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Abstract

For electricity market participants trading in sequential markets with differences in price

levels and risk exposure, it is relevant to analyze the potential of coordinated bidding. We

consider a Nordic power producer who engages in the day-ahead spot market and the hour-

ahead balancing market. In both markets, clearing prices and dispatched volumes are un-

known at the time of bidding. However, in the balancing market, the market participant

faces an additional risk of not being dispatched. Taking into account the sequential clear-

ing of these markets and the gradual realization of market prices, we formulate the bidding

problem as a multi-stage stochastic program. We investigate whether higher risk exposure

may cause hesitation to bid into the balancing market. Furthermore, we quantify the gain

from coordinated bidding, and by deriving bounds on this gain, assess the performance of

alternative bidding strategies used in practice.

Keywords: OR in energy, stochastic programming, scenario generation, electricity

markets, bidding

1. Introduction

With 73% of the total physical power exchange in the Nordic region being traded at Nord

Pool in 2011 ([33]), this is Europe’s largest and most liquid market place for electricity. More

specifically, Nord Pool operates the day-ahead spot market Elspot for the physical exchange

of production and consumption. This market covers Norway, Sweden, Denmark, Finland and

Estonia, and had 350 members and an impressive turnover of 294.4 TWh in 20111.
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1In comparison, the intra-day adjustment market Elbas, which is likewise operated by Nord Pool, had 100

members and a turnover of only 2.7 TWh.



Although the spot market facilitates day-ahead balancing of expected production and con-

sumption, real-time imbalances may still occur. It is the responsibility of the local electricity

system operator, e.g. in Norway, Statnett, in Sweden, Svenska Kraftnät, and in Denmark,

Energinet.dk, to ensure the physical balancing of supply and demand by activation of so-

called balancing or regulating power. There exists a common Nordic market for regulating

power, referred to as the balancing market. Regulating power can therefore be activated any-

where in the Nordic region, although each transmission system operator clears the market

locally. The balancing market has few members, e.g. in Denmark only 6. Despite a significant

total supply of regulating power, total demand is much larger, which may be explained by

a hesitation to enter this market2. Furthermore, the need for supply of balancing services

is expected to increase with the increasing growth in fluctuating renewable production, as

pointed out by e.g. [19, 20].

The above electricity market design applies not only in the Nordic region, but analogies

to day-ahead spot and near real-time balancing markets are found in e.g. the Netherlands

and Portugal/Spain, although with different bidding rules and market setups.

For electricity market participants able to engage in sequential markets such as the Nordic

spot and balancing markets, it is relevant to analyze the potential of coordinated bidding.

Nevertheless, a hesitation to enter the balancing market can sometimes be observed in prac-

tice. This motivates the following research questions: Can the hesitation be explained by

differences in price levels and risk exposure between the two markets? Is it profitable to hold

back capacity in the spot market to facilitate subsequent offering of up regulation, or to put

forward capacity in the spot market such as to offer down regulation? If so, what is the gain

from doing so?

To answer these questions, we consider a power producer who trades in a day-ahead

spot market and an hour-ahead balancing market. In both markets, clearing prices and

dispatched volumes are unknown at the time of bidding. However, in the balancing market,

the market participant faces an additional risk of not being dispatched. Taking into account

the sequential clearing of these markets and the gradual realization of market prices, we

formulate the bidding problem as a multi-stage stochastic program.

Our contribution is three-fold:

• We develop a multi-stage stochastic programming model for coordinated bidding into

two sequential markets, taking into account market price uncertainty and existing mar-

ket rules. This model can be used for market exchange irrespective of the production

2It should be taken into account that part of the Danish demand for regulating power is usually covered
by import from Norway and Sweden.
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or consumption technology.

• When generating market price scenarios, we put efforts into preserving autocorrelations

and cross-correlations. Since separate scenario sampling and reduction may alter cor-

relations, we alternate between the two methods in a stage-wise fashion.

• To assess the performance of alternative bidding strategies used in practice, we derive

bounds on the gain from coordinated bidding. These bounds can be computed without

actually solving the multi-stage stochastic coordination problem.

The paper is organized as follows. Section 2 first provides an overview of electricity

market bidding in the literature. We proceed to introduce the Nordic electricity markets,

including the spot and balancing markets in Section 3, and formulate a multi-stage stochastic

programming model for coordinated bidding into these markets in Section 4. Section 5 is

concerned with the generation of market price scenarios that serve as input to the stochastic

programming model. We derive bounds on the gain from coordinated bidding in Section 6,

and numerically quantify this gain in Section 7. Section 8 concludes our analysis.

2. Electricity market bidding in the literature

The problem of optimal electricity market bidding is an optimization problem under

uncertainty, given that the outcome of market clearing is unknown at the time of bidding.

Naturally, the formulations of and solutions to the bidding problem found in the literature

reflect the variety of approaches to optimization under uncertainty.

One strand of literature is based on optimal control and dynamic programming, and focus

on the characterization and derivation of closed-form solutions to the bidding problem. An

example is [1] that formulates a non-linear control problem and finds necessary conditions

for optimality. In their formulation, the authors make use of a so-called market distribution

function, representing the probability that a generator is not fully dispatched at a given bid

price and volume. For a price-taker, this is equivalent to the probability that the bid price

exceeds the realized market price at a given volume, which is also what we use. Whereas

an efficient approach to solving the non-linear problem remains an open question, [30] de-

rives optimality conditions for a hydroelectric reservoir with continuous output range, and

solves the bidding problem by a discretization of this range and the application of dynamic

programming. A similar approach is taken by [38] that likewise finds offer curves for hy-

dro reservoirs, and by [39] that decomposes the hydropower optimization into an inter-stage

scheduling problem and an intra-stage bidding problem. In general, it is difficult to handle

complex constraints and multiple state variables by the optimal control approaches, and the

bidding formulations may often account for operational restrictions only through the reward
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function, take into account only one market, and do not include the costs of non-compliance

with the market commitments.

In contrast, mathematical programming formulations easily allow for various constraints,

and furthermore, through the extension to stochastic programming, for multiple sources of

uncertainty. Examples of bidding models for price-taking electricity producers are [2, 28,

31, 10, 26, 8]. These models include many details such as ramping restrictions, capacity

limits, storage balances, start-up costs, risk constraints etc. Reviews on optimal electricity

scheduling and market exchange have been given by [41, 25].

Here, we extend the work in [8] to sequential markets. This problem has already been

addressed by [37] that considers bidding into three sequential short-term markets. For the

Nordic markets, contributions include [11] that considers production scheduling with a view

towards the spot, balancing and futures markets, and [7] that focus on the day-ahead Elspot

market and intra-day Elbas market. To the best of our knowledge, very few have explicitly

addressed the problem of coordinated bidding into the spot and balancing markets, the

only example we could find being [35]. Whereas [11] models only price insensitive bids,

[35] assumes smooth bidding curves instead of the piece-wise linear curves prescribed by

the market rules, and [37] does not distinguish between the process of bidding into the

balancing market (before market clearing) and the settling of imbalances in this market

(after market clearing). The major difference to previous work, however, is our modelling of

market dynamics. Existing market models are static, making the sequential bidding problem

two-stage or three-stage. In contrast, we capture the dynamics of the two markets in a multi-

stage model such that spot market bidding decisions are day-ahead and balancing market

decisions are hour-ahead.

With many details and the inclusion of uncertainty, mathematical programming models

can be computationally hard and time consuming. Efforts to efficiently solve the bidding

problem have been made by [23] that resorts to Bender’s decomposition, and [29] and [27]

that apply approximate dynamic programming to integrate scheduling and bidding decisions

for energy storage.

As an alternative to approximating the stochastic programming problem by cutting planes

or simulation, we suggest to reduce computation time through careful generation of scenarios.

Variations of scenario generation methods from the literature include [22, 21] that propose

moment/property matching by optimization or simulation. Another commonly used ap-

proach is to model the underlying stochastic processes, simulate a large number of sample

paths/scenarios, and subsequently reduce this number by clustering. Central references on

this method are [4, 16, 17] for two-stage programs, [18] for multi-stage programs, and [14] for

applications to power planning problems. For the particular case of bidding into sequential
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electricity markets, see [36] that includes the balancing market. Our scenario generation

likewise relies on scenario sampling and reduction. However, whereas the existing literature

often applies the two methods separately, we alternate between scenario sampling and reduc-

tion in a stage-wise fashion with the aim to better preserve the statistical properties of the

stochastic processes.

From a practical point of view, there may be further challenges in implementing and

solving the coordination problem (e.g. since this requires modeling software). This is finally

our motivation for relating its solutions to alternative bidding strategies used in practice, and

assessing the gain from coordination without actually solving it.

3. The Nordic short-term power markets

We consider two sequential markets common in many electricity market designs: A day-

ahead market and an hour-ahead market. In the Nordic region, these markets are the spot

market Elspot and the balancing market.

The day-ahead spot market is for physical trading of production and consumption. As the

name suggests, bidding takes place a day ahead of operation, when the market participants

submit a set of price-volume bids for every hour of the following operation day (disregarding

so-called block bids and flexible bids). For every such hour, the market interprets the set of

bids as a points on a bidding curve. At closure around noon, the market is cleared, i.e. the

demand and supply curves from all market participants are aggregated and the equilibrium is

determined. Usually, bids are dispatched in merit order until aggregated demand and supply

matches (however, taking into account transmission constraints). Bids can either be fully

or partially (the marginal bid) accepted, and the marginal bid determines the market price

(in the absence of bottlenecks). All trades are settled at this market price. Upon market

clearing, the market prices for the following operation day are announced and the market

participants are notified of their dispatch. The market participants are committed to comply

with their dispatched volumes, and hence must produce or consume accordingly.

Nevertheless, due to unforeseen events such as the inability to perfectly predict supply

or demand or deliberate (strategic) non-compliance with the market commitments, expected

and realized production and consumption may not fully match. Usually, an electricity system

operator is responsible for ensuring physical balance of the power system. Hence, when

imbalances occur, the system operator activates additional supply or demand by buying or

selling so-called up and down regulating power. In situations of negative system imbalances,

i.e. if real-time consumption exceeds production, up regulation (an increase in supply or a

decrease in demand) is activated. Likewise, in situations of positive system imbalances, down

regulation (a decrease in supply or an increase in demand) is activated.
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Up and down regulation is traded in the hour-ahead market, here referred to as the

balancing market. This market operates along many of the same principles as the spot

market. Thus, for every hour of an operation day, the market participants submit a set of

price-volume bids for up and down regulating power. However, bidding takes place during the

operation day, with market closure being immediately prior to the delivery hour. This makes

the market accessible only to agents that can quickly adjust production or consumption, also

known as balance responsible parties. Furthermore, although bidding is on an hourly basis,

the market clearing and subsequent dispatch occur continuously throughout the operation

day, and are done by the system operator irrespective of the origin of demand for regulation.

The total volume dispatched, or equivalently the aggregated net demand for regulation,

during the delivery hour determines the sign of the system imbalance, i.e. whether the system

has generally been up and down regulated. This is used to establish the hourly balancing

market price. In situations where the system has been up regulated, it is the price of the

most recently activated up regulation bid (as above, in the absence of bottlenecks). Likewise,

in situations where the system has been down regulated, it is the price of the most recently

activated down regulation bid. In an up regulated system, the balancing price is automatically

higher than the spot price, since less expensive bids have already been dispatched in the

spot market, and vice versa in a down regulated system. For this reason, the sign of the

system imbalance is revealed from the spot and balancing market prices. If both up and

down regulation bids are dispatched within the same delivery hour, special pricing principles

apply.

For market participants who do not comply with their dispatched volumes in the spot

and balancing markets (in case of trading in both markets), imbalances are penalized. In

contrast to the process of balancing market bidding, imbalances are settled following the

delivery hour, when realized production and consumption has been metered. Depending on

the market design, a one-price or two-price balancing mechanism applies in the settlement.

Under a one-price system, metered imbalances, whether positive or negative, are charged

or paid the balancing market price. If a two-price system has been implemented, negative

imbalances are charged the balancing market price if the overall system needs up regulation,

and otherwise the lower spot price. Similarly, positive imbalances are paid the balancing

market prices if the system is in need of down regulation, and otherwise the higher spot

price. Clearly, this mechanism has been designed to rule out incentives to deliberately create

imbalances, and instead encourage market participants to help the system. As an example,

in Western Denmark, the one-price system has been implemented for consumption, whereas

the two-price system applies to production.

We consider a market participant who submits bidding curves to the spot and balancing
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markets over a time horizon of a day. The day is discretized into hourly time intervals accord-

ing to the bidding practice in both markets. Although regulation is activated continuously

throughout the delivery hour, we assume that only either up or down regulation is activated

within the same hour, which makes it possible to settle all accounts on an hourly basis. The

following assumptions hold for both markets. When the market participant can decide on

both bid prices and volumes, the problem is non-linear, and we therefore discretize the price

range, and fix a number of bid prices. Moreover, although we will later relax this assumption,

we initially assume that the market participant take market prices as given. This makes it

possible to determine a priori whether a bid is accepted or rejected. We assume that all bids

are either fully accepted or rejected (i.e. the market participant never submits the marginal

bid). Finally, we use system-wide market prices, and ignore any transmission constraints and

potential bottlenecks.

As indicated above, both spot and balancing market prices are unknown at the time

(day-ahead) of bidding into the spot market for the following operation day. However, once

the spot market has cleared, spot market prices are revealed. Likewise, the balancing market

price is unknown at the time (hour-ahead) of bidding into the balancing market for the

following hour of operation, but is revealed once this market has cleared. Finally, both spot

and balancing market prices are known when imbalances are settled following the hour of

operation. Taking into account the sequential clearing of the markets, we formulate the

bidding problem as a multi-stage stochastic program. The first stage consists of spot market

bidding, stages 2–25 of balancing market bidding, and stages 3–26 consists of operation and

settlement of imbalances. By assuming a discrete distribution of market prices, the gradual

realization of uncertainty can be represented by a so-called scenario tree.

4. The bidding problem

We use the following notation for the bidding problem. A 24 hour operation day is

divided into hourly time intervals [t− 1, t], t = 1, . . . , T with T = 24, where the interval [0, 1]

represents the hour 00:00–01:00, [1, 2] represents the hour 01:00–02:00 etc. In the following,

however, we refer to the time interval [t− 1, t] simply as t.

We denote the random spot and balancing market prices in time interval t by ρt and

µt, respectively. Accordingly, we assume that {ρt, µt}Tt=1 is a stochastic process on some

probability space (Ω,F ,P), where Ω is the sample space, F is the σ-algebra, and P is the

probability measure. This probability space is equipped with a filtration given by the σ-fields

F spot0 := {∅,Ω} ⊆ F spot1 := F reg0 ⊆ F reg1 ⊆ · · · ⊆ F regT := F , where F spot1 is generated by

{ρt}Tt=1, and F regt is generated by {ρt}Tt=1 and {µt′}tt′=1 for t = 1, . . . , T . Hence, the σ-fields

F spot0 and F spot1 represent the information available before (first stage) and after (second stage)
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the day-ahead spot market clearing, respectively, and likewise F regt−1 and F regt represent the

information available before (stages 2–25) and after (stages 3–26) the hour-ahead balancing

market clearing in time interval t, for t = 1, . . . , T .

We represent the decisions of the sequential bidding problem by the multi-dimensional

process {xspott ,yspott ,xregt ,yregt , zt,qt}Tt=1, where the processes (some of which are also multi-

dimensional) {xspott }Tt=1 and {xregt }Tt=1 are the volumes bid in the day-ahead spot market

and the hour-ahead balancing market, respectively, {yspott }Tt=1 and {yregt }Tt=1 are the corre-

sponding volumes dispatched, {zt}Tt=1 represent the imbalances and {qt}Tt=1 are the actual

net production levels (a positive level indicates production, a negative level consumption).

As for market prices, the sequence of decisions in the bidding problem forms a stochastic

process on (Ω,F ,P). We assume that this process is adapted to the filtration of σ-fields,

or equivalently, that the decisions are non-anticipative. Non-anticipativity implies that deci-

sions made at a given stage depend only on the information available in this stage. Hence, the

decisions {xspott }Tt=1 and {yspott }Tt=1 are made before (first stage) and after (second stage) the

observation of spot prices {ρt}Tt=1, respectively, and likewise the decisions xregt and yregt , zt,qt

are made before (stages 2–25) and after (stages 3–26) the observation of the balancing price

ρt in time interval t, for t = 1, . . . , T . Technically speaking, we assume that {xspott }Tt=1 is

F spot0 -measurable, {yspott }Tt=1 is F spot1 -measurable, xregt is F regt−1-measurable and yregt , zt,qt are

F regt -measurable for t = 1, . . . , T .

For computational reasons, we assume that the process {ρt, µt}Tt=1 follows a discrete dis-

tributions with finite support, which we refer to as a set of scenarios. With the above

assumptions, the scenarios form a tree with a finite set of nodes. Although we imple-

ment the nodal formulation of the multi-stage stochastic programming problem, for ease

of exposition, we present the scenario formulation of the problem. Thus, we denote the

realizations of the random prices by {ρst , µst}Tt=1, s = 1, . . . , S and their corresponding prob-

abilities by πs, s = 1, . . . , S. We refer to the realizations and their probabilities as sce-

narios. The decisions of the bidding problem are assigned to scenarios accordingly, i.e.

{xspot,st ,yspot,st ,xreg,st ,yreg,st , zst ,q
s
t}Tt=1, s = 1, . . . , S, and we enforce the non-anticipativity ex-

plicitly by a set of linear constraints.

4.1. Spot market bidding

We consider both selling to and buying from the spot market such that the market

participant submits a supply or demand curve for every hour of the following operation

day. We assume that the bid prices are fixed, i.e. these are parameters, whereas the bid

volumes are decision variables. We let the discretization of the price range be indexed by

1, . . . , I. For a given hour t, the supply curve is then defined by the prices p+
it , i = 1, . . . , I,

where p+
it ≤ p+

i+1t and p+
1t = 0, p+

I+1t = +∞, and the volumes xspot,+,sit ≥ 0, i = 1, . . . , I, s =
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1, . . . , S (note that bid volumes are defined as the accumulated volumes at a particular bid

price. Occasionally, we may however also refer to a bid as the incremental volume). When

minimum and maximum bid volumes apply, we denote these by xmin and xmax, and include

the decision variables δ+,s
it ∈ {0, 1}, i = 1, . . . , I, s = 1, . . . , S such that δ+,s

it = 1, when

xspot,+,si+1t − xspot,+,sit > 0, and δ+,s
it = 0, when xspot,+,si+1t − xspot,+,sit = 0 (minimum and maximum

applies to incremental bid volumes). Likewise, for a given hour t, the demand curve is defined

by the prices p−it , i = 1, . . . , I, where p−it ≤ p−i−1t and p−0t = +∞, p−It = 0, and the volumes

xspot,−,sit ≥ 0, i = 1, . . . , I, s = 1, . . . , S. The same minimum and maximum bidding volumes

may apply, with the corresponding decision variables δ−,sit ∈ {0, 1}, i = 1, . . . , I, s = 1, . . . , S.

Obviously, if the producer could perfectly predict market prices, it would be unnecessary to

submit bidding curves. However, market prices are unknown at the time of bidding. Once

these become known, we can determine which (incremental) bids are accepted. For a given

hour t, we denote the total volumes dispatched by yspot,+,st , yspot,−,st ≥ 0, s = 1, . . . , S, so that

these decision variables represent the accumulated volume of accepted supply or demand

bids, respectively.

In the following, we present only the supply side constraints, and refer the reader to

Appendix A for the corresponding demand side constraints. Volumes bid are related to

volumes dispatched through the bidding curve. Depending on the market rules, this curve

may be a step-wise bidding curve, for which supply bids are accepted if the bid price is below

the market price. This implies that

yspot,+,st = xspot,+,sit , if p+
it ≤ ρst < p+

i+1t, i = 1, . . . , I, t = 1, . . . , T, s = 1, . . . , S. (1)

The market rules may alternatively prescribe a piece-wise linear bidding curve (this is the

case in the Nordic market), which is given by

yspot,+,st =
ρst − p+

it

p+
i+1t − p+

it

xspot,+,si+1t +
p+
i+1t − ρst
p+
i+1t − p+

it

xspot,+,sit , if p+
it ≤ ρst < p+

i+1t,

i = 1, . . . , I − 1, t = 1, . . . , T, s = 1, . . . , S,

and yspot,+,st = xspot,+,sIt if p+
It ≤ ρst . In case of both a step-wise and piece-wise linear bidding

curve, for a price-taker, we can determine a priori whether a bid is accepted or rejected, and

express the relation between volumes bid and volumes dispatched as a linear constraint. The

market rules usually require bidding curves to be monotone (e.g. that the supply curve is

non-decreasing) such that

xspot,+,sit ≤ xspot,+,si+1t , i = 1, . . . , I − 1, t = 1, . . . , T, s = 1, . . . , S. (2)

9



When minimum and maximum bid volumes apply, these constraints can be replaced by

xminδ+,s
it + xspot,+,sit ≤ xspot,+,si+1t ≤ xmaxδ+,s

it + xspot,+,sit ,

i = 1, . . . , I − 1, t = 1, . . . , T, s = 1, . . . , S.

To rule out speculation, and since the purpose of the spot market is the physical exchange

of power, we further impose the constraints that a market participant who is active only on

the supply side cannot sell more than full production capacity and cannot buy in the spot

market. We assume that similar constraints hold on the demand side (Note, however, that

some market participants may be active on both the supply and demand sides).

Now, the spot market bidding problem is two-stage, with bidding and dispatch taking

place before and after market clearing, respectively. We explicitly enforce this structure by

imposing the non-anticipativity constraints

xspot,+,sit = xspot,+,s
′

it , i = 1, . . . , I, t = 1, . . . , T, s, s′ = 1, . . . , S, (3)

and

yspot,+,sit = yspot,+,s
′

it , if (ρs1, . . . , ρ
s
T ) = (ρs

′

1 , . . . , ρ
s′

T ),

i = 1, . . . , I, t = 1, . . . , T, s, s′ = 1, . . . , S. (4)

Finally, for every hour of the operation day, the spot market profit is calculated as the

market price times total volume dispatched. Thus, the expected total daily spot market

revenue is

S∑
s=1

πs
T∑
t=1

ρst(y
spot,+,s
t − yspot,−,st ).

4.2. Balancing market bidding

As for the spot market, we consider both selling to and buying from the balancing market,

and hence the market participant submits a supply or demand curve for the following hour of

operation. We again assume that bid prices are fixed, and for ease of exposition, we use the

same discretization of the price range. For a given hour t, the volumes bid are represented

by the decision variables xreg,+,sit , xreg,−,sit ≥ 0, i = 1, . . . , I, s = 1, . . . , S, and the volumes

dispatched by yreg,+,st , yreg,−,st ≥ 0, s = 1, . . . , S. At the time of bidding into the balancing

market, the spot market price is known, but the balancing market price is unknown. Once

both the spot and balancing market prices become known, we can determine which bids are

accepted.
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We present only the up regulation constraints, and refer the reader to Appendix B for the

corresponding down regulation constraints. We confine ourselves to step-wise bidding curves

(the use of piece-wise bidding curves, however, follows along the same lines) and consider

the relation between volumes bid and volumes dispatched. In the balancing market, up

regulation bids are accepted if the bid price is below the market price and the system is up

regulated, which is revealed from the spot and balancing market prices. In situations where

the system is up regulated, the balancing market price is higher than spot price, and thus,

we have that

yreg,+,st =

x
reg,+,s
it , if p+

it ≤ µst < p+
i+1t and ρst ≤ µst

0, if µst < ρst

i = 1, . . . , I, t = 1, . . . , T, s = 1, . . . , S. (5)

Again, for a price-taker, we can determine a priori whether a bid is accepted or rejected. It

should be remarked that in the balancing market, the market participant faces an additional

risk of not being dispatched, if offering up regulating in situations of a positive system

imbalance. As above, the bidding curves must be monotone, and so

xreg,+,sit ≤ xreg,+,si+1t , i = 1, . . . , I − 1, t = 1, . . . , T, s = 1, . . . , S. (6)

Minimum and maximum bid volumes may also apply. To rule out excessive speculation, we

further impose the constraints that a market participant cannot buy or sell more balancing

power than available up or down regulating capacity (On the supply side, we define up

regulation capacity as production capacity in excess of the spot market dispatch and down

regulation capacity as the capacity dispatched in the spot market. We assume that similar

definitions hold on the demand side).

In balancing market bidding, bidding and dispatch likewise take place before and after

market clearing, respectively. However, whereas the spot market is day-ahead, the balancing

market is hour-ahead, making the balancing market bidding problem multi-stage. We enforce

this by the following non-anticipativity constraints

xreg,+,sit = xreg,+,s
′

it , if (ρs1, . . . , ρ
s
T , µ

s
1, . . . , µ

s
t−1) = (ρs

′

1 , . . . , ρ
s′

T , µ
s′

1 , . . . , µ
s′

t−1),

i = 1, . . . , I, t = 1, . . . , T, s, s′ = 1, . . . , S, (7)

and

yreg,+,sit = yreg,+,s
′

it , if (ρs1, . . . , ρ
s
T , µ

s
1, . . . , µ

s
t) = (ρs

′

1 , . . . , ρ
s′

T , µ
s′

1 , . . . , µ
s′

t ),
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i = 1, . . . , I, t = 1, . . . , T, s, s′ = 1, . . . , S. (8)

Based on balancing market prices and dispatched volumes, the expected total daily bal-

ancing market revenue can be calculated as

S∑
s=1

πs
T∑
t=1

µst(y
reg,+,s
t − yreg,−,st ).

.

4.3. Settlement of imbalances

Imbalances occur when total spot and balancing market commitments do not comply with

realized production and consumption. For a given hour t, positive and negative imbalances

are represented by the decision variables z+,s
t , z−,st ≥ 0, s = 1, . . . , S, respectively, and net

production by qst ≥ 0, s = 1, . . . , S. Since imbalances are settled following the delivery hour,

both spot and balancing market prices are known, and thus, the balancing costs are also

known at the time of settlement.

The settlement of imbalances is formulated as

z−,st − z+,s
t = yspot,+,st − yspot,−,st + yreg,+,st − yreg,−,st − qst , t = 1, . . . , T, s = 1, . . . , S. (9)

Positive and negative imbalances may, respectively, be charged or paid the balancing market

price. Under this one-price system, expected total daily balancing costs are

S∑
s=1

πs
T∑
t=1

µst(z
−,s
t − z+,s

t ).

A two-price system implies that imbalances are charged or paid the balancing market price

when these are of the same sign as system imbalances and otherwise the spot price. In this

case, balancing costs sum to

S∑
s=1

πs
T∑
t=1

(
max{µst , ρst}z

−,s
t −min{µst , ρst}z

+,s
t

)
.

For ease of notation, we denote balancing prices by γ1,−,s
t = γ1,+,s

t = µst under a one-price

system and by γ2,−,s
t = max{µst , ρst} and γ2,+,s

t = min{µst , ρst} under a two-price system.

4.4. The stochastic programming problem

We proceed to formulate the multi-stage stochastic programming problem of coordinated

spot and balancing market bidding under balancing price mechanism k for k = 1, 2.
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Since existing market rules (except for maybe the balancing price mechanism) apply

to any market participant, the bidding model can be used irrespective of the production

or consumption technology. However, bidding must be coordinated with operation for the

technology considered. For a general representation of the operational part of the problem,

we assume that gt captures the state of operation in time interval t, Ct(qt) denotes the

operating costs, and gt ∈ Xt(gt−1,qt) represents the operational constraints in time interval

t, including the relation between state of operation and net production.

The first stage of the bidding problem consists of day-ahead spot market bidding such as

to maximize expected future revenues from the actual spot market dispatch, i.e.

zk = max
{
E
[
Qspot1 (xspot1 , . . . ,xspotT )

∣∣∣F spot0

]
: (2)

}
.

In response to the realization of spot market prices, the second stage consists of hour-ahead

balancing market bidding such as to maximize the expected difference between future rev-

enues from actual balancing market dispatch and balancing costs, and so

Qspot1 (xspot1 , . . . ,xspotT ) = max
{ T∑

t=1

ρt(y
spot,+
t − yspot,−t )

+ E
[
Qreg1 (yspot1 , . . . ,yspotT ,xreg1 )

∣∣∣F reg0

]
: (1), (6)

}
,

where (6) applies to time interval 1.

Upon the realization of balancing market prices, the market participant aims to produce

or consume accordingly. If net production does not comply with the market commitments,

imbalances are settled. The process repeats such that stages 2–25 consists of hour-ahead

balancing market bidding, whereas production and consumption occur and imbalances are

settled in stages 3–26, i.e.

Qregt (yspot1 , . . . ,yspotT ,xregt ,gt−1) = max
{
µt(y

reg,+
t − yreg,−t )− (γk,−t z−t − γ

k,+
t z+

t )

− Ct(qt) + E
[
Qregt+1(yspot1 , . . . ,yspotT ,xregt+1,gt)

∣∣∣F regt

]
:

(5), (6), (9),gt ∈ Xt(gt−1,qt)
}
, t = 1, . . . , T,

where (5) and (9) apply to time interval t, (6) applies to time interval t+ 1 and QregT+1 := 0.

Using the same notation as above, the so-called deterministic equivalent is

zk = max
{ S∑

s=1

πs
T∑
t=1

(
ρst(y

spot,+,s
t − yspot,−,st ) + µst(y

reg,+,s
t − yreg,−,st )

13



− (γk,−,st z−,st − γk,+,st z+,s
t )− Ct(qst )

)
: (1)− (9),

gst ∈ Xt(gst−1, q
s
t ), g

s
t = gs

′

t , if (ρs1, . . . , ρ
s
T , µ

s
1, . . . , µ

s
t) = (ρs

′

1 , . . . , ρ
s′

T , µ
s′

1 , . . . , µ
s′

t ),

t = 1, . . . , T, s, s′ = 1, . . . , S
}
,

for k = 1, 2.

By taking into account operational aspects by linear or mixed-integer linear modeling, the

deterministic equivalent is a linear or mixed-integer linear program. It should be remarked

that the objective function and constraints of the bidding problem are separable with re-

spect to time periods. However, the operational constraints most likely introduces temporal

dependencies.

4.5. Relaxing the price-taker assumption

So far, we assumed that the market participant is a price-taker. This is a valid assumption

for many spot market participants, but may be questionable for the balancing market, where

market participants tend to be larger players. We therefore relax the price-taker assumption

by letting market prices respond linearly to the volumes dispatched. Denote by ρ̂nt and µ̂nt

the spot and balancing prices that realize if the producer or consumer does not participate

in the market. The spot price decreases with increased supply or decreased demand vol-

umes dispatched in the spot market, whereas the balancing price respond to both spot and

balancing market trades. Hence, we let

ρst = ρ̂st − αspot(y
spot,+,s
t − yspot,−,st ), t = 1, . . . , T, s = 1, . . . , S,

µst = µ̂st − βspot(y
spot,+,s
t − yspot,−,st )− βreg(yreg,+,st − yreg,−,st ), t = 1, . . . , T, s = 1, . . . , S,

where αspot, βspot, βreg > 0 are parameters. For simplicity, we incorporate the price response

only in spot and balancing revenues, and use ρ̂st and µ̂st in the constraints and for the calcu-

lation of balancing costs (Had we included variable prices in the constraints (1) and (5), the

model would no longer be linear). For 4αspotβreg > (βspot)2, the bidding problem becomes a

convex quadratic program.

Although we allow for price response in the following, for simplicity of notation, we denote

the prices ρst(y
spot,+,s
t , yspot,−,st ) and µst(y

spot,+,s−
t , y

spot,−,s−
t , yreg,+,st , yreg,−,st ) simply by ρst and µst .

4.6. Operation

The aim of the operational part of the problem is to produce or consume in accordance

with the market commitments, while complying with operational constraints and minimizing

14



costs. For simplicity, we assume that this problem is deterministic, and hence, disregard oper-

ational uncertainty such as reservoir inflow, wind power production, availability of generating

plants etc. We provide two examples.

4.6.1. Hydro-power

In hydro-power operation, the problem is to determine water releases from a network of

reservoirs such as to maximize the final value of water in storage subject to storage balancing

and capacity restrictions. We denote by j = 1, . . . , J the reservoirs, and assume for simplicity

that these are serially connected. The decision variables lsjt, v
s
jt ≥ 0, s = 1, . . . , S represent

the storage and discharge levels for a given hour t. Upper and lower bounds on storage and

discharge are denoted by the parameters lminj , lmaxj , vminj , vmaxj . Assuming constant water value

and electricity generation efficiency, these are denoted by Vj and ηj, respectively. Finally,

in addition to potential inflows from upstream reservoirs, we assume that all reservoirs have

external inflows and denote the inflow in hour t by νjt. Then, the operational part of the

problem is

max
{ S∑

s=1

πs
J∑
j=1

Vjl
s
jT :

J∑
j=1

ηjv
s
jt = qst , l

s
jt+1 = lsjt + νjt + vsj−1t − vsjt,

lminj ≤ lsjt ≤ lmaxj , vminj ≤ vsjt ≤ vmaxj ,

lsjt = ls
′

jt, , v
s
jt = vs

′

jt, if (ρs1, . . . , ρ
s
T , µ

s
1, . . . , µ

s
t) = (ρs

′

1 , . . . , ρ
s′

T , µ
s′

1 , . . . , µ
s′

t ),

j = 1, . . . , J, t = 1, . . . , T, s, s′ = 1, . . . , S
}
.

Note that the first set of constraints ensure compliance with the market commitments, and so

these commitments can be viewed as a type of demand. For further details on the modeling

of hydro-power operation, see for example [9].

4.6.2. Thermal generation

The thermal generation problem is concerned with the optimal operation of a number

of production units. We denote these units by j = 1, . . . , J . Production levels for a given

hour t are represented by the decision variables gsjt ≥ 0, s = 1, . . . , S, and their upper and

lower bounds by gminj , gmaxj . The variable operation cost is denoted by aj. As a result, the

operational part of the problem is

min
{ S∑

s=1

πs
T∑
t=1

J∑
j=1

ajg
s
jt :

I∑
j=1

gsjt = qst , g
min
j ≤ gsjt ≤ gmaxj ,

gsjt = gs
′

jt, if (ρs1, . . . , ρ
s
T , µ

s
1, . . . , µ

s
t) = (ρs

′

1 , . . . , ρ
s′

T , µ
s′

1 , . . . , µ
s′

t ),
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j = 1, . . . , J, t = 1, . . . , T, s, s′ = 1, . . . , S
}
.

As above, it should be remarked that the first set of constraints ensure compliance with the

market commitments. This problem may be further subject to ramping restrictions, reserve

constraints and include start-up costs.

5. Market price scenarios

We account for uncertainty in spot and balancing prices and for the sign of the system

imbalance. As already indicated, however, the sign of the imbalance is revealed by spot and

balancing prices, and so scenario generation reduces to describing a two-dimensional price

process.

Spot and balancing prices exhibit strong autocorrelations and cross-correlations. The

former are highly important for technologies with start-up costs, storage ability, ramping

restrictions or other temporal dependencies in the operational constraints, whereas the latter

are obviously relevant to market participants who engage in both the spot and balancing

markets. We therefore put efforts into preserving these correlations in the scenario generation.

We begin by fitting the two price processes. We describe spot and balancing prices by

autoregressive processes that capture their autocorrelations. Moreover, since spot prices are

known at the time of balancing market clearing, we include these as exogenous variables in

the balancing price process, and thereby also capture their cross-correlations.

The problem of electricity spot price modeling is a subject of extensive study in the

literature, see for example [32, 3, 13, 15], whereas the modeling of balancing market prices

is relatively unexplored, a few references being [40, 36, 24]. With only spot and balancing

price data available, structural analysis (e.g. the inclusion of exogenous variables such as

consumption) is infeasible. Like in most of the cited references, we instead fit autoregressive

models, although ignoring more complex characteristics such as jumps, regime switching and

volatility clustering. Prior to model fitting, we de-trend and de-seasonalize the data, using

hourly, daily and monthly seasonal dummies. We then adjust for non-stationarity in de-

seasonalized and de-trended market prices by applying hourly differencing (We also tested

logarithmic transformation of the data, which however, did not improve stationarity).

We fit spot prices to the SARIMA(2, 1, 0)× (1, 0, 1)24 process

(1− φspot24 L)24(1− φspot1 L− φspot2 L)(1− L)ρt = (1− θspot24 L)24εspott ,

where the L is the backshift operator, i.e. Lkρt = ρt−k, φ
spot
1 , φspot2 , φspot24 and θspot24 are model
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Table 1: Parameter estimates for the SARIMA and ARMAX processes fit to spot and balancing prices,
respectively.

parameters, and the innovations εspott , t = 1, . . . , T are independent and identically distributed

N(0, (σspot)2). Several other model specifications were tested, but none were found superior

to this model. The model describes hourly and daily cycles in the data (which are mainly due

variations in consumption patterns). The best fit to balancing prices is the ARMAX(1, 0, 0)

process, including exogenous spot prices

(1− φreg1 L)(µt − ψregρt) = εregt ,

where ψreg and φreg1 are model parameters, and the innovations εregt , t = 1, . . . , T are identi-

cally distributed N(0, (σreg)2), mutually independent and independent of the above innova-

tions.

In our Nordic case study, we use historical spot and balancing prices from January 1

2009–December 31 2010 and obtained from the Danish transmission system operator [5].

Parameter estimates for the SARIMA and ARMAX models can be found in Table 5. To test

the validity of the fitted models, we check that the residuals are independent and identically

Normally distributed with zero mean and constant variance. Moreover, we check the goodness

of fit with the following test statistics. The R-square, the MAE (mean absolute error) and

RMSE (root mean square error) are 0.79, 2.42 Euro/MWh, and 4.12 Euro/MWh for spot

prices, and 0.50, 6.44 Euro/MWh, and 17.86 Euro/MWh for balancing prices. We consider

this to be a reasonable fit.

We proceed with scenario tree sampling and reduction. Whereas the existing literature

applies the two methods separately, we alternate between scenario sampling and reduction

in a stage-wise fashion. By sampling current prices conditional on previous ones, we preserve

autocorrelations for both spot and balancing prices. Likewise, by sampling balancing market

prices conditional on spot prices, we preserve cross-correlations. To accurately describe the

distribution of the two-dimensional price process, we generate a large fan of samples, and

for computational reasons, we subsequently reduce this fan. The idea is, however, to apply

sampling and reduction in a stage-wise fashion in order not to alter correlations too much

in the process. Furthermore, for a multi-stage problem, separate scenario tree sampling and

reduction require the storing of an enormous number of scenario samples prior to reduction,

whereas with the stage-wise approach it is sufficient to store the scenario samples for the

current stage.

Recall that S denotes the total number of spot and balancing price scenario paths. We

denote by Sspot the number of spot price scenario paths generated, and by Sreg the number
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of balancing price scenario values generated conditional on a previous spot and balancing

price scenario path. The stage-wise scenario generation approach can then be summarized

as follows:

• Sample a fan of spot price scenario paths (vectors), and reduce this fan by clustering

to obtain (ρs1, . . . , ρ
s
T ), s = 1, . . . , Sspot. Keep the Sspot spot price scenario paths.

For t = 1, . . . , T :

• Conditional on each previous spot and balancing price scenario path (ρs1, . . . , ρ
s
T , µ

s
1, . . . ,

µst−1), sample a fan of balancing price scenario values (scalars), and reduce this fan by

clustering to obtain µs
′
t , s

′ = 1, . . . , Sreg.

• Further reduce the total number of balancing price scenario values Sspot × (Sreg)t at

time t by keeping only the Sspot× lt largest clusters, where l is such that Sspot× lT = S.

Note that we sample and cluster spot price scenario paths (vectors), since an entire spot price

path is realized upon day-ahead market clearing (recall that the day-ahead market clears once

a day), whereas we sample and cluster balancing price scenario values (scalars), since only

a single balancing price is realized upon intra-day market clearing (recall that the intra-day

market clears once an hour). The approach is illustrated in Figure 5.

Figure 1: The scenario generation method. The arrows show the order of scenario sampling, clustering and
further reduction. The time intervals of the lower axis show the hours of an operation day. First, spot
price scenario paths are sampled for every hour of the operation day and subsequently clustered. Second,
balancing price scenario values are sampled for the first hour of the operation day and subsequently clustered
and further reduced. Third, balancing price scenario values are sampled for the second hour of the operation
day and subsequently clustered and further reduced etc.

We elaborate on the approach below. To generate scenarios, we first sample a fan of

spot price scenario paths from the SARIMA process. We reduce this fan using a k-medoids

clustering algorithm. Hence, we partition the scenario paths into k = Sspot clusters by

iteratively assigning paths to clusters such that the distance from path to medoid is minimal,

and subsequently updating the medoids. As distance measure, we use the Euclidian distance.

Hence, the distance between two spot price scenario paths (ρs1, . . . , ρ
s
T ) and (ρs

′
1 , . . . , ρ

s′
T ) is√√√√ T∑

t=1

|ρst − ρs
′
t |2.

We next sample a fan of balancing price scenario values from the ARMAX process (condi-

tional on each previous spot price scenario path), and apply the clustering algorithm with
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k = Sreg. We repeat this for all t = 1, . . . , T . Thus, we sample balancing price scenario

values (conditional on each previous spot and balancing price scenario path), and apply the

clustering algorithm with the same k. The distance between two balancing price scenario

values µst and µs
′
t is |µst − µs

′
t |.

Since the number of scenarios increases exponentially with the number of stages in the

multi-stage problem, we further reduce the size of the scenario tree as follows. In the spot

market stage (second stage), we keep the Sspot scenario paths obtained by clustering. How-

ever, in the balancing market stages (stages 3–26), we do the following. For t = 1, . . . , T , we

further reduce the total number of scenario values Sspot × (Sreg)t at time t by keeping only

the Sspot× lt (rounded) largest clusters, where l is such that Sspot× lT = S and S is the total

number of spot and balancing price scenario paths.

The scenario tree sampling and reduction has been implemented in the Python program-

ming language. We generate results for the Nordic case study. In the spot market stage

(second stage), we sample 500 spot price scenario paths and reduce these to 10. In the bal-

ancing market stages (stages 3–26), we likewise sample 500 balancing price scenario values

for each previous spot and balancing price scenario path and reduce these to 10. However,

for t = 1, . . . , T we further reduce the total number of balancing price scenario values 10×10t

at time t to 10× lt (rounded), where l = 1.18. For example, in stage 3, we generate a total of

10× 500 samples and reduce these to 10× 10 and then to 10× 1.18. In stage 26, we generate

a total of 10×1.1823×500 and reduce these to 10×1.1823×10 and then to 10×1.1824 = 500.

The reason for reducing the scenario tree to 500 scenarios is the computational tractability

of the bidding model.

Table 6 shows the statistical properties of the stochastic processes prior to and as a result

of the scenario reduction for December 15 2010. As can be seen, the properties of spot prices

are well preserved. The mean changes by only 0.28 Euro/MWh when applying scenario

reduction and the standard deviation is reduced by 2.92 Euro/MWh, in spite of a significant

reduction from 500 to 10 spot price scenarios. Furthermore, the first order autocorrelation

changes by only 0.0111. The mean of balancing prices is likewise well preserved with a

change of only 0.82 Euro/MWh and the standard deviation is reduced by 3.29 Euro/MWh.

The first order autocorrelation changes by 0.2107, which is due to the enormous reduction

from 50024 to 500 balancing price scenarios. Finally, the cross-correlation changes by a more

moderate 0.1033 when applying scenario reduction. It should be remarked that we see smaller

changes in standard deviations and correlations, when the reduction of the scenario tree is

less significant.

The generation of spot price scenario paths is illustrated in Figure 4. For the two selected

days December 14–15 2010, the figure shows historical spot prices for the hours 1–24, con-

19



Table 2: Means, standard deviations, first order auto-correlations and first order cross-correlations for spot
and balancing prices before (Pre) and after (Post) scenario reduction, December 15 2010.

ditional on which future scenario paths are sampled for the hours 25–48. The figure to the

left displays the sample paths prior to scenario reduction, and that to the right shows the

result of the scenario reduction. For illustration purposes, the scenario fan before scenario

reduction consists of only 20 out of the 500 scenarios, whereas after scenario reduction, the

scenario fan consists of all 10 scenarios.

Figure 2: Historical spot prices (Hours 1–24) and scenario paths before (to the left) and after (to the right)
scenario reduction (Hours 25–48).

6. The gain from coordinated bidding

In this section, we examine the profit gain from coordinated spot and balancing market

bidding. More specifically, we assess the performance of the separately derived bidding

strategies often used in practice. We do this by deriving bounds on the profits obtained from

coordinated and separate bidding.

Recall that the optimal value of the coordination problem under balancing price mecha-

nism k is denoted by zk for k = 1, 2.

To resemble that practitioners often derive the bidding strategies separately, we solve

the spot and balancing market bidding problems in a sequential fashion. The spot market

bidding problem under balancing price mechanism k is

zspot,k = max
{
E
[
Qspot1 (xspot1 , . . . ,xspotT )

∣∣∣F spot0

]
: (2)

}
,

Qspot1 (xspot1 , . . . ,xspotT ) = max
{ T∑

t=1

ρt(y
spot,+
t − yspot,−t )

+ E
[
Qreg1 (yspot1 , . . . ,yspotT )

∣∣∣F reg0

]
: (1)

}
,

Qregt (yspot1 , . . . ,yspotT ,gt−1) = max
{
− (γk,−t z−t − γ

k,+
t z+

t )

− Ct(qt) + E
[
Qregt+1(yspot1 , . . . ,yspotT ,gt)

∣∣∣F regt

]
:

z−t − z+
t = yspot,+t − yspot,−t − qt, gt ∈ Xt(gt−1,qt)

}
,

t = 1, . . . , T, (10)
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for k = 1, 2. We denote the optimal volumes dispatched in the spot market by the (stochastic)

vector (ȳspot1 , . . . , ȳspotT ).

In solving the problems sequentially, balancing bidding is conditional on the optimal vol-

umes dispatched in the spot market. Hence, the balancing bidding problems under balancing

price mechanism k are

zreg,k(ȳspot1 , . . . , ȳspotT ) = max
{
E
[
Qreg1 (ȳspot1 , . . . , ȳspotT ,xreg1 )

∣∣∣F reg0

]
: (6)

}
,

Qregt (ȳspot1 , . . . , ȳspotT ,xregt ,gt−1) = max
{
µt(y

reg,+
t − yreg,−t )− (γk,−t z−t − γ

k,+
t z+

t )

− Ct(qt) + E
[
Qregt+1(ȳspot1 , . . . , ȳspotT ,xregt+1,gt)

∣∣∣F regt

]
:

(5), (6), z−t − z+
t = ȳspot,+t − ȳspot,−t + yreg+t − yreg,−t

− qt, gt ∈ Xt(gt−1,qt)
}
, t = 1, . . . , T, (11)

for k = 1, 2.

The expected profit from using the resulting spot market bids provides a lower bound

on the profit in the coordination problem. However, to compute the expected profit from

using the spot market bids, one must solve a number of bidding problems. A much less

computationally expensive, though less tight, lower bound is provided by solving only the

spot market bidding problem. This is formalized in the following, the proof of which is

provided in Appendix C.

Proposition 1

zspot,k ≤ E
[ T∑
t=1

ρt(ȳ
spot,+
t − ȳspot,−t ) + zreg,k(ȳspot1 , . . . , ȳspotT )

∣∣∣F spot0

]
≤ zk, k = 1, 2.

When the market participant is a price-taker, an upper bound on the profit in the coordi-

nation problem is provided by solving the spot market bidding problem, assuming a one-price

balancing mechanism. For the proof, see Appendix D.

Proposition 2 Assume that ρt = ρ̂t and µt = µ̂t (fixed prices). Then,

zk ≤ zspot,1, k = 1, 2.

Note that the gain from coordinated bidding can be bounded without actually solving

the coordination problem, but by solving at most two variations of the spot market bidding
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problem (under the one-price and two-price balancing mechanisms).

Propositions 1 and 2 apply irrespective of the balancing price mechanism. Hence, when

the market participant is a price-taker, and under a one-price mechanism, it is evident that

one cannot obtain higher profits through balancing market bidding and, hence, it is sufficient

to bid in the spot market.

Corollary 1 Assume that ρt = ρ̂t and µt = µ̂t (fixed prices). Then, under a one-price

balancing price mechanism,

z1 = zspot,1.

In the following section, we investigate the quality of the bounds numerically.

7. Results and discussion

In this section, we investigate whether higher risk exposure may cause hesitation to bid

into the balancing market, even in cases of more advantageous expected price levels. Fur-

thermore, we quantify the gain from coordinated spot and balancing market bidding, and on

the basis of the bounds derived in the previous section, assess the performance of alternative

bidding strategies used in practice.

7.1. A Nordic case study

We illustrate the results from the bidding model in a Nordic case study. We consider

the spot market at Nord Pool and the common Nordic balancing power market. As already

mentioned, we use spot and balancing prices from January 1 2009–December 31 2010 as

obtained from the Danish transmission system operator, [5]. For the generation of market

price scenarios, see the previous section. We estimate the price response parameters from

aggregate data and find their values to be αspot = 0.0027, βspot = 0.0057 and βreg = 0.15

Euro/MWh, which implies that the condition for convexity is satisfied. Since the empirical

aggregate price response is weak and have little effect on the results (the gain from from

coordinated bidding changes from 8.03 to 7.93 by taking into account the empirical price

response), we investigate the effect of a much stronger price response in our results and

multiply the parameter values by 10. We discretize the range of bid prices such that the

probability that the spot price is between any two consecutive price points is as close as

possible to being the same. To limit the size of the bidding model, we use 10 price points,

but allow for different price discretizations in different hours. In the optimization of market

exchange, the market rules prescribe minimum bids of 0.1 MWh in the spot market, and

minimum and maximum balancing market bids of 10 and 50 MWh, respectively, cf. the
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documents [34] and [6]. To illustrate the optimization of operation, the case study is based

on a Norwegian hydro-power plant. We use real data when available, i.e. for reservoir storage

and discharge capacities, generation efficiencies and external inflows. This plant has two

serially connected reservoirs such that upstream water releases contribute to downstream

inflows, and both reservoirs also have external inflow. We assume that minimum and initial

storage levels are 10% and 50% of full reservoir capacity, respectively. The water value

function is assumed to be piece-wise linear and concave, with a water value of 45 Euro/MWh

at 50% of full reservoir capacity.

The multi-stage stochastic programming problem has been implemented in the modeling

software package GAMS [12], and run on a 1.7 GHz Intel Core i5 processor. Running times

are less than a minute, and so this model can easily be used for daily planning. It should be

taken into account, however, that the modeling of operation could be much more complex,

which will significantly increase running times and justify the scenario reduction.

7.2. The value of waiting versus the risk of not being dispatched

The results from the bidding model can be found in Table 7. This table shows the results

for a weekday in the middle of each month (the 15th, or the closest weekday) throughout

2010, and assuming a price-taker. We first discuss columns 1–4, 10 and 11. The results

include empirical means and standard deviations of spot and balancing prices (columns 1

and 2), the mean of up regulation prices adjusted for the risk that the system imbalance

is positive (in which case up regulation bids are not accepted, column 3), and likewise the

mean of down regulation prices adjusted for the risk that the system imbalance is negative

(in which case down regulation bids are not accepted, column 4). It further includes the

percentage traded up and down regulation volumes out of total absolute trading volumes

(columns 10 and 11).

We observe the following from the results under a two-price balancing mechanism. In

our test instances, only limited up regulation volumes are traded in the balancing market,

whereas down regulation volumes are significant. For instance, for December 2010, the up

and down regulation volumes are 4.18% and 29.26%, respectively. The reason is that average

balancing prices are lower than average spot prices (see columns 1, 2, 10 and 11). We

therefore made further test runs in which we increased balancing prices. For December 2010,

we considered an increase of 5% and found up and down regulation volumes of 19% and 23%,

of 10% and found volumes of 66% and 11% and of 20% with volumes of 84.88% and 4.35%.

Hence, when average balancing prices are higher than average spot prices, more limited

down regulation volumes are traded, whereas up regulation volumes are highly significant.

When expected price levels in the two markets are almost identical (when balancing prices

are increased by 5%, average spot and balancing prices differ by only 1.13%), up and down
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regulation volumes are likewise almost identical but remain relatively large. The explanation

for such large trading volumes is the value of being able to defer bidding decisions in the

balancing market until an hour ahead of operation, which makes it possible to better adapt

volumes to prices than in the day-ahead spot market. For instance, if in some scenarios,

the balancing price turns out to be higher than the spot price, it is profitable to offer up

regulation, and vice versa, if the balancing price turns out to be lower, it is profitable to offer

down regulation. This value of waiting is partly offset by the additional risk of not being

dispatched in the balancing market, as indicated by the fact that up regulation is not at its

full capacity, even if average price levels are higher. The reason is that the expected balancing

revenues faced by a market participant are effectively lower when adjusted for the risk of not

being dispatched. For example, for December 2010, the risk adjusted up regulation price is

only 32.40 Euro/MWh, whereas the spot and balancing market prices are 72.27 and 68.05

Euro/MWh (se columns 1–3). Similarly, down regulation is not at its full capacity, even if

average price levels are lower. The risk of not being dispatched may therefore to some extend

cause a hesitation to enter and bid into the balancing market. However, our model results

show that the cost of this additional risk is largely offset by the value of waiting. In reality,

a hesitation may also be caused by substantial transaction costs (e.g. learning costs) for

new entrants in the balancing market. Furthermore, to prohibit excessive speculation in the

balancing market, existing market rules require that physical exchange of power mainly takes

place in the spot market, although no explicit restrictions apply to the volume allowance in

the balancing market. Our model does not capture these aspects.

7.3. The gain from coordinated bidding

We proceed to discuss columns 5–9 in Table 7. The results further include the profits

under a two-price balancing system, considering respectively spot market bidding, separate

spot and balancing market bidding (the lower bounds of Proposition 1, denoted LB1 and

LB2, columns 5 and 6), and coordinated bidding (column 7). The latter are equivalent to

profits under a one-price balancing system, irrespective of spot market bidding (the upper

bound of Proposition 2, which we denote UB), separate spot and balancing market bidding,

or coordinated bidding. Hence, in the given test instances, the upper bound is binding. This

does, however, not hold in case of further restrictions on the provision of regulating power,

which is the reason we do not state this as a general result. Finally, the table shows the

percentage gain from coordinated bidding (which is equivalent to ((UB-LB2)/LB2, column 8)

and the percentage difference between the upper and lower bounds ((UB-LB1)/LB1, column

9).

The profitability of offering regulation is clearly reflected by the gain from entering the

balancing market (see column 9) and the gain from coordinating bidding (see column 8).
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For instance, for December 2010, the gains are 9.60% and 8.03%, respectively. Note that

average spot and balancing prices differ by 5.84%. To further investigate the size of the

gain from coordinated bidding, we again made additional test runs in which we increased

balancing prices by 5% (average spot and balancing prices differ by 1.13%) and found gains

of 4.88% and 4.23%, by 10% (average prices differ by 3.58%) and found gains of 5.29% and

4.75%, and by 20% (average prices differ by 12.99%) with gains of 9.93% and 9.81%. Observe

that the size of the gains do not necessarily increase with an increase in balancing prices (as

this increases the value of up regulation but decreases the value of down regulation) but

rather with an increase in the difference between balancing and spot prices. When average

price levels in the two markets are almost identical, the gains are moderate. However, the

larger the difference between average balancing and spot prices, the larger the gain. The

results therefore indicate that coordinated bidding may become increasingly important in a

future power system, given that the expected growth in fluctuating renewable production is

expected to increase the value of balancing power relative to the spot market dispatch.

The profitability in our bidding model of offering regulation in the balancing market

is further confirmed from the bidding curves. In Figure 6, we show examples of optimal

spot market supply curves for two selected hours, using separate and coordinated bidding

strategies, respectively (Note that the small number of steps on the bidding curves is due to

the simplistic modeling of hydropower operation, assuming a constant generation efficiency

and a small number of line segments to define the piece-wise linear water value function).

It is clear from the figure that for some hours large volumes are bid into the spot market

under coordinated bidding in order to facilitate subsequent offering of down regulation in

some scenarios. For other hours the spot market bidding curves are almost the same under

separate and coordinated bidding.

Finally, we consider the bounds on the profits obtained from separate and coordinated

bidding derived in Propositions 1 and 2. Under a one-price balancing mechanism, the upper

and lower bounds collapse, and the value of entering the balancing market is zero, cf. Corol-

lary 1. Thus, this market design provides no incentives for market participants to relieve

system imbalances. In contrast, under a two-price balancing mechanism, such incentive does

indeed exist as reflected by the significant gain from coordination addressed above. Fur-

thermore, we find the difference between the upper and lower bounds (column 9) to be a

good indicator for this gain. Thus, assuming a practitioner already solves the spot market

bidding problem, he/she may assess the profitability of entering the balancing market and

from coordinated bidding without actually solving the coordination problem, but merely by

solving two variations of his/her problem (under the one-price and two-price balancing mech-

anisms). If the difference between upper and lower bounds is found to be small, there is no
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Table 3: Results for 2010, assuming a price-taker. The table shows empirical means and standard deviations
of spot and balancing prices; risk-adjusted mean up and down regulation prices; profits under a two-price
balancing system, considering respectively spot market bidding (LB1), separate spot and balancing market
bidding (LB2), and coordinated bidding (which is equivalent to profits under a one-price balancing system
(UB)); the percentage gain from coordinated bidding (which is equivalent to (UB-LB2)/LB2); the percentage
difference between the upper and lower bounds ((UB-LB1)/LB1); and finally the percentage traded up and
down regulation volumes out of total absolute trading volumes.

Table 4: Results for 2010, allowing for price response. The table shows empirical means and standard
deviations of spot and balancing prices; risk-adjusted mean up and down regulation prices; profits under
a one-price balancing system; profits under a two-price balancing system, considering separate spot and
balancing market bidding, coordinated bidding and the percentage gain from coordinated bidding; and finally
the percentage traded up and down regulation volumes out of total absolute trading volumes.

need to formulate and solve the coordination problem. It should again be remarked that in

the given test instances the upper bound is binding. In case of restrictions on the provision

of balancing power, however, the upper bound is no longer binding, and the quality of the

bounds may not be as good. If, for example, we impose the constraint that only 50% of

production capacity is available for balancing services in December 2010, the gain is 5.89%,

whereas the differences between upper and lower bounds are 9.60% and 8.41%.

Figure 3: Spot market bidding curves for two selected hours of an operation day, using separate (dashed line)
and coordinated (solid line) bidding.

7.4. Relaxing the price-taker assumption

The price-taker assumption is questionable in reality, and so we allow for price response

in the results of Table 8. In this table, we provide the profit from coordinated bidding under

both the one-price (column 5) and two-price balancing systems (column 8), as these are no

longer the same. Under a two-price system, regulation volumes are only somewhat lower for

a price-making market participant than for a price-taker. However, we observe that the gain

from coordination is much smaller, the reason being that balancing prices decrease with the

dispatch of up-regulation bids and increase with the down-regulation dispatch. In spite of

allowing for price response, gain from coordination remains zero under a one-price system.

8. Conclusion

In this paper, we proposed a multi-stage stochastic programming model for coordinated

bidding into two sequential markets, namely the Nordic spot and balancing markets, and

put efforts into generating market price scenarios that preserve autocorrelations and cross-

correlations. Our main objective was to quantify the gain from coordinated bidding, and we
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derived bounds on this gain that can be computed without actually solving the coordination

problem.

We show that there is no incentive to enter and bid into the balancing market under

a one-price balancing mechanism. Under a two-price balancing mechanism, however, our

bidding model indicates that there is a significant gain from entering the balancing market

and from coordinating bidding in the spot and balancing markets. When average balancing

prices exceed average spot prices, it is optimal to hold back capacity in the spot market to

facilitate subsequent offering of up regulation, and in the opposite situation, to put forward

capacity in the spot market such as to offer down regulation. Coordinated bidding may

therefore become increasingly important in a future power system, given that the expected

growth in fluctuating renewable production is expected to increase the value of balancing

power.

Our model can be improved by the inclusion of risk measures in the objective or constraints

in order to reflect a potential risk aversion of practitioners. Further improvements include

more advanced price models. Finally, our model can be modified to support bidding in other

near real-time markets such as ancillary services markets. Following continuing discussions

on the relevance of a so-called capacity market, an interesting extension of our model is the

reservation of balancing power capacity on longer contracts.
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Figure 4: Historical spot prices (Hours 1–24) and scenario paths before (to the left) and after (to the right)
scenario reduction (Hours 25–48).
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Figure 6: Spot market bidding curves for two selected hours of an operation day, using separate (dashed line)
and coordinated (solid line) bidding.
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Table 5: Parameter estimates for the SARIMA and ARMAX processes fit to spot and balancing prices,
respectively.

Spot Bal.

Parameter φspot1 φspot2 φspot24 θspot24 (σspot)2 ψreg φreg1 (σreg)2

Estimate 0.00113 -0.07621 0.97185 -0.88534 4.11951 0.92829 0.65137 17.86391

Table 6: Means, standard deviations, first order auto-correlations and first order cross-correlations for spot
and balancing prices before (Pre) and after (Post) scenario reduction, December 15 2010.

Spot Bal. Joint
Mean Std.dev. Autocor. Mean Std.dev. Autocor. Crosscor.

Pre 71.99 24.14 0.8879 68.87 29.12 0.4302 0.7209
Post 72.27 21.22 0.8768 68.05 25.83 0.6409 0.8242
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