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Abstract

A new basis set for a full potential treatment of crystal electronic structures is presented and compared to that of the well-
known linearized augmented plane-wave (LAPW) method. The basis set consists ofenergy-independentaugmented plane-
wave functions combined with local orbitals. Each basis function is continuous over the whole unit cell but it may have a
discontinuous slope at the muffin-tin boundaries, i.e. at the surfaces of atomic centered, non-overlapping spheres. This alter-
native way to linearize the augmented plane-wave method is shown to reproduce the accurate results of the LAPW method, but
using a smaller basis set size. The reduction in number of basis functions is most significant for open structures.q 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Since Slater first proposed the method in 1937, augmen-
ted plane-wave (APW) and its descendents [1–3] have been
among the most popular methods for solving the electronic
structure using the density-functional theory [4,5]. In part,
this popularity arose from the fact that the APW method in
its modern general potential linearized forms combines a
conceptual simplicity with high accuracy for a general
system. The method uses a smaller basis set than soft
pseudo-potential plane-wave basis approaches, but still
substantially larger than local function methods like the
linear-muffin-tin-orbital (LMTO) method or Gaussian-orbi-
tal techniques.

During the years, there have been several important
developments of the original APW method, e.g. the full
potential implementation [6,7] as well as inclusion of atomic
forces [8,9]. But without doubt the single most important
step was the linearization of the secular problem as proposed
by Andersen [10]. In the present paper we present an alter-
native way of linearizing the APW method that, unlike
earlier approaches, does not demand substantially larger
basis set size than that of the original APW method in

order for results to converge. When converged, the method
yields numerically identical results to the conventional
linearized APW (LAPW) method.

Sections 1.1 and 1.2 provide short backgrounds to the
APW and LAPW methods, while in Sections 2 and 3 we
present and demonstrate our linearization of the APW
method.

1.1. The original augmented plane-wave method

All APW descendent methods divide space into atomic
centered muffin-tin (MT) spheres surrounded by an intersti-
tial region. The APW basis functions consist of plane-waves
in the interstitial region, that are augmented into radial solu-
tions of the Schro¨dinger equation inside the MT spheres.
These radial functionsul are better for describing the beha-
vior of the Bloch eigenfunctions close to atomic sites. For a
system with one atom per unit cell this gives:

fAPW
G �r ; k� �

eikG·r r [ IX
L

akG
L ul�r ;E�YL�r̂ � r [ MT;

8><>: �1�

where G is a reciprocal lattice vector,k is the crystal
momentum andkG � k 1 G: L is the condensed angular
momentum index {l;m} and YL�r̂ � the spherical harmonics.
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In practical calculations the sum overL is finite. The coeffi-
cients akG

L are found by expanding each plane-wave into
Bessel functionsj l�kGr� at the MT spheres,r � rMT ; requir-
ing the basis functions to be continuous at the sphere bound-
aries. This yields

akG
L � 4pi lYp

L�k̂G� j l�kGrMT�
ul�rMT ;E� : �2�

While the plane-waves are energy independent, the radial
solutionsul depend on the energy at which the radial Schro¨-
dinger equation is evaluated. An eigenfunctionC i�r � �P

G CiGfG�r ; k� can only be efficiently described by orbital
solutionsul evaluated at the eigenenergyEi of C i. A new set
of APW basis functions must therefore be evaluated for each
new energy treated. As the matrix elements representing
operators depend on the choice of basis set the secular equa-
tion will be non-linear in energy.

det�TGG 0 �E�1 VGG 0 �E�2 EOGG 0 �E�� � 0: �3�
TGG 0 represents the kinetic energy operator;VGG 0 is the
potential energy andOGG 0 the overlap matrix. The
procedure of evaluating the determinant for a number
of different energies, in order to find the energy eigen-
values, makes the APW method very time consuming.
Another problem is the decoupling of the basis set for
energies yieldingul � 0 at the MT-sphere boundary, but
this is of less importance.

1.2. The linearized augmented plane-wave method

Parallel developments by Andersen [10] and Koelling and
Arbman [11] resulted in the energy-independent LAPW
basis functions,

f LAPW
G �r ; k� �

eikG·r r [ IX
L

RLAPW
L �r�YL�r̂ � r [ MT

8><>: �4�

whereRLAPW
L �r� � akG

L ul�r ;E1�1 bkG
L _ul�r ;E1�: _ul ; 2ul =2E

are the energy derivatives of the radial functions. The two
coefficientsakG

L and bkG
L are determined by forcing each

basis function to be continuously differentiable, i.e. contin-
uous with the continuous first derivative, at the surfaces of
the MT spheres, see for example Ref. [3].ul�r ;E1� and
_ul�r ;E1� are evaluated for a linearization energyE1; and
fLAPW

G provides sufficient basis for eigenfunctions in an
energy range around this linearization energy. Thereby, the
secular equation Eq. (3) becomes linear in energy, and all
eigenenergies can be found through one diagonalization of
the secular matrix. The cost of the energy-independent
LAPW basis set is an increased number of basis functions
compared to the APW method. Thus, the relatively large
secular matrix of APW will be increased using the LAPW
basis set.

2. An alternative way of linearizing: APW 1 lo

Is it possible to combine the advantages of the APW and
LAPW methods, i.e. to find an energy-independent basis
that does not demand a noticeable higher plane-wave cut-
off than the original APW basis functions?

An energy-independent APW basis set alone does not
provide enough flexibility to find solutions in a region
around the fixed energy parameter. The variational freedom
can be improved by using a complementary basis set
consisting of local orbitals [12] for physically important
l-quantum numbers, i.e. forl # 3: The local orbitals put
no extra condition on the APW basis set, and the
number of plane-waves in the interstitial is therefore
unaffected.

Local orbitals were first introduced in the LAPW method
by Singh [12] to treat semi-core states. They are local in the
sense that they are completely confined within the MT
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Fig. 1. Radial partul ; of thel-composition of an APW basis function
for Ce. k � 2p=a �0:101; 0:208; 0:107�; G � 2p=a �1; 1; 1�: The
radial solutions are evaluated atE1 � 0:3 Ry for the s-orbital and
E1 � 0:5 Ry for all other orbitals.
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Fig. 2. Radial partRLAPW
L of the l-composition of an LAPW basis

function for Ce, evaluated at the samek-point, G-vector and ener-
gies as in Fig. 1.



spheres,

flo
L �r ; k� �

0 r [ I

Rlo
L �r�YL�r̂ � r [ MT:

(
�5�

In this work Rlo
L �r� � alo

L ul�r ;E1�1 blo
L _ul�r ;E1�; using the

same linearization energyEl for all basis functions for
simplicity. Changing the linearization energy slightly
for the local orbitals should not effect the calculations.
Further, the linearization energy can easily be chosen so
that the decoupling of basis functions whenul�rMT ;E1�
or _ul�rMT ;E1� equals zero is avoided.alo

L is set to 1
while blo

L is determined usingflo
L � 0 at the MT

boundary.
The new basis functions will hereafter be referred to as

APW 1 lo. Once the scheme of local orbitals is implemen-
ted into an LAPW code the changes for turning it into
APW 1 lo are straightforward. All developments within
LAPW, such as the full potential implementation, work
equally well for APW1 lo:

2.1. The new basis in the MT region

The APW1 lo basis functions, will differ in some impor-
tant aspects from the LAPW basis functions inside the MT
region.

Comparing thel-decompositions of an APW and an
LAPW basis function in the MT region, Figs. 1 and 2,
respectively, it is seen that the linear combinations
RLAPW

L �r� of Eq. (4) differ considerably from the original
solutionsul�r ;E1� used in APW. Thereby, none of the ener-
gies in the interval aroundE1; includingE1 itself, is treated
as exact by the LAPW basis set, as the single energy exam-
ined by one APW basis set. The APW1 lo basis set, on the
other hand, includes bothul�r ;E1� in its original APW form
for efficient description of eigenfunctions at energies close
to E1; and a (less restricted) linear combination oful�r ;E1�
and _ul�r ;E1� to improve the description of states away from
E1: The deformation ofRLAPW

L �r� compared toul�r ;E1� in
Fig. 2 is not dependent on themagnitudeof the radius of
MT, but on how wellul�r ;E1� alone matches the Bessel
function in value and derivative for a certainrMT. For the
rare case of perfect matchingbkG

L � 0 andul�r ;E1� is not
deformed at all.

Apart from a better description of eigenfunctions close to
E1; the setup of matrix elements is faster using APW1 lo
compared to LAPW, since a majority of the basis functions
include onlyul :

2.2. The kinetic energy operator

The APW1 lo and LAPW methods differ in a second,
important way. While the augmentations in LAPW are
smoothly connected to the plane waves, there is no restric-
tion on the derivatives of the APW1 lo basis functions at
the MT boundaries.

The Laplacian operator is commonly used to describe the

kinetic energy
R

V fp
G�27 2�fG 0 dV although the formula-

tion using nabla operators
R

V �7fG� †·7fG 0 dV is more
fundamental, as it enters already in the variational principle
leading to the Schro¨dinger equation [1,13]. According to
Green’s theorem the two kinetic energy expressions differ
by an integral:I
SMT

f p
G

2fMT
G 0

2r
2

2fI
G 0

2r

 !
dS: �6�

It is clearly seen that this surface term vanishes in LAPW,
where the functionsfG have continuous derivatives on the
MT spheresSMT. However, using the APW1 lo basis
functions, this term must be taken into account whenever
the Laplacian operator is used to represent the kinetic
energy:

TGG 0 �
Z

I 1 MT
fp

G�27 2�fG 0 dV

1
I

SMT

fp
G

2fMT
G 0

2r
2

2fI
G 0

2r

 !
dS: �7�

Or, as the nabla operator is more convenient in the inter-
stitial region,

TGG 0 �
Z

I
�7fG� †·7fG 0 dV 1

Z
MT

f p
G�27 2�fG 0 dV

1
I

SMT

fp
G
2fMT

G 0

2r
dS: �8�

A different approach, starting from the Laplacian operator is
adapted by Schlosser and Marcus [14]. They then have to
modify the variational expression, taking into account
the discontinuity in slope at the MT sphere, but end
up with the same expression, Eq. (7) for the kinetic
energy operator.

3. Results

The flexibility of a basis set can be appreciated by looking
at how well a smaller number of basis functions reproduce
the final, converged total energy. The APW1 lo and LAPW
methods are run self-consistently for an increasing plane-
wave cut-off,Gmax. All calculations in this paper are full-
potential calculations, using a scalar relativistic approx-
imation and the Hedin–Lundqvist [15] version of the
local density approximation to the density-functional
theory [5].

The first trial system is fcc copper, and thereafter we turn
to fcc cerium, where extra treatment of extended-core states
is required. The calculations for copper and cerium are
performed using the experimental lattice constantsa�
6:82 and a� 9:05 a:u:; respectively. The effects on the
matrix dimensions from a reducedGmax are larger for an
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open structure, and so the third system is chosen to be an
oxygen molecule in a supercell approximation. The Bril-
louin zones of copper and cerium are represented by 60
special k-points, while the small Brillouin zone of the
oxygen molecule in a supercell is treated using only the
G -point. The plane-wave cut-off is conveniently expressed
by the dimensionless product of the MT-radius,rMT and the
largest reciprocal lattice vector used in the plane wave
expansion,Gmax. The exact number of plane-waves corre-
sponding to a certainrMTGmax is k-point dependent, but
Table 1 shows the correspondence for a randomk-point in
the Brillouin zones of Cu and Ce, and for theG -point of the
O2 molecule. On an average the size of the basis set for a
fixed rMT, is proportional toG3

max:

3.1. Copper

APW 1 lo uses complementary local orbitals forl � s; p
and d, which renders nine extra basis functions to be added

to the number of plane-waves in Table 1. Fig. 3 shows that
APW 1 lo reaches the final total energy (within 1 mRy) for
rMTGmax� 9; corresponding to approximately 751 9 basis
functions, while LAPW needsrMTGmax� 10 which gives
about 100 basis functions.

The two methods converge to numerically the same
densities and total energies as well as individual eigen-
energies. These values do not coincide for finite basis
sets as the basis functions in the MT region in the two
methods consist ofdifferently constrainedcombinations
of ul and _ul :

3.2. Cerium

The local orbitals described in Section 2 are not suited for
treating semi-core states. In Ref. [12] Singh introduces local
orbitals containing radial solutionsul evaluated at lower
linearization energies. The same thing can be done for
APW 1 lo; using a second kindof local orbitals, with
Rlo

L �r� � alo
L ul�r ;E1�1 clo

L ul�r ;E2�: The energy parameter
E2 is chosen so thatul�r ;E2� is optimized for describing
the extended-core states.alo

L can be chosen arbitrarily
while clo

L is found by requiringflo
L � 0 at the MT boundary,

as before.
The APW1 lo basis set is constructed with the first kind

of local orbitals forl # 3; as the behavior of the cerium 4f-
states is critical for the resulting energy. The second kind of
local orbitals, includingul�r ;E2�; are used to treat the high
lying 5s and 5p core states in cerium. In the LAPW method,
the semi-core states of s and p are treated by local orbitals as
described in Ref. [12]. As for copper, APW1 lo shows (Fig.
4) a faster convergence than LAPW in terms ofrMTGmax:

While APW1 lo obtains the final total energy (within
1 mRy) for rMTGmax� 9; giving around 751 20 basis
functions, LAPW usesrMTGmax� 10; corresponding to
about 1001 4 basis functions when reaching the same
accuracy.
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Table 1
Number of plane-waves corresponding to differentrMTGmax: A
randomk-point � 2p=a �0:1875; 20:625; 0:3125� is used for fcc
Cu �rMT � 2:35 a:u:� and fcc Ce�rMT � 3:14 a:u:�: TheG-point is
used for O2 �rMT � 1:00 a:u:�

rMTGmax Number of plane-waves

Cu Ce O2

3.0 – – 285
5.0 14 14 1335
7.0 36 35 3663
9.0 77 76 6979
11.0 139 137 –
13.0 224 219 –
15.0 334 335 –

5 6 7 8 9 10 11 12 13
rMTGmax

0.00

0.10

0.20

0.30

0.40

0.50

D
iff

er
en

ce
 in

 E
to

t (
R

y)

LAPW
APW+lo

Fig. 3. Convergence of total energy versusrMTGmax for Cu �rMT � 2:35 a:u:�: The solid lines correspond to the values of the energy axis, while
the dashed lines show the values multiplied by 100. The APW1 lo energy forrMTGmax� 13 is used as reference energy.



3.3. Oxygen molecule

The oxygen molecule vibrates about its equilibrium bond
length Re; with a vibrational frequencyne / �d2E=dR2�uRe

:

The bond length and corresponding vibrational frequency
are obtained from LAPW and APW1 lo as functions of
increasingrMTGmax:

A tetragonal unit cell witha� 8:0 andc� 10:0 a:u: is
used with the oxygen molecule directed along thec-direc-
tion. A small MT-radius,rMT � 1:0 a:u:; is required due to
the short bond length. The calculations are spin-polarized to
allow for the triplet ground state. The APW1 lo basis set
includes local orbitals forl � s and p, i.e. four extra basis
functions per atom for each spin. As seen in Fig. 5,
APW 1 lo yields a bond lengthRe within 1.1% of the
final result for rMTGmax� 4:0; corresponding to 6851 8
basis functions per spin, while LAPW demands at least
rMTGmax� 5:5 giving 1773 basis functions per spin for

the same accuracy. The vibrational frequencyne converges
slower for the two methods, but APW1 lo again
approaches its final result much faster than LAPW. For an
accuracy within 5% of the final value APW1 lo uses
rMTGmax� 4:5; giving 8211 8 basis functions per spin,
whereas LAPW needsrMTGmax� 5:5; corresponding to
1773 basis functions per spin.

APW 1 lo also converges towards its final values in a
smoother way than LAPW. Thereby even a crude
APW 1 lo calculation gives good approximate values.
Lowering the number of basis functions by around
1000 yields a substantial reduction in computational
cost. Standard matrix diagonalization routines, as are
commonly used in LAPW and APW codes, have compu-
tational times that scale with the cube of the number of
basis functions and the required memory scales with the
square.

Our calculations are in fair agreement with the experimental
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Fig. 4. Convergence ofEtot versusrMTGmax for Ce �rMT � 3:14 a:u:�: The energy differences (solid lines) are also shown enhanced by 100
(dashed lines). The reference energy is taken to be the APW1 lo energy forrMTGmax� 13:
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values [16] for the oxygen molecule,RExp
e � 2:28 a:u: and

nExp
e � 1580 cm21

; as well as with other density functional
calculations [17]. However, for a detailed comparison,
convergence with respect to the size of the unit cell should
be examined more carefully. This has not been done here,
as the main purpose is to compare the two theoretical
methods.

4. Conclusions

The results of Section 3 indicate that it is more efficient to
introduce extra radial solutions, such as_ul via local orbitals
rather than into the ordinary basis functions. The latter way
imposes additional restrictions on the basis set which in turn
demands a larger number of basis functions. This is in accor-
dance with the results of Ref. [12], where LAPW1 lo
converges faster than the methods having continuous second
and third derivatives, SLAPW-3 and SLAPW-4, respec-
tively. The fact that APW1 lo in practice converges to
the same total energy, and the same individual eigenvalues,
as does LAPW is important. A kink in the eigenfunctions
would alter the kinetic energy, due to the surface term in Eq.
(6). We can therefore be sure that the final, converged eigen-
functions are differentiable everywhere, as required for
physical meaningfulness.

The two basis sets, APW1 lo and LAPW consist of the
same functionsul and _ul and could easily be mixed in the
same code. For example, calculations for a molecular reac-
tion on a metal surface could be performed with an
APW 1 lo basis set for the adsorbate and a well-tested
LAPW treatment for the substrate.

Due to the smaller basis set and faster matrix set up,
APW 1 lo offers a shorter run-time and uses less memory
than LAPW. The effects of using APW1 lo are greatest for
calculations with a large ratio of basis functions to atoms,
e.g. for open crystal structures, surfaces and molecules on
surfaces.

Acknowledgements

We are grateful to Stefan Blu¨gel for useful discussions,
and for encouraging the presentation of this work within the
FLAPW-node of the TMR-network. Discussions with Peter
Blaha concerning a mixed APW1 lo and LAPW basis set
are acknowledged. Using the oxygen molecule as a trial
system for the APW1 lo method was suggested by
Raimund Podloucky.

E.S. and L.N. acknowledge the financial support from
the Swedish Natural Science Research Council, while the
work by D.J.S. is supported by the Office of Naval
Research.

References

[1] J.C. Slater, Phys. Rev. 51 (1937) 151.
[2] T.L. Loucks, Augmented Plane Wave Method, Benjamin,

New York, 1967.
[3] D.J. Singh, Planewaves, Pseudopotentials and the LAPW

Method, Kluwer, Dordrecht, 1994.
[4] H. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864.
[5] W. Kohn, L.J. Sham, Phys. Rev. A 140 (1965) 1133.
[6] D.R. Hamann, Phys. Rev. Lett. 42 (1979) 662.
[7] E. Wimmer, H. Krakauer, M. Weinert, A.J. Freeman, Phys.

Rev. B 24 (1981) 864.
[8] J.M. Soler, A.R. Williams, Phys. Rev. B 40 (1989) 1560.
[9] R. Yu, D.J. Singh, H. Krakauer, Phys. Rev. B 43 (1991)

6411.
[10] O.K. Andersen, Phys. Rev. B 12 (1975) 3060.
[11] D.D. Koelling, G.O. Arbman, J. Phys. F 5 (1975) 2041.
[12] D.J. Singh, Phys. Rev. B 43 (1991) 6388.
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