

results for the HNBR2 material presented in Figure 3b display virtually no volume change at room

temperature. However, as the temperature decreases, a clear volume growth can be observed in

the large deformation regime. In the FKM results, on the other hand, presented in Figure 3c,

more than 20 % volume increase is seen at all three temperatures. For this material the volume
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ratio - logarithmic strain response is relatively similar for the 23 and 0 �C tests, while the volume

change at �18 �C is distinctively larger, with a maximum value of 28 % volume growth. Clearly,

the common assumption of isochoric behaviour of elastomeric materials is not valid for the tested

compounds, especially not at low temperatures.
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Figure 3: Volume ratio - logarithmic strain data for all three temperatures (a) HNBR1, (b) HNBR2, and (c) FKM.

Arrows in (a) indicate the direction of the loading cycle.

To obtain a continuum based constitutive model that accounts for the observed volume growth

in elastomers, the relation between the hydrostatic stress and the volume ratio, as shown in Figure

4, is essential. For all materials, a critical stress level is seen to be needed before the volume growth

sets on, corresponding to the critical strain level illustrated in Figure 3. This critical stress appears

to increase with decreasing temperature, while the slope of the curves after the volume increase

has started is nearly equal for all temperature levels. A clear hysteresis loop is apparent for all

materials at all temperatures, indicating a viscous volumetric behaviour. As the volume returns

to its initial value for the 0 and 23 �C tests, the process is assumed viscoelastic. For the HNBR1

material in Figure 4a there is a clear plateau level where the volume increases signi�cantly for a

nearly constant hydrostatic stress value. The stress associated with this plateau corresponds to

the onset of the dip in the stress-strain curve seen in Figure 2a. Compared to the loading process,

the response during unloading is seen to be less sensitive to the temperature level, as illustrated

by the FKM material at 0 and 23 �C for which the unloading curves coincide. For most curves, a
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slight volume reduction can be seen during the initial part of the test. At such small deformations,

there might be inaccuracies in the DIC measurements.
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Figure 4: Hydrostatic stress - volume ratio data for all three temperatures (a) HNBR1, (b) HNBR2, and (c) FKM.

Arrows indicate the direction of the loading cycle.

2.3.3. Temperature change

The maximum temperature increase in the deformation cycle, measured at the surface of the

materials by the infrared camera, is shown for all tests in Figure 5. The temperature change in-

creased for colder testing conditions for all materials, as to be expected from the enlarged hysteresis

loops obtained at low temperatures in the stress - strain plots of Figure 2. The high stress levels

at reduced temperatures may also explain why the largest increase of temperature occurs at �18

�C. The greatest temperature change was found for the HNBR2 material tested at �18 �C, which

experienced a temperature increase of 9 �C at its surface.

3. In situ SEM experiments

3.1. Motivation

A possible micromechanical explanation for the signi�cant dilatation accompanying tension

deformation of the tested materials is that debonding between the matrix material and �ller par-

ticles leads to cavities and thereby macroscopic volume growth [2, 3]. If this hypothesis is correct,
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Figure 5: Maximum temperature increase at the surface of the samples during deformation for all materials and

test temperatures.

micrographs of such debonding should be feasible to obtain by in situ SEM. Therefore, the two

compounds HNBR1 and FKM, showing clear volume growth for the macroscopic tension tests at

room temperature, were investigated by in situ SEM.

It should be mentioned that a drawback of using SEM is that it only gives indications of

debonding at the surface of the materials. An in situ X-ray tomography study (see e.g. [40]) that

could give information on debonding and cavity growth in the inner part of the specimens would

therefore be favourable, however, the necessary equipment for in situ tomography studies is not

available to the authors. The full SEM study and its results are discussed in length by Ilseng et

al. [8], however, a brief presentation is given here for completeness.

3.2. Set-up

A purpose-built tension rig [41] was placed on the sample board of a Zeiss Gemini Ultra 55

Limited Edition SEM apparatus to obtain the in situ micrographs. A photo of the tension rig can

be seen in Figure 6a. Small tension specimens, having dimensions in line with the sketch in Figure

6b, were cut from the ISO geometry specimens delivered by the suppliers. The materials were

tested at room temperature, and deformed at a nominal strain rate of 0.01 s�1 until a nominal

stretch of 2 was reached. The outer surface of the gauge section of the stretched specimens (9�3

mm2 area in Figure 6b) were studied by SEM using a random walk procedure where micrographs

were captured at locations of interest with a resolution of 3072�2072 pixels.

3.3. Results

Using energy-dispersive X-ray spectroscopy (EDS), both materials were found to contain a

signi�cant number of ZnO particles [8], a type of inclusion previously reported to be prone to

debonding [7, 42, 43]. For the HNBR1 material, decohesion between the matrix material and ZnO

particle inclusions was observed at multiple locations, as illustrated by the two marked particles

in Figure 7a (more micrographs displaying matrix-particle debonding for the HNBR1 material

can be found in [8]). For the FKM compound, on the other hand, the conductive properties
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(b)

Figure 6: Set-up for the in situ SEM study, (a) test specimen in tension rig, and (b) geometry of in situ specimens

cut from the ISO dimension samples [8].

of the material were challenging in the deformed con�guration, leading to low contrast in the

obtained micrographs. However, indication of matrix-particle debonding could be found also for

this material, as illustrated in Figure 7b.

The �ndings of the SEM study support the theory that the main source for the macroscopic

volume growth is that of matrix-particle decohesion. Consequently, it is believed that the thermal

sensitivity of the volumetric response of the materials in uniaxial tension showed in Section 2.3.2

is caused by a temperature dependent behaviour of the cohesive zone between the matrix material

and the �ller particles.

4. Constitutive modelling

4.1. Preliminaries

From the experimental results presented in Section 2 and 3 it is clear that signi�cant volume

increase, partly or solely caused by matrix-particle debonding, can accompany tension of particle-

�lled elastomeric materials, and that this volume growth gets more pronounced as the temperature

is reduced. It was also shown that a threshold value for the hydrostatic stress has to be reached

before any signi�cant increase of volume takes place. In addition, a signi�cant hysteresis in the

hydrostatic stress - volume ratio behaviour was observed. In this section, a new constitutive model,
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(a) (b)

Figure 7: Debonding observed at a nominal longitudinal stretch of 2 for (a) HNBR1 and (b) FKM. Cavities are

indicated by dashed white lines.

combining the visco-hyperelastic Bergstr�om-Boyce model [19] with the Gurson ow potential func-

tion [27], is outlined to capture the experimental observations. While the behaviour of the tested

compounds is known to be slightly anisotropic [8], having important consequences for the exper-

imental setup, the concepts and ideas of capturing the viscous volume growth in the proposed

model is better conveyed using a simpli�ed isotropic modelling procedure. Including anisotropic

e�ects in the model is therefore left for further work, and an isotropic framework is used in the

following presentation.

To introduce the notation used in this section, a brief summary of important continuum me-

chanical concepts is included. For a thorough review, the reader is referred to the textbooks by

Holzapfel [44] or Belytschko et al. [45]. The main kinematic variable of continuum mechanics is

the deformation gradient F, and this tensor is de�ned by

F =
@x

@X
(5)

where x is a particle position in the current con�guration, andX is the position of the same particle

in the reference con�guration. Further, the left and right Cauchy-Green deformation tensors, b

and C respectively, are de�ned as

b = FFT ; C = FTF (6)

while the volume ratio J can be found from

J = detF (7)

Purely distortional parts of the Cauchy-Green deformation tensors are found through

b� = J�2=3b; C� = J�2=3C (8)

The deviatoric part of a tensor A is calculated as

A0 = A�

�
1

3
trA

�
I (9)
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where I is the second order unit tensor. The �rst invariant of the full and the distortional left and

right Cauchy-Green tensors is

I1 = trb = trC; I�1 = trb� = trC� (10)

4.2. Model formulation

The proposed model consists of two parallel parts having a hyperelastic spring in Part A and

a non-linear viscous dashpot in series with a hyperelastic spring in Part B, as illustrated by the

rheological 1D representation in Figure 8. The deformation gradient tensors of Part A and Part B

is by de�nition equal to the total deformation gradient

F = FA = FB (11)

while the total Cauchy stress tensor is the sum of the stresses in Part A and Part B

� = �A + �B (12)

A

B

Figure 8: 1D rheological representation of the constitutive model.

4.2.1. Part A

As in the Bergstr�om-Boyce model [19], the elastic spring in Part A is governed by the eight-

chain Arruda-Boyce potential function [16] for the deviatoric part combined with a volumetric

potential function as used by Simo and Miehe [46]. The Cauchy stress tensor then reads

�A =
�A�L
3JA��A

L�1
�
��A
�L

�
(b�A)

0

+
�A
2

�
J �

1

J

�
I (13)

where �A is the e�ective shear modulus, �A the e�ective bulk modulus, �L the locking stretch,

J is the volume ratio for the spring in Part A found from J = detFA = detF, and L�1 is the

inverse Langevin function, with the Langevin function being de�ned by L(x) = coth(x)� 1=x. For

the Fortran implementation of the model, the inverse Langevin function was solved by Newton's

method, using a Pad�e approximation [47] for the initial guess. The e�ective stretch ��A is de�ned

as

��A =

r
1

3
trb�A (14)

14



4.2.2. Part B

Kinematics. The deformation gradient of Part B is decomposed multiplicatively in an elastic and

a viscous part [48], as illustrated in Figure 9

FB = Fe
BF

v
B (15)

This leads to a multiplicative split in elastic and viscous parts also for the volume ratio of Part B

JB = JeBJ
v
B (16)

The viscous velocity gradient de�ned on the intermediate con�guration ~
, see Figure 9, can be

found as

~LvB = _Fv
B (F

v
B)

�1
= ~Dv

B + ~Wv
B (17)

where ~Dv
B is the symmetric rate-of-deformation tensor and ~Wv

B the anti-symmetric spin tensor.

Due to material isotropy, one can obtain that ~Wv
B = 0 and a relation for ~Dv

B can be de�ned

~Dv
B = _�Nv

B (18)

where _� denotes a viscous multiplier. The direction of the viscous deformation is denoted Nv
B, and

can be found as the gradient of a ow potential function g according to

Nv
B =

@g

@ ~�B

(19)

where ~�B is the Mandel stress tensor, de�ned on the intermediate con�guration and related to the

Cauchy stress �B by

~�B = JeB (F
e
B)

T
�B (F

e
B)

�T
(20)

By combining Equation 17 and 18, a rate equation for the viscous deformation gradient can be

obtained as

_Fv
B = _�Nv

BF
v
B (21)

Elastic spring. An eight-chain model simular to the one in Part A, but formulated on the inter-

mediate con�guration ~
 is used for the spring in Part B

~�B =
�B�L
3�e�B

L�1
�
�e�B
�L

��
~Ce�
B

�
0

+
�B
2

�
(JeB)

2
� 1
�
I (22)

where �B is the shear modulus of the spring, �B is the bulk modulus, and �e�B =
q

trCe�

B

3 .

Dashpot. The ow potential g, used to obtain the direction of the viscous deformation of the

dashpot in line with Equation 19, is de�ned by the Gurson yield function [27] to incorporate the

e�ects of matrix-particle decohesion

g =
��eq

��

�2
+ 2q1f cosh

 
q2tr ~�B

2��

!
�
�
1 + q3f

2
�

(23)
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where f is the void fraction, �� is a normalizing stress, qi are the material parameters introduced

in the model by Tvergaard [28], while �eq is the equivalent stress de�ned by the relation

�eq =

r
3

2
~�
0

B : ~�
0

B (24)

The direction of the viscous deformation can then be obtained as

Nv
B =

@g

@ ~�B

=
q1q2f

��
sinh

 
q2tr ~�B

2��

!
I+

3

��2
~�
0

B = nvolI+ ndev ~�
0

B (25)

It is emphasized that the Gurson potential is solely used to de�ne the direction of the viscous ow

and not as a traditional yield criterion.

Reference
configuration

Current
configuration

Intermediate
configuration

Figure 9: Illustration of the multiplicative decomposition of the deformation gradient.

Finally, one needs to establish a constitutive equation for the viscous behaviour. The most

common way of doing this is by de�ning a constitutive law for an e�ective viscous strain rate

measure. However, as the viscous multiplier does not coincide with an e�ective viscous strain rate

measure in the presented model, a relation between the two would be needed to obtain the viscous

multiplier to be used in Equation 21. Consequently, instead of going through an e�ective viscous

strain rate, a constitutive equation is here de�ned directly for the viscous multiplier as it makes it

easier to connect the model formulation and the simulation results.

The critical stress/strain level where the volume growth was seen to set on in the experimental

tests can be included in the constitutive model for the viscous multiplier in two di�erent ways; (i)

a strongly non-linear viscous behaviour would ensure that the volume growth is negligible during

the initial part of the deformation; (ii) a critical stress level could be introduced in the calculation

of the viscous multiplier to ensure no viscous deformation before the critical stress level is reached.

As there is no experimental data available on how the critical stress level potentially evolves with

strain rate, we here choose the �rst method for simplicity. Introducing an explicit critical stress

and de�ning its relation to strain rate is for the time left for further work. To obtain a strongly

non-linear viscous behaviour a power law expression is used as the constitutive relation for the

viscous multiplier _� in line with the original Bergstr�om-Boyce model [19]

_� = _�0

 p
~�B : ~�B

fv��

!m

(26)
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where _�0 is included to ensure dimensional consistency by de�ning it as 1 Pa/s (as the unit ofNv
B is

1/Pa), while �� is a material parameter representing a scaling stress. The coe�cient fv is introduced

to incorporate the di�erence in the strain rate sensitivity between loading and unloading, and is

de�ned as [49]

fv = 1 + �� : �e (27)

where � is a material parameter, � = ln[V], and �
e = ln[Ve], with V being the left stretch

tensor de�ned as V2 = b, and correspondingly (Ve)
2
= beB. The exponent m in Equation 26 is

a material parameter that, since fv theoretically can be negative, is set to be an even positive

integer to ensure that _� � 0 for any deformation. This combined with the convexity of the Gurson

potential function ensures non-negative dissipation (i.e. ~�B : ~Dv
B � 0). It can be noted that the

full Mandel stress tensor is used in Equation 26, as opposed to only the deviatoric part as in the

original Bergstr�om-Boyce model [19]. This is done to ensure that viscous volume growth is obtained

also for a pure hydrostatic tension loading, as to be expected from the matrix-particle decohesion

theory. In addition, a purely stress-activated viscous deformation is employed, neglecting the

deformation-induced viscosity in the original model, as it improved the �t between the model and

the experimental results.

The initial particle fraction f0 is an input parameter to the model, while an evolution equation

for the void fraction de�ned from conservation of mass, assuming that the volume fraction of voids

can only increase due to growth of cavities around �ller particles and not through void nucleation,

reads

_f = (1� f) tr ~Dv
B = (1� f)

�
3 _�nvol

�
(28)

where nvol was de�ned in Equation 25. As the �ller particles in the HNBR1 and FKM materials

were made of ZnO, which is known to be nearly rigid compared with the sti�ness of the elastomeric

matrix, the void fraction f is set to be equal or greater than its initial level f0 at all times, i.e. the

particles cannot be compressed. This is included in the model through the steps of Algorithm 1.

Algorithm 1: Procedure to ensure f � f0 in iteration step n+1 with time increment dt

Input from step n: (I1B)n, fn,
_�n

ndev =
3
��2

nvol =
q1q2fn

�� sinh
�
q2(I1B)

n

2��

�
_f = (1� fn) 3 _�nnvol

fn+1 = fn + dt _f

if fn+1 < f0 then
fn+1 = f0

nvol = 0

end

Nv
B
= nvolI+ ndev ~�

0

B
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4.3. Temperature dependence

For the thermal modelling of the materials, the relatively small deformation-induced tempera-

ture increase addressed in Figure 5 is neglected, limiting the simulations to isothermal conditions.

Consequently, the temperature dependence can be included in the model solely by de�ning the

material parameters as functions of the testing temperature [50]. A simple mathematical relation

was applied to all temperature dependent parameters, de�ned for a dummy parameter a as [51]

a (�) = a0exp

�
�0 � �

�base

�
(29)

where � is the testing temperature, a0 the parameter value at �0 = 296 K, and �base a scaling

temperature. The expression in Equation 29 is purely empirical and improving the model with

a more physical relation to temperature and accounting for non-isothermal conditions (see e.g.

[9, 50, 52]) is left for further work.

4.4. Determination of material parameters

To illustrate the capabilities of the proposed model at the three testing temperatures, the

behaviour of the FKM material was simulated as this compound displayed the largest volume

variations. The optimization software LS-OPT [53] was used to obtain the temperature dependent

parameters, resulting in the values listed in Table 2. The remaining model parameters were de�ned

as temperature independent, and their values are listed in Table 3. The bulk modulus �B =

2:2 GPa was found from con�ned axial compression experiments on similar materials [8], while

the values m = 6, �L = 1:8, and � = 50 yielded reasonable agreement between simulation and

experimental results for all temperature levels. The same locking stretch was used for the springs

in Part A and Part B. Since _�0 was included in Equation 26 only for dimensional consistency, its

value was set to unity. For the parameters q1 and q2, the same values as proposed by Tvergaard

[28], being 1.5 and 1 respectively, were used (note that q3 in Equation 23 is not present in the

model due to the di�erentiation in Equation 25). The initial particle volume fraction f0 was set

to 0.01 based on the pre-deformation SEM images presented by Ilseng et al. [8].

It should be noted that experimental data at di�erent loading rates are not available for the

studied materials, and the parameters for the viscous response of the model are thereby �tted to

data for one strain rate only. Consequently, pronounced uncertainty is related to the optimized

values for these parameters, and they should not be expected to yield predictive results for other

deformation rates. However, the obtained parameters are considered su�cient for illustrating the

qualitative capabilities of the proposed model. It is left for further work to get experimental data

for a range of strain rates and do a subsequent evaluation of how the constitutive model captures

the material behaviour at various strain rates.

4.5. Results

The constitutive model was implemented in Fortran as an explicit user-de�ned material model

for the commercial �nite element software LS-DYNA [54], and was tested on an 8-node brick ele-
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Table 2: Optimized a0 and �base values of Equation 29 for temperature dependent parameters to �t the behaviour

of the FKM material.

a0 �base

�A 1.33 MPa 41.7 K

�A 24.0 MPa 134.0 K

�B 17.20 MPa 27.7 K

�� 0.40 MPa 31.1 K

�� 0.63 MPa 33.8 K

Table 3: Temperature independent variables used for the FKM material.

�B m �L � _�0 q1 q2 f0

2.2 GPa 6 1.8 50 1 Pa/s 1.5 1 0.01

ment. The loading was de�ned by applying the stress-time history obtained in the FKM experiment

at the corresponding testing temperature to one face of the element.

The Cauchy stress - logarithmic strain and hydrostatic stress - volume ratio results from the

proposed model are compared with the experimental data for the three temperature levels in

Figure 10a and Figure 10b, respectively. In general, a good agreement between experimental and

simulation results is obtained, and the temperature dependence of the response is well captured

by the simple relation used in the model.

For the stress - strain response in Figure 10a, a reasonably good �t between the model and the

experimental data is seen, although a too compliant response is obtained in the 23 �C simulation,

leading to an overestimation of the maximum deformation. For the 0 and �18 �C simulations, on

the other hand, the initial sti�ness is seen to be too high, exaggerating the stress response at small

strains. In addition, the strain level at the end of the unloading is larger in the simulation results

than in the experimental data.

Looking closer at the hydrostatic stress - volume ratio results in Figure 10b, the qualitative

features of a temperature dependent critical stress level and a clear hysteresis loop are represented

reasonably accurate by the model. In general, the loading behaviour of the simulations conforms

well to the experimental data, while the predicted volume ratios are decreasing too slowly during

the initial phase of unloading. Moreover, as for the strain level, the predicted volume ratios at the

end of the deformation cycles are too large compared with the experimental data.

The evolution of the void fraction f with hydrostatic stress is shown in Figure 10c for all three

simulations. Due to the viscous multiplier's non-linear dependence on the stress level, f grows

at a negligible rate in the �rst part of the simulation before it starts to increase rapidly with

increasing hydrostatic stress. It is observed that the hydrostatic stress at which f starts to grow

coincides well with the stress where the volume ratio departed from 1 in Figure 10b. Then again,
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during the initial decrease of the hydrostatic stress f is nearly constant. The upper plateaus of the

curves in Figure 10c correspond with the initially slow decrease of the volume ratios in Figure 10b.

The explanation for this behaviour can be found from the gradient component nvol of Equation

25 and the viscous multiplier _�. As the material starts to unload, the hydrostatic stress in the

spring of Part B goes from tension to compression, yielding a low value of nvol and _� during this

transition. Consequently, the changes of the volumetric part of the viscous deformation gradient

tensor (Equation 21) and the void volume fraction (Equation 28) are small during the initial phase

of unloading.

The ratio between the two bulk moduli of the model, �A and �B , deserves some further atten-

tion. The fact that �A << �B ensures that nearly all volumetric deformation in Part B occurs in

the dashpot during uniaxial tension, making the volumetric increase visco-hyperelastic. When, on

the other hand, the model is subjected to negative hydrostatic stress situations, the requirement

of f � f0 suppresses the dashpot from deforming volumetrically, and the sti� rate-independent

volumetric response of the spring in Part B is dominating the overall behaviour, matching observa-

tions from experimental work [8]. This is illustrated in Figure 10d, where the model's response to

a volumetric compression is compared with experimental results from con�ned axial compression

tests on FKM at room temperature [8]. Wood and Martin [22] reported that the bulk modulus

obtained by hydrostatic compression testing of natural rubber was decreasing with reduced tem-

perature. Thus, it is likely that the bulk modulus �B of FKM to some extent is temperature

dependent. However, such a dependence would have limited inuence on the simulation results

presented herein.

5. Concluding remarks

An experimental procedure enabling measurement of the volume growth accompanying tension

of elastomers at low temperatures was outlined. The use of grease and icing sugar to obtain the

DIC speckle patterns was found to be superior over traditional spray painting for low temperature

testing. The experiments on HNBR and FKM compounds provided novel data, showing a signi�-

cant increase in the volume growth accompanying uniaxial tension as the temperature was reduced

from 23 to �18 �C. By the use of in situ SEM, matrix-particle debonding was observed for two of

the materials during tension at room temperature, yielding a micro-mechanical explanation for the

macroscopically observed volume growth. The thermal sensitivity of the volumetric response of the

materials can consequently be assumed to stem from a temperature dependence for the properties

of the cohesive zone between the matrix material and �ller particles.

A constitutive model capable of describing the experimentally observed e�ects was established

by combining the Bergstr�om-Boyce visco-hyperelastic elastomer model with the Gurson ow po-

tential function to de�ne the direction of the viscous ow. The proposed constitutive model was

implemented as a user material for the �nite element software LS-DYNA. Thermal features were
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Figure 10: Simulation results from the proposed constitutive model, (a) Cauchy stress - logarithmic strain compared

with FKM experimental data, (b) hydrostatic stress - volume ratio compared with FKM experimental data, (c)

evolution of f during the simulations at each temperature, and (d) model behaviour during volumetric compression

compared with experimental con�ned axial compression data for an FKM compound [8].

included in the model by de�ning a temperature dependent mathematical relation for �ve of the

model parameters. With optimized input parameters, the model showed a good �t to the ex-

perimental data for both the stress - strain behaviour and the hydrostatic stress - volume ratio

response at all three temperature levels. In addition, the model's response to a hydrostatic com-

pression stress was seen to conform well to previously presented experimental results for con�ned

axial compression.
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