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ABSTRACT 

The objective of this study is to investigate if quantitative imaging features derived 

from combined 18F-Fluciclovine Positron Emission Tomograpy (PET) / 

multiparametric Magnetic Resonance Imaging (MRI) show potential for detection 

and characterization of primary prostate cancer. Methods: Twenty-eight (28) 

patients diagnosed with high-risk prostate cancer underwent simultaneous 18F-

Fluciclovine PET/MRI before radical prostatectomy. Volumes-of-interest (VOIs) of 

prostate tumors, benign prostatic hyperplasia (BPH) nodules, prostatitis, and 

healthy tissue were delineated on T2-weighted images using histology as a 

reference. Tumor VOIs were marked as high-grade (≥ Gleason Grade group 3) or 

not. MRI and PET features were extracted on the voxel and VOI-level. Partial least-

squared discriminant analysis (PLS-DA) with double leave-one-patient-out cross 

validation was performed to classify tumor from benign tissue (BPH, prostatitis, 

healthy tissue) and high-grade tumor from other tissue (low-grade tumor, benign 

tissue). The performances of PET, MRI, and combined PET/MRI features were 

compared using the area under the receiver operating characteristic curve (AUC). 

Results: Voxel and VOI features were extracted from 40 tumor (26 high-grade), 36 

BPH, 6 prostatitis, and 37 healthy tissue VOIs. PET/MRI performed better than MRI 

and PET for classification of tumor vs benign tissue (voxel: AUC 87%, 81%, and 83%; 

VOI: AUC 96%, 93%, and 93%, respectively) and high-grade tumor vs other tissue 

(voxel: AUC 85%, 79%, and 81%; VOI: AUC 93%, 93%, and 91%, respectively). T2-

weighted MRI, diffusion-weighted MRI and PET features were most important for 

classification. Conclusion: Combined 18F-Fluciclovine PET/multiparametric MRI 



shows potential for improving detection and characterization of high-risk prostate 

cancer, in comparison to MRI and PET alone. 

   



INTRODUCTION 

Prostate cancer is the most frequently detected type of cancer in men and 

consititutes a major healthcare problem in developed countries (1). Medical 

imaging plays an increasingly important role in the management of prostate cancer 

and is, amongst others, used for diagnosis and stratification of indolent and 

clinically significant disease (2), guiding prostate biopsies (3), and targeting 

localized therapy (4). In Norway, multiparametric MRI, i.e. the combination of MR 

images with distinct contrasts, is currently the first diagnostic tool for patients 

suspected for prostate cancer based on digital rectal examination and/or prostate 

specific antigen blood testing (5). However, multiparametric MRI leaves ample 

room for improvement; despite the Prostate Imaging – Reporting and Data System 

guidelines (6), there is a highly variable accuracy for detection of clinically 

significant disease (7), while grading of tumor aggressiveness suffers from 

overlapping values between Gleason scores (8).  

PET imaging with the synthetic amino acid analog radiotracer anti-1-amino-

3-18F-fluorocyclobutane-1-carboxylic acid (18F-Fluciclovine, also known as 18F-

FACBC) has recently been approved by the Food and Drug Administration and 

European Medicines Agency for detection of recurrent prostate cancer in patients 

with biochemical relapse following initial treatment with curative intent (9-11). For 

primary prostate cancer, the metabolic information derived from 18F-Fluciclovine 

PET images could be useful for detection and characterization of localized tumors 

(12-14) and may be complementary to multiparametric MRI (12). 



In comparison to sequential multiparametric MRI and PET/CT 

examinations, simultaneous PET/MRI has the advantages of shorter (cumulative) 

scan times, simpler patient logistics, reduced radiation exposure from omitting the 

CT, and an intrinsic alignment of the PET and MR images. We have previously 

presented an optimized imaging protocol for simultaneous 18F-Fluciclovine 

PET/MRI that maximizes the diagnostic information obtained from the PET images 

(14). The objective of this study is to investigate if simultaneous 18F-Fluciclovine 

PET/multiparametric MRI has the potential to improve detection and 

characterization of primary prostate cancer. For this purpose, we built and 

evaluated statistical models to assess which combination of MRI and PET-derived 

imaging features best discriminates between histologically verified malignant and 

benign tissue. We also show that these models can be used to create cancer 

probability maps, which could be regarded a ‘visual summary’ of the combined PET 

and MRI information to support image interpretation in future clinical practice. 



MATERIALS AND METHODS 

Patients  

Patients classified as high-risk according to modified D’Amico criteria 

(prostate specific antigen > 20 ng/ml and/or clinical stage ≥ cT3a and/or Gleason 

score ≥ 8) scheduled for robot-assisted radical prostatectomy with extended pelvic 

lymph node dissection were recruited for a prospective study investigating the 

merit of combined 18F-Fluciclovine PET/MRI for loco-regional staging of primary 

prostate cancer (ClinicalTrials.gov; identifier NCT02076503). The study was 

approved by our institution (St. Olavs Hospital, Trondheim University Hospital) and 

the Regional Committee for Medical and Health Research Ethics, Central Norway. 

All patients gave written informed consent before enrollment. In this work we 

performed a retrospective analysis of these prospectively collected data, focusing 

on the detection and characterization of prostate tumors. 

Imaging 

Patients underwent a PET/MRI exam on a 3 T Biograph mMR scanner 

(Siemens Medical Systems, Erlangen, Germany) prior to surgery, as previously 

described in (14). In this work, we used the T2-weighted (T2W), diffusion-weighted 

(DW) and dynamic contrast enhanced (DCE) MR images, which together constitute 

the clinical multiparametric MRI examination for T-staging, as well as the 

simultaneously acquired 18F-Fluciclovine PET images. All images were post-

processed to obtain parametric maps from which quantitative imaging features 

were obtained. For this purpose, the T2W images were intensity normalized (nT2W) 



to the levator ani muscle. The DW images were corrected for geometric distortion 

(15), after which apparent diffusion coefficient (ADC) maps were calculated using a 

mono-exponential decay model (including b=50/400/800 s/mm2). DW images at 

b=800 s/mm2 (b800) were also used for further analysis. Maps of the volume 

transfer constant (Ktrans), fractional volume of the extravascular extracellular space 

(ve), and the fractional plasma volume (vp) were calculated from motion-corrected 

DCE images using the extended Tofts’ model with a population-based arterial input 

function (16,17). PET data from 5-10, 18-23, and 33-38 minutes post-injection were 

reconstructed to standardized uptake value (SUV) maps (SUV5-10, SUV18-23, and 

SUV33-38, respectively) using a manufacturer-provided algorithm (Siemens HDPET, 3 

iterations, 21 subsets, 4 mm full width at half maximum Gaussian filter). These time 

windows were previously shown to have potential for prostate cancer diagnosis 

(14). All images were co-registered and resampled to T2W image space using a 

multi-resolution rigid registration scheme based on mutual information in elastix 

(18).  

VOIs and Feature Extraction 

Histopathology-matched VOIs formed the basis for image feature 

extraction. In short, a pathologist specialized in uropathology delineated cancer 

foci, benign prostatic hyperplasia (BPH) nodules, and regions of prostatitis on 

hematoxylin and eosin stained whole mount histology slides of the excised prostate 

gland (14). Cancer grade was described according to the Gleason Scoring system 

(19). The histology slides were then spatially matched to the T2W images based on 



anatomical landmarks and served as a reference for the delineation of three-

dimensional VOIs of tumor, BPH, prostatitis and healthy tissue. The latter VOIs were 

outlined in both the peripheral zone and central gland (transition and central zone), 

if possible, and placed as far away as possible from the lesions to minimize partial 

volume effects. Tumor VOIs were assigned to be high-grade (≥ Gleason Score 4+3, 

i.e. ≥ Gleason Grade group 3) or low-grade (20). Furthermore, the volume (mL) was 

recorded for each VOI and an ordinal confidence score (1 not confident; 2 

reasonably confident; 3 confident) was assigned, which expressed how well the 

delineated VOI resembled histology. VOIs with volume < 0.5 mL and/or confidence 

score < 2 were excluded from further analysis.  

From each of the remaining VOIs, imaging features were extracted on the 

voxel and VOI-level. The voxel-level features were collected in a 9 x Nvoxels matrix, 

where each of the Nvoxels rows contained the image intensities of the 9 parametric 

maps (nT2W, b800, ADC, Ktrans, ve, vp, SUV5-10, SUV18-23, and SUV33-38) for a single 

voxel, with Nvoxels the total number of voxels in the VOIs. The VOI-level features 

were collected in a 99 x Nvois matrix, where each of the Nvois rows contained 11 first 

order statistical features (mean, standard deviation, minimum, 10% percentile, 25% 

percentile, median, 75% percentile, 90% percentile, maximum, skewness, and 

kurtosis) of the 9 parametric maps (9 x 11 = 99), with Nvois the total number of VOIs. 

The imaging features were then used as input to the classification algorithm 

described in the next section.  



Classification 

Partial least-squares discriminant analysis (PLS-DA) is a classification 

method that calculates latent variables (LVs) to maximize the covariance between 

the input variables (in this case: the imaging features) and the response variable 

(the class) (21). In this way, large data sets with multiple variables can be visualized 

and interpreted using only a few dimensions (LVs). The method is well-suited for 

dealing with highly co-linear variables and provides valuable insight into the 

constructed models via scores plots, which show each sample’s position in the new 

coordinate system defined by the LVs, and loadings plots, which show the 

importance of the original variables for defining the this coordinate system.  

We performed PLS-DA on both the voxel- and VOI-level to evaluate the 

performance of a given set of imaging features for discriminating between tumor 

and benign tissue (i.e. BPH + prostatitis + healthy tissue). Since Gleason Grade group 

3-5 tumors are associated with a significantly poorer prognosis than Gleason Grade 

group 1-2 tumors (20), we also investigated the potential discrimination between 

high-grade tumor and other tissue (i.e. low-grade tumor + BPH + prostatitis + 

healthy tissue). All imaging features were scaled to have zero mean and unit 

standard deviation. In order to avoid over-optimistic results, model overfitting was 

counteracted by nesting the PLS-DA algorithm in a wrapper for double leave-one-

patient-out cross-validation. In the inner cross-validation loop of this wrapper, the 

number of LVs resulting in the model with the lowest average classification error in 

the training set (N-1 patients) was selected, with N the total number of patients. 



Additionally, the variable importance in the projection (VIP) scores (22) were 

recorded as measures of relative feature importance. The trained model was then 

applied in the outer cross-validation loop of the wrapper to predict the class 

probabilities of the voxels/VOIs in the test set (1 patient), thus achieving 

independent classification accuracies for data that were not used to build the PLS-

DA model. This whole procedure was repeated N times, giving predicted class 

probabilities for every voxel/VOI in the data set, which were finally compared to 

the true class.  

Three sets of imaging features were initially evaluated and compared: MRI 

(nT2W + b800 + ADC + Ktrans + ve + vp), PET (SUV5-10 + SUV18-23 + SUV33-38), and 

PET/MRI (nT2W + b800 + ADC + Ktrans + ve + vp + SUV5-10 + SUV18-23 + SUV33-38). Based 

on the analysis of the VIP scores, a PET/T2W+DW MRI feature set (nT2 + b800 + 

ADC + SUV5-10 + SUV18-23 + SUV33-38) was also evaluated and compared to the 

complete PET/MRI feature set. The double cross-validated performances of MRI, 

PET, PET/MRI and PET/T2W+DW MRI were assessed using ROC curve analysis. The 

AUC was used as the figure of merit and the optimal sensitivity and specificity were 

determined as the point on the curve closest to (1,1). Finally, scores and loading 

plots were constructed of the PET/MRI and PET/T2W+DW MRI models for 

interpretation of the results. For this purpose, the models were rebuilt using the 

data from all patients, i.e. without cross-validation. 



Statistical Analysis 

Descriptive statistics were presented as mean and standard deviation or as 

median and range. Statistical differences in feature intensity between classes were 

calculated using linear mixed effects models with the patient number as a random 

effect on the intercept. The resulting p-values were corrected for multiple testing 

by Benjamini–Hochberg correction. Permutation testing, i.e. random shuffling of 

the class labels (n=1000), was performed to examine whether the achieved PLS-DA 

predictions were significantly different from chance. Statistical differences in AUC 

between feature sets were evaluated using DeLong’s method for comparing 

correlated AUCs (23). P-values < 0.05 were considered statistically significant for all 

tests. Unless indicated otherwise, MATLAB 9.0 (The MathWorks Inc., Natick, MA) 

was used for image processing and univariate statistics. The MATLAB toolbox 

PLS_toolbox 8.2.1 (Eigenvector Research, Inc., Manson, WA, USA) was used for PLS-

DA classification.  



RESULTS 

Patients and Imaging 

Twenty-eight (28) patients (median (range) age 66 (55-72) years) were 

included in the study. Median prostate specific antigen was 14.6 (3.7-56.9) ng/mL, 

median biopsy Gleason score was 8 (7-9), and clinical stage ranged from cT2b to 

cT3b. The median time between the PET/MRI examination and surgery was 8 (5–

32) days and the median (range) administered activity was 327 (283-384) MBq.  

Two hundred seventeen (217) VOIs were delineated on the T2W images. Of 

these, 98 were excluded based on size and/or confidence criteria, leaving a total of 

119 VOIs for analysis (Table 1). The total number of voxels in these VOIs was 

512717.  

Feature Extraction 

An example of the 9 parametric maps calculated from the combined 

PET/MRI exam is shown in Figure 1. A total of 9 x 512717 voxel-level features and 

99 x 119 VOI-level features were extracted from the 119 VOIs. An overview of the 

mean feature intensities at the VOI-level for each class is provided in Table 2. ADC, 

SUV18-23, and SUV33-38 were the only features that consistently showed significant 

differences between malignant and benign tissue, indicating that these could be 

important for PLS-DA classification. 



Classification 

The classification performances of the different image feature sets are 

presented in Table 3. All PLS-DA models performed significantly better than chance 

as assessed by permutation testing (p<0.001). At the voxel-level, the imaging 

features from combined PET/MRI performed significantly better (i.e. higher AUCs) 

than those from MRI and PET alone, both for discriminating tumor vs benign tissue 

(p < 0.001 and p < 0.001, respectively) and for discriminating high-grade tumor vs 

all other voxels (p < 0.001 and p < 0.001, respectively). At the VOI-level, the highest 

AUCs were also observed for combined PET/MRI, but these were not always 

significantly different from those of MRI and PET alone (tumor vs benign tissue: p = 

0.140 and p= 0.049, respectively; high-grade tumor vs all other tissue: p = 0.831 and 

p = 0.252, respectively).  

The VIP scores shown in Figure 2 indicate that features from T2W MRI, DW 

MRI, and PET were consistently more important for classification than those from 

DCE MRI. This information encouraged us to build and evaluate an additional model 

based on the combination of these three modalities. As shown in Table 4 and Figure 

3, the PET/T2W+DW MRI features indeed performed similar to the PET/MRI 

features for all classification tasks. These results suggest that, for the quantitative 

analysis performed in this study, DCE MRI does not add much value to PET, T2W 

MRI, and DW MRI. This finding is further illustrated by the scores and loadings plots 

of the orthogonalized PLS-DA models built on the PET/MRI features from all 28 

patients, as shown in Figure 4 (VOI-level only). Tumors/high-grade tumors were 



most importantly associated with lower ADC values and higher late-window SUV 

values than benign/other tissue. The scores and loading plots for the PET/T2W+DW 

MRI model, which are provided as Supplemental Figure 1, show similar patterns.  

An example of how the results of this study can be translated to clinical 

pratice is provided in Figure 5, which shows the voxel-wise cancer probability map 

that corresponds to the parameter maps in Figure 1. This cancer probability map 

was obtained by applying the cross-validated PET/T2W+DW MRI model, which was 

trained on the other 27 patients, to the prostate voxels of the shown patient, 

followed by back-projection into image space. The highest cancer probabilities 

were found to accurately coincide with the location of a peripheral zone tumor as 

verified by whole-mount histology. These tumor probability maps could be 

automatically calculated and presented alongside the traditional images as a 

supporting tool to pinpoint the physician to regions with high likelihood of cancer 

when interpreting the PET/MR images.  



DISCUSSION 

We have previously shown that 18F-Fluciclovine PET images alone may be 

useful for the assessment of localized prostate cancer (14). The objective of this 

study was to investigate the potential of combined 18F-Fluciclovine 

PET/multiparametric MRI for improving the detection and characterization of 

primary prostate cancer, in comparison to MRI and PET alone. We built and cross-

validated PLS-DA models which allowed us to evaluate the performance of 

combined MRI and PET-derived imaging features for discriminating between 

histologically verified malignant and benign tissue. We found that imaging features 

from PET/MRI better discriminated between tumor and benign tissue, and between 

high-grade tumor and other tissue (including low-grade tumor), than features from 

MRI or PET alone. Features from T2W MRI, DW MRI and PET were more important 

for classification than those from DCE MRI, indicating that the latter may be omitted 

for this purpose. We also showed that the PLS-DA model can be used to generate 

images of the cancer probability distribution, which could be interpreted by the 

physician alongside the traditional MRI and PET images in future clinical practice. 

The results of this double cross-validated study confirm the results of our 

previously published analysis on the same patient cohort (14), which also showed 

that malignant prostate tissue is associated with high SUVs on late-window 18F-

Fluciclovine PET images. As expected (6), we observed significantly lower ADC and 

nT2W values in malignant tissue than in benign tissue, both of which were 

important for classification. In contrast, the quantitative DCE MRI parameters 



played a very limited role in the classification tasks. This observation is in line with 

work from De Vischere et al (24) and the most recent Prostate Imaging – Reporting 

and Data System guidelines (6), where DCE MRI is only recommended as an 

adjuvant tool to DW MRI for potential upgrading of score-3 peripheral zone lesions.  

The observed absolute differences in SUV between tumors and benign 

lesions were relatively small (e.g. 2.5 vs 2.0 for BPH, p<0.05), which indicates that 

PET images alone may not be sufficient for evaluation of primary prostate cancer in 

clinical practice. Nevertheless, the discriminative power of PET was strong enough 

to improve MRI-based classification by approximately 5 percentage points when 

combined. The benefit of such a multivariate approach to cancer probability 

mapping could be higher in patient cohorts where MRI alone has a less impressive 

performance. This effect was more apparent at the voxel-level than at the VOI-

level, which may be caused by the difference in statistical power. In a study 

combining sequential multiparametric MRI and 18F-Fluciclovine PET/CT, Turkbey et 

al found comparable results: the combination of PET and MRI features showed a 

higher positive predictive value for distinguishing tumor-containing from non-

tumor-containing prostate sectors than PET or MRI alone (12). Similarly, Eiber et al 

found that the combination of 68Ga-PSMA PET and multiparametric MRI was more 

accurate for localization of primary prostate cancer than MRI alone (25). They 

reported a high tumor-to-benign tissue SUV ratio of 4.48, which could be a potential 

benefit of 68Ga-PSMA in comparison to 18F-Fluciclovine.  



This study has some limitations. The patient cohort was relatively small, but 

homogenous, as it consisted of high-risk prostate cancer patients only. We avoided 

model overfitting by using a double cross-validation scheme, but our results may 

not be extended to low and intermediate-risk patients without proper validation. 

Furthermore, we realize that the results of this quantitative analysis, in which we 

retrospectively identified the VOIs on the T2W MR images while using histology as 

a reference, may not be directly translatable to radiological reading as performed 

in clinical practice. Another implication of the retrospective approach was the 

possible introduction of a positive bias towards T2W MRI, as the VOIs were 

delineated on these images. Nevertheless, 18F-Fluciclovine PET was still shown to 

add value to multiparametric MRI. Validation of the clinical diagnostic value of 

combined 18F-Fluciclovine PET/MRI in a broader patient population will be part of 

future prospective studies. 

Including 18F-Fluciclovine PET to multiparamteric MRI for diagnosis of 

primary prostate cancer is clinically feasible on an integrated PET/MRI system and 

does not increase the total scan time of the examination (14). However, the 

additional costs associated with 18F-Fluciclovine PET may hinder its use for routine 

diagnostic imaging in the overall prostate cancer population. Nevertheless, the high 

diagnostic potential of combined 18F-Fluciclovine PET/MRI could be fully exploited 

in selected cases, such as for diagnosis of patients at high risk for lymph node 

metastases and for planning of targeted prostate biopsies in highly-suspected 

patients with previous negative biopsies.  



CONCLUSION 

The combination of imaging features from T2-weighted MRI, diffusion-

weighted MRI, and 18F-Fluciclovine PET shows excellent discriminative performance 

between malignant and benign tissue and may improve the detection and 

characterization of high-risk prostate cancer in selected cases.  
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FIGURES  

 

Figure 1 Collage of the central slices through the nine parametric maps of a 64 year-old 
patient. The contour of a tumor VOI is indicated in yellow, two benign prostatic hyperplasia 
nodules in purple, and a healthy tissue VOI in red. The contours of the central gland and 
peripheral zone are visualized in orange and dark blue, respectively.  



 

Figure 2 Overview of the VIP scores for all classification tasks, showing which variables are 
important for discriminating between the groups. The features from DCE MRI were 
consistently least important for classification. Voxel-level features 1-9: nT2W, b800, ADC, 
Ktrans, ve, vp, SUV5-10, SUV18-23; and SUV33-38. VOI-level features 1-11: mean, standard 
deviation, minimum, 10% percentile, 25% percentile, median, 75% percentile, 90% 
percentile, maximum, skewness, and kurtosis, respectively, for nT2W; 12-22: for b800; 23-
33: for ADC; 34-44: for Ktrans; 45-55: for Ve; 56-66: for vp; 67-77: for SUV5-10; 78-88: for SUV18-

23; 89-99: for SUV33-38 

 



 

Figure 3 Overview of the ROC curves for all classification tasks. PET/MRI performed 
consistently better than MRI and PET, whereas PET/T2W+DW MRI and PET/MRI performed 
similarly well.  

 



 

Figure 4 Overview of the scores and loadings plots of the PET/MRI models for the VOI-level 
classification tasks. The scores plots (upper row) show the excellent discrimination between 
tumor and benign tissue (left) and between high-grade tumor and other tissue (right) on 
LV1. The loadings (bottom row) are colored by their VIP score, showing that low ADC values 
(labels 25, 26, 27), high SUV values (labels 86, 95, 96, 97), and high standard deviations 
(labels 24, 79, 90) were the most important features characterizing the malignant classes. 
Features 1-11: mean, standard deviation, minimum, 10% percentile, 25% percentile, 
median, 75% percentile, 90% percentile, maximum, skewness, and kurtosis, respectively, 
for nT2W; 12-22: for b800; 23-33: for ADC; 34-44: for Ktrans; 45-55: for Ve; 56-66: for vp; 67-
77: for SUV5-10; 78-88: for SUV18-23; 89-99: for SUV33-38 



 

Figure 5. The central slice through the tumor probability map of a 64 year-old patient, fused 
with the T2-weighted image for anatomical reference (left). The region with the highest 
tumor probability values corresponds to a peripheral zone tumor with Gleason Score 4+4, 
as verified by histopathology (right).  



TABLES 

Table 1. VOI characteristics presented as median (range) unless indicated otherwise. 

 Whole prostate Peripheral zone Central gland 
Tumor n 
   size in mL 
   Gleason Score 
   High-grade n (%) 
   Low-grade n (%) 

40 
2.3 (0.5 – 31.9) 
7 (6 – 9) 
26 (65%) 
14 (35%) 

34 
3.1 (0.5 – 31.9) 
7 (6 – 9) 
24 (71%) 
10 (29%) 

6 
1.7 (1.1 – 19.9) 
6 (6 – 7) 
2 (33%) 
4 (67%) 

BPH n  
   size in mL 

36 
2.1 (0.5 – 11.7) 

4 
3.5 (1.1 – 7.3) 

32 
1.6 (0.5 – 11.7) 

Prostatitis n  
   size in mL 

6 
1.2 (0.6 – 5.4) 

4 
1.9 (0.6 – 5.4) 

2 
0.6 (0.6 – 0.6) 

Healthy n  
   size in mL 

37 
0.8 (0.5 – 1.9) 

18 
0.8 (0.5 – 1.9) 

19 
0.7 (0.5 – 1.6) 

 

Table 2. Feature intensities (mean of VOI) presented as mean (standard deviation) over all 
VOIs belonging to the indicated classes.  

 Tumor  BPH Prostatitis Healthy 
T2W 
   nT2W 

 
3537 (666) 

 
4369 (1311)* 

 
3675 (533) 

 
5139 (1872)* 

DWI (x 10-3) 
   b800 
   ADC 

 
75 (26) 
1122 (129) 

 
70 (24)* 
1346 (163)* 

 
74 (12) 
1340 (124)* 

 
72 (29)* 
1520 (257)* 

DCE (x 10-3) 
   Ktrans 
   ve 
   vp 

 
176 (75) 
313 (82) 
3 (3) 

 
163 (82) 
269 (103) 
2 (2)* 

 
143 (53) 
299 (85) 
2 (2) 

 
107 (54)* 
284 (106) 
1 (1)* 

PET (x 10-3) 
   SUV5-10 
   SUV18-23 
   SUV33-38 

 
3093 (827) 
2762 (653) 
2530 (554) 

 
2960 (830) 
2313 (556)* 
2036 (440)* 

 
2227 (510)* 
2005 (250)* 
1673 (218)* 

 
2315 (658)* 
1892 (403)* 
1765 (309)* 

* significantly different from tumor tissue after Benjamini Hochberg correction (p < 0.05) 
 

  



Table 3. Performance measures of the MRI, PET and PET/MRI feature sets for discriminating 
between tumor and benign tissue and between high-grade tumor and other tissue  

 Tumor vs benign tissue High-grade tumor vs other tissue 
 MRI PET PET/MRI MRI PET PET/MRI 
Voxel-level 
   AUC 
   Sensitivity 
   Specificity  

 
81% 
70% 
77% 

 
83% 
76% 
78% 

 
87%*† 
78% 
81% 

 
79% 
69% 
75% 

 
81% 
74% 
77% 

 
85%*† 
76% 
79% 

VOI-level 
   AUC  
   Sensitivity 
   Specificity  

 
93% 
85% 
94% 

 
93% 
83% 
86% 

 
96%† 
95% 
89% 

 
93% 
88% 
88% 

 
91% 
85% 
86% 

 
93% 
88% 
96% 

* significantly different from MRI (p < 0.05) 
† significantly different from PET (p < 0.05) 

 

Table 4. Performance measures of the PET/T2W+DWI MRI feature set for discriminating 
between tumor and benign tissue and between high-grade tumor and all other tissue. The 
values of the complete PET/MRI feature set are given in parentheses for comparison 

 Tumor vs benign tissue High-grade tumor vs other tissue 
Voxel-level 
   AUC 
   Sensitivity 
   Specificity  

 
87% (87%) 
76% (78%) 
82% (81%) 

 
84% (85%) 
75% (76%) 
78% (79%) 

VOI-level 
   AUC  
   Sensitivity 
   Specificity  

 
97% (96%) 
93% (95%) 
92% (89%) 

 
94% (93%) 
92% (88%) 
90% (96%) 

 

 

  



SUPPLEMENTAL MATERIAL 

 

Supplemental Figure 1. Overview of the scores and loadings plots of the PET/T2W+DW MRI models for the VOI-level classification 
tasks. The scores plots (upper row) show the excellent discrimination between tumor and benign tissue (left) and between high-
grade tumor and other tissue (right) on LV1. The loadings (bottom row) are colored by their VIP score, showing that low ADC 
values (labels 25, 26, 27), high SUV values (labels 53, 62, 63, 64), and high standard deviations (labels 46, 57) were the most 
important features characterizing the malignant classes. Features 1-11: mean, standard deviation, minimum, 10% percentile, 25% 
percentile, median, 75% percentile, 90% percentile, maximum, skewness, and kurtosis, respectively, for nT2W; 12-22: for b800; 
23-33: for ADC; 34-44: for SUV5-10; 45-55: for SUV18-23; 56-66: for SUV33-38 

 

 

 


