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Abstract

In three research articles we have studied the critical properties of effective lattice
models for strongly correlated electron systems by Monte Carlo simulations. A
similar model is used in a fourth article for investigating thermal fluctuations of
vortices in a rotating Bose–Einstein condensate. In the first part of this thesis
we review the necessary background and introduce the models one by one. The
last part is a collection of the papers.

Paper I [1]: We consider the scaling of the mean square dipole moment in
a plasma with logarithmic interactions in a two- and three-dimensional system.
In both cases, we establish the existence of a low-temperature regime where
the mean square dipole moment does not scale with system size and a high-
temperature regime does scale with system size. Thus, there is a nonanalytic
change in the polarizability of the system as a function of temperature, and
hence a metal-insulator transition in both cases. The relevance of this transition
in three dimensions to quantum phase transitions in 2 + 1-dimensional systems
is briefly discussed.

Paper II [2]: The existence of a discontinuity in the inverse dielectric con-
stant of the two-dimensional Coulomb gas is demonstrated on purely numerical
grounds. This is done by expanding the free energy in an applied twist and per-
forming a finite-size scaling analysis of the coefficients of higher-order terms. The
phase transition, driven by unbinding of dipoles, corresponds to the Kosterlitz-
Thouless transition in the 2D XY model. The method developed is also used for
investigating the possibility of a Kosterlitz-Thouless phase transition in a three-
dimensional system of point charges interacting with a logarithmic pair-potential,
a system related to effective theories of low-dimensional strongly correlated sys-
tems. We also contrast the finite-size scaling of the fluctuations of the dipole
moments of the two-dimensional Coulomb gas and the three-dimensional loga-
rithmic system to those of the three-dimensional Coulomb gas.

Paper III [3]: We perform large-scale Monte Carlo simulations on an effective
gauge theory for an easy plane quantum anti-ferromagnet, including a Berry
phase term that projects out the S = 1/2 sector. Without a Berry phase term,
the model exhibits a phase transition in the 3DXY universality class associated
with proliferation of gauge-charge neutral U(1) vortices. The instantons that



eliminate the phase transition in the gauge-charged sector are cancelled by the
Berry phases. The result is a first order phase transition. This gauge theory
therefore does not exhibit deconfined criticality.

Paper IV [4]: We perform Monte Carlo studies of vortices in three dimensions
in a cylindrical confinement, with uniform and nonuniform density. The former
is relevant to rotating 4He, the latter is relevant to a rotating trapped Bose con-
densate. In the former case we find dominant angular thermal vortex fluctuations
close to the cylinder wall. For the latter case, a novel effect is that at low tem-
peratures the vortex solid close to the center of the trap crosses directly over to
a tension-less vortex tangle near the edge of the trap. At higher temperatures
an intermediate tensionful vortex liquid located between the vortex solid and the
vortex tangle, may exist.
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Preface

Strong local repulsion among electrons in many-particle systems is believed to be
responsible for strange physical properties like the breakdown of Landau Fermi
liquid theory in certain cuprate compounds. Since the discovery of high temper-
ature superconductivity in such materials by Bednorz and Müller in 1986, the
focus has increased on strongly correlated electron systems. In order to under-
stand the physics of these compounds, great theoretical effort has been laid down
in the study of lightly doped Mott–Hubbard insulators in two spatial dimensions
(2D) at zero temperature. Effective lattice field theories in 2 + 1 space-time di-
mensions can be formulated and used in classical Monte Carlo simulations to
search for characteristics of transitions between various ground states in the 2D
quantum mechanical model. Such phase transitions are driven by parameters like
pressure or doping.

In this thesis we present Monte Carlo results for three distinct models in 2 +
1 space-time dimensions. In Chapter 3 and 4 we introduce the investigations
of two models for various zero temperature properties of a strongly correlated
electron system in two spatial dimensions. The first is a lattice gas of charge-
like particles which interact through a logarithmic potential, and predicted to
exhibit a phase transition of the so-called Berezinskii–Kosterlitz–Thouless type.
Due to the many similarities with the classical two dimensional Coulomb gas, we
perform simulations on both two and three dimensional systems. Here, a novel
characterization technique is developed and tested. In the second model, we find
evidence for a phase transition of first order.

The nonuniform 3DXY model that we introduce in Chapter 5 can be applied
to a trapped, three dimensional Bose–Einstein condensate. In rotating such sys-
tems, remarkably large and beautiful arrays of vortices have been experimentally
attainable since the last few years. We investigate their thermal fluctuations.

Chapter 1 and 2 is devoted to review the necessary background to appreciate
the work we introduce in the last three chapters, and present in the four research
articles [1, 2, 3, 4]. This is done by an evolution from the simple Ising model
to the phenomenological Ginzburg–Landau theory for superconductivity, which
can be thought of as a generic theory for the models in the included collection of
papers at the end of the thesis.
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The work of this thesis is a natural continuation of the previous studies in our
research group, References [5, 6, 7, 8, 9], which all have benefited from the high
performance supercomputing facilites at NTNU. As effective lattice theories in
condensed matter physics require large amounts of computation time, access to
a powerful supercomputer has been essential.
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Chapter 1

Statistical mechanics

Resolution is an important concept in today’s digital cameras. It is now common
knowledge how digital pictures are put together by millions of tiny pixels, and
in a given picture we want sufficiently many so that we cannot tell them apart.
Zooming in will however eventually reveal the microscopic structure of pixels. A
similar effect is appearant in a newspaper picture. Even though the only colors
used in the printing process are black and white, the picture contains almost
every shades of gray. If you look carefully, you can see tiny dots of black onto
the white paper, and the density or size of these dots decide the amount of gray.
Reading the news, you don’t notice the dots, your eyes average over them and
the white space in between, and you only see the smooth grayscale picture.

In statistical mechanics we attempt to average over microscopic details in a
system with macroscopically many particles in order to obtain thermodynamic
quantities such as magnetization, total energy, and heat capacity, as well as derive
the relations between them. The exact origin of these quantities disappears in
the averaging process, as details in a picture are smoothened out when viewed
from a distance.

There are however examples where some microscopic details are not averaged
out. In a system with a critical behaviour, the range of correlations can grow
when certain values of control parameters are approached. The range can in fact
diverge to infinity, and since infinity is the same on any length scale they will
in principle look the same irrespective of our zoom level. Of course, a physical
system has a finite size and structures within it have to be restricted to fit into
those dimensions. Still, we can often consider these systems infinitely large be-
cause they are so many orders of magnitude larger than the phenomena and the
scales we think of when zooming in and out. On the other hand, in computer
simulations, size does indeed play an important role, and this will be discussed
in the context of finite size scaling in Chapter 2.

In the following sections, we will first establish some basic relations of statistical
mechanics before we proceed to the concepts of phase transitions and critical
phenomena. Along the way we will encounter a few simple but important models
capturing many of the features essential for the main works in this thesis.
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Chapter 1 Statistical mechanics

1.1 Statistical mechanics and thermodynamics

The goal of statistical mechanics is basically to compute the partition function Z
for a given system [10, 11, 12]. This is a weighted sum over all configurations ψ
the system can be in. All the information needed to calculate the thermodynamic
properties are contained in Z. The partition function can be written

Z =
∑
{ψ}

e−βHψ , (1.1)

where H is the system’s Hamiltonian and β ≡ 1/(kBT ), with T the tempera-
ture and kB the Boltzmann’s constant. Knowing this sum we can derive the
expectation values of essentially all thermodynamic observables O,

〈O〉 =
1
Z

∑
{ψ}

Oψe−βHψ , (1.2)

by differentiations of Z with respect to various parameters in the exponent. If
the system is in thermal contact with a heat reservoir which keeps the tempera-
ture fixed, the internal energy U can be calculated from the canonical partition
function by

U ≡ 〈H〉 =
1
Z

∑
{ψ}

Hψe−βHψ = − ∂

∂β
lnZ. (1.3)

Additionally, if we hold volume V and particle number N constant, the following
fundamental thermodynamic relations involving the Helmholtz free energy F =
U − TS,

dF = dU − TdS − SdT =
V,N constant

−SdT, (1.4)

and

U = F + TS = F − T

(
∂F

∂T

)
= −T 2

[
∂

∂T

(
F

T

)]
=

[
∂(F/T )
∂(1/T )

]
, (1.5)

can be used to express F in terms of Z. By comparison with Equation (1.3) we
find

F = − 1
β

lnZ, (1.6)

which acts as the connection between statistical mechanics and thermodynamics.
But the partition function can also give insight into fluctuations, something

classical thermodynamics can not. Energy fluctuations around a system’s equi-
librium value,

(δU)2 ≡ 〈(H − 〈H〉)2〉 = 〈H2〉 − 〈H〉2, (1.7)
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1.2 Phase transitions

can be calculated from Z by subsequent differentiations as in Equation (1.3),

(δU)2 =
1
Z

(
∂2Z

∂β2

)
−

(
1
Z

(
∂Z

∂β

))2

=
(
∂2 lnZ
∂β2

)
. (1.8)

From the definition of the heat capacity CV ≡ (∂U/∂T ), we see that the fluctu-
ations in the energy of a system can be measured through

CV =
1

kBT 2
(δU)2 ≡ 〈(H − 〈H〉)2〉 = kBβ

2

(
∂2 lnZ
∂β2

)
, (1.9)

and from now on we set kB equal to unity for simplicity.
Generalizing slightly to having more than one temperature-like parameter, or

equivalently coupling γ, in the partition function, we let βH → S =
∑
γ γHγ .

The moments of the energy can then be found by differentiation of the corre-
spondingly generalized free energy F ,

∂F

∂µ
=− 〈Hµ〉, (1.10)

∂2F

∂µ∂λ
=〈(Hµ − 〈Hµ〉)(Hλ − 〈Hλ〉)〉, (1.11)

∂3F

∂µ∂λ∂η
=− 〈(Hµ − 〈Hµ〉)(Hλ − 〈Hλ〉)(Hη − 〈Hη〉)〉. (1.12)

The second moment Equation (1.11) with µ = λ = β corresponds to the heat
capacity. Of these moments, the third moment Equation (1.12) will in particular
prove to be a valuable tool for extracting critical exponents from Monte Carlo
simulations [13, 14].

1.2 Phase transitions

To most people, the familiar examples of phase transitions are the boiling of water
and melting of ice, but the magnetic to non-magnetic transition is a standard
introductory example because of its simplicity [15]. We will concentrate on this
transition which is continuous and can take place in uniaxial ferromagnets for
which a typical situation is shown in Figure 1.1 (a). The magnetization M
goes continuously to zero at a critical temperature TC when the temperature is
increased.

If exposed to an external magnetic field h, these systems can also demonstrate
the other common type of phase transitions, namely a first order transition as h
changes sign. In Figure 1.1 (b) the solid line at T < TC indicates a first order
transition where M jumps discountinuously from a negative to a positive value
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Chapter 1 Statistical mechanics

as h is increased. Also melting transitions are typically first order. Later, we
will encounter yet another type, the Berezinskii–Kosterlitz–Thouless transition
[16, 17].

M = 0M �= 0

M < 0

M > 0

TC T

(b)

h

TC T

(a)

|M
|

Figure 1.1: The magnetization M(T ) goes continuously to zero at TC (a).
If an external magnetic field h is applied, the sign of M is determined by
h and jumps discontinuously between a positive and a negative value across
the solid line (b).

1.2.1 The Ising model

A uniaxial ferromagnet can be modelled on a lattice in d dimensions by the Ising
model [18] given by the hamiltonian

H = −J
∑
〈ij〉

sisj − h
∑
i

si, (1.13)

where J is a coupling constant determining the interaction between nearest neigh-
bour spins si and sj , and h is an external magnetic field. Each spin can point
either up (si = 1) or down (si = −1). The lattice will in this work always be
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1.2 Phase transitions

square meaning that each spin site i has 2d nearest neighbour sites. In statistical
mechanics we take the temperature T = 1/β into account through the partition
function Z Equation (1.1), and for simplicity we set the coupling J to unity, since
its only effect is to define the units of β. If the system has the same linear exten-
sion L in units of the lattice spacing in all d directions, the number of terms in Z
is 2L

d

. Hence, the partition function is difficult and often impossible to evaluate
analytically. We will get back to a way to work around this problem in Chapter
2.

In d = 1 dimensions and h = 0 the Ising model does not exhibit any phase
transition for T > 0, but in higher dimensions it does: Consider the model in
d > 1 with infinitely many spins N ≡ Ld →∞. At high temperatures and h = 0
there is no net magnetization,

M =
1
N

∑
i

si = 0, (1.14)

because the spins are not likely to point in any particular direction. Thermal
fluctuations ensure complete disorder among the spins. However, as the tem-
perature is lowered the system spontaneously starts to organize a continuously
growing majority of its spins either up or down when the critical temperature
TC is passed as shown in Figure 1.1 (a). Consequently, the system is said to
have a disordered and an ordered phase. The two phases can be predicted from
arguments regarding the free energy F = U−TS. At high temperatures T →∞,
maximization of the entropy S will always dominate over internal energy U = 〈H〉
in the system’s quest for minimum free energy. The highest entropy is obtained
by disordering the system and thus M(T → ∞) = 0. At T = 0 on the other
hand, when there are no thermal fluctuations, minimizing the Hamiltonian Equa-
tion (1.13) by ordering the system so that all spins point in the same direction
will minimize F . In d > 1 dimensions this ordering takes place at a nonzero
temperature.

In the Ising model, M is the order parameter describing which of the two
possible phases the system is in: The disordered with M = 0 or the ordered with
finite magnetization. Continuous phase transitions are characterized close to TC
by a power law dependence of the order parameter on the reduced temperature
τ ≡ (T − TC)/TC ,

M ∼ τβ (1.15)

where β is a critical exponent. The order parameter is not always known in a
given system, but β can still be found from relations to other critical exponents,
see section 2.5.
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Chapter 1 Statistical mechanics

1.2.2 Landau theory

Given that a system indeed undergoes a transition from an ordered to an un-
ordered phase, Landau developed a theory describing the transition qualitatively
[19]. He expanded the difference in free energy F between the two phases of the
system in powers of the order parameter, keeping only the lowest order terms
consistent with the symmetries of the Hamiltonian,

∆F =
aτ

2
M2 +

u

4!
M4 + . . . (1.16)

If h 6= 0 in Equation (1.13), a linear term −hM has to be included, but since the
theory otherwise is written down as a phenomenological effective theory, the rest
of the parameters are considered free. We use the convention a, u > 0. Systems
with additional intrinsic symmetries could include more terms in the expansion
Eq. (1.16), such as the cubic M3. Now, by minimizing ∆F with respect to M
the equilibrium values of the order parameter are found. From Figure 1.2 (a) we
see that there is only one minimum when τ is positive, corresponding to the high
temperature phase with zero magnetization. As the temperature is decreased
and τ becomes negative, the M = 0 minimum developes into two minima, and
the system spontaneously chooses one of them. The up-down symmetry of the
system is broken accordingly.

h > 0

h = 0

M

∆F(b)

τ < 0

τ = 0

τ > 0

M

∆F(a)

Figure 1.2: Difference in free energy ∆F between to phases according to
Landau theory Equation (1.16) in zero (a) and finite (b) external field h. The
minima correspond to thermodynamically stable states. In (b) the reduced
temperature τ is negative.

In Figure 1.2 (b) τ is negative, and the system can be in either of two equally
probable states (solid line), but by turning on a finite h > 0 there will only be one
true minimum in ∆F (dashed line). In this way the system is forced to be in a
state with positive magnetization. If the system originally was in the negatively
magnetized state, it will make a discontinuous jump in M corresponding to a
first order phase transitition.
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1.3 Ginzburg–Landau theory

The Landau theory does not depend on the microscopic properties of the sys-
tem. The symmetries of the set of possible ordered phases is reflected in the free
energy expansion Equation (1.16), but the symmetries of the true Hamiltonian
is in general unknown. Additionally does the theory not depend on the lattice
on which we defined the Ising model Equation (1.13). One of the strengths of
the theory is that it treats correctly the importance of symmetry in the qualita-
tive aspects of critical phenomena. In the above introduction, we had a uniaxial
ferromagnet in mind, but any system with the same set of symmetries could in
principles be described by the same theory. This hints to the concept of univer-
sality.

1.3 Ginzburg–Landau theory

The Landau theory provides a qualitative description of phase transitions, but
its quantitative predictions for TC or the critical exponents are generally wrong
because the theory neglects the effect of fluctuations. A natural generalization
would be to allow the magnetization to depend on position,

M =
1
V

∫
dV m(r). (1.17)

Here, we have also allowed the space to be continuous and replaced the number
of lattice sites N with the volume V of the system. The simplest extension of
Landau theory to incorporate this position dependent order paramater m(r) and
fluctuations of it, is called the Ginzburg–Landau theory [20],

∆F =
∫

dV
[g
2
(∇m)2 +

aτ

2
m2(r) +

u

4!
m4(r) + . . .

]
. (1.18)

This theory has actually proved successfull, with small variations, as an effective
Hamiltonian for many different systems. So far, we have only considered a scalar
order parameter, but it could as well take a vector or a tensor to characterize
the order of the given system. In a superconductor, the order parameter is the
superconducting wavefunction

Ψ(r) = |Ψ(r)|eiθ(r) =
√
neiθ(r), (1.19)

where n is the density of Cooper pairs. Since this is a charged and quantum
mechanical phenomenon, we include the electromagnetic vector potential A into
the gradient term in the standard way

∇ → (−i~∇− 2eA), (1.20)

9



Chapter 1 Statistical mechanics

and also add a term proportional to |∇ ×A|2 in the effective hamiltonian. The
full Ginzburg-Landau theory for a superconductor reads

HSC =
∫

dV
[g
2
|(∇− iA)Ψ(r)|2 +

aτ

2
|Ψ(r)|2

+
u

4!
|Ψ(r)|4 +

κ

2
|∇ ×A|2 . . .

]
.

(1.21)

For simplicity, we have here rescaled A and the free parameters so as to absorb
Planck’s constant ~ and the charge 2e of the Cooper pairs.

There is actually a close connection between the statistical mechanics of Ginzburg–
Landau like theories and quantum field theories in one time and d spatial dimen-
sions at zero temperature. This can be realized by writing down the Feynman
path integral of a quantum mechanical problem and interpret it as the partition
function of a classical system in d+ 1 Euclidian dimensions [21].

1.3.1 Lattice regularization

The Ginzburg–Landau hamiltonian of Equation (1.21) is a contiumuum theory,
but for the following, and especially later for the computer simulations, it is
more convenient to reintroduce a lattice. That is, we let the order parameter
Ψ(r) → Ψi, so that it is only defined on lattice sites i = 1, ..., N separated by
a lattice constant a. Now, we have to replace the gradient term with a gauge
invariant lattice difference,

|(∇− iA)Ψ(r)|2 →
∑
µ

|Ψi+aµe−iAiµ −Ψi|2, (1.22)

where i + aµ is the lattice site situated next to site i in direction µ. The gauge
field here lives on the links of the lattice and is given by the line integral

Aiµ =
∫ i+aµ

i

dlAµ. (1.23)

The continuum is recovered if we let a → 0. For high TC superconductors it
is a well established approximation only to consider fluctuations in the phase of
the order parameter [22]. In this approximation, known as the London model,
we assume a condensate of Cooper pairs to exist by having a finite and constant
|Ψi| = |Ψ|, since in the end, it is not the depletion of Cooper pairs that is respon-
sible for destroying superconductivity. Increasing the temperature, large fluctu-
ations in the phase θ makes the condensate incoherent and non-superconducting
before |Ψ| vanishes. The right hand side of Equation (1.22) can thus be rewritten

|Ψi+aµe−iAiµ −Ψi|2 = |Ψ|2 [2− 2 cos(∆µθi −Aiµ)] , (1.24)

10



1.3 Ginzburg–Landau theory

where ∆µθi = θi+aµ − θi. To further simplify the model without changing any
qualitative properties, we drop constant terms in Equation (1.21) and set the
amplitude |Ψ| and lattice constant a to unity. The resulting effective lattice
Hamiltonian for superconductivity is

HLondon =
∑
i,µ

[
−g cos(∆µθi −Aiµ) +

κ

2
(εµνλ∆νAiλ)2

]
. (1.25)

We have here rewritten the curl in terms of the totally Levi–Civita tensor εµνλ.
By neglecting the gauge field, Equation (1.25) is nothing but the XY model, a
generalization of the Ising model Equation (1.13).

1.3.2 The two dimensional XY model

The Hamiltonian of the XY model,

HXY = −
∑
〈ij〉

si · sj (1.26)

is similar to the Ising model Equation (1.13), but the spins si are now vectors
of unit length, living in a continuous two dimensional spin space. Thus, the
Hamiltonian can be written

HXY = −
∑
〈ij〉

cos(θj − θj) = −
∑
i,µ

cos(∆µθi). (1.27)

The model can be generalized to have a position dependent bare phase stiffness,
which would appear as a coefficient Pij in front of the cosine terms (see Chapter
5, but at this point we only consider Pij = 1. If the lattice on which the spins
are situated is two dimensional (2D), the XY model is of special interest from
the perspective of phase transitions and critical phenomena because it has a
transition which is neither first order nor continuous.

According to Mermin and Wagner [23], there can never be long range order
at finite temperatures in two dimensional models with a continuous symmetry.
Specifically, for the 2DXY model the magnetization M = 0 for all nonzero tem-
peratures. At low temperatures there is quasi long range order, but at large
distances smooth spin waves eventually destroy the spins’ tendency to point in
the same direction. The spin–spin correlations decay algebraicly, a feature typ-
ical to the situation precicely at the critical temperature of a continuous phase
transition. This time however, the feature applies to all temperatures below a
certain value, the transition temperature TKT. In the high temperature limit on
the other hand, even short range order is absent due to large thermal fluctuations,
and the spin–spin correlations decay exponentially with distance.
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Chapter 1 Statistical mechanics

Figure 1.3: A pair of vortices in a two dimensional configuration of spins.
The rotation of the phase is opposite around each of the two centers, hence
there is no net vorticity. The pair can be viewed as a neutral configuration
of charges.

Separating the critical low temperature regime, with algebraic decay of correla-
tions, from the high temperature regime with exponential decay, there is a phase
transition where vortices start to proliferate. Vortices are topological objects
originating from the periodic nature of the phases in the Hamiltonian Equation
(1.27). To characterize the vortices, we use the vorticity q in a region around
which we integrate, ∮

dl · ∇θ = 2πq. (1.28)

The vorticity can be viewed as a positive or negative charge, and this can actually
be taken even more literally. In the next section we will demonstrate how the
2DXY model with periodic boundary conditions can be mapped onto a neutral
two dimensional Coulomb gas where the charges appear in pairs. A corresponding
pair of vortices is shown in Figure 1.3. Since the two vortices have opposite
rotation, there is no net vorticity, or charge, in this specific configuration of
spins.

The phase transition we mentioned is normally referred to as the Kosterlitz—
Thouless transition [17], and often Berezinskii is also added since he indepen-
dently contributed to the understanding of the mechanism [16]: The quasi long
range order at low temperatures is reflected by a finite stiffness, namely the he-
licity modulus Υµ, associated with twisting the phases. It is given by the second
order derivative of the free energy with respect to the total twist δ of the phases

12



1.3 Ginzburg–Landau theory

across the system in µ direction,

Υµ ≡
∂2F

∂δ2

∣∣∣∣
δ=0

=
1
N

〈∑
i

cos(∆µθi)
〉
− 1
NT

〈[∑
i

sin(∆µθi)
]2〉

. (1.29)

This quantity vanishes discontinuously as vortex pairs proliferate at the phase
transition. In a superfluid, Υµ is nothing but the superfluid density.

1.3.3 Mapping to the two dimensional Coulomb gas

In this section we will demonstrate a typical mapping for lattice models from a
phase representation to a form in which the models are given in terms of their
topological objects. Sometimes, this mapping is called a dualization, but follow-
ing the terminology of Savit [24], a dualization transforms the low temperature
region of a model into the high temperature region of its dual counterpart and
vice versa. In our particular case of the 2DXY model, this is only a part of the
mapping, and the temperature in the final model is directly proportional to the
temperature in the original. The topological objects are the vortices described
above, and in the end we will recognize these as point particles, or charges, in-
teracting through a Coulomb potential.

We begin with the partition function of the XY model

ZXY =
∫
Dθeβ

P
i,µ cos(∆µθi), (1.30)

where the phases are restricted to [0, 2π). The Villain approximation [25] is
applied to obtain

Z =
∫
Dθ

∑
{n}

e−
β
2

P
i,µ(∆µθi−2πni,µ)2 , (1.31)

and this is the only approximation we will make in the transformation. The
integer fields n ∈ (−∞,∞) have been introduced to take care of the periodicity
of the cosine. The next step is to do a Hubbard–Stratonovich decoupling where
every ni,µ is decoupled from ∆µθi at the prize of introducing a real valued field
vi,µ ∈ (−∞,∞) in the partition function,

Z =
∫
Dθ

∫
Dv

∑
{n}

e−
P
i,µ[ 1

2β v
2
i,µ−i(∆µθi−2πni,µ)vi,µ]. (1.32)

Now, we are able to calculate the sum over the integer fields, using the Poisson
summation formula,

∞∑
n=−∞

e2πinv =
∞∑

v̂=−∞

δ(v − v̂), (1.33)

13



Chapter 1 Statistical mechanics

so that the partition function takes the form

Z =
∫
Dθ

∑
{v̂}

e−
P
i,µ[ 1

2β v̂
2
i,µ−i∆µθiv̂i,µ], (1.34)

where the continuous v fields have been promoted to the integer fields v̂. A partial
summation and subsequent θ integration leaves us with

Z =
∑
{v̂}

′
e−

P
i,µ

1
2β v̂

2
i,µ , (1.35)

and the constraint ∆µv̂i,µ = 0, indicated by the prime in the sum, which we
solve by writing v̂i,µ = εµν∆ν ĥi. Note here that the new fields ĥ are also integer
valued and that they are situated on the vertices of a dual lattice1. The model is
now dual to the original 2DXY model, but following in the footsteps of Einhorn
and Savit [26, 24], we want to write Z in a form which displays explicitly the
topological excitations corresponding to vortices. By again using the Poisson
summation formula Equation (1.33) to replace ĥ with real valued fields h, we get

Z =
∫
Dh

∑
{m}

e−
P
i,µ[ 1

2β (∆µhi)
2−2πimihi], (1.36)

with the new integer fields m. Finally, we evaluate the integral over h and find

ZCG = Z0

∑
{m}

e−4π2β
P
i,j miV (rj−ri)mj . (1.37)

The interaction V (rj − ri) between the objects mi,mj at positions ri and rj is
the two dimensional lattice Green’s function given by

∆2
µV (rj − ri) = δij . (1.38)

Furthermore, Z0 is the partition function of the spin waves, which decouple from
the vortex excitations in this approximation. Focusing only on the qualitative
features of the model’s phase transition, we can safely ignore Z0 since it is the
proliferation of vortex pairs that is responsible for destroying the quasi short
range order.

The integer valued objects mi in ZCG correspond to the vortices in the orig-
inal 2DXY model Equation (1.30) and can be thought of as charges, since

1The dual lattice is shifted half a lattice spacing in each direction with respect to the original
lattice.
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1.3 Ginzburg–Landau theory

V (rj − ri) has the form of the Coulomb potential. To avoid divergence, we write
the Coulomb gas Hamiltonian as

HCG = 4π2

[∑
i 6=j

miV (rj − ri)mj + V (0)
(∑

i

mi

)2
]
, (1.39)

where the first sum is nonsingular. Now, we see that no configuration with∑
imi 6= 0 will contribute to the partition function since V (0) = ∞ [27], corre-

sponding to periodic boundary conditions in the 2DXY model. In other words,
only neutral configurations are possible.
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Chapter 2

Monte Carlo simulations

In the previous chapter we only demonstrated what we in principle are able to do
if we calculate the partition function Z, but we ignored the obvious difficulties
with performing this calculation. Using the Ising model Equation (1.13) in two
dimensions as an example, we soon run out of paper trying to write down every
term in the partition function as we let the number of lattice sites increase.
With 16 sites, there are 216 terms, but we are still far from the thermodynamic
limit that we are ultimately interested in. However, this particular model is
solved analytically by Onsager [28], and since most models can not be solved, the
2D Ising model is frequently employed as a benchmarking model for numerical
studies.

In the following we will review the numerical methods used in the studies
presented in Chapters 3, 4, and 5.

2.1 Monte Carlo integration

We employ Monte Carlo simulations to estimate thermodynamic quantities as in
Equation (1.2), but basically Monte Carlo methods are just a set of related tech-
niques for doing integrals. One of the simplest can be described by considering
the integral I =

∫ b
a
f(x)dx, illustrated as the shaded area in Figure 2.1 (a). In

order to estimate I, we randomly pick N values of x, uniformly distributed on
the interval [a, b). The estimator is then given by

Iest =
(b− a)
N

N∑
i=1

f(xi), (2.1)

and it is clear that in the limit N →∞ this will converge to the correct value of I.
The rate of convergence can however be slow, for instance if f(x) is relatively small
in large regions of the interval, as is the case in Figure 2.1 (b). For such a situation,
a natural improvement would be to divide the interval into the subintervals [a, c)
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Figure 2.1: The definite integral of a general function f(x) from a to b illus-
trated as the area below the graph (a). If the function has large variations
on the interval [a, b), the integration can be divided into subintervals [a, c)
and [c, b) (b).

and [c, b) and instead calculate

Iest =
c− a

N1

N1∑
i=1

f(xi) +
b− c

N2

N2∑
i=1

f(yi), (2.2)

using N1 samples xi from the first interval and N2 samples yi from the second.
This is a simple version of the principle called importance sampling where we try
to sample from a nonuniform distribution favoring the most important regions in
our integral. A more precise formulation of the method would be to write

Iest =
∑
i

p−1(xi)f(xi), (2.3)

i.e. we sample from a probability distribution p(x) and weight the terms in the
estimator accordingly.

2.2 Simulating thermodynamics

At this point we go back to our original goal, namely to estimate expectation val-
ues of thermodynamic quantities 〈O〉 Equation (1.2). Both the partition function
Z and 〈O〉 are essentially integrals that can be estimated by the same methods as
for I. The variables here are the configurations, or states, ψ consisting of many
degrees of freedom and therefore making the integrals harder to estimate than I
which has only one single degree of freedom, x. Still, the Monte Carlo methods
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2.2 Simulating thermodynamics

are well up to this task. The estimator takes the form

〈O〉est =

∑
i p

−1
ψi
Oψie

−βHψi∑
i p

−1
ψi

e−βHψi
. (2.4)

If the distribution pψi from which we pick the sample configurations ψi is chosen
equal to the Boltzmann weight,

pψi = e−βHψi , (2.5)

then the estimator takes the particularly simple form

〈O〉est =
1
N

∑
i

Oψi . (2.6)

Here, the sample distribution has cancelled the Boltzmann weights so that neither
of them explicitly appear in the calculation.

2.2.1 The Metropolis algorithm

The next important issue in a Monte Carlo simulation is how we should efficiently
generate the samples ψi. We do this by choosing a dynamics so that the system
can evolve in discrete time steps ti from state to state. Generally this dynamics
has little in common with actual physical dynamics, it is only chosen with the
purpose of effectively generating new states distributed according to pψi . Con-
sequently, the Monte Carlo time ti is not a physical time scale. Usually, the
dynamics is also chosen so that the corresponding series of states ψi is a Markov
chain, and therefore this family of methods is often called Markov chain Monte
Carlo methods. A sequence of states is a Markov chain if the probability of mov-
ing to a proposed state is only dependent on that state and on the present state,
and not on any of the preceding history of states. The most commonly used
recipe for the dynamics is the Metropolis–Hastings algorithm [29], in physics nor-
mally only known as the Metropolis algorithm after its first appearance [30]. We
have almost exclusively used this algorithm, however the Multicanonical sampling
method [31, 32] was tried at one point during the work of chapter 4 and turned
out not to be working very well with that particular model. In Figure 2.2 we sum-
marize the Metropolis–Hastings algorithm applied to the Ising model Equation
(1.13). In the algorithm, two important conditions are fulfilled for the Markov
chain, namely the accessibility assumption and the principle of microreversibility
[33]. The former demands that it must be possible to reach any configuration
of the system from a given starting point through a finite number of iterations.
Microreversibility on the other hand is the following requirement,

pψkPψk→ψl = pψlPψl→ψk , (2.7)
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1. In a configuration ψk choose a site i whose spin vari-
able si is to be updated.

2. Propose a change, in this case flip the spin si → −si
to obtain a new configuration ψl.

3. Calculate the energy change ∆H = Hψl −Hψk .

4. Calculate the acceptance probability Pψk→ψl =
e−β∆H (if e−β∆H > 1, set Pψk→ψl = 1).

5. Generate a random number r such that 0 < r ≤ 1.

6. If r ≤ Pψk→ψl accept the proposed change, else keep
the initial configuration ψk.

7. Go to 1.

Figure 2.2: The Metropolis–Hastings algorithm. One iteration is called a
Monte Carlo step, and going through every site in the lattice once is one
Monte Carlo sweep. We define the Monte Carlo time in units of one sweep.

where Pψk→ψl is the transition probability between two states ψk and ψl. This is
sometimes also called detailed balance. The factor pψk is the desired probability
of being in state ψk. Provided that Pψk→ψl meets the condition Equation (2.7),
it can be shown that the probability of the system being in state ψk at time tn
converges with increasing n to the Gibbs probability exp(−βHψk)/Z.

2.3 Reweighting

Temperature is normally an input parameter in our simulations, but it is not
allways known in advance which temperature is the most interesting. Quantities
such as specific heat and the other moments of the energy (Equations (1.10–
1.12)), or internal energy histograms may change dramatically as phase transi-
tions are approached – we will encounter this behaviour repeatedly in the models
investigated in this work. A helpful tool in this respect is reweighting, a set of
techniques for utilizing fluctuations in a system around some mean at a specific
temperature to gain insight into nearby temperatures [34]. It can be thought of
as an advanced form for inter- and extrapolation.
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Figure 2.3: The heat capacity of one of the models investigated in this work.
The bold data point is calculated directly from data measured during simu-
lations at that temperature. All the other points are reweighted from that
single simulation run.

The basic principle of the reweighting we have used is to store the time series
(Markov chains) of energies and observables during a simulation. From Equations
(1.2) and (2.6) we know how to estimate the expectation value of an observable
O at the particular temperature T1 = 1/β1 the simulation was run:

〈O〉β1 ≡
1
Zβ1

∑
{ψ}

Oψe−β1Hψ ≈ 1
N

∑
i

Oi. (2.8)

An estimate of the same observable at a slightly different temperature T2 = 1/β2

can be found from the original set of data by the following derivation. Consider
the somewhat strange observable O exp[−(β2−β1)H] with the expectation value

〈Oe−(β2−β1)H〉β1 =

∑
ψ

[
Oψe−(β2−β1)Hψ

]
e−β1Hψ

Zβ1

≈ 1
N

∑
i

Oie−(β2−β1)Hi ,

(2.9)
and yet another observable exp[−(β2 − β1)H] with expectation

〈e−(β2−β1)H〉β1 =

∑
ψ

[
e−(β2−β1)Hψ

]
e−β1Hψ

Zβ1

≈ 1
N

∑
i

e−(β2−β1)Hi . (2.10)

Note that the latter equation is nothing but the ratio Zβ2/Zβ1 . Combining Equa-
tions (2.9) and (2.10) we obtain the following estimate for O at T2,

〈O〉β2 =

∑
ψ Oψe−β2Hψ

Zβ2

≈
∑
iOie

−(β2−β1)Hi∑
i e−(β2−β1)Hi

, (2.11)
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that is, an estimate based only upon measurements made at temperature T1. An
error analyzis is given in the next section, but we mention briefly here that errors
increase when the distance |β2 − β1| increases. As a rule of thumb, the energy

H/V

a.
u
.

21.81.61.41.210.80.6

Figure 2.4: Energy histograms from a Monte Carlo simulation for three dif-
ferent temperatures. In the top panel, only the histogram in the middle is
actually obtained from simulations, whereas the other two are calculated from
the former through reweighting. In the lower panel, direct measurements for
all three temperatures are showed.

histograms for the system at T1 and T2 should have substantial overlaps. In
Figure 2.4 we see that the reweighting is satisfactory as long as the energy fluctu-
ations of the original data provides information on the energies in the reweighted
histograms. Originally the method was expressed in terms of these histograms
instead of the Markov chains of Hi and Oi directly. The drawback then is that
observables have to be functions of the energy, whereas in the present formulation
H and O are both functions of the configuration.

2.3.1 Multiple histogram reweighting

In our work, we have used a more advanced version of reweighting though the
underlying principles are the same. The multiple histogram reweighting by Fer-
renberg and Swendsen [35] improves the quality of the estimates by combining
data in time series obtained from simulation runs at several different temper-
atures, see Figure 2.5. This involves solving a set of nonlinear equations self
consistently, and can be quite tricky to implement properly. Fortunately we have
been provided with a software package developed by Rummukainen (first used in
Reference [36]) which has been highly appreciated in several works of our research
group for almost a decade.
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Figure 2.5: The heat capacity of the same system as in Figure 2.3. This time,
all the bold points where simulated and combined to produce the significantly
improved intermediate points by using multiple histogram reweighting.

Additionally, we have lately used a related method implemented by Hove [37],
aimed at calculating the density of states g(H), from which we can derive ex-
pectations of essentially all thermodynamic observables O as long as they can be
written in terms of the energy H,

〈O〉β =
∑
H O(H)g(H)e−βH∑

H g(H)e−βH
. (2.12)

The free energy is given by

F (T ) = −T ln
[∑
H

g(H)e−βH
]
, (2.13)

and from this, moments of the energy can be derived through Equations (1.10–
1.12).

In principle the two methods should yield the same results when analyzing
identical Markov chains of simulation data, and they have similar limitations. A
simulation performed at a given finite temperature does not provide information
of the full range of energies in g(H), and insight into which energies are covered
can again be found in the energy histograms of the raw data. However, the
density of states method does not fail as easy if there are insufficient overlaps
between some of the raw histograms involved, as is the case in the process of
solving sets of nonlinear equations in the multiple histogram method.
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2.4 Error analysis

An important part of calculating estimates or taking measurements in physics,
is to estimate corresponding errors. For a set of N uncorrelated measurements
O1, O2, O3, ..., ON , the error is just the standard error estimated from the sample
variance S2,

δ〈O〉est =
√
S2/N =

√∑N
i=1(Oi − 〈O〉est)2
N(N − 1)

. (2.14)

In typical Monte Carlo simulations however, the samples are highly correlated
due to their originating Markov chain. The degree of correlation can be quantified
through the autocorrelation function

φ(t) =
〈Os+tOs〉 − 〈O〉2

〈O2〉 − 〈O〉2
, (2.15)

where Os is a sample taken from a simulation at Monte Carlo time s. In a Markov
chain φ(t) is proportional to exp(−t/t̃) for large t. Close to a critical point the
characteristic time t̃ can be very large, and in fact in the thermodynamic limit
it diverges as TC is approached. This phenomenon is known as critical slowing
down. Large correlation times can cause problems in two respects. First of all,
when we start a simulations, we want the system to thermalize, that is we want the
system to relaxe and fluctuate around its global energy minimum. The number
of Monte Carlo sweeps required to reach such a situation depends on the initial
conditions as well as on the autocorrelation time t̃. There is no general recipe
for determining the relaxation time, but a pragmatic way is to start sampling
from the beginning of the simulation, and then in the post processing stage try
to exclude a various number of the first samples before calculating the means.
Provided that the simulation has been run for a sufficiently long total Monte Carlo
time, an appropriate number of samples have been excluded when an estimate
〈O〉est does not seem to depend appreciably on further increasing the number
of excluded samples. It should be noted here that there may be more than
one relaxation time in the problem. Various observables may therefore require
different thermalization times.

2.4.1 Correlated measurements

The second problem of a large correlation time, is that the error can no longer
be calculated directly from Equation (2.14). Several methods exist for taking
correlations into account, but we will focus on the jackknife method [38], where
the full data set of N samples is divided into M subsets {ϕ1, ϕ2, ϕ3, ..., ϕM}.
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2.5 Finite size scaling

From these subsets we calculate M − 1 estimates

〈O〉j =
M

(M − 1)N

∑
i 6∈ϕj

Oi (2.16)

where the samples in subset ϕj are excluded from the sum. Along with the mean
of the complete set,

〈O〉est =
1
N

N∑
i=1

Oi, (2.17)

we can then calculate the error estimate

δ〈O〉est =

√√√√M − 1
M

M∑
j=1

(〈O〉j − 〈O〉est)2. (2.18)

Each subset ϕj should contain measurements taken over a time interval much
larger than t̃. A simpler method only for finding simple averages of the sampled
quantities O is simply to consider the means

Qj =
M

N

∑
i∈ϕj

Oi (2.19)

of each subset as uncorrelated stochastic variables, calculate the estimator 〈O〉est
based on these Qj , and then use the expression for sample variance Equation
(2.14) with O replaced by Q. However, we often want to calculate complicated
and nonlinear functions of the sampled quantities, for instance in the process
of reweighting. This can be done quite straightforwardly using the estimates
Equations (2.16) repeatedly as arguments of the functions, and calculating the
corresponding errors of the function using Equations (2.18) this time with O
replaced by the function itself.

2.5 Finite size scaling

Ultimately, when we do simulations we hope to apply the results to physical
systems in the thermodynamic limit, but external limitation such as storage
capacity and computer performance obviously limit the size of the simulated
systems. Addititionally there are intrinsic properties of the models that restrict
us from studying too large numerical grids: The above mentioned critical slowing
down in the vicinity of phase transitions grows increasingly severe when increasing
the system size and there will consequently be more correlations in the Markov
chain. Hence, the statistics will deteriorate due to the larger correlations, forcing
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Chapter 2 Monte Carlo simulations

us to raise the number of Monte Carlo steps. This trade-off between large systems
versus accurate statistics is allways an important issue in Monte Carlo methods.

To exploit the information in results from finite systems, we do finite size
scaling. That is, we look for scaling behaviour in observed quantities when varying
the system size L. It turns out that close to critical points many thermodynamic
quantities obey power-law dependence on the system size because the correlation
length ξ diverges as τ−ν , but is limited by L in a finite system. The exponents
in these power-laws can be related to critical exponents such as β in Equation
(1.15). Estimates of the critical exponents can in turn be used to classify the
nature of a phase transition.

A full treatment of the subject should involve the renormalization group theory
[39], but in the present works this has not been directly touched, and the reader
is referred to the literature, see e.g. References [12, 40, 33]. Instead we turn to
Widom’s homogeneity postulate [41] that the singular part of the free energy Fs
obeys the following relation,

Fs(λaτ) = λFs(τ), (2.20)

where λ is an arbitrary scaling factor and a is an unknown constant. Since we
want an expression for the scaling of Fs with respect to L, it is natural to choose
λa = L1/ν to obtain the explicit L-dependence as τ → 0,

Fs(τ, L) = L1/(aν)Fs(L1/ντ). (2.21)

From Equations (1.9) and (1.11), we know that the heat capacity CV is propor-
tional to the second derivative of the free energy with respect to temperature, so
the leading behaviour close to TC can be found from

CV ∝
∂2Fs
∂τ2

= L2/ν+1/(aν)F(L1/ντ). (2.22)

F(x) is just some derivative of Fs and analytical in x. The singular part of
the heat capacity is normally given as CV ∼ |τ |−α, and from this we identify
a = 1/(2 − α). Thus, by measuring CV at TC for different system sizes, we can
extract the ratio α/ν from

CV ∝ Lα/ν . (2.23)

Similar scaling arguments for other thermodynamic quantities lead to a set
of relations coupling the corresponding exponents, and from the hyperscaling
relation,

dν = 2− α, (2.24)

we can calculate α and ν. However, hyperscaling is known to be violated in
certain systems [18].
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Figure 2.6: The heat capacity of a system with a phase transition in the
3DXY universality class. Equation (2.23) predicts that the peak should be
close to constant when increasing the system size, since α is very small and
even slightly negative. However, finite size effects in the nonsingular part of
CV obscure this behaviour for small L.

2.5.1 The third moment of the energy

When the α exponent is close to zero, or even slightly negative as in the 3DXY
model1, reliable results are hard to obtain from CV due to significant deviations
from scaling in small systems. Equation (2.23) is asymptotically correct, but as
shown in Figure 2.6, the heat capacity can actually increase with L because the
analytic background dominates over the singular part for small L. In References
[13, 14] Sudbø and coworkers presented a solution to this problem by, rather than
computing CV , using the third moment of the energy Equation (1.12),

M3 ≡
∂3Fs
∂τ3

= L(1+α)/νF ′(L1/ντ), (2.25)

shown in Figure 2.7. Here, it is the peak-to-peak height (∆M3)height that scales
as L(1+α)/ν , and linear background terms will cancel as a result of subtraction.
AdditionallyM3 provides a direct measure for the only length scale in the problem
through the peak-to-peak width, which scales according to

(∆M3)width ∝ τ ∼ L−1/ν . (2.26)

The hyperscaling relation Equation (2.24) is no longer needed since M3 provides
independent measures for α and ν.

1High precicion measurements yield α ' −0.0146(8) [42].
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Figure 2.7: The third moment of the energy, corresponding to the L = 8
data for the heat capacity in Figure 2.6.

2.5.2 Beyond continuous transitions

So far, we have only considered continuous transitions in our finite size discussion.
Berezinskii–Kosterlitz–Thouless transitions are different in that there is no single
temperature where the correlation length ξ diverges. Instead, we stated in section
1.3.2; the entire low temperature phase is critical, and there exists no local order
parameter we can monitor. Still, a finite size analysis is useful and often the
helicity modulus Υµ Equation (1.29) has been used to estimate the transition
temperature through finite size deviations from its bulk form [43, 44]. In full
analogy, the inverse dielectric constant ε−1 has been used in the two dimensional
Coulomb gas [27, 45, 46]. More conclusive evidence from Monte Carlo simulations
for the very existence of a Berezinskii–Kosterlitz–Thouless in a model, is hard to
find, but a novel method was proposed by Minnhagen and Kim in Reference [47].
We have further developed the method and we will come back to this in Chapter
3.

At a first order transition there are two or more noncritical phases coexisting,
and no ordinary diverging correlation length is associated with the switching be-
tween them, even though quantities such as the heat capacity diverge. However,
it is possible to consider first order transitions as limiting cases of continuous
transtitions [48, 49] where finite size scaling still makes sense. The critical expo-
nents then attain corresponding limiting values, in particular α = 1 and ν = 1/d.
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2.6 The Lee–Kosterlitz method

2.6 The Lee–Kosterlitz method for first order
transitions

Finite size scaling and determination of the critical exponents as described above,
may give a good indication on the nature of a phase transition. Yet, a more di-
rect approach put forward by Lee and Kosterlitz [50, 51] allows us to be more
definitive about the nature of the transitions after analyzing Monte Carlo data.
The idea is to identify and do finite size scaling of the domain wall energy be-
tween the coexisting phases at a first order transition. The domain walls have
a surface tension corresponding to a free energy barrier ∆F (L), which vanishes
for continuous transitions whereas it scales as Ld−1 at a first order transition
provided that L is sufficiently large.
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Figure 2.8: The Monte Carlo time series of the energy (a) indicates that
there are two coexisting phases between which the system jumps. The raw
histogram of the data (b) can be reweighted to a nearby temperature (c)
where the two peaks are of the same height, corresponding to the transition
temperature. Finite size scaling of the barrier height between the two phases
will then determine the nature of the phase transition.

To calculate ∆F (L) we again turn to the energy histograms we referred to in the
context of reweighting in section 2.3, and again reweighting itself is a valuable
tool. For long simulations, these histograms directly estimate the probability
distribution PL,T (H) for the energy H at a given system size and temperature.
Two coexisting phases are reflected by two peaks in PL,T (H) which are of the
same height precicely at the transition temperature. Generally we do not know
that exact temperature, but the histograms can then be reweighted, and from
the equal height histogram ∆F (L) can be found as

∆F (L) = ln
(
PL,T (HP)
PL,T (HM)

)
. (2.27)

Here, HP is the energy of one of the two pure states for which PL,T (H) has a
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maximum, and HM is the mixed state energy corresponding to the minimum
between the two peaks in the histogram as shown in Figure 2.8.
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Chapter 3

Logarithmic plasmas in two and three
dimensions

In the papers [1, 2] we study a closely related model of the Ginzburg–Landau
model Equation (1.18), with focus on three dimensions arising out of a quantum
mechanical problem in two spatial dimensions as briefly discussed in section 1.3.
The study is motivated by the work in References [52, 53] where a Berezinskii–
Kosterlitz–Thouless phase transition is proposed in a matter coupled compact
U(1) gauge theory. This is hoped to be applicable to the proposed phenomenon
of spin–charge separation in strongly correlated electron systems at zero temper-
ature.

3.1 Strongly correlated electron systems

Many of the properties of high temperature superconductors can not be described
by the successful theory of Bardeen, Cooper, and Schrieffer [54] for the conven-
tional superconductors. The main issue is the strong Coulomb repulsion between
the electrons with resulting breakdown of fermi liquid theory in the non super-
conducting phases of cuprate superconductors. For a better understanding of the
cuprates, the physics of Mott insulators is considered to be crucial.

3.1.1 The Hubbard model

An appearantly simple model accounting for the strong electron repulsion, is the
Hubbard model,

H = −t
∑
〈i,j〉,σ

C†
iσCjσ + U

∑
i

ni↑ni↓ + H.c., (3.1)

in the large U/|t| limit. C†
iσ and Cjσ are the usual creation and destruction

operators for electrons with spin σ =↑, ↓, and niσ = C†
iσCiσ is the number of

electrons at lattice site i with spin σ. As U/|t| → ∞, double occupancy of a
lattice site is prohibited even if the electrons are of opposite spins, as illustrated in
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Figure 3.1: Possible dynamics of the large U/|t| Hubbard model. Hopping
to an occupied site is not allowed even if the electrons have opposite spins.

Figure 3.1. At half filling this limit of the Hubbard model is a nearest neighbour
Heisenberg antiferromagnet, believed to be an effective model for the parent
compound of the cuprate superconductors, La2CuO4. The ground state of the
system is a Mott insulator, but doping may introduce new phases. The crystal
of La2CuO4 has a layered structure of essentially independent square Cu lattices
on which the low energy electron dynamics takes place [55]. In the U/|t| → ∞
limit we write the hamiltonian

H = −t
∑
〈i,j〉,σ

C†
iσCjσ + H.c., (3.2)

where we now have the additional constraint∑
σ

C†
iσCiσ ≤ 1, (3.3)

expressing the prohibition of double occupancy. Instead of dealing with this
inequality, we represent the electron operators by

C†
iσ = f†iσbi,

C†
iσ = fiσb

†
i ,

(3.4)
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3.1 Strongly correlated electron systems

called the slave boson method.
The operators f†iσ and b†i create a chargeless fermionic spin and a spinless

bosonic hole respectively, and the constraint consequently takes the form of an
equality,

Qi|Φ〉 ≡
∑
σ

(f†iσfiσ + b†i bi)|Φ〉 = |Φ〉, (3.5)

i.e. the site i is either occupied by a fermionic spin or else it is a positively
charged hole.

C†
i↑ bi

f†i↑

Figure 3.2: Slave bosonization where an electron is represented as the com-
posite particle of a spinon carrying the spin and a holon carrying the charge.

3.1.2 Effective lattice gauge theory

In order to do statistical mechanics we want the partition function Z, and this
we find as a Feynman path integral over Grassmann and complex fields f and b
respectively [21, 56],

Z =
∫
Df∗DfDb∗Db

∏
i,τ

δ(Qi − 1) exp
{
−

∫ β

0

dτ

[ ∑
〈i,j〉,σ

(
f∗iσ(∂/∂τ)fiσ + b∗i (∂/∂τ)bi + H.c.

)
+H

]}
,

(3.6)

where we have incorporated the constraint Equation (3.5) in the theory through
the factors

∏
i,τ δ(Qi − 1). H is the hamiltonian of Equation (3.2) and τ is

imaginary time. We then use Abrikosov’s trick of writing

δ(Qi − 1) =
∫ π

−π

dλi
2π

e−iλi(Qi−1), (3.7)

so that the partition function can be written

Z =
∫
Df∗DfDb∗DbDλ exp

{
−

∫ β

0

dτ[ ∑
〈i,j〉,σ

(
f∗iσ(∂/∂τ)fiσ + b∗i (∂/∂τ)bi + iλi(Qi − 1) + H.c.

)
+H

]}
.

(3.8)
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The important feature here is that the original constraint Equation (3.3) appears
in the theory in the form of a compact gauge field λi ∈ [−π, π). After decoupling
the quartic fermion terms in H by a Hubbard–Stratonovich transformation [57],
the fermion sector can be integrated out. Left is a theory of a compact gauge
field coupled to a bosonic field with the fundamental charge. A simplified model
believed to capture the essential physics is the abelian Higgs model with a com-
pact U(1) gauge field A fundamentally1 coupled to a bosonic U(1) matter field
Ψ = |Ψ|eiθ defined on a Euclidian (2+1) dimensional lattice [58]. In the London
limit, we may write the effective hamiltonian

H = −
∑
i,µ

[
cos(∆µθi −Aiµ) + κ cos(εµνλ∆νAiλ)

]
. (3.9)

The charge part in the underlying theory is represented by the matter field,
whereas the constraint is fulfilled by fluctuations in the gauge field. We want to
see if the model can support spin–charge separation in a so-called confinement–
deconfinement transition, since a frozen gauge field would correspond to inde-
pendent dynamics of the slave fermions and bosons. It should be mentioned here
that this is also closely related to the issue of quark confinement in high energy
physics [59].

It has long been established that a pure compact gauge theory without matter
fields sustains a permanent confining phase in three dimensions [60]. Such a
theory supports stable topological defects defined by surfaces where the field
jumps by 2π, forming a gas of space-time instantons. These are point like objects
interacting through a 1/r potential, analogous to a three dimensional Coulomb
gas where the charges are always in a metallic phase due to Debye screening. If
matter fields are present the fate of the instantons is however less clear. It has
been argued that this does not destroy the permanent confinement [58, 59], but
there has been much controversy on this point [61, 62, 63, 52, 53, 64, 65, 66, 67,
68].

In References [52, 53] a duality transformation is demonstrated for the model
Equation (3.9) where the theory is expressed in terms of the gauge field instantons
qi,

H =
1
2

∑
i,j

qiVijqj . (3.10)

On a d = (2 + 1) dimensional lattice the interaction can be expressed through a
discrete Fourier transformation,

Vij ≡ V (rj − ri) =
4π2

Nad

∑
k

eik·(rj−ri)

[2(d−
∑d
α=1 cos kαa)]d/2

. (3.11)

1The fundamental charge e = 1 is omitted but would appear in the theory in the coupling
term cos(∆µθi − eAiµ).
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Here, the presence of a matter field has modified the interaction from ∼ 1/r in
the pure gauge theory to an anomalous − ln r interaction in the matter coupled
version. This is very similar to the two dimensional Coulomb gas of section 1.3.3
which is known to exhibit a Berezinskii–Kosterlitz–Thouless phase transition.
Furthermore, renormalization group arguments are used to indicate that also
the three dimensional logarithmic gas may undergo a phase transition of this
type. A phase transition in such a system would correspond to a proliferation
of space-time instantons in the gauge theory Equation (3.9). This is in turn
hoped to serve as a possible mechanism for spin–charge separation through a
confinement–deconfinement transition in strongly correlated systems.

As a remark, it should be mentioned that if the matter field carries a charge
other than the fundamental e = 1, the situation is very different, and the model
is known to have a continuous phase transition [14].

3.2 Numerical studies of a metal–insulator transition

The two dimensional Coulomb gas has enjoyed much attention over the last
decades, see e.g. References [69, 70, 45, 27, 46, 71], and can therefore be consid-
ered as a model with well known properties. A review of the model is given in
Reference [72]. Due to its similarities with our three dimensional logarithmically
interacting gas of instantons, we have studied these two models simultaneously
for direct comparison and benchmarking purposes. Additional comparisons with
the three dimensional Coulomb gas have also been made.
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Figure 3.3: In the two dimensional Coulomb gas, dipoles unbind in a
Berezinskii–Kosterlitz–Thouless phase transition to form a metallic plasma.

Screening of the interaction potential is the essential property responsible for
a phase transition in the two dimensional Coulomb gas. A finite screening length
means that the system is a metallic plasma. On the other hand, since dipoles can-
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not screen the Coulomb potential [73], a system initially consisting of dipoles will
be in a stable dielectric phase where opposite charges are tightly bound in pairs.
In two dimensions these pairs break and unbind at a finite temperature through
the Berezinskii–Kosterlitz–Thouless phase transition, whereas there is only one
stable phase in the three dimensional Coulomb gas. A permanent metallic phase
in the latter model corresponds by duality to the permanent confinement of the
pure U(1) gauge theory [60].

3.2.1 Polarizability

The theorem that dipoles cannot screen does however not apply to the logarith-
mic potential in three dimensions. This warrants numerical investigations, and in
Reference [1] we use Monte Carlo simulations to investigate the screening proper-
ties of such a system. Information on this is provided by the dielectric constant,
given in a low density approximation as

ε = 1 + ndΩdp, (3.12)

where nd is the dipole density and Ωd the solid angle in a d dimensional system.
The polarizability p is proportional to the mean square separation 〈s2〉 between
the charges in a dipole, and by focusing on this quantity in the simulations we can
determine wether the system is a dielectric or a metal. For the two dimensional
Coulomb gas, the behaviour of 〈s2〉 to leading order in L can be found using a
low density argument [17] yielding

〈s2〉 =


Const. ; T < TKT

aL(T−TKT )/T ; TKT < T < 2TKT
bL2 ; 2TKT < T.

(3.13)

Here, the prefactors a and b are unimportant, whereas the constant for T < TKT
is of the order of the lattice constant. Even though the screening effects were
neglected in this calculation, the conclusion still holds – the only correction due
to screening in the above result is in value of the transition temperature TKT
[17]. Monte Carlo simulations confirmes this behaviour in two dimensions, and
the three dimensional logarithmic gas shows a remarkably similar behaviour, see
Figure 3.4.

These results demonstrates clearly the existence of two different temperature
regimes in the models. The scaling with L of the polarizability has a nonanalytic
change at some intermediate temperature, and there must therefore be a phase
transition separating the two regimes. The nature of the transition can however
not be determined from the above, and further investigations are necessary. This
will be presented in the next section.
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Figure 3.4: Results from Monte Carlo simulations showing two distinct tem-
perature regimes in both models for the mean square dipole moment 〈s2〉.

3.2.2 Numerical evidence of a Berezinskii–Kosterlitz–Thouless
transition

A Berezinskii–Kosterlitz–Thouless phase transition is characterized by a univer-
sal jump to zero in some generalized stiffness parameter [16, 17]. In the 2DXY
model, this is the helicity modulus Υµ (Equation (1.29)), whereas the inverse
dielectric constant ε−1 is the corresponding quantity in the two dimensional
Coulomb gas. Due to the finite sizes used in computer simulations, it is diffi-
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Figure 3.5: The inverse dielectric constant ε−1(k) as a function of the
temperature T , using the smallest possible wave vector in a finite system,
k = 2πêy/L.

cult to prove a dicontinuity in ε−1 or Υµ on numerical grounds. The plots in
Figure 3.5 shows that the drop towards zero gets steeper as the system size is in-
creased, but this alone does not guarantee a discontinuity in the thermodynamic
limit. Yet, a simple and elegant method to prove this characteristic feature in

37



Chapter 3 Logarithmic plasmas

such phase transitions from Monte Carlo simulations, was recently put forth by
Minnhagen and Kim [47]. They considered the 2DXY model and its helicity
modulus Υµ, defined by Equation 1.29. This is the coefficient of the second order
term in a free energy expansion in an imposed phase twist: An arbitrarily small
perturbation δ that inreases the free energy. Since only even order terms are
nonzero in this expansion, the next term is of fourth order and the expansion can
be written

∆F = F (δ 6= 0)− F (δ = 0) = π2 δ
2 + π4 δ

4 + ..., (3.14)

where π2 ∝ Υµ. The simple argument is that if the fourth order coefficient
can be proven to be finite and negative at the transition temperature in the
thermodynamic limit, then the helicity modulus has to be finite and positive in
order to maintain stability of the system. If Υµ goes to zero at the transition, it
necessarily cannot do so in a continuous fashion.
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Figure 3.6: For the two dimensional Coulomb gas, the coefficient ε4 of the
fourth order term in the free energy expansion is finite and negative at the
transition temperature. In the left panel ε4 is plotted for increasing system
size and the depth decreases monotonically with L.

We have applied the same stability argument to our logarithmically interacting
plasmas in two and three dimensions, and derived the following coefficients in the
corresponding free energy expansion [2]. The second order term is proportional
to the inverse dielectric constant,

ε−1(k) = 1− Vk

L3T
〈qkq−k〉, (3.15)

and the fourth order term is proportional to

ε4(k) ≡ 1
T 3

(
〈qkq−k〉2 −

1
2
〈(qkq−k)2〉

)
. (3.16)
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Vk and qk are the interaction and point charge respectively, given in the Fourier
representation defined by fk =

∑
k f(r) exp(ik · r). Some care had to be taken in

the choice of perturbation in order to make the change in free energy Equation
(3.14) nondivergent as L→∞. In our choice k, is either of the d smallest possible
vectors k = 2πêµ/L in the given system.
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Figure 3.7: The depth of the fourth order coefficient vanishes in the thermo-
dynamic limit for the 3DCG model (ε4 is divided by L2 in order to obtain
the corresponding nondivergent quantity in this case). In the logarithmically
interacting model, no such conclusions can be drawn.

For the two dimensional Coulomb gas, we confirm the results obtained in Ref-
erence [47]. The results (Figure 3.6) are similar to those for the 2DXY model,
and thus establish the discontinuous character of the inverse dielectric constant
based on finite size scaling of ε4. The minimum of the fourth order coefficient can
safely be associated with the phase transition where ε−1 goes to zero. By plot-
ting the corresponding temperature against 1/L and extrapolating to the limit
L→ 0, we can estimate the transition temperature TKT , but the convergence to
the known value of TKT is however slow and the method is consequently not very
precise.

The Berezinskii–Kosterlitz–Thouless characteristic of a discontinuous jump in
the inverse dielectric constant for the three dimensional logarithmic gas can not
be ruled out. Unfortunately though, the feature turns out to be hard to prove or
disprove from computer simulations alone. The fourth order term has the same
characteristic shape as for the 2DCG model, and scaling of the depth is shown in
Figure 3.7 along with results from simulations of the three dimensional Coulomb
gas. In the latter case, the depth of the corresponding quantity ε4/L

2 vanishes
in the thermodynamic limit whithout any doubt. However, the results from the
three dimensional logarithmic gas are inconclusive and either improved methods
or larger system sizes are required.
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Chapter 4

Deconfined criticality

In this chapter we use the term deconfinement in a somewhat different meaning
than that of spin–charge separation in Chapter 3. We will however still be con-
cerned with the physics of Mott insulators in two spatial dimensions in search for
better understanding of the cuprate superconductors, but the approach will be
different. Materials such as La2CuO4 and Cs2CuCl4 feature states with an odd
number of S = 1/2 spins per unit cell, but can also dimerize so that each unit cell
consists of two S = 1/2 spins, spontaneously breaking the lattice symmetry [74].
It is the dimerization of spins that in this specific context is named confinement.
These states are paramagnetic valence bond solids and may exhibit a gap to spin
excitations.

In paper [3] we study an effective model proposed by Senthil and coworkers
[74, 75, 76] for the transition from a quantum Heisenberg antiferromagnet with
Néel order to a dimerized spin gap state on a two dimensional square lattice.
They claim that this order–order transition is continuous, in contradiction to
what would be expected from the Landau–Ginzburg–Wilson framework for phase
transitions. The antiferromagnetic Néel order corresponds to a broken SU(2)
symmetry in spin space, whereas the valence bond solid state breaks the discrete
translational symmetry in real space. According to the Landau–Ginzburg–Wilson
paradigm a transition between two such ordered states must either be of first
order, or there must be an intermediate disordered region. However, quantum
interference effects can obscure this picture and the confining order of the two
phases may be separated by a critical region where the order parameters are
deconfined.

4.1 Square lattice antiferromagnet

The quantum Heisenberg antiferromagnet can be described by the Hamiltonian

HS = J
∑
〈ij〉

Si · Sj + ... (4.1)

on a square two dimensional lattice, where Si are S = 1/2 spin operators and
the nearest neighbour coupling J > 0. The groundstate is the desired Néel state,
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Chapter 4 Deconfined criticality

Figure 4.1: Schematic examples of a Néel ordered antiferromagnet and a
valence bond dimer state where the discrete translational symmetry is broken.

and by adding additional terms in the Hamiltonian, it is possible to tune the
system through transistions into other states such as the paramagnetic valence
bond solid in Figure 4.1.

Now, a similar procedure to the one in the previous chapter can be followed to
obtain an effective model for quantum fluctuations about the Néel state. It
is believed that the essential physics of this system is captured by the path
integral ZB =

∫
Dθ(1)Dθ(1)DA exp(−H), with the effective (2 + 1) dimensional

Hamiltonian [74, 75, 76],

H = −
∑
i

{
β

∑
µ

[
cos(∆µθ

(1)
i −Aiµ) + cos(∆µθ

(2)
i −Aiµ)

+ κ cos(εµνλ∆νAiλ)
]

+ i2SηiAiτ
}
.

(4.2)

Here, both the phases θ(1), θ(2) and the gauge field Aiµ are compact, i.e. they
are only defined on the interval [−π, π). Even though the compact abelian Higgs
model Equation (3.9) has many similarities with the above Hamiltonian, there
are a few important differences to be explained. The most prominent is the so-
called Berry phase term i2SηiAiτ , accounting by a phase factor for the evolution
in imaginary time τ of each spin Si [77, 78]. The spins are described in this
theory with the identification Si = ηiSni, where ni is a unit vector and ηi = ±1
is a staggering factor making ni a slowly varying function of i close to the Néel
ordered groundstate. ηi is constant in the time direction. Furthermore, in order
to simplify the model, an easy-plane anisotropy is assumed so that the SU(2)
symmetry of the spins is reduced to the U(1) group where spins are locked to
the xy plane. The Néel vector can then be parametrized in terms of the two
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4.1 Square lattice antiferromagnet

component spinor zi = (eiθ(1) , eiθ(2))/
√

2,

ni = z†i ~σzi, (4.3)

where ~σ is a vector of Pauli matrices. In the limit of large β the partition function
ZB is dominated by configurations with small fluctuations in the phases θ(1), θ(2).
This corresponds to the Néel ordered state with a finite ni, and θ(1) − θ(2) repre-
sents the direction of ni. The valence bond order on the other hand is connected
to the factor exp [−i

∑
2SηiAiτ ] in ZB , as the Berry phases lead to a broken

lattice symmetry for small β.
The compact gauge field of the effective Hamiltonian Equation (4.2) gives rise

to the same topological defects as in the compact abelian Higgs model Equation
(3.9), but now these instantons carry Berry phases. Exactly at the critical point,
the combined effect of compactness and Berry phases makes the instantons cancel
each other completely [74, 75, 76]. In other words, the critical theory can equally
well be described by the noncompact theory

H = −β
∑
i,µ

[
cos(∆µθ

(1)
i −Aiµ) + cos(∆µθ

(2)
i −Aiµ)−

κ

2
(εµνλ∆νAiλ)2

]
, (4.4)

and this argument applies to arbitrary number of components θ(ρ).
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Figure 4.2: The peak in the heat capacity for a model with one matter field
coupled to a compact gauge field does not indicate a diverging behaviour
(a). If an additional Berry phase term is present (b), the heat capacity scales
consistently with the 3DXY model.

If we were to consider only one component, we know from the previous chapter
that with a compact gauge field and no Berry phase term we get a model with no
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Chapter 4 Deconfined criticality

ordinary continuous phase transition. However, if the Berry phases are included,
then the critical properties would be that of the inverted 3DXY universality
class1. In Figure 4.2 we plot the heat capacity for the single component version
of the model Equation (4.2) with and without Berry phases, and the effect is
clear: The version without Berry phases shows no sign of scaling behaviour.
On the other hand, for the model with the Berry phase term present, scaling
of the corresponding third moment of the energy Equation (1.12) yields critical
exponents in consistency with the 3DXY universality class. Our main focus will
be on the two component version of the model, however the same mechanism
takes place: The Berry phases and instantons cancel each other at the critical
point.

4.1.1 Dualization to avoid a complex hamiltonian

The effective model in the form of Equation (4.2) is difficult perform Monte
Carlo simulations on because it is complex. The imaginary Berry phase term
may cause the partition function ZB to contain negative terms, and consequently
the normalizing factor 1/ZB in the expectation value of an observable Equation
(1.2) may easily diverge. This is known as the sign problem and often encountered
in quantum Monte Carlo simulations [79]. Fortunately, we are in a position where
we can recast the model into a real Hamiltonian through a duality transformation
akin to the one in section 1.3.3.

First we apply the Villain approximation which leaves the partition function
in the form

Z =
∫

Dθ(1)Dθ(1)DA
∑

{n(1),n(2),n(A)}

e−HV , (4.5)

with

HV =
∑
i

{β
2

∑
µ

[(
∆µθ

(1)
i −Aiµ + 2πn(1)

iµ

)2

+
(
∆µθ

(2)
i −Aiµ + 2πn(2)

iµ

)2

+ κ
(
εµνλ∆νAiλ + 2πn(A)

iµ

)2]
+ i2SηiAiτ

}
. (4.6)

Then we employ the standard set of tricks: The Hubbard-Stratonovich trans-
formation and the Poisson summation formula which enable us to integrate out
the θ(1) and θ(2) fields as well as the gauge field Aiµ. Appearantly, the partition
function now becomes particularly simple,

Z =
∑

{v(1),v(2),v(A)}

e−
1
2β

P
i

(
v

(1)
i

2
+v

(2)
i

2
+ 1
κv

(A)
i

2
)

(4.7)

1An abelian Higgs model in three dimensions with a noncompact gauge field is dual to the
3DXY model [24].
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4.1 Square lattice antiferromagnet

but then it must meet the following constraints,

∆ · v(ρ)
i = 0 where ρ = 1, 2, (4.8)

εµνλ∆νv
(A)
iλ − v

(1)
iµ − v

(2)
iµ − δµτηi = 0 where µ = x, y, τ. (4.9)

The constraints of Equation (4.8) are fulfilled by writing v
(1)
iµ = εµνλ∆νh

(1)
iµ ,

v
(2)
iµ = εµνλ∆νh

(2)
iµ , where h(1)

i ,h(2)
i are dual lattice fields. If we additionally write

the staggering term δµτηi as the curl of a new static field fi, the last constraint
can be written

εµνλ∆ν

(
v
(A)
iλ − h

(1)
iλ − h

(2)
iλ − fiλ

)
= 0, (4.10)

and will be met if the parenthesis equals the gradient of a discrete scalar field si.
Solving for v(A)

i ,
v
(A)
iλ = h

(1)
iλ + h

(2)
iλ + fiλ + ∆λsi, (4.11)

we end up with the real and gauge invariant dual partition function

Z =
∑

{h(1),h(2),s}

exp
{
− 1

2β

∑
iµ

[(
εµνλ∆νh

(1)
iλ

)2

+
(
εµνλ∆νh

(2)
iλ

)2

+
1
κ

(
h

(1)
iµ + h

(2)
iµ + fiµ + ∆λsi

)2]}
.

(4.12)

The gauge invariance in Equation (4.12) allows us to choose a gauge in which
the gradient term is zero and the scalar field si consequently is absent in the
theory. In principle, we could proceed from here and express the theory in terms of
its topological excitations as we did for the 2DXY model, but the corresponding
Hamiltonian then again turns out to be complex.

τ

x

y

+1

−1

+1

−1

+1

+1 +1

−1

+1

Figure 4.3: The components of fi = (fix, fiy, fiτ ) are interpreted as link
variables: All components are zero except for the solid links which are given
the indicated values. Additionally, there is no variation in the τ direction.
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Chapter 4 Deconfined criticality

4.2 Monte Carlo study of a first order transition

In paper [3] we present large scale Monte Carlo simulations of the model Equa-
tion (4.12) in the ∆µsi = 0 gauge. This is a faithful representation of the two
component effective theory Equation (4.2) for the Néel order to valence bond
solid transition. Here, the Berry phases are represented by the field fi, which is
defined only so that it satisfies εµνλ∆νfiλ = δµτηi, and we conveniently use the
choice of Reference [74], see Figure 4.3.

However, by setting fi = 0, we can easily study the compact model without
the Berry phases as well. It is known that such a theory can be rewritten in
terms of a neutral mode of the XY type and a charged mode which couples to
the gauge field [80, 81, 82]. Because of the compactness, the latter mode is just
of the type we investigated in Chapter 3 with no continuous phase transition.
Hence, we expect this theory to be in the 3DXY universality class, which is in
good agreement with our simulation results.
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Figure 4.4: The heat capacity as a function of β or temperature respectively
for the two component model with compact gauge field and Berry phases
(a), and for the two component noncompact model. The symmetric peaks
develop into delta functions in the thermodynamic limit, a characteristic of
first order phase transitions

Finally, we perform Monte Carlo simulations on the noncompact version of the
model, Equation (4.4). If the two cosine terms appear in the Hamiltonian with
unequal prefactors - or phase stiffnesses - this theory is believed to be applicable
to exotic systems like the Hydrogen atom at extreme pressure [83]. As in the
case of a compact gauge field, we can express Equation (4.4) by a charged and
a neutral mode. However this time, even the charged mode gives rise to a phase
transition of 3DXY type. When on the other hand the phase stiffnesses are
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4.2 Monte Carlo study

equal as in the present study, the theory can be shown to be self dual [84], in
contradiction to the asymmetric 3DXY phase transition.

It is argued that the critical properties of the compact model with Berry phases
and the noncompact model are identical [74, 75, 76], and indeed we obtain similar
results from the Monte Carlo simulations. In Figure 4.4, we see that the peaks
in the heat capacity are almost perfectly symmetric in both models, and scaling
of the third moment of the energy reveals practically identical critical exponents.
These exponents are however surprisingly different from previous investigations
[84, 82], and hint that the nature of the phase transition is not continuous, rather
than first order. To settle this issue we have carried out a Lee–Kosterlitz analysis
(see Section 2.6) and find strong evidence for a first order phase transition in
these models. Thus, the peaks in the heat capacity are actually developing delta
functions.
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Chapter 5

Thermal fluctuations in trapped vortex
systems

Extending the XY model from two to three dimensions, the topological objects
described in section 1.3.3 becomes lines instead of points. These are vortices, ob-
jects found in systems ranging from the giant internal structure of neutron stars
[85], to tiny containers of rotating superfluid 4He [86], and to extreme weather
conditions like tornadoes and cyclones. In the context of high TC supercon-
ductors, the ordering and interactions among larger numbers of vortices have
been a deep and rich field of research for decades, see for example References
[87, 88, 83, 89].

In certain regimes of physical parameters the 3DXY model turns out to be
well suited for investigations of vortex systems [90, 22, 91, 92], and the computer
programs developed for the Monte Carlo studies of the last two chapters can
be applied with small modifications to this problem [4]. The problem we have
in mind is thermal fluctuations in arrays of vortices seen in ultracold rotating
gases of bosons, the Bose–Einstein condensates. At the lowest temperatures,
these arrays have a high degree of regularity [93], ordered as Abrikosov lattices,
the well known form for ordering of quantized magnetic flux lines in type-II
superconductors [94]. The Bose–Einstein condensates have superfluid properties,
and since their experimental realization in alkali gases just over a decade ago [95,
96], they have proved to be useful testing grounds for a variety of different physical
concepts. An important reason for this is that they are easily controllable in large
ranges of the parameters such as total particle number, density, interparticle
interaction, rotation rates and so on.

Our Monte Carlo results are believed to be applicable to harmonically trapped
Bose–Einstein condensates [93] away from the extremely dilute limit of rapidly
rotating systems where the rotation frequency is close to the trap frequency [97].
With small additional adjustments we have also simulated anharmonic situations
where the condensate is trapped in a harmonic plus quartic potential, directly
related to experiments by Bretin and coworkers [98]. Another related case is to
replace the trap by a hard-walled cylinder with a uniform bare phase stiffness
within, resulting in a model applicable to a rotating container of superfluid 4He
[99].
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Chapter 5 Trapped vortex systems

5.1 Trapped Bose–Einstein condensates

Here, we will not review the fundamentals of Bose–Einstein condensation other
than refer to a few concepts important for this work - more general introductions
can be found in References [100, 101]. In order to confine the condensate atoms in
space, various techniques can be used, however most experiments have a magnetic
trap with axial symmetry. The potential is usually that of a harmonic oscillator
and can be written

V (r, z) = const.+
1
2
Mω2

rr
2 +

1
2
Mω2

zz
2, (5.1)

where M is the single particle mass and ωr (ωz) is the radial (axial) oscillator fre-
quency. By tuning the ratio ωr/ωz, the shape of the system can be manipulated.
We will consider elongated systems where the cloud of condensed atoms have a
cigar shape, with extension Z in z direction a few times larger than the radial
extension R. In certain setups the cloud can take the form of a pancake, leaving
the physics essentially two dimensional, but in the present study 3D effects are
important.

The size of the cloud can be estimated by simple energy considerations. In a
system of N atoms rotating around the z axis with an angular rotation frequency
Ω, the rotating frame energy is

Ecloud ∼
1
2
M(ω2

r − Ω2)R2N. (5.2)

In order to maintain stability, this must be comparable to the total interaction
energy

Eint ∼ gnN, (5.3)

with g = 4πas~2/M the interaction strength and n the condensate density. Here
is as the low energy s-wave scattering length. Assuming for simplicity a qubic
system, then n = N/R3, and we get

Ecloud ∼ Eint (5.4)

⇒ R ∼
[

gN

M(ω2
r − Ω2)

]1/5

. (5.5)

We see that when the rotation rate approaches the trap frequency, the system
flies apart and other trapping methods are necessary to confine the atoms, see for
example Reference [98]. Otherwise, changing the total number of atoms in the
trap offers great flexibility for controlling the size and density of the system. If
N is sufficiently large, the Thomas–Fermi approximation can be applied to give
the following radial density distribution of the atoms [101],

n(r) = n(0)
(
1− (r/R)2

)
. (5.6)
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5.2 The frustrated, nonuniform 3DXY model

Close to r = R where the density is small, the approximation is not good and
the condensate vanishes more smoothly than predicted by Equation (5.6). In a
rotating system where vortices appear, the density profile n(r) must be viewed as
the coarse grained density since a vortex core corresponds to a complete depletion
of the condensate. The vortex core size is of the same order of magnitude as the
healing length, ξ ∼ ~/√gnm.

Typical experiments with Na or 87Rb may have N in the range of 105-107

atoms, and trapping frequency of the order 100 Hz. For example, in Reference
[93] this yields systems of up to 130 vortices with cloud size R ∼ 29µm and
healing length ξ ∼ 0.2µm.

5.2 The frustrated, nonuniform 3DXY model

In paper [4] we present results obtained by Monte Carlo simulations of a frustrated
3DXY model with a position dependent, but fixed, bare phase stiffness. The
uniform 3DXY model has been used extensively for over a decade in the context
of high TC superconductors [90, 22, 91, 92] and is assumed to work well when the
average vortex separation is larger than the healing length ξ. On the contrary,
when the vortex cores start to overlap as in very rapidly rotating Bose–Einstein
condensates, the systems enter the lowest Landau level regime [102, 103] and the
3DXY model does not apply. This happens when the interaction energy is much
smaller than the harmonic trap energy.

(a) (b) (c)

Figure 5.1: Various radial density distribution Pij used in our simulations:
With a harmonic trap (a), an anharmonic trap with a harmonic plus a quartic
term (b), and a hard-walled cylindric container (c).

We use a Hamiltonian which is a generalization of Equation (1.27) and can be
written

H = −
∑
〈ij〉

Pij cos(θj − θi −Aij). (5.7)

The bare phase stiffness Pij can be chosen so as to represent the Thomas–Fermi
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Chapter 5 Trapped vortex systems

density profile of a harmonically trapped Bose–Einstein condensate,

Pij =

{(
1− (rij/R)2

)
when rij ≤ R,

0 when rij > R,
(5.8)

where rij is the radial distance from the z directed trap center axis. However, as
far as the simulations are concerned, we can equally well choose other profiles,
see Figure 5.1. The gauge field Aij in Equation (5.7) is kept fixed during the
simulations, and serves as a uniform frustration which induces a certain number
of vortices in the system corresponding to some fixed rotation frequency Ω. It is
defined by

Aij =
∫ j

i

dl · (2πfxêy), (5.9)

and in a qubic L × L × L lattice, there will consequently be fL2 vortex lines
penetrating the system parallel to the z axis. The position of these vortices are

Figure 5.2: A snapshot of the vortices in a 72×72×72 system at T = 0.5,
where the selection consists of 72 lattice spacings in x direction, 16 in y
direction, and 32 in z direction. In the central part there are small fluctu-
ations and the vortex lines are almost straight objects, whereas fluctuations
increase and vortex loops eventually proliferate closer to the edge. The radius
of the vortices is 0.4 times the lattice spacing, only chosen so for visualization
reasons, and should not be compared to the physical size of the vortex cores.

determined by calculating around each plaquette �k the sum∑
�k

(θj − θi −Aij) = 2πnk, (5.10)

where the integer nk is the number of vortices penetrating that particular pla-
quette in the positive direction. Fluctuations of the phases θi are responsible for
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5.2 The frustrated, nonuniform 3DXY model

the dynamics of the vortex lines, but can also cause the creation of closed vortex
loops in the system. High temperature favours fluctuations and so the amount of
vortex loops increase with increasing temperature. Since temperature appears in
the partition function only through the prefactor β = 1/T , we can view the total
prefactor βPij as an effective, position dependent inverse temperature. Hence,
in the trapped system we expect large vortex fluctuations close to the edge and
gradually more of a low temperature phase in the central parts. In Figure 5.2
a snapshot of a typical vortex configuration is shown for a relatively small T .
Surface effects where the vortex lines leave or enter the system are ignored in
this study by use of periodic boundary conditions. A qubic model system can
therefore be considered as a section of an elongated cloud.

(a)

(b)

(c)

Figure 5.3: The vorticity in a simulation snapshot, integrated along the z
direction (a). In (b) such snapshots are averaged over every tenth of 5·105

Monte Carlo sweeps in order to produce a thermal average. Experimental
pictures (c) usually reflects density variations in the cloud, and vortices are
only indirectly visible through the absence of the condensate. Image cortesy
(c) Wolfgang Ketterle [104].

5.2.1 Vortex position average

We want to monitor how the presence of a harmonic trap affects the vortex
fluctuations and use Monte Carlo simulations on the nonuniform 3DXY model
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Chapter 5 Trapped vortex systems

Equation (5.7) to produce snapshots of vortex configurations. Normally, Monte
Carlo simulations are used to calculate thermal averages from large numbers of
configurations. Now however, we hope to mimick the experimental situation in
which the pictures indeed are snapshots.

For a given vortex configurations, we integrate the vorticity over the z direction
and in this way obtain two dimensional visualizations of the three dimensional
vortex systems. An example is shown in Figure 5.3 (a). In such a picture, two
closed vortex loops situated on top of each other will cancel out if they are oppo-
site in direction. On the other hand, straight vortex lines will be sharply defined
spots, with bent lines being more smeared out regions. The main difference of
these pictures from most of the pictures taken in experiments (see e.g. Figure
5.3 (c)), is that the intensity in the latter reflects local density variations in the
condensate cloud, whereas in the simulated pictures, it is the vortex matter that
is visualized. In real systems, vortices correspond to depletion of the condensate
density and are thus only indirectly visible. Still, both visualizations provide
information on the vortex position.

However, an additional feature of the simulation pictures, is that we can also
do thermal averages of vortex configurations. Then, large phase fluctuations
will correspond to many closed vortex loops effectively cancelling each other out,
leaving behind only the sample penetrating vortex lines. Stable vortex lattice
regions will remain clear in such pictures, whereas in molten regions where the
vortex lines can move, the pictures will be blurred as shown in Figure 5.3 (b).

5.2.2 Modified helicity modulus

In the pictures of the above section, we notice a rather sharp boundary between
the ordered vortex line lattice and the disordered region outside, possibly a molten
phase. In order to investigate this boundary we employ a modified version of
the helicity modulus Υµ. From investigations on high TC superconductors, it
is known that the superconducting to normal transition can be characterized
by the vanishing of the helicity modulus: When vortex lines are present, Υz is
discontinuous because the vortex line lattice melts in a first order phase transition
[22, 92]. The helicity modulus is proportional to the superfluid density ρs, and
can be defined in a uniform system as the lowest order response in the free energy
with respect to an infinitesimal phase twist across the system in µ direction. In
that sense, Υµ can be considered as the measure of an effective phase stiffness,
renormalized by vortex fluctuations. Since the free energy is a global quantity,
Υµ has no rigorous meaning in the trapped system where the bare phase stiffness
Pij depends on position. Nevertheless, we introduce a modified helicity modulus
Υ̃z only defined between two cylinders of radii R1 and R2. We do so by applying
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Figure 5.4: A comparison between the ordinary helicity modulus Υz of a
uniform system with vortex lines (top row), and the modified version Υ̃z

(lower panel). The radii R1 and R2 for wich Υ̃z is calculated, are indicated
by the white circles in the picture on the left. Due to the larger effective
temperature 1/(βPij) in this region, the stiffness vanishes at lower T than in
the uniform system.

a twist

∆(rij) ≡ ∆ij =

{
∆êz if R1 ≤ rij < R2,

0 otherwise,
(5.11)

to the model Eq. (5.7) to get a twist dependent energy function

Htrap(∆) = −
∑
〈ij〉

Pij cos(θj − θi −Aij −
1
L

∆ij · êij), (5.12)

where êij is the unit direction vector of link ij. The cylinder version of the
helicity modulus can then be defined

Υ̃z(R1, R2) ≡
∂2F ′

∂∆2

∣∣∣∣
∆=0

=
1
N ′

〈∑′
Pij cos(θj − θi −Aij)

〉
− 1
TN ′

〈∑′[
Pij sin(θj − θi −Aij)

]2
〉

(5.13)

where
∑′ is over all links where ∆ij is nonzero (depends on R1 and R2) and

N ′ is the number of these links. The total free energy F of the system will have
contributions due to the large gradient in the phase twist normal to the surfaces
defined by R1 and R2, and we therefore choose only to calculate the response in
free energy F ′ for the subsystem between the two surfaces. It is clear that in the
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limit where the volume of this subsystem goes to infinity, Υ̃z converges to Υz.
Yet, we also believe that the modified helicity modulus is a useful probe of the
states in a finite system. This is further discussed in paper [4].

5.2.3 Renormalized density

An alternative way of visualizing the vortex lattice is to create two dimensional
plots similar to those in Section 5.2.1, but this time integrating density rather
than vortex positions. The density is estimated simply by associating the under-
lying lattice constant of the numerical grid with the vortex core size: A unit cell
in the grid has density 1/L if it is empty and 0 if it is penetrated by a vortex.
This we integrate along the z direction and modulate with the a priori density
given by Pij . The resulting two dimensional plots now provides information both
on the vortex line lattice structure and on the density of the condensate cloud
itself, renormalized by vortex fluctuations.

This is directly comparable to the experimental pictures, and in particular, we
consider [105] results from experiments performed by Bretin and coworkers [98].
They used a trap with an additional quartic term in order to confine the atoms

a = 0 a = 1 a = 2

Figure 5.5: Observation of vortices in an experiment where the condensate
was confined by a harmonic plus quartic potential (top row), after Bretin
and coworkers [98]. Renormalized condensate density from simulations with
a similar density profile is shown in the bottom row. Note the loss in visibility
when the strength of the harmonic term increases, corresponding to faster
rotation relative the trap frequency.

even when approaching the harmonic trap frequency ωr. An unexplained feature
in their results was the loss in visibility of the vortices at high rotation rates (see
Figure 5.5), which we believe is due to the reduced density in the central parts
of the cloud. Such a reduction is readily interpreted as an increased effective
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5.2 The frustrated, nonuniform 3DXY model

temperature leading to enhanced fluctuations when incorporated through the
trap factor

Pij =

{
c
(
1 + a(rij/R)2 − b(rij/R)4

)
when rij ≤ R,

0 when rij > R,
(5.14)

in our model. We have chosen a as the free parameter, with b = 1 + a and
c = 4(1+ a)/[4(1+ a)+ a2] for normalization. Thus, at a sufficiently high overall
temperature T = 1/β, the central part simply melts and looses its superfluid
properties, as is also indicated by the vanishing of the modified helicity modulus
in Figure 5.6.

T = 1.67
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Figure 5.6: Modified helicity modulus Υ̃z in a system with a harmonic plus
quartic density profile, calculated for the radii indicated by the circles in the
leftmost pictures.
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Chapter 5 Trapped vortex systems

Finally, we mention briefly that our model possibly can be applied to the cur-
rently very active field of crossover of paired fermion systems from the BCS1

to the Bose–Einstein regime. Recent work of Schunck and coworkers [106] show
remarkably similar structures of the condensate when compared to the renor-
malized density plots of our simulations with a harmonic trap (Figure 5.7). This

T = 0.50 T = 1.00 T = 1.11 T = 1.25 T = 1.43 T = 1.67 T = 2.00

Figure 5.7: Observations of vortices in rotating systems where strongly inter-
acting fermions pair up to form a superfluid according to BCS theory (first
and second row), after Schunck and coworkers [106]. In the last row, we
demonstrate the renormalized condensate density obtained from simulations
with a harmonic a priori density profile.

comparison requires further study. It is not clear whether the outer regions of the
experiemental pictures correspond to unpaired fermions, in which case the 3DXY
model does not apply, or fermions in Cooper pairs effectively above the conden-
sation temperature due to low density. In the latter situation, the similarities in
Figure 5.7 may not be incidental.

1BCS refers to the Bardeen–Cooper–Schrieffer theory for superconductivity.
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[73] J. Fröhlich and T. Spencer, J. Stat. Phys. 24, 617 (1981).

[74] S. Sachdev, Quantum phases and phase transitions of mott insulators, in
Lecture Notes in Physics: Quantum magnetism, edited by U. Schollwock,
J. Richter, D. J. J. Farnell, and R. A. Bishop, Springer, Berlin, 2004.

[75] T. Senthil, L. Balents, S. Sachdev, A. Vishwanathand, and M. P. A. Fisher,
303, 1490 (2004).

[76] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A. Fisher,
Phys. Rev. B 70, 144407 (2004).

62



Bibliography

[77] M. V. Berry, Physics Today 43, 34 (1990).

[78] F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).

[79] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

[80] E. Babaev, Phys. Rev. Lett. 89, 067001 (2002).

[81] E. Babaev, Nuclear Physics B 686, 397 (2004).

[82] J. Smiseth, E. Smørgrav, E. Babaev, and A. Sudbø, Phys. Rev. B 71,
214509 (2005).

[83] E. Babaev, A. Sudbø, and N. W. Ashcroft, Nature 431, 666 (2004).

[84] O. I. Motrunich and A. Vishwanath, Phys. Rev. B 70, 075104 (2004).

[85] G. Baym, C. Pethick, and D. Pines, Nature 224, 673 (1969).

[86] E. J. Yarmchuk, M. J. V. Gordon, and R. E. Packard, Phys. Rev. Lett. 43,
214 (1979).

[87] A. Houghton, R. A. Pelcovits, and A. Sudbø, Phys. Rev. B 40, 6763 (1989).

[88] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M.
Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

[89] E. Smørgrav, J. Smiseth, E. Babaev, and A. Sudbø, Phys. Rev. Lett. 94,
096401 (2005).

[90] Y.-H. Li and S. Teitel, Phys. Rev. Lett. 66, 3301 (1991).

[91] R. E. Hetzel, A. Sudbø, and D. A. Huse, Phys. Rev. Lett. 69, 518 (1992).

[92] X. Hu, S. Miyashita, and M. Tachiki, Phys. Rev. Lett. 79, 3498 (1997).

[93] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Science 292,
476 (2001).

[94] A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957).

[95] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.
Cornell, Science 269, 198 (1995).

[96] K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995).

[97] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A.
Cornell, Physical Review Letters 92, 040404 (2004).

63



Bibliography

[98] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Physical Review Letters
92, 050403 (2004).

[99] L. J. Campbell and R. M. Ziff, Phys. Rev. B 20, 1886 (1979).

[100] C. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases
(Cambridge University Press, 2001).

[101] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).

[102] N. R. Cooper, S. Komineas, and N. Read, Physical Review A 70, 033604
(2004).

[103] G. Watanabe, G. Baym, and C. J. Pethick, Physical Review Letters 93,
190401 (2004).

[104] http://cua.mit.edu/ketterle group.

[105] S. Kragset, E. Babaev, and A. Sudbø, unpublished .

[106] C. H. Schunck, M. W. Zwierlein, A. Schirotzek, and W. Ketterle, cond-
mat/0607298 (2006).

64




