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Quantum phase transitions in Mott insulators do not fit easily into the Landau-Ginzburg-Wilson
paradigm. A recently proposed alternative to it is the so-called deconfined quantum criticality scenario,
providing a new paradigm for quantum phase transitions. In this context it has recently been proposed that
a second-order phase transition would occur in a two-dimensional spin 1=2 quantum antiferromagnet in
the deep easy-plane limit. A check of this conjecture is important for understanding the phase structure of
Mott insulators. To this end we have performed large-scale Monte Carlo simulations on an effective gauge
theory for this system, including a Berry-phase term that projects out the S � 1=2 sector. The result is a
first-order phase transition, thus contradicting the conjecture.
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The Landau-Ginzburg-Wilson (LGW) theory for phase
transitions has been an immensely successful paradigm of
physics for the last 50 years. It is one of the cornerstones of
statistical and condensed matter physics, providing deep
insight into phase transitions [1]. The standard example is
the well-known paramagnetic-ferromagnetic phase transi-
tion. Recently, examples of phase transitions that do not fit
into the LGW paradigm have been discussed [2–4]. A
prominent example is the continuous quantum phase tran-
sitions from a Néel state with conventional antiferromag-
netic order into a paramagnetic valence-bond solid (VBS)
state [5]. In the Néel state, an SU�2� symmetry is broken,
while in the VBS phase translation invariance of the lattice
is broken. The LGW paradigm does not describe this phase
transition correctly, since it predicts a first-order phase
transition in this case. In view of the failure of the LGW
paradigm in this and other cases, a new scenario has
recently been proposed [2,3], introducing the concept of
deconfined quantum criticality (DQC). This concept ap-
plies to systems where the order parameter can be viewed
as being composed by elementary building blocks. For
instance, in the case of the Néel-VBS transition the spinons
are the building blocks of the spin field. Similarly to quarks
in hadrons, the spinons are confined in both the Néel and
VBS phases. The DQC scenario asserts that the spinons are
deconfined only at the critical point. This claim is based on
a subtle destructive quantum interference mechanism be-
tween instantons and the Berry phase [2].

An attempt to provide proof of evidence for these ideas
has recently been put forth [2]. It involves a deformation of
the two-dimensional Heisenberg model into an easy-plane
quantum antiferromagnet. The effective theory of a spin
1=2 quantum antiferromagnet is a O�3� nonlinear � model
with a staggered Berry-phase factor [4]. Such a nonlinear�
model describes the fluctuations of the orientation nj of the
order parameter. The easy-plane deformation adds a term
proportional to n2

zj to the action, which explicitly breaks

the O�3� symmetry down to U�1�. This lower symmetry
simplifies considerably the analysis, especially when the
CP1 representation nj � z�ja�abzjb is used, with jzj1j2 �
jzj2j

2 � 1 due to the local constraint n2
j � 1. The CP1

representation naturally introduces a local Abelian gauge
symmetry, since nj is invariant under the local gauge
transformation zja ! ei�ajzja. A deep easy-plane deforma-
tion forces n2

zj � 0, thus inducing the additional local
constraint jzj1j2 � jzj2j2. This allows us to write zja �
ei�ja=

���
2
p

. The requirement of local U�1� gauge invariance
and the deep easy-plane limit naturally leads to an effective
lattice gauge theory for a quantum antiferromagnet pro-
posed in Ref. [6], which for S � 1=2 has the lattice
Lagrangian
 

Lj � ��
X2

a�1

cos����ja � Aj��

� � cos�������Aj�� � i	jAj
; (1)

where Aj is a compact gauge field which here is doing
more than just being an auxiliary field, like in the case of
the CP1 model. It determines also the Berry phase for the
above model. The index 
 corresponds to imaginary time
and the staggering factor is given by 	j � ��1�j. Note that
the present gauge field is a function of the spacetime
coordinates, in contrast to the usual Berry gauge potential
appearing in spin models [4], which is a functional of the
spin field.

Compactness of the gauge field gives rise to instanton
configurations [7] which are known to spoil the phase
transition in a corresponding model with only one phase
field and no Berry phase [8]. In the absence of Berry phase
and with two phase fields present, on the other hand, a
phase transition in the 3Dxy universality class occurs
[9,10] regardless of whether the gauge field is compact or
not. Since only one gauge field is present and there are two
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phase fields available, the Higgs mechanism is able to
suppress only one out of two massless modes. The remain-
ing massless mode is charge neutral and drives the 3Dxy
transition [10].

Recently, it has been argued that the Berry phase, which
is crucial to describe the phase inside the paramagnetic
phase [2,3], suppresses the instantons at the critical point.
Here we will investigate this point by monitoring the phase
transitions in the model (1) in the presence and absence of a
Berry phase. In the former case a phase transition is
expected in the charged sector, contrasting with the tran-
sition driven only by the neutral sector in absence of the
Berry phase. The result will be shown to be a first-order
phase transition.

The DQC scenario implies that the critical point is
governed by an easy-plane system Lagrangian featuring a
noncompact gauge field, i.e.,

 L i � ��
X2

a�1

cos����ia � Ai�� �
�
2
���Ai�

2: (2)

This model with unequal bare phase stiffnesses has been
studied in great detail [10]. It features two distinct second-
order phase transitions, one belonging to the 3Dxy univer-
sality class and another one corresponding to the so-called
inverted 3Dxy transition [11]. In the limit where the bare
phase stiffnesses are equal, clear signals of non-3Dxy
behavior are seen [10,12,13]. In Ref. [12], strong indica-
tions of a first-order phase transition in a loop-gas repre-
sentation of the noncompact model Eq. (2), were found.
We will consider both Eqs. (1) and (2) in detailed
Monte Carlo (MC) simulations.

For performing MC simulations on the model with a
Berry-phase term, it is convenient to introduce a dual
representation of the model Eq. (1). In such a representa-
tion the action is real, with a Lagrangian given by [4]

 L i �
1

2�

X2

a�1

��� h�a�i �
2 �

1

2�
�h�1�i � h�2�i � fi ��si�2:

(3)

Here, h�a� are integer-valued dual gauge fields, and
"�����f�i � ��
	i. Note that we would obtain Eq. (3)
both for Eqs. (1) and (2), with fi � 0 for Eq. (2). For
Eq. (1) with compact Ai�, si is integer valued. For
Eq. (2) with a noncompact Ai�, si is real valued.
Therefore, in the former case si can be gauged away since
the h�a�-fields are integer valued. We have chosen a gauge
where si � 0. The MC computations were performed us-
ing Eqs. (2) and (3). For both Eqs. (2) and (3), we have used
� � �. We have used the standard Metropolis algorithm
with periodic boundary conditions on a cubic lattice of size
L� L� L. For Eq. (3) we have used L � 4, 8, 12, 16, 20,
24, 32, 36, 48, 60, 64, 72, 80, 96, 120, while for Eq. (2) we
have used L � 48, 64, 80, 96, 112, 120. A large number of
sweeps is required in order to get adequate statistics in the

histograms (see below) for the largest system sizes. First,
we have computed the second moment of the action M2 	
h�S� hSi�2i for the model with and without a Berry-phase
term, where S �

P
iLi. Second, we have focused on a

number of quantities that provide information on the char-
acter of the phase transition associated with the specific
heat anomaly. The first of these quantities is the third
moment of the action, M3 	 h�S� hSi�

3i. At a second-
order phase transition this quantity should scale as follows.
The peak-to-peak height scales as L�1���=�, whereas the
width between the peaks scales as L�1=� [14]. At a first-
order phase transition, these quantities scale as L6 and L�3,
respectively [15]. We also study the probability distribu-
tion P�S; L� of the action S for various system sizes. At a
first-order phase transition, P�S; L� will exhibit a double-
peak structure associated with the two coexisting phases.

The specific heat M2 is shown in Fig. 1. Panel (a) shows
the anomaly for the model Eq. (3) with no Berry-phase
term, i.e., �� f � �0; 0; 	� � 0. The anomaly has the
characteristic asymmetric shape of the 3Dxy model. In
this case, there are no Berry phases to suppress the instan-
tons of the compact gauge-field A at the critical point.
Hence, the charged sector does not feature critical fluctua-
tions that can interfere with those of the neutral sector.
When the Berry-phase field f is included, the specific heat
is notably more symmetric and the anomaly develops into a
�-function peak, consistent with a first-order phase tran-
sition. This is shown in panel (b).

To investigate more precisely the character of the phase
transition when a Berry-phase term is present, we have
performed finite-size scaling (FSS) of the third moment of
the action, M3 [14]. The results are shown in Fig. 2,
panel (a). It is seen that for small and intermediate system
sizes, the height increases with L in a manner which might
appear consistent with that of a second-order phase tran-
sition. However, the quality of the scaling is not satisfac-
tory, since a clear curvature in the scaling plots is seen (red
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FIG. 1 (color online). Specific heat M2 of Eq. (3) for various
system sizes. Panel (a): Without Berry-phase term. The peak
develops into a singularity of the 3Dxy type. Panel (b): With
Berry-phase term. The peak develops into a �-function singu-
larity with a peak scaling as L3, consistent with a first-order
transition. Note the symmetry and asymmetry of the peaks in the
right and left panels, respectively. This is to be expected, since
the peaks in the right panel originate with the superposition of a
3Dxy peak and an inverted 3Dxy peak.
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data points). As system sizes increase we see a gradual
increase in the apparent value of �1� ��=�, until for large
system sizes, we clearly have M3 
 L6, consistent with a
first-order phase transition [15].

Panel (b) of Fig. 2 shows the scaling of the width of M3.
Again, the line with the smallest negative slope is the line
one would obtain for the 3Dxy model, while the line with
the most negative slope is 
L�3, characteristic of a first-
order phase transition. Again we obtain apparent scaling,
with a crossover regime at intermediate length scales into a
regime where the width scales as it would in a first-order
phase transition [15]. The results of Fig. 2 provide further
support to the notion that the phase transition in the model
with a compact gauge-field and a Berry-phase term is a
first-order phase transition.

To investigate this further, we have computed the proba-
bility distribution P�S; L� for various system sizes. The
results are shown in Fig. 3. Panel (a) shows results for
Eq. (1) in the representation Eq. (3). Panel (b) shows results
for Eq. (2). The Ferrenberg-Swendsen algorithm has been
used to reweight the histograms [16]. For L � 48, we
essentially have not been able to resolve a double-peak
structure at all, showing that the phase transitions in the
models Eqs. (1) and (2) are weakly first order. We have
located the transition temperature from the peak structures
in the specific heat and M3, and performed long simula-

tions at this temperature for each L. For the largest sys-
tems, L � 96, 120, up to 120� 106 sweeps over the lattice
were done. A clear double-peak structure in P�S; L� is seen
to develop for system sizes L> 60. The fact that such large
system sizes are required to bring out the double-peak
structure, implies that this phase transition is weakly first
order.

We also perform FSS of the height of the peak between
the two degenerate minima in the free energy
� ln�P�S; L�. This height should scale as L2 in a first-
order phase transition, since it represents the energy of an
area which separates two coexisting phases [17]. The
results are shown in panel (a) of Fig. 4. For large enough
systems, the height clearly approaches the dotted line
L2,
as in a first-order transition. This is corroborated by ex-
tracting the latent heat per unit volume in the transition,
shown in the lower panel of Fig. 4. It approaches a nonzero
constant as L is increased, as it should in a first-order phase
transition.

Further insight into the nature of the first-order phase
transition can be obtained by means of the renormalization
group (RG). In the field theory Lagrangian the interaction
of an easy-plane system reads Lint�u0�jz1j

2�jz2j
2�2=2�

v0jz1j
2jz2j

2�u0�jz1j
4�jz2j

4�=2�w0jz1j
2jz2j

2, where
w0 � u0 � v0. Consider a generalized situation where
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FIG. 3 (color online). Histograms for the probability distribu-
tion P�S; L� as a function of S=L3 for various system sizes L. (a):
results for Eq. (1) in the representation Eq. (3). (b): results
Eq. (2). A double-peak structure develops with the latent heat
per unit volume approaching a finite constant as L is increased.
This is a hallmark of a first-order transition. For the largest
systems, up to 120� 106 sweeps over the lattice were per-
formed. A total of approximately 500 000 CPU hours were
used to obtain these results.
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FIG. 2 (color online). Scaling of the height [panel (a)] and
width [panel (b)] of M3 of the action in Eqs. (2) and (3). The
lines in panel (a) represent L1:43 and L6. The former is the 3Dxy
result. The lines in panel (b) represent L�1:49 and L�3. The
former is the 3Dxy result. For large system sizes, the height and
width scale in manner consistent with a first-order phase tran-
sition. Also shown are results for Eq. (3) with no Berry-phase
term f � 0 (green symbols). These results follow the 3Dxy
scaling lines. The red symbols are the results for Eq. (3) while
the blue symbols are results for Eq. (2).
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the complex fields have each N=2 components. The renor-
malized dimensionless couplings in d � 4� " dimensions
are g � u��", h � w��", and f, where f is the dimen-
sionless gauge coupling and � is an arbitrary mass scale.
The � functions at one-loop order are [18] �g � �"g�
6gf� �N � 8�g2=2� 2Nh2 � 6f2, �h � �"h� 6hf�
3�N � 2�gh� 6f2, and �f � �"f� Nf2=3. Nontrivial
fixed points with f � 3"=N and h < 0 are found for N �
300, while in the deep easy-plane limit h � 0 no fixed
points with f � 3"=N are found for all values of N. In a
Ginzburg-Landau (GL) theory of superconductors, the ex-
istence of a critical value of N above which nontrivial fixed
points are found actually reflects the strong-coupling be-
havior at much lower values ofN. It turns out that the phase
transition for one complex order parameter is second order
in the type II regime [11], while a first-order transition
occurs in the type I regime [19–21]. Inspired by the GL
case, we interpret the complete absence of a critical value
of N for h � 0 as a clear signature of a first-order phase
transition in the deep easy-plane regime. This is a further
confirmation of our MC results; see also Ref. [12], where a
first-order transition in a closely related model has also
been found.

In summary, our large-scale MC simulations of the deep
easy-plane quantum antiferromagnet confirm the
instanton-Berry-phase suppression mechanism proposed
in Ref. [2]. Therefore, the spinons are indeed deconfined
at the phase transition. However, the phase transition in this
case is first order, which contradicts the DQC picture for
this model, where a second-order phase transition has been
predicted.
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FIG. 4 (color online). Panel (a) shows the scaling of the height
�F of the peak between the two minima in � lnP�S; L� both for
Eqs. (3) (red curve) and (2) (blue curve). Dotted line is the line

L2. The height scales as �F
 Ld�1. This is a hallmark of a
first-order transition. Panel (b) shows latent heat per unit volume
�S=V as a function of L. The upper (blue) curve is from Eq. (2),
the lower (red) curve is from Eq. (3). �S=V approaches a
nonzero value as L is increased.
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