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Abstract 

The mouse is an important model for theoretical-experimental cardiac research, and biophysically based 

whole organ models of the mouse heart are now within reach. However, the passive material properties of 

mouse myocardium have not been much studied.  

We present an experimental setup and associated computational pipeline to quantify these stiffness 

properties. A mouse heart was excised and the left ventricle experimentally inflated from 0 to 1.44 kPa in 

seven steps, and the resulting deformation was estimated by echocardiography and speckle tracking. An 

in silico counterpart to this experiment was built using finite element methods and data on ventricular 

tissue microstructure from diffusion tensor MRI. This model assumed a hyperelastic, transversely 

isotropic material law to describe the force-deformation relationship, and was simulated for many 

parameter scenarios, covering the relevant range of parameter space. To identify well-fitting parameter 

scenarios, we compared experimental and simulated outcomes across the whole range of pressures, based 

partly on gross phenotypes (volume, elastic energy, and short- and long-axis diameter), and partly on 

node positions in the geometrical mesh. This identified a narrow region of experimentally compatible 

values of the material parameters. Estimation turned out to be more precise when based on changes in 

gross phenotypes , compared to the prevailing practice of using displacements of the material points. We 

conclude that the presented experimental setup and computational pipeline is a viable method that 

deserves wider application. 

Keywords: Myocardial stiffness, parameter estimation, passive inflation, transversal 

isotropy, speckle tracking  

LVP=Left Ventricular Pressure, MVO=Mitral Valve Opening, ED=End Diastole, ES=End Systole, 

PV=Pressure Volume, 
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Introduction 

The passive mechanical properties of the heart wall play an important role during the 

filling of the ventricle; for instance, stiffening of the myocardium can lead to diastolic 

dysfunction and heart failure [1]. Incorporating patient-specific geometries and material 

properties into biomechanical models holds promise for the improved diagnosis and 

treatment of heart failure [2], [3]. In biomechanical models, the stress-strain relationship 

for myocardial tissue is described by constitutive laws whose parameters describe the 

material stiffness along the microstructural axes, e.g. fibre and sheet directions. Several 

studies have quantified passive myocardial stiffness in humans [3]–[5] and model 

organisms, such as the pig [6], [7], dog [8], [9] and rat [10] (see Table 1, with 

references). Less well studied, however, is the mouse, which is an important model 

organism in cardiac research. Transgenic mouse models have been extensively used in 

cardiac research over the last decade, where manipulation of the mouse genome has 

provided several novel insights in the development of cardiac disease [11]. Alterations 

of the myocardial properties of the heart, both in the extracellular matrix and in the 

cardiomyocytes, are suggested to play a major role in development of diastolic 

dysfunction and heart failure. Several mutations leading to heritable heart disease occur 

in both mouse and human [11], and the hearts have similar composition and function 

with regards to mechanical properties [12].  

 

Here we propose a workflow for estimation of passive material properties of mouse 

myocardium by comparing computer simulations of soft tissue mechanics to observed 

deformation under passive inflation of an excised mouse heart. Firstly, we estimate 

trajectories of material points by speckle tracking of echo data through the deformation 

from zero to end diastolic pressure levels. This deformation is used, together with fibre 
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structure obtained from diffusion tensor MRI, to build meshes for computer simulations. 

Secondly, we run model simulations and use full factorial experimental designs to cover 

the biological relevant region of the parameter space for the transversely isotropic 

Guccione law [13]. The results show that the parameters of the constitutive law are not 

separately identifiable from these passive inflation measurements alone, in accordance 

with previous studies [14]–[16]. For the four-dimensional parameter space of the 

material law, we identify an elongated region of parameter combinations with nearly 

equivalent good fit to deformation data from passive inflation. We describe the structure 

of this parameter redundancy, and compare our findings with published estimates. 

Following a discussion of its advantages and limitations, we conclude that the presented 

pipeline merits wider application. 

 

Methods  

The quantification of the passive mechanical properties of the myocardium relies on 

mechanistic models whose parameters are tuned to reproduce the observation of a 

corresponding experiment [9], [14], [15]. Below we describe the passive inflation 

experiment with deformation measurement, MR imaging for geometric meshing, image 

processing and speckle tracking to estimate deformation, mechanics simulations, and 

comparison of experiment and simulation. 

Passive inflation experiment 

A single mouse was anesthetized with 5% isoflurane and sacrificed by cervical 

dislocation. The heart was then rapidly excised and cannulated via the aorta and 

mounted on a Langendorff setup (Fig. 1). The cannula was firstly placed over the level 

of the aortic valves, to perfuse the myocardium with cardioplegic solution of pH 7.4, 

118.3 mM NaCl, 3.0 mM KCl, 4 mM MgSO4, 0.2 mM CaCl2, 2.4 mM KH2PO4, 24.9 
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mM NaHCO3, 10 mM glucose, 2.2 mM mannitol. Some calcium was included in the 

superfusate since calcium-free conditions promote breakdown of gap junctions and 

dissociation of cardiomyocytes [17], which could cause underestimates of myocardial 

stiffness. The cannula was then introduced into the left ventricle, and thereafter retracted 

into the aorta. This technique allowed the cannula both to manipulate left ventricular 

pressure and to perfuse the coronary arteries; the latter was found necessary to prevent 

ischemia and stiffening in preliminary experiments. Pressure was increased from 0 kPa 

to approximately 1.44 kPa over 10 s by adjusting the height of a fluid column connected 

to the cannula. Deformation of the left ventricle was recorded by B-mode 

echocardiography (Vevo2100, VisualSonics) using a 35 MHz scan head. Three short-

axis (probe mounted at the side of the ventricle) and four long-axis views (probe 

mounted at apex) were recorded for each pressure level (see Fig. 1 for details). Due to 

capillary forces in the cannula, the left ventricle pressure was not equivalent to the 

height of the fluid column. In a subsequent experiment, we therefore calibrated left 

ventricular pressure vs. fluid column height by a Samba pressure catheter (Samba 3000; 

Samba Sensors AB), inserted via the apex. The Samba pressure catheter was 

autocalibrated using the Samba memory control unit at room temperature. Proper 

calibration was evaluated by pressure at 0 mmHg at no height of the water column and 

10 mmHg at the corresponding height of the water column. 

Mesh of mouse ventricle with embedded microstructure 

MR imaging: Diffusion tensor MRI (DTI) measurements of an isolated mouse heart (a 

different individual than the one used in the inflation experiment) embedded in 1% 

agarose were performed on a 9.4T horizontal bore MR system (Agilent Technologies, 

Santa Clara, CA) equipped with a shielded gradient system (Gmax=1 T/m, rise time = 

130 µs, inner diameter = 60 mm), using a 13 mm-diameter volume transmit/receive coil. 
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A 3D fast spin-echo sequence was used as reported previously [18] with the following 

imaging parameters: TR = 1 s, number of echoes = 8, TEeff = 44.25 ms, matrix size = 

256×256×192, number of averages = 4, field of view 13×13×13 mm3 (yielding a 

resolution of 51×51×68 µm3), maximum b-value=688 s/mm2 (including imaging 

gradients and cross-terms between imaging and diffusion gradients). Eight non-collinear 

gradients directions were used, arranged according to an optimized scheme based on the 

electrostatic repulsion principle [19]. 

Post-processing: The fibre field was extracted from these 3D DTI data as described 

previously [20]. A smooth cubic Hermite mesh [21] of the left ventricle was built, and 

the fibre field was embedded into this mesh (see Fig. 3). The estimated transmural 

gradient in fibre angle was similar to previous findings [22]. 

Speckle tracking and estimation of 3D deformation 

In ultrasound imaging, speckle pattern arises because sub-resolution scatterers interfere 

with the incoming ultrasound pulses. Although the reflected signal contains no 

information about the underlying microstructure of the tissue [23], individual pieces of 

tissue respond consistently to the ultrasound, and can thus be traced through a sequence 

of images. However, there is some uncertainty due to decorrelation of the speckle 

pattern between successive frames, as may be caused by out-of-plane motion, rotation, 

deformation, and additive thermal noise. Apart from the ultrasound gel and probe, no 

other external forces where applied to the ventricle. 

Because the excised heart was still beating slightly, we removed images that were from 

the systolic phase, as identified by a high mean absolute signal difference between 

subsequent images. We used block-matching [23] and followed endo- and epicardial 

points between subsequent images through the inflation, as detailed in Appendix A. The 

particle paths estimated from the different slices were aligned into 3D deformed 
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configurations for the various pressures (methods are explained in Appendix B), and a 

set of smooth cubic Hermite interpolated meshes (CH meshes) were then constructed 

combining the methods described in [21] and [24] (see Fig. 3).  

Mechanical simulations 

The myocardium was modelled as a hyper-elastic incompressible material [25] with 

homogenous, transversal isotropic properties. The framework for mechanics is 

described in [26]. Adopting the approach of ref. [14], we used the cubic Hermite mesh 

corresponding to the zero pressure configuration (CH1, see Fig. 3) of the left ventricle 

(Fig. 4) as the reference configuration [27]. According to [13], the estimated stiffness 

parameters were not particularly sensitive to the magnitude of the residual stress [28], 

which supports our approach. 

We formulate the stress equilibrium equations by using the principle of virtual work on 

a general deformable body with initial volume V  and surface area A , 

 : = 0.T
appV A

S EdV p F N udAδ δ−− ⋅∫ ∫  (1) 

Here S  is the second Piola-Kirchhoff stress tensor and Eδ  is the virtual Lagrangian 

strain tensor. appp  is the applied ventricular pressure acting on the endocardial surface, 

TF −  is the inverse of the transposed deformation gradient tensor, N  is the normal 

vector for the undeformed material surface while uδ  is an arbitrary virtual 

displacement. For hyper-elastic materials, the components of the second Piola-

Kirchhoff stress tensor are calculated by differentiating the strain energy function by the 

corresponding components of the Lagrangian strain tensor. For incompressible 

materials, the strains are separated into distortional and dilatational components, and we 

calculate the second Piola-Kirchhoff stress tensor from  

 1
ˆ

= ( ) ,TWS Jp F F
E

−∂
−

∂
 (2) 

where Ŵ  is the strain energy function and F  is the deformation gradient tensor. The 

scalar p  serves as a Lagrangian multiplier interpreted as the hydrostatic pressure in the 
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material/tissue. The work done by the hydrostatic forces is zero due to the 

incompressibility constraint, expressed on variational form as,  

 ( 1) = 0,
V

J pdV−∫  (3) 

where J  is the determinant of the deformation gradient tensor F . The stress-strain 

relation in hyper-elastic models follows from our assumption of a strain energy 

function, W
∧

. The strain energy density function, Ŵ , was described by the Guccione 

law [13] 

 1ˆ = ( 1)
2

QW a e −  (4) 

 where 

 2 2 2
1 11 2 22 23 32 33 3 12 21 13 31( 2 ) (2 2 ).Q b E b E E E E b E E E E= + + + + +  (5) 

Here, a , 1b , 2b  and 3b  are material specific parameters, while xyE  are the various 

components of the Lagrangian strain tensor aligned to the underlying tissue 

microstructure. The subscripts indicate the microstructural directions (1 is along the 

fibres while 2 and 3 are orthogonal directions, normal to the fibres). 

Table 1 summarizes published parameter estimates for the Guccione [13] and Costa [29] 

laws, showing that stiffness parameters vary across two orders of magnitude. To 

comprehensively cover the parameter space, simulations were performed with 

parameters incremented based on a log scale from the minimum to the maximum value 

reported in Table 1.  

For the 4 Guccione law parameters, we used a full factorial design with eight levels, 

resulting initially in 48 = 4096  parameter sets. For each parameter set, the simulation 

model was run for the same pressure steps as in the experiment (eleven levels ranging 

from zero to 1.44 kPa). 

We applied boundary conditions constraining the basal plane to not move in the z-

direction, which should correspond well to the experimental setup where the heart was 
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attached to the cannula through the aortic valve. Additional Dirichlet boundary 

conditions to avoid whole-body rotation/translation are shown in Fig. 4. 

Inside the cavity, we assumed a homogeneous internal pressure, which should be a 

reasonable assumption due to the low velocity of the flow. In the model we neglected 

the forces between the ultrasound gel and the heart, which is the simplest possible 

assumption until such forces are measured. As in previous published studies of similar 

setups [14], we also assumed that the influence from the right ventricle was negligible.  

 

Comparison of measured and simulated deformations 

In both the simulations and the measurements, the shape of the heart ventricle at a given 

pressure is represented by node positions and an associated cubic Hermite interpolation 

of the surfaces between nodes. We tried two different objective functions for 

comparison of experimental and simulated deformation, restricting the computation to 

the most biologically relevant pressure range [30], > 0.2 kPa. 

1. Comparison of positions for all endocardial and epicardial nodes in the CH 

mesh. The criterion for good fit was the L2 norm between experimental and 

simulated node position, averaged over the relevant pressures M  and nodes N  

in the mesh,  

 ( )2 2 2
1 exp exp exp

1 1

1 ( ) ( ) ( )
M N

sim sim sim
m n mn

x x y y z z
MN = =

Ω = − + − + −∑∑  (6) 

2. Comparison of K = 4 aggregated phenotypes (change in Volume ( V∆ ), short 

and long axis diameter ( aS∆  and aL∆ ), and elastic energy ( dP V∫ , computed as 

the integral of the pressure-volume curve). For each phenotypic variable, the 

difference between simulation and experiment is nondimensionalized as a 
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proportion of the respective experimental value. Then, each variable is weighted 

equally in averaging over the K  phenotypes and M  relevant pressures: 

 exp
2

1 1 exp

1 abs
M K

sim

m k mk
MK = =

 Φ − Φ
Ω =   Φ 

∑∑  (7) 

 

These objective functions were computed for all simulated parameter scenarios, and we 

identified the parameter regions that corresponded to low values of each objective 

function. The identified region of the parameter space was further analyzed by manually 

selecting new parameter limits and running new simulations for a full factorial design 

over the new parameter regions. We did this in an iterative way (3 times), and got an 

overview of the landscape of the parameter space and were able to see the correlation 

between estimated parameters.  

We evaluated the ability of each objective function to precisely estimate parameters (i.e. 

identify a small set of well-fitting parameter scenarios) by asking "how many parameter 

scenarios lie within a given % increase from the optimal value (least lack-of-fit) of the 

objective function?" This is valid because both objective functions have a meaningful 

absolute zero point. 

Results 

Experimental deformation 

The deformation of the experimentally manipulated heart was estimated by speckle 

tracking of four long-axis and three short-axis image sequences. The free wall generated 

larger longitudinal strains than the septum, causing the apex to tilt towards the septum 

during the inflation (Fig. 2). The pressure-volume relationship was quite linear within 
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the interval of applied pressures (Fig. 7a), in agreement with previous in vivo work [31], 

[32]. The mesh corresponding to zero and maximum pressures are shown in Fig. 4.  

Comparison of simulated vs. experimental deformation 

The objective function based on aggregated phenotypes (equation (7)) was more 

selective than the one based on node positions (equation (6)), in terms of identifying 

some parameter scenarios as better fitting than others (Fig. 5). For example, the number 

of parameter scenarios within a 50% increase from the minimum of the objective 

functions (6) and (7) was 5729 and 65, respectively. Likewise, the contrast between Fig. 

6 and Fig. 7a shows how the scenarios selected by the latter criterion give a much 

tighter match to the observed inflation trajectory. Furthermore, the objective function 

(6) tended to select scenarios with much lower compliance than observed in the 

experiment (Fig. 6) and worse fits for whole organ phenotypes (Fig. 7). Subsequent 

analyses were therefore based on the objective function in equation (7). Especially for 

the volume, short axis and elastic energy, the model was able to capture the essential 

dynamics.  

Correlation structure of well-fitting parameter 

combinations 

Well-fitting parameter combinations (i.e. those with a low value of the objective 

function) showed considerable variation along all individual parameter axes, though 

there were clear patterns of covariation among parameters (Fig. 8). Similar to the 

finding in [24], the well-fitting parameter scenarios tended to lie nearly along a straight 

line in the space of (log a, log(b1+b2+b3)). 

The estimated overall stiffness parameter a  was clearly bounded from below, while the 

values of the b were bounded from above. Conditional on a value for a, the b1 and b2 

parameters were also bounded from below, but the optimal estimate of b3 approached 
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parameter regions with bad convergence of the mechanics solver. The tissue was stiffer 

along the fibres than in the directions orthogonal to the fibres ( 1b =5.0, 2b =3.7, 3b =2.6), 

with 2b  more tightly constrained than 1b  and 3b  (Table 1, Fig. 8). Although the point 

estimate appears comfortably inside the explored parameter region as viewed in the 

projections in Fig. 8, there were convergence problems for some of the parameter 

scenarios adjoining the best-fitting one as viewed in more than two parameter 

dimensions. Therefore, we cannot conclude whether the material parameters would be 

uniquely identifiable with a more robust numerical integration solver. 

Discussion 

There are several advantages to the experimental and computational pipeline presented 

here. Echocardiography is simple to use during pressure manipulation of excised hearts 

and is faster than tagged MRI (as used in e.g. [14]), thus reducing problems with rigor 

mortis. Furthermore, it can follow internal material points over the entire geometry [9], 

unlike the method of video recordings of epicardial markers (used by [33]). Passive 

inflation experiments avoid the sectioning of tissue required for uni-axial and biaxial 

material testing [34], which would disrupt the microstructure and influence the material 

properties. However, this limits the possibility of experimentally inducing shear forces 

as described by [35]. [8] argue that passive inflation produces insufficient transverse 

shear strain to quantify the material properties in those directions, and therefore 

developed an epicardial suction setup for isolated arrested hearts. However, our results 

indicate that the relevant parameter ( 3b ) is constrained from above (Fig. 8), but shows 

larger relative uncertainty than the other b parameters in the Guccione law (4)-(5). 

 

Our numerical experiments enable parameter estimation and an overview of the 

structure of parameter uncertainty across a bounding box of all previously published 
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parameter estimates (Table 1; see Supplementary Figure S1 for a visual comparison of 

the corresponding stress-strain relationships). The simultaneous estimation of 

parameters is an improvement over one-at-a-time optimization, and highlights the 

possibility that many empirical data sets may not be able to support the complexity of 

commonly used models and material laws [24], [36]. The robustness of an exhaustive 

search comes with the associated computational cost of a wide sweep of parameters, as 

compared with other approaches [4], [24], [37], [38]. 

 

The definition of an adequate objective function to compare data and model is critical 

for a data assimilation method. Both data and model are limited by acquisition issues 

and assumptions, respectively, and a suitable choice of the space to compare them is 

required. Parameters were easier to identify using aggregate measures of cardiac 

deformation, rather than the more detailed node positions, for the goodness-of-fit 

criterion (objective function). This may reflect an inability of our model to mimic 

certain deformations that occurred in the experimental data, particularly a bending due 

to larger longitudinal strains in the free ventricular wall than the septum during inflation 

(Fig. 3, bottom), or circumferential variation in material stiffness, violating our 

assumption of homogeneity. Other possible causes originate in the experimental data, a 

3D reconstruction of 2D observations that is subject to misregistration and out-of-plane 

errors. Regardless of the cause, our results suggest that a gross description of 

mechanical deformation introduces the benefit of a more relevant and robust 

comparison between data and model. 

 

As opposed to the traditional and more intuitive direct use of displacement fields for the 

objective function [9], [24], recent works have explored the use of integral deformation 

metrics [37], or advanced mathematical frameworks (using the concept of currents) 
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[39]. Our proposed aggregated phenotypic metric is a simple and effective solution, and 

offers an intuitive interpretation of where the agreement and disagreement occurs. 

Preliminary results with our echo data, not reported here, showed that the inclusion of 

twist (defined as the difference in rotation between base and apex as done clinically 

[40]) in the objective function was detrimental, probably due to a combination of 

imaging acquisition and analysis limitations. Further research is needed to optimise the 

definition of the objective functional, and to analyse the comparative performance of the 

different alternatives. 

 

Because the excised heart kept beating a little throughout the experiment (see "Speckle 

tracking" in Methods), despite perfusion with cardioplegic solution, and we were unable 

to measure the calcium level inside the heart, we cannot be sure about our assumption 

that there were no active forces. This assumption greatly simplifies the decoupling of 

active and passive relaxation processes [15], but may overestimate the stiffness of the 

tissue. On the positive side, the residual heartbeat confirmed that the excised heart was 

still capable of contraction, and so its material properties remained similar to in vivo. 

 

Our experiment showed that the fibre stress-strain relationship for the mouse left 

ventricle was quite linear over a biologically relevant range of pressures (Fig. S1). This 

brings challenges in identifying, separately from the overall stiffness a, the b parameters 

that pertain to curvature in the material law (Fig. 8, [24]). However, in contrast to [24], 

we find that a is well bounded from below while the b's are bounded from above: No 

parameter scenarios with low a or very high b's could be made to match the data well 

(Fig. 8). 

The mouse myocardium was found to be stiffer along the fibres than normal to the 

fibres, which is in agreement with the findings in other model organisms [6]–[10]. The 
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value of 1b  was considerably higher than 2b  and 3b , in agreement with findings in in 

vivo sheep and human hearts [15], [41] and in tissue blocks of pig heart [7]. The 

stiffness parameters estimated in this work describe a relatively soft material (low 

stress-strain relationships) compared with most of the literature, and is most similar to 

the material properties found in a similar experiment on rat hearts [10]. 

Complementary experiments are needed to better constrain the material parameters of 

this law. We inflated the ventricle from 0 to 1.44 kPa, i.e. within the normal diastolic 

pressure range. In this range the stress (or pressure) vs. deformation relationship was 

relatively linear, while the nonlinear behavior occurs at higher pressures. The estimated 

parameters capture the passive material properties for normal diastolic pressures in a 

healthy specimen, but extrapolation outside this range, for example for the study of 

increased filling pressures, will require further characterization. 

 

Several future refinements are possible in this parameter estimation workflow. Better 

speckle tracking would improve the ability to find regional differences in material 

passive properties by following material points in a Lagrangian, moving frame of 

reference, as suggested for tagged MRI by [16]. Other challenges include the aligning of 

2D data into 3D geometries. Misalignment may cause spurious bulging in the estimated 

deformation of the apex region (Fig. 4), and is probably one of the main reasons for the 

lack of fit between the simulated and experimental deformation data on a nodal basis 

(eq. (6) and Fig. 5). Manual interactions could be reduced, facilitating e.g. the study of 

individual variation, by automating the selection of valid end diastolic frames from the 

echocardiographic recordings. Also, mesh construction might benefit from being 

constrained by incompressibility [42]; our current meshes differed in volume by 15% 

from the start to the end of filling. Complementary experiments are needed to uniquely 

constrain the material parameters of this law. In particular, the application of higher 
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pressures, e.g. of relevance to hypertension, might bring out nonlinearities in the force-

deformation relationship that would constrain the possible parameter combinations. 

 

We have demonstrated the feasibility of quantifying mouse myocardial stiffness using 

the experimental setup and associated computational pipeline described above, and 

found that it is a viable method that deserves wider application. A better knowledge of 

passive properties would shed light on diastolic dysfunction and is an important step 

towards understanding diastolic heart failure in mouse and human. 
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Appendix A: Speckle tracking 

Two-dimensional particle paths can be estimated from a series of images by block-

matching [23]. The algorithm compares a region of the current image with nearby 

regions in the next image, finding the best-matching displacement by optimizing some 

matching criterion. This is repeated for each region of interest in the current image, for 

example centred on manually chosen landmarks to be tracked. 

Each series consisted of approximately 300 images (long-axis: 512×384 pixels; short-

axis: 512×472 pixels; pixel size 0.0234 mm). However, the heart was still beating a 

little during the experiment, whereas our focus was on passive mechanics only. We 

therefore removed systolic images before speckle tracking, identifying these images by 
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their large mean absolute signal intensity difference between subsequent images. 

Because the sampling rate was high relative to the rate of displacement, we subsampled 

the data to every third image to avoid round off problems with zero displacements. The 

speckle tracking algorithm was implemented in Matlab ([43]) as follows: 

o We chose limits for the search algorithm, consisting of the size of the matching 

kernel window and the maximum allowed displacements. Kernel windows were 

17×31 and 9×17 pixels for long- and short-axis images, respectively. The 

maximum allowed displacements between two subsequent images were 2 pixels 

(in x and y direction) for long-axis and 3 pixels for short-axis images. 

o The ventricular wall was more visible and easier to segment from the high 

pressure images. We therefore selected material points along the inner and outer 

surface of the ventricle for the image corresponding to maximal pressure, and 

worked backwards from high to low pressure images. The selected material 

points were used as central points for block matching between subsequent 

images in the following automatic procedure.  

o The ventricle in the current image was masked based on the position of 

the material points in the preceding image (echo intensity was set to NaN 

outside the ventricle). 

o The displacement for each material point in the current image was 

estimated by matching the neighbourhood of the material point against 

candidate regions in the next image, minimizing the mean absolute 

difference between the sub-images. 

o Due to considerable noise, especially in the basal region in the long axis 

images, we imposed additional constraints on the deformation: 
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 The material points closest to the base were allowed to move only 

in horizontal direction and the outward radial search region was 

reduced. 

 The local wall thickness was measured. If the wall thickness was 

shrinking compared with the max pressure image, the material 

points on the inner wall were moved inwards, normal to the 

surface of the outer wall.  

o The displacements were smoothed using a cubic spline. (Displacements 

from short axis images were converted to polar coordinates before 

smoothing). 

o The coordinate position of each material point was updated, based on its 

estimated displacement, before the next image was analysed by block-

matching. 

Appendix B: From 2D particle paths to 3D deformation 

The individual 2D particle paths were smoothed over time and interpolated so we could 

estimate the position of each 2D material point for any specified LVP. We used the 

long-axis images to find displacement in longitudinal and radial direction, while 

circumferential displacements were obtained from the short-axis images. The short-axis 

images also contain information about the radial movement, but this was not utilized 

because the out-of-plane movement is larger for these images than for long-axis images. 

The long-axis images were centred, based on the centre of mass of the basal points in 

the zero pressure images, and rotated about the z-axis (0°, 45°, 90° and 135°) to 

correspond to the experimental views (see Fig. 1 a). The apical points were defined as a 

weighted average of the most apical points from the different long-axis slices. The 

short-axis images were aligned to match the long-axis images with respect to the free 
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wall and the septum. The most apical short-axis image was aligned with the long-axis 

images in the z-direction, so that the inner diameters of the long- and short-axis images 

were identical in the maximum pressure configuration. The circumferential 

displacements of all nodes were then interpolated in the z-direction between the short-

axis slices by using a cubic spline (we required zero circumferential displacement in the 

base, in accordance to the experimental setup). The nodes were then used as nodes in a 

triquadratic interpolated mesh, and estimated 3D-displacements were used to calculate 

the configuration for each pressure level (see Fig. 3). 

References 

[1] B. A. Borlaug and D. A. Kass, “Mechanisms of Diastolic Dysfunction in Heart 
Failure,” Trends in Cardiovascular Medicine, vol. 16, no. 8, pp. 273–279, Nov. 
2006. 

[2] F. H. Fenton, S. Luther, E. M. Cherry, N. F. Otani, V. Krinsky, A. Pumir, E. 
Bodenschatz, and R. F. Gilmour, “Termination of Atrial Fibrillation Using 
Pulsed Low-Energy Far-Field Stimulation,” Circulation, vol. 120, no. 6, pp. 467 
–476, 2009. 

[3] J. Xi, P. Lamata, S. Niederer, S. Land, W. Shi, X. Zhuang, S. Ourselin, S. G. 
Duckett, A. K. Shetty, C. A. Rinaldi, D. Rueckert, R. Razavi, and N. P. Smith, 
“The estimation of patient-specific cardiac diastolic functions from clinical 
measurements,” Medical Image Analysis, vol. 17, no. 2, pp. 133–146, Feb. 2013. 

[4] H. Delingette, F. Billet, K. C. L. Wong, M. Sermesant, K. Rhode, M. Ginks, C. 
A. Rinaldi, R. Razavi, and N. Ayache, “Personalization of Cardiac Motion and 
Contractility From Images Using Variational Data Assimilation,” IEEE 
Transactions on Biomedical Engineering, vol. 59, no. 1, pp. 20–24, Jan. 2012. 

[5] M. Sermesant, P. Moireau, O. Camara, J. Sainte-Marie, R. Andriantsimiavona, 
R. Cimrman, D. L. G. Hill, D. Chapelle, and R. Razavi, “Cardiac function 
estimation from MRI using a heart model and data assimilation: Advances and 
difficulties,” Medical Image Analysis, vol. 10, no. 4, pp. 642–656, Aug. 2006. 

[6] K. F. Augenstein, B. R. Cowan, I. J. LeGrice, and A. A. Young, “Estimation of 
cardiac hyperelastic material properties from MRI tissue tagging and diffusion 
tensor imaging,” Med Image Comput Comput Assist Interv, vol. 9, no. Pt 1, pp. 
628–635, 2006. 

[7] H. Schmid, P. O’Callaghan, M. Nash, W. Lin, I. LeGrice, B. Smaill, A. Young, 
and P. Hunter, “Myocardial material parameter estimation,” Biomechanics and 
Modeling in Mechanobiology, vol. 7, no. 3, pp. 161–173, Jun. 2008. 



20 

[8] R. Okamoto, M. Moulton, S. Peterson, D. Li, M. Pasque, and J. Guccione, 
“Epicardial suction: A new approach to mechanical testing of the passive   
ventricular wall,” J. Biomech. Eng.-Trans. ASME, vol. 122, no. 5, pp. 479–487, 
Oct. 2000. 

[9] V. Y. Wang, H. I. Lam, D. B. Ennis, B. R. Cowan, A. A. Young, and M. P. 
Nash, “Modelling passive diastolic mechanics with quantitative MRI of cardiac 
structure and function,” Med Image Anal, vol. 13, no. 5, pp. 773–784, Oct. 2009. 

[10] J. H. Omens, D. A. MacKenna, and A. D. McCulloch, “Measurement of strain 
and analysis of stress in resting rat left ventricular myocardium,” Journal of 
Biomechanics, vol. 26, no. 6, pp. 665–676, Jun. 1993. 

[11] H. Morita, J. Seidman, and C. E. Seidman, “Genetic causes of human heart 
failure,” J Clin Invest, vol. 115, no. 3, pp. 518–526, Mar. 2005. 

[12] D. Georgakopoulos, W. A. Mitzner, C.-H. Chen, B. J. Byrne, H. D. Millar, J. M. 
Hare, and D. A. Kass, “In vivo murine left ventricular pressure-volume relations 
by miniaturized conductance micromanometry,” Am J Physiol Heart Circ 
Physiol, vol. 274, no. 4, pp. H1416–H1422, Apr. 1998. 

[13] J. M. Guccione, A. D. McCulloch, and L. K. Waldman, “Passive Material 
Properties of Intact Ventricular Myocardium Determined From a Cylindrical 
Model,” J. Biomech. Eng., vol. 113, no. 1, pp. 42–55, Feb. 1991. 

[14] K. F. Augenstein, B. R. Cowan, I. J. LeGrice, P. M. F. Nielsen, and A. A. 
Young, “Method and Apparatus for Soft Tissue Material Parameter Estimation 
Using Tissue Tagged Magnetic Resonance Imaging,” J. Biomech. Eng., vol. 
127, no. 1, pp. 148–157, Feb. 2005. 

[15] J. Xi, P. Lamata, S. Niederer, S. Land, W. Shi, X. Zhuang, S. Ourselin, S. G. 
Duckett, A. K. Shetty, C. A. Rinaldi, D. Rueckert, R. Razavi, and N. P. Smith, 
“The estimation of patient-specific cardiac diastolic functions from clinical 
measurements,” Med Image Anal, Oct. 2012. 

[16] J. Xi, P. Lamata, J. Lee, P. Moireau, D. Chapelle, and N. Smith, “Myocardial 
transversely isotropic material parameter estimation from in-silico 
measurements based on a reduced-order unscented Kalman filter,” Journal of 
the Mechanical Behavior of Biomedical Materials, vol. 4, no. 7, pp. 1090–1102, 
Oct. 2011. 

[17] A. R. Muir, “The effects of divalent cations on the ultrastructure of the perfused 
rat heart.,” Journal of anatomy, vol. 101, no. Pt 2, p. 239, 1967. 

[18] P. W. Hales, R. A. B. Burton, C. Bollensdorff, F. Mason, M. Bishop, D. 
Gavaghan, P. Kohl, and J. E. Schneider, “Progressive changes in T1, T2 and 
left-ventricular histo-architecture in the fixed and embedded rat heart,” NMR 
Biomed, vol. 24, no. 7, pp. 836–843, Aug. 2011. 

[19] D. K. Jones, M. A. Horsfield, and A. Simmons, “Optimal strategies for 
measuring diffusion in anisotropic systems by magnetic resonance imaging,” 
Magn Reson Med, vol. 42, no. 3, pp. 515–525, Sep. 1999. 



21 

[20] P. Lamata, S. Niederer, G. Plank, and N. Smith, “Generic conduction parameters 
for predicting activation waves in customised cardiac electrophysiology 
models,” in Proceedings of the First international conference on Statistical 
atlases and computational models of the heart, and international conference on 
Cardiac electrophysiological simulation challenge, Berlin, Heidelberg, 2010, 
pp. 252–260. 

[21] P. Lamata, S. Niederer, D. Nordsletten, D. C. Barber, I. Roy, D. R. Hose, and N. 
Smith, “An accurate, fast and robust method to generate patient-specific cubic 
Hermite meshes,” Medical Image Analysis, vol. 15, no. 6, pp. 801–813, Dec. 
2011. 

[22] I. J. LeGrice, B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. 
Hunter, “Laminar structure of the heart: ventricular myocyte arrangement and 
connective tissue architecture in the dog,” Am. J. Physiol., vol. 269, no. 2 Pt 2, 
pp. H571–582, Aug. 1995. 

[23] J. Crosby, B. H. Amundsen, T. Hergum, E. W. Remme, S. Langeland, and H. 
Torp, “3-D Speckle Tracking for Assessment of Regional Left Ventricular 
Function,” Ultrasound in Medicine & Biology, vol. 35, no. 3, pp. 458–471, Mar. 
2009. 

[24] J. Xi, P. Lamata, W. Shi, S. Niederer, S. Land, D. Rueckert, S. G. Duckett, A. K. 
Shetty, C. A. Rinaldi, R. Razavi, and N. Smith, “An Automatic Data 
Assimilation Framework for Patient-Specific Myocardial Mechanical Parameter 
Estimation,” in Functional Imaging and Modeling of the Heart, vol. 6666, D. N. 
Metaxas and L. Axel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 
2011, pp. 392–400. 

[25] J. Bonet and R. D. Wood, Nonlinear Continuum Mechanics for Finite Element 
Analysis, 2nd ed. Cambridge University Press, 2008. 

[26] S. Land, S. A. Niederer, and N. P. Smith, “Efficient computational methods for 
strongly coupled cardiac electromechanics,” IEEE Trans Biomed Eng, vol. 59, 
no. 5, pp. 1219–1228, May 2012. 

[27] D. A. Nordsletten, S. A. Niederer, M. P. Nash, P. J. Hunter, and N. P. Smith, 
“Coupling multi-physics models to cardiac mechanics,” Progress in Biophysics 
and Molecular Biology, vol. 104, no. 1–3, pp. 77–88, Jan. 2011. 

[28] J. Omens and Y. Fung, “Residual strain in rat left ventricle,” Circ Res, vol. 66, 
no. 1, pp. 37–45, Jan. 1990. 

[29] K. D. Costa, J. W. Holmes, and A. D. McCulloch, “Modelling cardiac 
mechanical properties in three dimensions,” Philosophical Transactions of the 
Royal Society of London. Series A: Mathematical, Physical and Engineering 
Sciences, vol. 359, no. 1783, pp. 1233–1250, Jun. 2001. 

[30] P. Pacher, T. Nagayama, P. Mukhopadhyay, S. Bátkai, and D. A. Kass, 
“Measurement of cardiac function using pressure–volume conductance catheter 
technique in mice and rats,” Nat Protoc, vol. 3, no. 9, pp. 1422–1434, 2008. 



22 

[31] S. Land, W. E. Louch, S. A. Niederer, J. M. Aronsen, G. Christensen, I. 
Sjaastad, O. M. Sejersted, and N. P. Smith, “Beta-Adrenergic Stimulation 
Maintains Cardiac Function in Serca2 Knockout Mice,” Biophysical Journal, 
vol. 104, no. 6, pp. 1349–1356, Mar. 2013. 

[32] O. H. Cingolani and D. A. Kass, “Pressure-volume relation analysis of mouse 
ventricular function,” AJP: Heart and Circulatory Physiology, vol. 301, no. 6, 
pp. H2198–H2206, Dec. 2011. 

[33] A. D. McCulloch, B. H. Smaill, and P. J. Hunter, “Regional left ventricular 
epicardial deformation in the passive dog heart,” Circulation Research, vol. 64, 
no. 4, pp. 721–733, Apr. 1989. 

[34] F. C. P. Yin, R. K. Strumpf, P. H. Chew, and S. L. Zeger, “Quantification of the 
mechanical properties of noncontracting canine myocardium under simultaneous 
biaxial loading,” Journal of Biomechanics, vol. 20, no. 6, pp. 577–589, 1987. 

[35] S. Dokos, B. H. Smaill, A. A. Young, and I. J. LeGrice, “Shear properties of 
passive ventricular myocardium,” Am J Physiol Heart Circ Physiol, vol. 283, no. 
6, pp. H2650–2659, Dec. 2002. 

[36] R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. 
P. Sethna, “Universally Sloppy Parameter Sensitivities in Systems Biology 
Models,” PLoS Computational Biology, vol. 3, p. 189, 2007. 

[37] S. Marchesseau, H. Delingette, M. Sermesant, R. Cabrera-Lozoya, C. Tobon-
Gomez, P. Moireau, R. M. Figueras i Ventura, K. Lekadir, A. Hernandez, M. 
Garreau, E. Donal, C. Leclercq, S. G. Duckett, K. Rhode, C. A. Rinaldi, A. F. 
Frangi, R. Razavi, D. Chapelle, and N. Ayache, “Personalization of a cardiac 
electromechanical model using reduced order unscented Kalman filtering from 
regional volumes,” Medical Image Analysis, vol. 17, no. 7, pp. 816–829, Oct. 
2013. 

[38] P. Moireau, D. Chapelle, and P. L. Tallec, “Joint state and parameter estimation 
for distributed mechanical systems,” Computer Methods in Applied Mechanics 
and Engineering, vol. 197, no. 6–8, pp. 659–677, Jan. 2008. 

[39] A. Imperiale, A. Routier, S. Durrleman, and P. Moireau, “Improving efficiency 
of data assimilation procedure for a biomechanical heart model by representing 
surfaces as currents,” in Functional Imaging and Modeling of the Heart, 
Springer, 2013, pp. 342–351. 

[40] J. T. Kowallick, F. Edelmann, J. Lotz, P. Lamata, and A. Schuster, “Imaging 
Diastolic Dysfunction with Cardiovascular Magnetic Resonance,” Journal of 
Cardiology and Therapy, vol. 1, no. 4, pp. 58–64, Oct. 2014. 

[41] J. C. Walker, M. B. Ratcliffe, P. Zhang, A. W. Wallace, B. Fata, E. W. Hsu, D. 
Saloner, and J. M. Guccione, “MRI-based finite-element analysis of left 
ventricular aneurysm,” Am J Physiol Heart Circ Physiol, vol. 289, no. 2, pp. 
H692–H700, Aug. 2005. 

[42] W. Shi, X. Zhuang, H. Wang, S. Duckett, D. V. N. Luong, C. Tobon-Gomez, K. 
Tung, P. J. Edwards, K. S. Rhode, R. S. Razavi, S. Ourselin, and D. Rueckert, 



23 

“A comprehensive cardiac motion estimation framework using both untagged 
and 3-D tagged MR images based on nonrigid registration,” IEEE Trans Med 
Imaging, vol. 31, no. 6, pp. 1263–1275, Jun. 2012. 

[43] MATLAB, version 7.7.0 (R2008b). Natick, Massachusetts: The MathWorks Inc. 

[44] K. Sun, N. Stander, C.-S. Jhun, Z. Zhang, T. Suzuki, G.-Y. Wang, M. Saeed, A. 
W. Wallace, E. E. Tseng, A. J. Baker, D. Saloner, D. R. Einstein, M. B. 
Ratcliffe, and J. M. Guccione, “A Computationally Efficient Formal 
Optimization of Regional Myocardial Contractility in a Sheep with Left 
Ventricular Aneurysm,” J Biomech Eng, vol. 131, no. 11, p. 111001, Nov. 2009. 

[45] S. Land, S. Niederer, J. M. Aronsen, E. K. S. Espe, L. Zhang, W. E. Louch, I. 
Sjaastad, O. M. Sejersted, and N. Smith, “An Analysis of Deformation 
Dependent Electromechanical Coupling in the Mouse Heart,” J Physiol, May 
2012. 

[46] T. Usyk, R. Mazhari, and A. D. McCulloch, “Effect of Laminar Orthotropic 
Myofiber Architecture on Regional Stress and Strain in the Canine Left 
Ventricle,” Journal of Elasticity, vol. Volume 61, 2000. 

[47] H. Schmid, M. P. Nash, A. A. Young, and P. J. Hunter, “Myocardial Material 
Parameter Estimation---A Comparative Study for Simple Shear,” J. Biomech. 
Eng., vol. 128, no. 5, pp. 742–750, Oct. 2006. 

[48] D. Nordsletten, M. McCormick, P. J. Kilner, P. Hunter, D. Kay, and N. P. 
Smith, “Fluid–solid coupling for the investigation of diastolic and systolic 
human left ventricular function,” International Journal for Numerical Methods 
in Biomedical Engineering, vol. 27, no. 7, pp. 1017–1039, Jul. 2011. 

 



24 

Figure legends 

 

Fig. 1 a) Sketch of experimental setup for echo measurements; b) Mouse heart with cannula and echo 

recorder; c) placement of long-axis views of the heart (45 degree rotation between views, probe placed 

apically to the heart); d) placement of short-axis views (2 mm vertical spacing, probe placed at the side of 

the heart)  
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Fig. 2 Echo recordings of a left ventricle excised from a mouse, at zero pressure (left) and passively 

inflated to 1.44 kPa (right). Particle paths during inflation, estimated by speckle tracking, are shown as 

red lines (the same paths are shown in both left and right images for reference). Red circles mark 

segmentation points of the inner and outer walls at the respective pressures, so that the left and right 

images have the starting and ending positions circled, respectively. Image dimensions are 12 mm × 11 

mm (long axis) and 12 mm × 11 mm (short axis). 
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Fig. 3 Workflow for generating cubic Hermite (CH) meshes. Material points were followed by speckle 

tracking from different views and aligned into quadratic interpolated meshes (Q-mesh). The zero pressure 

CH mesh (CH1) was built by fitting the fibre field (yellow lines) to the binary mask of the Q-mesh 

corresponding to zero pressure (Q1) [21]. Then we mapped all Gauss point positions back to Q1 and 

calculated their displacements corresponding to the various pressures. These displacements were used 

together with the CH1 mesh to build cubic Hermite meshes for the various pressures [24]. The CH1 mesh 

was used as reference configuration for the simulation, while the other CH meshes constituted the 

experimental measured configurations for the various pressures 
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Fig. 4 Cubic Hermite interpolated meshes of the zero pressure (left) and maximal pressure (1.44 kPa) 

configuration (right) based on the deformation field captured by experiments and speckle tracking. The 

nodes in the basal plane were constrained such that no material points contained on the basal surface were 

allowed to move in the z direction. The endocardial basal node at the centre of the free wall (red dot) was 

not allowed to move at all, while one at the middle of the septum (green dot) was only allowed to move in 

the radial direction. Yellow lines indicate fibre angles fitted from DTI data 
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Fig. 5 The objective function based on aggregated geometry measures (equation (7)) was more precise in 

identifying a narrow set of well-fitting parameter scenarios, compared to the objective function based on 

node displacements (equation (6)). Lines show empirical cumulative distribution functions, i.e. the 

proportion of simulated parameter scenarios for which the objective function was less than the value 

given by the horizontal axis. Color shading for the objective function value is used for comparison with 

Fig. 6, Fig. 7 and Fig. 8.  
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Fig. 6 Node positions made a poor goodness-of-fit criterion (equation (6)) for matching simulations (thin 

lines colored with the same color scale used in Fig. 5) to observation (thick red line). Compliance is 

unreasonably low for many of the parameter scenarios that give low values of this objective function. 
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Contrast with the corresponding plot (Fig. 7a) for the other objective function (equation (7)), where the 

best-fitting scenarios cluster more tightly around the experimental results. White dots include 

unphysiological pressure levels that were omitted in computing the objective function. Note that this plot 

shows the increase in volume as a result of imposed pressure, and so is transposed relative to the 

traditional P-V loop plot.  
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Fig. 7 Comparison of whole-organ geometrical characteristics (see text) as a function of left ventricular 

pressure (LVP), between experimental data (red) and simulated data, using a goodness-of-fit measure 

based on whole-organ phenotypes (equation (7)). Color indicates the value of the objective function 

(equation (7)) relative to the minimum value (color scale as in Fig. 5 and Fig. 6). Geometric 

measurements are shown as differences from the zero-pressure values of volume = V0 = 58.1 μL, long-

axis diameter = LA0 = 6.88 mm, short-axis diameter = SA0 = 3.39 mm. Panel a) contrasts with Fig. 6. 

White dots indicate unphysiological pressure levels that were omitted in computing the objective 

function. The observed experimental relationship between pressure and volume was near-linear, in 

agreement with in vivo PV loop data (see references in text) 
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Fig. 8 Projections of the objective function onto two-dimensional slices of the stiffness-parameter space. 

Each panel shows, conditional on the two parameters named on the axes, the best fit (as defined in eq. 

(7)) among all combinations of the remaining parameters. Black dots indicate simulated parameter sets; 

red dot shows the best-fitting parameter combination among the simulations. Diagonal line shows 1:1 

ratio of parameters for reference. Parameter scenarios outside the displayed axis limits were also run, 

spanning the full parameter ranges reported in Table 1, but these did not fit well and are omitted here for 

clarity. 
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Table 1: Studies estimating the parameters in the Guccione and Costa material laws. For the current study, parentheses show the range of each parameter among scenarios that fit 

within a 25% increase from the minimum value of the objective function (i.e. least lack-of-fit). The Costa law is a generalization of the Guccione law, with separate coefficients 

for each term in the parentheses in Eq. (5). See Supplementary Figure S1 for a visualization of the stress-strain relationships corresponding to these parameter scenarios. ED=End 

Diastole, ES=End Systole, PV=Pressure Volume, MVO=Mitral Valve Opening 

Study  Experiment  Reference  

Configuration 

Recording Time-points  

used 

Species a (kPa) 
1b  2b  3b  

Guccione law:          

[10]* Passive inflation Cylinder PV-curves,  

implanted markers 

5 Rat 

Dog 

2.2 

2.4 

9.2 

26.7 

2.0 

2.0 

3.7 

14.7 

[8] Epicardial suction Zero pressure Tagged MRI 3 Dog 0.10-1.0 39.5-93.0 6.1-61.6 3.1-73.1 

[14] Passive inflation Zero pressure Tagged MRI 5 Pig 3.0 11.1 1.8 10.0 

[41] In vivo MVO Tagged MRI 2 (ED, ES) Sheep 0.12-0.35 9.2-67.1 5.0-26.6 9.3-21.6 

[6] Passive inflation Low pressure Tagged MRI 5 Pig 0.07-0.79 8.0-83.4 6.1-36.4 8.2-62.4 

[44] In Vivo MVO Tagged MRI 2 (ED, ES) Sheep 0.95 49.3 19.2 17.4 
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[9]* In Vivo MVO Tagged MRI, pressure wire 2 (MVO, ED) Dog 1.7 14.3 4.5 0.76 

[24] In Vivo Zero pressure Tagged MRI, pressure wire 2 Human 0.3 41.7 9.1 51.5 

[45] Passive inflation Mid Diastole  PV-curves 3 Mouse 1.1 8.0 2.0 3.7 

[15]* In Vivo Calculated Tagged MRI, pressure wire 4-6 Human 2 19.3 10.7 12.8 

Costa law#:          

[46]* In vivo Ellipsoid Implanted markers 2 (ED, ES) Dog 1.8 6.0 3.0-12.0 3.0-7.0 

[47] Shear tests Unstressed Tissue block Several Pig 0.22 42.5 7.8-18.6 10.9-11.0 

[7] Shear tests Unstressed Tissue block Several Pig 0.26 37.2 9.1-18.9 12.0 

[48] Passive inflation Calculated PV-curves Several Human 0.3 39.0 4.2-7.6 12.8-17.2 

          

Current study Passive inflation Zero pressure Echocardiography 8 Mouse 3.1 (2.0-

5.6) 

5.0 (2.7-

7.0) 

3.7 (2.1-

5.2) 

2.6 (1.5-

6.0) 

* These studies used a definition of a that was twice the one used in the other studies. Estimates in this table have been halved to make them directly comparable with the others. 

# The orthotropic Costa law has three parameters in place of b2 and two in place of b3. The values in the b2 and b3 columns for Costa-law studies show the variability between 

these non-isotropic coefficients. 
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Supplementary Figure 
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Nordsletten et al. (2011) (human)
Xi et al. (2011) (human)
Xi et al. (2012) (human)
Omens et al. (1993) (dog)
Usyk et al. (2000) (dog)
Okamoto et al. (2000) (dog)
Wang et al. (2009) (dog)
Augenstein et al. (2005) (pig)
Augenstein et al. (2006) (pig)
Schmid et al. (2006) (pig)
Schmid et al. (2008) (pig)
Walker et al. (2005) (sheep)
Sun et al. (2009) (sheep)
Omens et al. (1993) (rat)
Land et al. (2012) (mouse)
Current study (mouse)

 

Fig. S1: Fibre stress- strain relationships from Guccione and Costa law parameter estimates in literature 

(Table 1). Color indicates species: black=human, red=dog, blue=pig, cyan=sheep, yellow=rat, green=mouse. 

Identically colored and marked curves are estimates for different individuals from one single publication 
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