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Summary

This work treats modelling of electromagnetic fields from controlled sources in geophysical
applications. The focus is on modelling the marine CSEM (controlled source electromagnetic)
method in planarly layered media. The recent introduction of SeaBed Logging (SBL) as an
application of the marine CSEM method for direct hydrocarbon identification has resulted
in increased survey activity, and expanded as well as renewed the interest for investigating
electromagnetic field propagation in the subsurface of the earth.

The material within this document consists of a short introduction to the CSEM and
SBL methods and four self-contained papers:

• Low-frequency electromagnetic fields in applied geophysics: Waves or dif-

fusion? treats propagation of low-frequency fields in conductive media, and compares
their behaviour to nondistorted field propagation in lossless media.

• The first test of the SeaBed Logging method describes the first laboratory test of
this method. The scaled experiment was performed in order to validate if the detection
of thin resistive layers within conductive surrounding media is possible.

• Asymptotic evaluations of the marine CSEM field integrals elaborates on how
electromagnetic signals propagate in an idealized stratified earth model. To this end,
the method of steepest descents is applied in order to separate the various wavemodes.

• Electromagnetic fields in planarly layered anisotropic media formulates a
mathematical description of the field propagation in stratified media with arbitrary
anisotropy. The field equations are solved by using the matrix propagator technique.

Even if electromagnetic field propagation in layered media is a rather mature research
subject, the current development of the CSEM and SBL methods demands reinvestigations
and new theoretical insights. Optimal survey planning and solid interpretation rely on a
thorough understanding of the signal propagation in the subsurface. The main motivation
in this thesis is to contribute to increased knowledge of how electromagnetic fields travel in
the earth.
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Chapter 1

Thesis introduction

The purpose of this introduction is to give a brief review of the marine CSEM (controlled
source electromagnetic) and SBL (SeaBed Logging) methods. The main contents of the
papers are furthermore outlined, and I have attempted to put the contribution from each
paper into perspective as well as to explain the motivation for writing them.

1.1 Electromagnetic methods in geophysics

The history of scientific research of electromagnetism started with Ørsted’s discovery of
the fundamental relation between electricity and magnetism, and furthermore Ampère’s ex-
planation of Ørsted’s findings (Hofmann, 2006). Darrigol (2000) presents a review of the
development of electrodynamics in the 19th century, e.g., Ampère’s formulations, Faraday’s
field concept, Maxwell’s equations, Hertz’ production of Maxwell’s predicted waves, and
Einstein’s solution to the discrepancy between Newtonian and Maxwellian physics.

A summary of the early history of electromagnetic exploration in geophysics can be found
in Ward (1980). Presumably the most successful application for hydrocarbon exploration has
been well logging which was introduced by the Schlumberger brothers (Johnson, 1962). For
the variety of remote sensing methods that were introduced during the 20th century, it seems
that the more or less futile struggle to find a direct hydrocarbon-detection technique made
electromagnetic methods of minor importance compared to seismic methods in the petroleum
industry. The activity in electromagnetic exploration has however not been nonexistent, and
in the 1980s, improved equipment and increasing data-processing power led to extensive
development. Of particular interest to the work presented in this thesis is the development
of marine exploration methods such as the marine CSEM and the marine magnetotelluric
(MT) method (Chave et al., 1991).

Most of the electromagnetic applications in geophysics attempt to measure the resistiv-
ity of the earth materials. Numerous different names are used for more or less the same

1



Thesis introduction

resistivity-measurement methods as is evident in Nabighian (1987). The variety of methods
reflects the possibility to vary the source type (e.g., magnetic or electric dipole) and source
signal (e.g., direct current, time-harmonic, or transient).

The electromagnetic properties of a medium are described by the electric permittivity,
magnetic permeability, and electric conductivity (resistivity is the reciprocal of conductivity).
Since the earth is conductive, the attenuation of propagating waves becomes more severe as
the signal frequency increases (frequencies in the optical window excepted). For example the
use of radio frequencies in the ground penetrating radar (GPR) method thus implies that
this method is employed for sensing the near surface. Both the electric permittivity and
conductivity are important electromagnetic properties for the field propagation in GPR. The
electric permittivity is also important in induced polarization methods where one seeks to
measure the capacitance of the earth materials. In most of the exploration methods, except
for e.g., magnetic ore-body prospecting, the possible variation of the magnetic permeability
has so far not been recognized as important.

All of the methods that use human-made signal sources can in principle be referred
to as CSEM methods. Contrary to the CSEM method, the MT method uses naturally
occurring electromagnetic signals in the magnetosphere and ionosphere to measure the earth’s
apparent resistivity. The source signal in MT contains a spectrum of frequencies. The lower
frequencies can be used to get a rough estimate of the deep subsurface resistivity profile, and
the higher frequencies can be used to determine the resistivity profile in the near subsurface.
The resolution of a subsurface image from MT increases as the applied source frequency
increases. The MT method was introduced by Cagniard in the 1950’s (Cagniard, 1953). The
same receiver equipment can be used for both the CSEM and MT methods.

Every application of electromagnetic methods in geophysics obeys the same fundamen-
tal electromagnetic equations and can thus be compared to exploitation of electromagnetic
phenomena in other technological disciplines such as for example communication technology.
The application of antennas that operate at extremely low frequencies used in submarines,
and the theoretical investigations in this subject (Burrows, 1978), are thus closely related to
the marine CSEM application and corresponding research.

1.2 The CSEM and SBL methods

In 2000 the first SBL survey was performed offshore Angola (Ellingsrud et al., 2002). The
survey was a result of successful laboratory testing (presented in Chapter 3 in this document),
and since then, the interest in electromagnetic methods for subsurface exploration has in-
creased. Today, six years after, electromagnetic methods are attractive for the petroleum
industry as complementary tools to seismic methods, or even standalone tools, for remote
sensing of the subsurface.

2



1.2 The CSEM and SBL methods

The SBL operation offshore Angola used the same apparatus as a standard marine CSEM
survey. Even if the application of marine CSEM for hydrocarbon exploration had been
investigated (Chave et al., 1991), the idea that the guiding of electromagnetic energy in
hydrocarbon reservoirs is detectable, had not been pursued before Eidesmo et al. (2002)
suggested using marine CSEM for direct hydrocarbon identification. The marine CSEM
method was introduced by Cox et al. (1971), and has since then been successfully applied
to study the oceanic lithosphere and active spreading centres (Young and Cox, 1981; Cox
et al., 1986; Chave et al., 1990; Evans et al., 1994; Constable and Cox, 1996; MacGregor and
Sinha, 2000).

In a marine CSEM experiment, a dipole antenna is used as source. Normally, a horizontal
electric dipole source is used since this configuration results in the strongest response from the
subsurface. The dipole emits a low-frequency signal (could be many frequency components,
typically in the range 0.1 Hz to 10 Hz) into the surrounding media, and the signal is usually
recorded by stationary seafloor receivers having both magnetic and electric dipole antennas.

( )I

( )III

( )II

( )IV

( )V

3

s

1

0

2

Figure 1.1: A sketch of a basic marine CSEM/SBL survey layout. The source antenna is
towed behind the vessel, and the receivers are situated on the seabed. The signal propagation
is indicated assuming that a hydrocarbon reservoir is present. The main contributions to the
total response come from the sea-surface (I), direct field (II), seabed (III), “ray” reflection
(IV), and guiding (V).
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Thesis introduction

A typical CSEM/SBL survey layout is sketched in Figure 1.1 along with the basic signal
propagation. The model that is presented consists of an air halfspace (region 0), a seawater
layer (layer s), an overburden (layer 1), a thin resistive reservoir (layer 2), and an underburden
(region 3). The conductivity of the seawater is larger than the conductivity of the overburden.
The overburden conductivity is more or less equal to the underburden conductivity. The
thin layer (e.g., hydrocarbons) is more resistive than the surrounding media and is normally
referred to as a resistive layer. The term resistive layer might be a bit misleading since the
layer is actually very conductive. Thus, the conduction current in Ampère’s law dominates
the displacement current for this medium also. However, the thin layer is resistive compared
to the conductive surroundings which justifies the use of nomenclature.

Figure 1.1 furthermore contains a vessel that is towing a horizontal electric dipole source.
In order to get as much energy down into the subsurface as possible, the source must be
towed close to the seafloor. In a typical survey the source antenna has a length of 200 m and
the receivers, which are situated on the seafloor, have a separation distance of approximately
1 km. The illustrated signal paths between the source and one of the receivers are: the sea-
surface response (I), the direct field (II), the lateral wave along the seabed (III), the “ray”
reflection from the thin layer (IV), and the guided wave in the resistive reservoir (V). The
notion of the thin resistive layer as a “waveguide” stems from a description of the subsurface
layers as stratified. In 3-D structures, the term “lossy resonator” might be more appropriate
(cf. Jackson, 1998).

At short offsets (< 2 km) between a source and receiver, the direct field (path II) dom-
inates the received signal. At longer offsets, the dominating contributions are due to the
resistor (path V) and sea-surface (path I). These contributions contain multiple reflections
in the water column which are not illustrated (cf. Chapter 4). In deep waters, the response
from the sea-surface will be less due to the heavy damping of the signal in the water column.
If the reservoir is not resistive, the guiding effect will not be present, and in this case, the
dominating signal from the subsurface in Figure 1.1 will be from the lateral wave along the
seabed (path III).

Along with doing a marine CSEM survey, a marine MT survey can be carried out simul-
taneously (when the controlled source is not active) since the same receiving equipment is
used for both methods. The additional information from MT can be used as a supplement
to the CSEM responses (Hoversten et al., 2006) when processing the survey data.

In the last few years, the terms marine CSEM and SBL have been used somewhat dif-
ferently due to the development of SBL as an application of marine CSEM for direct hy-
drocarbon detection. At present, many workers refer to all types of offshore hydrocarbon
exploration with controlled sources as marine CSEM.

4



1.3 Short review of the work

1.3 Short review of the work

The thesis consists of four papers. The focus has been on the propagation of electromagnetic
fields in stratified media, and the sources of the electromagnetic fields have been considered
in 3-D space for all of the presented work. Proper handling of the inversion and migration
problem relies on a thorough understanding of the mechanisms behind the field propagation.
A numerical solution to Maxwell’s equations for 3-D structures follows more or less directly
from the equations. However, the formulation of a specific problem in an appropriate manner
requires knowledge of the signal behaviour. It is thus believed that the contribution here is
of value when considering modelling of 3-D structures, and also when treating the inverse
problem and migration. Moreover, the equations for layered media are often useful when
applying approximation methods to more complicated structures.

The first paper (Chapter 2) can be read as an introduction to electromagnetic field prop-
agation in conductive media. The second paper (Chapter 3) presents the first test of the SBL
method. This chapter should be of interest both as a historical documentation and an intro-
duction to the basic concepts in the marine CSEM and SBL methods. The last two chapters
constitute the main body of the thesis. Chapter 4 evaluates how the electromagnetic signals
propagate in a planarly layered model, and Chapter 5 treats stratified media with arbitrary
anisotropy. In the following the papers are reviewed in more detail.

In Chapter 2, the paper Low-frequency electromagnetic fields in applied geo-

physics: Waves or diffusion? is presented. It was written together with Hans Magne
Pedersen, Bjørn Ursin, Lasse Amundsen, and Svein Ellingsrud. The paper was published by
Geophysics in July 2006. The version presented in the thesis is slightly rewritten in order to
be more consistent with the notation and language in the rest of the document.

The paper is a review of basic electromagnetic field propagation in dispersive and con-
ductive media as well as nondispersive and nonconductive media. Maxwell’s equations are
considered in the frequency domain, and basic plane-wave analysis, asymptotic ray theory,
and propagation in layered media are subjects of discussion along with Green’s functions and
electric dipole radiation in homogeneous regions. The common frequency-domain description
of electromagnetic fields is used to calculate the time-domain characteristics of the fields for
single-frequency-component signals and transients. For nonconductive media, this is shown
to give basic sinusoidal wave propagation and pulse propagation, respectively. For conduc-
tive media, the paper demonstrates the attenuated wave propagation for the time-harmonic
signal and the diffusion-like spreading for the transient signal.

The motivation for writing the paper was an apparent reluctance of some workers in
the geophysical community to accept the term wave propagation in association with low-
frequency field propagation in conductive media; they prefer to use the notion of diffusion
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for such field propagation. The conclusion from our review is that both the term diffusion
and wave propagation can be used, but that both terms should be used with some care. In-
dependent of the choice of naming convention, the paper demonstrates that the well-known
mathematical techniques in wave theory can be used for low-frequency fields in applied geo-
physics.

Chapter 3 presents The first test of the SeaBed Logging method. The paper is a
result of collaboration with Hans Magne Pedersen, Tor Schaug-Pettersen, Svein Ellingsrud,
and Terje Eidesmo. It has been submitted to the Journal of Applied Geophysics, and it
describes the first laboratory test of the SBL method. The scaled experiment was performed
in order to validate if the detection of thin resistive layers within conductive surrounding
media is possible. The presented results show very good agreement between measured and
modelled data. The modelled data were produced by a modelling tool for stratified media
that can contain a dipole source in one of the layers. That 1-D modelling tools are sufficient
for many model configurations is confirmed by Constable and Weiss (2006) who consider
1-D modelling of thin resistors and conclude that this often give satisfactory answers when
compared to 3-D modelling.

The incentive for writing a summary of the initial test of the SBL method was to document
the central idea and history behind the SBL method. In the thesis, the paper also introduces
basic concepts and formulas that are further developed in the following two chapters. It
might be in order to mention that the implications of the results of the tank experiment
have been substantial. The successful test led to the first SBL survey offshore Angola in
2000 (Ellingsrud et al., 2002), and was an important part of the process that resulted in the
establishment of the company emgs AS. The current growth in electromagnetic exploration
activity in the petroleum industry is thus much obliged to the successful results in the tank
experiment.

In Asymptotic evaluations of the marine CSEM field integrals presented in
Chapter 4, I consider propagation of low-frequency electromagnetic fields in conductive
media in terms of their wavemodes. The paper has been submitted to IEEE Transactions
on Geoscience and Remote Sensing. The expressions that describe the electromagnetic fields
in layered media can be written as integrals over a spectrum of plane waves in terms of
Hankel functions and transfer functions. The evaluation of these integrals by the method
of steepest descents leads to a description of the wave propagation in terms of the various
wavemodes. This technique is well known and has e.g., been used to describe propagation of
radio waves along the surface of the earth. Wait (1998) gives a review of the history of the
so-called ground wave. Brekhovskikh (1960), Stamnes (1986), Kong (2000), and Felsen and
Marcuvitz (2003) investigate asymptotic evaluation methods of integrals that describe wave
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propagation.

When using the method of steepest descents, the wavemodes are results of the behaviour
of the integrand in the complex wavenumber domain, and they can roughly be divided into
the following categories: The reflected or transmitted ray is described by the saddle-point
contribution, a possible lateral wave is described by branch points, and surface waves or
guided waves are due to poles. The method of steepest descents is most often used for wave
propagation in lossless media, but some investigations have also been done for propagation in
conductive regions. Baños (1966) presents a thorough analysis of a medium configuration of
two halfspaces where one is conductive. Wait (1966) considers propagation in a multilayered
earth. Both authors describe the propagation in terms of electromagnetic potentials. In
the contribution presented in Chapter 4, the investigation is done for the field integrals
directly. The asymptotic approximations are accurate and provide a thorough basis for a
better understanding of the signal propagation in typical marine CSEM models. The results
explain why, for instance, the MT method will not detect thin layers in the manner that
the CSEM technique is able to (since the source signal in the MT method can be regarded
as plane waves). For the migration problem, the wavemode considerations suggest how the
standard reflector problem from seismics (Claerbout, 1971) must be modified in CSEM in
order to account for the lateral and guided wavemodes.

The results from the asymptotic evaluation should be valuable for optimizing the survey
setup in marine CSEM and SBL as well as when processing and interpreting the collected
data. The conclusions in the paper suggest that collection of data could focus on the ability
to split the contribution into the TE- and TM-polarization modes. By using the asymptotic
field expressions, one should then look for characteristic contributions from the different
wavemodes in the data set. The investigations in the paper also imply that, provided that
the polarization modes can be separated in acquisition or data processing, shallow water
conditions may result in enhanced subsurface response.

Although the results from the paper lead to many potential improvements in the way
marine CSEM data can be collected and rendered, it must be noted that the theoretical
investigations have been done for an idealized stratified model. In order to be applicable in
real CSEM scenarios, careful adaptation must be made.

The last part of the thesis, Chapter 5, treats Electromagnetic fields in planarly
layered anisotropic media. This paper was cowritten with Bjørn Ursin, and has been
accepted for publication in Geophysical Journal International. The main focus is the formu-
lation of field propagation from dipoles in stratified media with general anisotropy. Many
useful equations are obtained in the process of deriving the field equations. Several relations
in Ursin (1983) are for the electromagnetic problem generalized to arbitrary anisotropic me-
dia. Reflection and transmission responses at planar interfaces between anisotropic regions
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are derived. The reciprocity relations as presented in Chapman (1994) for elastic wave prop-
agation are in our paper derived for the electromagnetic problem. The paper furthermore
contains a procedure for iteratively calculating reflection and transmission responses through
a stack of layers. A similar formulation can be found in e.g., Ursin and Stovas (2002) for
elastic wave propagation. The reflectivity method, originally introduced by Kennett (Chap-
man, 2004), avoids exponentially growing terms that would result if the propagators were
calculated directly. In addition to reflection and transmission for piecewise homogeneous
media, reflection and transmission are also considered for inhomogeneous media. The results
are useful for example when considering media with slow variation in terms of the WKB
method.

The matrix propagator method separates the wavefield into upgoing and downgoing
waves. This can be exploited when processing real CSEM data as described in Amundsen
et al. (2006). By carefully choosing the eigenvector matrices that are used for the transforma-
tion of the wavefield into its upgoing and downgoing constituents, the up/down-separation
can be done in terms of the polarization modes of the fields. The possibility to remove stacks
of layers above or below the position of the measured field follows. In marine CSEM or SBL
this implies the ability to remove the seawater layer or the sea-surface interface provided
appropriate collection of data.

Following the theoretical derivations, an application of the propagator matrix method is
demonstrated on some marine CSEM models with various anisotropies. This reveals that
the presence of anisotropy may mislead interpreters of CSEM/SBL data if the anisotropy
effects are not carefully taken into account. A modelling code for stratified media that can
handle general anisotropy configurations should be a helpful tool in survey planning and data
rendering.

8



Chapter 2

Low-frequency electromagnetic fields in

applied geophysics: Waves or diffusion?

L. O. Løseth, H. M. Pedersen, B. Ursin, L. Amundsen, and S. Ellingsrud
Published in Geophysics 71(4), July-August 2006

Summary

Low-frequency electromagnetic signal propagation in geophysical applications is sometimes
referred to as diffusion and sometimes as waves. In the following we discuss the mathematical
and physical approaches behind the use of the different terms. The basic theory of electro-
magnetic wave propagation is reviewed. From a frequency-domain description it is shown
that all the well-known mathematical tools of wave theory, including an asymptotic ray-
series description, can be applied both for nondispersive waves in nonconductive materials
and low-frequency waves in conductive materials. We consider the electromagnetic field from
an electric dipole source and show that a common frequency-domain description yields both
the nondistorted pulses in nonconductive materials and the strongly distorted pulses in con-
ductive materials. We also show that the diffusion-equation approximation of low-frequency
electromagnetic fields in conductive materials gives the correct mathematical description,
and that this equation has wave solutions. Having considered both a wave-picture approach
and a diffusion approach to the problem, we discuss the possible confusion that the use of
these terms might lead to.

2.1 Introduction

Electromagnetic methods have been used for a long time and for different purposes in applied
geophysics, cf. the extensive treatment in Nabighian (1987). The electromagnetic methods in
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geophysics are based on the theory of classic electrodynamics in conductive materials which
is treated in well-known textbooks in electromagnetic theory (Stratton, 1941; Adler et al.,
1960; Jackson, 1998; Griffiths, 1999; Kong, 2000; Ulaby, 2001) and optics [cf. the chapter on
metal optics in Born and Wolf (1999)]. Ward and Hohmann (1987) give a comprehensive
review of the theory for geophysical applications.

Since its introduction as an additional hydrocarbon-exploration technique some years
ago, SeaBed Logging (SBL) has become an important complementary tool to seismic explo-
ration methods in the detection and characterization of possible hydrocarbon-filled layers in
sedimentary environments. SBL is a variety of the marine controlled source electromagnetic
(CSEM) method that uses an electric dipole source and array of seabed receiver antennas
in a manner suggested by Cox et al. (1971) and Young and Cox (1981). SBL exploits the
guiding of electromagnetic energy that occurs in resistive layers located in a more conductive
environment (Eidesmo et al., 2002; Ellingsrud et al., 2002).

Eidesmo et al. (2002) refer to electromagnetic signal propagation as both diffusion and
waves. They furthermore talk about flowing inductive and galvanic currents as well as
an equivalent picture of a respective TE and TM mode of electromagnetic field propaga-
tion (Born and Wolf, 1999). In a variety of geophysical literature it is common to refer
to the propagation of electromagnetic fields in conductive media as diffusion. Spies (1989)
discusses the depth of penetration of various electromagnetic sounding experiments with dif-
ferent source signatures. The propagation is referred to as diffusion; both transient signals
and a related time-domain diffusion depth in addition to single-frequency components and
their skin depths are considered. Raiche and Gallagher (1985) use the concept of a diffusion
velocity for transient electromagnetic signals in the conductive earth, and Lee et al. (1989)
consider a fictious wavefield representation of the diffusive electromagnetic field. Virieux
et al. (1994) refer to electromagnetic signal propagation in the earth as a diffusion process,
whereas Nekut (1994) discusses ray-trace tomography for low-frequency fields in the conduc-
tive earth, a well-known wave-theory technique. He refers to the propagation of the fields
as diffusive electromagnetic waves. Carcione (2006) applies wave concepts to the electro-
magnetic diffusion equation. Ward and Hohmann (1987) elaborate on wave propagation of
fields in conductive media. They further refer to the differential equations that describe
electromagnetic fields in conductive media as both diffusion equations and wave equations.

The propagation of low-frequency electromagnetic fields in conductive media is hence
sometimes referred to as diffusion and sometimes referred to as waves. It might be interesting
to ask if one naming convention is better than the other. What is the motivation for referring
to the propagation as waves, and what is the motivation for the diffusion picture? Is there any
physical understanding connected to the words that calls for some care when using either of
the terms? In the following we show that propagation of electromagnetic fields in conductive
materials is well described within the framework of standard theory of electromagnetic wave
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propagation. We demonstrate that the wave equation in the frequency domain contains
the diffusion-like equation in the high loss approximation, and that this equation has wave
solutions which are attenuated as shown by Ward and Hohmann (1987). Moreover, we find
that there is no sharp boundary between propagation of fields in a wave-like manner and
a diffusion-like manner. Based on these observations, both terms can be used. However,
it is interesting to discuss both the diffusion and wave picture connected to low-frequency
electromagnetic fields in conductive materials. We consider the simple cases of an electric
dipole in a homogeneous nonconductive medium and a conductive medium. In both cases
time-harmonic and transient source signatures are considered. During the discussion, it
will become evident that picturing low-frequency propagation of electromagnetic fields in
conductive media as waves and diffusion calls for some caution.

We first review Maxwell’s equations in the frequency domain. The purpose of the basic
mathematical review is to show that a common frequency-domain description contains both
the physics behind high-frequency propagation in nonconductive regions and low-frequency
propagation in conductive regions. We introduce a complex wavenumber and impedance
before we derive inhomogeneous wave equations that describe electromagnetic wave prop-
agation in inhomogeneous media. The reason for treating the equations in the frequency
domain becomes evident as we compare the frequency-domain and time-domain differential
equations. The vector wave equation without damping term is a hyperbolic partial differ-
ential equation, and the vector diffusion equation is a parabolic partial differential equation
(Sommerfeld, 1967; Davison and Doeschl, 2004). A vector wave equation with a damping
term is either one or the other of these types depending on the material parameters involved.
In the frequency domain these partial differential equations reduce to an elliptic equation.
We review the simple plane-wave solutions of the frequency-domain wave equation and dis-
cuss the relation between the electric and magnetic fields and the wavenumber’s dependence
on frequency for these waves. The theory for reflection and refraction of plane waves at an
interface between two homogeneous media is reviewed in Appendix 2.A.

Next, we look at approximate solutions of the inhomogeneous wave equations by applying
asymptotic ray theory, which is well known and extensively used in fields like optics (Born
and Wolf, 1999), seismics (Červený and Hron, 1980), and ocean-wave modelling (Svendsen
and Jonsson, 1976). The eikonal equation which we derive from our ray-solution ansatz is
complex and frequency dependent. We show that it becomes real and frequency indepen-
dent for the two extreme cases of nondispersive waves in nonconductive materials and the
highly dispersive, low-frequency waves in conductive materials. Even if ray theory is a high-
frequency approach, it is also applicable in conductive media for low frequencies, as shown
by Nekut (1994).

We briefly consider the standard theory of wave propagation in horizontally layered media
(Born and Wolf, 1999; Brekhovskikh, 1960; Wait, 1962; Chave and Cox, 1982; Ursin, 1983)
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and simplify to homogeneous media where the wave equations are solved in terms of Green’s
functions. We calculate the Green’s functions and use them to derive an expression for the
radiated electromagnetic field from an electric dipole source. We consider dipole radiation in
homogeneous media and show that the simple frequency-domain description gives a nondis-
persive wave in nonconductive materials and an attenuated wave in conductive materials for
a time-harmonic source current. When regarding a radiated pulse, we get the simple pulse
propagation in nonconductive materials and the highly dispersive, distorted diffusion-like
pulses in conductive materials. Thus, as expected, we get a separate behaviour depending on
the dispersion relation for the two extreme cases. Having presented a unified mathematical
treatment of classic electrodynamics, we discuss some basic differences between a diffusion
picture and a wave picture of the propagation of fields in conductive regions.

2.2 Electromagnetic fields in the frequency domain

We introduce the Fourier transform pair

Ψ(ω) =
∫ ∞

−∞
dtψ(t) eiωt and ψ(t) =

1
2π

∫ ∞

−∞
dω Ψ(ω) e−iωt, (2.1)

where i =
√
−1, t denotes time, ω denotes angular frequency, Ψ is a field vector in the

frequency domain, and ψ is a field vector in the time domain. Let E(x, ω) represent the
complex electric field and H(x, ω) the complex magnetic field; x is the position vector. The
electromagnetic fields in the time and frequency domains are interrelated by the Fourier
transform pair defined in equation 2.1. We restrict our discussion to linear and isotropic
media throughout this paper. The constitutive relation between the electric displacement D

and the electric field E then becomes D = ε̃(x, ω)E, where ε̃ is the scalar complex electric
permittivity which includes a possible conductive property of the medium. The relation
between the magnetic induction B and magnetic field H becomes B = µ(x, ω)H, where µ
is the scalar magnetic permeability. In the constitutive relations we neglect the possible
nonlocal effects in space of the material parameters since these effects normally become
important above optical frequencies. The complex electromagnetic field obeys Maxwell’s
equations which now become (cf. Stratton, 1941; Jackson, 1998)

∇ · (ε̃E) = ρ0, (2.2a)

∇ · (µH) = 0, (2.2b)

∇×E = iωµH, (2.2c)

∇×H = J0 − iωε̃E, (2.2d)

where J0 is a source-current density and ρ0 is a source-charge density. The macroscopic
averages of the electromagnetic properties in a surrounding medium are described by µ and ε̃
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only. The local conduction-current density is normally well described by Ohm’s law, Jc = σE,
where σ is the electric conductivity. The displacement current is given as Jd = −iωεE, where
ε is the electric permittivity. The term J = −iωε̃E includes both the conduction current
and the displacement current, and the complex electric permittivity becomes ε̃ = ε + iσ/ω.
This way of writing the conductivity is consistent with the electron model of Drude (Jackson,
1998). Note that it is a matter of convention if one writes the ohmic term as a standalone
term or in a combination with the dielectricity. The charge-conservation equation becomes
iωρ0 = ∇ · J0, where J0 6= 0 only at the source antenna.

The material properties can be expressed by two secondary parameters that characterize
the interaction of the electromagnetic field at a specific frequency with the properties of the
medium. These are the complex wavenumber,

k = ω
√
µε̃ =

√
ω2µε+ iωµσ, (2.3)

and the characteristic impedance,

η =
√
µ/ε̃ =

√
µ/(ε+ iσ/ω). (2.4)

From Maxwell’s equations the wave equations for inhomogeneous media can be derived:

∇2E + k2E + ∇ [E · ∇ (ln ε̃)] + iω∇µ ×H = −iωµ
[
J0 + ∇(∇·J0)

k2

]
+ ∇·J0

iω ∇
(

1
ε̃

)
, (2.5a)

∇2H + k2H + ∇ [H · ∇ (lnµ)]− iω∇ε̃ ×E = −∇× J0. (2.5b)

2.2.1 Plane waves

In order to get an understanding of electromagnetic wave propagation, it is useful to consider
plane waves. Many problems involving spherical waves or cylindrical waves can be simplified
by expanding the waves into a spectrum of plane waves (Sommerfeld, 1909; Weyl, 1919), and
in asymptotic theory the assumption of local plane waves can provide useful simplifications.
Expressions for reflection and transmission of electromagnetic fields at boundaries are easily
derived if we restrict to plane waves at planar boundaries (cf. Appendix 2.A). We here look
at some elementary properties of electromagnetic plane waves and consider a source-free
homogeneous medium (J0 = 0). Then the wave equations 2.5a and 2.5b simplify to

∇2Ψ + k2Ψ = 0, (2.6)

where Ψ can represent either the electric or magnetic field. The wavenumber k is given by
the dispersion relation in equation 2.3 where the medium parameters in this case are space
invariant. Equation 2.6 has the plane-wave solution

Ψ(x) = Ψ0eik·x. (2.7)
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The wavenumber k is complex if the medium is conductive. When the direction of prop-
agation coincides with the direction of attenuation, i.e., for uniform plane waves, k = kŝ,
where ŝ is a unit vector in the propagation direction. Maxwell’s equations (2.2c and 2.2d)
then imply that, in source-free regions, the three vectors ŝ, E and H form a right-handed,
orthogonal system and are interrelated by

E(x) = −ηŝ ×H(x), H(x) =
1
η
ŝ× E(x). (2.8)

Thus, the electric and magnetic field are transverse to each other and the direction of prop-
agation.

We find it illustrative to consider the wavenumber’s dependence on frequency, permittivity
and conductivity. Assuming for simplicity that the material parameters are independent of
frequency, we express the wavenumber in terms of a phase velocity cp and an attenuation
coefficient ki. Then k = ω/cp + iki, where ki is often given in terms of a skin depth δ = 1/ki.
From the dispersion relation in equation 2.3, we see that the phase velocity and attenuation
coefficient have the same frequency dependence:

cp =
1

√
µε
f

(
ω

ω0

)
, ki =

1
2
σ

√
µ

ε
f

(
ω

ω0

)
, (2.9)

where ω0 = σ/ε is the characteristic frequency at which the magnitude of the displacement
current equals that of the conduction current and

f(χ) = χ

√
2
(√

1 +
1
χ2

− 1
)

∼=

{
1 for χ � 1 ,

√
2χ for χ � 1 .

(2.10)

This function is illustrated in Figure 2.1. The asymptotic limits are seen to be very good for
χ > 10 and χ < 0.1, respectively.

Consider a plane wave in the z-direction (z = ŝ · x). The wave can be described in terms
of the phase velocity and attenuation factor as Ψ(z) = Ψ0 exp (−kiz) exp (iωz/cp). In the
time domain a time-harmonic plane wave at frequency ω is thus given as:

ψ(z, t) = ψ0e−kiz cos
[
ω

(
z

cp
− t

)]
. (2.11)

We observe that the attenuation increases and that the phase velocity decreases with in-
creasing conductivity. Moreover, the attenuation and phase velocity are seen to be frequency
dependent except when ωε/σ � 1.

2.2.2 Asymptotic ray theory

In inhomogeneous media, asymptotic ray-series solution methods are an alternative to pure
numerical methods for modelling the electromagnetic fields described by Maxwell’s equations.
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Figure 2.1: The function f(χ) defined in equation 2.10 in log-log scale. The asymptotic limits
for χ� 1 and χ � 1 are very good for χ > 10 and χ < 0.1, respectively.

In ray theory the energy is regarded as being transported along rays. The approximation
of wave propagation where one actually neglects the wave character is often referred to as
geometrical optics. In the classic works of Brekhovskikh (1960), Wait (1962), and Baños
(1966), the geometrical optics solutions are obtained when exact integral representations of
the fields are evaluated by the asymptotic method of steepest descents. When the paths of
integration are deformed into the paths of steepest descent, branch cuts and poles of the
reflection and transmission coefficients may yield lateral waves (head waves) and waveguide
modes (channel waves) in addition to the geometrical optics contributions. Baños (1966)
gives a comprehensive treatment of that approach applied to dipole radiation in the presence
of a sea-surface interface and develops accurate expressions for all field components with a
dipole source in different orientations and at different positions in the two regions.

In the following we demonstrate that we can treat asymptotic ray theory in a unified
framework for both dielectric and conductive media and that the description simplifies in the
two special cases of either high frequency and low conductivity or low frequency and high
conductivity. We assume slow spatial variation of the medium properties and consider source-
free regions. Then equations 2.5a and 2.5b are both reduced to homogeneous Helmholtz
equations. Taking Ψ to represent either the electric or magnetic field, we get

∇2Ψ+ k2(x)Ψ = 0. (2.12)

We use the well-known solution ansatz

Ψ(x) = eik0W (x)
N∑

m=0

Ψm(x)
(ik0)m

, (2.13)
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where all the terms might be frequency dependent, but where the spatial variation is described
by the phase term W (x) and the slowly varying amplitudes Ψm(x). In the sum we have
indicated an upper limitN because infinite asymptotic series usually diverge. The parameter
k0 is the wavenumber for a reference medium.

In our solution ansatz the underlying assumption is that only one geometrical wave front
passes through each point in space (Born and Wolf, 1999). In regions where several rays
pass through the same point in space, we often need to use a more general solution ansatz
which contains sums over raypaths. A thorough discussion of an analogous case from seismic
modelling can be found in Chapman (2004). Inserting our ansatz into equation 2.12 and
solving for powers of ik0 as the magnitude of k0 becomes large, we get

(∇W )2 = (k/k0)
2
, (2.14a)

∇2WΨ0 + 2 (∇W · ∇)Ψ0 = 0, (2.14b)

∇2WΨm + 2 (∇W · ∇)Ψm + ∇2Ψm−1 = 0, m ≥ 1, (2.14c)

where it is implicit that k0 and k must have the same order of magnitude. Equation
2.14a is the eikonal equation, and equation 2.14b is the transport equation. In the eikonal
equation, k/k0 is a normalized slowness. In optics this is equivalent to a refraction index
n =

√
µr ε̃r = k/k0, where µr and ε̃r denote relative permeability and relative complex per-

mittivity, respectively, and it is common to use vacuum as the reference medium. If we use
only the first term in the ray expansion, the eikonal equation describes the raypaths whereas
the transport equation describes how the slow geometrical amplitude variations must be to
satisfy energy conservation.

The eikonal equation (2.14a) is complex and frequency dependent. However, in two cases
of particular interest, it becomes real and frequency independent. In the asymptotic limit
χ > 10 (cf. Figure 2.1) or in nonconducting media, the wavenumber reduces to k(x) =
ω
√
µ(x)ε(x). With k0 = ω

√
µ0ε0, where the index zero refers to values in a chosen reference

medium, we see that (∇W )2 = µ(x)ε(x)/(µ0ε0). In the solution ansatz in equation 2.13, we
can in this case alternatively choose iωW ′(x) in the exponential. Then the eikonal equation
becomes (∇W ′)2 = µ(x)ε(x), where ∇W ′ now describes slowness.

In conducting media, low-frequency signals are approximated well by the dispersion rela-
tion k(x) =

√
iωµ(x)σ(x). This corresponds to the asymptotic limit χ < 0.1 in Figure 2.1.

With k0 =
√
iωµ0σ0 the eikonal equation 2.14a is real and frequency independent for this

case as well: (∇W )2 = µ(x)σ(x)/(µ0σ0). In the solution ansatz in equation 2.13, we can in
this case alternatively choose −

√
−iωW ′′(x) in the exponential. Then the eikonal equation

becomes (∇W ′′)2 = µ(x)σ(x), which is the solution approach found in Virieux et al. (1994).
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2.2.3 Layered media

In both geophysics and optics, it is often of interest to consider electromagnetic fields in
layered media. Then the medium varies only in one direction, and the spatial components
orthogonal to this direction are well suited for a Fourier expansion. We consider a stack of
homogeneous layers and decompose the wavenumber into k2 = k2

x + k2
y + k2

z. We choose the
variation to be along the z-direction. After the Fourier expansion: ∂x → ikx and ∂y → iky,
and each Fourier component represents a superposition of upgoing and downgoing plane
waves in each layer. Introducing px = kx/ω and py = ky/ω, which represent slownesses in
the x- and y-directions, respectively, and following the formalism of Ursin (1983), we can
express Maxwell’s equations as

db

dz
= −iωAb+ s, (2.15)

with field vector b = (Ex Ey −Hy Hx)T where T denotes transpose, source vector s =
(pxJz/ε̃ pyJz/ε̃ Jx Jy)T , and system matrix A = (0 A1 ; A2 0), where

A1 =
1
ε̃

(
µε̃− p2

x −pxpy

−pxpy µε̃ − p2
y

)
and A2 =

1
µ

(
µε̃− p2

y pxpy

pxpy µε̃ − p2
x

)
. (2.16)

At interfaces we introduce mathematical idealizations that lead to discontinuities of the
material parameters. The boundary conditions state continuity of b, which leads to the
Fresnel reflection and transmission coefficients for two orthogonal states of polarization:
transverse electric (TE) and transverse magnetic (TM). Explicit expressions for the Fres-
nel coefficients are derived in Appendix 2.A. The propagator theory of multilayer systems
can be used to compute the overall TE- and TM-reflection and/or transmission responses
from several layers. One finally obtains the total response from the multilayered system by
an inverse Fourier transform (Ward and Hohmann, 1987; Løseth, 2000). Most modelling
codes for horizontally layered media are based on this theory and, for low-frequency waves in
conductive materials, the formulas in Chave and Cox (1982) are readily obtained from this
formalism.

2.2.4 Green’s functions

From Green’s theorem stems the concept of Green’s functions (Green, 1828), which define
the impulse response of a medium. These functions can be used to solve inhomogeneous
differential equations with boundary conditions. In electromagnetic theory they provide an
alternative solution method to vector potential techniques. The dyadic Green’s functions for
the electric field GE and magnetic field GH = ∇×GE characterize the electromagnetic re-
sponse resulting from a directional point source. Once the Green’s functions are constructed,
the electromagnetic field due to a source distribution can be determined, and the electric and

17



Low-frequency electromagnetic fields in geophysics: Waves or diffusion?

magnetic fields outside the source region are given as volume integrals over the source and
their respective Green’s function:

E(x, ω) = iωµ

∫

V0

dx0GE(x, ω,x0)J0(x0, ω), (2.17a)

H(x, ω) =
∫

V0

dx0GH(x, ω,x0)J0(x0, ω). (2.17b)

The Green’s function for the electric field obeys the reciprocity relation (Felsen and Marcu-
vitz, 2003)

GE(x, ω,x0) = GT
E(x0, ω,x). (2.18)

This means that the m’th component of a signal at x caused by a unit impulse applied in
the n’th direction at x0 equals the n’th component of a signal at x0 caused by a unit impulse
applied in the m’th direction at x. The reciprocity relation (equation 2.18) then gives us the
conditions for interchanging source and receiver without affecting the measured signal.

2.2.5 Analytic solution in a homogeneous medium

In homogeneous media, the terms containing derivatives of the medium parameters in equa-
tion 2.5 vanish. The electric and magnetic fields are then solutions of inhomogeneous
Helmholtz equations where the wavenumber, k, found in equation 2.3, is now space invariant.
Following Tai (1994) the dyadic Green’s functions for the electric and magnetic field are then
solutions of

∇2GE + k2GE = −
[
I +

1
k2

∇∇
]
δ (x − x0) , (2.19a)

∇2GH + k2GH = −∇× [Iδ (x− x0)] . (2.19b)

Here, ∇× denotes curl of a dyadic function, ∇∇ is a dyadic operator, and I is the unit
diagonal dyad. The solutions of the Green’s functions are:

GE =
eikr

4πr3




r2h1 + (x− x0)2h2 (x− x0)(y − y0)h2 (x− x0)(z − z0)h2

(x− x0)(y − y0)h2 r2h1 + (y − y0)2h2 (y − y0)(z − z0)h2

(x− x0)(z − z0)h2 (y − y0)(z − z0)h2 r2h1 + (z − z0)2h2


 , (2.20a)

GH =
(ikr − 1)eikr

4πr3




0 −(z − z0) (y − y0)
(z − z0) 0 −(x − x0)
−(y − y0) (x− x0) 0


 , (2.20b)

where r = |x− x0| =
[
(x− x0)2 + (y − y0)2 + (z − z0)2

]1/2 and

h1 =
(

1 − 1
ikr

− 1
(kr)2

)
, h2 =

(
−1 +

3
ikr

+
3

(kr)2

)
. (2.21)
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These equations are equivalent to the dyadic Green’s functions found in Ward and Hohmann
(1987), but here they are not restricted to a conductive medium. In the special case of
a homogeneous medium it can be seen from equation 2.20 that the Green’s functions, in
addition to obeying the general law of reciprocity (equation 2.18), obey the symmetry relation
GE(x, ω,x0) = GE(x0, ω,x) and GH(x, ω,x0) = −GH(x0, ω,x).

2.3 Dipole radiation

We consider dipole radiation in a homogeneous medium in order to illustrate that the unified
description in the frequency domain yields the correct expressions in the time domain for
nondispersive waves in nonconductive media and dispersive waves in conductive media.

An infinitesimal electric dipole antenna can be represented by a line current of length
l � λ with current amplitude I(ω). This gives the dipole current moment Il. For simplicity
we use spherical coordinates with the source located at the origin and pointing in the z-
direction. Then the source-current density becomes J0 = Ilδ(r)ẑ. Let θ denote the angle
between the z-axis and the radial vector r, and let φ denote the angle between the x-axis
and a projection of r into the xy-plane. The coordinate systems, with the source included,
are shown in Figure 2.2. The electromagnetic field in the frequency domain from such a
source-current distribution is easily found with the aid of the Green’s functions in equation
2.20 and the relation between the fields and their Green’s functions (equation 2.17). After a
transform from Cartesian to spherical coordinates, the radiated dipole field is expressed as

E(r, ω) =
ikηIl

4πr
eikr

[
−
(

1 − 1
ikr

+
1

(ikr)2

)
θ̂ sin θ +

(
1
ikr

− 1
(ikr)2

)
2r̂ cos θ

]
, (2.22a)

H(r, ω) =
ikIl

4πr
eikr

(
1 − 1

ikr

)
(−φ̂ sin θ), (2.22b)

where ωµ = kη and where η is the impedance as defined in equation 2.4. The exact expres-
sions for a Hertzian dipole are excellent approximations for the fields from a physical dipole
at distances r � l and are found in a variety of works (cf. Baños, 1966; Burrows, 1978).
The magnetic field is circulating around the z-axis (in the φ̂ direction), the electric field is
in the plane defined by the z-axis and the radial distance (in the r and θ̂ directions), and
the signal level is determined by the dipole current moment Il. The radiation pattern is
rotationally symmetric about the dipole axis, and the maximum radiation is in the normal
direction (θ = 90◦). A more thorough investigation of the radiation pattern can be found
in Appendix 2.B. We observe that the exact dipole formulas in equation 2.22 are ray-series
expansions of the same kind as in equation 2.13. In this case the ray-series method actually
yields exact results with N = 2 for the electric field and N = 1 for the magnetic field.
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Figure 2.2: The Cartesian and spherical coordinate systems are shown with the dipole an-
tenna included. The antenna is oriented in the z-direction. The elevation angle θ is in the
plane spanned by r and ẑ. The azimuth angle φ is in the xy-plane.

2.4 Time-domain signals

The electromagnetic field in the time domain from an electric dipole source is found by
applying an inverse Fourier transform to the frequency-domain fields in equation 2.22:

e(r, t) =
µ

4πr

{
e0(r, t)(θ̂ sin θ) + [e1(r, t) + e2(r, t)] (2r̂ cos θ + θ̂ sin θ)

}
, (2.23a)

h(r, t) =
1

4πr
{h0(r, t) + h1(r, t)} (φ̂ sin θ), (2.23b)

where the real electric field is represented by e(r, t) and the real magnetic field by h(r, t).
The two far-field terms are

e0(r, t) = − il

2π

∫ ∞

−∞
dω ωI(ω)ei(kr−ωt), h0(r, t) = − l

2π

∫ ∞

−∞
dω ikI(ω)ei(kr−ωt). (2.24)

The electric near-field terms e1(r, t) and e2(r, t) are described by integrals over the two
higher-order terms in the dipole expansion. The two integrals are given by consecutive
multiplication of the frequency-domain far-field term by the factor −1/(ikr). The magnetic
near-field term h1(r, t) is an integral over the magnetic far-field term times this factor. Note
that an additional factor 1/(ik) in the integrals in equation 2.24 equals an integration that
can be carried out in the time domain:

∫ ∞

−∞
dω

f(ω)
ik

eikr = −
∫ ∞

r

∫ ∞

−∞
dr′dω f(ω)eikr′

. (2.25)

Let us consider the radiated electromagnetic field from an electric dipole in a noncon-
ductive medium and a conductive medium. We first look at the resulting electromag-
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2.4 Time-domain signals

netic field from a simple time-harmonic current source I(t) = I0 cos (ω0t) and next de-
rive the step response, i.e., the electromagnetic field from a constant current turned on at
t = 0. The frequency-domain representation of the two current distributions are I(ω) =
I0π[δ(ω + ω0) + δ(ω − ω0)] and I(ω) = I0[πδ(ω) − 1/iω], where δ(ω) represents the Dirac
delta function.

2.4.1 Nondispersive and nonconductive media

For nondispersive waves in nonconducting materials, we have the dispersion relation k(ω) =
ω/c, where c = 1/

√
µε is the velocity in the medium. The radiated electromagnetic field

from a dipole source for a time-harmonic current distribution then becomes

e(r, t) =
µω0I0l sinϕ

4πr
θ̂ sin θ +

I0l

4πεr2

[
1
c

cosϕ − 1
ω0r

sinϕ
]

(θ̂ sin θ + 2r̂ cos θ), (2.26a)

h(r, t) =
I0l

4πr

[
ω0

c
sinϕ+

1
r

cosϕ
]
φ̂ sin θ, (2.26b)

where ϕ = ω0 (r/c− t).

In the step-response calculations the well-known result with a perfect but delayed delta
pulse is obtained:

e(r, t) =
µI0l

4πr
δ(t− r/c)θ̂ sin θ +

I0lt

4πεr3
H(t− r/c)(θ̂ sin θ + 2r̂ cos θ), (2.27a)

h(r, t) =
I0l

4πr

[
1
c
δ(t− r/c) − 1

r
H(t− r/c)

]
φ̂ sin θ, (2.27b)

where H(t) is the Heaviside step function. Note that the electric field has a near-field
contribution only for times t ≥ r/c. This is a contribution equal to the static dipole field
from the charges ±q0 = ±I0t accumulated on the dipole ends in a nonconductive material.
For the magnetic field, the first term is the radiated far-field pulse, but for t ≥ r/c the near-
field term yields a static magnetic field caused by the constant source current. The far-field
term has the same time dependence as the electric field since the impedance η is independent
of frequency in nonconductive materials.

2.4.2 Conductive media

For low frequencies and conductive media, we use k(ω) = (1 + i)
√
ωµσ/2 as the dispersion

relation. In this expression the real (kr) and imaginary (ki) parts of the wavenumber are
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equal. A time-harmonic source current then yields

e(r, t) =
µω0I0l

4πr
e−κr sin (ϕc)(θ̂ sin θ)

+
I0l

4πr2
e−κr

[√
µω0

σ
cos (ϕc − π/4) +

1
σr

cosϕc

]
(2r̂ cos θ + θ̂ sin θ), (2.28a)

h(r, t) =
I0l

4πr
e−κr

[
√
µσω0 cos (ϕc − π/4) +

1
r

cosϕc

]
(φ̂ sin θ), (2.28b)

where κ = kr = ki =
√
ω0µσ/2, and ϕc = (κr − ω0t).

When calculating the step response, we evaluate the integrals asymptotically. That is,
since the main contribution to the integrals comes from the low-frequency regime, we ap-
proximate the integrals by integrating up to a cutoff frequency where the low-frequency
wavenumber approximation for conductive media is valid. We then use this approximation
and expand the integration limits to infinity again. The approximation is justified by the
heavy attenuation of the higher frequencies in highly conducting media, which implies that
the measurable part of the signal is in the low-frequency region. A formal correct mathe-
matical treatment should include the entire dispersion relation given in equation 2.3. This
would lead to a solution containing weighted sums of heavily attenuated delta pulses for
higher frequencies. A discussion of pulse propagation in dispersive media can be found in
the classic papers of Sommerfeld (1914) and Brillouin (1914). A thorough treatment is also
given in Stratton (1941). Morse and Feshbach (1953) solve the expression in equation 2.24
and the higher-order terms for the complete dispersion relation. However, our goal here is
to demonstrate the calculation that leads to the quasi-static approximation.

To solve the first integral in equation 2.24 for the step response, we introduce a new
variable ξ =

√
ωt/2 and use that cos(−ξ) = cos(ξ). Then

e0(r, t) ∼=
4I0l
πt

∫ ∞

0

dξ ξ exp

(
−
√
µσr2

t
ξ

)
cos

[√
µσr2

t
ξ − 2ξ2

]
. (2.29)

This integral is tabulated in equation 3.966.2 in Gradshteyn and Ryzhik (1980). The result
is

e0(r, t) ∼= I0l

√
µσr2

4πt3
exp

(
−µσr

2

4t

)
. (2.30)

For the higher-order terms that constitute the near-field, we use the method in equation 2.25.
We then obtain by repeated integration

e1(r, t) ∼=
I0l

r
√
πµσt

exp
(
−µσr

2

4t

)
, e2(r, t) ∼=

I0l

µσr2

[
1 − erf

(√
µσr2

4t

)]
, (2.31)

where the error function is
erf(z) =

2√
π

∫ z

0

dξ exp(−ξ2). (2.32)
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To determine the magnetic field, we note that since we are using the dispersion relation
k2 = iωµσ, the terms in the expression for the magnetic field only differ from the higher-
order terms of the electric field by the factor σr.

For convenience we express the dipole step response in terms of a scaled time τ = t/td,
where td = µσr2/4. In terms of these parameters the electromagnetic field becomes

e(r, t) ∼=
I0l

4πσr3

[
f1

(
t

td

)
θ̂ sin θ + f2

(
t

td

)
(θ̂ sin θ + 2r̂ cos θ)

]
, (2.33a)

h(r, t) ∼=
I0l

4πr2
f2

(
t

td

)
φ̂ sin θ, (2.33b)

where
f1(τ ) =

4√
πτ3

exp
(
−1
τ

)
(2.34)

is the far-field step response for the electric field, and

f2(τ ) = 1 +
2√
πτ

exp
(
−1
τ

)
− erf

(
1√
τ

)
(2.35)

is the step response of the two near-field terms for the electric field. These step responses
are shown in Figure 2.3.
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Figure 2.3: Step responses for dipole radiation in conductive materials: far-field response
f1(τ ) and near-field response f2(τ ). The far-field response is largest for τ < 1.4.

The step response for the magnetic field is given by f2(τ ). If we consider the magnetic
field and split f2(τ ) into the far-field term and near-field term, we get a relation between the
two components that is similar to the relation between f1(τ ) and f2(τ ). To illustrate our
point, it is thus sufficient to consider f1(τ ) and f2(τ ). When doing so, we see that although
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the far-field term arrives first and dominates for t < td, we cannot neglect the near-field term.
We also have the same geometrical r-dependence for both the near-field and the far-field. In
contrast to the frequency domain, there is thus no clear distinction between the far-field and
the near-field. In a conductive material, for t � td, the near-field term yields a constant,
static dipole field:

eDC(r) =
I0l

4πσr3
(θ̂ sin θ + 2r̂ cos θ), hDC(r) =

I0l

4πr2
φ̂ sin θ. (2.36)

With a current impulse q0δ(t) of total charge q0 at t = 0, the frequency-domain current
amplitude is I0 = q0, and the resulting impulse response is obtained from the step response
by a simple time differentiation:

e(r, t) ∼=
q0l

πµσ2r5

[
g1

(
t

td

)
θ̂ sin θ + g2

(
t

td

)
(θ̂ sin θ + 2r̂ cos θ)

]
, (2.37a)

h(r, t) ∼=
q0l

πµσr4
g2

(
t

td

)
φ̂ sin θ, (2.37b)

where gj = dfj(τ )/dτ (j = 1, 2) are the derivatives of the functions in equations 2.34 and
2.35. These time responses are shown in Figure 2.4. We see that the far-field response arrives
first and has a peak value more than three times that of the near-field response, but at later
times the near-field term cannot be neglected.
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Figure 2.4: Impulse responses for dipole radiation in conductive materials: far-field response
g1(τ ) and near-field response g2(τ ). The far-field response is largest for τ < 0.5.
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2.5 Discussion

In SBL and marine CSEM, the signal sources are towed electrical dipole antennas, and they
are very well approximated by Hertzian dipoles at the frequencies and wavelengths involved.
Detectable signal transmission is only obtained at very low frequencies, ω � ω0 = σ/ε. In
this limit the contribution from the displacement current can be ignored and equation 2.28
describes propagation of single-frequency components in homogeneous media. Compared to
time-harmonic signal propagation in nonconductive media (equation 2.26), the propagation of
a low-frequency signal in conductive materials is characterized by the damping term and the
frequency-dependent phase velocity. In addition, the phase behaviour between the electric
and magnetic fields differs in conductive media. The wavelength is λ = 2πδ where δ is the
skin depth; thus, we have 54.6 dB attenuation per wavelength, and in most cases it is only
possible to detect signals that are transmitted a few wavelengths. One then normally wants
to use very low frequencies and long wavelengths (λ > 1 km) to reach down to deeply buried
layers.

In exploration configurations where one uses transient source signals, one gets responses
that resemble the strongly distorted pulse forms in Figures 2.3 and 2.4. The propagation has
the same characteristics as in many diffusion processes. The far-field and the near-field terms
in equations 2.33 and 2.37 have the same geometrical r-dependence. The difference between
the time-domain step responses in nonconductive and conductive materials is caused by the
strong dispersion and frequency-dependent attenuation in conductive materials.

We observe that the frequency-domain treatment of signal propagation in homogeneous
media leads to the correct mathematical description of time-harmonic signals and transients
for both conductive media and nonconductive media. A correct time-domain approach would
of course lead to the same equations. If we derive the wave equation from Maxwell’s equa-
tions in the time domain, assuming that the permeability, permittivity, and conductivity are
independent of frequency, we get the following damped wave equation both for the electric
field and magnetic field when we ignore the source term:

∇2ψ = µσ
∂ψ

∂t
+ µε

∂2ψ

∂t2
. (2.38)

The term involving conductivity represents a damping term in the wave equation. Without
damping, we would have the wave equation

∇2ψ = µε
∂2ψ

∂t2
, (2.39)

which describes nondispersive waves in nonconductive materials. If the damping term be-
comes completely dominant as is the case for low-frequency signals in conductive materials,
the wave equation is well approximated by

∇2ψ = µσ
∂ψ

∂t
, (2.40)
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which is the diffusion equation one gets if the displacement current in Maxwell’s equations is
ignored, i.e., the speed of light is assumed infinite. This is often referred to as the quasi-static
limit (e.g., Jackson, 1998). The equation has the same form as diffusion equations found in
various literature (e.g., Crank, 1975).

The hyperbolic wave equation and the parabolic diffusion equation are both transformed
into an elliptic equation when moving from the time domain into the frequency domain (Som-
merfeld, 1967). In the frequency domain, the propagation is characterized by the position of
the wavenumber k in the complex plane. The position might vary from the real axis to a line
rotated by 45◦ with respect to the real axis. The first case of the two extremes corresponds
to propagation of an undamped wave, whereas the second case represents highly attenuated
propagating waves. Between these two cases there is a gradual change from undamped wave
propagation to highly attenuated wave propagation or diffusion. Thus, the diffusion equation
has wave solutions. Moreover, the diffusion equation 2.40 is a vector equation. Depending on
what one means by a diffusion process, one should be careful about thinking of the physical
process as a diffusion process since the notion of diffusion often is characterized by random
motion which constitutes a probability distribution that describes diffusive transport (cf.
Einstein’s 1905 paper on Brownian motion). The conservation of direction and polarization
of the electromagnetic field might not easily be related to this physical picture [cf. Milne’s
problem (Morse and Feshbach, 1953)].

On the other hand, when one thinks of the propagation of low-frequency fields in con-
ductive media in terms of waves, one must consider that these waves are strongly attenuated
and highly dispersive. Thus, the concept of time reversal, which is often used in processing of
seismic data (Claerbout, 1971), cannot be directly applied. Moreover, the concept of group
velocity loses its traditional significance (Stratton, 1941).

As stated above, there is nothing wrong in using equation 2.40 as the starting point
for treating low-frequency electromagnetic fields in conducting media (assuming frequency-
independent material parameters). This quasi-static approach is often used in connection
with low-frequency electromagnetic fields in conductive media. The concept of looking at
field propagation in terms of currents follows from this. However, we have also seen that by
considering electromagnetic fields in the frequency domain, we can treat wave propagation in
both nonconducting media and conducting media. Thus, the two apparently very different
cases of nondispersive wave propagation and low-frequency highly dispersive wave propaga-
tion can be treated within a unified mathematical framework. In fact, all the well-established
tools of wave theory can be directly applied. Moreover, there is no clear transition zone from
one “process type” to the other as can be observed from Figure 2.1. An example of a uni-
fied treatment is for example found in the modelling of electromagnetic wave propagation in
layered media. The well-known description of reflection and refraction of plane electromag-
netic waves at planar interfaces and associated division of the fields into TE and TM modes
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implies that both nondispersive waves in nonconductive materials and low-frequency waves
in conductive materials obey the same equations (cf. Appendix 2.A). Thus, layers that are
dominantly dispersive and layers that are dominantly dissipative can be treated on an equal
footing. Within this picture the electromagnetic response from buried highly resistive layers
can be explained in terms of the characteristic difference between the TE and TM polariza-
tion. In SBL, this characteristic difference is used to detect buried hydrocarbon layers by
orienting the dipole source and receiver antennas in specific directions. However, in many
other applications which use low-frequency electromagnetic fields, it might be advantageous
to consider the problem from the quasi-static point of view.

2.6 Conclusion

The basic theory of electromagnetic wave propagation has been reviewed and used to develop
a unified frequency-domain description that applies for nondispersive waves in nonconductive
materials and highly dispersive low-frequency waves in conductive materials.

We have considered the time-domain responses for an infinitesimal electric dipole antenna
and shown that a unified description in the frequency domain yields both the undistorted
pulses in nonconductive materials and the highly distorted diffusive pulses for low-frequency
signals in conductive materials. In the latter case both the step response and the impulse
response are strongly attenuated and distorted.

The question of whether electromagnetic field propagation in conductive materials can
be referred to as diffusion or wave propagation has been discussed. We have shown that the
approximation that results in a diffusion-like equation is valid. We have also shown that the
wave-propagation description provides the correct mathematical formulation. We conclude
that one might call low-frequency propagation of electromagnetic fields in conductive media
what one prefers, but when one characterizes the field propagation as diffusion, it might
be clarifying to add that one is not referring to the random motion usually affiliated with
diffusion processes. When the field propagation is characterized as wave propagation, it
should be kept in mind that the waves are highly dispersive and strongly attenuated.
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2.A Reflection and refraction of plane waves

At an interface between two homogeneous media the boundary conditions for the tangential
components of E and H become (Stratton, 1941)

n× (E2 −E1) = 0, n× (H2 − H1) = K, (2.A-1)

where K is a surface current and n is a unit vector normal to the surface. The subscripts 1
and 2 denote the fields in medium 1 and 2, respectively. When the conductivities of the media
are finite, there is no surface current, and we may assume that the tangential components of
both E and H are continuous.
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Figure 2.5: Reflection and transmission of a plane wave described by rays at a planar inter-
face. The wavenumber vector k, electric field E, and magnetic field H form a right-handed
system. For the TE mode the electric field is perpendicular to the plane of incidence as
shown in Figure a. For the TM mode, shown in Figure b, the magnetic field is perpendic-
ular to the plane of incidence. The incoming electric and magnetic fields have subscript 1,
the reflected electric and magnetic fields have subscript 1′, and the transmitted electric and
magnetic fields have subscript 2. The angle of incidence is denoted θ1, the angle of reflection
equals the angle of incidence and is denoted θ1′ , and the refracted angle is denoted θ2. The
wavenumber is k1 = k1′ in medium 1 and k2 in medium 2. The unit vector n is normal to
the interface.

Now, consider plane waves impinging at a planar interface. As depicted in Figure 2.5
we denote the incoming, reflected, and transmitted electric and magnetic fields with the
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2.A Reflection and refraction of plane waves

subscripts 1, 1′ and 2, respectively. Phase-matching conditions at the interface are now seen
to give Snell’s law and the law of reflection since the incoming, reflected and transmitted
fields must have equal phases at the interface. These laws can be expressed as

sin θ1 = sin θ1′ , (2.A-2a)

k1 sin θ1 = k2 sin θ2, (2.A-2b)

where θ1 (= θ1′) denotes the angle between the incoming (reflected) ray and interface normal,
and θ2 denotes the angle between the transmitted ray and the opposite direction of the
interface normal. The wavenumbers in medium 1 and medium 2 are denoted by k1 and k2,
respectively. When considering the relations between the amplitudes of the incident, reflected
and transmitted fields, we get

n× (E1 + E1′) = n× E2, (2.A-3a)

n× (H1 + H1′) = n× H2. (2.A-3b)

Now we resolve the electric field into one component that is normal to the plane of incidence
(cf. Figure 2.5a). This component is parallel to the interface and known in optics as s-
polarization (Vaš́ıček, 1960). Here we refer to it as transverse electric (TE) polarization
(Born and Wolf, 1999). The TE-mode decomposition leads to the following relations between
the incident, reflected, and transmitted transverse electric field components:

E1′ =
µ2k1 cos θ1 − µ1k2 cos θ2
µ2k1 cos θ1 + µ1k2 cos θ2

E1, (2.A-4a)

E2 =
2µ2k1 cos θ1

µ2k1 cos θ1 + µ1k2 cos θ2
E1. (2.A-4b)

For the other component the electric field is in the plane of incidence (cf. Figure 2.5b).
Thus the magnetic field is normal to the plane of incidence and parallel to the interface.
This is referred to as p-polarization or transverse magnetic (TM) polarization. The TM-
mode decomposition leads to the following relations between the incident, reflected, and
transmitted transverse magnetic field components:

H1′ =
ε̃2k1 cos θ1 − ε̃1k2 cos θ2
ε̃2k1 cos θ1 + ε̃1k2 cos θ2

H1, (2.A-5a)

H2 =
2ε̃2k1 cos θ1

ε̃2k1 cos θ1 + ε̃1k2 cos θ2
H1. (2.A-5b)

As seen from Figure 2.5, we have kz1 = k1 cos θ1 and kz2 = k2 cos θ2. In general, kz =√
k2 − k2

ρ, where k2
ρ = k2

x + k2
y. In the double-valued square root the condition Im(kz) > 0

must be satisfied. We furthermore observe that the reflected tangential components of the
electric and magnetic fields will have opposite signs. Thus, the reflection and transmission
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coefficients for the TE- and TM-polarization components of the horizontal electric field are:

rTE =
µ2kz1 − µ1kz2

µ2kz1 + µ1kz2
, rTM =

ε̃1kz2 − ε̃2kz1

ε̃2kz1 + ε̃1kz2
, (2.A-6a)

tT E =
2µ2kz1

µ2kz1 + µ1kz2
, tT M =

2ε̃1kz2

ε̃2kz1 + ε̃1kz2
. (2.A-6b)

Note that 1 + rTE = tT E and 1 + rT M = tT M . For the horizontal magnetic field components,
the reflection and transmission coefficients are:

r′T E = −rT E =
µ1kz2 − µ2kz1

µ2kz1 + µ1kz2
, r′T M = −rT M =

ε̃2kz1 − ε̃1kz2

ε̃2kz1 + ε̃1kz2
, (2.A-6c)

t′
T E

= 1 + r′
T E

=
2µ1kz2

µ2kz1 + µ1kz2
, t′

T M
= 1 + r′

TM
=

2ε̃2kz1

ε̃2kz1 + ε̃1kz2
. (2.A-6d)

The vertical magnetic field component is a pure TE mode and has the same reflection and
transmission coefficients as the horizontal electric TE component. The vertical electric field
component is a pure TM mode and has the same reflection and transmission coefficients as
the horizontal magnetic TM component.

The coefficients in equation 2.A-6 are valid for both conductive and nonconductive media.
The absolute value of the squared reflection coefficient represents reflected energy, whereas
the absolute value of the squared transmission coefficient represents transmitted energy.
Snell’s law describes ray propagation across interfaces, and the law of reflection describes ray
reflection at an interface. In the general case, Snell’s law describes a relation between complex
quantities. However, in the two cases of nondispersive waves in nonconductive media and
low-frequency waves in conductive media, Snell’s law is a relation between real quantities.

2.B Radiation Pattern

The complex Poynting vector S is defined as (Stratton, 1941; Jackson, 1998)

S =
1
2
E× H∗. (2.B-7)

The time-averaged power density in a harmonic electromagnetic field is

< S >=
1
2
Re(E × H∗). (2.B-8)

The magnetic field from the electric dipole considered in this paper has a component in
the φ̂-direction only. In order to determine the radiation pattern of the dipole we need to
evaluate the complex Poynting vector

S =
1
2

(
EθH

∗
φr̂−ErH

∗
φθ̂
)
. (2.B-9)
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Using equation 2.22, the products in equation 2.B-9 become

EθH
∗
φ =

kk∗η|Il|2

(4πr)2
e−2Im(k)r

[
1 +

i(k∗ − k)
kk∗r

+
k − k∗

k2k∗r2
+

i

k2k∗r3

]
sin2 θ, (2.B-10a)

ErH
∗
φ = −kk

∗η|Il|2

(4πr)2
e−2Im(k)r 1

ikr

[
1 +

i(k∗ − k)
kk∗r

+
1

kk∗r2

]
sin 2θ, (2.B-10b)

where |Il|2 = II∗l2 is the absolute value of the dipole current moment squared; k and k∗

are the wavenumber and its complex conjugate, respectively; and η is the impedance. In a
nonconductive medium where k = ω

√
µε, the complex Poynting vector becomes

S =
k2η|Il|2

32π2

sin2 θ

r2
r̂− i

kη|Il|2

32π2

sin 2θ
r3

θ̂+ i
η|Il|2

32π2k

1
r5

(
sin2 θr̂ − sin 2θθ̂

)
. (2.B-11)

Using that √
µε = 1/c, where c is the velocity in the medium, the time-averaged power

density becomes

< S >=
ω2µ|Il|2

32π2c

sin2 θ

r2
r̂. (2.B-12)

When considering low-frequency radiation in conductive media, we use the dispersion relation
k = (1 + i)

√
(µωσ)/2. The complex Poynting vector is in this case

S =
ωµκ|Il|2

32π2

e−2κr

r2

{[
1 +

1
κr

+
1

κ2r2

]
sin2 θr̂−

[
1
κr

+
1

2κ3r3

]
sin 2θθ̂

}

− i
ωµκ|Il|2

32π2

e−2κr

r2

{[
1
κr

+
1

κ2r2
− 1

2κ3r3

]
sin2 θr̂ +

sin 2θ
κ2r2

θ̂

}
, (2.B-13)

where κ =
√
ωµσ/2. The real part of the Poynting vector now becomes

< S >=
ωµκ|Il|2

32π2

e−2κr

r2

{[
1 +

1
κr

+
1

κ2r2

]
sin2 θr̂−

[
1
κr

+
1

2κ3r3

]
sin 2θθ̂

}
. (2.B-14)

Observe that the conductive case yields an attenuation term as well as terms for higher
negative powers of r. Note also that the time-averaged power density in this case has a
component in the θ̂-direction.

In nonconductive media, the total radiated power Pr is calculated by integrating r̂· < S >

over a sphere of radius r. The integration gives

Pr =
∫ 2π

0

dφ

∫ π

0

dθ sin θ r2 <Sr>=
ω2µ|Il|2

12πc
. (2.B-15)

If we normalize the power density <Sr(θ, φ)> on the total radiated power averaged over all
angles, we get the directive gain G(θ, φ):

G(θ, φ) =
<Sr>

Pr/4πr2
=

3
2

sin2 θ. (2.B-16)

A plot of the directive gain is shown in Figure 2.6.
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For the conductive case the presence of absorption represented by the attenuation term
indicates that we cannot find the total radiated power by simply integrating over a sphere.
In this case one would rather consider the time-averaged power density at the coordinates of
interest. The radiation pattern, normally understood to describe the pattern of the radiated
power in the far-field, can however still be represented by Figure 2.6.

z

x

y

Figure 2.6: Radiation pattern for the electric dipole. The radiation is symmetric around the
dipole axis and largest normal to the dipole axis.
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Chapter 3

The first test of the SeaBed Logging method

L. O. Løseth, H. M. Pedersen, T. Schaug-Pettersen, S. Ellingsrud, and T. Eidesmo
Submitted to Journal of Applied Geophysics

Summary

SeaBed Logging (SBL) is an application of the marine controlled source electromagnetic
(CSEM) method that is used to directly detect and characterize possible hydrocarbon-bearing
prospects. Although the CSEM method has been used by academia for more than three
decades, the application as a direct hydrocarbon indicator was first introduced about five
years ago. The central idea of SBL is the guiding of electromagnetic energy in thin resis-
tive layers within conductive sediments. Even if it has been well known for a long time
that electromagnetic signals can propagate from a conductive region to another via resis-
tive regions such as air or resistive parts of the lithosphere, the application to hydrocarbon
exploration has not been developed until recently. This might be due to the uncertainty of
getting any significant response from thin resistive layers such as hydrocarbon reservoirs since
electromagnetic energy is highly attenuated in conductive sediments. Thus, during the early
development phase of the SBL technique, a scaled laboratory experiment was performed to
validate if a thin resistive layer (hydrocarbons) buried within conductive media (sediments)
could be remotely detected by using electric dipoles as sources and receivers. Data from this
experiment were compared to a forward modelling code for layered media, and the compar-
ison showed good agreement between experimental and theoretical results. This suggested
that thin resistive layers buried in conductive media are detectable due to the guiding of the
electromagnetic field within the resistor. The successful results were vital for realizing the
application of marine CSEM as a hydrocarbon exploration technique. We here present the
results of the first scaled SBL experiment.
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3.1 Introduction

Information about resistivity variations beneath the seafloor is crucial in offshore hydrocarbon
exploration. Although various electromagnetic methods for remote mapping of resistivity in
marine environments exist cf. Chave et al. (1991), until recently, sub-seafloor resistivity data
in the oil and gas industry were obtained almost exclusively by wire-line logging of wells. In
the last few years, a new application of the marine controlled source electromagnetic method
(CSEM) called SeaBed Logging (SBL) has become an important complementary tool to
seismic exploration methods to evaluate and rank possible hydrocarbon-bearing prospects.
The basic idea behind the SBL method is to exploit lossy guiding of electromagnetic en-
ergy in resistive bodies within conductive media for direct detection and characterization of
hydrocarbon-filled reservoirs.

In a marine CSEM experiment an electric dipole antenna is used as source. The dipole
emits a low-frequency signal into the surrounding media, and the signal is normally recorded
by stationary seafloor receivers having both magnetic and electric dipole antennas. The
marine CSEM technique was introduced by Cox et al. (1971), and has since then been
successfully applied to study the oceanic lithosphere and active spreading centres (Young
and Cox, 1981; Cox et al., 1986; Chave et al., 1990; Evans et al., 1994; Constable and Cox,
1996; MacGregor and Sinha, 2000).

It has long been known that electromagnetic signals can propagate fairly long distances
in conductive regions, e.g., seawater, by the aid of a resistive halfspace, e.g., air (Kraichman,
1970), or a resistive waveguide (Wait, 1966). However, although the marine magnetotelluric
(MT) method has been used for hydrocarbon exploration (Constable et al., 1998), the marine
CSEM method had not been applied as a direct hydrocarbon indicator before the SBL
application was introduced about five years ago. The basic theory behind the SBL method
is described in Eidesmo et al. (2002), and a summary of the first SBL survey can be found
in Ellingsrud et al. (2002). This survey was performed owing to successful testing during the
early development phase of the method. A scaled experiment was performed in the spring
of 1999 in a large water tank at the Statoil Research Centre in Trondheim (Ellingsrud et al.,
2000) in order to confirm the theoretical predictions that a signal guided in a resistive layer
within conductive surroundings could be remotely detected. Along with the experiment some
basic modelling studies had been performed using a forward modelling code (Løseth, 2000),
and the data from the experiment and the modelling results showed a very good agreement.

In this paper we present the results from the first SBL experiment. The experimental
setup of the water tank is explained, and the skin depths, wavelengths and phase velocities
in the tank are discussed since these parameters are important when interpreting the exper-
imental results. In order to relate the results to a full-scale experiment, the scaling between
the tank-experiment configuration and a typical realistic setting for an SBL survey is consid-
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ered. Next, the electromagnetic field equations are discussed, followed by a basic modelling
study in order to illustrate some important aspects of the signal behaviour. Finally, the
results from the experiment, i.e., the measured electric field components in the inline and
broadside directions of the source antenna, are presented along with numerical results from
the implementation of the field equations.

The theory for electromagnetic field propagation in planarly layered media is well known
(Born and Wolf, 1999; Brekhovskikh, 1960; Wait, 1962; Chave and Cox, 1982; Ward and
Hohmann, 1987; Chew, 1995). For completeness of the paper, we however briefly review
the derivation of the field equations in the appendix. We keep the displacement current in
the equations since we find this more convenient when handling the sea-surface interface.
In air one might approximate both the displacement and conduction currents to zero in
marine CSEM modelling, but we prefer not to do this (cf. King et al., 1992). Another reason
for taking displacement currents into account, is the need to model effects of other highly
resistive layers that are present in the apparatus used in the experiment.

3.2 Experimental setup

The experimental setup consisted of a large indoor water tank as shown in Figure 3.1. The
tank had a surface area of 9 m by 6 m, and depth of 8 m. A conductive environment was
created by filling the entire tank with seawater. A resistive layer was constructed by fitting
8 king-size waterbed mattresses into a wooden framework. This construction had a length
of 7.50 m, width of 4.25 m, and thickness of 0.25 m. The mattresses were filled with tap
water and could be held in a horizontal position at any desired depth beneath the seawater
surface. Two identical electric dipole antennas were used as source and receiver. These
antennas were constructed from two 15 cm × 15 cm brass plates mounted on an epoxy
substrate. Each plate was connected to a coaxial cable, and the antenna impedance was
approximately 50 Ω. A series of measurements with a time-harmonic signal in the frequency
range between 30 kHz and 830 kHz with an interval of 4 kHz were performed. The dynamic
range of the analyzer was from 0 dBm to approximately -100 dBm in this frequency range.
The separation distance between the source and receiver (offset) was varied from 0.4 m up
to 4 m with 0.2 m subintervals. The series of measurements were furthermore done with the
antennas 25 cm and 65 cm below the seawater surface. We will refer to these as the shallow
and deep configurations, respectively.

Two different orientations of the source and receiver were used throughout the experiment
both being in the horizontal plane with respect to the layered system. The configuration that
will be referred to as the inline measurement means that the separation distance between the
source and receiver antennas is parallel to the direction of the antennas. The configuration
that will be referred to as the broadside measurement implies that the separation direction
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9m

8m 7.5m

9m

6m

7.5m

4.25m

sea water

tap water

sea water

air

25/65 cm

32 cm

25 cm

Figure 3.1: A sketch of the water tank seen from the side and above. In the excerpt, the
details of the setup are shown.

is normal to the direction of the antennas. As well as measurements for the inline and
broadside configurations, control measurements were done for the antennas at right angles
to each other.

3.2.1 Wavelengths, skin depths, and phase velocities

The electromagnetic properties of a medium are described by the electric permittivity ε, mag-
netic permeability µ, and electric conductivity σ. Consider propagation of a time-harmonic
plane wave with frequency f (angular frequency ω = 2πf). The propagation can be described
in terms of a wavenumber

k = ω
√
µε+ iµσ/ω = ω/cp + i/δ, (3.1)

where i =
√
−1, cp is the phase velocity, and δ is the skin depth. The skin depth is a measure

of how far the wave will penetrate into the medium. In the wavenumber expression in terms
of the material parameters, the first part inside the square root is related to the displacement
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currents in Maxwell’s equations, and the second part to conduction currents. Thus, it can be
observed from equation 3.1 that the conduction current dominates the displacement current if
σ/ωε > 1. The frequency where the displacement current and conduction current contribute
equally to the wavenumber (σ/ωε = 1), will be referred to as the critical frequency.

For water the relative electric permittivity is εr = 80. This means that for seawater with
conductivity 5.2 S/m, the critical frequency is 1.2 GHz. For tap water with conductivity
0.013 S/m, the critical frequency is 3 MHz. The displacement current can thus be ignored
when considering field propagation in the seawater and tap water for the frequencies (in the
kHz domain) used in the tank experiment. The wavenumber in equation 3.1 can thus be
written as

k ≈ (1 + i)
√
ωµσ

2
. (3.2)

From this approximation and the relation in equation 3.1, the skin depth, phase velocity,
and wavelength λ for low-frequency propagation in conductive media become:

δ ≈
√

2
µσω

, cp ≈
√

2ω
µσ

, λ =
2πcp
ω

≈ 2πδ. (3.3)

The skin depth, phase velocity, and wavelength for seawater and tap water for frequencies of
50 kHz, 100 kHz and 200 kHz are shown in Table 3.1.

Table 3.1: Skin depths, phase velocities, and wavelengths at 50 kHz, 100 kHz, and 200 kHz
for seawater and tap water.

f σ δ cp λ

(kHz) (S/m) (m) (m/s) (m)
50 5.200 0.99 3.10× 105 6.20
50 0.013 19.73 6.20× 106 123.96
100 5.200 0.70 4.38× 105 4.38
100 0.013 13.95 8.77× 106 87.65
200 5.200 0.49 6.20× 105 3.01
200 0.013 9.86 1.24× 107 61.98

3.2.2 Scaling between the experiment and a realistic SBL setting

The purpose of the experimental setup was to create a stratified structure with a sublayer
of low-loss material (the “hydrocarbon” layer) embedded in a medium with high loss (“over-
burden”). The conductivity of the seawater was measured to 5.2 S/m (resistivity 0.2 Ωm)
during the experiment, and the conductivity of the tap water was measured to 0.013 S/m
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(resistivity 80 Ωm). The conductivity contrast was thus close to 400. It was important that
the distances and frequencies used in the tank experiment could be scaled up to realistic
distances and frequencies that can be encountered in a real SBL survey. The choice of ge-
ometry and frequencies was thus based on the following consideration: If the frequencies (in
the kHz domain) are scaled down by a factor 2 × 105, and the conductivities by a factor
5, the seawater corresponds to a typical overburden with resistivity approximately 1.0 Ωm,
and the tap-water layer corresponds to a hydrocarbon layer with resistivity 400 Ωm. The
dimensions are then scaled up by a factor δ2/δ1 ≈ 1000, where δ1 and δ2 are skin depths re-
lated to corresponding layers in the tank experiment and a typical full-scale SBL experiment,
respectively.

3.3 Field expressions

The electromagnetic field from an infinitesimal electric dipole source contained within a
stratified medium was calculated by solving Maxwell’s equations in terms of electromagnetic
potentials. Since the medium properties change in one direction only, the spherical-wave
expression in the vector potential can be expanded into a spectrum of plane waves. At the
interfaces, a plane-wave constituent obeys the boundary conditions which lead to the Fresnel
reflection coefficients for two orthogonal states of polarization. These are referred to as the
transverse electric (TE) mode meaning that the electric field component is normal to the
plane of incidence (and parallel to the interface), and the transverse magnetic (TM) mode
meaning that the magnetic field component is normal to the plane of incidence (Stratton,
1941). For both polarization modes, the reflection response from an arbitrary number of
layers is obtained by an iterative combination of the reflection and propagation in each layer.
The total reflection response within the source layer is obtained by combining the responses
from the two stacks of layers above and below the source antenna. The derivation of the
electromagnetic field expressions is presented in Appendix 3.A.

In order to compare data from the experiment to theoretical predictions, we need to know
the electric field from a horizontal electric dipole (HED) source in isotropic media:

Eρ(ρ, β, z) = −Ilx
4π

cos β
[
IT M

A0 +
1
ρ

(IT E

A1 − IT M

A1 )
]
, (3.4a)

Eβ(ρ, β, z) = −Ilx
4π

sinβ
[
−IT E

A0 +
1
ρ

(IT E

A1 − IT M

A1 )
]
, (3.4b)

where Eρ and Eβ are frequency-domain representations of the complex horizontal electric
field components. Their magnitude is determined by the dipole current moment Ilx where
I is the source current and lx is the length of the dipole. The symbols I in equation 3.4
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represent integrals over a spectrum of plane waves:

IT E

A0(ρ, z) = ωµ

∫ ∞

0

dkρ
kρ

kz
J0(kρρ)

[
eikz|z| + RTE

A (kρ, z)
]
, (3.5a)

IT E

A1(ρ, z) = ωµ

∫ ∞

0

dkρ
1
kz
J1(kρρ)

[
eikz|z| +RT E

A (kρ, z)
]
, (3.5b)

IT M

A0 (ρ, z) =
ωµ

k2

∫ ∞

0

dkρ kzkρJ0(kρρ)
[
eikz|z| +RT M

A (kρ, z)
]
, (3.5c)

IT M

A1 (ρ, z) =
ωµ

k2

∫ ∞

0

dkρ kzJ1(kρρ)
[
eikz|z| +RT M

A (kρ, z)
]
. (3.5d)

By definition the medium properties have discontinuities in the vertical direction only. Thus,
it is advantageous to write the equations in terms of cylindrical coordinates. The horizontal
wavenumber component is given by kρ, and the vertical wavenumber component is described
by kz =

√
k2 − k2

ρ. The corresponding spatial components are ρ and z, respectively; whereas
β describes the angle between the HED and ρ. The source is situated in the origin of the
coordinate system. The field equations are written in terms of integrals containing Bessel
functions of the first (J0) and second (J1) order so that double integrals in terms of the
horizontal wavenumber components kx and ky are avoided in the numerical implementation.

z =0s

Lower stack

Upper stack

Rs

Rs

R =00

R =0N+1

z

Figure 3.2: The source antenna situated between an upper and a lower stack of layers with
reflection responses Ŕs and R̀s, respectively. Note that these are the reflection responses
from the stacks at zs = 0.

It can be observed that the electromagnetic field expressions consist of a direct field, which
is the field that would be observed in a homogeneous wholespace, and a reflection response
given by RA. This reflection response is obtained by combining the reflection responses from
an upper stack Ŕs and a lower stack R̀s as illustrated in Figure 3.2. The subscript s means
that the stack responses are to be calculated at the source position zs = 0. The appropriate
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summation of the reflection responses from the upper and lower stacks gives:

RA(kρ, z) =
R̀s(1 + Ŕs)e−ikzz + Ŕs(1 + R̀s)eikzz

1 − ŔsR̀s

. (3.6)

The reflection coefficient from a stack is obtained by a recursive combination of reflections
from all the layers in the stack as shown in Chew (1995) or Løseth and Ursin (2007):

Rm =
rm +Rm+1

1 + rmRm+1
e2ikzmdm , (3.7)

where dm is the thickness of the m’th layer, kzm is the vertical wavenumber in the m’th
layer, RM = 0, rm is the Fresnel coefficient for reflection between the m’th and (m + 1)’th
layer and m = 1, 2, ...,M . The iteration procedure is illustrated in Figure 3.3. At a single
interface between two homogeneous regions, denoted by the subscripts 1 and 2 and where
the incoming field is found in medium 1, the reflection coefficients for the TE and TM modes
are (Stratton, 1941; Jackson, 1998):

rT E =
µ2kz1 − µ1kz2

µ2kz1 + µ1kz2
, and rT M =

ε̃1kz2 − ε̃2kz1

ε̃1kz2 + ε̃2kz1
, (3.8)

where ε̃ = ε+ iσ/w.

z

dm+1

dm

rmm
Rm+1

m+1

Rm

rm+1

Figure 3.3: An illustration of how the reflection response from a stack is calculated. The
response just below them’th interface in layerm+1 isRm+1, and rm is the Fresnel coefficient.

The field expressions were implemented in Fortran 90 using an adaptive Gauss-Legendre
quadrature and the Euler summation-acceleration method (Press et al., 1997).

3.4 Modelling study

The effects on the signal propagation when varying the conductivity, thickness, and depth of
the resistive layer were investigated (cf. Figure 3.4). With a source frequency of 100 kHz, the
variation in responses for different conductivities and thicknesses of the resistive layer was
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looked at separately. In these cases the air halfspace was not included. The effect of the air
halfspace was considered by modelling responses from the shallow and deep configurations,
i.e., by varying d0 in Figure 3.4.

z

d2

e0

d1

s1

s1

s2

( )II

( )III

( )I

d0

Figure 3.4: A sketch of the signal propagation. The contributions to the total response come
from the sea-surface (I), direct field (II), and guiding (III).

In all the modelling cases, the resulting electric field components in the inline and broad-
side directions were studied. The results are shown in Figure 3.5 and 3.6. For the inline
configuration Eρ with β = 0 is plotted (dash-dot lines), and for the broadside configuration
Eβ with β = 90◦ is plotted (solid lines). In both cases, the presentation of the results is in
terms of magnitude versus offset (MVO) and phase versus offset (PVO).

In Figure 3.5a-b the magnitudes and phases of the electric field are shown for various
conductivity contrasts. The green lines show the direct field which is the response one would
measure in a homogeneous wholespace. Note that in this case the broadside component has
the largest magnitude. For a three layer model (resistive layer in a conductive background
medium), the responses from models with background-medium conductivity 5.2 S/m and
thin-layer conductivities of 0.13 S/m, 0.065 S/m, and 0.013 S/m (conductivity contrasts
of σr = 40, σr = 80 and σr = 400) are represented by yellow, magenta, and black lines,
respectively. The resulting plots can be separated into three regions. In the first region the
direct field dominates. In the next, the response from the more resistive layer is noticeable,
whereas in the last and most interesting region, the energy that has been guided in the
resistive layer dominates the response. Note that the inline configuration has the largest
response in this region.

In Figure 3.5c-d the magnitudes and phases of the electric field for various thicknesses of
the resistive layer are shown. For reference, the response from a homogeneous wholespace
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Figure 3.5: MVO plots for various conductivity contrasts σr are shown in Figure a, whereas
Figure b shows the respective PVO plots. In Figure c and d the differences in responses for
various thicknesses d2 are shown. I and B denote inline and broadside antenna configurations,
respectively.

is included and shown by the green curves. The yellow, magenta and black lines represent
responses from a resistive layer of thickness 0.05 cm, 0.10 cm, and 0.25 cm, respectively. The
plots indicate that the inline configuration is not as sensitive to a variation in thickness as it
is to a variation in conductivity contrast. The broadside configuration is more sensitive to a
variation in thickness than the inline configuration.

The effect of an air halfspace above the antennas is demonstrated in Figure 3.6. Again
the green curves represent the direct field, and the response without the presence of the sea-
surface interface (d0 = ∞ in Figure 3.4) is plotted in yellow. These reference curves can be
compared to the curves for the responses from the so-called deep configuration (d0 = 65 cm)
represented in magenta, and the shallow configuration (d0 = 25 cm) shown in black.

It can be observed that the responses are larger at shallower depths, but that the response
from the lossy waveguide is still present in the modelled data. The interpretation of the
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3.4 Modelling study
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Figure 3.6: Modelled response for various seawater depths.

phase plots might become more complicated than the interpretation of the magnitude plots
in shallow water. It can be observed that the response from the sea-surface interface is
significant at all distances where the signal is not dominated by the direct wave. Moreover
the combination (“interference”) between the response from above and below the antenna
might lower the overall signal response. Note that one in a common SBL setting has one
more layer that represents the seawater/overburden interface, and that the “interference”
effects may become more complicated here.

3.4.1 TE and TM modes

From equation 3.4 we see that the TE-polarization component will dominate the signal
in the far-field for the broadside configuration since the contribution from the TM mode
vanishes as ρ → ∞. By the same argument, the TM-polarization component will dominate
the signal in the far-field for the inline configuration. However, in a marine CSEM or SBL
experiment, one cannot neglect the near-field. Thus, both components contribute to the
overall signal response both for the inline and broadside configurations. Moreover, the TM
mode is sensitive to thin resistive layers whereas the TE mode does not “see” thin layers
(Løseth, 2007). When a resistive layer becomes thick however, the contribution from the TE
mode becomes significant.

In the geophysics literature the TM mode is often referred to as galvanic coupling be-
tween layers whereas the response due to the TE mode is referred to as inductive coupling
(MacGregor and Sinha, 2000). The TM and TE modes are also sometimes referred to as TM
and PM modes, respectively, then meaning toroidal and poloidal magnetic modes (Chave
et al., 1991).
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3.5 Results

In order to compare the measured responses in the tank to modelled responses, we plot the
measured inline and broadside data along with the corresponding modelled data in Figure
3.7, 3.8, and 3.9. In all the figures the measured inline (broadside) data are represented by
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Figure 3.7: Calculated and measured response for a 50 kHz source frequency at 65 cm depth.

o’s (x’s). The modelled inline (broadside) data are represented by dash-dot (solid) lines. For
comparison, the modelled response from a seawater wholespace (green) and two halfspaces
consisting of seawater and air (cyan) are shown. We denote the latter as the halfspace model.
Figure 3.7 shows measured and calculated magnitude and phase responses for a signal of
50 kHz with the deep configuration. It can be observed that the modelled data fit the
measured data very well at intermediate distances, and that the responses are substantially
larger than the response from the halfspace model. In Figure 3.8, responses at shallow
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Figure 3.8: Calculated and measured response at 100 kHz and 25 cm depth.

depth for a 100 kHz signal are shown. This figure shows a large halfspace response, but
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3.6 Discussion

the modelled data fit the real data very well for intermediate distances. One is thus able to
“see” the tap-water layer at the shallow depth as well. The deep configuration at 200 kHz
is shown in Figure 3.9. Here, the magnitude data fit the modelled data even better than for
lower frequencies at large distances. For the inline case however, the phase data do not fit
the modelled data as well as for the lower frequencies.
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Figure 3.9: Modelled and real data for a 200 kHz source frequency at 65 cm depth.

3.6 Discussion

As seen from Figure 3.7, 3.8, and 3.9, the agreement between the modelled and experimental
results was very good. For small offsets however, the fact that the physical antenna has
finite size does not correspond to the Hertzian dipole approach followed in the modelling
code. This deviation is not large and is of minor importance in the overall picture.

At large offsets, disagreements between modelled and measured data will be due to the
walls and finite bottom of the water tank. Response from the bottom of the water tank is
however avoided by the large distance from the bottom to the tap-water layer (approximately
7 m). As seen from Table 3.1, the skin depth in tap water is much larger than the lateral size
of the tap-water layer for low frequencies. Thus, we expect that reflections from the end of
the mattresses will influence the data, and that these effects will be evident at far offsets. At
higher frequencies, the attenuation is larger, and the end effects will not influence the data
that much. Note also that, at the largest offsets, the receiver is operating near its detection
limit.

The above considerations imply that the experimentally and theoretically obtained curves
should be compared at intermediate source-receiver separation distances. The modelling code
for stratified media is well suited to investigate the measured data at these offsets.

If one was to try to get an exact match between the modelled data and measured data,
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The first test of the SeaBed Logging method

one would have to take into account the coating of the mattresses that leads to very thin
nonconductive layers in the model. From modelling investigations, it was seen that this would
alter the responses only slightly. One should also take into account the wooden framework
and the intermediate separation between the 8 mattresses in the tank. These parameters
will however give only a slight mismatch in the phase plots at higher frequencies (cf. Figure
3.9b). At these frequencies, the phase is more influenced by the tap-water layer than at lower
frequencies.

A determination of the details of the tank was however not the purpose of the experi-
ment. The goal was to validate that the guiding of electromagnetic energy in thin resistive
layers within conductive media is detectable by electric dipole antennas. The experiment
indicated that the detection of a lossy waveguide (1-D modelling), or rather lossy resonator
(experiment), is possible. The results also confirmed that, if one only has the opportunity to
acquire some data, and if one looks for thin layers; one might want to use the inline configu-
ration. Moreover, one might use the difference in response between the inline and broadside
configurations to look for thin resistive layers. For thick layers, the increased sensitivity of
the broadside configuration might become useful if one has a scenario that includes both a
thin reservoir and a thick resistive layer.

A concern about the experimental setup compared to a real SBL or CSEM setting, is
the lack of the “seabed” interface. When the experiment is scaled into a realistic setting,
the seawater layer corresponds to an overburden, and one might argue that the presence
of another layer in the experiment would have masked the response from the thin resistive
layer. However, as discussed in Løseth (2007), the characteristic TM-mode response from
the thin resistive layer would be altered only slightly in case of having an additional interface
with relatively weak contrast to the source layer. Thus, the tank experiment gives valuable
information about the detectability of the guiding effect in the thin resistor even without the
seabed interface.

3.7 Conclusion

The purpose of the water-tank experiment was to investigate if a thin resistive layer (repre-
senting a hydrocarbon-filled reservoir) buried in a conductive medium would give a directly
detectable electromagnetic response. The experiment showed that such detection was indeed
possible. Moreover, it was confirmed that the sensitivity of the measurements was larger
for certain configurations of the antennas. The results from the experiment and modelling
study suggested that the inline configuration is the preferred configuration for detection of
thin resistive layers. Moreover, the experiment verified that the difference in the response
for the inline and broadside configurations can be used to identify thin layers. Even if a
modelling study of a realistic SBL scenario would require full 3-D modelling, the results from
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3.A Derivation of the field expressions

In order to solve Maxwell’s equations, the magnetic flux-density vector B can be expressed
in terms of a vector potential as B = ∇×A (Stratton, 1941). By applying the Lorenz gauge
(Kong, 2000), the following Helmholtz equation for the vector potential from a source with
current density J0 is obtained:

∇2A + k2A = −µJ0, (3.A-1)

where k is the wavenumber given in equation 3.1. The complex electric field E and magnetic
field H in the frequency domain are then described in terms of the vector potential as

E(r, ω) = iω

{
A(r, ω) +

∇ [∇ ·A(r, ω)]
k2

}
, (3.A-2a)

H(r, ω) =
1
µ
∇× A(r, ω), (3.A-2b)

where r is the radial vector. An infinitesimal electric dipole source can be represented by
a length vector |l| � λ with current amplitude I(ω). This gives the source current density
J0(ω) = I(ω)lδ(r). For such a source, the vector potential is found by solving equation 3.A-1:

A(r, ω) =
µI(ω)l
4π|r| exp (ik|r|). (3.A-3)

In a stratified medium with the electric dipole source situated between two layered stacks
and the medium variations in the z-direction as shown in Figure 3.2, the coordinate system
can be chosen with the dipole antenna located at the origin and in the plane defined by the
x- and z-axis. This means that the source current distribution can be written as J0(ω) =
I(ω)[lxδ(r)x̂ + lzδ(r)ẑ]. The x-component of the antenna will be referred to as a horizontal
electric dipole (HED) and the z-component as a vertical electric dipole (VED).

In order to calculate reflection and transmission at the interfaces in the layered system, the
spherical wave in the expression for the vector potential in equation 3.A-3 can be expanded
into plane waves (Weyl, 1919):

exp(ikr)
r

=
i

2π

∫ ∞

−∞
dkxdky

exp [i (kxx+ kyy + kz|z|)]
kz

, (3.A-4)
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where kx and ky are the spatial frequencies in the x- and y-direction, respectively; k2
ρ =

k2
x +k2

y; and kz =
√
k2 − k2

ρ. The double-valued square root is made unique by the following
physical consideration: Since k is complex and kx and ky are real, kz is a complex quantity.
To ensure that the field vanishes for |z| → ∞, one must require that Im(kz) > 0. The
inhomogeneous plane waves are thus exponentially damped with increasing |z|.

By using equation 3.A-2 and 3.A-4, the electromagnetic field in the frequency domain
can now be expressed as:

Ψ(r) =
1

4π2

∫ ∞

−∞
dkxdky Ψ(kx, ky, z) eikxx+ikyy , (3.A-5)

where Ψ = {E,H} and

E(kx, ky, z) = −µωI
2kz

(
l− k′(k′ · l)

k2

)
eikz|z|, (3.A-6a)

H(kx, ky, z) = − I

2kz
(k′ × l) eikz|z|, (3.A-6b)

where k′ = [kx, ky, sgn(z)kz]. The delta-function contribution at the source position for the
Ez-component is ignored. Equation 3.A-5 describes a 2-D inverse Fourier transform from
the wavenumber domain into the spatial domain.

x

y
eTE

lx

kr

Figure 3.10: TE-polarization component for a plane wave. The TE part of the quantity
l− k′(k′ · l)/k2 is denoted eT E, and lx corresponds to a HED.

In order to calculate the reflection response from each interface in layered media, the
quantities in equation 3.A-6 need to be decomposed into the transverse electric (TE) po-
larization component and the transverse magnetic (TM) polarization component. The term
transverse here means that a plane-wave constituent is normal to the plane of incidence. The
plane of incidence is defined by the wavenumber direction k and the z-direction (interface
normal). The TE mode is obtained by considering the electric field component normal to the
wavenumber in the horizontal plane that contains the HED as shown in Figure 3.10. Thus,
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the field components in terms of the TE- and TM-polarization modes become:

ET E

x (kx, ky, z) = ch
µωk2

y

kz(k2
x + k2

y)

(
eikz|z| +RT E

A

)
, (3.A-7a)

ET M

x (kx, ky, z) = ch
µωk2

xkz

k2(k2
x + k2

y)

(
eikz|z| + RT M

A

)
, (3.A-7b)

ET E

y (kx, ky, z) = −ch
µωkxky

kz(k2
x + k2

y)

(
eikz|z| +RT E

A

)
, (3.A-7c)

ET M

y (kx, ky, z) = ch
µωkxkykz

k2(k2
x + k2

y)

(
eikz|z| + RT M

A

)
, (3.A-7d)

HT E

x (kx, ky, z) = ch
kxky

k2
x + k2

y

(
z
|z|e

ikz|z| + RTE

D

)
, (3.A-7e)

HT M

x (kx, ky, z) = −ch
kxky

k2
x + k2

y

(
z
|z|e

ikz|z| +RT M

D

)
, (3.A-7f)

HT E

y (kx, ky, z) = ch
k2

y

k2
x + k2

y

(
z
|z|e

ikz|z| + RTE

D

)
, (3.A-7g)

HT M

y (kx, ky, z) = ch
k2

x

k2
x + k2

y

(
z
|z|e

ikz|z| + RTM

D

)
, (3.A-7h)

Ez(kx, ky, z) = −ch
µωkx

k2

(
z
|z|e

ikz|z| +RT M

D

)
, (3.A-7i)

Hz(kx, ky, z) = −ch
ky

kz

(
eikz|z| +RT E

A

)
, (3.A-7j)

where ch = −Ilx/2. Note that the Ez-component is a pure TM mode, and that the Hz-
component has a TE mode only. The exponential term describes the direct field, RA is the
reflection response given in equation 3.6, and

RD(kρ, z) =
−R̀s(1 + Ŕs)e−ikzz + Ŕs(1 + R̀s)eikzz

1 − ŔsR̀s

. (3.A-8)

The difference in sign from RA is due to the antisymmetric radiation characteristics for the
field components with the sgn(z)-term and the sign of the Fresnel coefficients being opposite
compared to the definitions in equation 3.8.

From Figure 3.10 it can be deduced that the VED has no TE-polarization component.

49



The first test of the SeaBed Logging method

Thus:

Ev
x(kx, ky, z) = −cv

µωkx

k2

(
z
|z|e

ikz|z| + RT M

B

)
, (3.A-9a)

Ev
y(kx, ky, z) = −cv

µωky

k2

(
z
|z|e

ikz|z| + RT M

B

)
, (3.A-9b)

Hv
x(kx, ky, z) = cv

ky

kz

(
eikz|z| + RTM

C

)
, (3.A-9c)

Hv
y (kx, ky, z) = −cv

kx

kz

(
eikz|z| + RT M

C

)
, (3.A-9d)

Ev
z (kx, ky, z) = cv

µω(k2
x + k2

y)
kzk2

(
eikz|z| + RTM

C

)
, (3.A-9e)

where cv = −Ilz/2, Hz = 0, and the reflection responses are:

RB(kρ, z) =
R̀s(1 − Ŕs)e−ikzz − Ŕs(1 − R̀s)eikzz

1 − ŔsR̀s

, (3.A-10a)

RC(kρ, z) =
−R̀s(1 − Ŕs)e−ikzz − Ŕs(1 − R̀s)eikzz

1 − ŔsR̀s

. (3.A-10b)

The explanation of the sign differences in RA, RB, RC , and RD can be summarized as
follows: The horizontal components of the electric (magnetic) field have positive (negative)
reflection coefficients in terms of the definitions in equation 3.8. The reflection coefficient
is negative (positive) for the vertical electric (magnetic) field. The radiation from a HED
is symmetric above and below the antenna for the horizontal components of the electric
field and vertical component of the magnetic field. The radiation is antisymmetric for the
horizontal components of the magnetic field and the vertical component of the electric field.
For the VED the horizontal components of the magnetic field and vertical component of
the electric field are symmetric, whereas the horizontal components of the electric field are
antisymmetric.

The Fourier transform of the expressions in equation 3.A-7 and 3.A-9 into the spatial
domain must be done numerically. In order to do the calculations efficiently, the double
integral can be reduced to a single integral by using cylindrical coordinates. Thus, the ex-
pressions must be written in terms of Bessel functions. Let α represent the angle between
kρ =

√
k2

x + k2
y and the kx-component so that kx = kρ cosα and ky = kρ sinα. The corre-

sponding cylindrical spatial variable is the angle β between the HED and the polar radius
ρ. The exponential term in the integral that describes the plane-wave expansion (equation
3.A-4) can be rewritten as

exp (ikxx+ ikyy) = exp (ikρρ sin ξ), (3.A-11)

where ξ = α − β + π/2. Equation 3.A-11 can be expressed by a series of Bessel functions
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(Gradshteyn and Ryzhik, 1980):

exp (ikρρ sin ξ) =
∞∑

−∞
Jn(kρρ) einξ, (3.A-12)

where J−n (kρρ) = (−1)n
Jn (kρρ). From this, one obtains the representation:

J0(kρρ) =
1
2π

∫ 2π

0

dξ eikρρ sin ξ , (3.A-13a)

J1(kρρ) =
1

2πi

∫ 2π

0

dξ sin ξ eikρρ sin ξ , (3.A-13b)

J2(kρρ) =
1
2π

∫ 2π

0

dξ cos 2ξ eikρρ sin ξ , (3.A-13c)

where the following relationship between J0, J1, and J2 holds:

J0(kρρ) + J2(kρρ) =
2
kρρ

J1(kρρ). (3.A-14)

In order to rewrite the expressions in equations 3.A-7 and 3.A-9 in terms of Bessel functions,
the relations

cosα = cos (ξ + β − π/2) = sin ξ cos β + cos ξ sinβ, (3.A-15a)

sinα = sin (ξ + β − π/2) = − cos ξ cos β + sin ξ sin β, (3.A-15b)

cos 2α = cos (2ξ + 2β − π) = − cos 2ξ cos 2β + sin 2ξ sin 2β, (3.A-15c)

sin 2α = sin (2ξ + 2β − π) = − sin 2ξ cos 2β − cos 2ξ sin 2β, (3.A-15d)

are needed. Note that terms involving cos ξ and sin 2ξ do not contribute to the Bessel
expansion. In order to rewrite the Cartesian field components into cylindrical components,
the following relations are used:

Eρ = Ex cos β + Ey sin β and Eβ = −Ex sin β +Ey cos β. (3.A-16)

The horizontal electric field components due to a HED are as given in equation 3.4. The
corresponding Ez component is

Ez(ρ, β, z) =
iωµIlx
4πk2

cos β
∫ ∞

0

dkρ k
2
ρJ1(kρρ)

[
z
|z|e

ikz|z| +RT M

D (kρ, z)
]
, (3.A-17)

and the magnetic field can be written as

Hρ(ρ, β, z) = +
Ilx
4π

sin β
[
−IT E

D0 +
1
ρ

(IT E

D1 − IT M

D1 )
]
, (3.A-18a)

Hβ(ρ, β, z) = −Ilx
4π

cos β
[
IT M

D0 +
1
ρ

(IT E

D1 − IT M

D1 )
]
, (3.A-18b)

Hz(ρ, β, z) =
iIlx
4π

sin β
∫ ∞

0

dkρ

k2
ρ

kz
J1(kρρ)

[
eikz|z| + RT E

A (kρ, z)
]
, (3.A-18c)
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where

ITE

D0(ρ, z) =
∫ ∞

0

dkρ kρ J0(kρρ)
[

z
|z|e

ikz|z| + RTE

D (kρ, z)
]
, (3.A-19a)

ITE

D1(ρ, z) =
∫ ∞

0

dkρ J1(kρρ)
[

z
|z|e

ikz|z| +RT E

D (kρ, z)
]
, (3.A-19b)

IT M

D0 (ρ, z) =
∫ ∞

0

dkρ kρ J0(kρρ)
[

z
|z|e

ikz|z| + RTM

D (kρ, z)
]
, (3.A-19c)

IT M

D1 (ρ, z) =
∫ ∞

0

dkρ J1(kρρ)
[

z
|z|e

ikz|z| +RT M

D (kρ, z)
]
. (3.A-19d)

The field components due to a VED are:

Ev
ρ(ρ, β, z) =

iµωIlz
4πk2

∫ ∞

0

dkρ k
2
ρ J1(kρρ)

[
z
|z|e

ikz|z| +RT M

B (kρ, z)
]
, (3.A-20a)

Hv
β(ρ, β, z) =

iIlz
4π

∫ ∞

0

dkρ

k2
ρ

kz
J1(kρρ)

[
eikz|z| + RT M

C (kρ, z)
]
, (3.A-20b)

Ev
z (ρ, β, z) = −µωIlz

4πk2

∫ ∞

0

dkρ

k3
ρ

kz
J0(kρρ)

[
eikz|z| +RT M

C (kρ, z)
]
. (3.A-20c)
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Asymptotic evaluations of the marine CSEM

field integrals

L. O. Løseth
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Summary

In marine controlled source electromagnetics (CSEM) or SeaBed Logging (SBL) one explores
the subsurface by emitting low-frequency signals from an electric dipole source close to the
seabed. The signals are recorded by receivers that are usually positioned on the seafloor. The
main goal is to detect and describe possible thin resistive layers within the conductive sur-
roundings beneath the seabed. A simple geological model from an exploration case includes
an air halfspace, a water column, and a thin layer in the subsurface. The electromagnetic
response from such a plane-layered model is easily calculated using standard modelling tools.
However, in order to improve our understanding of the physics of marine CSEM, it is of in-
terest to analyze how the electromagnetic signals propagate. In an isotropic stratified earth
model, the electromagnetic field is given in terms of integrals over TE- and TM-polarized
field constituents in the wavenumber domain. An analysis of the signal propagation can then
be performed by an asymptotic evaluation of the field integrals. This results in closed-form
space-domain expressions for the field contributions in terms of the TE and TM modes.
In the first part of this paper, asymptotic expressions have been derived for three separate
models that consist of: two halfspaces with air and seawater, two conductive halfspaces, and
a thin resistive layer within a conductive background medium. By using the saddle-point
method of evaluation, where the large parameter in the expansion is the propagation distance
of the fields, the lateral wave responses from the sea-surface and seabed, due to branch points
in the complex integration plane, have been obtained. It is shown that the response from the
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Asymptotic evaluations of the marine CSEM field integrals

sea-surface is dominated by the TE mode. It is furthermore shown that the response from a
thin resistive layer is accounted for by a TM-mode pole in the complex wavenumber domain.
Hence one may consider the thin-layer response as caused by a waveguide. In the second part
of the paper, a complete model that consists of a sea-surface interface, a seabed interface,
and a thin resistive layer in the subsurface has been considered. For this case is it shown
that the TM response from the thin resistive layer and the TE response from the sea-surface
account well for the total field response for the source and receiver offsets of main interest in
conventional marine CSEM surveying for hydrocarbons. In shallow water, the TE response
from the sea-surface and the TM response from the resistive layer normally increase. The
effects introduced by the water column can be interpreted in terms of a larger effective source
strength and an additional amplification of the signal at the receiver.

4.1 Introduction

In marine CSEM or SBL one looks for thin resistive layers in conductive sediments by using an
electric dipole source that emits low-frequency signals into the surroundings (Eidesmo et al.,
2002). Although SBL has been used to describe applications of marine CSEM where one
seeks to directly detect thin resistive layers such as hydrocarbons, both naming conventions
are nowadays used to describe the same exploration technique. I will in the following refer to
both applications as marine CSEM. In realistic geological scenarios one needs 3-D modelling
tools in order to accurately predict how electromagnetic fields from an electric dipole in
seawater will propagate. However, the modelling routines for layered media are often well
suited to predict the electromagnetic response from the subsurface since geological structures
in a typical CSEM setting in many cases can be represented as stratified layers (Constable
and Weiss, 2006; Hoversten et al., 2006). A simple 1-D model should include the interface
between the seawater and sediments, a thin layer, and the interface between seawater and
air (cf. Figure 4.1).

Even if 1-D modelling provides information about the resulting response, it does not
clarify which interfaces and layers that contribute what to the modelled signal response.
In order to clarify this matter it might be interesting to perform a direct evaluation of
the so-called Sommerfeld integrals, i.e., the integrals that describe the electromagnetic field
components in a stratified medium. A well-known evaluation technique of integrals is the
method of steepest descents (cf. Morse and Feshbach, 1953; Brekhovskikh, 1960; Felsen and
Marcuvitz, 2003). The basic idea is to deform the integration path in the complex plane
of the integration variable so that the imaginary part of the function in the exponential
of the integrand is constant along the deformed path. A function which is analytic in the
complex domain has its most rapid changes for the real part along the curves of constant
imaginary part (Bender and Orszag, 1999). The main contribution from the integration will
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4.1 Introduction

then normally be from a saddle point. However, during the deformation of the integration
path, poles and branch cuts might be encountered and in this case they contribute to the
resulting integral value. These contributions can sometimes be far more significant than the
saddle-point contribution.

The evaluation of wave propagation by the method of steepest descents dates back to
the early attempts to describe radio-wave propagation in terms of a ground wave (Zenneck,
1907; Sommerfeld, 1909). In a recent paper Wait (1998) reviewed the history of ground-
wave investigations related to radio-wave transmission. The method of steepest descents
is obviously used for evaluating types of wave propagation other than radio waves; e.g.,
Brekhovskikh (1960) has a thorough treatment of spherical acoustic and electromagnetic
wave propagation in layered media, and Baños (1966) considers dipole radiation in presence
of a conducting halfspace.

The asymptotic evaluation of an integral that describes reflection or transmission of a
spherical wave or dipole wave in a medium with one interface may give a lateral wave which
can be ascribed to a branch point in the complex integration domain. Branch points are
always associated with the outermost halfspaces in integrals that describe propagation in
layered models (Chew, 1995). In seismology the term head wave is used for the lateral wave
(DeSanto, 1992). The description of electromagnetic signal propagation in terms of a lateral
wave along the interface between sea and air has been – and still is – important when consid-
ering e.g., communication (with submarines) and measurement techniques with submerged
electric and magnetic dipoles. Baños (1966) calculated the electromagnetic potentials, due to
a source either above or below the surface, by using asymptotic expansions that are valid near
the interface, near the vertical axis, and in the entire hemisphere. For all the cases he used
the method of steepest descents, but with different expansion parameters. He furthermore
reported that the so-called double saddle-point method, where the asymptotic expansion of
the Hankel function is performed along with the expansion of the rest of the integral kernel,
is more efficient than the normal way of expanding the Hankel function before one expands
the integration kernel. Baños (1966) then simplified the asymptotic expressions for three
separate distances which were referred to as the near-field zone, intermediate zone, and far-
field zone. In the near-field case, of importance for low frequencies, he also considered the
quasi-static approach which means that the wavenumber in air is set to zero. In fact, Wait
(1961) stated that only in the quasi-static analysis does the exponential factor in the result-
ing field expressions appear in an appropriate manner, and from his analysis, Wait (1961)
obtained exact expressions for the lateral wave between the sea and air. Bannister (1984)
derived simplified formulas by using the work of Wait (1961). The effect of the sphericity of
the earth on lateral waves was investigated by Bremmer (1949) and Hill and Wait (1980).
An investigation of lateral waves in general was presented in King et al. (1992).

The saddle point gives a contribution to the asymptotic expansion which may be inter-
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Asymptotic evaluations of the marine CSEM field integrals

preted as a reflected or transmitted ray which propagates from the source to the observation
point (Brekhovskikh, 1960). In the deformation of the integration path into the steepest
descent path, singularities of the functions in the integration kernels may be encountered.
These singularities (or poles) must be taken into account by adding the residue of the func-
tion at these points. Poles represent surface waves, leaky waves, or guided waves (Felsen
and Marcuvitz, 2003). Wait (1966) examined the possibility of a resistive layer in the earth’s
crust to support guided waves.

Although asymptotic expansions of integrals that describe field propagation find their
most widespread use in cases where one seeks far-field responses for wave propagation with
low attenuation, it might be worthwhile to apply asymptotic analysis to dipole radiation
in conductive media. This is not a new idea and has, as already mentioned, been done by
e.g., Baños (1966) and Wait (1966). However, in this paper I consider the marine CSEM
field integrals expressed in terms of their TE and TM modes directly, and the integrals are
evaluated for the following three simple models: a conductive halfspace (seawater) in presence
of a resistive halfspace (air), seawater in presence of a less conductive halfspace (sediments),
and a thin resistive layer within a conductive background medium. In addition, models that
consist of different combinations of the simple scenarios are looked into. For the different
models, explicit spatial expressions for the field propagation in terms of lateral-wave, guided-
wave and ray-reflection contributions are derived. The major motivation of the analysis is
to obtain a better physical understanding of the signal propagation in marine CSEM.

The paper starts by reviewing the method of steepest descents. The contributions from
a saddle point, branch point, and a simple pole are presented along with a method for
calculating the saddle- or branch-point contribution when a pole is located close to the
respective point. Next, integrals that describe the horizontal electric field from a horizontal
electric dipole, found in e.g., Løseth et al. (2006a) and Løseth and Ursin (2007), are presented.
The asymptotic evaluation of these field integrals is sufficient for the investigation of the TE-
and TM-mode propagation in a layered model. The evaluation is performed by writing
the integrals in terms of Hankel functions and the appropriate reflection-response functions.
The single-interface model is studied first. In this case the integrals are considered in the
complex wavenumber domain before a method from Baños (1966) is used. This implies a
transformation of the branch-point contribution into a saddle-point contribution. However,
the double saddle-point method that Baños (1966) used in his investigations has not been
found to be of any advantage here. The method for properly handling the presence of a pole
in vicinity of a branch point is applied for the TM mode. The next model considered is a thin
resistive layer within a conductive background medium. The deformation of the integration
path is done in the angular-spectrum domain. This transformation of the integration variable
was first done by Ott (1942) for nonconductive media. The influence of the poles (in the
reflection response) on the field integrals is determined by their location in the complex
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4.2 Method of steepest descents

angular-spectrum domain. The corresponding residue contributions are calculated. Having
considered the simple models, different combinations of them are looked into. First, the case
with a seabed and a thin layer is studied. Next, the case of having a model with a seawater
column is considered, and eventually a full model which includes both the water column and
the thin layer is discussed. In an appendix the separation of measured data into the TE and
TM modes is discussed.

4.2 Method of steepest descents

Consider an integral with the functions φ(ζ) and f(ζ):

I(χ) =
∫

C

dζf(ζ) eχφ(ζ), (4.1)

where the integration path C originally goes from minus infinity to infinity along the real axis
in the complex ζ-plane. Assume that the parameter χ is large. Then a good approximation
to the integral can be found by using the method of steepest descents (which is also referred
to as the saddle-point method). The method of steepest descents implies a deformation of
the original integration path into a path with a constant phase contour. If the function in
the exponent is written as φ(ζ) = φr(ζ) + iφi(ζ), where φr is the real part and φi is the
imaginary part, the constant phase contours are found where φi is constant. From complex
function theory it is evident that when φi is constant, φr must have its most rapid increase
or decrease (Bender and Orszag, 1999). Assume in the following that the integrand has
one saddle point in the interior of the complex integration domain. Then the saddle point
is found at the point on the constant phase curve where φ′(ζ) = 0. The phase contour
that passes through the saddle point is either a steepest descent path (SDP) or a steepest
ascent path. The deformation of the integration path into the SDP, assuming that the
functions in equation 4.1 are analytic, does not alter the value of the integral. Moreover,
along the deformed path, the dominating contribution to the integral comes from a short path
segment around the saddle point. Thus, a good approximation to the integral can be found
by replacing the function f(ζ) with a simpler function that equals the original function along
the short path segment through the saddle point. The accuracy of the resulting asymptotic
approximation usually improves with increasing value of the large parameter χ. However, it
is rather the radius of convergence of a power-series expansion of the part of the integrand
that is multiplied with the exponential behaviour, that determines how well the asymptotic
approximation works [Watson’s Lemma (Baños, 1966)]. This usually implies that χ is large.

During the deformation of the integration path one must account for the following: At
infinity the deformation from the real axis to the steepest descent curve is justified as long
as the value of the integral approaches zero sufficiently fast as the integration variable ap-
proaches infinity (Jordan’s Lemma). Next, if the functions in the integrand are not analytic,
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Asymptotic evaluations of the marine CSEM field integrals

one must account for possible crossings of poles or branch cuts as the path is deformed. In
addition, possible nearby poles must be carefully handled in the calculation of the saddle-
and/or branch-point contributions.

In the next sections, general expressions for contributions to the integral in equation 4.1
from saddle points, possible branch points, and possible poles are reviewed.

4.2.1 Contribution from the saddle point

Both the functions φ(ζ) and f(ζ) in equation 4.1 can be Taylor expanded around the saddle
point ζs:

φ(ζ) = φ(ζs) + φ′(ζs)(ζ − ζs) +
1
2
φ′′(ζs)(ζ − ζs)2 + .. , (4.2a)

f(ζ) = f(ζs) + f ′(ζs)(ζ − ζs) +
1
2
f ′′(ζs)(ζ − ζs)2 + .. . (4.2b)

The notation is simplified when using ζ − ζs = s, φn = φ(n)(ζs)/n!, and fn = f (n)(ζs)/n!.
At the saddle point φ′(ζs) = 0, and along the path of steepest descents the imaginary part
of φ(ζ) is constant. Thus, the variable s is real. Now, by inserting the Taylor expansions
from equation 4.2 into the integral in equation 4.1, and by rewriting the expression in the
exponential function in terms of its series expansion after the φ2-term, one obtains the
contribution from the saddle point (Stamnes, 1986):

Is(χ) ∼ eχφ0

∫ ∞

−∞
ds eχφ2s2 [

f0 + f1s + f2s
2 + ..

]

[
1 + χ

(
φ3s

3 + φ4s
4 + ..

)
+ 1

2χ
2
(
φ3s

3 + ..
)2

+ ..
]
. (4.3)

Using equation 4.A-5 in Appendix 4.A, this leads to:

Is(χ) ∼ eχφ(ζs)

√
−2π

χφ′′(ζs)
f(ζs)

[
1 +

1
2χφ′′(ζs)

ψ(ζs) + ..

]
, (4.4)

where

ψ(ζs) =
φ′′′(ζs)
φ′′(ζs)

f ′(ζs)
f(ζs)

− f ′′(ζs)
f(ζs)

+
1
4
φIV (ζs)
φ′′(ζs)

− 5
12

[φ′′′(ζs)]2

[φ′′(ζs)]2
. (4.5)

The value of the square-root term in equation 4.4 is made unique by requiring that the sign
of its argument is equal to the sign of the inclination of the steepest descent path through
the saddle point (cf. Felsen and Marcuvitz, 2003).

The expression in equation 4.4 can also be derived by using the substitution

φ(ζ) = φ(ζs) − u2. (4.6)

Note furthermore that a series expansion of the integration kernel f in terms of the small vari-
able u followed by an integration of each term, might save laborious work on differentiations
that follows from equation 4.4 and 4.5.

58



4.2 Method of steepest descents

4.2.2 Contribution from a branch point

Branch points with appropriate cuts originate from multivalued functions in the integration
kernel in equation 4.1. In the problems encountered in this paper, branch points are due to
square-root functions in the integrals. The two solutions of the square-root function are on
two different Riemann sheets which are glued together at the branch cuts in the complex
plane. If the deformation from the original integration path to the SDP leads to a crossing of a
branch cut, one must enter another Riemann sheet in order for the function to be continuous.
However, the integration path should be kept on the same Riemann sheet all along the path.
Thus, the sign of the square root is chosen so that the integrand is not exponentially growing
towards infinity, and this also determines the Riemann sheet on which the integration should
be performed (in order to satisfy the radiation condition). It furthermore implies that the
function f(ζ) is discontinuous along a branch cut. Thus, the integration path should be
deformed to encircle possible cuts.

In order to obtain the contribution to the integral in equation 4.1 from a branch point at
ζb, the function f(ζ) can be expanded in terms of the variable t =

√
ζ − ζb :

f(ζ) = f(ζb) + b1(ζb) t + b2(ζb) t2 + b3(ζb) t3 + .. , (4.7)

where

b1(ζ) = 2
√
ζ − ζb

df(ζ)
dζ

, b2(ζ) =
√
ζ − ζb

db1(ζ)
dζ

, and b3(ζ) =
1
3

√
ζ − ζb

db2(ζ)
dζ

. (4.8)

By expanding φ in terms of t2 = ζ − ζb, i.e., φ(ζ) = φ(ζb) + φ1t
2 + .. , one gets:

Ib(χ) ∼ eχφ(ζb)

∫ ∞

−∞
dt 2t eχφ1t2

[
f(ζb) + b1t+ b2t

2 + b3t
3 + ..

]

[
1 + χ

(
φ2t

4 + φ3t
6 + ..

)
+ 1

2
χ2
(
φ2t

4 + ..
)2 + ..

]
, (4.9)

which leads to the following contribution:

Ib(χ) ∼ eχφ(ζb)

√
πb1

[−χφ′(ζb)]3/2

[
1 +

3
2χφ′

(
5
4
φ′′

φ′ − b3
b1

)
+ ..

]
. (4.10)

The functions in equation 4.10 must be evaluated at the branch point. Note that an implicit
assumption in equation 4.9 is that the integral is evaluated along a constant phase contour.

The expression for the branch-point contribution can also be obtained by writing φ(ζ)
as in equation 4.6 (with ζs replaced by ζb). Instead of doing the differentiations that follow
from equation 4.10, the integration kernel can be expanded in terms of the small variable u,
and then integrated for each power of u. It might furthermore be advantageous to map the
portion of the integration path around the branch point into a steepest descent path.
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4.2.3 Contribution from poles

If a simple pole of the function f(ζ) is crossed when the integration path in equation 4.1 is
deformed, the contribution from the pole must be added to the integral. This contribution
is found by considering the residue of the kernel function at the singularity:

Ip(χ) =
∮

C

dζ f(ζ) eχφ(ζ) = 2πi eχφ(ζp) Res
ζ=ζp

f(ζ). (4.11)

In cases where f(ζ) can be written as a rational function f(ζ) = fN (ζ)/fD(ζ), the expression
for the residue is simplified by performing a Taylor expansion of the denominator:

Res
ζ=ζp

f(ζ) = lim
ζ→ζp

[(ζ − ζp)f(ζp)] = lim
ζ→ζp

[
(ζ − ζp)fN (ζ)

fD(ζp) + f ′D(ζp)(ζ − ζp) + ..

]
=
fN (ζp)
f ′D(ζp)

, (4.12)

since fD(ζp) = 0. The contribution from the pole to the overall response in equation 4.1
must in principle not be taken into account before the argument χ is of such a value that
the deformation of the path (which is dependent on χ) crosses the pole. However, if the pole
is close to a saddle or branch point it will affect the saddle- or branch-point contribution to
the integral. Thus, in this case the effect of the pole must also be taken into consideration
for values of χ that do not lead to a crossing of the pole as the path is deformed.

4.2.4 Pole in the vicinity of a branch or saddle point

When a pole is close to a saddle point or branch point the expressions for the contribution
from a saddle (equation 4.4) or branch point (equation 4.10) might become worthless. This
is due to the radius of convergence for the power-series expansion of the integrand becoming
small because of the nearby located pole. In such cases one attempts to remove the pole
from the integral kernel. Consider the integral

Iv(χ) = eχφ0

∫ ∞

−∞
du q(u) e−χu2

, (4.13)

which is obtained from equation 4.1 after a substitution as in equation 4.6. This way of
evaluating the integral can be used for a saddle point as well as a branch point; the subscript
v may represent one or the other, and the constant φ0 is either φ(ζs) or φ(ζb). The integral
is approximated for large χ by expanding q(u) = f(ζ)dζ/du in a Taylor series for small u.
Note that u is real on a constant phase contour.

A pole in f(ζ) at ζp results in a corresponding pole in q(u) at up which might be complex
and is given by:

up =
√
φ0 − φ(ζp), (4.14)

where the sign of the double-valued root is selected so that the position of up is in accordance
with the relative position of the pole compared to the SDP in the original complex domain.
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4.2 Method of steepest descents

The evaluation of the saddle- or branch-point contribution when a pair of poles at u = ±up

have an effect on the contributions can be handled by separating the singularity from the
rest of the integrand:

q(u) = qc(u) +
2Γup

u2 − u2
p

, where Γ = lim
u→up

[
u2 − u2

p

2up
q(u)

]
= Res

ζ=ζp

f(ζ), (4.15)

where the last relation holds for the substitutions used in the current analysis, cf. equation
4.6. The method for explicitly calculating the contribution from a pair of poles in a saddle- or
branch-point evaluation is presented in e.g., Baños (1966) and Kong (2000). The calculation
is reviewed in Appendix 4.B for completeness. The results in equation 4.B-15 means that
the integral in equation 4.13, when q(u) has singularities at u = ±up, can be written as

Iv(χ) = Ivc + Ivp, where (4.16a)

Ivc(χ) = eχφ0

∫ ∞

−∞
du qc(u) e−χu2

, and (4.16b)

Ivp(χ) = ±2πi Γ eχφ0 [1 − erf (∓i√χup)] e−χu2
p . (4.16c)

The sign in front of equation 4.16c and corresponding opposite sign in the argument of
the error function are determined according to the location of the pole up compared to the
deformed integration path. Thus, when Im(up) > 0 the positive sign in front of the expression
and negative sign in the argument of the error function must be selected. When Im(up) < 0
the signs must be switched. This corresponds to the discontinuity that is encountered when
crossing the pole.

When considering one pole at u = up, the expression in equation 4.15 can be written as
q(u) = qc(u) + Γ/(u − up). This means that the contribution from the pole is half of the
value given in equation 4.16c (cf. Felsen and Marcuvitz, 2003).

The integral in equation 4.16b can be calculated by subtracting the series expansion of
the Ivp-integral from the series expansion of the Iv-integral. Thus, the expansion of the
error function times the exponential function for small arguments is needed (Abramowitz
and Stegun, 1962, equation 7.2.14):

eζ2
[1 − erf(ζ)] ∼ 1√

πζ

[
1 − 1

2ζ2
+

3
4ζ4

− 15
8ζ6

+ ..

]
. (4.17)

When the argument in the error function is small, the pole is close to the saddle or branch
point in the complex plane and the effect of the pole is large. When its argument is large, the
error function approaches unity which means that the effect of the pole becomes negligible.
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4.3 Electric field from a horizontal electric dipole

In Figure 4.1 a sketch of a layered structure for a typical marine CSEM-exploration case
is presented. The electromagnetic field in such a model is easily calculated by a standard
modelling tool. However, it is not obvious how the signals propagate in the model. In
order to enlighten this matter, it is found illustrative to consider the signal propagation for
5 different versions of the model: The first case consists of the presence of only a single
interface as sketched in Figure 4.2. This case embodies the two very different situations
of a conductive and a nonconductive halfspace (sea-surface), and two conductive halfspaces
(seabed) where the source is within the more conducting medium. Next, the case of a
thin layer contained within a more conductive background medium (Figure 4.1 without the
seawater layer and air) is considered. Having studied the relatively simple single-interface
and thin-layer cases, the signal propagation in models where these cases are combined is
looked into. The combinations that have been considered are: a seabed interface with a
thin layer in the subsurface, a sea-surface and seabed interface (water column), and finally a
complete model as shown in Figure 4.1.

z

d2

e0

d1

s1

s1

s2

sdw

hs

hr

( )II

( )V

( )IV

( )III

( )I

Figure 4.1: Sketch of the signal propagation in a stratified model. The permittivity in air is
ε0, the conductivity is σ in the seawater (thickness dw) , σ1 in the sediments (thickness d1),
and σ2 in the thin resistive layer (thickness d2). In the water column the source (receiver)
is at height hs (hr) above the seabed. The signal paths sketched are (the most important
ones): the lateral wave on the sea-surface interface (I), the direct wave between the source
and receiver (II), the lateral wave on the seabed interface (III), the reflected wave from the
thin layer (IV), and the guided wave in the thin layer (V).
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4.3 Electric field from a horizontal electric dipole

The signal propagation is studied by using asymptotic evaluations of the field integrals
with the method of steepest descents. Thus, general expressions for the field integrals in
stratified media are needed. In the following the horizontal electric field components will
be considered since they contain both the transverse electric polarization components (TE
mode) and the transverse magnetic polarization components (TM mode). The expressions
that describe the vertical electric field component (Ez) are given in Appendix 4.C, and the
magnetic field can be obtained from the electric field components by differentiations that
follow from Faraday’s law.

The polarization modes behave differently when reflected from or transmitted through an
interface. Thus, a field needs to be separated into its polarization modes in order to calculate
the reflection and transmission responses for the spectrum of plane waves that constitutes
the field integral. The TE mode has no electric field component vertical to the interface and
the TM mode has no magnetic field component vertical to the interface (Kong, 2000). The
Ez-component is a pure TM mode, and its behaviour is similar to the behaviour of the TM
mode considered for the horizontal electric field.

In the frequency domain the radial and azimuthal electric field components from a hori-
zontal electric dipole (HED) within the source layer are (Løseth and Ursin, 2007):

Eρ = −Ilx
4π

cos β
[
IT M

A0 +
1
ρ

(ITE

A1 − IT M

A1 )
]
, (4.18a)

Eβ = −Ilx
4π

sin β
[
−IT E

A0 +
1
ρ

(IT E

A1 − IT M

A1 )
]
, (4.18b)

where Ilx is the electric dipole current moment, ρ is the radial distance in the horizontal
plane, and β is the azimuthal angle. The contributions from the TE and TM modes are:

ITE

A0 =
∫ ∞

0

dλ λ J0(λρ) gT E

A (λ), IT E

A1 =
∫ ∞

0

dλ J1(λρ) gT E

A (λ), (4.19a)

ITM

A0 =
∫ ∞

0

dλ λ J0(λρ) gT M

A (λ), IT M

A1 =
∫ ∞

0

dλ J1(λρ) gT M

A (λ), (4.19b)

where λ is the horizontal wavenumber, and J0 and J1 are the Bessel functions of order zero
and one, respectively. The functions in the integral expressions are

gT E

A (λ) =
ωµ

γ

[
eiγhrs +RT E

A (λ)
]
, (4.20a)

gT M

A (λ) =
γ

ωε̃

[
eiγhrs + RT M

A (λ)
]
, (4.20b)

where the first terms on the right hand side describe a direct field (the contribution in a
homogeneous medium), hrs is the vertical distance between the source and the receiver, and
the second terms are the reflection responses. The parameter ω is the source frequency, µ is
the magnetic permeability, and ε̃ = ε+ iσ/ω is a complex permittivity that includes both the
electric permittivity ε and the conductivity σ. The vertical wavenumber is denoted γ and
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given by γ =
√
k2 − λ2, where k is the total wavenumber. The sign of the square root must

be chosen so that Im(γ) > 0 in order to satisfy the radiation condition. The wavenumber in
terms of electromagnetic properties and frequency is

k =
√
ω2µε + iωµσ. (4.21)

Assume that the z-axis is pointing downwards and that the receiver position is below the
source position. Then the reflection response can be written as (Løseth and Ursin, 2007):

RA =
R̀b(1 + Ŕs) + Ŕs(1 + R̀s)

1 − ŔsR̀s

eiγhrs , (4.22)

where R̀b is the reflection response from a lower stack up to the level of the receiver, R̀s is the
response from a lower stack up to the level of the source [i.e., R̀b = R̀s exp (−2iγhrs)], Ŕs is
the reflection response from an upper stack down to the level of the source, and exp (iγhrs)
is the phase-propagation factor from the source to the receiver.

The reflection coefficient from a stack of layers for both the TE and TM mode is:

Rm =
rm + Rm+1

1 + rmRm+1
e2iγmhm , m = 0, 1, 2, .. , (4.23)

where γm is the vertical wavenumber in the m’th layer. The initial condition at the start
of the stack is that RM = 0. The expressions can be used for both upgoing and downgoing
reflection coefficients. In both cases Rm+1 is the reflection response just behind the m’th
interface, rm is the reflection coefficient at the m’th interface, and hm is the distance from
the m’th interface to the z-level of Rm.

The TE- and TM-mode reflection coefficients at an interface are for the horizontal electric
field components (cf. Løseth et al., 2006b):

rT E =
µ2γ1 − µ1γ2

µ2γ1 + µ1γ2
and rT M =

ε̃1γ2 − ε̃2γ1

ε̃2γ1 + ε̃1γ2
, (4.24)

where the subscript 1 refers to material parameters in the region that contains the incident
field, and the subscript 2 denotes material parameters on the opposite side of the interface.
The transmission coefficients can be written as

tT E =
2µ2γ1

µ2γ1 + µ1γ2
and tT M =

2ε̃1γ2

ε̃2γ1 + ε̃1γ2
, (4.25)

which gives the relations 1 + rT E = tT E and 1 + rT M = tT M .
In order to simplify the calculations in the following it will be assumed that the magnetic

permeability is constant in all the layers in Figure 4.1. For simplicity it will be referred to
as µ. In air the wavenumber in equation 4.21 reduces to

k0 = ω
√
µε0, (4.26)
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4.3 Electric field from a horizontal electric dipole

where the subscript 0 is used to denote the air halfspace, and ε0 is the free-space permittivity.
For all other layers the low-frequency wavenumber approximation for conductive media is
used. This means that equation 4.21 reduces to

k =
1 + i√

2
√
ωµσ. (4.27)

The wavenumber in seawater will be referred to without subscript, in the sediment layer (or
overburden) the subscript 1 is used, and the subscript 2 represents the thin layer. Thus, the
only electromagnetic properties that will be considered in the following, in addition to the
free-space permittivity and permeability, are the conductivities in the seawater, sediments,
and thin layer; denoted σ, σ1, and σ2, respectively.

4.3.1 Direct and reflected field integrals

The integrals in equation 4.19 can be written as a sum of a direct field and a reflected field
(I = Id + Ir). In the integrals that describe the reflection response, the Bessel functions
can be replaced by the Hankel functions using equation 4.D-29 from Appendix 4.D. It
furthermore simplifies the notation if the function H−

ν is introduced as the Hankel function
without the exponential term exp (iζ):

H−
0 (ζ) = H

(1)
0 (ζ)e−iζ and H−

1 (ζ) = H
(1)
1 (ζ)e−iζ . (4.28)

If the reflection response is written as the response at an appropriate interface times the
factor that describes the vertical propagation distance h between the source, interface, and
receiver, one gets the following expressions for the reflected field integrals:

IT E

A0,r =
ωµ

2

∫ ∞

−∞
dλ

λ

γ
H−

0 (λρ) RT E(λ) eiλρ+iγh, (4.29a)

IT E

A1,r =
ωµ

2

∫ ∞

−∞
dλ

1
γ
H−

1 (λρ) RTE(λ) eiλρ+iγh, (4.29b)

IT M

A0,r =
ωµ

2k2

∫ ∞

−∞
dλ λγ H−

0 (λρ) RTM(λ) eiλρ+iγh, (4.29c)

IT M

A1,r =
ωµ

2k2

∫ ∞

−∞
dλ γ H−

1 (λρ) RTM(λ) eiλρ+iγh. (4.29d)

The relation 1/ωε̃ = ωµ/k2 has been used in equation 4.20b when deriving equations 4.29c
and 4.29d. The introduction of the Hankel function leads to an integration path from minus
to plus infinity which is convenient in order to deform the integration path into a steepest
descent path. The direct field integrals can be calculated as shown in Appendix 4.E. This
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results in:

IT E

A0,d = −iωµ
eikr

r
, (4.30a)

IT E

A1,d = −iωµeikr − eikhrs

ikρ
, (4.30b)

IT M

A0,d = −iωµeikr

r

[(
1 − 2

ikr
− 2
k2r2

)
+
ρ2

r2

(
−1 +

3
ikr

+
3

k2r2

)]
, (4.30c)

IT M

A1,d = −iωµ
[

eikr

r

(
− 1
ikr

− 1
k2r2

)
ρ +

eikr − eikhrs

ikρ

]
, (4.30d)

where r here is the distance from the source to the receiver r =
√
ρ2 + h2

rs. Note that when
separated into the TE and TM modes, the homogeneous field contributions from the first
order integrals (IA1) have a plane-wave contribution. These vertically propagating plane-
wave components cancel each other in the final field expressions (equation 4.18) since they
depend on the difference of IT E

A1 and IT M

A1 , and since the reflection coefficients in equation
4.24 are equal for normal incidence.

4.4 Single interface

In this section, asymptotic expansions of the field integrals in equation 4.29 for a stratified
model with one interface are derived. The objective is to obtain explicit spatial expressions
in terms of the TE and TM modes for a source in seawater in presence of a seabed or
sea-surface interface. The resulting expressions can in all cases be pictured as a sum of
a lateral and ray-reflected contribution. Consider the model depicted in Figure 4.2. The
model may represent both a seabed and a sea-surface interface. The source and receiver are
situated in seawater, and the interface is close to the antennas. The vertical propagation
distance in the seabed case is h = hs +hr. In the sea-surface case, Figure 4.2 can be thought
of as upside/down, and the source (receiver) is at depth ds (dr) below the interface. In
accordance with the expressions in equation 4.29, the wavenumber in seawater is denoted k

and the vertical wavenumber is denoted γ. The corresponding total wavenumber and vertical
wavenumber in the other medium are denoted ka and γa, respectively.

4.4.1 Reflection coefficients

The reflection coefficients in equation 4.29 are obtained from equation 4.24 with the assump-
tion of constant permeability across the interface:

RT E

si (λ) =
γ − γa

γ + γa
, (4.31a)

RT M

si (λ) =
k2γa − k2

aγ

k2γa + k2
aγ

=
γa − n2γ

γa + n2γ
, (4.31b)
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4.4 Single interface

z

ka

qs
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r h
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( )I

( )II
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Figure 4.2: Sketch of the signal propagation between the source and receiver in case of a
single-interface model. The wavenumber in the source medium is k and in the other medium
it is ka. The height of the source (receiver) is hs (hr). The main contributions to the signal
at the receiver are: the direct wave (I), the “ray”-reflected wave (II), and the lateral wave
(III). The reflected ray with angle θs propagates a distance r =

√
ρ2 + h2, where ρ is the

horizontal distance and h the vertical distance.

where the subscript si denotes single interface, and the reflection coefficient for the TM
mode has been written in terms of the refraction index n = ka/k. It is useful to rewrite the
reflection coefficients as

RT E

si (λ) =
k2
(
1 + n2

)
− 2γγa − 2λ2

k2 (1 − n2)
, (4.32a)

RT M

si (λ) =
1

1 − n4

γ2
a − 2n2γγa + n4γ

k2
p − λ2

, (4.32b)

where the pole in the TM coefficient is given as

kp = ± ka√
1 + n2

. (4.33)

This is the famous Sommerfeld pole (Sommerfeld, 1909; Baños, 1966).

4.4.2 Integration in the horizontal wavenumber domain

The integrals in equation 4.29 are given in terms of the horizontal wavenumber variable from
minus to plus infinity. In order to use the saddle-point method, λ is considered complex:

λ = λr + iλi, (4.34)
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ka

k

ka

k

ls

Figure 4.3: Sketch of the original path, steepest descent path (SDP), branch cuts, and pole
in the complex horizontal wavenumber domain when the integrals are evaluated in the case
of having a single interface. The TM-mode poles are located at ±kp, and the branch points
at ±ka and ±k. The saddle point is at λs = k sin θs. The asymptotes of the SDP are given
by tan θs = λi/|λr|, and the SDP furthermore crosses the λi-axis at λi ≈ Re(k)/ cos θs, and
the λr-axis twice at λr ≈ Re(k)/ sin θs.

where λr is the real part and λi is the imaginary part. By comparing the integrals in
equation 4.29 with the integral in equation 4.1, an obvious choice of the large parameter χ
is the distance travelled by the signals between the source and receiver r =

√
ρ2 + h2. The

function in the exponent in equation 4.29 then takes the form:

φ(λ) = iλ
ρ

r
+ i
√
k2 − λ2

h

r
. (4.35)

The saddle point λs is given by φ′(λs) = 0:

λs = ±kρ
r

= ±k sin θs, (4.36)

where the parameterization sin θs = ρ/r has been introduced. This means that cos θs = h/r.
The deformation of the original integration path is performed in the upper halfplane. Thus,
the positive sign in equation 4.36 must be selected. The inclination of the SDP through the
saddle point is found to be ∆λi/∆λr = −1 by inserting λs + ∆λ, where ∆λ = ∆λr + i∆λi,
into equation 4.35. The asymptotes of the SDP are found from equation 4.35 by letting
λr → ±∞ along the constant phase contour that passes through the saddle point in the
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4.4 Single interface

upper halfplane:
λi ∼ |λr|

ρ

h
= |λr| tan θs. (4.37)

Possible branch points and poles in the complex λ-plane are found by considering the ana-
lyticity of the integration kernel in equation 4.29. From the reflection coefficients in equation
4.31 it is clear that there are branch points at ±k and ±ka for all the integrals in equation
4.29. In addition, the TM integrals have simple poles at ±kp. Note also that the Han-
kel function has a singularity at zero which will not lead to complications in the current
considerations.

li

lr

k

ka

k

ka

kp

kp

Figure 4.4: Sketch of the branch cuts and integration path when the source and receiver are
close to the interface (θs → π/2 in Figure 4.3). The curve around ka gives the branch-point
contribution whereas the curve around k gives the saddle-point contribution.

A deformation from the original integration path along the λr-axis into the SDP is
sketched in Figure 4.3. The figure is meant to illustrate both the seabed and sea-surface
cases since when ka is real, a small artificial imaginary part should be added during the
calculations in order for the integrals to converge. The angle θs from the λr-axis to the SDP
is seen from Figure 4.2 to be the reflection angle of a ray between the source and receiver.
Observe furthermore that the branch cut from ka is crossed when the angle θs becomes larger
than a certain (small) value. The integration path should then be deformed so that it encir-
cles the branch point in order to be on the physical Riemann sheet. For the TM integrals,
Figure 4.3 shows that the pole is crossed and that it is close to the branch point. Moreover,
the source medium is more conductive than the medium on the opposite interface. Since the
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Asymptotic evaluations of the marine CSEM field integrals

imaginary part of k is larger than the imaginary part of ka, the contribution from the branch
point will dominate the saddle-point contribution as ρ gets large.

In the models considered in Figure 4.2, the antennas are close to the interface. As the
angle of incidence approaches 90◦, i.e., ρ >> h, the SDP in Figure 4.3 approaches the
integration path in Figure 4.4 where the integration path around ka yields the branch-point
contribution and integration path around k yields the saddle-point contribution. In Figures
4.3 and 4.4 the branch cuts have been chosen in two different ways. The branch cuts can
be chosen at will as long as they imply that Im(γ) > 0 and Im(γa) > 0 on the original
path of integration (Baños, 1966). Thus, both the cuts sketched in Figure 4.3 (Sommerfeld
cuts) and Figure 4.4 (Baños cuts) are valid. However, on which Riemann sheet the poles
are situated is dependent on the choice of cuts. If the Sommerfeld cuts are chosen, the pole
kp lies on the physical sheet which means that the pole must be accounted for explicitly. If
however the Baños cuts are chosen, as will be done in the calculations here, the pole is not
on the physical Riemann sheet. Then it contributes to the expressions only through limiting
the convergence radius of the power-series expansion of the integrand that is used for the
branch-point evaluation. The determination of which Riemann sheet the pole is on is done
by considering the denominator in equation 4.31b: The vertical wavenumbers γ and γa must
have opposite signs in order for the pole to be on the physical sheet. This happens when
the pole is to the right of the cut as in Figure 4.3, but not when the pole is to the left as
in Figure 4.4 (cf. Kong, 2000). The choice of cuts must eventually lead to the same overall
contribution to the integral which is thoroughly discussed by Baños (1966).

4.4.3 Branch-point contribution

The branch-point contribution to the asymptotic expansions of the integrals in equation 4.29
can be found by using equation 4.10. However, when h is much smaller than ρ, a method
suggested by Baños (1966) simplifies the calculation of higher-order terms. The substitution

λ = ka cosα, (4.38)

transforms the branch cut through ka into a steepest descent path through ka. The integrals
to evaluate can be written on the same form as in equation 4.1 with α as the integration
variable. The function φ(α) and its derivatives are then

φ(α) = ikaρ cosα, φ′(α) = −ikaρ sinα, and φ′′(α) = −ikaρ cosα. (4.39)

The part of the exponential function that contains the vertical propagation distance h is
contained in the function f(α), and the large parameter (the horizontal distance ρ) has been
kept within φ(α) for simplicity. The saddle point is found at αs = 0. Another transformation

τ2 = φ(αs) − φ(α), (4.40)
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4.4 Single interface

now implies that the integration kernel can be expressed as a series expansion in terms of the
small parameter τ . Baños (1966) uses this method with success, but he uses integrals that
come from a description of the fields in terms of potentials and a double saddle-point method
required by using integral expressions for the Hankel functions. In this work, asymptotic
expressions for the Hankel functions are used (equation 4.D-30) which means that double
integrals are avoided.

The calculations of the branch-point contribution to the integrals in equation 4.29 are
shown in Appendix 4.F. For the TE integrals, equations 4.F-45 and 4.F-46 give:

ITE

A0,b ∼ −2eikaρ+ikh
√

1−n2

σρ2(1 − n2)

[
ink + 1

ρ

(
−1 + 3

2
ikh n2

√
1−n2

)
+ ..
]
, (4.41a)

ITE

A1,b ∼ −2eikaρ+ikh
√

1−n2

σρ2(1 − n2)

[
1 + 3nh

2ρ
√

1−n2 + ..
]
. (4.41b)

In the TM case the expressions in equation 4.F-53 and 4.F-54 give:

IT M

A0,b ∼ − 2ωµ
kaρ2

eikaρ+ikh
√

1−n2
[
1 − 1

ikaρ

(
1 − 3n2

1−n2 − 3(1+n2)
n2 − 3

2ikh
n2

√
1−n2

)
+ ..
]
, (4.42a)

IT M

A1,b ∼ − 2ωµ
ik2

aρ
2
eikaρ+ikh

√
1−n2

[
1 + 1

ikaρ

(
3n2

1−n2 + 3(1+n2)
n2 + 3

2ikh
n2

√
1−n2

)
+ ..
]
. (4.42b)

With a choice of branch cuts as in Figure 4.4, the residue due to the pole in equation 4.33 is
not to be included in the asymptotic expansion of the integral. However, as can be observed
from equation 4.42, the TM-mode expressions are useless when n is small. This is due to the
presence of the pole in close vicinity to the branch point for small n. Thus, the effect of the
pole must be subtracted from the integrands and considered separately. The branch-point
contribution due to the pole is denoted IT M

bp . The series expansion of this expression can be
termwise subtracted from the appropriate expression in equation 4.42 in order to obtain the
contribution IT M

bc where the presence of the pole has been removed. The total branch-point
contribution is thus written as:

IT M

b = IT M

bc + IT M

bp . (4.43)

The branch-point pole contribution is given by equation 4.16c:

IT M

A,bp = −2πi Γ eikaρ [1 − erf (iτp)] e−τ2
p , (4.44)

where the locations of the pair of poles in the τ -domain are derived from equations 4.40,
4.39, 4.38, and 4.33:

τ2
p = ikaρ(1 − 1/

√
1 + n2). (4.45)

The negative sign must be chosen when taking the square root of this expression according
to the selected integration path in Figure 4.4 and the transformations in equations 4.38 and
4.40. The choice of signs in equation 4.44 follows from the same reasoning. The residues,
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Γ0 for the zeroth- and Γ1 for the first-order integral, are found by using the procedure in
equation 4.15. The calculations shown in Appendix 4.F, cf. equation 4.F-55, give:

Γ0 =
ωµkn4

2(1 − n4)(1 + n2)3/2
H−

0

(
kaρ√
1+n2

)
eikh(1+n2)−1/2

, (4.46a)

Γ1 =
ωµn3

2(1 − n4)(1 + n2)
H−

1

(
kaρ√
1+n2

)
eikh(1+n2)−1/2

. (4.46b)

The first term in the contribution from equation 4.44 can be referred to as a surface wave
(cf. Baños, 1966). The surface wave can be of importance for certain medium configurations
and offsets. However, in the present analysis, the surface-wave term is of minor significance.

The expressions where the effect of the pole has been removed are derived in Appendix
4.F, and the results in equations 4.F-62 and 4.F-65 can be written as:

ITM

A0,bc ∼
iωµ

ρ
eikaρ+ikh(1+n2)−1/2 (

u1 + 1
ikρu2 + ..

)
, (4.47a)

ITM

A1,bc ∼
ωµ

kρ
eikaρ+ikh(1+n2)−1/2 (

v1 + 1
ikρv2 + ..

)
, (4.47b)

u1 = 2n2
[
1 − 7

8n
2 + 235

128n
4 − ..

]
, u2 = n3

[(
137
64 + ikh

)
−
(

35
256 + 1

2ikh
)
n2 + ..

]
, (4.48a)

v1 = 2n
[
1 − 3

8
n2 + 163

128
n4 − ..

]
, v2 = n2

[(
113
64

+ ikh
)

+
(

25
256

− 1
2
ikh
)
n2 + ..

]
. (4.48b)

In an asymptotic series, the first few terms normally converge. The series starts to diverge
for higher-order terms. The series should be broken off just before the smallest term. This
term can then be used as an error estimate for the expansion (Bender and Orszag, 1999). In
the expansions in equations 4.41 and 4.47, it has been found sufficient to consider the first
two terms. The third term can then be used as an error estimate.

4.4.4 Saddle-point contribution

Even if the branch-point contribution dominates for both the seabed and sea-surface interface,
the saddle-point contribution is of some importance at the shorter horizontal separation
distances. It will become evident in the next section that it is least laborious to obtain the
contribution from the saddle point in the angular-spectrum domain. The calculations are
presented in Appendix 4.G, the final relations can be found in equation 4.G-71, and they are

ITE

A0,s ∼ −iωµeikr

r
RTE

si (θs)
[
1 +

1
ikr

ΨT E

0 (θs) + ..

]
, (4.49a)

ITE

A1,s ∼ −iωµeikr

r
RTE

si (θs)
1

ik sin θs

[
1 +

1
ikr

ΨT E

1 (θs) + ..

]
, (4.49b)

ITM

A0,s ∼ −iωµeikr

r
RTM

si (θs) cos2 θs

[
1 +

1
ikr

ΨT M

0 (θs) + ..

]
, (4.49c)

ITM

A1,s ∼ −iωµeikr

r
RTM

si (θs)
cos2 θs

ik sin θs

[
1 +

1
ikr

ΨT M

1 (θs) + ..

]
, (4.49d)
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4.4 Single interface

where θs = sin−1(ρ/r) and the reflection coefficients are given by equation 4.G-73. The
second-order terms represented by the Ψ-variables are given by equations 4.G-72 and 4.G-74
for the TM mode and equation 4.G-75 for the TE mode. The first term in the expressions
in equation 4.49 is the well-known geometrical optics contribution. The next term gives the
first correction to the raypath contribution.

a)
0 1 2 3 4 5 6 7 8 9 10

−18

−16

−14

−12

−10

−8

−6

Distance between source and receiver [km]

M
ag

ni
tu

de
 [V

/A
m

2 ]

Exact A0TE
Exact A1TE/ρ
Approx A0TE − total
Approx A0TE − branch
Approx A0TE − saddle

b)
0 1 2 3 4 5 6 7 8 9 10

−18

−16

−14

−12

−10

−8

−6

Distance between source and receiver [km]

M
ag

ni
tu

de
 [V

/A
m

2 ]

Exact A0TM
Exact A1TM/ρ
Approx A0TM − total
Approx A0TM − branch
Approx A0TM − saddle

c)
0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

Distance between source and receiver [km]

P
ha

se
 [r

ad
]

Exact A0TE
Exact A1TE/ρ
Approx A0TE − total
Approx A0TE − branch
Approx A0TE − saddle

d)
0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

Distance between source and receiver [km]

P
ha

se
 [r

ad
]

Exact A0TM
Exact A1TM/ρ
Approx A0TM − total
Approx A0TM − branch
Approx A0TM − saddle

Figure 4.5: Plots of the asymptotic expressions with corresponding exact numerical eval-
uation of the integrals for the single-interface seabed case. Figures a and c show the TE
magnitudes and phases, respectively. In the same manner the TM mode is presented in Fig-
ures b and d. The receiver is situated on the seabed whereas the source is elevated by 30 m.
The source frequency is 0.5 Hz, the conductivity in seawater σ = 3.2 S/m, and the conduc-
tivity in the overburden σ1 = 1.0 S/m. The notation “A0TE” refers to the IT E

A0-integral,
“A1TM” refers to the IT M

A1 -integral, and so on.

4.4.5 The seabed interface

Consider Figure 4.5 where the asymptotic expressions for the TE mode (equation 4.41) and
TM mode (equations 4.44 and 4.47) are compared to exact numerical evaluations of the field
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Asymptotic evaluations of the marine CSEM field integrals

integrals. In the seabed case, ka = k1, n = k1/k, and h = hs +hr . The receivers are situated
on the seabed and the source is elevated by 30 m. The source frequency is 0.5 Hz and the
conductivity is σ = 3.2 S/m in seawater and σ1 = 1.0 S/m in the sediments. In the plots the
exact numerical calculations of the zeroth-order integrals are shown with the thick “sawtooth”
black line, and the first-order integrals with the dash-dot black line. The contributions from
the asymptotic branch-point expansions are plotted with the red curves, the saddle-point
contributions with the green curves, and the combination of the contributions with the blue
curves. It can be observed that the branch point accounts for the response almost entirely.
The saddle-point contribution improves the match for distances up to 3-4 km in the TE
case. In the TM case, the saddle-point contribution is insignificant compared to the branch-
point contribution. The dominance of the lateral-wave contribution can be explained using
Figure 4.2: The rays that travel down to the seabed, into the sediments, and then along the
interface within the sediments are damped less than the reflected rays in seawater.

4.4.6 The sea-surface interface

When the interface under consideration is the sea-surface, ka = k0, n = k0/k, and h = ds+dr

in the branch-point expressions in equations 4.41, 4.44, and 4.47. Since |k| >> k0 which
implies that n ≈ 0, the expressions for the TE mode can be simplified into

IT E

A0 ∼ 2eikh

σρ3
and IT E

A1 ∼ −2eikh

σρ2
, (4.50)

where the propagation factor in air can be neglected because k0 is small. Equations 4.44
and 4.47 show that the main branch-point contribution for the TM mode is proportional
to n2 for the zeroth-order integral and n for the first-order integral. Thus, the sea-surface
response from the TM mode becomes negligible compared to the TE-mode response. When
the expressions in equation 4.50 are inserted into equation 4.18, the well-known expressions
for the electric field from a submerged dipole close to a sea-surface are obtained [compare
with e.g., Wait (1961), Baños (1966), and Bannister (1984)]. Here, I have shown that these
expressions are TE-polarized field components.

A comparison to numerical modelling for the asymptotic expressions in the sea-surface
case has been performed in Figure 4.6. The source frequency is 0.5 Hz, and the depth below
the interface is 50 m (100 m) for the source (receiver). The approximate expressions for the
TE mode fit the curves from the modelling program well, and the branch-point contribution
accounts almost entirely for the response. The addition of the saddle-point contribution
gives a slight improvement for small distances. The contributions to the field components
from the zeroth- and first-order integrals are equal in magnitude (except at small distances)
as is evident from equations 4.18 and 4.50. For the TM response, which is much weaker
than the TE response, the comparisons in Figure 4.6 are made for the first-order integral
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Figure 4.6: Plots of the asymptotic expressions and the exact values from numerical modelling
in case of an interface between sea and air. The depth below the interface is 50 m for the
source and 100 m for the receiver. The subfigures show the TE- and TM-mode responses in
the same way as in Figure 4.5.

since the zeroth-order integral is smaller in magnitude (see equations 4.47 and 4.48). The
TM-mode branch-point contribution explains the curves well at large distances. In order to
improve the asymptotic expansion of the TM-mode integral for short offsets, more terms in
the saddle-point evaluation could be considered, but since the response is small, this is not
pursued further here.

4.5 Thin resistive layer

In this section, asymptotic expansions of the field integrals in equation 4.29 for a stratified
model that consists of a thin resistive layer within a conductive background medium are
derived. The resulting explicit spatial expressions are for the TM mode a sum of a residue
contribution and a saddle-point contribution. For the TE mode, the contribution is accounted
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Asymptotic evaluations of the marine CSEM field integrals

for by the ray reflection due to the saddle point. The model in Figure 4.1 without the seawater
layer and the air halfspace describes a thin layer with thickness d2 within a conductive
background medium. Assume that the antennas are situated in the background medium
(wavenumber k1). In order to perform the asymptotic evaluation of the field integrals, the
reflection response from the thin layer is needed. It will be shown that the response contains
poles for both the TE and TM mode, but that only the TM pole has an explicit contribution
to the expansion. However, for certain values of the expansion parameter, both the TE- and
TM-mode poles will affect the saddle-point contributions. To determine how the poles and
saddle point contribute to the asymptotic expansions, it is found convenient to perform the
integration in the angular-spectrum domain. The residues are however calculated in terms
of the horizontal wavenumber variable.

4.5.1 Reflection response

The reflection response Ry from a layer is derived from equation 4.23. When assuming that
the medium below the layer is different from the medium above the layer, one gets

Ry =
r12 + r23e2iγ2d2

1 + r12r23e2iγ2d2
, (4.51)

where r12 and r23 are the reflection coefficients for the upper and lower interfaces, respec-
tively. The distance between the two interfaces is expressed by d2, and γ2 is the vertical
wavenumber within the layer. By writing the reflection coefficient from one interface in
terms of impedances

rjk =
ηk − ηj

ηk + ηj
where k = j + 1 and j = 1, 2, 3.. , (4.52)

the following expression is obtained:

Ry =

(
η2
2 − η1η3

)
+ η2 (η3 − η1) i cot (γ2d2)

(η2
2 + η1η3) + η2 (η3 + η1) i cot (γ2d2)

. (4.53)

The series expansion of the cotangent function in equation 4.A-7 can be used in order to
obtain the reflection response Rtl for a thin layer since |γ2|d2 << 1 in this case. In fact,
keeping only the first term will be sufficient. The expression in equation 4.53 is further
simplified by assuming that the impedance in medium 3 is the same as in medium 1 (η3 = η1):

Rtl =

(
η2
2 − η2

1

)
γ2d2

2iη1η2 + (η2
1 + η2

2) γ2d2
. (4.54)
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4.5 Thin resistive layer

When inserting for the appropriate impedances (compare equation 4.52 to 4.24), this leads
to the following reflection responses for the TE and TM mode:

RTE

tl (λ) =
k2
1

(
1 − n2

1

)
d2

2iγ1 + [k2
1 (1 + n2

1) − 2λ2]d2
, (4.55a)

RTM

tl (λ) =

[
n2

1k
2
1

(
1 − n2

1

)
− λ2

(
1 − n4

1

)]
d2

2in2
1γ1 + [n2

1k
2
1 (1 + n2

1) − λ2 (1 + n4
1)] d2

, (4.55b)

where n1 = k2/k1.

4.5.2 Angular-spectrum representation

The evaluation of the integrals in equation 4.29 for the thin-layer case simplifies if the in-
tegration variable is transformed from the complex horizontal wavenumber domain into the
angular-spectrum domain. Let θ represent the complex angle between a “ray” with wavenum-
ber k1 and the z-axis. Then

λ = k1 sin θ and γ = k1 cos θ, where θ = θr + iθi. (4.56)

The function in the exponent of the integrand in equation 4.29 can now be written as

φ(λ) = iλ
ρ

r
+ iγ1

h

r
= ik1 cos (θ − θs), (4.57)

where θs is the saddle point, h = r cos θs, and ρ = r sin θs. The large parameter is given by
the propagation distance between the source, upper interface, and receiver: r =

√
ρ2 + h2.

The real and imaginary parts of the horizontal wavenumber in terms of θ are obtained from
equation 4.56 by writing k1 = Re(k1) + i Im(k1) and using the relation from equation 4.A-6a
in Appendix 4.A:

λr = Re(k1) sin θr cosh θi − Im(k1) cos θr sinh θi, (4.58a)

λi = Im(k1) sin θr cosh θi + Re(k1) cos θr sinh θi. (4.58b)

The original integration path is found by requiring that λi = 0. In the conductive source
medium, Re(k1) = Im(k1) which follows from equation 4.27. Thus, the original path goes as

θi = 1
2

ln
cos
(
θr + π

4

)

cos
(
θr − π

4

) . (4.59)

Note that when the source medium is lossless, one obtains the well-known path in the complex
θ-plane that goes from −π/2 + i∞ down to −π/2, then along the θr-axis to π/2, and finally
from π/2 to π/2 − i∞ (Ott, 1942).

The steepest descent path is found where the imaginary part of φ is constant. Since the
path passes through the saddle point:

Im[ik1 cos (θ − θs)] = Re(k1). (4.60)
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By using the relations from equation 4.A-6 in Appendix 4.A, this gives:

θi = ln
sin
[

π
8
− 1

2
(θr − θs)

]

sin
[

π
8 + 1

2 (θr − θs)
] . (4.61)

The original path and steepest descent path are sketched in Figure 4.7. Note that the
inclination of the SDP through the saddle point is negative. There are no branch cuts in
Figure 4.7, and it can be seen from equation 4.55 that there are no branch points related
to the thin layer. This is as expected since branch points and lateral waves are affiliated
with halfspaces at the ends of a layered stack. The branch point for the source medium in
the wavenumber domain is removed with the mapping into the angular-spectrum domain in
equation 4.56. Thus, the contributions to the field integrals in the thin-layer case come from
the saddle point and possibly the poles in the reflection coefficients.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
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Original path
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Saddle point ρ = 10000 m
TE−mode pole
TM−mode pole

Figure 4.7: Angular-spectrum domain for a scenario where a thin resistive layer is contained
within a conductive background medium. The plot shows the original path, steepest descent
path (SDP), TM pole (blue), and TE pole (red). The SDP is plotted for three distinct
horizontal separation distances ρ. The conductivity in the background medium is σ1 =
1.0 S/m and in the resistive layer σ2 = 0.01 S/m. The thickness of the thin layer is 50 m.
The source frequency is 0.5 Hz and the source and receiver height above the thin layer is
hs = hr = 1000 m. The SDP crosses the TM pole at ρ ≈ 1000 m. As ρ → ∞ the SDP moves
towards the TE pole, but this pole is not crossed.
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4.5 Thin resistive layer

4.5.3 Location of the poles

The reflection response from equation 4.55 in terms of the angle variable θ is:

RT E

tl (θ) =

(
1 − n2

1

)
k1d2

2i cos θ +
[
(1 + n2

1) − 2 sin2 θ
]
k1d2

, (4.62a)

RT M

tl (θ) =

[
n2

1

(
1 − n2

1

)
− sin2 θ

(
1 − n4

1

)]
k1d2

2in2
1 cos θ +

[
n2

1 (1 + n2
1) − (1 + n4

1) sin2 θ
]
k1d2

. (4.62b)

The poles are found at the values of θ which make the denominator of the expressions in
equation 4.62 zero:

cos θT E

p = ±

√
1
2

(1 − n2
1) +

(
i

2k1d2

)2

− i

2k1d2
, (4.63a)

cos θT M

p = ±

√
1 − n2

1

1 + n4
1

+
(

in2
1

1 + n4
1

1
k1d2

)2

− in2
1

1 + n4
1

1
k1d2

. (4.63b)

In the wavenumber domain, the poles are given by the relations:

λT E

p = k1 sin θT E

p and λT M

p = k1 sin θT M

p . (4.64)

Note that n1 = k2/k1 is small since σ1 >> σ2. The locations of the poles, when the positive
signs in front of the square roots in equation 4.63 are used, are plotted in the angular-
spectrum domain in Figure 4.7. The TM pole is passed when deforming the integration
path. This happens when the horizontal distance ρ gets larger than the depth of the thin
layer, and implies that the contribution from the TM pole must be taken into account in
the evaluation of the field integrals. The TE pole is not crossed, but it can be expected to
influence the saddle-point contribution for large horizontal distances.

4.5.4 Contribution from the TM pole

Consider the IT M

A0 -integral in equation 4.29c with reflection response given by equation 4.55b.
The response function contains a simple pole, and the contribution from this TM pole can
be obtained by using equation 4.11. The derivative of the denominator in equation 4.55b is

dfT M

D

dλ
= −2λγ−1

1

[(
1 + n4

1

)
γ1d2 + in2

1

]
, (4.65)

and the residue is obtained using equation 4.12 when the nominator of the reflection-response
function and the rest of the integrand in equation 4.29c except for the exponential factor,
are accounted for:

ΓT M

0,tl =
ωµ

4k2
1

H−
0 (λpρ)

(
k2
1 − λ2

p

) [
λ2

p(1 − n4
1) − n2

1k
2
1(1 − n2

1)
]
d2

(1 + n4
1) d2

√
k2
1 − λ2

p + in2
1

. (4.66)
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It is implicit in this expression that λp is the TM pole (i.e., λT M
p from equation 4.64). The

residue for the first-order integral is obtained from equation 4.66 by a division with the factor
λp and a replacement of the zeroth-order Hankel function by the first-order function.

The pole contribution is obtained by inserting the residue and the propagation factor
[with φ(λp) from equation 4.57] into the expression in equation 4.11:

IT M

A0,p =
π

2σ1
H−

0 (λpρ)

(
k2
1 − λ2

p

) [
λ2

p(1 − n4
1) − n2

1k
2
1(1 − n2

1)
]
d2

(1 + n4
1) d2

√
k2
1 − λ2

p + in2
1

eiλpρ+i
√

k2
1−λ2

ph, (4.67a)

IT M

A1,p =
π

2σ1
H−

1 (λpρ)

(
k2
1 − λ2

p

) [
λ2

p(1 − n4
1) − n2

1k
2
1(1 − n2

1)
]
d2

λp

[
(1 + n4

1) d2

√
k2
1 − λ2

p + in2
1

] eiλpρ+i
√

k2
1−λ2

ph. (4.67b)

4.5.5 Saddle-point contributions

The calculation of the saddle-point contributions is presented in Appendix 4.G. The ex-
pressions are on the same form as in equation 4.49, but now the wavenumber is k1 rather
than k, and the reflection response functions are as in equation 4.62. This means that the
expressions in equations 4.G-76 and 4.G-77 must be inserted into the second-order terms
ΨT E

0 , ΨT E
1 , ΨT M

0 , and ΨT M
1 in equation 4.G-72.

From Figure 4.7 it can be observed that the presence of the TE pole may affect the saddle-
point contribution. The effect is stronger for large distances since the SDP moves closer to
the pole with increasing horizontal separation between the source and receiver. Thus, the
residue due to the TE pole also needs to be calculated. The derivative of the denominator
in the reflection-response function in equation 4.55a is

dfT E

D

dλ
= −2λγ−1

1 [i + 2γ1d2] . (4.68)

The residue for the integral in equation 4.29a is then found using equation 4.12:

ΓT E

0,tl = −ωµ
4
H−

0 (λpρ)
k2
1d2(1 − n2

1)

i + 2d2

√
k2
1 − λ2

p

, (4.69)

where it is implicit that the TE pole (λT E
p from equation 4.64) must be used. For the first-

order integral, the residue is obtained by a division of the factor λp and the replacement of
the zeroth-order by the first-order Hankel function. The contribution from the TE pole (if
it were to be crossed during the deformation of the path) would be:

ITE

A0,p = −π
2
iωµ H−

0 (λpρ)
k2
1d2(1 − n2

1)

i+ 2d2

√
k2
1 − λ2

p

eiλpρ+i
√

k2
1−λ2

ph, (4.70a)

ITE

A1,p = −π
2
iωµ H−

1 (λpρ)
k2
1d2(1 − n2

1)

λp

(
i+ 2d2

√
k2
1 − λ2

p

) eiλpρ+i
√

k2
1−λ2

ph. (4.70b)
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The TM pole also has an effect on the saddle-point calculation in addition to its explicit
contribution. Thus, the method in section 4.2.4 is applied to account for the presence of
the pole in both the TE and TM case. Now, let IA,p represent the pole contributions in
equations 4.67 and 4.70. As seen from equation 4.11 and 4.16c, the pole effect IA,sp on the
saddle-point contribution is obtained by a multiplication with the error function complement:

IA,sp = ±1
2
IA,p

[
1 − erf

(
∓iup

√
r
)]
, (4.71)

where the “distance” from the pole to the saddle point is given by equation 4.14:

up =
[
ik1 − i

(
λp sin θs +

√
k2
1 − λ2

p cos θs

)]1/2

. (4.72)

The division by the factor 2 in equation 4.71 is required because of the presence of a single
pole rather than a pair of poles (cf. equation 4.16c). Equation 4.71 can be interpreted as
the SDP picking up the effect of the pole presence by encircling half the residue. If the
deformation of the integration path implies that the pole is crossed, the minus sign in front
of equation 4.71 must be selected since the SDP picks up the residue contribution clockwise.
In addition, since Im(up) < 0 in this case, the sign of the argument in the error function must
be positive. If the pole location is not picked up by the deformation, IA,sp takes the plus
sign since the pole is encountered in the counterclockwise direction. In this case Im(up) > 0,
and the sign of the argument in the error function must be negative.

The removed pole presence IA,sc in the saddle-point contribution is found by subtracting
the pole contribution IA,sp from the original saddle-point contribution IA,s. When using
the expansion in equation 4.17, this gives:

IA,sc ∼ IA,s +
√
π

r

Γtl

up

(
1 +

1
2ru2

p

+ ..

)
eik1r, (4.73)

where the expressions for Γtl for the zeroth-order TE and TM integrals are found in equation
4.66 and 4.69, respectively. The first-order integrals are obtained by a division of λp and by
using the first-order instead of the zeroth-order Hankel function.

4.5.6 Discussion

For the thin-layer response, the results of the asymptotic evaluation of the integrals are
compared to exact numerical calculations in Figure 4.8. The comparisons are presented for
the zeroth-order integrals whereas the exact first-order integrals are shown as a reference.
The source frequency is 0.5 Hz, the conductivity in the background medium is σ1 = 1.0 S/m,
and the source and receiver are 1 km above the thin layer. The thickness of the thin layer is
d2 = 50 m and the conductivity is σ2 = 0.01 S/m. The green curve shows the saddle-point
contribution and the yellow curve shows the pole contribution (only the TM mode). The
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Figure 4.8: Comparison of asymptotic expressions and numerical modelling in case of a thin
resistive layer contained in a more conductive background medium. The TE-mode plots are
shown on the left hand side, and the TM-mode plots to the right. The model parameters are
the same as in Figure 4.7.

TE plot is made better for large distances (from 2-3 km) by accounting for the pole influence
on the saddle point (blue curve based on expressions in equations 4.71 and 4.73). In the
same manner the TM plot is improved at short distances (up to 3 km) by accounting for the
pole in the saddle-point calculations (blue curve includes the saddle-point contributions from
equations 4.71 and 4.73 and the pole contribution). For the TM response, it can be seen that
the saddle-point calculations could be improved some more at short distances. This would
involve taking more terms into account. However, the important points to make about the
thin-layer response are already evident in the plots: The TE response can be pictured as a
ray reflection as sketched in Figure 4.1 (path IV) whereas the TM response is a guided mode
due to the pole contribution in equation 4.67a (path V in Figure 4.1).

82



4.6 Combined models

4.6 Combined models

Having obtained asymptotic expressions for the simple seabed, sea-surface, and thin-layer
case, the resulting asymptotic expansions for different combinations of these cases can be
studied. First, a model which consists of a thin layer and a seabed interface is investigated.
Next, a model with a seabed and sea-surface interface is considered (water column). Finally
the complete model including the thin layer, seabed, and sea-surface is discussed. In all
the cases the vertical distances are kept constant, e.g., the distance from the source to the
thin layer is the same for both the simple thin-layer case and the full model. In Figure
4.1 the source depth is 70 m, the thickness of the water column is 100 m, the receiver is
situated on the seabed, the thickness of the overburden is 1000 m, and the thin resistive
layer has a thickness of 50 m. As in the simple cases, the source frequency is 0.5 Hz, and
the conductivities are: σ = 3.2 S/m for the seawater, σ1 = 1.0 S/m for the overburden, and
σ2 = 0.01 S/m for the resistor.

In Figures 4.9, 4.10, and 4.11, only the IA0-integrals are plotted since they always dom-
inate the IA1-integrals (except for the sea-surface case). Moreover, the IA1-integrals repeat
the same trends as can be found in the IA0-integrals since they normally compare to the sec-
ond term in the expansion of the IA0-integrals. The direct field contributions from equation
4.30 are shown in the seawater-layer case for reference.

4.6.1 Seabed interface and thin layer

When the seabed interface is introduced into the thin-layer model, the reflection responses in
equation 4.55 change, and the expressions for the pole locations in equation 4.63 are modified
accordingly. However, since the thickness d1 of the overburden is fairly large (so that it can
be assumed to suppress the effects of multiples), one can approximate the reflection response
from the seabed and thin layer Rd by using the reflection series from equation 4.23 in terms
of the reflection coefficient Rtl from the thin layer and r1 from the seabed:

Rd =
r1 +Rtle2iγ1d1

1 + r1Rtle2iγ1d1
= r1 + t̀1t́1

[
Rtle2iγ1d1 − r1R

2
tle

4iγ1d1 + ..
]
. (4.74)

The second term in the expansion describes the downward (t̀1) and upward (t́1) transmission
through the seabed (1 − r21 = t̀1t́1), the propagation through the sediments (e2iγ1d1 ), and
the reflection response from the thin layer. The third term accounts for the first multiple
between the seabed and the thin layer.

From Figure 4.9 it can be observed that the TE response is nearly the same no matter if
the thin layer is present or not. Thus, the first term on the right hand side in equation 4.74
dominates in the TE case. For the TM mode on the other hand, the response in the seabed
and thin-layer case resembles the response in the simple thin-layer case. Thus, the second
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Figure 4.9: Comparison of the responses from a thin layer, a single seabed interface, and a
combination of the seabed interface and a thin resistive layer; TE modes to the left and TM
modes to the right. It can be observed that the TE mode only “sees” the seabed interface
(green curve overlying the red curve), whereas the response in the TM case is shifted in
amplitude due to the transmission through the seabed.

term must dominate both the first term and the third term. An approximate expression
for the TM response when the seabed interface is introduced into the thin-layer model can
then be obtained by using the relations for the transmitted field integrals in Appendix 4.H.
Consider equations 4.H-85 and 4.H-86: With the assumption that the signals are transmitted
almost normal to the seabed interface, the approximation cos2 θs/ cos2 θ′s ≈ 1 can be made.
The propagation distance in the sediment layer is moreover much larger than in the seawater.
Thus, for the downward propagation r2 >> r1. The transmitted source signal should thus
be multiplied with the transmission coefficient and the refraction index n. The guided signal
is transmitted up through the seabed interface, but in this case r1 >> r2. An approximation
to the TM response is then obtained from multiplying equation 4.67a by the factor n t̀1t́1,
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and moreover accounting for the propagation through seawater:

IT M

A0,d ∼ π
√
σ1σ

t̀1t́1 ΓT M

0,d eiλpρ+i
√

k2
1−λ2

p 2d1+ikh, (4.75)

where ΓT M

0,d is the residue from equation 4.66 without the factor ωµ/2k2
1 and h is the vertical

propagation distance in the source layer. The transmission coefficients are obtained using
equation 4.25:

t̀1t́1 ≈ 4σ1σ
√

k2−λ2
p

√
k2
1−λ2

p

[σ
√

k2
1−λ2

p+σ1
√

k2−λ2
p]

2 ≈
[

1
2 + 1

4

(√
σ
σ1

+
√

σ1
σ

)]−1

, (4.76)

where normal incidence for the transmission through the seabed is a fairly good approxima-
tion when λT M

p is smaller than k1 and k.
As seen in Figure 4.9, the thin-layer response is only slightly altered for the TM mode

when the seabed is introduced into the model. The smaller amplitude is accounted for
when adding the effect of the transmission through the seabed. The extra damping from
the propagation in seawater has little influence on the amplitude due to the short distance
travelled. From the TE plots in Figure 4.9, it is observed that the TE mode does not
“see” the thin layer when the seabed is present. However, it should be noted that the
overburden in the case study presented here has a thickness that suppresses the multiples
that are generated between the seabed and the thin layer. If the overburden gets thinner,
these multiples lead to more complicated deviations from the TE-mode seabed response and
the TM-mode transmitted thin-layer response.

4.6.2 Seawater layer

From equation 4.22, the reflection response Rw in a region between two interfaces can be
formulated as

Rw =
r1eiγ(hs+hr ) + r0eiγ(2dw−hs−hr ) + r0r1eiγ(2dw−hs+hr ) + r0r1eiγ(2dw+hs−hr)

1 − r0r1e2iγdw
, (4.77)

where r0 and r1 in the case considered here are the reflection coefficients from the sea-surface
and seabed, respectively. The propagation factors are determined from the thickness of the
water column dw and the height of the source hs (receiver hr) above the seabed. From the
geometric series expansion of the denominator in equation 4.77, the following expressions can
be derived:

Rw = r0eiγ(ds+dr)
[
1 + r1e2iγhr

] [
1 + r1e2iγhs

] [
1 + r0r1e2iγdw + ..

]
+ r1eiγ(hs+hr ), (4.78a)

= r1eiγ(hs+hr )
[
1 + r0e2iγdr

] [
1 + r0e2iγds

] [
1 + r0r1e2iγdw + ..

]
+ r0eiγ(ds+dr), (4.78b)

where the expression in equation 4.78a (4.78b) has been obtained by considering the multiples
in terms of r0 (r1). The source depth (below the sea-surface) ds = dw−hs and receiver depth
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Figure 4.10: Comparison of the responses from a sea-surface, a seabed interface, and a
combination of the seabed and sea-surface interface; TE modes to the left and TM modes
to the right. The TE mode is dominated by the sea-surface response which is larger for the
water-column model than for the model with the single sea-surface interface. The TM mode
has a water-column response that is similar to the seabed response.

dr = dw − hr have been introduced into equation 4.78b for simplicity. Note that in both
equations, the reflection response is a sum of two terms where all the multiples are accounted
for in the first term.

Figure 4.10 shows that the TM response from the seabed is slightly increased when the
sea-surface is added to the model. Of the two modes, the TE mode has by far the largest
response in the water column. This is due to the sea-surface response being increased by the
presence of the seabed. Equation 4.78a can be used in order to explain the increase in the TE
response: The reflection coefficient at the sea-surface r0 is multiplied by the term 1+r1e2iγhs

which can be pictured as an amplification of the source signal. The next term, 1 + r1e2iγhr ,
can be considered as an added strength to the signal at the receiver. The geometric series
that follows these terms accounts for additional multiples in the water column, and the last
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4.6 Combined models

term in equation 4.78a is small and can be ignored. Now, for the lateral wave along the sea-
surface, the seabed reflection r1 and vertical wavenumber γ can be approximated by assuming
vertical propagation (γ = k). For the multiples, the consequence of the reflection coefficient
squared, cubed, quadrupled, etc., in the branch-point contribution must be evaluated. This
is done in Appendix 4.F where equation 4.F-48 implies that r20 ≈ 2r0 when n ≈ 0. For the
higher-order terms, r30 ≈ 3r0, r40 ≈ 4r0, and so on, as shown in Appendix 4.F. When the
water-column effects are added to the sea-surface response in equation 4.50, one thus gets:

IT E

A0,f ∼ 2eikh

σρ3

[
1 + r1e2ikhr

] [
1 + r1e2ikhs

] [
1 + 2r1e2ikdw + 3r21e

4ikdw + ..
]
, (4.79)

where h = ds +dr. The expression in the last bracket can be written as
[
1 − r1e2ikdw

]−2, but
because of the attenuation in the water column, only the first few terms in the corresponding
series expansion are needed. The relation in equation 4.79 gives a good approximation to
the water-column TE response as can be seen in Figure 4.10. The increased TM response
can in principle be calculated by using the same approach (cf. equation 4.F-48). However,
since the TM response is “governed” by the seabed interaction, and thus is small compared
to the water-column TE response, the calculation is not pursued further here.

4.6.3 Full model

For the TE-mode response, the asymptotic expression for the field integral that is given in
equation 4.79 will still be a good approximation when the thin layer is introduced into the
water-column model. This is evident from Figure 4.9 where it can be seen that the seabed TE
response is almost not altered at all by the introduction of the thin layer. The TM response
in the water-column model is much weaker than the TE response. However, when the thin
resistive layer is introduced into the model, the TM response increases substantially. An
approximation to the TM response in the full model can be found by considering equation
4.78b if the seabed reflection coefficient r1 is replaced by the seabed/thin-layer response Rd

from equation 4.74. The transmitted guide response described in equation 4.75 increases
when a sea-surface is present in the model. This is due to the amplifications of emitted as
well as received signal introduced by the water column. In order to quantitatively account for
the increase, the powers of Rd in the geometric series that describes the reflection response
(cf. equation 4.78b with r1 replaced by Rd) must be evaluated. If the reflection response
from the seabed and thin layer is denoted as Rd ≈ r1 + Rtt where Rtt is the transmitted
thin-layer response (second term in equation 4.74), one gets

R2
d ≈ (r1 + Rtt)

2 ≈ 2r1Rtt and R3
d ≈ (r1 + Rtt)

3 ≈ 3r21Rtt, (4.80)

because terms with pure seabed reflections are much weaker than the terms that contain
the thin-layer response, and because the higher-order terms of Rtt are negligible due to the
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substantial thickness of the overburden.
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Figure 4.11: Plots of the responses from the full model described in Figure 4.1 along with
the responses from a single sea-surface interface and a model with infinite water depth. The
TE mode has an increased sea-surface response due to the presence of the seabed. The TM
mode has an increased thin-layer response due to the presence of the sea-surface. The explicit
spatial expressions from the asymptotic evaluations fit the exact modelled data well.

Now, when assuming vertical propagation in the water column (γ ≈ k), the combination
of the reflection series in equation 4.78b, with Rd instead of r1, and the expression in equation
4.75 leads to the approximate expression:

ITM

A0,f ∼ ITM

A0,d

[
1 + e2ikds

] [
1 + e2ikdr

] [
1 + 2r1e2ikdw + 3r21e

4ikdw + ..
]
, (4.81)

where it has been used that r0 ≈ 1. In Figure 4.11 it is shown that this expression is a
quite good approximation to the TM response in the complete model. It can furthermore be
observed from Figure 4.11 that the lateral response from the sea-surface for the TE mode, and
the guided response in the thin layer for the TM mode, are the strongest contributors to the
overall response in the complete model. Thus, the asymptotic expressions in equation 4.79
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for the TE mode and equation 4.81 for the TM mode account well for the total contributions
from the corresponding field integrals. The thin-layer TM response, which looses strength
due to the seabed transmission, is amplified by the presence of the sea-surface. Even if the
multiples in the water column are rapidly attenuated, the first few terms cannot be neglected
in shallow water. From equation 4.79 and 4.81 it is seen that the effect of the water column is
similar for the seabed-transmitted thin-layer TM response and the sea-surface TE response.

4.7 Conclusions

Propagation of horizontal electric field components in layered media in terms of their TE-
and TM-polarization parts has been studied. Asymptotic evaluations of the field integrals
using the method of steepest descents give expressions that describe the signal propagation in
conductive media well. The expressions have been verified by exact numerical modelling. The
large parameter that justifies the asymptotic expansion is the propagation distance between
the source and receiver.

The asymptotic expansions of the CSEM field integrals have been obtained in order to
contribute to the understanding of the physics of marine CSEM. The considerations have
been made for propagation in ideal models that simulate the typical settings in conventional
marine CSEM surveying for hydrocarbons.

It has been verified that the sea-surface response is due to a lateral wave, and that the
propagation term in air is negligible. The notion of the signal propagation along the sea-
surface as instantaneous might be appropriate. It has moreover been shown that the response
is dominated by the TE mode. The responses in a simple model with only a seabed interface
are also due to lateral waves, and in this case the magnitudes of the TE and TM responses
are similar. At the seabed interface, the propagation term cannot be neglected. In a model
with a thin resistive layer contained in a conductive background medium, the response is
accounted for by the pole in the reflection response for the TM mode. Hence, the thin-layer
response can be pictured as a guided TM mode. The TE response from the thin-layer model
is moderate compared to the TM response, and it is accounted for by a ray reflection from
the thin resistor.

The main point that follows from the accurate asymptotic expressions that describe field
propagation in the simple models, is that the sea-surface response is a TE mode, whereas
the thin-layer response is a TM mode.

In the more complicated models this conclusion still holds. In presence of a seabed,
the thin-layer TM response for the electric field is only slightly more damped due to the
transmission through the seabed. The TE-mode response from the seabed/thin-layer model
on the other hand, is due to the seabed interaction even with the thin layer present in the
subsurface.
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Asymptotic evaluations of the marine CSEM field integrals

For the complete model described in Figure 4.1, i.e., when the sea-surface interface is
added to the seabed/thin-layer model, the TM response from the thin resistive layer increases
due to the first few multiple reflections in the seawater layer. The multiples can be interpreted
in terms of amplifications of the signals at both the source and receiver sides. The response is
explained quite well by the spatial expression in equation 4.81. The TE response is accounted
for by the lateral sea-surface response and the additional “boost” of the emitted and received
signal due to the seabed interaction. The expression in equation 4.79 is a good approximation
to the TE response.

An interpretation of marine CSEM data in terms of the TE and TM modes requires that
the modes can be separated in acquisition or data processing. A brief discussion on how this
can be done is provided in Appendix 4.I.
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4.A Useful relations

From Abramowitz and Stegun (1962) the following relations are obtained for a small param-
eter x:

1
1 + x

= 1 − x+ x2 − x3 + x4 − .. , (4.A-1a)
√

1 + x = 1 + 1
2x− 1

8x
2 + 1

16x
3 − 5

128x
4 + .. , (4.A-1b)

1√
1 + x

= 1 − 1
2x+ 3

8x
2 − 5

16x
3 + 35

128x
4 − .. , (4.A-1c)

ex = 1 + x+ 1
2x

2 + 1
6x

3 + 1
24x

4 + .. , (4.A-1d)

ea(1+x) = ea
[
1 + ax+ 1

2
(ax)2 + 1

6
(ax)3 + 1

24
(ax)4 + ..

]
. (4.A-1e)

In the calculations the following relations involving complex numbers are used:
√
i = ±1 + i√

2
= ±eiπ/4,

√
−i = ±i3/2 = ±ei3π/4. (4.A-2)

The square root of a complex number can be written as:

√
a ± ib = α± iβ, α =

[
1
2

(√
a2 + b2 + a

)]1/2

, β =
[

1
2

(√
a2 + b2 − a

)]1/2

. (4.A-3)

From Gradshteyn and Ryzhik (1980), equation 3.461, one gets:
∫ ∞

−∞
ds e−as2

s2n =
(2n)!

2nn!(2a)n

√
π

a
, (4.A-4)
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which gives:
∫ ∞

−∞
ds e−as2

=
√
π

a
,

∫ ∞

−∞
ds e−as2

s2 =
1
2a

√
π

a
, (4.A-5a)

∫ ∞

−∞
ds e−as2

s4 =
3

4a2

√
π

a
,

∫ ∞

−∞
ds e−as2

s6 =
15
8a3

√
π

a
. (4.A-5b)

The sine and cosine of a complex angle θ = θr + iθi can be written as:

sin θ = sin θr cosh θi + i cos θr sinh θi, (4.A-6a)

cos θ = cos θr cosh θi − i sin θr sinh θi. (4.A-6b)

The series expansion of the cotangent function is:

cot ζ =
1
ζ
− 1

3
ζ − 1

45
ζ3 − .. . (4.A-7)

4.B Pole near a saddle or branch point

In order to derive an expression for the contribution from the pole, the same approach as in
Baños (1966) and Kong (2000) is used. Define the integral:

Iy(y) =
∫ ∞

−∞
du

2upΓ
u2 − u2

p

e−yu2
, (4.B-8)

which leads to the relation

dIy(y)
dy

+ u2
p Iy(y) = −2upΓ

∫ ∞

−∞
du e−yu2

= −2upΓ
√
π

y
. (4.B-9)

The homogeneous solution to this equation is Ih
y(y) = p0 exp(−yu2

p) where p0 is a constant.
A particular solution is on the form Iy(y) = p(y) exp(−yu2

p). Inserted into equation 4.B-9
this yields

p′(y) = −2upΓ
√
π

y
eyu2

p . (4.B-10)

An integration from y = 0 to y = 1 leads to

p(1) − p(0) = −2upΓ
√
π

∫ 1

0

dy

√
1
y

eyu2
p , (4.B-11)

where the substitution v = −iup
√
y, assuming that Im(up) > 0, gives

∫ 1

0

dy

√
1
y

eyu2
p =

2i
up

∫ −iup

0

dv e−v2
=

√
πi

up
erf(−iup). (4.B-12)

The integral has been expressed in terms of the error function:

erf(ζ) = 1− erfc(ζ) =
2√
π

∫ ζ

0

dv e−v2
, (4.B-13)
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where erfc(ζ) is the complementary error function. An expression for Iy(0) is furthermore
needed. When Im(up) > 0:

Iy(0) = Γ
∫ ∞

−∞
du

2up

u2 − u2
p

= Γ
∫ ∞

−∞
du

(
1

u− up
− 1
u+ up

)
= 2πiΓ. (4.B-14)

This leads to the expression:

Iy(1) = p(1)e−u2
p = 2πiΓ [1 − erf (−iup)] e−u2

p . (4.B-15)

4.C The magnetic and vertical electric field

In the main text the horizontal electric field has been considered in order to show how the
TE and TM modes propagate in a layered model. The derivations of the lateral, guided, and
ray-reflected responses for the Ez-component are found using the same procedures as for the
TM-mode integrals in the main text. The Ez-integral is (Løseth and Ursin, 2007):

Ez =
Ilx
4π

cos β IT M

D2 , where IT M

D2 =
i

ωε̃

∫ ∞

0

dλ λ2J1(λρ) gT M

D (λ). (4.C-16)

The function gD is given by:

gD(λ) = eiγhrs + RD(λ), where RD =
−R̀b(1 + Ŕs) + Ŕs(1 + R̀s)

1 − ŔsR̀s

eiγhrs . (4.C-17)

An explanation of the different reflection-response contributions to the total response RD is
given following equation 4.22 in the main text.

In the single-interface case (cf. section 4.4), the branch-point contribution is:

IT M

D2,b ∼
2ωµ eikaρ+ikh

√
1−n2

kρ2
√

1 − n2

[
1 + 1

ikaρ

(
−3 + 3n2

2(1−n2) + 3(1+n2)
n2 + 3

2 ikh
n2

√
1−n2

)
+ ..
]
,

(4.C-18)
which for small n must be separated into an explicit pole contribution and an asymptotic
expansion with the pole contribution removed:

IT M

D2,bp = −2πi ΓD2 eikaρ [1 − erf (iτp)] e−τ2
p , (4.C-19a)

where τp is given in equation 4.45,

ΓD2 =
−iωµkn5

2(1 − n4) (1 + n2)3/2
H−

1

(
kaρ√
1+n2

)
eikh(1+n2)−1/2

, (4.C-19b)

and

IT M

D2,bc ∼
−iωµ
ρ

eikaρ+ikh(1+n2)−1/2 (
w1 + 1

ikρ
w2 + ..

)
, (4.C-20a)
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where

w1 = 2n3
[
1 − 7

8n
2 + 235

128n
4 − ..

]
, w2 = n2

[
−2 +

(
113
64 + ikh

)
n2 − 521

256n
4 + ..

]
. (4.C-20b)

The thin-layer response is (cf. section 4.5):

IT M

D2,p = − πi

2σ1
H−

1 (λpρ)
λp

√
k2
1 − λ2

p

[
λ2

p(1 − n4
1) − n2

1k
2
1(1 − n2

1)
]
d2

(1 + n4
1) d2

√
k2
1 − λ2

p + in2
1

eiλpρ+i
√

k2
1−λ2

ph.

(4.C-21)
The saddle-point contribution is:

IT M

D2,s ∼ iωµ
eikr

r
sin θs cos θs R

T M

si (θs), (4.C-22)

where the positive sign in front of equation 4.C-22 is due to the negative sign in equation 4.C-
17. The saddle-point contribution in case of transmission through an interface (cf. section
4.H) takes a similar form:

IT M

D2,t ∼ −iωµeikr1+ikar2

rt
sin θs cos θs t

′
T M

(θs), (4.C-23)

where t′T M = 1− rT M in terms of the definitions in equation 4.24. From equation 4.C-23 and
an analogous argumentation as in section 4.6.1, the corresponding expression to equation
4.75 can be derived:

IT M

D2,d ∼ n2 t̀1t́1 IT M

D2,p eikh, (4.C-24)

where t̀1t́1 is given in equation 4.76, and where h in equation 4.C-21 now is 2d1. In the
full model, the expression for the multiple reflections in the water column described by
equation 4.78b for RA is modified due to the difference between RD (equation 4.C-17) and
RA (equation 4.22). Accounting for this difference, the expression for the ITM

D2 -integral in
the full model becomes:

IT M

D2,f ∼ IT M

D2,d

[
1 − e2ikds

] [
1 + e2ikdr

] [
1 + 2r1e2ikdw + 3r21e

4ikdw + ..
]
. (4.C-25)

The derivation of the asymptotic expressions for the integral in equation 4.C-16 does
not add substantial new insight into the behaviour of the signal propagation for the TM
mode in a stratified medium. However, it should be noted that there is a sign difference
in the expression that describes water-layer reflection effects in equation 4.C-25 (for the
Ez-component) compared to the corresponding relation in equation 4.81 (TM mode for the
horizontal electric field), and that the effect of the transmission of the thin-layer response
through the seabed interface is different (factor n2 instead of n).

93



Asymptotic evaluations of the marine CSEM field integrals

When the asymptotic expressions for the electric field components are known, expressions
for the magnetic field components can be obtained using Faraday’s law:

Hρ =
1
iωµ

[
1
ρ

∂Ez

∂β
− ∂Eβ

∂z

]
, (4.C-26a)

Hβ =
1
iωµ

[
∂Eρ

∂z
− ∂Ez

∂ρ

]
, (4.C-26b)

Hz =
1
iωµ

1
ρ

[
∂(ρEβ)
∂ρ

− ∂Eρ

∂β

]
. (4.C-26c)

4.D Hankel functions

The Hankel functions of the first and second kind are defined as (Abramowitz and Stegun,
1962):

H(1)
ν (ζ) = Jν(ζ) + iYν(ζ) and H(2)

ν (ζ) = Jν(ζ) − iYν(ζ), (4.D-27)

where ζ is a complex variable, Jν is the Bessel function of the first kind, and Yν is the Bessel
function of the second kind (or Weber’s function). The Hankel functions in equation 4.D-27
are related as (Abramowitz and Stegun, 1962, equation 9.1.39)

H(2)
ν (ζ) = −eνπiH(1)

ν

(
ζeπi

)
, (4.D-28)

and by using equation 4.D-27 and 4.D-28, the Bessel functions J0 and J1 can be expressed
as

J0(ζ) =
1
2

[
H

(1)
0 (ζ) −H

(1)
0 (−ζ)

]
, (4.D-29a)

J1(ζ) =
1
2

[
H

(1)
1 (ζ) +H

(1)
1 (−ζ)

]
. (4.D-29b)

In the main text the Hankel function of the first kind (sometimes referred to as the Bessel
function of the third kind) is referred to as the Hankel function.

For large arguments the Hankel functions of the zeroth and first order can be written as
(Abramowitz and Stegun, 1962):

H
(1)
0 (ζ) =

√
2
πζ

[
1 +

1
8iζ

+
9

128(iζ)2
+ ..

]
eiζ−π

4 i, (4.D-30a)

H
(1)
1 (ζ) =

√
2
πζ

[
1 −

3
8iζ

−
15

128(iζ)2
− ..

]
eiζ− 3π

4 i. (4.D-30b)

Because the Hankel functions involve Weber’s function, both H
(1)
0 (ζ) and H

(1)
1 (ζ) have a

logarithmic branch-point singularity at ζ = 0. The asymptotic expansions have a multiple-
valued singularity at ζ = 0.
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4.E Field integrals in a homogeneous medium

The following relations between the zeroth- and first-order Hankel functions and their
derivatives are useful (with ζ = λρ):

d

dρ
H

(1)
0 (λρ) = −λH(1)

1 (λρ) , (4.D-31a)

d

dρ
H

(1)
1 (λρ) = λH

(1)
0 (λρ) − 1

ρ
H

(1)
1 (λρ) . (4.D-31b)

The relations in equation 4.D-31 are valid for the Bessel functions of the first kind as well.

4.E Field integrals in a homogeneous medium

The first terms on the right hand side in equation 4.20 can be integrated analytically. The
solution to the first integral in equation 4.E-32 is found in Gradshteyn and Ryzhik (1980),
and the solution for the other integrals follow, unless otherwise noted, by a differentiation of
the integral above the one that is considered in terms of the variable z:

I1 =
∫ ∞

0

dλ
1
γ
J1(λρ) eizγ = − 1

kρ

(
eikr − eikz

)
, (4.E-32a)

I2 =
∫ ∞

0

dλ J1(λρ) eizγ = −1
ρ

(z
r
eikr − eikz

)
, (4.E-32b)

I3 =
∫ ∞

0

dλ γ J1(λρ) eizγ =
(
−kz

2

ρr2
+
iρ

r3

)
eikr +

k

ρ
eikz, (4.E-32c)

I4 =
∫ ∞

0

dλ
λ

γ
J0(λρ) eizγ =

dI1

dρ
+

1
ρ
I1 = −ie

ikr

r
, (4.E-32d)

I5 =
∫ ∞

0

dλ λ J0(λρ) eizγ =
(
− ikz
r2

+
z

r3

)
eikr, (4.E-32e)

I6 =
∫ ∞

0

dλ λγ J0(λρ) eizγ =
(
− k

r2
− i+ ik2z2

r3
+

3kz2

r4
+

3iz2

r5

)
eikr. (4.E-32f)

where γ =
√
k2 − λ2 and r =

√
z2 + ρ2. The expressions for IT E

A0,d, IT E

A1,d, IT M

A0,d, and IT M

A1,d

are found using equations 4.E-32d, 4.E-32a, 4.E-32f, and 4.E-32c, respectively.

4.F Single-interface branch-point contributions

The calculations of the branch-point contributions for the single-interface case are presented
in this section. First, a simple relation between integrals that contain zeroth- and first-order
Hankel functions is derived. Next, the TE- and TM-mode branch-point contributions are
calculated. The asymptotic expansions are obtained with the horizontal source and receiver
offset (ρ) as the large variable. Finally, an asymptotic evaluation of the TM-mode branch-
point contribution is performed where the effect of the pole is removed from the asymptotic
expression and considered separately.
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Asymptotic evaluations of the marine CSEM field integrals

4.F.1 Relation between the zeroth- and first-order integrals

If the IA0-integrals can be written on the form

IA0(ρ) =
(
a0

ρ
+
a1

ρ2
+
a2

ρ3
+
a3

ρ4
+ ..

)
ebρ, (4.F-33a)

the corresponding IA1-integrals are given as

IA1(ρ) =
1
b

[
a0

ρ
+
a1

ρ2
+
(
a2 +

a1

b

) 1
ρ3

+
(
a3 +

2a2

b
+

2a1

b2

)
1
ρ4

+ ..

]
ebρ. (4.F-33b)

This can be derived by noting that the integrals in equation 4.19 are related as follows (cf.
equation 4.D-31): (

d

dρ
+

1
ρ

)
IA1 = IA0. (4.F-34)

The homogeneous solution is Ih
A1 = q0/ρ where q0 is a constant. A particular solution is

found by taking IA1 = q(ρ)/ρ where q(ρ) is a function of ρ. Using equation 4.F-34 one
gets q(ρ) =

∫
dρ′ρ′IA0(ρ′). When IA0 is on a form which includes an inverse power series

times an exponential function of ρ, the resulting relation between IA0 and IA1 is as given in
equation 4.F-33.

4.F.2 Transformation of the integrals

The following relations derived from equation 4.38 (λ = ka cosα) are needed:

dλ = −ka sinα dα, (4.F-35a)

γa = −ka sinα, (4.F-35b)

γ = k
√

1 − n2 cos2 α, (4.F-35c)

where n = ka/k is the refractive index. As seen from the transformation in equation 4.38,
α = ±π/2 when λ = 0. Since the branch point is transformed into a saddle point at α = 0,
α should be −π/2 when λ = 0. The negative sign must then be chosen in equation 4.F-35b
because γa must be equal to +ka when λ = 0.

The variable τ from equation 4.40 can be expressed in terms of a new variable ξ as

ξ = κτ where κ = (ikaρ)−1/2. (4.F-36)

The relations in equation 4.38 and 4.F-35 expressed in terms of ξ then become:

cosα = 1 − ξ2, (4.F-37a)

sinα =
√

2ξ
√

1 − 1
2
ξ2, (4.F-37b)

sinαdα = 2ξdξ, (4.F-37c)
√

1 − n2 cos2α =
√

1 − n2

√
1 + n2

1−n2 ξ2(2 − ξ2). (4.F-37d)
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4.F Single-interface branch-point contributions

The integral in equation 4.1 is rewritten in terms of α by using equation 4.38 and 4.39. From
the transformations in equation 4.40 and 4.F-36, the integral in terms of ξ can be written as

Ib(ρ) = eikaρ

∫ ∞

−∞
dξfξ(ξ) e−ξ2/κ2

, (4.F-38)

where fξ(ξ) can be expanded in a power series in terms of the small parameter ξ. From
equation 4.A-4 it is observed that only even powers of ξ will contribute to the integral.

4.F.3 TE mode

Consider the expression in equation 4.29a with a reflection response as given in equation
4.32a. Since φ(λ) = iλρ, the function fT E(λ), cf. equation 4.1, is:

fT E(λ) =
ωµ

2
λ

γ

k2
(
1 + n2

)
− 2γγa − 2λ2

k2 (1 − n2)
H−

0 (λρ) eiγh. (4.F-39a)

From equation 4.F-37c (4.F-35a) comes an odd-order term in ξ. Since the only other odd-
order term in the expressions is in equation 4.F-37b (4.F-35b), the branch-point contribution
in equation 4.F-39a is:

fT E(λ)|b =
−ωµ

k2 (1 − n2)
λγa H

−
0 (λρ) eiγh. (4.F-39b)

The part of the reflection coefficient from equation 4.32a that contributes to the branch-point
response is then:

RT E

si (λ)|b =
−2γγa

k2 (1 − n2)
. (4.F-39c)

When the asymptotic expansion of the Hankel function in equation 4.D-30 is inserted into
equation 4.F-39b, one gets:

fT E(λ)|b =
−ωµ

k2 (1 − n2)

√
2
πρ

e−i
π
4
√
λγa

[
1 + 1

8iλρ
+ 9

128(iλρ)2
+ ..
]

eiγh. (4.F-39d)

Now, f(λ) is transformed into fξ(ξ) by using the relations in equation 4.F-35 and 4.F-37. The
series expansions in powers of ξ are furthermore worked out using the relations in equation
4.A-1. The exponential term becomes:

eiγh = ece
[
1 + e1ξ

2 + e2ξ
4 + ..

]
, (4.F-40a)

where the shorthand notation

ce = ikh
√

1 − n2, e1 = ce
n2

1−n2 , e2 = −1
2ce

n2

(1−n2)2
(1 − cen

2), (4.F-40b)

has been used. The second- and third-order terms in the Hankel function are:
1

8iλρ
= h1

(
1 + ξ2 + ξ4 + ..

)
, where h1 =

1
8ikaρ

, (4.F-41a)

9
128(iλρ)2

= h2

(
1 + 2ξ2 + 3ξ4 + ..

)
, where h2 =

9
128(ikaρ)2

, (4.F-41b)
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Asymptotic evaluations of the marine CSEM field integrals

and in addition, the expansion of the following variables is needed:
√
λγa = −

√
2k3/2

a ξ
(
1 − 3

4ξ
2 − 1

32ξ
4 − ..

)
. (4.F-42)

The relation between the differentials is given by equation 4.F-35a and 4.F-37c:

dλ = −2kaξdξ, (4.F-43)

and the function fT E

ξ then becomes:

fT E

ξ (ξ) = AT E

b ξ2
[
1 + h1 + h2 +

(
e1 − 3

4 + e1h1 + 1
4h1

)
ξ2 +

(
e2 − 3

4e1 −
1
32

)
ξ4 + ..

]
,

(4.F-44a)

where

AT E

b = −ωµ 4k5/2
a

k2 (1 − n2)

√
1
πρ

e−i
π
4 eikh

√
1−n2

. (4.F-44b)

An asymptotic series for the TE integral is now obtained using equation 4.F-38, 4.F-44, and
the relations in equation 4.A-2 and 4.A-4:

IT E

A0,b ∼ −2 iωµ ika eikaρ+ikh
√

1−n2

k2ρ2 (1 − n2)

[
1 + 1

ikaρ

(
−1 + 3

2
e1
)

+ 1
(ikaρ)2

(
15
4
e2 − 21

8
e1
)

+ ..
]
.

(4.F-45)

The sign has been chosen in accordance with the slope of the steepest descent curve in the
α-plane. Note that the third-order term only contains factors from the expansion of the
exponential function in equation 4.F-40. Note moreover that each successive term in ξ2 in
the integral corresponds to a multiplication with 1/ik1ρ in the asymptotic series. Terms from
the Hankel function in equation 4.F-44 that give higher-order terms than those considered in
the expansion can thus be ignored when deriving equation 4.F-44. An expression for IT E

A1,b

is obtained by using equation 4.F-33:

IT E

A1,b ∼ −2 iωµ eikaρ+ikh
√

1−n2

k2ρ2 (1 − n2)

[
1 + 1

ikaρ
3
2e1 + 1

(ikaρ)2

(
15
4 e2 + 3

8e1
)

+ ..
]
. (4.F-46)

In the considerations for the combined models in section 4.6, the multiples in the water
column are expressed as a power series in terms of the sea-surface reflection coefficient. From
equation 4.31a and 4.32a it is found that

[RTE

si (λ)]2 =
(
γ − γa

γ + γa

)2

=
γ4 − 4γ3γa + 6γ2γ2

a − 4γγ3
a + γ4

a

k4(1 − n2)2
. (4.F-47)

The part that contributes to the branch-point integral becomes

RT E|2b =
−2γγa

k2(1 − n2)
2
[
1 +

2n2

1 − n2

(
2ξ2 − ξ4

)]
, (4.F-48)
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4.F Single-interface branch-point contributions

which follows from equation 4.F-39c and the substitutions in equation 4.F-35 and 4.F-37.
For the interface between air and seawater, the refraction index is n0 ≈ 0. Thus the ap-
proximation R2 ≈ 2R (where the TE superscript and b subscript have been omitted for
simplicity), can be used for the branch-point contribution that describes the first multiple
of the sea-surface reflection. By repeating the above procedure for higher powers of the
reflection coefficients, one readily obtains that R3 ≈ 3R, R4 ≈ 4R, and so on.

4.F.4 TM mode

Consider the expression in equation 4.29c with a reflection response as given in equation
4.32b. The function fT M(λ) for the TM mode is, cf. equation 4.1:

fT M(λ) =
ωµ

2k2(1 − n4)
λγ

γ2
a − 2n2γγa + n4γ

k2
p − λ2

H−
0 (λρ) eiγh, (4.F-49a)

where kp is as given in equation 4.33. Since only even-order terms contribute to the integral,
this expression reduces to

fT M(λ)|b =
−n2ωµ

k2(1 − n4)
λ

γaγ
2

k2
p − λ2

H−
0 (λρ) eiγh. (4.F-49b)

When the asymptotic expansion of the Hankel function in equation 4.D-30 is inserted into
equation 4.F-49b, one gets:

fT M(λ)|b =
−n2ωµ

k2(1 − n4)

√
2
πρ

e−iπ/4
√
λγa

γ2

k2
p − λ2

[
1 + 1

8iλρ + 9
128(iλρ)2

+ ..
]

eiγh. (4.F-49c)

The series expansion of 1/(k2
p − λ2) is

1
λ2 − k2

p

=
1 + n2

n2k2
a

[
1 + p1ξ

2 + p2ξ
4 + ..

]
, (4.F-50a)

where the shorthand notation

p1 =
2(1 + n2)

n2
and p2 =

4 + 7n2 + 3n4

n4
, (4.F-50b)

has been used. The vertical wavenumber squared is

γ2 = k2(1 − n2)
[
1 + c1ξ

2 + c2ξ
4
]
, where c1 =

2n2

1 − n2
and c2 = −1

2
c1. (4.F-51)

Series representations of the exponential factor, the terms in the Hankel function, and the
term

√
λγa, have been obtained in equation 4.F-40, 4.F-41, and 4.F-42, respectively. Inserted

into equation 4.F-49c, the above expansions and the relation between the differentials in
equation 4.F-43 imply that the function fT M

ξ (ξ) becomes:

fT M

ξ (ξ) =AT M

b ξ2
[
1 + h1 + h2 +

(
q1 − 3

4
+ q1h1 + 1

4
h1

)
ξ2 +

(
q2 − 3

4
q1 − 1

32

)
ξ4 + ..

]
,

(4.F-52a)
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Asymptotic evaluations of the marine CSEM field integrals

where

q1 = e1 + c1 + p1 and q2 = e2 + c2 + p2 + c1p1 + e1c1 + e1p1, (4.F-52b)

and the amplitude factor is

AT M

b = 4ωµ

√
ka

πρ
e−i

π
4 eikh

√
1−n2

. (4.F-52c)

The integral is then calculated by inserting the expression for fT M

ξ (ξ) into equation 4.F-38:

IT M

A0,b ∼ − 2ωµ
kaρ2

eikaρ+ikh
√

1−n2
[
1 + 1

ikaρ

(
−1 + 3

2q1
)

+ 1
(ikaρ)2

(
15
4 q2 −

21
8 q1

)
+ ..
]
. (4.F-53)

The first-order integral IT M

A1,b is obtained from equation 4.F-53 by using equation 4.F-33:

IT M

A1,b ∼ − 2ωµ
ik2

aρ
2
eikaρ+ikh

√
1−n2

[
1 + 1

ikaρ
3
2q1 + 1

(ikaρ)2

(
15
4 q2 + 3

8q1
)

+ ..
]
. (4.F-54)

4.F.5 Accounting for the influence of the TM pole

The asymptotic expansions in equation 4.F-53 and 4.F-54 are useless for small n. This is
due to the pole in close vicinity to the branch point for this case as observed in Figure 4.4.
The procedure in section 4.2.4 is applied to obtain a separate expression for the branch-point
contribution due to the pole. This contribution is given by equation 4.44 for both the zeroth-
(residue Γ0) and first-order (residue Γ1) integrals. The residue Γ0 is found from equation
4.F-49b and the relation in equation 4.15:

Γ0 = lim
λ→kp

[
λ2−k2

p

2kp
f(λ)

]
=

ωµn2

2k2(1 − n4)

√
k2

a − k2
p (k2 − k2

p)H−
0 (kpρ) ei

√
k2−k2

p h, (4.F-55)

where kp = ka/
√

1 + n2.

In order to obtain an expression for IT M

A0,bc, a series expansion of equation 4.44 is per-
formed. The terms in this expansion are subtracted from the corresponding terms in the
expression given by equation 4.F-53. The locations of the pair of poles in the ξ-domain are
given by (cf. equation 4.40 and 4.F-36):

ξ2p = 1 − 1√
1 + n2

, (4.F-56)

and thus, the residue in equation 4.F-55 can be written as

Γ0 =
ωµ

√
ka n

2e−iπ/4

√
2πρ(1 − n4)

ξp

√
1 +

√
1 + n2

1 + n2

[
1 +

√
1+n2

8ikaρ
+ 9(1+n2)

128(ikaρ)2
+ ..
]
eikh(1+n2)−1/2

.

(4.F-57)
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4.F Single-interface branch-point contributions

The series expansion of the error function times the Gaussian function in equation 4.44 is
given in equation 4.17, and in terms of τp it becomes (ξ = κτ ):

e−τ2
p erfc(−iτp) ∼ i√

πτp

[
1 +

1
2τ2

p

+
3

4τ4
p

+ ..

]
. (4.F-58)

From equation 4.45 one gets
1
τ2
p

=
κ2

√
1 + n2

√
1 + n2 − 1

, (4.F-59)

and the series expansion of the contribution from the pole then becomes:

ITM

A0,bp ∼ − iωµ
ρ

√
2n2
√

1 +
√

1 + n2

(1 + n2) (1 − n4)
eikaρ+ikh(1+n2)−1/2 [

1 + 1
ikaρU1 + 1

(ikaρ)2U2 + ..
]
,

(4.F-60a)
where

U1 = 1
2

√
1 + n2

(
1√

1+n2−1
+ 1

4

)
, (4.F-60b)

U2 = 1
4 (1 + n2)

(
3

(
√

1+n2−1)2
+ 1

4(
√

1+n2−1)
+ 9

32

)
. (4.F-60c)

In addition the exponent in equation 4.F-53 must be modified in order to compare terms
with the expression in equation 4.F-60:

eikh
√

1−n2 = eikh(1+n2)−1/2 [
1 − 1

2
ikhn4 + 1

4
ikhn6 − 1

8
ikh

(
5
2
− ikh

)
n8 + ..

]
. (4.F-61)

Now, the contribution from the branch point when the pole contribution is separated out
becomes:

IT M

A0,bc = IT M

A0,b−IT M

A0,bp ∼ iωµ

ρ
eikaρ+ikh(1+n2)−1/2 [

U0 + 1
ikaρU1 + 1

(ikaρ)2U2 + ..
]
, (4.F-62a)

where:

U0 = 2n2
[
1 − 7

8n
2 + 235

128n
4 − 1731

1024n
6 + 86451

32768n
8 + ..

]
, (4.F-62b)

U1 = n4
[(

137
64 + ikh

)
−
(

35
256 + 1

2 ikh
)
n2 +

(
37151
16384 + 1

4ikh
{

5
2 − ikh

})
n4 + ..

]
, (4.F-62c)

U2 = −n4
[(

949
512

+ ikh
)

+
(

1525
16384

− 1
4
ikh {11 + 3ikh}

)
n2 + ..

]
. (4.F-62d)

The contribution from the pole in IT M

A1,b is found in the same manner as for IT M

A0,b. The
only difference is an extra division of kp and that the residue consists of the Hankel function
of first order:

Γ1 =
ωµn2e−i3π/4

√
2πkaρ (1 − n4)

ξp

√
1 +

√
1 + n2

1 + n2

[
1 − 3

√
1+n2

8ikaρ
− 15(1+n2)

128(ikaρ)2
− ..
]
eikh(1+n2)−1/2

.

(4.F-63)
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The pole contribution is given in equation 4.44. A series expansion of this expression leads
to

IT M

A1,bp ∼ − ωµ

kaρ

√
2n2

(1 − n4)

√
1 +

√
1 + n2

1 + n2
e
ikaρ+

ikh√
1+n2

[
1 + 1

ikaρV1 + 1
(ikaρ)2V2 + ..

]
,

(4.F-64a)
where

V1 = 1
2

√
1 + n2

(
1√

1+n2−1
− 3

4

)
, (4.F-64b)

V2 = 1
4(1 + n2)

(
3

(
√

1+n2−1)2
− 3

4(
√

1+n2−1)
− 15

32

)
. (4.F-64c)

The branch-point contribution to the integral IT M

A1 when the pole contribution is separated
out then becomes:

IT M

A1,bc = IT M

A1,b − IT M

A1,bp ∼ ωµ

kaρ
eikaρ+ikh(1+n2)−1/2 [

V0 + 1
ikaρV1 + 1

(ikaρ)2 V2 + ..
]
, (4.F-65a)

where

V0 = 2n2
[
1 − 3

8n
2 + 163

128n
4 − 615

1024n
6 + 48163

32768n
8 + ..

]
, (4.F-65b)

V1 = n4
[(

113
64

+ ikh
)

+
(

25
256

− 1
2
ikh
)
n2 +

(
27983
16384

+ 1
4
ikh

{
5
2
− ikh

})
n4 + ..

]
, (4.F-65c)

V2 = n4
[
−105

512 +
(

315
16384 + 3

4 ikh {3 + ikh}
)
n2 + ..

]
. (4.F-65d)

4.G Saddle-point contributions

In this section, expressions with two terms for the saddle-point contributions are derived.
Consider the integral in equation 4.1 in terms of the angle variable θ where the function f(θ)
is in angular coordinates after the transformation in equation 4.56. The function φ is given
by equation 4.57, and at the saddle point:

φ(θs) = ik, φ′(θs) = 0, φ′′(θs) = −ik, φ′′′(θs) = 0, and φIV (θs) = ik, (4.G-66)

where the subscript 1 on the wavenumber has been ignored since the derivations that follow
can be used for saddle-point contributions in both the single-interface and thin-layer case.
The saddle-point contribution is given by equation 4.4. The second term in the expansion is
given by equation 4.5 which reduces to

ψ(θs) = −f
′′(θs)
f(θs)

− 1
4
, (4.G-67)

for the angular-spectrum representation when inserting the relations in equation 4.G-66.
From writing f(θ) = h(θ)R(θ) and expressing the derivative of the reflection coefficient as

R′(θ) = R(θ)y(θ), (4.G-68)
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4.G Saddle-point contributions

the derivatives of f(θ) become

f ′

f
=
h′

h
+ y and

f ′′

f
=
h′′

h
+
(

2
h′

h
+ y

)
y + y′. (4.G-69)

4.G.1 TE-mode functions

The function hT E
0 in the integral IT E

A0 is derived from equation 4.29a and the transformation
in equation 4.56:

hT E

0 (θ) =
ωµ

2

√
2k
πρ

e−iπ/4
√

sin θ
(

1 +
1

8ikρ sin θ
+ ..

)
. (4.G-70a)

Since the derivatives of the second-order term of h contribute to the third-order term, the
second-order term is ignored in the calculation of the derivatives:

(
1
h0

dh0

dθ

)T E

1

=
cos θ
2 sin θ

and
(

1
h0

d2h0

dθ2

)T E

1

= −1
4
− 1

4 sin2 θ
, (4.G-70b)

where the subscript 1 denotes that only the first-order term of hT E
0 is taken into account.

The integral IT E

A1 differs from IT E

A0 by a factor 1/ik sin θ and different weights in the
asymptotic Hankel-function series (i.e., the factor 1/8 in the second term of equation 4.G-
70a must be substituted by −3/8). The function hT E

1 then becomes

hT E

1 (θ) =
ωµ

2ik

√
2k
πρ

e−iπ/4 1√
sin θ

(
1 − 3

8ikρ sin θ
+ ..

)
, (4.G-70c)

and the derivatives of the first-order term are:
(

1
h1

dh1

dθ

)T E

1

= −
cos θ
2 sin θ

and
(

1
h1

d2h1

dθ2

)TE

1

= −
1
4

+
3

4 sin2 θ
. (4.G-70d)

4.G.2 TM-mode functions

As seen from equation 4.29 after applying the transformation in equation 4.56, the TM-mode
h-functions differ from those of the TE mode by an extra factor cos2 θ:

hT M

0 (θ) =
ωµ

2

√
2k
πρ

e−iπ/4
√

sin θ cos2 θ
(

1 +
1

8ikρ sin θ
+ ..

)
. (4.G-70e)

When ignoring the second-order term in hT M
0 , one gets

(
1
h0

dh0

dθ

)T M

1

=
1 − 5 sin2 θ

2 sin θ cos θ
and

(
1
h0

d2h0

dθ2

)T M

1

= −17
4

− 1
4 sin2 θ

+ 2
sin2 θ

cos2 θ
. (4.G-70f)

The first-order TM integral differs from the zeroth-order integral by the factor 1/ik sin θ and
different weights in the Hankel function. Accounting for this, hT M

1 becomes

hT M

1 (θ) =
ωµ

2ik

√
2k
πρ

e−iπ/4 cos2 θ√
sin θ

(
1 − 3

8ikρ sin θ
+ ..

)
, (4.G-70g)
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and the derivatives of the first-order term are:

(
1
h1

dh1

dθ

)T M

1

= −1 + 3 sin2 θ

2 sin θ cos θ
and

(
1
h1

d2h1

dθ2

)T M

1

= −1
4

+
3

4 sin2 θ
+ 2

sin2 θ

cos2 θ
. (4.G-70h)

4.G.3 General expressions

The saddle-point contributions are found using equation 4.4 with the appropriate functions
in the integrand, i.e., f(θs) = h(θs)R(θs) where R is the reflection response and where the
various h-functions are given in equation 4.G-70, and φ(θs) is as given in equation 4.G-66.
Then:

IT E

A0,s ∼ −iωµ eikr

r
RT E(θs)

[
1 +

1
ikr

ΨT E

0 (θs) + ..

]
, (4.G-71a)

IT E

A1,s ∼ −iωµ eikr

r
RT E(θs)

1
ik sin θs

[
1 +

1
ikr

ΨT E

1 (θs) + ..

]
, (4.G-71b)

IT M

A0,s ∼ −iωµ eikr

r
RT M(θs) cos2 θs

[
1 +

1
ikr

ΨT M

0 (θs) + ..

]
, (4.G-71c)

IT M

A1,s ∼ −iωµ eikr

r
RT M(θs)

cos2 θs

ik sin θs

[
1 +

1
ikr

ΨT M

1 (θs) + ..

]
. (4.G-71d)

By inserting the derivatives of the h-functions (equation 4.G-70) into equations 4.G-69 and
4.G-67, and accounting for the second-order Hankel-function term (1/8ikρ sin θs for H0 and
−3/8ikρ sin θs for H1), the following expressions for the Ψ-variables are obtained:

ΨT E

0 (θs) =
1
2

[
cos θs

sin θs
+ yT E(θs)

]
yT E(θs) +

1
2
y′

T E
(θs), (4.G-72a)

ΨT E

1 (θs) =
1
2

[
−cos θs

sin θs
+ yT E(θs)

]
yT E(θs) +

1
2
y′

T E
(θs), (4.G-72b)

ΨT M

0 (θs) = −2 +
sin2 θs

cos2 θs
+

1
2

[
1 − 5 sin2 θs

sin θs cos θs
+ yT M(θs)

]
yT M(θs) +

1
2
y′T M(θs), (4.G-72c)

ΨT M

1 (θs) =
sin2 θs

cos2 θs
+

1
2

[
−1 + 3 sin2 θs

sin θs cos θs
+ yT M(θs)

]
yT M(θs) +

1
2
y′T M(θs). (4.G-72d)

The expressions for the y-functions are found from the reflection coefficients (cf. equation
4.G-68). Note that the first-order term of the TM mode gets small as θs → π/2, and that
the second-order term gets large. However, the squared cosine factor in the denominator of
the second term is cancelled by the squared cosine term in the overall expression. Thus, the
second-order term is still bounded.
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4.G.4 Single interface

The reflection coefficients in case of a single interface are rewritten into angular coordinates
by using the transformation in equation 4.56 on the expressions in equation 4.31:

RT E

si (θ) =
cos θ −

√
n2 − sin2 θ

cos θ +
√
n2 − sin2 θ

, (4.G-73a)

RT M

si (θ) =
−n2 cos θ +

√
n2 − sin2 θ

n2 cos θ +
√
n2 − sin2 θ

. (4.G-73b)

The saddle-point contribution in the single-interface case is then obtained by inserting the
values of these reflection coefficients at the saddle point into equation 4.G-71. The functions
yT E and yT M that are needed in equation 4.G-72 to compute the second-order term of the
saddle-point expansion then become:

yT E = 2 sin θ√
n2−sin2 θ

, yT M = 2n2 sin θ√
n2−sin2 θ

1
(1+n2) sin2 θ−n2 , (4.G-74a)

y′
T E

= 2n2 cos θ
(n2−sin2 θ)3/2 , y′

T M
= yT M

cos θ
sin θ

[
n2

n2−sin2 θ
− 2(n2+1) sin2 θ

(1+n2) sin2 θ−n2

]
. (4.G-74b)

The second-order terms in the asymptotic expansion are obtained by inserting the expressions
in equation 4.G-74 into equation 4.G-72. For the TE mode the resulting expressions simplify
to

ΨT E

0 (θs) = cos θs√
n2−sin2 θs

+ 2 sin2 θs

n2−sin2 θs
+ n2 cos θs

(n2−sin2 θs)3/2 , (4.G-75a)

ΨT E

1 (θs) = − cos θs√
n2−sin2 θs

+ 2 sin2 θs

n2−sin2 θs
+ n2 cos θs

(n2−sin2 θs)3/2 . (4.G-75b)

4.G.5 Thin layer

The reflection coefficients in the thin-layer case in angular coordinates are given by equation
4.62. The functions yT E(θ) and yT M(θ) in equation 4.G-68 are:

yT E(θ) =
2i sin θ + 4k1d2 sin θ cos θ

2i cos θ + k1d2

[
(1 + n2

1) − 2 sin2 θ
] , (4.G-76a)

yT M(θ) =
2 sin θ cos θ

sin2 θ − n2
1 (1 + n2

1)
−1 +

2in2
1 sin θ + 2k1d2(1 + n4

1) sin θ cos θ
2in2

1 cos θ + k1d2

[
n2

1(1 + n2
1) − (1 + n4

1) sin2 θ
] .

(4.G-76b)

The saddle-point contributions are on the same form as in equation 4.G-71, but the wavenum-
ber is now k1 and the reflection coefficients are those in equation 4.62. In addition the
second-order terms are found using equation 4.G-76. By writing the y-functions in terms of
their fractions

yT E =
yN0

yD0
and yT M = yT M,1 + yT M,2 =

yN1

yD1
+
yN2

yD2
, (4.G-76c)
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their derivatives can be expressed as

y′T E = yT E

[
y′N0

yN0
− y′D0

yD0

]
and y′T M =

2∑

j=1

yT M,j

[
y′Nj

yNj
−
y′Dj

yDj

]
, (4.G-77a)

where the values at the saddle point are needed:

y′N0(θs) = 2i cos θs + 4k1d2

(
cos2 θs − sin2 θs

)
, (4.G-77b)

y′D0(θs) = −2i sin θs − 4k1d2 sin θs cos θs, (4.G-77c)

y′N1(θs) = 2
(
cos2 θs − sin2 θs

)
, (4.G-77d)

y′D1(θs) = 2 sin θs cos θs, (4.G-77e)

y′N2(θs) = 2in2
1 cos θs + 2k1d2(1 + n4

1)
(
cos2 θs − sin2 θs

)
, (4.G-77f)

y′D2(θs) = −2in2
1 sin θs − 2k1d2(1 + n4

1) sin θs cos θs. (4.G-77g)

4.H The transmitted field through one interface

The integrals that describe the transmitted fields through one interface can be written as
(cf. equation 4.29)

IT E

A0,t =
ωµ

2

∫ ∞

−∞
dλ

λ

γ
H−

0 (λρ) tTE(λ) eiλρ+iγhs+iγaha , (4.H-78a)

IT E
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−∞
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1
γ
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1 (λρ) tT E(λ) eiλρ+iγhs+iγaha , (4.H-78b)
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A0,t =
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−∞
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0 (λρ) tT M(λ) eiλρ+iγhs+iγaha , (4.H-78c)

IT M

A1,t =
ωµ

2k2

∫ ∞

−∞
dλ γ H−

1 (λρ) tT M(λ) eiλρ+iγhs+iγaha , (4.H-78d)

where hs is the vertical distance from the interface to the source and ha is the vertical distance
from the interface to the receiver. The transmission coefficients are given by the expressions
in equation 4.25. The function φ(λ), cf. equation 4.1, and its derivatives now become:

φ(λ) =
i

r
(λρ + γhs + γaha) , (4.H-79a)

φ′(λ) =
i

r

(
ρ− λ

γ
hs −

λ

γa
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)
, (4.H-79b)

φ′′(λ) =
i

r

(
−k

2

γ3
hs −

k2
a

γ3
a

ha

)
. (4.H-79c)

The saddle point is then given by the equation

ρ− λ

γ
hs −

λ

γa
ha = 0. (4.H-80)
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The horizontal and vertical wavenumbers can be parameterized as (DeSanto, 1992)

λs = k sin θs, γs = k cos θs, and γa = ka cos θ′s, (4.H-81)

since the distances in the triangles; hs, ρ1, and r1 on the source side and ha, ρ2, and r2 on
the opposite side of the interface, are related as

hs = r1 cos θs, ρ1 = r1 sin θs, ha = r2 cos θ′s, ρ2 = r2 sin θ′s. (4.H-82)

Note that r1 is the distance travelled by a ray on the source side of the interface whereas
r2 is the distance travelled after the ray has been transmitted. From equation 4.H-80 the
relation

λs = k sin θs = k
ρ

r1 + 1
nr2

(4.H-83)

where n = ka/k is obtained. By using Snell’s law, k sin θ = ka sin θ′, the following relations
are obtained from equation 4.H-79:

rφ(λs) = ikr1 + ikar2 and rφ′′(λs) = −i
[
r1
k

1
cos2 θs

+
r2
ka

1
cos2 θ′s

]
. (4.H-84)

By plugging into the formula in equation 4.4 the first term in the saddle-point expansion is
found to be

IT E

A0,t ∼ −iωµ eikr1+ikar2

rt
tTE(θs), (4.H-85a)
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where

rt =

√
(
r1 + 1

nr2
) [
r1 +

(
cos θs

cos θ′
s

)2
1
nr2

]
. (4.H-86)

4.I Separation of the TE and TM modes

From equation 4.18 it is seen that if the fields are measured at an azimuth angle (with the
source direction) other than 0◦ and 90◦, the field integrals can be obtained from measured
data if one has access to the TE and TM parts separately:

IT M

A0 + ITE

A0 =
1
ch

(
Eρ

cos β
− Eβ

sin β

)
, where ch = −Ilx

4π
. (4.I-87a)
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This furthermore implies that

IT M

A1 = −
ρET M

β

ch sin β
and IT E

A1 =
ρET E

ρ

ch cos β
. (4.I-87b)

The TE and TM part of the measured horizontal electric field components can be sepa-
rated by using the procedure described in Løseth and Ursin (2007). In order to do this, the
horizontal electric field components must be known in a 2-D plane on the seabed. If this is
the case, the data can be transformed into the wavenumber domain and rotated using the
eigenvector matrix described in Løseth and Ursin (2007). The resulting upgoing and down-
going TE- and TM-field quantities can be transformed back to the space domain separately.
Hence the TE and TM modes are separated.

In marine CSEM the interesting mode to measure is often the TM mode since this mode
can detect a possible thin resistive layer. The presence of a sea-surface interface normally
increases the thin-layer response. Since the vertical electric field (Ez) is a pure TM mode
(Kong, 2000), an alternative to measuring the horizontal fields in a 2-D manner on the seabed
is to measure the Ez-component.

The Ez-response can also be derived by measuring the horizontal derivatives of the hori-
zontal magnetic field components. By using Ampère’s law:

Ez =
i

ωε̃

1
ρ

[
∂(ρHβ)
∂ρ

− ∂Hρ

∂β

]
. (4.I-88)

TM responses are furthermore obtained by measuring quantities that when combined
correspond to derivatives of the Ez-response. In this case one can measure horizontal mag-
netic field components and vertical changes in the horizontal electric field components or
horizontal derivatives of the horizontal electric field components. This follows directly from
Faraday’s law or Gauss’ law, respectively:

∂Ez

∂β
= ρ

[
iωµHρ +

∂Eβ

∂z

]
, (4.I-89a)

∂Ez

∂ρ
=
[
−iωµHβ +

∂Eρ

∂z

]
, (4.I-89b)

∂Ez

∂z
= −1

ρ

[
∂(ρEρ)
∂ρ

+
∂Eβ

∂β

]
. (4.I-89c)

Similar relations can also be obtained for the TE response in terms of the vertical magnetic
field component and its derivatives.
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Electromagnetic fields in planarly layered

anisotropic media
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Summary

This paper presents a method for calculating the electromagnetic field from a dipole source
in stratified media with general anisotropy. The formulation can be applied to geophysical
applications such as ground penetrating radar (GPR) and marine controlled source electro-
magnetic (CSEM) methods. In stratified media, the propagation of fields can be considered in
the frequency-wavenumber domain. The resulting set of ordinary differential equations con-
sists of a field vector, a system matrix, and a source vector. In each piecewise homogeneous
region, the system matrix is given by the material properties and the horizontal slownesses.
The vertical slownesses are the eigenvalues of the system matrix. A diagonalization of the
system matrix transforms the field vector into a mode-field that contains upgoing and down-
going field constituents. For system matrices that account for general anisotropy, it is shown
how the electromagnetic field from any of the four basic dipole types can be calculated at
any desired position in the stratified medium. It is furthermore shown how the reflection
and transmission response from a stack can be calculated by a recursive scheme. Potential
numerical instabilities due to using propagators are avoided by using this recursion method.
Due to an energy-flux normalization of the eigenvector matrices, the reciprocity relations
for reflection and transmission of electromagnetic fields in general anisotropic media can be
derived. Several other useful relations between the reflection and transmission matrices are
obtained as well. The propagator method is dependent on the ability to calculate eigenvalues
and eigenvectors of the system matrix for all layers. In simple cases with isotropy or trans-

109



Electromagnetic fields in planarly layered anisotropic media

verse isotropy in the direction of medium variation, the eigenvalue problem can be solved
explicitly. These eigenvector matrices have useful properties, e.g., when processing data. The
possibility to remove layers above or below the receiver layer follows from the decomposition
of a field into upgoing and downgoing modes. The propagator theory was implemented in
order to model anisotropy in marine CSEM. A modelling study shows that responses are
affected by horizontal, vertical, and dipping anisotropy in different manners. This suggests
that when anisotropy is present at a survey site, careful planning and interpretation are
required in order to correctly account for the responses.

5.1 Introduction

Anisotropy is a phenomenon that occurs on various scales, and it is a concern or an advantage
(depending on how it can be exploited), in a variety of geophysical applications such as
ground penetrating radar (GPR), which is towards the high-frequency end of applications,
and marine controlled source electromagnetic (CSEM) methods or SeaBed Logging (SBL),
which are applications that use very low frequencies.

In electromagnetic surveying of the subsurface, anisotropy effects will almost certainly
be encountered to some extent. Thus, it is important to have an understanding of how
various forms of anisotropy will affect the measurements. In elastic theory, a lot of work
on anisotropy has been performed. Helbig and Thomsen (2005) review its history in elastic
wave propagation. One of their main points is that anisotropy in many cases can be exploited
in the exploration. Anisotropic effects when measuring electromagnetic fields in geophysical
applications have also been studied for quite some time. Much of this work has been for
media with stratification and transverse isotropy in the same direction, e.g., Maillet (1947),
O’Brien and Morrison (1967), Sinha and Bhattacharyya (1967), Kong (1972), Chlamtac and
Abramovici (1981), and Edwards et al. (1984). Another type of anisotropy configuration
that has been studied, is transverse isotropy in a direction normal to a layered structure,
e.g., Li and Pedersen (1991) and Yu and Edwards (1992). Everett and Constable (1999)
studied the effects of such anisotropy on CSEM data, and Yu et al. (1997) considered triax-
ial (orthorhombic) anisotropy. For the modelling of GPR, Carcione and Schoenberg (2000)
and Carcione and Cavallini (2001) treated anisotropy with orthorhombic symmetry in 3-D
structures. Arbitrary anisotropy was considered for the DC-resistivity method in layered
media by Yin and Weidelt (1999). Their solution approach, in terms of potentials, was ex-
tended to the controlled source audio-magnetotelluric (CSAMT) method by Yin and Maurer
(2001). Moreover, Yin (2006) considered the marine magnetotellurics (MT) forward problem
formulated for stratified media with arbitrary anisotropy.

There are many material configurations in the subsurface that might lead to anisotropy
(Negi and Saraf, 1989). It might be that there are some preferred directions in the subsurface
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rocks, or some preferred orientation of grains in the sediments. Fine layering or a pronounced
strike direction might lead to an effective anisotropy. Alternations of sandstone and shales
may give reservoir anisotropies. Kennedy and Herrick (2004) examined the consequences of
anisotropy in reservoir rocks.

Anisotropic material properties can often be described in terms of different parameters
along three orthogonal coordinate axes in a principal coordinate system for each property.
Anisotropic media are furthermore often classified as triclinic, meaning that the various
material properties have no principal axes in common, monoclinic meaning that they have
one principal axis in common, or orthorhombic, which means that the principal axes coincide
for all the medium properties (Carcione and Schoenberg, 2000). When two parameters in
the principal coordinate frame for an orthorhombic medium are equal, the medium can be
referred to as transversely isotropic. In this case, we will refer to the axis with the distinct
parameter as the axis of anisotropy. In optics, one often works with anisotropy related to
crystal classes. It is in this case common to consider uniaxial and biaxial media meaning
either one or two anisotropy axes, respectively (Born and Wolf, 1999; Huard, 1997; Stamnes
and Sithambaranathan, 2001).

In the following we study stratified media with arbitrary anisotropy by using a matrix
propagator method. There are several reasons for studying plane-layered media. The calcu-
lation of electromagnetic fields in such media is often useful in order to simplify a problem
for interpretational purposes. In case of anisotropy, the added complication to the interpre-
tation makes it worthwhile to study the effects of anisotropy in 1-D models. In addition,
plane-layer modelling codes are fast and useful in e.g., more complicated modelling schemes
and inversion. Plane-layer modelling is also important as a verification tool for numerical
algorithms that handle 2-D or 3-D structures.

The matrix propagator methods are well known techniques for treating wave propagation
in stratified media cf. Berremann (1972) in optics, Suchy and Altman (1975) in plasma
physics, Kong (1972) for the geophysical electromagnetic problem in stratified media with
transverse isotropy in the direction of medium changes, Griffiths and Steinke (2000) for wave
propagation in locally periodic media, Kennett (1983) for seismic wave propagation, Ursin
(1983) reviewing elastic and electromagnetic wave propagation, and White and Zhou (2006)
for electroseismic prospecting in layered media.

However, to our knowledge, there has not been many applications of propagator tech-
niques to electromagnetic problems in stratified media with general anisotropy and loss. In
the following we derive equations that describe electromagnetic field propagation from any of
the basic dipole sources in general anisotropic media. An implementation and application of
the theory will be presented after the theory sections. During the derivation of the formalism,
several useful relations for reflection and transmission in anisotropic media are derived.

The constitutive relations between the field variables are considered in terms of dyadic
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material parameters (second rank tensors). It will be assumed that these dyads can be
given in an orthogonal principal frame where they have only diagonal elements. This means
that a rotation into another (e.g., the main) coordinate frame will preserve the symmetry
of the dyads (Onsager, 1931). In geophysical applications where one uses low frequencies,
the important material parameter will be the dyadic conductivity. In applications such as
GPR, the electric permittivity is also important. Even if the magnetic permeability in many
applications is assumed to be that of free space, all the material parameters are taken to
be dyads for completeness. Nonlinear effects are however not considered, and the entries
in the material dyads are assumed to be frequency-domain scalars, meaning that they are
local parameters in space. It should also be noted that cross-coupling between electric and
magnetic fields in the constitutive relations, so-called bianisotropy, is not considered since
we expect these effects to be minimal in geophysical applications.

Since the medium varies in one direction, the electromagnetic fields are Fourier trans-
formed into the frequency-wavenumber domain. This leads to a set of ordinary differential
equations for the horizontal field components that can be written as in Ursin (1983). The set
of equations involves a field vector that contains the horizontal electromagnetic field compo-
nents, a system matrix (4×4) that describes the medium seen by one frequency-wavenumber
component, and a source vector that can either be an infinitesimal electric or magnetic
dipole. The system matrix will in the general anisotropic case have no nonzero elements, but
because of the assumption of symmetric material parameters, it will contain symplectic sym-
metries (Chapman, 1994). The eigenvalues of the system matrix can be obtained by solving
a quartic equation, and they correspond to vertical wavenumbers or slownesses (wavenumber
divided by frequency). An alternative to solving the quartic equation, is solving the eigen-
value problem with standard routines from linear algebra libraries. To this end it should be
noted that the structure of the matrix resembles the structure found in Hamiltonian systems
(Bunse-Gerstner et al., 1992; Faßbender et al., 2001).

By introducing an ad-hoc field, we show that the eigenvector matrix, which is used for
the similarity transform of the system matrix, should be chosen to be flux normalized. In
lossless media this is straightforward, but in lossy media, a general “energy-invariant” which
corresponds to the Poynting vector in the vertical direction for lossless media is introduced.
A discussion of adjoint and conjugate fields for these purposes can be found in Altman and
Suchy (1998).

In a homogeneous region the transformed physical field, using the flux-normalized eigen-
vectors, will be referred to as the upgoing and downgoing mode-field. From considering
propagation of the mode-field in a homogeneous region, across a source, across an interface
or a stack of layers, expressions for the electromagnetic field anywhere in the layered system
are obtained. In homogeneous regions the differential equation is decoupled, and from the
boundary conditions a description of reflection and transmission in terms of the eigenvector
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matrices (2 × 2) at each side can be obtained. The reflection and transmission in a stack of
layers can be described by a recursive scheme similar to that found in Kennett (1983), Chap-
man (2004), Ursin and Stovas (2002), and Stovas and Ursin (2003). By using the recursive
expressions, one avoids the problem with exponentially large terms.

In order to handle a stack of layers that can contain general anisotropy as well as isotropy,
various special cases of anisotropy configurations are considered. In addition to arbitrary
anisotropy which normally leads to four different magnitudes of the system matrix’ eigenval-
ues, up/down-symmetric media, meaning that the eigenvalues for the upgoing and downgoing
mode-fields are equal in magnitude, are treated. A medium with transverse isotropy in the
horizontal direction (TIH) is an example of an up/down-symmetric configuration. With
transverse isotropy in the vertical direction (TIV), the eigenvalues and eigenvectors reduce
to simple expressions. The polarization modes of the field vector do not couple at the in-
terfaces in this case. Even if this might happen for some wavenumbers in more complicated
anisotropic structures, it is only for TIV media and isotropic media that the eigenvalues of
the system matrix correspond to pure polarization modes which are decoupled at interfaces
between homogeneous regions for the entire wavenumber spectrum. The decoupling means
that the 2 × 2-matrix problem reduces to a scalar problem.

In most of the realistic problems in geophysics, the source medium will be TIV or isotropic.
Assuming that the receiver (the position where the field is calculated) layer has the same
characteristics, but not necessarily is the same layer as that of the source, we derive explicit
expressions for the electromagnetic fields. In these formulas, other layers than the source
and receiver layers may have general anisotropy. It should be noted that the derived field
components correspond to Green’s functions when normalized properly. The expressions
have been implemented in FORTRAN 90, and a modelling study of some scenarios from
CSEM/SBL has been performed.

In the last appendix, an application of the separation into upgoing and downgoing field
constituents is demonstrated. Depending on the choice of eigenvector matrix, it is possible
to remove the effect of a stack of layers above the source in the measured electromagnetic
field. In order to do this “free-surface” removal, the horizontal field components should be
known throughout a 2-D plane.
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5.2 Maxwell’s equations

Maxwell’s equations in the frequency domain are (cf. Stratton, 1941; Jackson, 1998; Kong,
2000)

∇ ·D = ρ, (5.1a)

∇ ·B = 0, (5.1b)

∇× E − iωB = 0, (5.1c)

∇×H + iωD = J, (5.1d)

where E is the complex electric field intensity and H is the complex magnetic field intensity.
The fields vary with position x = [x, y, z] and frequency ω. In the equations there are two
more field quantities which are normally referred to as the electric displacement D and the
magnetic induction B. The density of free charges is described by ρ, and J is the current
density. The charge conservation is described by the relation −iωρ = ∇ · J. In conductive
media it is convenient to split the current density J into a source term J0 and a conduction-
current density Jc. For macroscopic media it might furthermore be advantageous to introduce
a magnetic source term J0M into Faraday’s law (equation 5.1c) which in this case is modified
to ∇× E − iωB = −J0M. Charge conservation then leads to the modification ∇ ·B = ρM

where ρM is the magnetic source-charge density. Although magnetic sources have not yet been
found to exist, their introduction into the equations is justified by the equivalence principle
(Kong, 2000). Since magnetic sources have been introduced, we will in the following refer to
the source term J0 as the electric source.

In macroscopic media the constitutive relations between the field quantities might be
very complicated (Nabighian, 1987; Jackson, 1998; Kong, 2000). In the following, nonlinear
effects found in ferroelectric and ferromagnetic materials are not taken into account. Unless
otherwise noted, only (piecewise) homogeneous regions are considered, and possible nonlocal
effects in space of the material parameters are ignored. The constitutive relations may then
be written as

D = ε(ω)E, (5.2a)

B = µ(ω)H, (5.2b)

and in conductive media the relation between the conduction-current density Jc and the
electric field (Ohm’s law) is

Jc = σ(ω)E, (5.2c)

where σ is the electric conductivity. The material parameters ε, µ, and σ are dyads. The
principal axes of the medium-property dyads can be illustrated using Figure 5.1, where the
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5.2 Maxwell’s equations

main coordinate system xyz is sketched along with a rotated system x′y′z′. This rotated
system may represent the principal axes of one of the material dyads, e.g., conductivity.
The dyads, which are diagonal in the principal coordinate frame, will be symmetric after
a rotation into a new coordinate frame when the principal axes are orthogonal (Onsager,
1931).

z

x

y

z’

y’

x’

L

q

f

y

Figure 5.1: The main coordinate frame xyz and a principal system x′y′z′. Rotation from the
main frame to the principal system (and vice versa) can be performed in terms of the Euler
angles φ, θ, and ψ. L represents the line of nodes.

In the following it will be assumed that the material dyads have been rotated from their
principal system into the main coordinate system. A procedure for doing so is presented in
Appendix 5.A. To simplify notation, the permittivity and conductivity can be written as a
complex electric permittivity

ε̃ = ε+ iσ/ω (5.3)

in the main coordinate frame. Note that by doing this, the meaning of the electric flux
density changes. The charge density in Gauss’ law now describes source charges instead of
free charges.

As sources of the electromagnetic field in the stratified medium, electric and magnetic
dipoles with general orientation are considered. An infinitesimal electric dipole antenna can
be represented by a periodic line current of length l = lxx̂+ lyŷ+ lzẑ with current amplitude
I(ω). The frequency-domain source-current density can then be written as:

J0 = I(ω) [lxx̂ + lyŷ + lzẑ] δ(r), (5.4)
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where r is the distance from the source, i.e., the radial vector is described in terms of
Cartesian coordinates as r = x − xs, where the source position is given as xs = [xs, ys, zs].
If the electric dipole moment is represented by P (polarization), the dipole current moment
becomes −iωP. The magnetic dipole moment is given by m = µI(ω)a, where a is the area
of a current carrying loop with direction normal to the loop. Analogous to the source-current
density for the electric dipole in equation 5.4, an infinitesimal magnetic dipole source can be
introduced as

J0M = −iωµI(ω)aδ(r) =



−iωI(ω) [µxxax + µxyay + µxzaz] δ(r)
−iωI(ω) [µyxax + µyyay + µyzaz] δ(r)
−iωI(ω) [µzxax + µzyay + µzzaz] δ(r)


 , (5.5)

where possible anisotropic effects have been taken into account.

zN

zj

z0

zs

zj-1

zj+1

zj

+

zj

-

HED VED
VMD HMD

z
hN+1

hj+1

h0

Figure 5.2: A sketch of the multilayer system. Four types of sources are considered: the
horizontal electric dipole (HED), vertical electric dipole (VED), vertical magnetic dipole
(VMD), and horizontal magnetic dipole (HMD).
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In planarly stratified media the electromagnetic properties vary in one direction only.
Consider a layered medium as depicted in Figure 5.2, and assume that the medium properties
vary in the z-direction. The Fourier transform pair

Φ(kx, ky, z, ω) =
∫ ∞

−∞
dxdydtφ(x, y, z, t) exp [−i(kxx+ kyy − ωt)], (5.6a)

φ(x, y, z, t) =
1

(2π)3

∫ ∞

−∞
dkxdkydωΦ(kx, ky, z, ω) exp [i(kxx+ kyy − ωt)], (5.6b)

where kx and ky are the wavenumbers in the x- and y-directions, respectively, describe
transformations between the space-time and frequency-wavenumber domains. Equation 5.6a
transforms Maxwell’s equations in the time domain into the frequency-wavenumber domain
and implies the following operations: ∂t → −iω, ∂x → ikx, and ∂y → iky. The time and
frequency part of equation 5.6a has already been applied in order to obtain equation 5.1
from the time-domain Maxwell’s equations. In the time domain, the variables in Maxwell’s
equations are real, whereas in both the frequency and frequency-wavenumber domains the
variables might be complex. From Faraday’s law (equation 5.1c) with source term and
Ampère’s law (equation 5.1d), a set of ordinary differential equations is obtained after using
the wavenumber part of the transformation in equation 5.6a:

dEx

dz
= iωBy + ikxEz − JM

y , (5.7a)

dEy

dz
= −iωBx + ikyEz + JM

x , (5.7b)

−dHy

dz
= −iωDx − ikyHz + Jx, (5.7c)

dHx

dz
= −iωDy + ikxHz + Jy. (5.7d)

The components in the z-direction are related to the horizontal components as

Dz =
1
iω

(−ikxHy + ikyHx + Jz) , (5.8a)

Bz =
1
iω

(ikxEy − ikyEx + JM

z ) . (5.8b)

The variables Jn and JM

n (n = x, y, z) denote the Cartesian components of the frequency-
wavenumber domain appearance of the electric and magnetic source, respectively. Likewise
the field components En, Dn, Hn, and Bn are frequency-wavenumber domain quantities. In
order to simplify notation it is convenient to introduce the slowness variables px = kx/ω and
py = ky/ω. With the constitutive relations Dn = ε̃nmEm and Bn = µnmHm (m = x, y, z),
the system of equations can be written as

(
I
d

dz
+ iωA

)
b = Lb = s, (5.9)
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with field vector

b =

(
bE

bH

)
, bE =

(
Ex

Ey

)
, bH =

(
−Hy

Hx

)
, (5.10)

identity matrix I, system matrix A, and source vector s. In addition the operator L has
been introduced. The system matrix is

A =

(
A0 A1

A2 A3

)
=




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



, (5.11)

where

a11 = ε̃zx

ε̃zz
px + µyz

µzz
py, a12 = ε̃zy

ε̃zz
px − µyz

µzz
px, (5.12a)

a13 = µyy − µyzµzy

µzz
− p2

x

ε̃zz
, a14 = −µyx + µyzµzx

µzz
− pxpy

ε̃zz
, (5.12b)

a21 = ε̃zx

ε̃zz
py − µxz

µzz
py, a22 = ε̃zy

ε̃zz
py + µxz

µzz
px, (5.12c)

a23 = −µxy + µxzµzy

µzz
− pxpy

ε̃zz
, a24 = µxx − µxzµzx

µzz
− p2

y

ε̃zz
, (5.12d)

a31 = ε̃xx − ε̃xz ε̃zx

ε̃zz
− p2

y

µzz
, a32 = ε̃xy − ε̃xz ε̃zy

ε̃zz
+ pxpy

µzz
, (5.12e)

a33 = ε̃xz

ε̃zz
px + µzy

µzz
py, a34 = ε̃xz

ε̃zz
py − µzx

µzz
py, (5.12f)

a41 = ε̃yx − ε̃yz ε̃zx

ε̃zz
+ pxpy

µzz
, a42 = ε̃yy − ε̃yz ε̃zy

ε̃zz
− p2

x

µzz
, (5.12g)

a43 = ε̃yz

ε̃zz
px − µzy

µzz
px, a44 = ε̃yz

ε̃zz
py + µzx

µzz
px. (5.12h)

In the following it will be assumed that all the material dyads have a set of orthogonal
principal axes. Thus, the material parameters are symmetric, and because of this reciprocity,
6 of the 16 entries in A are equal:

a23 = a14, a33 = a11, a34 = a21,

a41 = a32, a43 = a12, a44 = a22.
(5.13)

This implies that the system matrix is on the form

A =

(
A0 A1

A2 AT
0

)
, (5.14)

with AT
1 = A1 and AT

2 = A2.
The vertical components of the electromagnetic field are given in terms of the horizontal

components as

Ez =
1
ε̃zz

(
pyHx − pxHy − ε̃zxEx − ε̃zyEy +

1
iω
Jz

)
, (5.15a)

Hz =
1
µzz

(
−pyEx + pxEy − µzxHx − µzyHy +

1
iω
JM

z

)
. (5.15b)
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The source vector consists of an electric source vector sE and a magnetic source vector
sM (s = sE + sM):

sE =




pxJz/ε̃zz

pyJz/ε̃zz

Jx − ε̃xz

ε̃zz
Jz

Jy − ε̃yz

ε̃zz
Jz




and sM =




−JM

y + µyz

µzz
JM

z

JM
x − µxz

µzz
JM

z

−pyJ
M
z /µzz

pxJ
M
z /µzz



. (5.16)

The x- and y-components of the electric and magnetic sources will be referred to as the
horizontal electric dipole (HED) and horizontal magnetic dipole (HMD), respectively. In a
plane-layered model the coordinate system may be rotated so that the horizontal component
of the electric or magnetic dipoles points in the x-direction, but it is sometimes advantageous
to let the HED and HMD have components in both the x- and y-direction. The vertical
components of the electric and magnetic dipoles are referred to as the VED and VMD,
respectively. In the frequency-wavenumber domain the HED components are

Jx = I(ω)lxδ(z − zs), (5.17a)

Jy = I(ω)lyδ(z − zs), (5.17b)

where xs = ys = 0, and the VED component is

Jz = I(ω)lzδ(z − zs). (5.17c)

The HMD components become

JM

x = −iωI(ω) (µxxax + µxyay + µxzaz) δ(z − zs), (5.17d)

JM

y = −iωI(ω) (µyxax + µyyay + µyzaz) δ(z − zs), (5.17e)

and the VMD component is

JM

z = −iωI(ω) (µzxax + µzyay + µzzaz) δ(z − zs). (5.17f)

The infinitesimal or Hertzian dipoles are good approximations for any physical dipole source
with finite length or size when the wavelength of the radiated signal, or distances at which
the fields are considered, are larger than the dimensions of the dipole (length of the electric
dipole and diameter of the magnetic dipole).

5.3 Symmetry relations and energy flux

From equation 5.14 it can be seen that A has a symplectic symmetry (Goldstein, 1980;
Chapman, 1994) which can be exploited in order to find invariants and reciprocity relations.
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Consider equation 5.9 in source-free regions (Lb = 0). Introduce an operator L̃ in order to
construct a new set of equations for a field vector b̃:

L̃b̃ =
(
I
d

dz
− iωA

)
b̃ = 0. (5.18)

By using the property KA = (KA)T with

K = K−1 = KT =

(
0 I

I 0

)
, (5.19)

one obtains the invariant
d

dz

(
b̃

T
Kb
)

= 0. (5.20)

The time-averaged Poynting vector in the z-direction is < Sz >= 1
2Re(E ×H∗)z which

can be written as:

<Sz>=
1
4
(
ExH

∗
y − EyH

∗
x +E∗

xHy −E∗
yHx

)
= −1

4
b†Kb. (5.21)

The superscript † denotes complex conjugate transpose. In lossless media A is real, and
from equation 5.9 and 5.18 it can be seen that b̃ = b∗ in this case. The consequence is
that b̃

T
Kb = −4 <Sz >, meaning that the time-averaged energy flux in the z-direction is

constant for lossless media.

Next, introduce an operator L̄ which is obtained from L by reversing the directions of
the horizontal slowness components px, py → −px,−py. The set of equations for the field
vector b̄ is then:

L̄b̄ =
(
I
d

dz
+ iωA′

)
b̄ = 0, (5.22)

where A′ is obtained from A by changing the signs of A0 and AT
0 :

A′ =

(
−A0 A1

A2 −AT
0

)
. (5.23)

By using that
(
K′A′)T = K′A where

K ′ = −K′−1 = −K′T =

(
0 I

−I 0

)
, (5.24)

one obtains the invariant
d

dz

(
b̄

T
K′b

)
= 0. (5.25)
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5.4 Decomposition into upgoing and downgoing fields

The system matrix A is diagonalizable when there is a set of four linearly independent
eigenvectors of A (Horn and Johnson, 1985). Then the similarity transformation

AN = NΛ, (5.26)

where the eigenvector matrix N is formed by the set of eigenvectors as columns, implies
that the diagonal matrix Λ contains the four eigenvalues of A along its diagonal. By using
equation 5.26, the differential equation 5.9 can be written as

dw

dz
= −iωΛw −N−1 dN

dz
w +N−1s, (5.27)

where the physical field vector b has been transformed into a mode-field vector w:

b = Nw and w =N−1b =

(
u

d

)
. (5.28)

Since Λ is diagonal, the solution of equation 5.27 in a source-free and homogeneous region

w(z) = exp [−iωΛ(z − z0)]w0(z0), (5.29)

reveals that the mode-field vector w consists of upgoing (u) and downgoing (d) field con-
stituents. Thus, the eigenvalues of A are the vertical slownesses, and it is convenient to write
Λ as

Λ =

(
ṕz 0
0 −p̀z

)
= diag{pzI, pzII, pzIII, pzIV}, (5.30)

where ṕz = diag{pzI, pzII} and p̀z = diag{−pzIII,−pzIV}. The two eigenvalues in ṕz are
related to the upgoing field, and the two eigenvalues in p̀z are related to the downgoing field.

Since it will simplify many derivations and relations at later stages, the eigenvector matrix
N and its inverse should be normalized with respect to vertical energy flux. In order to
achieve this, consider source-free and homogeneous media and use the invariant in equation
5.20. A decomposition of the ad-hoc field vector b̃ into b̃ = Ñw̃ then leads to

dw̃

dz
= iωΛ̃w̃, (5.31)

by using the similarity transform
AÑ = Ñ Λ̃. (5.32)

Now, Λ̃ must contain the same eigenvalues as Λ. From

Λ̃ =

(
−p̀z 0
0 ṕz

)
, (5.33)
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the invariant
d

dz

(
w̃TKw

)
= 0 (5.34)

is obtained by using that KΛ̃ = KΛ. In order for N to be energy normalized, the following
relation must hold:

w̃TKw = b̃
T
Kb. (5.35)

By using that b = Nw and b̃ = Ñw̃ this means that

Ñ
T
KN = K. (5.36)

A relation between Ñ and N can now be obtained by multiplying equation 5.26 by K′ from
the right and using that ΛK ′ = K ′Λ̃. This leads to ANK′ = NK′Λ̃ which is consistent
with equation 5.32 if Ñ = NK ′. The latter result combined with equation 5.36 yields

N−1 = JNTK, (5.37)

where

J = J−1 = JT =

(
I 0

0 −I

)
. (5.38)

The choice of sign in the derivation of Ñ =NK′ is justified by considering the lossless case.
The energy contained in the mode-field in the vertical direction for lossless media is:

<Sz>=
1
4

(
d†d − u†u

)
= −1

4
w†Jw. (5.39)

Equation 5.39 must be equal to the energy expression in equation 5.21. This yields equation
5.37 in the lossless case by using that the energy-normalized eigenvector matrix in the lossless
medium is real.

The eigenvector matrix N can be written in terms of submatrices as

N =
1√
2

(
ŃE ǸE

ŃH −ǸH

)
. (5.40a)

Equation 5.37 then implies that the inverse eigenvector matrix is given in terms of the
submatrices transposed:

N−1 =
1√
2

(
Ń

T

H Ń
T

E

Ǹ
T

H −ǸT

E

)
, (5.40b)

which means that the electromagnetic energy in the field vector b is preserved within the
mode-field vector w after the transformation w =N−1b.
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5.5 Propagation of upgoing and downgoing fields

The mode-field vector w can be used to describe propagation of electromagnetic fields in
homogeneous regions, across interfaces, and in a system of layers. Now, represent propagation
of w downwards in the positive z-direction in terms of the propagator Q̀, and propagation
upwards in the negative z-direction by Q́. Since the z-axis is pointing downwards, this means
that if z > z0:

w(z) = Q̀(z, z0)w(z0), (5.41a)

w(z0) = Q́(z0, z)w(z). (5.41b)

The relation between a propagator and its inverse is thus

Q́(z0, z) = Q̀
−1

(z, z0). (5.42)

5.5.1 Source-free homogeneous regions

In a source-free homogeneous region, equation 5.27 simplifies to dw/dz = −iωΛw with
solution w(z) = exp [−iωΛ(z − z0)]w0(z0). Thus, propagation downwards within a homo-
geneous region from z0 to z is described in terms of the propagator matrix Q̀ in equation
5.41a where

Q̀(z, z0) =

(
e−iωṕz(z−z0) 0

0 eiωp̀z(z−z0)

)
. (5.43)

The propagation upwards is related to the propagation downwards as described in equation
5.42.

5.5.2 Propagation across a source

A point source causes a discontinuity in the mode-field vector w. The transformation of the
source in equation 5.27 is denoted as

Σ =N−1s. (5.44)

Propagation across a source can be described by

w(z+
s ) = Σ(zs) +w(z−s ), (5.45)

where zs denotes the source position and z−s and z+
s are the positions just above and just

below the source, respectively. The mode-domain source can furthermore be written as

Σ =
(
Σ́T Σ̀T

)T

, where Σ́ describes the upgoing radiation and Σ̀ describes the downgoing
radiation.
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5.5.3 Propagation in continuously varying media

In equation 5.27 the term that contains the derivative of the eigenvector matrix describes
possible medium variations. In homogeneous regions this term is zero, and the medium varia-
tions are discretized into piecewise homogeneous regions which are connected by applying the
appropriate boundary conditions. In several occasions it can be useful to consider medium
variations by using the entire differential equation 5.27. Write the product of N−1 and the
derivative of N as:

N−1dN

dz
= −

(
F́ Ĝ

Ǧ F̀

)
, (5.46)

where

F́ = −1
2

(
Ń

T

H

dŃE

dz
+ Ń

T

E

dŃH

dz

)
, (5.47a)

F̀ = −1
2

(
Ǹ

T

H

dǸE

dz
+ Ǹ

T

E

dǸH

dz

)
, (5.47b)

Ĝ = −1
2

(
Ń

T

H

dǸE

dz
− ŃT

E

dǸH

dz

)
, (5.47c)

Ǧ = −1
2

(
Ǹ

T

H

dŃE

dz
− ǸT

E

dŃH

dz

)
. (5.47d)

Then equation 5.27 in terms of the upgoing and downgoing fields can be written as

du

dz
= −iωṕzu+ F́u + Ĝd+ Σ́, (5.48a)

dd

dz
= iωp̀zd+ F̀ d + Ǧu + Σ̀. (5.48b)

Considerations of the symmetries inN andN−1 lead to Ĝ = Ǧ
T
, F́ = −F́

T
, and F̀ = −F̀

T
.

Thus,

F́ =

(
0 f́12

−f́12 0

)
and F̀ =

(
0 f̀12

−f̀12 0

)
. (5.49)

These relations are useful e.g., when considering slow and continuous medium variations in
for instance the WKB approximation, and in the calculation of approximate expressions for
the reflection and transmission matrices at interfaces with weak contrasts as will be shown
in the next section.

5.6 Reflection and transmission responses

Figure 5.3 describes reflection and transmission of a unit incident field in a region between
the coordinates z− and z+. This region might contain an arbitrary number of layers or just a
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Figure 5.3: Reflection and transmission for an upgoing and downgoing incident plane wave
through a stack of layers.

single interface. The reflection and transmission at an interface when propagating downwards
in the positive z-direction can be written in terms of a propagator matrix Q̀(z+, z−):

(
0
T̀

)
=

(
Q̀11 Q̀12

Q̀21 Q̀22

)(
R̀

I

)
and

(
I

Ŕ

)
=

(
Q̀11 Q̀12

Q̀21 Q̀22

)(
T́

0

)
, (5.50)

where R̀ and T̀ denote reflection and transmission of a downgoing field, respectively; and
Ŕ and T́ denote reflection and transmission of an upgoing field, respectively. The reflection
and transmission coefficients can be written in terms of the elements of Q̀:

T́ = Q̀
−1

11 , (5.51a)

Ŕ = Q̀21Q̀
−1

11 , (5.51b)

R̀ = −Q̀−1

11 Q̀12, (5.51c)

T̀ = Q̀22 − Q̀21Q̀
−1

11 Q̀12. (5.51d)

When propagating upwards in the negative z-direction, the relations between the incoming
reflected and transmitted fields in terms of the propagator Q́(z−, z+) are:

(
R̀

I

)
=

(
Q́11 Q́12

Q́21 Q́22

)(
0
T̀

)
and

(
T́

0

)
=

(
Q́11 Q́12

Q́21 Q́22

)(
I

Ŕ

)
, (5.52)
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and in terms of Q́, the reflection and transmission coefficients are:

T̀ = Q́
−1

22 , (5.53a)

R̀ = Q́12Q́
−1

22 , (5.53b)

Ŕ = −Q́−1

22 Q́21, (5.53c)

T́ = Q́11 − Q́12Q́
−1

22 Q́21. (5.53d)

The propagators written in terms of the reflection and transmission coefficients become

Q̀(z+, z−) =

(
T́

−1
−T́

−1
R̀

ŔT́
−1

T̀ − ŔT́
−1
R̀

)
, (5.54a)

Q́(z−, z+) =

(
T́ − R̀T̀−1

Ŕ R̀T̀
−1

−T̀ −1
Ŕ T̀

−1

)
, (5.54b)

where Q̀(z+, z−) = Q́
−1

(z−, z+).

5.6.1 Reciprocity relations

Consider the field vector b̄ in equation 5.22. In this system the direction of the slowness
vectors are reversed. Thus, the similarity transform of the system matrix A′ becomes

A′N̄ = −N̄Λ. (5.55)

By using the diagonal matrix J from equation 5.38, the relationship A′J + JA = 0 is
obtained. The use of this property when comparing the expressions in equation 5.55 and
equation 5.26, gives that N̄ = JN . Inserted into equation 5.37 this means that

N̄
T
K′N = J . (5.56)

Equation 5.25 with the mode-field transformations (w̄ = N̄ b̄ and w = Nb) and equation
5.56 now lead to

w̄TJw = constant. (5.57)

Consider the preservation of the quantity in equation 5.57 between e.g., the interfaces z+ and
z− (propagation upwards cf. equation 5.52). For simplicity a matrix where the left column
represents the mode-field vector with incidence from above (left side of Figure 5.3) and the
right column represents the mode-field with incidence from below (right side of Figure 5.3)
can be formed. Then equation 5.57 leads to

(
I R̀

′T

0 T́
′T

)
J

(
R̀ T́

I 0

)
=

(
T̀

′T
0

Ŕ
′T

I

)
J

(
0 I

T̀ Ŕ

)
, (5.58)
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where the reflection and transmission in the slowness-reversed system are denoted R′ and
T ′, respectively. The upgoing and downgoing incident, reflected, and transmitted fields have
furthermore been swapped for the slowness reversed mode-field since there is a reversal of the
propagation direction in this system. This also implies that the reflection and transmission
coefficients have opposite signs for the horizontal slowness parameters in the slowness reversed
and “normal” systems. Thus, the following reciprocity relations for the transmission and
reflection coefficients become evident:

R̀(px, py) = R̀
T
(−px,−py), (5.59a)

Ŕ(px, py) = Ŕ
T
(−px,−py), (5.59b)

T̀ (px, py) = T́
T
(−px,−py). (5.59c)

These expressions are equivalent to the expressions found in Chapman (1994) for elastic
anisotropic media.

5.6.2 Reflection and transmission at a single interface

Explicit expressions for the reflection and transmission coefficients at a single interface can be
derived by using the boundary conditions. The horizontal electromagnetic field components
represented by b = Nw are continuous across an interface. This leads to N (z−j )w(z−j ) =
N (z+

j )w(z+
j ), where z−j and z+

j are the z-coordinates on each side of the interface at zj as
illustrated in Figure 5.2. Thus, the propagators across the interface become

Q́(z−j , z
+
j ) = N−1(z−j )N (z+

j ) and Q̀(z+
j , z

−
j ) = N−1(z+

j )N (z−j ). (5.60)

In order to derive the 2×2 reflection and transmission matrices at an interface, it is convenient
to introduce the matrices

Ć =
[
Ń

−
H

]T
Ń

+

E , D́ =
[
Ń

−
E

]T
Ń

+

H , (5.61a)

Ĉ =
[
Ń

−
H

]T
Ǹ

+

E , D̂ =
[
Ń

−
E

]T
Ǹ

+

H , (5.61b)

Č =
[
Ǹ

−
H

]T
Ń

+

E , Ď =
[
Ǹ

−
E

]T
Ń

+

H , (5.61c)

C̀ =
[
Ǹ

−
H

]T
Ǹ

+

E , D̀ =
[
Ǹ

−
E

]T
Ǹ

+

H , (5.61d)

where the superscripts “−” and “+” denote eigenvector matrices in the upper and lower
homogeneous regions, respectively. The propagators in both directions across the interface
can now be written (using equations 5.60 and 5.40) as:

Q́ =
1
2

(
Ć + D́ Ĉ − D̂
Č − Ď C̀ + D̀

)
and Q̀ =

1
2

(
D́

T
+ Ć

T
Ď

T − ČT

D̂
T − ĈT

D̀
T

+ C̀
T

)
. (5.62)
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The propagator elements are related to the reflection and transmission coefficients as de-
scribed in equations 5.51 and 5.53, and from this the reflection and transmission matrices
can be derived in terms of the C and D matrices:

t́ = 2
(
Ć + D́

)−T

, (5.63a)

ŕ = −
(
Ĉ − D̂

)T (
Ć + D́

)−T

= −
(
C̀ + D̀

)−1 (
Č − Ď

)
, (5.63b)

r̀ =
(
Ĉ − D̂

)(
C̀ + D̀

)−1

=
(
Ć + D́

)−T (
Č − Ď

)T
, (5.63c)

t̀ = 2
(
C̀ + D̀

)−1

. (5.63d)

Note the use of small boldface letters to denote reflection r and transmission t from a single
interface.

5.6.3 Single-interface weak-contrast approximation

In case of weak contrasts at an interface, equation 5.48 can be used to derive approximate
expressions for the reflection and transmission matrices in terms of F and G as in Ursin and
Stovas (2002) and Stovas and Ursin (2003). In a source-free region a Taylor expansion of u
leads to

u(z − ∆z) ≈ u(z) − du

dz
∆z =

(
I + iωṕz∆z − F́∆z

)
u(z) − Ĝd(z). (5.64)

When ∆z → 0 this becomes

uout = (I − F́)uin − Ĝdin, (5.65)

where uout is the resulting upgoing field after transmission of uin and reflection of din. The
propagation is in the negative z-direction and uout and din are on the upper side of the
interface (z−j ) whereas uin is on the lower side (z+

j ). The matrices F and G refer to F and
G with the derivatives replaced by the discontinuity in the parameters, and the parameters
replaced by their average values. A Taylor expansion for d leads to

d(z + ∆z) ≈ d(z) +
dd

dz
∆z =

(
I + iωp̀z∆z + F̀∆z

)
d(z) + Ǧu(z), (5.66)

which when ∆z → 0 leads to

dout = (I + F̀)din + Ǧuin. (5.67)

Thus, from equation 5.65 it can be seen that

t́ ≈ I − F́ and r̀ ≈ −Ĝ, (5.68a)

whereas equation 5.67 gives
t̀ ≈ I + F̀ and ŕ ≈ Ǧ. (5.68b)

128



5.6 Reflection and transmission responses

5.6.4 Recursive reflection and transmission responses

The eigenvalues in Λ will in general be complex and have a spectrum that contains evanescent
waves and attenuation for both upgoing and downgoing waves. A calculation of reflection and
transmission responses from a stack of layers can be done by matrix multiplication of all the
propagator elements involved. However, in numerical simulations this procedure may lead to
numerical instabilities. It might be better to obtain the overall reflection and transmission
matrices from a recursive calculation. Consider a propagator through a stack of layers from
zN+1 to z+

j , and furthermore propagation through the interface zj and the homogeneous
region up to z+

j−1 (cf. Figure 5.2):

Q́(z+
j−1, zN+1) = Q́(z+

j−1, z
−
j )Q́(z−j , z

+
j )Q́(z+

j , zN+1). (5.69)

In the 4 × 4 propagator Q́(z+
j , zN+1), the 2 × 2 reflection and transmission matrices in

the right column of equation 5.54b are denoted as Ŕj+1 and T́ j+1. In the propagator
Q́(z+

j−1, zN+1), the corresponding reflection and transmission matrices are denoted Ŕj and
T́ j . The propagation across the single interface zj is described by equation 5.54b as well,
and in this case the reflection and transmission matrices are written in lowercase letters (r
and t) with subscript j. For propagation upwards in the homogeneous region, the inverse
of the matrix expression in equation 5.43 is used. The following recursion formulas for the
downward reflection and transmission matrices are then obtained:

R̀j = eiωṕzhj

[
r̀j + t́jR̀j+1

(
I − ŕjR̀j+1

)−1

t̀j

]
eiωp̀zhj , (5.70a)

T̀ j = T̀ j+1

(
I − ŕjR̀j+1

)−1

t̀jeiωp̀zhj , (5.70b)

where hj = zj − zj−1, and where ṕz and p̀z are the eigenvalue submatrices in layer j. The
initial values are R̀N+1 = 0 and T̀N+1 = eiωp̀zhN+1 .

The same procedure can be used for the downgoing propagators to find recursive relations
for Ŕj and T́ j :

Ŕj = eiωp̀zhj+1

[
ŕj + t̀jŔj−1

(
I − r̀jŔj−1

)−1

t́j

]
eiωṕzhj+1 , (5.71a)

T́ j = T́ j−1

(
I − r̀jŔj−1

)−1

t́jeiωṕzhj+1 . (5.71b)

Here, Ŕj−1 and T́ j−1 describe reflection and transmission at z−j whereas Ŕj and T́ j describe
reflection and transmission at z−j+1. The initial values are Ŕ0 = 0 and T́ 0 = eiωṕzh0 , and
the eigenvalue submatrices are those of layer j+ 1. The initial conditions are not necessarily
related to the “top” and “bottom” of the stack as the interpretation of Figure 5.2 might
suggest; the recursion formulas can be applied to substacks anywhere in the medium, but
not across a source (cf. Figure 5.4). Note that the structure of the formulas is the same for
both the upward and downward reflection and transmission matrices.
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z

Rs

Rs

T /Rd d

Tb/Rb

T /u Ru

T /a Ra

Figure 5.4: A sketch of the multilayered medium with reflection and transmission responses
that must be calculated in order to obtain the field anywhere above or below the source in
any layer.

5.7 System of layers containing a source

A system of homogeneous layers containing a source is shown in Figure 5.2. The interfaces
are denoted as 0, ...j, ...N along the positive z-direction from the topmost interface to the
bottommost interface. Now, consider propagation downwards from the source through the
stack below:

w(zN ) = Q̀(zN , z
+
s )w(z+

s ) = Q̀(zN , z
−
s )
[
w(z−s ) + Σ(zs)

]
. (5.72)

In the lower halfspace, that is, in the region below the interface zN , there are only downgoing
fields. Furthermore, the downgoing field above the source is the reflected upgoing field;
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5.7 System of layers containing a source

d(z−s ) = Ŕsu(z−s ), where Ŕs is the reflection response from a stack above zs. Thus, equation
5.72 can be written as

(
0

d(zN )

)
= Q̀11

(
I −R̀s

Q̀
−1

11 Q̀21 Q̀
−1

11 Q̀22

){(
u(z−s )
Ŕsu(z−s )

)
+

(
Σ́(zs)
Σ̀(zs)

)}
, (5.73)

where the relation R̀s = −Q̀
−1

11 Q̀12 from equation 5.51c has been used. The matrix R̀s

represents the reflection response from the stack below zs. The mode-field vector just above
the source now becomes:

w(z−s ) =

(
I

Ŕs

)(
I − R̀sŔs

)−1 (
−Σ́ + R̀sΣ̀

)
. (5.74)

In order to obtain an expression for the mode-field vector anywhere above the source, down-
ward propagation of w(z) to w(z−s ), where z < zs, is considered by using equation 5.54a.
The relation between the upgoing mode-fields now gives

u(z < zs) =
(
I − R̀uŔa

)−1

T́ uu(z−s ), (5.75)

when the relation d(z) = Ŕau(z) is used. The notation follows from Figure 5.4: The
reflection and transmission between z < zs and zs is denoted T́ u and R̀u, respectively;
whereas the reflection from the above layers is denoted Ŕa. The total mode-field vector is
thus

w(z < zs) =

(
I

Ŕa

)(
I − R̀uŔa

)−1

T́ u

(
I − R̀sŔs

)−1 (
−Σ́ + R̀sΣ̀

)
. (5.76)

Written in this way the mode-field expression contains multiple reflections in the source layer
and in the receiver layer. In addition there is a transmission matrix between these two layers.

An expression for the mode-field vector below the source can be found by considering
propagation from the source through the upper stack:

w(z0) = Q́(z0, z−s )w(z−s ) = Q́(z0, z+
s )
[
w(z+

s ) −Σ(zs)
]
. (5.77)

The radiation condition for the upper halfspace implies that there are only upgoing waves
in this region. The upgoing field below the source equals the reflection response from the
downgoing field, u(z+

s ) = R̀sd(z+
s ). This leads to a corresponding relation to equation 5.73:

(
u(z0)

0

)
= Q́22

(
Q́

−1

22 Q́11 Q́
−1

22 Q́12

−Ŕs I

){(
R̀sd(z+

s )
d(z+

s )

)
−

(
Σ́(zs)
Σ̀(zs)

)}
, (5.78)

where Ŕs = −Q́
−1

22 Q́21 from equation 5.53c, and Ŕs is the reflection response from the stack
above zs. The mode-field vector just below the source now becomes

w(z+
s ) =

(
R̀s

I

)(
I − ŔsR̀s

)−1 (
Σ̀ − ŔsΣ́

)
, (5.79)
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and the mode-field vector anywhere below the source, z > zs, is found by propagating w(z)
up to w(z+

s ) with the propagator in equation 5.54b. By using that u(z) = R̀bd(z), a relation
between the downgoing fields can be derived:

d(z > zs) =
(
I − ŔdR̀b

)−1

T̀ dd(z+
s ). (5.80)

The reflection and transmission between z > zs and zs are denoted T̀ d and Ŕd, respectively;
whereas the reflection from the bottom layers is denoted R̀b as shown in Figure 5.4. The
total mode-field vector then becomes

w(z > zs) =

(
R̀b

I

)(
I − ŔdR̀b

)−1

T̀ d

(
I − ŔsR̀s

)−1 (
Σ̀ − ŔsΣ́

)
. (5.81)

Note that equation 5.76 can be obtained from equation 5.81 and vice versa by switching
the roles of upgoing and downgoing mode-fields, reflection, transmission, and radiation. In
addition, the signs of the mode-fields must be switched.

Within the source layer equations 5.76 and 5.81 reduce to

ws(z < zs) =

(
e−iωṕz(z−zs)

Ŕae−iωṕz(z−zs)

)(
I − R̀sŔs

)−1 (
−Σ́ + R̀sΣ̀

)
, (5.82a)

ws(z > zs) =

(
R̀beiωp̀z(z−zs)

eiωp̀z(z−zs)

)(
I − ŔsR̀s

)−1 (
Σ̀− ŔsΣ́

)
, (5.82b)

where Ŕa in this case differs from Ŕs by a phase factor that corresponds to propagation
down and up between the receiver and source, and likewise R̀b equals R̀s when the receiver
is at the same z-level as the source. The eigenvalue submatrices in equation 5.82 are those
of the source medium.

5.8 Eigenvalues and eigenvectors

In the previous section, expressions for the mode-field from an infinitesimal dipole source
have been derived. The physical field follows from the transformation b = Nw (equation
5.28). In order to calculate the mode-field, the reflection and transmission from a stack
of layers are needed. These are provided by the relations in equation 5.70 and 5.71. The
reflection and transmission from a single interface are described by equation 5.63. Finally,
the expression for the source vector in the mode-domain as given by equation 5.44 is required.

In all of the derivations, the relations are obtained from the eigenvalues and eigenvectors
of the system matrix A. Thus, the calculation of the electromagnetic field is dependent
on solving the eigenvalue problem for the system matrix in each homogeneous region. The
eigenvalues and eigenvectors of A are dependent on the material parameters in the specified
region and the horizontal slownesses px and py.
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5.8.1 Eigenvalues

The eigenvalues of A are determined by solving det (A − pzI) = 0. This leads to the quartic
equation

p4
z + b3 p

3
z + b2 p

2
z + b1 pz + b0 = 0, (5.83)

where

b3 = −2(a11 + a22), (5.84a)

b2 = (a11 + a22)2 + 2a11a22 − 2a12a21 − 2a14a32 − a13a31 − a24a42, (5.84b)

b1 = 2a11[a12a21 + a14a32 + a24a42 − a22(a11 + a22)] + 2a12(a21a22 − a24a32 − a14a31),

+ 2a13(a31a22 − a21a32) + 2a14(a22a32 − a21a42), (5.84c)

b0 = a11[a11(a2
22 − a24a42) + 2a12(a24a32 − a21a22) + 2a14(a21a42 − a22a32)],

+ a12[a12(a2
21 − a24a31) + 2a14(a22a31 − a21a32)],

+ a13[a21(a22a32 − a21a42) + a22(a21a32 − a22a31) + a24(a31a42 − a2
32)],

+ a14[a14(a2
32 − a31a42)]. (5.84d)

The solution of equation 5.83 can be found using the approach in Abramowitz and Stegun
(1962), page 17. This implies to determine one solution, e.g., u1 of the cubic equation

u3 − b2u
2 + (b3b1 − 4b0)u− [b21 + b0(b23 − 4b2)] = 0, (5.85)

and then determining the four roots from the two quadratic equations:

p2
z +

(
b3
2

∓
√
b23
4

+ u1 − b2

)
pz +

(
u1

2
∓
√
u2

1

4
− b0

)
= 0. (5.86)

The derived set of roots pzj (where j = {I,II,III,IV}) must satisfy the following relations
∑

pzj = −b3,
∑

pzjpzkpzl = −b1,
∑

pzjpzk = b2, and pzIpzIIpzIIIpzIV = b0.

(5.87)
The eigenvalues represent slownesses in the vertical direction, and in general, these are

all complex parameters. In order for the iterative reflectivity method to work properly
(cf. equation 5.70 and 5.71), it is important that the eigenvalues that have positive (nega-
tive) imaginary parts are sorted into the upgoing (downgoing) submatrix in equation 5.30.
Since the horizontal slownesses are real, this requirement (i.e., the radiation condition) cor-
responds to the requirement that the direction of the energy flow should determine which
eigenvalue that relates to upgoing and downgoing constituents (cf. Chapman, 1994; Carcione
and Schoenberg, 2000). In case of real eigenvalues, the determination of an eigenvalue being
upgoing or downgoing relies on the energy-flow condition. In Appendix 5.C, a method for
calculating the energy velocity in a homogeneous region in terms of the slowness and material
parameters is presented.
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Within each eigenvalue submatrix for upgoing and downgoing constituents, the sorting
of the eigenvalues does not matter as shown in Appendix 5.D. If it is desirable to derive
the correct physical reflection and transmission matrices at an interface, the eigenvalues
must however have the same sorting on each side of the interface. This can be obtained by
accounting for signs throughout the solution of the quartic equation. Another method for
sorting the eigenvalues is provided through the calculation of the energy velocity in Appendix
5.C.

5.8.2 Eigenvectors

The eigenvector matrixN can be written in terms of the eigenvectors, matrix elements, and
submatrices as

√
2N =

(
nI nII nIII nIV

)
=




n11 n12 n13 n14

n21 n22 n23 n24

n31 n32 −n33 −n34

n41 n42 −n43 −n44




=

(
ŃE ǸE

ŃH −ǸH

)
. (5.88)

Thus, j = {I,II,III,IV} in the eigenvectors and corresponding eigenvalues, appear as j =
{1, 2, 3, 4} in the second number in the subscript of the eigenvector-matrix elements. The
eigenvectors that correspond to the eigenvalues are found from solving

Anj = pzjnj, (5.89)

and for each eigenvalue pzj , the following relations between the entries in an eigenvector can
be obtained:

n2j =
β2j

β1j
n1j, n3j = ±β3j

β1j
n1j, and n4j = ±β4j

β1j
n1j, (5.90)

where the plus sign is applied when j = {1, 2} and minus sign when j = {3, 4}, and where

β1j = (a11 − pzj)(a22 − pzj)a14 − (a11 − pzj)a12a24

− (a22 − pzj)a13a21 − a2
14a32 + a12a14a21 + a13a24a32, (5.91a)

β2j = a24(a11 − pzj)2 − 2a14a21(a11 − pzj) + a13(a2
21 − a24a31) + a2

14a31, (5.91b)

β3j = a21(a11 − pzj)(a22 − pzj) − a24a32(a11 − pzj)

− a14a31(a22 − pzj) − a12(a2
21 − a24a31) + a14a21a32, (5.91c)

β4j = − (a11 − pzj)2(a22 − pzj) + (a12a21 + a14a32)(a11 − pzj)

+ a13a31(a22 − pzj) − a12a14a31 − a13a21a32. (5.91d)

The n1j-entries are obtained from the flux-normalization criterion. The relation NN−1 = I

in terms of the eigenvector submatrices from equation 5.40 implies that

ŃEŃ
T

H + ǸEǸ
T

H = 2I, ŃHŃ
T

H = ǸHǸ
T

H ,

ŃHŃ
T

E + ǸHǸ
T

E = 2I, ŃEŃ
T

E = ǸEǸ
T

E ,
(5.92)
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and these equations provide the set of equations:

n2
11 + n2

12 − n2
13 − n2

14 = 0, (5.93a)

n11n21 + n12n22 − n13n23 − n14n24 = 0, (5.93b)

n11n31 + n12n32 + n13n33 + n14n34 = 2, (5.93c)

n11n41 + n12n42 + n13n43 + n14n44 = 0, (5.93d)

where n11, n12, n13, and n14 are the unknowns. The solution is

n2
11 = 2(α12α23 − α13α22)D−1

α , n2
12 = 2(α13α21 − α11α23)D−1

α , (5.94a)

n2
13 = 2(α11α22 − α12α21)D−1

α , n2
14 = n2

11 + n2
12 − n2

13, (5.94b)

α11 = β′
24 − β′

21, α12 = β′
24 − β′

22, α13 = β′
23 − β′

24, (5.94c)

α21 = β′
41 − β′

44, α22 = β′
42 − β′

44, α23 = β′
44 − β′

43, (5.94d)

α31 = β′
31 − β′

34, α32 = β′
32 − β′

34, α33 = β′
34 − β′

33, (5.94e)

where the quotient β′
ij = βij/β1j has been introduced, and

Dα = α11(α22α33 − α23α32) + α12(α23α31 − α21α33) + α13(α21α32 − α22α31). (5.94f)

The sign of the square root in the solutions for n11 and n12 can be chosen at will, but the
sign of n13 and n14 must correspond to the selected sign for n11 and n12, respectively.

5.9 Up/down-symmetric media

When one of the principal axes in the anisotropic medium coincides with the vertical axis of
the main coordinate system, the relation between the principal and main coordinate systems
is given in terms of one rotation in the horizontal plane (cf. Appendix 5.A). This corresponds
to a monoclinic medium with the horizontal plane as a mirror plane of symmetry. Then the
system matrix reduces to:

A =

(
0 A1

A2 0

)
. (5.95)

In this case the entries in the submatrices are denoted

A1 =

(
a′13 a′14

a′14 a′24

)
and A2 =

(
a′31 a′32

a′32 a′42

)
, (5.96)

where the same indices as in the general case are used. However, the expressions in the
entries simplify compared to the general case and become:

a′13 = µyy − p2
x

ε̃v
, a′14 = −µxy − pxpy

ε̃v
, (5.97a)

a′24 = µxx − p2
y

ε̃v
, a′31 = ε̃xx − p2

y

µv
, (5.97b)

a′32 = ε̃xy + pxpy

µv
, a′42 = ε̃yy − p2

x

µv
. (5.97c)
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Now, because of the symmetry in the original 4×4-matrices, the eigenvalues and eigenvectors
can be obtained from 2 × 2-matrices. The product of the submatrices will become useful:

A1A2 =

(
α′

11 α′
12

α′
21 α′

22

)
, (5.98)

where
α′

11 = a′13a
′
31 + a′14a

′
32, α′

12 = a′13a
′
32 + a′14a

′
42,

α′
21 = a′14a

′
31 + a′24a

′
32, α′

22 = a′14a
′
32 + a′24a

′
42.

(5.99)

The eigenvalues can be derived from the expression in equation 5.83 where the terms b3 and
b1 are zero for the up/down-symmetric (u/d-symmetric) case. This means that the quartic
equation reduces to a quadratic equation for the squared eigenvalues, which can be written
in terms of the submatrix product as:

pz = ±
{

1
2

[
tr(A1A2) ±

√
tr2 (A1A2) − 4det(A1A2)

]}1/2

. (5.100)

The two eigenvalues that correspond to the positive sign in front of the square root are pzI and
pzII. These two quantities are furthermore obtained by using the positive and negative sign
inside the square root, respectively. Then pzIII = −pzI and pzIV = −pzII, which means that the
eigenvalue submatrices in equation 5.30 are equal due to the u/d-symmetry: ṕz = p̀z = pz.

Because of the symmetry in the upgoing and downgoing field constituents, the submatrices
in equation 5.88 become pairwise equal:

N =
1√
2

(
NE NE

NH −NH

)
, (5.101)

where the block inverse and relation from the general expression for the eigenvector matrix
(equation 5.40) give:

N−1 =
1√
2

(
N−1

E N−1
H

N−1
E −N−1

H

)
=

1√
2

(
NT

H NT
E

NT
H −NT

E

)
. (5.102)

The following symmetry-relations thus appear:

N−1
E = NT

H , N−1
H = NT

E . (5.103)

The similarity transform AN =NΛ, where Λ = diag{pz,−pz} then gives the equations:

A1 = NEpzN
T
E and A2 =NHpzN

T
H . (5.104)

Complex symmetric matrices as A1 and A2 can always be diagonalized as in equation 5.104
(Horn and Johnson, 1985). It has previously been shown that this choice of eigenvectors
corresponds to a flux normalization.
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By writing NE =
(
nI nII

)
, the multiplication of A2 by A1 from the left in equation

5.104 leads to:
A1A2nj = p2

zjnj, (5.105)

where j = {I,II}. Using the relations in equation 5.103, the eigenvector submatrices NE

and NH can be written as:

NE =

(
n11 n12

n21 n22

)
, NH =

1
n11n22 − n12n21

(
n22 −n21

−n12 n11

)
. (5.106)

The elements in the eigenvector matrices can now be calculated in terms of the eigenvalues
pzI and pzII from equation 5.100 as follows: Find a relation between the entries in the
eigenvectors from equation 5.105, and use equation 5.104 to obtain a scaling between the
eigenvectors that satisfies the flux-normalization condition. It is useful to derive two sets of
solutions. The following expressions can be used as long as the anisotropy is not uniaxial
and in the y-direction:

n21 =

[
a′14α

′
21 + a′24

(
α′

22 − p2
zII

)

pzI (p2
zI − p2

zII)

]1/2

, n22 =

[
a′14α

′
21 + a′24

(
α′

22 − p2
zI

)

pzII (p2
zII − p2

zI)

]1/2

, (5.107a)

n11 =
p2

zI − α′
22

α′
21

n21, n12 =
p2

zII − α′
22

α′
21

n22. (5.107b)

Equivalently, the following set of eigenvectors can be used, except for uniaxial anisotropy
with a direction that coincides with the x-direction:

n11 =

[
a′14α

′
12 + a′13

(
α′

11 − p2
zII

)

pzI (p2
zI − p2

zII)

]1/2

, n12 =

[
a′14α

′
12 + a′13

(
α′

11 − p2
zI

)

pzII (p2
zII − p2

zI)

]1/2

, (5.108a)

n21 =
p2

zI − α′
11

α′
12

n11, n22 =
p2

zII − α′
11

α′
12

n12. (5.108b)

5.9.1 Common principal and coordinate axes

The case where the principal axes of anisotropy coincide with the coordinate axes will be
denoted as nonrotated orthorhombic. Since the Fourier expansion of dipole radiation in
stratified media gives a spectrum of slownesses in terms of px and py, this orthorhombic case
does not in general lead to any simplifications compared to an u/d-symmetric case where
the principal axes are rotated with respect to the horizontal coordinate axes. However, the
expressions for the eigenvalues simplify for uniaxial nonrotated orthorhombic media. Thus, it
might be enlightening to calculate the eigenvalues for biaxial orthorhombic media explicitly.
To this end, note that it is possible to always choose the coordinate system to coincide with
the principal axes of anisotropy for u/d-symmetric media by decomposing the antenna into
x- and y-components that coincide with the principal axes.
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For nonrotated orthorhombic media, the material parameters are ε̃ = diag{ε̃1, ε̃2, ε̃3} and
µ = diag{µ1, µ2, µ3}. The eigenvalues of A become:

pzI =
[

1+f(px)
2

(
µ2ε̃1 − µ1

µ3
p2

x − µ2
µ3
p2

y

)
+ 1−f(px)

2

(
µ1ε̃2 − ε̃1

ε̃3
p2

x − ε̃2
ε̃3
p2

y

)]1/2

, (5.109a)

pzII =
[

1+f(px)
2

(
µ1ε̃2 − ε̃1

ε̃3
p2

x − ε̃2
ε̃3
p2

y

)
+ 1−f(px)

2

(
µ2ε̃1 − µ1

µ3
p2

x − µ2
µ3
p2

y

)]1/2

, (5.109b)

where

f(px) =
√

1 + 4(µ1 ε̃2−µ2ε̃1)q1p2
x

(µ1 ε̃2−µ2ε̃1+q1p2
x+q2p2

y)
2 , (5.109c)

with q1 = ε̃1/ε̃3 − µ1/µ3 and q2 = ε̃2/ε̃3 − µ2/µ3. The eigenvalues can also be written as

pzI =
[

1+f(py )
2

(
µ1ε̃2 − µ1

µ3
p2

x − µ2
µ3
p2

y

)
+ 1−f(py)

2

(
µ2ε̃1 − ε̃1

ε̃3
p2

x − ε̃2
ε̃3
p2

y

)]1/2

, (5.110a)

pzII =
[

1+f(py )
2

(
µ2ε̃1 − ε̃1

ε̃3
p2

x − ε̃2
ε̃3
p2

y

)
+ 1−f(py)

2

(
µ1ε̃2 − µ1

µ3
p2

x − µ2
µ3
p2

y

)]1/2

, (5.110b)

where

f(py) =
√

1 − 4(µ1 ε̃2−µ2 ε̃1)q2p2
y

(µ1ε̃2−µ2ε̃1+q1p2
x+q2p2

y)
2 . (5.110c)

Note that the quantity f(px) is equal to one when px is zero, and similarly that f(py) is
equal to one when py is zero.

When the anisotropy is uniaxial and in the x-direction, the expressions for the eigenvalues
simplify since q2 = 0 which means that f(py) = 1. Thus,

pzI =
√
µ1ε̃2 − µ1

µ3
p2

x − p2
y and pzII =

√
µ2ε̃1 − ε̃1

ε̃3
p2

x − p2
y . (5.111)

Similarly, when the anisotropy direction is along the y-axis only, q1 = 0 and f(px) = 1. Then

pzI =
√
µ2ε̃1 − p2

x − µ2
µ3
p2

y and pzII =
√
µ1ε̃2 − p2

x − ε̃2
ε̃3
p2

y . (5.112)

5.9.2 Reflection and transmission coefficients

In u/d-symmetric stratified layers the relations in equation 5.59 reduce to

Ŕ = Ŕ
T
, R̀ = R̀

T
, and T́ = T̀

T
. (5.113)

At an interface between two u/d-symmetric media, the relations in equation 5.63 reduce to:

t́ = 2 (C +D)−T
, (5.114a)

ŕ = − (C −D)T (C +D)−T = − (C +D)−1 (C −D) , (5.114b)

r̀ = (C −D) (C +D)−1 = (C +D)−T (C −D)T
, (5.114c)

t̀ = 2 (C +D)−1 , (5.114d)
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since the relations in equation 5.61 now are

C =
[
N−

H

]T
N+

E and D =
[
N−

E

]T
N+

H , (5.115)

because of the symmetries in the eigenvector submatrices in equation 5.103. The superscripts
“−” and “+” denote upper and lower homogeneous regions, respectively; and the matrices C
andD have the property CDT = I. This way of writing reflection and transmission matrices
for u/d-symmetric media was introduced by Ursin and Stovas (2002). From equation 5.114
it can be verified that the upgoing and downgoing reflection matrices are related as

ŕ = −t̀r̀t̀−1
and r̀ = −t́ŕt́−1

, (5.116)

and that the reflection matrices are related to the transmission matrices as

ŕ2 = I − t̀t́ and r̀2 = I − t́t̀. (5.117)

The relations in continuously varying media also simplify with u/d-symmetry since F́ =
F̀ = F and Ǧ = Ĝ = G. For weak contrasts, the approximations in equation 5.68 then
imply that ŕ ≈ −r̀.

5.10 Transverse isotropy in the vertical direction

Transverse isotropy in the vertical direction (TIV) means that the electromagnetic properties
of a medium are rotationally symmetric about the z-axis. In this case the constitutive
relations simplify to ε̃ = diag{ε̃h, ε̃h, ε̃v} and µ = diag{µh, µh, µv}, and the system matrix
has the same form as in equation 5.95 with

A1 =
1
ε̃v

(
µh ε̃v − p2

x −pxpy

−pxpy µhε̃v − p2
y

)
, A2 =

1
µv

(
µv ε̃h − p2

y pxpy

pxpy µv ε̃h − p2
x

)
. (5.118)

The eigenvalues of A now become

pzI = −pzIII =
√
µh ε̃h − µh

µv

(
p2

x + p2
y

)
, (5.119a)

pzII = −pzIV =
√
µh ε̃h − ε̃h

ε̃v

(
p2

x + p2
y

)
. (5.119b)

The eigenvector matrix and its inverse from equation 5.101 and 5.102 have the submatrices:

NE =
1
pρ


 py

√
µh

pzI
px

√
pzII
ε̃h

−px

√
µh

pzI
py

√
pzII
ε̃h


 and NH =

1
pρ


 py

√
pzI
µh

px

√
ε̃h

pzII

−px

√
pzI
µh

py

√
ε̃h

pzII


 , (5.120)

where pρ =
√
p2

x + p2
y .
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5.10.1 Reflection and transmission matrices

In the TIV case, explicit expressions for the reflection and transmission matrices can be
derived by inserting equation 5.120 into 5.115 and using equation 5.114:

t̀ =




2
√

µ−
h µ+

h p−
zI p+

zI

µ+
h p−

zI + µ−
h p+

zI
0

0 2
√

ε̃−
h

ε̃+
h

p−
zII p+

zII

ε̃−
h p+

zII + ε̃+
h p−

zII


 r̀ =




µ+
h p−

zI − µ−
h p+

zI

µ+
h p−

zI + µ−
h p+

zI
0

0 ε̃−
h p+

zII − ε̃+
h p−

zII

ε̃−
h p+

zII + ε̃+
h p−

zII


 . (5.121)

Since these matrices are diagonal, the relations in equation 5.113 and 5.116 lead to

t́ = t̀ and ŕ = −r̀. (5.122)

In equation 5.121 the reflection coefficients are recognized as the Fresnel coefficients for trans-
verse electric (TE) and transverse magnetic (TM) polarization (cf. Stratton, 1941; Jackson,
1998). Thus, in the TIV case, the eigenvalue pzI corresponds to a TE mode, and the eigen-
value pzII corresponds to a TM mode. The transmission coefficients are symmetric across
the interface. In order to obtain the Fresnel transmission coefficients, another normalization
of the eigenvectors can be chosen as shown in Appendix 5.E.

5.10.2 Recursive reflection and transmission responses

When the transmission and reflection matrices describing propagation through one interface
are diagonal, the expressions in equations 5.70 and 5.71 simplify. The result is scalar recursive
reflection and transmission responses valid for both modes. By using the relations in equation
5.117 and 5.122, one gets:

Rm =
rm +Rm+1

1 + rmRm+1
e2iωpzhm , (5.123a)

Tm =
tmTm+1

1 + rmRm+1
eiωpzhm , (5.123b)

where pz = pzI for the TE mode and pz = pzII for the TM mode. It is implicit that the
eigenvalues take their respective values in the m’th layer. The initial conditions at the start
of the stack are RM+1 = 0 and TM+1 = eiωpzhM+1 . The expressions can be used for both
upgoing and downgoing reflection and transmission coefficients. In both cases hm describes
the thickness from the m’th interface, where rm and tm are evaluated, to the z-level of Rm

and Tm.

5.11 Isotropic media

In isotropic media the system matrix has the same form as in equation 5.95, but now

A1 =
1
ε̃

(
µε̃− p2

x −pxpy

−pxpy µε̃ − p2
y

)
, A2 =

1
µ

(
µε̃− p2

y pxpy

pxpy µε̃ − p2
x

)
, (5.124)
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and the eigenvalues are

pz = pzI = pzII = −pzIII = −pzIV =
√
µε̃ − p2

x − p2
y. (5.125)

Because of the degeneracy of the eigenvalues there are several possibilities for choosing a
linear independent set of 4 eigenvectors that satisfy the flux-normalization condition. It will
however be convenient to choose the same form of the eigenvector matrix as in the TIV case.
Thus, the same eigenvector matrices as in equation 5.120 can be used with µh = µv = µ,
ε̃h = ε̃v = ε̃ and pzI = pzII = pz. All the relations that have been derived and will be derived
for TIV media are hence valid for isotropic media.

5.12 Explicit expressions for the electromagnetic fields

By using equations 5.76 and 5.81 the electromagnetic field in a stratified medium with general
anisotropy in all the layers can be obtained. However, in many applications in geophysics
the source medium is isotropic or transversely isotropic in the vertical direction (TIV). The
purpose in this section is to derive explicit expressions for the electromagnetic fields from
sources that are either a horizontal electric dipole (HED), vertical electric dipole (VED),
horizontal magnetic dipole (HMD), or vertical magnetic dipole (VMD) when the source and
receiver are situated in TIV or isotropic media. The infinitesimal dipole source is contained
in one of the layers as shown in Figure 5.2, and the resulting electromagnetic field can be
obtained in any TIV or isotropic layer from the explicit expressions that will be derived. In
all layers other than the source and receiver layer(s), the anisotropy may be arbitrary.

The field expressions are given in the frequency-wavenumber domain, and a 2-D Fourier
transform is required in order to get to the spatial domain. It is only in the case of TIV or
isotropy in all the layers that the transformation to the spatial domain can be reduced to a
single integral by using cylindrical coordinates. The field expressions for such cases are given
in Appendix 5.F.

5.12.1 Up/down-symmetry in the source and receiver layer(s)

If the source and receiver layers have u/d-symmetry, the expressions for the mode-field vectors
in equations 5.76 and 5.81, and the corresponding physical field vectors b = (bE ; bH ),
simplify. The resulting fields from the four types of sources (HED, HMD, VED, and VMD)
are considered. The source vectors from equation 5.16 are split into sE =

(
sv

E
; sh

E

)
and

sM =
(
sh

M ; sv
M

)
. The different source types in the mode-field domain then become

HED: Σ̀ = −Σ́ = −NT
Es

h
E/

√
2, VED: Σ̀ = Σ́ = NT

Hs
v
E/

√
2,

HMD: Σ̀ = Σ́ = NT
Hs

h
M/

√
2, VMD: Σ̀ = −Σ́ = −NT

Es
v
M/

√
2,

(5.126)
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where equation 5.44 with the eigenvector matrices from equation 5.101 has been used. The
electromagnetic field due to any of these sources is then given by the expression

bE = NE R Σ̀/
√

2 and bH = NH R Σ̀/
√

2, (5.127)

where the coefficient matrices R (RT-amplitudes) are, respectively, RA and RD for the
electric and magnetic field components in case of a HED and VMD. When the source is a
HMD or a VED, the coefficient matrices for the electric and magnetic fields are RB and
RC , respectively. The RT-amplitudes above the source, z < zs, are:

ŔA
=
(
I + Ŕa

)(
I − R̀uŔa

)−1

T́ u

(
I − R̀sŔs

)−1 (
R̀s + I

)
, (5.128a)

Ŕ
B

=
(
I + Ŕa

)(
I − R̀uŔa

)−1

T́ u

(
I − R̀sŔs

)−1 (
R̀s − I

)
, (5.128b)

Ŕ
C

=
(
I − Ŕa

)(
I − R̀uŔa

)−1

T́ u

(
I − R̀sŔs

)−1 (
R̀s − I

)
, (5.128c)

Ŕ
D

=
(
I − Ŕa

)(
I − R̀uŔa

)−1

T́ u

(
I − R̀sŔs

)−1 (
R̀s + I

)
, (5.128d)

and the RT-amplitudes below the source, z > zs, are:

R̀
A

=
(
R̀b + I

)(
I − ŔdR̀b

)−1

T̀ d

(
I − ŔsR̀s

)−1 (
I + Ŕs

)
, (5.128e)

R̀
B

=
(
R̀b + I

)(
I − ŔdR̀b

)−1

T̀ d

(
I − ŔsR̀s

)−1 (
I − Ŕs

)
, (5.128f)

R̀C
=
(
R̀b − I

)(
I − ŔdR̀b

)−1

T̀ d

(
I − ŔsR̀s

)−1 (
I − Ŕs

)
, (5.128g)

R̀D
=
(
R̀b − I

)(
I − ŔdR̀b

)−1

T̀ d

(
I − ŔsR̀s

)−1 (
I + Ŕs

)
. (5.128h)

The reflection and transmission can be calculated from the relations in equation 5.70 and
5.71. The single-interface reflection and transmission matrices are described by equation
5.63.

5.12.2 RT-responses and polarization modes

In TIV or isotropic media the wavenumber vector for a plane-wave constituent and the electric
and magnetic field components form an orthogonal system (cf. Appendix 5.C). This means
that in presence of an interface, the electromagnetic field can be decomposed into a transverse
electric (TE) and transverse magnetic (TM) polarization mode. The interface normal and
the wavenumber vector form the plane of incidence. The electromagnetic field component
where the electric field is normal to the plane of incidence is referred to as the TE mode, and
the field component where the magnetic field is normal to the plane of incidence is referred
to as the TM mode.

For reflection and transmission between two TIV regions there is no coupling of the po-
larization modes as seen from equation 5.121, since the reflection and transmission matrices
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are diagonal. From equation 5.119 it can be observed that the vertical slowness that corre-
sponds to the TE mode is governed by anisotropy in the magnetic permeability, whereas the
vertical slowness that corresponds to the TM mode is governed by anisotropy in the complex
electric permittivity. The modes are obviously also decoupled for reflection and transmission
at interfaces between TIV and isotropic media or between isotropic regions. For isotropic
media the slownesses are equal, cf. equation 5.125.

At interfaces between media with more complicated anisotropy than TIV, the offdiagonal
elements of the reflection and transmission matrices (cf. equations 5.63 and 5.114) are nonzero
and thus the polarization modes are coupled. However, in a general anisotropic homogeneous
region there are no pure TE- and TM-polarization modes since the propagation direction is
not orthogonal to the field components (cf. Appendix 5.C). We will refer to the modes in
such regions as quasi-TE (qTE) and quasi-TM (qTM). When the anisotropy simplifies into
TIV, the qTE mode should then correspond to the TE mode, and likewise the qTM mode
should give a TM mode.

Consider the matrix expressions in equation 5.128 which can be written as:

R =

(
R11 R12

R21 R22

)
, (5.129)

where the notation R refers to all the eight different reflection and transmission responses in
equation 5.128. Let equation 5.129 represent the RT-response in a TIV or isotropic layer from
an anisotropic stack due to a source in a TIV or isotropic layer. The sorting of eigenvalues
in equations 5.119 and 5.30 then means that subscript 1 in the matrix elements in equation
5.129 is related to the TE mode, whereas subscript 2 is related to the TM mode. Thus, the
emitted TE polarization and the resulting TE-mode response is represented by R11, whereas
R12 is the resulting TM mode from the TE radiation. In the same manner, the emitted TM
polarization is represented by R21 and R22, where the latter is the TM mode in the resulting
electromagnetic field, and R21 is the TE mode due to the radiated TM mode. In short,
subscript 11 implies TE → TE, 12 is TE → TM, 21 is TM → TE, and 22 is TM → TM. Note
however, that in a stack with general anisotropy, the R11-response will contain responses
which have been converted from TM to TE and then back from TM to TE within the stack.
In the same manner the R22-response is not a pure TM response. When all the layers in the
stratified model are TIV or isotropic, there is no cross-coupling between the modes. Then
the entries R12 and R21 are zero, and the calculation of the RT-response reduces to a scalar
problem in terms of the TE and TM modes.

5.12.3 Horizontal electric dipole

For a HED in the x-direction, the source vector from equation 5.16 is s = (0 0 Jx 0)T , where
Jx is given by equation 5.17a and the delta function is accounted for in equation 5.45. Using
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equation 5.126 this leads to

Σ̀ = −Σ́ = − 1√
2
NT

E

(
Jx

0

)
= − Ilx√

2pρ

(
pyEs

pxM−1
s

)
, (5.130)

where the eigenvector submatrix from equation 5.120 has been used since the source is
assumed to be in a TIV layer, and where the variables

E =

√
µh

pzI

and M =

√
ε̃h

pzII

, (5.131)

have been introduced to simplify notation. The subscript s implies material parameters
within the source layer. The electromagnetic field is given by equation 5.127:

b(z) =
1√
2

(
NERA

NHRD

)
Σ̀(zs). (5.132)

The expression is valid for z < zs, then R → Ŕ; and z > zs, which implies that R → R̀.
Written explicitly, the electric and magnetic field components in a TIV layer become:

Ex = − Ilx
2p2

ρ

[
EEsp

2
yRA

11 +
E

Ms
pypxRA

12 +
Es

M
pxpyRA
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1
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xRA
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]
, (5.133a)

Ey = − Ilx
2p2

ρ
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−EEspxpyRA
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E

Ms
p2

xR
A
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Es

M
p2

yR
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pypxRA
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, (5.133b)
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Ilx
2p2

ρ
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Es

E
p2

yR
D
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1
EMs

pypxRD
12 + MEspxpyRD

21 +
M
Ms

p2
xR

D
22

]
, (5.133c)

Hx = − Ilx
2p2

ρ

[
−Es

E pxpyRD
11 −

1
EMs

p2
xRD

12 + MEsp
2
yRD

21 +
M
Ms

pypxRD
22

]
. (5.133d)

The z-components of the electric and magnetic fields are found using equation 5.15a and
5.15b, respectively; and they become:

Ez = − Ilx
2ε̃v

[
MEspyRD

21 +
M
Ms

pxRD
22

]
, (5.133e)

Hz =
Ilx
2µv

[
EEspyRA

11 +
E

Ms
pxRA

12

]
. (5.133f)

The electromagnetic field from a HED in the y-direction is found by letting pxJx → pyJy

and pyJx → −pxJy in the equations above. When performing the substitution in expressions
where both px and py are present, it is the rightmost slowness parameter that must be used
(i.e., by the notation used here it is this slowness parameter that can be ascribed to the
source transformation).

In cases where all the layers are TIV (or isotropic), the RT-response simplifies. The
cross-coupling coefficients are R12 = 0 and R21 = 0 in this case. The responses for the TE
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and TM modes (R11 and R22, respectively) are then given by the same scalar expression.
For z > zs the RT-amplitudes are

R̀A = T̀d
R̀b + 1

1 − ŔdR̀b

1 + Ŕs

1 − ŔsR̀s

, (5.134a)

R̀D = T̀d
R̀b − 1

1 − ŔdR̀b

1 + Ŕs

1 − ŔsR̀s

, (5.134b)

and for z < zs the RT-amplitudes are

ŔA = T́u
1 + Ŕa

1 − R̀uŔa

1 + R̀s

1 − R̀sŔs

, (5.134c)

ŔD = T́u
1 − Ŕa

1 − R̀uŔa

1 + R̀s

1 − R̀sŔs

. (5.134d)

5.12.4 Horizontal magnetic dipole

A HMD implies that the source term from equation 5.16 becomes s = (0 JM

x 0 0)T . In TIV
media the HMD source in equation 5.17d reduces to JM

x = −iωµhIaxδ(z − zs). The source
in the mode-domain can thus be written:

Σ̀ = Σ́ =
1√
2
NT

H

(
0
JM

x

)
=

−iωµs
hIax√

2pρ

(
−pxE−1

s

pyMs

)
, (5.135)

where the superscript s on µh refers to the permeability in the source layer. To obtain the
electromagnetic field, the expression in equation 5.127 is used:

b(z) =
1√
2

(
NERB

NHRC

)
Σ̀(zs). (5.136)

Written explicitly the electric and magnetic fields become:
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The z-components are found using equation 5.15:

Ez = − iωµ
s
hIax

2ε̃v

[
−M
Es
pxRC

21 + MMspyRC
22

]
, (5.137e)

Hz = − iωµ
s
hIax

2µv

[
E
Es
pxRB

11 − EMspyRB
12

]
. (5.137f)
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It can be seen from equations 5.133 and 5.137 that there is a duality between the electro-
magnetic field from a magnetic and an electric dipole, a subject that is treated in Appendix
5.B. The field from a source in the y-direction can be found by letting pxJ

M
x → pyJ

M
y and

pyJ
M
x → −pxJ

M
y .

If all the layers are TIV or isotropic, the cross-coupling terms are zero and the TE-mode
and TM-mode responses are both given by:

R̀B = T̀d
R̀b + 1

1 − ŔdR̀b

1 − Ŕs

1 − ŔsR̀s

, (5.138a)

R̀C = T̀d
R̀b − 1

1 − ŔdR̀b

1 − Ŕs

1 − ŔsR̀s

, (5.138b)

when z > zs. For z < zs the RT-amplitudes are

ŔB = T́u
1 + Ŕa

1 − R̀uŔa

R̀s − 1
1 − R̀sŔs

, (5.138c)

ŔC = T́u
1 − Ŕa

1 − R̀uŔa

R̀s − 1
1 − R̀sŔs

. (5.138d)

5.12.5 Vertical electric dipole

The source term for a VED is given by equation 5.16 as s = (pxJz/ε̃v pyJz/ε̃v 0 0)T where
Jz is given by equation 5.17c. Thus,

Σ̀ = Σ́ =
Jz√
2ε̃s

v

NT
H

(
px

py

)
=
Ilzpρ√

2ε̃s
v

(
0

Ms

)
, (5.139)

where the superscript s on ε̃h refers to the complex permittivity in the source layer. Since
the upgoing radiation of the mode-source vector equals the downgoing radiation, the VED
has the same scattering coefficients as the HMD in equation 5.136. Since the uppermost
element in equation 5.139 is zero, this means that
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Ilz
2ε̃s

v

[
EMspyRB

12 +
Ms

M pxRB
22

]
, (5.140a)
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, (5.140b)
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]
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[
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E pxRC
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22

]
. (5.140d)
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The vertical electric and magnetic components become, using equation 5.15:

Ez =
Ilzp

2
ρ

2ε̃s
v ε̃v

MMsRC
22 +

1
iωε̃s

v

Ilzδ(zs), (5.140e)

Hz = −
Ilzp

2
ρ

2ε̃s
vµv

EMsRB
12. (5.140f)

When all the layers are TIV or isotropic, the VED has pure TM-polarization components
only, and there is no vertical magnetic field (Hz = 0).

5.12.6 Vertical magnetic dipole

The VMD source is described by equation 5.16 as s = (0 0 − pyJ
M
z /µv pxJ

M
z /µv)

T . By
using the expression for JM

z from equation 5.17f, which in TIV-media reduces to JM

z =
−iωµvIazδ(z − zs), one gets
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Es
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)
. (5.141)

Since Σ̀ = −Σ́, the VMD has the same scattering coefficients as the field from a HED, cf.
equation 5.132. Then
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, (5.142a)
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, (5.142c)
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−Es
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The z-components are found using equation 5.15:

Ez = −
iωIazp

2
ρ

2ε̃v
MEsRD

21, (5.142e)

Hz =
iωIazp

2
ρ

2µv
EEsRA

11 − Iazδ(zs). (5.142f)

When all the layers are TIV or isotropic, the VMD produces pure TE-polarization compo-
nents, and the vertical electric field is zero (Ez = 0).
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Figure 5.5: Anisotropy models for some idealized CSEM/SBL scenarios. The figures to the
left (right) illustrate anisotropy in the overburden (reservoir). Three basic uniaxial models
are considered. Figures a and b show TIV media, c and d illustrate TIH media, and in e and
f, media with dipping anisotropy (TID) are sketched.
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5.13 Numerical results

The theory for electromagnetic field propagation in stratified anisotropic media has been
presented in a rather general form. As long as the constitutive relations are as given in
equation 5.2, the formalism can be applied to electromagnetic problems in geophysics from
e.g., ground penetrating radar (GPR) to marine controlled source electromagnetics (CSEM)
or SeaBed Logging (SBL). The expressions in equations 5.76 and 5.81 can be used to model
electromagnetic fields from electric and magnetic dipole sources in stratified media with
arbitrary anisotropy. Here, we apply the method to plane-layer marine CSEM modelling.
We assume that the source and receiver layers are TIV, and thus, equations 5.133, 5.137,
5.140, and 5.142 can be used to calculate the electromagnetic fields. Other layers than the
source and receiver layer(s) may then have arbitrary anisotropy.

The expressions in equations 5.133, 5.137, 5.140, and 5.142 are given in the frequency-
wavenumber domain. In order to calculate the fields in the spatial domain, the 2-D inverse
Fourier transform in equation 5.6b must be applied. We consider the frequency-domain field
expressions since single-frequency components of the source signal are studied. If all the
layers in the stratified model are limited to TIV, the 2-D Fourier transform can be reduced
to a 1-D Hankel transform due to the rotational symmetry. Explicit formulas for this are
given in Appendix 5.F.

The field expressions were implemented in FORTRAN 90. Since marine CSEM is a low-
frequency application in conductive regions, the dielectric part of the permittivity dyad in
equation 5.3 is totally dominated by the conductivity dyad in all of the homogeneous regions,
except in the air halfspace. This implies that the wavenumber-domain field components
will have large variations in strength, and in order to accurately calculate the fields in the
spatial domain, the integration in the wavenumber domain requires large wavenumbers and
careful sampling. We implemented the 2-D Fourier transform using adaptive Gauss-Legendre
quadrature, and the integration was performed between zero crossings of the sine function
(extrema of the cosine function). Series-summation acceleration was implemented using
continued fractions and Euler’s method as described in Hänggi et al. (1998) and Press et al.
(1997), respectively. For the types of input functions encountered here, numerical solutions to
the Fourier transform that use logarithmic spacing are often very efficient. The digital filter
method described by e.g., Anderson (1979), Mohsen and Hashish (1994), and Christensen
(1990), was thus implemented. The efficiency and accuracy of the two different methods
(numerical quadrature and digital filter) depend on the input function (Anderson, 1989).

The various models that have been considered are shown in Figure 5.5. For simplicity,
the permeability is taken to be constant. Thus, this dyad is diagonal with all entries equal.
The seawater is isotropic. In all of the figures the water depth is 300 m, the source height is
30 m, the thickness of the overburden is 1 km, and the reservoir is 100 m thick. Anisotropy

149



Electromagnetic fields in planarly layered anisotropic media

a)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−14

−13

−12

−11

−10

−9

−8

−7

−6

Distance between source and receiver [km]

M
ag

ni
tu

de
 [V

/A
m

2 ]

Isotropic overburden
TIV overburden
TIH overburden
TID overburden

b)
−10 −8 −6 −4 −2 0 2 4 6 8 10

0.5

1

1.5

2

2.5

3

Distance between source and receiver [km]

P
ha

se
 [r

ad
]

Isotropic overburden
TIV overburden
TIH overburden
TID overburden

c)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−14

−13

−12

−11

−10

−9

−8

−7

−6

Distance between source and receiver [km]

M
ag

ni
tu

de
 [V

/A
m

2 ]

Isotropic reservoir
TIV reservoir
TIH reservoir
TID reservoir

d)
−10 −8 −6 −4 −2 0 2 4 6 8 10

0.5

1

1.5

2

2.5

3

Distance between source and receiver [km]

P
ha

se
 [r

ad
]

Isotropic reservoir
TIV reservoir
TIH reservoir
TID reservoir

Figure 5.6: Modelling results for the anisotropic models in Figure 5.5. Figure a shows
the amplitude response for various kinds of anisotropy in the overburden, whereas Figure b
shows the phase response. Figures c and d are the corresponding responses for an anisotropic
reservoir. In all the figures the isotropic conductivity contrast between the overburden and
the reservoir is 100.

in the overburden and reservoir is considered separately and for the two different cases of
having a resistive reservoir and a conductive reservoir. The isotropic conductivities are
σ = 3.2 S/m for seawater and σ1 = 1.0 S/m for the overburden and bottom halfspace
(σ3 = σ1). The conductivity in the reservoir is σ2 = 0.01 S/m for the resistive case and
σ2 = 0.5 S/m for the conductive case. To simplify interpretation, the anisotropy is taken
to be transversely isotropic (uniaxial). We refer to the direction with different conductivity
than the two other as the direction of anisotropy. In addition to the isotropic case, scenarios
with transverse isotropy in the vertical direction (TIV), transverse isotropy in the horizontal
direction (TIH), and dipping transverse isotropy (TID), are modelled. The conductivity
in the anisotropy direction is taken to be one-fourth of the isotropic conductivity. This
means for example that in the model with a TIV overburden, the vertical conductivity is
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Figure 5.7: Modelling results for the anisotropic models in Figure 5.5. The isotropic conduc-
tivity contrast between the overburden and the reservoir is 2 in these simulations. Figures a
and b show the effect of anisotropy in the overburden, and Figures c and d show the responses
from an anisotropic reservoir with low resistivity.

σ1v = 0.25 S/m whereas the horizontal conductivity is σ1h = 1.0 S/m. For the resistive
reservoir case, the vertical conductivity in a TIV model is σ2v = 0.0025 S/m, whereas the
horizontal conductivity is σ2h = 0.01 S/m. In the TIH model, the azimuth angle between the
direction of the source and anisotropy is 15◦ (cf. Figure 5.1). When the model has dipping
transverse isotropy (TID), the anisotropy direction has a 30◦ tilt from the vertical axis. This
dip is furthermore taken to be in the direction of the source antenna. The source frequency
is 0.25 Hz.

For simplicity we consider the inline electric field from a HED (e.g., the field component
in the same direction as the source dipole). The plots are shown in Figure 5.6 for the resistive
reservoir case and Figure 5.7 for the conductive reservoir. In both cases, Figure a shows the
magnitude versus offset (MVO) when the overburden is anisotropic, and Figure b shows the
phase versus offset (PVO). Figures c and d show the MVO and PVO plots when the reservoir
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is anisotropic.

In the resistive reservoir case, the MVO plot that describes anisotropy effects in the
overburden shows an increase in response when anisotropy is present. This is due to the
conductivity being less than in the isotropic case. Moreover, the response is largest for a
TIH overburden since it is this direction that has the strongest support of field propagation
between the seafloor and the reservoir. To this end, note that there is a cross-coupling of
polarization modes in the TIH case. Using the same line of arguments, the effect of a dipping
anisotropy should come out with magnitude in between the TIV and TIH cases as shown
in the modelling. The phase behaviour is a bit more involved. The signals propagate faster
when anisotropy is present since they experience less conductivity. In consistency with the
amplitude responses, at far offsets the TIH model leads to faster propagation than the TID
model, and the TID model implies faster propagation than the TIV model. At intermediate
distances, the behaviour is a bit more complicated since, in this case, the responses from the
guiding in the reservoir and the lateral field propagation along the seabed are nearly equal
in magnitude.

A rough interpretation of the consequences of anisotropy in the reservoir can be made
along the following lines: The response from the thin resistive layer is due to propagation
in the horizontal direction of the reservoir, and the important conductivity parameter is
the vertical conductivity. The TIV reservoir has less conductivity in the vertical direction
than the isotropic model, and thus, the TIV case should be expected to give an increase in
the reservoir response. The same effect, but less, should be expected for the TID reservoir,
whereas TIH in the reservoir should not influence the response to any particular extent.
From Figures 5.6c and d it can be observed that the behaviour of the modelled data has
these characteristics. The dip in the phase curves for the isotropic case and TIH case is due
to the sea-surface response.

In the conductive reservoir case the thin layer has almost the same resistivity as the
surrounding overburden and underburden (half the value). From Figure 5.7 it can be observed
that anisotropy in the overburden has pronounced effects on the response. The small variation
in the isotropic conductivities leads to larger sensitivity to the anisotropy. The interplay
between the lateral field propagation at the sea-surface and seafloor along with the reflection
from the reservoir, leads to the TIV model having the strongest response for small distances
and the TIH model having the strongest response for larger distances. As seen from Figures
5.7c and d, anisotropy in the reservoir has small effects on the response when the reservoir
is conductive.

The purpose of the modelling examples is to illustrate some of the effects of anisotropy.
Even if responses from isotropic models can be constructed to resemble more complicated
anisotropy models (by carefully selecting the conductivity parameters in the direction normal
to the propagation direction of the strongest signal contribution), isotropic models will seldom
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account for all the anisotropic effects. With one more degree of freedom, a TIV model
can obviously account for anisotropy better than an isotropic model, but not fully explain
more complicated anisotropy phenomena. Another point to make by the simple modelling
examples made here, is that anisotropy in the overburden might confuse the interpretation
of the response from a reservoir if not carefully rendered.

5.14 Conclusions

Electromagnetic field propagation from electric and magnetic dipoles in planarly layered lossy
anisotropic media has been considered. The set of first-order ordinary differential equations
in terms of the horizontal electromagnetic field components in the frequency-wavenumber
domain has been evaluated in terms of a system matrix. This matrix is dependent on the
medium properties for a specific layer and the horizontal wavenumbers for a plane-wave
component in the wavenumber spectrum.

By evaluating the eigenvalues and corresponding eigenvectors of the system matrix, it has
been shown that the resulting diagonalization leads to two decoupled differential equations
with upgoing and downgoing field constituents in a homogeneous region. The eigenvalues
of the system matrix correspond to the vertical slownesses. The reflection and transmission
(RT) at an interface can be calculated from the eigenvector matrices on each side, and a
recursive scheme for calculating the RT-response across a stack of layers has been derived.
Thus, we were able to obtain expressions for the field vector in any layer at any position in
terms of eigenvalues, eigenvector matrices, RT-response matrices, and the source function.

The assumption that the property dyads are symmetric, and the energy-flux normalization
of the eigenvector matrices, made it possible to obtain reciprocity relations for reflection and
transmission responses. An example of an application of the reciprocity relations is that the
number of calculations in the inverse Fourier transform can be reduced by 50%.

In addition to media with general anisotropy, configurations with simpler anisotropies
have been studied. In anisotropic media the diagonalized system matrix is in general
not up/down-symmetric. Up/down-symmetry follows if one of the principal axes of the
anisotropic medium coincides with the coordinate axis normal to the planar interfaces. Then
the diagonal submatrices in the system matrix are zero. In vertically transversely isotropic
(TIV) media, the mode-field is decoupled in a TE and TM mode throughout the layered
system.

For a source and receiver in a TIV medium, explicit expressions for the electromagnetic
fields from the source dipoles HED, HMD, VED, and VMD have been derived. If the entire
stratified medium is characterized by TIV or isotropy, the recursive relations for the RT-
responses simplify to scalar equations. In this case the 2-D Fourier transform can be reduced
to a 1-D Hankel transform.
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A numerical implementation of the algorithms and a modelling study have been per-
formed. The modelling example was taken from a marine CSEM setting. The obtained
responses show different behaviour for different anisotropy configurations.

Finally, an application of the propagator method for isotropic media has been demon-
strated in Appendix 5.G.
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5.A Rotation of the anisotropy principal axes

5.A Rotation of the anisotropy principal axes

The electromagnetic property dyads are determined by three values in their principal-axis
system. The axes of the principal system are referred to as (1, 2, 3), and in a medium with
triclinic anisotropy, each of the property dyads may have their own set of principal axes. In
order to rotate the principal coordinate system into the main coordinate frame (x, y, z), it is
convenient to use Euler angles (φ, θ, ψ). The convention used by Goldstein (1980) is followed.
Now, as seen in Figure 5.1, φ is the angle between the x-axis and the line of nodes, θ is the
angle between the z-axis and the 3-axis, and finally, ψ is the angle between the line of nodes
and the 1-axis. Note that the “line of nodes” is the line defined by the intersection of the
xy-plane and the 12-plane (i.e., the horizontal planes of the coordinate frames). The entries
of a property dyad in the main coordinate frame are then obtained by transforming the dyad
from the principal system as follows:

σ =



σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 =



e11 e12 e13

e21 e22 e23

e31 e32 e33






σ1 0 0
0 σ2 0
0 0 σ3






e11 e21 e31

e12 e22 e32

e13 e23 e33


 , (5.A-1)

where

e11 = cos φ cosψ − sinφ cos θ sinψ, (5.A-2a)

e12 = − cos φ sinψ − sinφ cos θ cosψ, (5.A-2b)

e13 = sinφ sin θ, (5.A-2c)

e21 = sinφ cosψ + cosφ cos θ sinψ, (5.A-2d)

e22 = − sinφ sinψ + cos φ cos θ cosψ, (5.A-2e)

e23 = − cos φ sin θ, (5.A-2f)

e31 = sin θ sinψ, (5.A-2g)

e32 = sin θ cosψ, (5.A-2h)

e33 = cos θ. (5.A-2i)

This procedure, σ = eσpe
T , where e is the coordinate rotation matrix with elements eij =

eji, and σp is the dyad in the principal system, can be performed for all the three property
dyads. In general, the principal axes may be different for all these dyads (which obviously
requires different rotation angles for each property dyad).

The entries in the conductivity matrix in the main coordinate frame are given by the
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rotation angles and the principal values as:

σxx = σ1e
2
11 + σ2e

2
12 + σ3e

2
13, (5.A-3a)

σxy = σ1e11e21 + σ2e12e22 + σ3e13e23, (5.A-3b)

σxz = σ1e11e31 + σ2e12e32 + σ3e13e33, (5.A-3c)

σyy = σ1e
2
21 + σ2e

2
22 + σ3e

2
23, (5.A-3d)

σyz = σ1e21e31 + σ2e22e32 + σ3e23e33, (5.A-3e)

σzz = σ1e
2
31 + σ2e

2
32 + σ3e

2
33. (5.A-3f)

In u/d-symmetric media, the relation between the principal and main coordinate systems
is described by one rotation only (for each property dyad) in the horizontal plane (i.e., φ in
equation 5.A-2). The conductivity dyad can in this case be written as



σxx σxy 0
σyx σyy 0
0 0 σv


 =




cosφ sinφ 0
− sin φ cosφ 0

0 0 1






σ1 0 0
0 σ2 0
0 0 σv







cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 , (5.A-4)

whence

σxx = σ2
1 cos2 φ+ σ2

2 sin2 φ, σyy = σ2
1 sin2 φ+ σ2

2 cos2 φ,

σxy = σyx = (σ2 − σ1) sinφ cosφ.
(5.A-5)

The relations presented in this section in terms of the conductivity dyad are equally valid
for the permittivity and permeability dyads.

5.B Duality in the field expressions

When magnetic sources are introduced into Maxwell’s equations, Faraday’s and Ampère’s
laws can be written as

∇×E = −J0M + iωµH, (5.B-6a)

∇×H = J0 − iωε̃E, (5.B-6b)

where J0 is the electric source and J0M is the magnetic source. Using the equations of charge
conservation, the divergence equations can be written in terms of the source-current density
as

∇ · (ε̃E) = − 1
iω

∇ · J0, (5.B-6c)

∇ · (µH) = − 1
iω

∇ · J0M . (5.B-6d)
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5.C Energy velocity of a plane-wave component

From these equations one observes a simple relationship between the fields from a magnetic
dipole and an electric dipole. Starting with Faraday’s law (equation 5.B-6a) and the corre-
sponding divergence equation (5.B-6c), one can arrive at Ampère’s law (equation 5.B-6b) and
its corresponding divergence equation (5.B-6d) by doing the following change of variables:

E → H, (5.B-7a)

H → −E, (5.B-7b)

µ→ ε̃, (5.B-7c)

ε̃→ µ, (5.B-7d)

J0 → J0M. (5.B-7e)

The opposite “transformation”, from Ampère’s law to Faraday’s law and their corresponding
divergence equations, also holds. In this case the relation

J0M → −J0 (5.B-7f)

is needed. In terms of the dipole sources used in equation 5.4 and 5.5, the source transfor-
mations become:

Il → −iωµIa and iωµIa → Il. (5.B-8)

In the main text, RT-responses from a multilayered medium are considered. If a change of
variables as described above is performed, a change in polarization modes and signs in the
reflection coefficients must be taken into account due to the interchange of the electric and
magnetic fields.

The explicit field expressions for the HMD and VMD (HED and VED) can be derived
from the expressions for the HED and VED (HMD and VMD), respectively, by using the
change of variables in equations 5.B-7a to 5.B-7d and 5.B-8. In addition, the following change
of variables for the RT-response coefficients must be performed:

RA
11 ↔ −RC

22, RA
12 ↔ RC

21, (5.B-9a)

RA
21 ↔ RC

12, RA
22 ↔ −RC

11, (5.B-9b)

RB
11 ↔ −RD

22, RB
12 ↔ RD

21, (5.B-9c)

RB
21 ↔ RD

12, RB
22 ↔ −RD

11. (5.B-9d)

5.C Energy velocity of a plane-wave component

The energy velocity can be defined as (Kong, 2000; Carcione and Schoenberg, 2000):

ve =
Re(S)

Re(ue + um)
, (5.C-10)
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where S = 1
2E × H∗ is the complex Poynting vector, ue = 1

4E · D∗ is the electric energy,
and um = 1

4
H · B∗ is the magnetic energy. Consider a plane electromagnetic wave in a

homogeneous source-free medium. Then Maxwell’s equations can be written as:

p ·D = 0, (5.C-11a)

p ·B = 0, (5.C-11b)

p× E = B, (5.C-11c)

p× H = −D, (5.C-11d)

where p is the slowness vector. From these equations it is seen that the slowness is in a
direction perpendicular to both the D- and B-field. It is convenient to rotate the coordinate
system so that one of the axes coincides with the direction of the slowness. Some caution
must however be taken here; since the slowness vector is complex, the “rotation” must be
performed with complex angles. Thus, the coordinate system is rather transformed into a
new state. We will as in Kong (2000) refer to the system after the transformation as the
kDB-system, in which the axes are denoted as 123. (cf. Figure 5.1 where x′y′z′ can be
pictured as 123). Note that the axes in the kDB-system are not the same as any principal
anisotropy axes. Now, an expression for the energy velocity in terms of the material and
slowness parameters can be obtained. From Figure 5.1 it is seen that a rotation into the
kDB-system described by the angles φ and θ can be written as:

ekDB =



e′11 e′12 e′13

e′21 e′22 e′23

e′31 e′32 e′33


 , (5.C-12)

where

e′11 = sinφ, e′12 = − cosφ, e′13 = 0, (5.C-13a)

e′21 = cosφ cos θ, e′22 = sinφ cos θ, e′23 = − sin θ, (5.C-13b)

e′31 = cosφ sin θ, e′32 = sinφ sin θ, e′33 = cos θ. (5.C-13c)

The angles would take the values φ ∈ [0, 360◦), θ ∈ [0, 180◦) in a lossless case, but here they
are complex with

cosφ =
px√
p2

x + p2
y

and cos θ =
pz√

p2
x + p2

y + p2
z

. (5.C-14)

The material parameters in the kDB-system are obtained from the material parameters in
the main coordinate frame by the dyadic transformation:

χ′ = ekDBχe
T
kDB, (5.C-15)
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5.C Energy velocity of a plane-wave component

where the resulting matrix is symmetric after the orthogonal transformation. Next, a relation
between D and B is needed. It is convenient to introduce the impermeability and the
complex impermittivity, which are the inverses of the permeability and complex permittivity,
respectively (Kong, 2000):

E = ε̃−1D = κD and H = µ−1B = νB. (5.C-16)

From the curl equations in 5.C-11, the following relations between D and B can be obtained
in the kDB-system:

D1 = p(ν′21B1 + ν′22B2), (5.C-17a)

D2 = −p(ν′11B1 + ν′12B2), (5.C-17b)

B1 = −p(κ′21D1 + κ′22D2), (5.C-17c)

B2 = p(κ′11D1 + κ′12D2), (5.C-17d)

where p = |p| is the slowness in the ê3-direction. Note that by definition, this is the direction
of the total slowness. Note also that B3 = 0 and D3 = 0. From equation 5.C-17, the
dispersion relation

u2 = −1
2

[
bu ±

√
b2u − 4cu

]
, (5.C-18a)

bu = (κ′21ν
′
21 + κ′12ν

′
12 − κ′11ν

′
22 − κ′22ν

′
11) , (5.C-18b)

cu = (κ′21ν
′
21 − κ′11ν

′
22) (κ′12ν

′
12 − κ′22ν

′
11)

− (κ′22ν
′
21 − κ′12ν

′
22) (κ′11ν

′
12 − κ′21ν

′
11) , (5.C-18c)

and a relation between D1 and D2 can be obtained:

D2

D1
=
u2 + κ′21ν

′
21 − κ′11ν

′
22

κ′12ν
′
22 − κ′22ν

′
21

=
κ′21ν

′
11 − κ′11ν

′
12

u2 + κ′12ν
′
12 − κ′22ν

′
11

= Ψ, (5.C-18d)

where the complex velocity is the reciprocal of slowness, u = 1/p. The electric field in the
kDB-system can then be written as

EkDB = κ′DkDB =



κ′11 + κ′12Ψ
κ′21 + κ′22Ψ
κ′31 + κ′32Ψ


D1, (5.C-19)

whereas the magnetic field in the kDB-system is obtained using Faraday’s law:

HkDB = ν ′(p× EkDB) = p




(ν′12κ
′
11 − ν′11κ

′
21) + (ν′12κ

′
12 − ν′11κ

′
22)Ψ

(ν′22κ
′
11 − ν′21κ

′
21) + (ν′22κ

′
12 − ν′21κ

′
22)Ψ

(ν′32κ
′
11 − ν′31κ

′
21) + (ν′32κ

′
12 − ν′31κ

′
22)Ψ


D1. (5.C-20)

The complex Poynting vector in the kDB-system expressed in terms of D1 then becomes:

SkDB = 1
2skDBp

∗D1D
∗
1 , (5.C-21)
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where

skDB =



s11 + s12Ψ + s13Ψ∗ + s14ΨΨ∗

s21 + s22Ψ + s23Ψ∗ + s24ΨΨ∗

s31 + s32Ψ + s33Ψ∗ + s34ΨΨ∗


 , (5.C-22a)

and

s11 = (ν′32κ
′
21 − ν′22κ

′
31)(κ

′
11)

∗ − (ν′31κ
′
21 − ν′21κ

′
31)(κ

′
21)

∗,

s12 = (ν′32κ
′
22 − ν′22κ

′
32)(κ

′
11)

∗ − (ν′31κ
′
22 − ν′21κ

′
32)(κ

′
21)

∗,

s13 = (ν′32κ
′
21 − ν′22κ

′
31)(κ

′
12)

∗ − (ν′31κ
′
21 − ν′21κ

′
31)(κ

′
22)

∗,

s14 = (ν′32κ
′
22 − ν′22κ

′
32)(κ

′
12)

∗ − (ν′31κ
′
22 − ν′21κ

′
32)(κ

′
22)

∗,

s21 = (ν′12κ
′
31 − ν′32κ

′
11)(κ

′
11)

∗ − (ν′11κ
′
31 − ν′31κ

′
11)(κ

′
21)

∗,

s22 = (ν′12κ
′
32 − ν′32κ

′
12)(κ

′
11)

∗ − (ν′11κ
′
32 − ν′31κ

′
12)(κ

′
21)

∗,

s23 = (ν′12κ
′
31 − ν′32κ

′
11)(κ

′
12)

∗ − (ν′11κ
′
31 − ν′31κ

′
11)(κ

′
22)

∗,

s24 = (ν′12κ
′
32 − ν′32κ

′
12)(κ

′
12)

∗ − (ν′11κ
′
32 − ν′31κ

′
12)(κ

′
22)

∗,

s31 = (ν′22κ
′
11 − ν′12κ

′
21)(κ

′
11)

∗ − (ν′21κ
′
11 − ν′11κ

′
21)(κ

′
21)

∗,

s32 = (ν′22κ
′
12 − ν′12κ

′
22)(κ

′
11)

∗ − (ν′21κ
′
12 − ν′11κ

′
22)(κ

′
21)

∗,

s33 = (ν′22κ
′
11 − ν′12κ

′
21)(κ

′
12)

∗ − (ν′21κ
′
11 − ν′11κ

′
21)(κ

′
22)

∗,

s34 = (ν′22κ
′
12 − ν′12κ

′
22)(κ

′
12)

∗ − (ν′21κ
′
12 − ν′11κ

′
22)(κ

′
22)

∗.

(5.C-22b)

The energy densities in the kDB-system can be written as

um = 1
4H ·B∗ = 1

4 (H1B
∗
1 +H2B

∗
2 ) = p∗

4p (E∗
1D1 + E∗

2D2) = p∗

p u
∗
e, (5.C-23a)

ue = 1
4E ·D∗ = 1

4(E1D
∗
1 +E2D

∗
2) = 1

4 [(κ′11 + κ′12Ψ) + (κ′21 + κ′22Ψ)Ψ∗]D1D
∗
1. (5.C-23b)

The energy density is independent of the coordinate system in which it is calculated, whereas
the Poynting vector must be transformed back to the main coordinate frame S = eT

kDBSkDB.
This leads to the following expressions for the energy velocity:

ve = n−1
v Re

(
p∗eT

kDBskDB

)
, (5.C-24)

where
nv = Re

(
1
p

)
Re[p(κ′11 + κ′12Ψ) + p(κ′21 + κ′22Ψ)Ψ∗)]. (5.C-25)

If Ψ → ∞, the Poynting vector and energy velocity can be calculated in terms of D2, which
implies multiplying the expressions with Ψ−1

(
Ψ−1

)∗.
When the eigenvalues are found, their ordering into upgoing and downgoing constituents

can be determined from the direction of the z-component of the corresponding energy veloc-
ity. Moreover, the ordering of modes can be determined by matching the eigenvalue and the
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complex velocity in the dispersion relation in equation 5.C-18a. The choice of sign that cor-
responds to what mode can be established by considering what happens when the anisotropy
simplifies into TIV. Then the fraction between D1 or D2 either approach zero or infinity
depending on if the slowness corresponds to a TE or a TM mode.

5.D Mixing the qTE and qTM modes in a layer

Consider reflection and transmission through a stack of three layers [from region (3) to (1)
through layer (2)], and assume that the qTE and qTM modes have been switched when sort-
ing the eigenvalues into the upgoing eigenvalue submatrix in region (2). Then, in region (2),
the “mixed” eigenvector submatrices and eigenvalue matrix are related to the corresponding
“correct” matrices as

Ń
′
E =

(
n12 n11

n22 n21

)
= ŃEK, (5.D-26a)

Ń
′
H =

(
n32 n31

n42 n41

)
= ŃHK, (5.D-26b)

ṕ′
z = KṕzK, (5.D-26c)

where K is given by equation 5.19. By using equation 5.61, the C and D matrices between
medium (3) and (2) become:

Ć
′
= KĆ, D́

′
= KD́, Ĉ

′
= KĈ, and D̂

′
= KD̂, (5.D-27)

since layer (2) has the mixed modes. Thus, the reflection coefficients are

t́
′
= 2

(
KĆ +KD́

)−T

= Kt́, (5.D-28a)

ŕ′ = −
(
KĈ −KD̂

)T (
KĆ +KD́

)−T

= ŕ, (5.D-28b)

r̀′ =
(
Ĉ − D̂

)(
KC̀ +KD̀

)−1

= Kr̀, (5.D-28c)

t̀
′
= 2

(
C̀ + D̀

)−1

= t̀. (5.D-28d)

When inserted into the recursive formula in equation 5.70, this leads to

R̀
′
j = KeiωṕzhjK

[
Kr̀j +Kt́jR̀j+1

(
I − ŕjR̀j+1

)−1

t̀j

]
eiωp̀zhj = KR̀j . (5.D-29)

In the propagation between medium (2) and (1), the same procedure yields the relations:

Ć
′
= ĆK, D́

′
= D́K, Č

′
= ČK , and Ď

′
= ĎK , (5.D-30)
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which give the reflection coefficients

t́
′
= 2

(
ĆK + D́K

)−T

= t́K , (5.D-31a)

ŕ′ = −
(
Ĉ − D̂

)T (
ĆK + D́K

)−T

= ŕK , (5.D-31b)

r̀′ =
(
ĆK + D́K

)−T (
ČK − ĎK

)T
= r̀, (5.D-31c)

t̀
′
= 2

(
C̀ + D̀

)−1

= t̀. (5.D-31d)

When inserted into the recursive formula, one gets

R̀
′
j−1 = eiωṕzhj−1

[
r̀j−1 + t́j−1KKR̀j

(
I − ŕj−1KKR̀j

)−1

t̀j−1

]
eiωp̀zhj−1 = R̀j−1.

(5.D-32)
The proof for mixing the downgoing modes is similar and leads to the same conclusion.

5.E The Fresnel eigenvector matrix in TIV media

The flux-normalized eigenvector leads to a symmetry in the transmission coefficients in equa-
tion 5.121 that might not be appropriate for all purposes. In order to get the Fresnel trans-
mission coefficients, a different scaling on the eigenvectors that make up the eigenvector
matrix can be chosen:

NF =
1√
2pρ




py px py px

−px py −px py

py
pzI
µh

px
ε̃h

pzII
−py

pzI
µh

−px
ε̃h

pzII

−px
pzI
µh

py
ε̃h

pzII
px

pzI
µh

−py
ε̃h

pzII



,

N−1
F =

1√
2pρ




py −px py
µh

pzI
−px

µh

pzI

px py px
pzII
ε̃h

py
pzII
ε̃h

py −px −py
µh

pzI
px

µh

pzI

px py −px
pzII
ε̃h

−py
pzII
ε̃h



.

(5.E-33)

With the choice in equation 5.E-33, the downgoing reflection matrix r̀ is as given in equation
5.121 with ŕ = −r̀. The upgoing and downgoing transmission matrices are:

t̀ =




2µ+
h p−

zI

µ+
h p−

zI + µ−
h p+

zI
0

0 2ε̃−
h p+

zII

ε̃−
h p+

zII + ε̃+
h p−

zII


 , t́ =




2µ−
h p+

zI

µ+
h p−

zI + µ−
h p+

zI
0

0 2ε̃+
h p−

zII

ε̃−
h p+

zII + ε̃+
h p−

zII


 . (5.E-34)

Note that the Fresnel transmission matrices are not symmetric, i.e., t̀ 6= t́, by contrast to the
relation in equation 5.122.
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5.F Electromagnetic fields in TIV media

When all the layers in the stratified model are either TIV or isotropic, the double Fourier
integral over the horizontal wavenumbers kx and ky in equation 5.6b can be rewritten into a
single integral in terms of Bessel functions and the polar horizontal wavenumber kρ. Thus,
it is convenient to introduce cylindrical coordinates:

kρ =
√
k2

x + k2
y, kx = kρ cosα, ky = kρ sinα, (5.F-35a)

ρ =
√
x2 + y2, x = ρ cos β, y = ρ sin β, (5.F-35b)

where α is the polar angle in the wavenumber domain, β is the angle in the spatial domain,
and ρ is the polar radius. The inverse Fourier transform from the wavenumber domain back
to the spatial domain (equation 5.6b without the time and frequency part), can then be
rewritten as
∫ ∞

−∞

∫ ∞

−∞
dkxdky Φ (kx, ky) eikxx+ikyy =

∫ 2π

0

∫ ∞

0

dξdkρ kρ Φ (kρ, ξ) eikρρ sin ξ , (5.F-36)

where ξ = α − β + π/2. The exponential term that contains the sine function, can be
expressed by a series of Bessel functions (Gradshteyn and Ryzhik, 1980):

exp (ikρρ sin ξ) =
∞∑

n=−∞
Jn(kρρ)einξ . (5.F-37)

By using the property J−n (kρρ) = (−1)n
Jn (kρρ), one arrives at the representation:

J0(kρρ) =
1
2π

∫ 2π

0

dξ eikρρ sin ξ, (5.F-38a)

J1(kρρ) =
1

2πi

∫ 2π

0

dξ sin ξ eikρρ sin ξ, (5.F-38b)

J2(kρρ) =
1
2π

∫ 2π

0

dξ cos 2ξ eikρρ sin ξ, (5.F-38c)

where the following relationship between J0, J1 and J2 holds:

J0(kρρ) + J2(kρρ) =
2
kρρ

J1(kρρ). (5.F-39)

Since the RT-responses are symmetric about the vertical axis in TIV media, the angle α is
explicitly present in the field expressions in equations 5.133, 5.137, 5.140, and 5.142 in this
case. Thus, the angle dependence in the wavenumber domain can be accounted for by the
higher orders of the Bessel functions. Now, rewrite the cosine and sine terms that contain α
into expressions that contain ξ and β. Since terms involving cos ξ and sin 2ξ do not contribute
to the Bessel expansion, this means that

cosα→ sin ξ cos β, sinα → sin ξ sin β, (5.F-40a)

cos 2α→ − cos 2ξ cos 2β, sin 2α→ − cos 2ξ sin 2β. (5.F-40b)
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The field components in cylindrical coordinates are furthermore obtained from the Cartesian
components by the rotation:




Ψρ

Ψβ

Ψz


 =




cos β sinβ 0
− sin β cos β 0

0 0 1







Ψx

Ψy

Ψz


 , (5.F-41)

where Ψ = {E,H}.
In the following subsections, the electromagnetic field expressions in a TIV medium for

the four different source types are given in terms of cylindrical coordinates. In a numerical
implementation cylindrical coordinates are advantageous since they imply evaluation of one
integral instead of a double integral. The integral over the horizontal angles is contained
within the Bessel functions as seen from equation 5.F-38. The vertical slownesses pzI and
pzII that will be used in the following equations are dependent on kρ = ωpρ as described in
equation 5.119.

5.F.1 Electromagnetic field from a HED

From the expressions in equation 5.133 the following field components from a HED is derived:

Eρ = −Ilx
4π

cos β
[
IT M

A0 +
1
ρ

(ITE

A1 − IT M

A1 )
]
, (5.F-42a)

Eβ = −
Ilx
4π

sin β
[
−IT E

A0 +
1
ρ

(IT E

A1 − IT M

A1 )
]
, (5.F-42b)

Hρ = +
Ilx
4π

sin β
[
−IT E
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and
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where the RT-amplitudes are given by equation 5.134.

5.F.2 Electromagnetic field from a HMD

From the expressions in equation 5.137 the field components from a HMD can be calculated:
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where the RT-amplitudes are given by equation 5.138.
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5.F.3 Electromagnetic field from a VED

The field components from a VED are obtained from equation 5.140:
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5.F.4 Electromagnetic field from a VMD

The field components from a VMD are obtained from equation 5.142:
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5.F.5 RT-amplitudes with source and receiver in the same layer

Consider the responses in equation 5.F-43 and 5.F-45 with the source at zs = 0, and the
receiver within the same layer at z. The RT-responses in equation 5.134 and 5.138 can then
be combined into a single expression for z < zs and z > zs and written in terms of a direct
and reflected field contribution:

RA = eiωpz|z| + RA, RA =
R̀s(1 + Ŕs)e−iωpzz + Ŕs(1 + R̀s)eiωpzz

1 − ŔsR̀s

, (5.F-48a)

RB = sgn(z)eiωpz |z| +RB, RB =
R̀s(1 − Ŕs)e−iωpzz − Ŕs(1 − R̀s)eiωpzz

1 − ŔsR̀s

, (5.F-48b)

−RC = eiωpz|z| + RC, RC =
−R̀s(1 − Ŕs)e−iωpzz − Ŕs(1 − R̀s)eiωpzz

1 − ŔsR̀s

, (5.F-48c)

−RD = sgn(z)eiωpz |z| +RD, RD =
−R̀s(1 + Ŕs)e−iωpzz + Ŕs(1 + R̀s)eiωpzz

1 − ŔsR̀s

. (5.F-48d)

In the expressions, pz = pzI for the TE mode, and pz = pzII for the TM mode.
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5.G Up/down-separation and free-surface removal

Consider an isotropic source medium in which the electromagnetic field from a dipole antenna
e.g., HED is recorded. The propagator-matrix method with its implicit splitting of fields into
upgoing and downgoing components can be useful in processing real data from e.g., a marine
CSEM/SBL experiment in shallow water. A possible choice of the eigenvector matrix that
diagonalizes the system matrix into upgoing and downgoing components of the electric field,
is (Amundsen et al., 2006)

NA =

(
I I

N 2 −N2

)
, N−1

A =
1
2

(
I N−1

2

I −N−1
2

)
, (5.G-49)

where in isotropic media
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1
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x

)
, N−1

2 =
1
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(
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x −pxpy

−pxpy µε̃ − p2
y

)
. (5.G-50)

In this case, the eigenvector matrix is normalized with respect to the electric amplitude which
leads to the relations

Ex = EU
x +ED

x and Ey = EU
y + ED

y . (5.G-51)

Now b = NAwA, where wA =
(
EU

x EU
y ED

x ED
y

)T . The quantity EU describes the part of
the electric field that is upgoing, and ED describes the downgoing electric field. From the
equations for up/down-separation where NA is arranged to give Ex = EU

x + ED
x , one then

gets
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)
. (5.G-52b)

When inserting the field expressions from equation 5.133 into equation 5.G-52 with the
appropriate simplifications for isotropic media with source and receiver within the same
layer (equation 5.F-48), one gets:
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where

f(z,RA, RD) =
1 + sgn(z)

2
eiωpz|z| +
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2
. (5.G-54)
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From equation 5.F-48a and 5.F-48d, the following relations can be derived:

RA −RD

2
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1
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2
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1
1 − R̀sŔs

Ŕs(1 + R̀s)eiωpzz. (5.G-55b)

The TE and TM modes are not separated in these expressions. In order to derive expressions
with separated modes, the eigenvector matrix can be chosen as in equation 5.E-33. Then
the mode-field vector describes the upgoing and downgoing TE and TM mode. In isotropic
media 
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By inserting the field expressions from equation 5.133 with the appropriate simplifications
for isotropic media with source and receiver within the same layer, one then gets
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Here, the upgoing and downgoing mode-fields are a mix of the electric and magnetic field.
In a marine CSEM/SBL experiment, the receiver is normally situated below the receiver,

i.e., z > 0 in equation 5.F-48. The reflection response from the lower stack can thus be
obtained by dividing the upgoing mode-field by the downgoing mode-field. The reflection
responses for the TE- and TM-polarization components hence become:

UT E

DT E
= R̀T E

b and
UT M

DT M
= R̀TM

b , (5.G-58)

where R̀b is the reflection response from the lower stack at the receiver (cf. Figure 5.4). The
decomposition matrix from equation 5.120 would give the same results since the difference
between the eigenvectors lies within a normalization factor. By using the reflection response
from the lower stack when calculating the electromagnetic field from an artificial source,
one might say that one in this way has removed the free surface from the original data set.
In order to do the free-surface removal with the procedure described here, a 2-D data set
with z > zs and which contains all the horizontal components of the electromagnetic field is
needed.
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