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Abstract

During the work with this specialization project, expressions for the overlap integral be-
tween eigenfunctions are derived in the LAPW and Maximally localized Wannier function
bases. These expressions must be suitable for numerical integration over the Brillouin zone
so that scattering rates for any particular scattering mechanism may be obtained in the con-
text of carrier simulations using the Monte Carlo method. While the expression found for
the LAPW basis is considered satisfactory with respect to the above requirements, more
work is needed to arrive at a sufficiently good Wannier overlap expression. Furthermore,
eigenfunctions and bandstructures have been obtained for semiconductor materials Gal-
lium arsenide, Silicon and Mercury cadmium telluride in the local density approximation,
using the softwares Wien2k, Wien2Wannier and Wannier90. For Gallium arsenide and Sil-
icon, band edge properties are discussed in light of the nature of the bandgap and spin-orbit
coupling. For Mercury cadmium telluride, the validity of the local density approximation
has been investigated. The results show good agreement with data from literature, but
improvements can be made: instead of the local density approximation model currently
used, an improved exchange potential mbJ+U should be used. In addition, Vegard’s law
has been used to model the crystal structure of HgCdTe, and this should be replaced by a
supercell model combined with so-called unfolding of the bandstructure.
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Chapter

Introduction

Computational electronics is increasingly playing an important role in explaining physical
phenomena in semiconductor devices. The behaviour of these electronic devices is be-
coming ever more complex as the size of electronic components enter into the nanometer
regime. At the nanometer scale, new physical fenomena only occurring at the shortest
scales must be taken into consideration. From an electronics engineer’s point of view, the
processes involved in manufacturing electronics components in the nanometer regime are
complex and time-consuming, so a trial-and-error approach may turn out to be impossi-
ble simply because it’s too costly. Here, computational electronics offers the electronics
engineer insight into component behaviour at a significantly lower cost. It also allows the
engineer to simulate hypothetical devices that presently are not technologically possible
to manufacture. Finally, device simulations allow the engineer to observe aspects of de-
vice behaviour that are impossible to measure in experiments with real electronics devices.
Electronics device simulations should not only provide a sufficiently sophisticated model,
but preferably do so at minimal computational cost and within a reasonable time frame. [1]

This specialization project deals with the generation of bandstructures and eigenfunctions
for semiconductor materials Mercury Cadmium telluride (HgCdTe), Gallium arsenide
(GaAs) and Silicon (Si) from first-principles methods. The work done here is part of a
larger project aiming at providing a ’general purpose’ Monte Carlo program for charge
carrier transport. It should be ’general purpose’ in the sense that different materials may
be simulated equally well with little effort needed to go from one material to another.
Since no actual transport simulations are discussed in this report, the Monte Carlo method
will only be discussed in light of the input data it takes. At the time of writing, the Monte
Carlo program accepts analytical bandstructures as well as tabulated bandstructures from
first principles programs. The analytical band model has a well-defined mathematical rep-
resentation while the tabulated model is a discrete representation of the bandstructure. In
previous work done by Karlsen, Selvaag and Bergslid, Monte Carlo simulations using
scattering rates calculated from the k - p method [2] as well as full-band data acquired by
first-principles program ABINIT have been presented [3] [4] [5] [6]. While both the k - p




method and a first-principles tabulated representation of the bandstructure have been used,
eigenfunctions have until now only been calculated using the k - p method. The next step
will be to run simulations not only based on a first-principles bandstructure, but also using
first-principles generated eigenfunctions. To this end, bandstructures and eigenfunctions
have been generated within the full-potential LAPW method from Wien2k[7], and may
hopefully be run on the Monte Carlo program in the near future.

In addition to simulating carrier transport using the LAPW representation, it is possible
to use a real-space basis known as the Maximally localized Wannier representation (ML-
WFs). There are a number of advantages associated with the use of a MLWF representation
compared to the original LAPW basis which Wien2k uses. First of all, the current Monte
Carlo program uses bandstructures and potentially eigenfunctions from external ab-initio
programs, e.g ABINIT or WIEN2k. Many different ab-initio programs exist today, each
one potentially based on a particular basis. A standardization, where one does not need to
worry about the basis in which input parameters are represented, will obviously make the
transport program more attractive. One simply converts a specific ab-initio representation
into a standardised representation used for the Monte Carlo program. In order to imple-
ment such a standardization one needs a general algorithm able to change the represen-
tation found in most ab-initio programs to the standardized functions used. Indeed, such
an algorithm has been developed by Nicola Mazari, Ivo Souza and David Vanderbilt that
iteratively transforms a set of Bloch orbitals obtained from a first-principles calculation
into a set of Maximally localized Wannier functions. This algorithm works without regard
to the particular first-principle calculation technique adopted or the basis set, and therefore
satisfies the requirements needed for a standardization of the Monte Carlo program [8].
Secondly, the Wannier representation is well suited for quantum transport. This is because
the MLWF offer a compact representation, yielding much simplified tight-binding like op-
erations related to bandstructure and transport calculations. Currently, bandstructure and
transport are done in series, but in simulation of very small devices, bandstructures are
recalculated in parallell with the transport simulation to account for internal redistribution
of charge [1]. This represents a formidable computational task and is done at a lower com-
putational cost in a tight-binding like representation [8]. A final advantage of the Wannier
representation is linear scaling. Linear scaling methods are electronic structure calculation
methods where the computational cost increases only linearly with the size of the system.
One uses results from electronic-structure calculations on smaller systems to model larger
systems. Due to the above reasons, it is sometimes expedient to post-process the Wien2k
data using the Wien2k-interface Wien2Wannier [4] and the program Wannier90 [4] [9],
carrying eigenfunctions in the LAPW over to a Maximally localized Wannier basis. It
should be emphasized that Wannier functions are to be used only when they are beneficial
in their own right for the particular problem of interest. It is in fact intended that both
the LAPW method and Wannier representation are available as representations used in the
Monte Carlo simulations.

In the calculation of scattering rates, the eigenfunctions, whether they are expressed through
MLWFs or through the LAPW method, mainfest themselves through overlap integrals be-
tween initial and final scattering states of the charge carrier undergoing scattering. By
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including eigenfunctions generated from first-principles calculations, it must be possible
to integrate over the eigenfunctions to obtain overlaps relevant for a given scattering mech-
anism. Therefore, expressions suitable for numerical integration over the discrete Brillouin
zone are needed to determine the scattering rate for each individual scattering mechanism
included in the Monte Carlo simulation.

The work done specifically in this specialization project may be summarized as follows:

o Installing the ab initio program Wien2k, Wannier90 and the graphical tool XCryS-
Den.

e Learning to use Wien2k, Wien2Wannier and the Monte Carlo transport program.

e Obtaining numerically suitable expressons for scattering rates in the LAPW method
and for Wannier functions, respectively.

e Using Wien2k to calculate bandstructures and eigenfunctions for MCT, GaAs and
Si.

e Generating and plotting Maximally localized Wannier functions (MLWFs) for GaAs
and Si.

There are already a number of transport packages simulating carrier behaviour which are
based on first-principles calculations in the LAPW method and Wannier basis, respec-
tively, and much time on this project has been spent understanding these methods to de-
termine whether they have potential application for the Monte Carlo program. Ambrosch-
Draxl et al. (2006) presents a scheme for calculating optical properties using the full-
potential LAPW method [10]. The optical properties are discussed within the random-
phase approximation [11]. Since Ambrosch-Draxl et al. are interested in the dielectric
constant, they develop an expression involving momentum matrix elements in the LAPW
basis. Another package called woptic, developed by Assmann et al. (2015) calculates
the optical conductivity in a basis of Maximally localized Wannier functions. Within
the framework of dynamical-mean-field-theory [12], the optical conductivity is given as a
Brillouin-zone sum involving dipole matrix elements expressed in terms of Wannier func-
tions [13]. Although the packages offered by Ambrosch-Draxl et al. and Assmann et al.
evaluate overlaps in the LAPW and Wannier basis respectively, these overlaps differ from
the overlaps used in the Monte Carlo program. First, they involve dipole matrix elements
rather than overlap matrix elements; and second, these overlaps are restricted to initial and
final wavevectors being the same. In other words, we are interested in the matrix elements
(n'k’|nk) but Ambrosch-Draxl et al. (2006) and Assmann et al. (2015) present schemes
involving (n'k’| p |nk) where p is the momentum operator and n, n’ are band indices.

Two other interesting schemes, based on solving the Boltzmann transport equations (BTEs)
in the relaxation time approximation are available [14]. In the context of Boltzmann trans-
port in the relaxation time approximation, the relaxation time 7 represents the contribu-
tion to transport from scattering, and there is indeed a formal connection [2]. The first
of the two schemes, a code for simulating electron behaviour, is presented by Madsen
et al. (2006) and is called BoltzTraP [15]. BoltzTraP is a code for calculating transport
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quantities such as the semi-classic Seebeck and Hall coefficients in the LAPW method.
Bandstructures are Fourier expanded and an analytical bandstructure obtained. This ana-
Iytical expression allows one to easily calculate bandstructure-dependend quantities such
as derivatives. Once analytical band expressions are obtained, the Botzmann transport
equations (BTEs) are solved in the relaxation time approximation. In its early days, the
code assumed constant relaxation time 7 , but new versions allow for an energy-dependent
7€ model [16]. Another code, BoltzWann, is presented by G. Pizzi et al. (2014). Also
based on BTEs within the relaxation time approximations, BoltzWann calculates band-
structure dependent quantities using the Wannier representation instead of the LAPW
method. Analytical bandstructures are obtained using Wannier interpolation [8], mak-
ing bandstructure-dependent quantities easily accessible. While BoltzTrap only allows for
an energy-dependent relaxation time model, BoltzWann on the other hand is able to use
any model for the relaxation time, even those based on first-principles calculations [17].
While the methods described above differ from Monte Carlo by being based on the Boltz-
mann transport equation in the relaxation time approximation, the interpolation schemes
used in BoltzZWann and BoltzTrap may be of interest since they offer a way of saving data
on a coarse mesh and interpolate without significant loss of precision. Two possible ap-
plications of interest have been found for the MC program: First, when dealing with the
overlap between states of different wavenumber & and %', the amount of data needed to
tabulate the overlaps on a fine mesh is impractical, and Fourier interpolation or Wannier
interpolation may be helpful. Second, Bergslid (2013) reported in his work a ripple effect
in the Monte Carlo program with the current BZ integration method [6]. Currently, the
Gilat-Raubenheimer method is used for BZ integration, and in this context the interpola-
tion scheme used is by Fischetti & Laux [18] [19]. To prevent the ripple effect reported
by Bergslid, a band interpolation scheme developed by E. Pickett et al. (1988) may be of
interest [20].

This report is organized as follows: Chapter 2 presents scattering rates within first order
pertubation theory, density functional theory, and the bases LAPW and Wannier functions.
In chapter 3, expressions for overlap integrals in the LAPW method and Wannier represen-
tation are derived. In chapter 4, results from simulations with Wien2k and Wannier90 are
presented and discussed for GaAs, Silicon and HgCdTe, respectively. Finally, in Chapter
5, conclusions are drawn based on the simulations and finally future work discussed.




Chapter

Theory

2.1 Scattering rates

A number of different scattering mechanisms contribute to the transport of electrons, some
of them being

e Acoustic deformation potential phonon scattering
e Acoustic piezoelectric phonon scattering

e Polar optical phonon scattering

Nonpolar optical phonon scattering

Ionized impurity scattering
e Neutral impurity scattering
e Carrier-carrier scattering

o Alloy scattering

Depending on material, temperature and carrier concentration, some of the mechanisms
will play a negligible role in carrier transport and may be omitted while others will dom-
inate. The scattering rates are usually given by first order time-dependent perturbation
theory. The probability of transition per unit time from one energy-eigenstate to another
for a particular scattering mechanism is according to Fermi’s Golden Rule given as

P (k,k') = ‘ m(k, k") | §(En(k) + AE™(k,K') — E,(k)) 2.1
The initial state is labelled by band index n and wavenumber k, the final state by band
index n’ and wavenumber k’. m denotes the particular scattering mechanism at play.
M), (k, k') represents the interaction matrix element for the transition, depending on the
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initial and final state as well as the perturbed potential. AE™ is the energy added to the
carrier undergoing scattering. Finally, F,, (k) is the dispersion relation for band n. While
the delta-function ensures energy conservation, momentum conservation is maintained
through the interaction matrix element. However, in the context of Bloch states (crystals),
the momentum conservation holds only up to a reciprocal lattice vector: k — k’ +q = K.
Here, g denotes a Fourier component of the perturbed potential. In the case of carrier-
phonon scattering for example, it is interpreted as + the phonon momentum, depending
on whether the phonon is absorbed or emitted, respectively. K represents a reciprocal
lattice vector. If zero, the scattering process is called normal, otherwise one calls it an
Umklapp process.

It is often convenient to decompose the interaction matrix element into a part involving the
scattering interaction and another the overlap between the initial and final state

|M7 (R k) |° = | O (s k)| G (R, ) (2.2)
The overlap factor G, (k,k’) is taken over the unit cell and only involves the cell-

periodic part of the initial and final Bloch wave. The decomposition in (2.2) is formal,

M . . .
i.e |C7m, k. K ‘ J”—WL In practice however, one often approximates this rela-
tion by assuming the interaction to be constant over the unit cell (see for example chapter
6.5 of J. Singh, Electronic and optoelectronic properties of semiconductor structures [2])

[21]. The overlap factor reads

G (e, k) = ‘ / Bru’ g upre T (2.3)
u.c

where K is again a reciprocal lattice vector and wu, is the cell-periodic part of the Bloch
state and the integral runs over the unit cell. (2.3) in its current form does not take spin-
flipping into account. The initial and final states for a scattering process are generally
described with a spin index as well, so in order to take this into account, we average over
initial spin states and sum over final spin states.

G (K, K') = ZZ’/ djrun,k,g,unkgelKT (2.4)

where ¢ and ¢’ each denote either spin up or spin down, and the sum runs over these two
spin orientations.

2 . . L
If the scattering interaction ‘ (K, k) | for a particular scattering mechanism is known,
all that remains to determine the scattermg rate is G (K, k'). The interaction matrix ele-

ment | (kK )| may be found for a number of scattering mechanism from Brudevoll
et al. (1990) and Ridley B. K, Quantum Processes in Semiconductors [22] [14].
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2.2 Density Functional theory

2.2.1 Kohn - Sham equations & Self-consistent cycle

The Hohenberg-Kohn theorem states that for a given system, the total energy may be given
as a functional of the ground state electron density. Furthermore, this ground state electron
density minimizes the total energy functional. Both electron interactions and external
potentials are taken into account. For our purposes, the system denotes the crystal of
interest and the external potential is the Coulomb potential from the nuclei crystal. While
the original theorems applied to non-spin-polarized systems, it has later been generalized
to take spin-polarization into account. Nonetheless, we will present the non-spin-polarized
version first:

E = Elp 2.5)

Even though the Hohenberg-Kohn theorem guarantees that an energy potential exists, it
does not provide any model for the energy functional itself. For density functional theory
to be useful, it is vital that the model used for the functional is sufficiently accurate. The
functional may be decomposed into a set of terms corresponding to different kinds of
energy contributions

E = Elp] = Ts[p] + Eeilp] + Enlp] + Eiilp] + Exclp] (2.6)

Ts[p] is the single particle kinetic energy; E.;[p] is the energy due to the Coulomb interac-
tion between electrons and nuclei; E;;[p] comes from nucleon-nuclei interactions and the
electron-electron interaction is decomposed into F[p] and Ey.[p]

Enlp] = % / d%d%’M (2.7)
Eale) = [ ro(res(oir) 8)

The Hartree energy is due to the Coulomb-repulsion between electrons, and its analytical
expression is given exactly. The exchange-correlation term on the other hand is not known
and must be approximated by defining E'y[p] appropriately. The expression in (2.8) is in
the local density approximation (LDA) since €,..[p(7)] is a function only local in the den-
sity. Another common model, the generalized gradient approximations (GGAs) includes
the local density as well as the local gradient. Several other models exist as well, see for
example [ref].

In order to determine the ground state energy and ground state density, we write the total
density in terms of single particle densities

plr) =Y ¢ (r)di(r) (2.9)




and invoke the Variational principle to find the ground state energy with respect to p(r).
Doing so yields the Kohn-Sham equations as shown by W. Kohn and L. J. Sham in 1965
(23]

Vics®i(r) = (T + Vei(r) + Vi (r) + Vae(r)) di(r) = €i¢s(r) (2.10)

p(r) = Z ¢i(r); (r) Q2.11)

where T is the single-particle kinetic energy operator, V,; denotes the Coulomb potential
operator for orbital ¢;(7), Vi is due to the Coulomb interaction between electrons, V. is
the exchange-correlation potential and finally ¢; is the Kohn-Sham eigenvalue correspond-
ing to the Kohn-Sham orbital ¢;(r). Vi (7) and V,.(r) are explicitly given by

VH(T> = 62/d37" |rp(r;?,| (212)
6Ezc
Vaelr) = = p(r[)p } (2.13)

In (2.11), the sum runs over the N electrons in the crystal. Finally, the total energy is
related to the Kohn-Sham eigenvalues through

- 0 Baclp]

E= Z ¢ — Enp| + Exzelp — / g; p(r)dr (2.14)
While (2.10) provides an equation for the ground state density and thereby the total ground
state energy of the system, the Kohn-Sham equations are self-consistent equations. In or-
der to solve the equations, the electron density is needed to determine the Hartree and
exchange-correlation potentials. At the same time, we are solving the Kohn-Sham equa-
tions in order to determine the same electron density. In practice, the Kohn-Sham equa-
tions are solved self-consistently by making an initial guess for the density and then solve
for the electron density repeatedly until convergence.

2.2.2 Spin-polarized systems

If an external magnetic field is applied to an electronic system, this will modify the charge
density due to the electron’s and its spin’s interaction with the external magnetic field.
This generally gives rise to a preferred spin orientation for the electrons and we therefore
call such a system a spin-polarized system. While the magnetization may generally vary
in magnitude and direction from one point in space to another (a vector field), it is reduced
to a scalar field in the case of collinear magnetization, i.e where the magnetization only
varies along one direction. The two relevant scalar fields read

p(r) = pr(r) + py () (2.15)

m(r) = pr(r) — py(7) (2.16)




The generalized Hohenberg-Kohn theorem then postulates a ground state energy. This
energy is acquired by invoking the variational principle on an energy functional which
now depends on the spin densities in (2.15) and (2.16) [24]

E = Elpt,p)] 2.17)

We proceed to segment into different energy contributions, analogous to the decomposition
made in (2.6) and invoke the variational principle to get the Kohn-Sham orbitals for the
spin-polarized case

Visbio(r) = [T + Vei(r) + V(1) + Vac,o ()| 0 (7) = €500, (T) (2.18)

N

po(r) = ¢io(r)e],(r) (2.19)
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where a new index o corresponding to 1 and | has been introduced. Except for the
exchange-correlation potential, given by

_ 0By [PTv pi]
Vere (1) = 0 e)

all the other terms are defined as in (2.10). In the spin-polarized case, we are instead
dealing with two spin electron densities instead of one, so there are two sets of Kohn-
Sham equations.

(2.20)

223 LDA+U

A challenge with the local (spin) density approximation is the fact that it does not prop-
erly capture the contribution from strongly correlated electron states since it assumes lo-
cal exchange-correlation. LDA+U is an attempt to better model these strongly correlated
states, typically f and d orbitals [25], using the Hubbard model [26]. The modified energy
functional in LDA+U is given by

Erpatulp(r)] = Erpalp(r)] + Egub — Fac (2.21)

where E1,pa[p(r)] is the original energy functional (2.6), E'y.,; is the contribution to the
energy functional from strongly correlated electron states through a Hubbard model, and
since E'rp 4 already takes the local exchange-correlation into account, a third term Eg, is
added to correct for the double counting. E',,, is given by

/ U! /
Io I Io, I
Eruw[{nn, iy }] = > Z Ty Topr (2.22)

m,o#£m’c’
E;. is however not uniquely defined as there are more ways of making the double-counting
correction. Different schemes exist, but the two most popular choices are the so-called

around mean-field (AMF) [27] and “’fully localized limit” (FLL) [28].




2.3 Full potential Augmented plane-wave method

The (linearized) augmented plane-wave method ((L)APW) is a popular method in the con-
text of electronic structure calculations of crystals. The method is a procedure for solving
the Kohn-Sham equations for the total energy, ground state density, eigenfunctions and
eigenvalues of a many-electron system[29] - the main computational task in the local den-
sity spin approximation (LSDA) of density functional theory. The method is especially
well-suited for solving the KS equations because the basis has been adapted specifically
for electronic structure calculations in the context of crystals.

Slater formulated the Augmented Plane Wave (APW) method in 1937. In the origi-
nal method the basis consisted of energy-dependent basis functions, and this energy-
dependence yields a non-linear eigenproblem which is solved iteratively at great compu-
tation cost [refreence]. If one however fixes the energy at a so-called linearization energy
E, a different eigenstate with its associated eigenenergy will be poorly described. In the
LAPW method, one fixes the energy in order to linearize the eigenproblem, but compen-
sates for the loss in flexibility by modifying the basis set. This allows one to better account
for energies differing from the linearization energy. The linearization itself is typically per-
formed in two ways: 1) In the LAPW method the atomic orbital like functions from region
() are matched in value and slope at the sphere boundary with that of plane-waves from
region (II). 2) In the APW plus local orbitals method (APW+lo) atomic orbital-like func-
tions are matched with plane-waves only in value at the sphere boundary, resulting in kinks
at the sphere boundary for the basis functions.

Starting with a general expression to convey the basic idea behind APW, some of the
differences between the two linearized methods mentioned above will be presented after.

2.3.1 Partitioning of the unit cell

In the APW method the unit cell is separated into two regions: a region, denoted by I, of
atomic spheres centered around real-space atomic points where the potential is assumed to
be spherically symmetric, and an interstitial region, denoted by II.

The basis set is defined differently for the two regions. In region I the basis is expressed
as a linear combination of radial functions multiplied by spherical harmonics. These are
centered inside their respective sphere, denoted by (3, so region I is generally a fragmented
region of spheres around each and every atom in the unit cell. Focusing our attention on a
specific sphere, but keeping in mind that contributions from all spheres must be added, we
write

URr) = [ap,ulT (rp, Er) + beo, @5 (ra, i) + ¢, (7)) Yim (rs, Br)

lm
(2.23)
Here, u1, 1y and uy are radial functions depending on the spin projection o (for spin po-
larized calculations); energy [; orbital quantum number [; and finally the radius rg =
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Figure 2.1: Partitioning of the unit cell into two regions: atomic spheres centered around Rg in
region I and an interstital part, region II. There may generally be more than one sphere making up
region I, each sphere corresponding to a nucleus in the unit cell.

|r — Rg| which is defined according to the center of the sphere 5 (see figure 2.1). In other
words, /3 does not denote the radius from a global origin.

The radial functions and the coefficients are defined according to which scheme is being
used, for our purposes either LAPW+lo or APW+lo. Generally, the radial functions are
associated with radial solutions to the Schroedinger equation at a given energy F; and also
the energy derivative 2 IE L evaluated at E; [30]. The radial functions and basis coefficients
are explained in detail for both LAPW+lo and APW+lo in the next section.

For region II, we expand our basis in terms of plane-waves

1/)1@( Z Ca i(k+G)-r (2.24)

\F

The basis function is entirely defined in terms of the expansion coefﬁcients Cy since we
have continuity conditions for the wavefunction on the sphere boundary. a/ ke bi"lm, i"lm
are all functions of C}, defined in terms of the continuity condition invoked between region
(D and (II). Even though the wavefunction for region I has an index [ associated with the
particular atomic site located at R, region II has no such indices since it does not belong
to a particular atomic site. Finally, the band index has been omitted from the state 97 (1)

Bo
and associated expansion coefficients C7, ay kot Dk ck 1m, TOr simplicity.
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The total wavefunction is expanded in this augmented plane-wave basis (with band index
reintroduced in the basis functions)

= Z Cntbh, (2.25)
n
Finally, the potential for both schemes (LAPW+lo or APW+lo) is expanded according to

>ora Ve (r)Yoa(#)  regionl
Vir) = , (2.26)
Sk Vi (r)e™ T region II

where K denotes a reciprocal lattice vector and Y7 5, again corresponds to spherical har-
monics.

2.3.2 LAPW-+lo and APW+lo

As mentioned initially in this section, different schemes for the definition of the radial
functions and continuity conditions in (2.23) exist. Starting with the LAPW method, the
wavefunction for region I is given (spin and band index omitted for simplicity)

Ui, (1) =D [Atmote, (1) + B e, 11(r)] Vi () 2.27)
ilm
where the expansion coefficients not only depend on sum parameters 1 and m, but also the
wavevector k,,, and @;(r, E) = g—]’é ;- To obtain additional flexibility and ensure orthogo-
nality, additional basis terms may be added in what is called the local orbital extension

PO = [Aimw(r, Evi) + Bumtu(r, Evy) + Crmtg (r, B2 )| Yim (7) - (2.28)

im

These additional terms consist of one energy derivative and a linear combinations of radial
functions evaluated at two different linearization energies. By demanding normalization
and zero value on the boundary between region I and II, the coefficients are determined.

We may similarly construct a basis set in the APW-+lo basis

’L/Jk-n (’!‘) = Z [Alm,knul(r) + (b%gm] lem(’l"\‘) (229)

Ilm

with the local orbital extension

19, = Buntui(r) + Clan o, 11 (1) Yim (7) (2.30)

Although this looks similar to the LAPW method excluding local orbitals, there are some
significant differences: First, coefficients By, and C,, do not depend on k,,, they are
determined by ¢!° = 0 at the boundary between the two regions and also normalization.
Second, there are no restrictions on the wavefunction derivate at the sphere boundary (the
value of v, between the two regions must still match). Finally, the linear combinations
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including ;(r) need only enter for [ < 3, meaning that most of the terms in 2.29 only
include u;, and are easily constructed compared with LAPW+lo [31]. In fact, Madsen et
al. (2001) have shown that compared with the LAPW method, the APW+lo scheme con-
verges at a much lower cost to essentially the same results. [32]

2.4 'Wannier functions

In this section, the Wannier representation is presented in the context of the Wien2Wannier
software [4] and the MC program.

For the independent-particle approximation in a perfect crystal, electron states are conven-
tionally described by Bloch waves labelled by a band index n and a wave vector k. An
alternate representation in real space was introduced by Gregory Wannier in 1937. This
localized orbital in a periodic structure description is now known as a Wannier representa-
tion. In the Wannier representation each state is labelled by band index 7 and lattice vector
R, making it a real-space representation of the electron states.

Wannier transformation

According to Bloch’s theorem a common eigenstate of the one-electron Hamiltonian A
and the lattice-translation operator 7% is given by:

V(1) = €92y (r)et® ™ (2.31)

One demands that 1w, (r) has the periodicity of the lattice and ¢??(") the periodicity of
the corresponding reciprocal lattice. The latter, typically not written out explicitly, has
been written out here to emphasise that is not assigned by Schroedinger’s equation and
therefore offers an arbitrary phase to the Bloch wavefunction. This phase hence makes a
Bloch-state non-unique. As stated earlier, a real-space representation is more convenient
in many applications, for instance when dealing with transport properties [8]. One finds
such a representation by a Fourier transformation of the Bloch state into a Wannier state.
This indeterminacy of the Bloch state represented by ¢**~(") does indeed propagate to the
Wannier representation which also becomes non-unique. A Wannier representation of the
Bloch state is given as:

wn(r — R) = |Rn) = / Z USE) (o) e~ Rk (2.32)

BZ =1
where the label R denotes a lattice point and n energy band. V represents the crystal vol-
ume and ¢, (k+ G) = (k) for G denoting any reciprocal lattice vector. The phase factor
U, éf,% represents the arbitrariness inherited from the Bloch-function phase factor e19n(r) e
sulting in the indeterminacy of the Wannier representation. The set {| Rn)} constitute an
orthonormal basis [8] and |Rn) is transformed into |R’n) by a translation of the lattice
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vector R’ — R.

Finally, the inverse transformation, carrying one from the Wannier representation to Bloch,
is given by

Unr(r) =>_ ™7 |Rn) (2.33)
R

2.4.1 Maximally localized Wannier functions

The gauge freedom present in the Bloch state and inherited by the Wannier representation
may be used to maximally localize the Wannier functions. This localization corresponds
to choosing a particular unitary matrix U,gfﬁ in (2.32). In order to carry out this procedure,
one first introduces a well-defined localization-criterion

Q=" [(0n|r?|0n) — (On|7|0n)” ] (2.34)

where €2 denotes the spread in the Wannier function and r is the position operator. The
sum runs over all basis functions. Details around the procedure of minimizing the spread
(2.34) are given by Marzari et al. (2012) [8], but one thing is worth pointing out: in 1962
Blount showed the matrix elements in {2 may be expressed in terms of Bloch orbitals, V,
and Vﬁ [33]

(Rn|r|0m) _z'(;/)?)/dkzeikﬂ (Unke| Vi [tmie) (2.35)
T

(Rn| 7% |0m) = _(2‘/)3 / dke™ R (U 1| V3 [thns) (2.36)
Y

To evaluate the matrix elements of (2.35) and (2.36), the Bloch orbitals are assumed to
be discretized onto a uniform mesh (a uniform Monkhorst-Pack mesh [34]). Using finite-
differences to evaluate the matrix elements of V;, and V2, Marzari et al (2012) show that
the information needed is the overlap between Bloch orbitals at neighbouring k points

Grm(k,b) = (Um k|tn k4b) (2.37)

If the overlaps (2.37) are tabulated, the localization, and equally important the effect any
unitary transformation may have on the localization, is available through (2.34), (2.35) and
(2.36) without the need to recalculate overlaps or through any other interaction with the
original Bloch states used to generate Wannier functions. Furthermore, looking back at the
calculation of scattering rates with eigenfunctions in (2.1) and (2.3), it becomes clear that
the information needed to construct MLWFs may be used to calculate scattering rates with
the LAPW basis. The overlaps (2.37) are in fact tabulated in the program Wien2Wannier to
provide the necessary input for the program Wannier90 which constructs the MLWFs, and
could potentially be extracted to calculate scattering rates as described in Chapter 2.1. This
is the computationally cost-efficient way of acquiring scattering rates since the overlaps
are given free of any computational costs. But the overlaps needed in the construction of
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MLWF’s are only between neighbouring points in the Brillouin-zone. The initial and final
charge carrier states can generally not be restricted to neighbouring Brillouin zone points.
Since the initial and final eigenfunctions may not even be restricted to the first Brillouin
zone, the overlaps needed to calculate scattering rates represents only a fraction of the
overlaps needed for determining individual scattering rates. We therefore conclude that
although overlaps between LAPW basis functions are used to construct MLWFs, these are
not relevant enough for the calculation of scattering rates to be reused.
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Chapter

Scattering rates in LAPW and
Wannier basis

In this section, an expression for the overlap (2.2) between initial and final electron states
for a scattering event is derived in the LAPW method and Wannier representation. The
objective is to obtain expressions for the overlap that are suitable for numerical integration
over the first Brillouin zone. These may then be used to calculate the scattering rates for a
particular scattering mechanism as described in Chapter 2.1.

The general overlap that is needed takes spin-flipping into account and reads

_ 2
Grn (kK = ZZ‘ dgru o Unko €T (3.1)
We will only derive expressions for
« . 2
Gno’,n’a’(ka k/) - ’ / dsru:b’k'glunkanK'T (3-2)
u.c

since the generalization is straightforward once these are given. For tidier notation, spin
indices are henceforth omitted

G’,m,(k,k’):‘ / Bru’ g uppe T (3.3)
JUu.C
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3.1 LAPW overlap

We start by writing out the absolute square of (3.3)

G (kK = d3ru g (1) g (1) KT
u.c (3.4)

/ d3r'un/k, (T,)u:;k('f‘/)e_iK'rl
u.c

where in the above, the first integral is the complex conjugate of the second. We will
derive an expression for the first integral, and once known it is simply multiplied with its
complex-conjugate to yield the LHS of (3.4). As a reminder the LAPW basis reads

i Lk imu1 i (v, Ey) + breim@1,0(r, Ey) + Coamuz,i ()] Yim (v, Ey)  region I
uk(r) = _
# > Cr(G)eitk+E)r region II
(3.5)
where compared with the expression (2.23) given in chapter 2, indices for the particular
sphere § in region I and spin ¢ are implied. Band index is also omitted even though the
expansion coefficients depend on it.

Figure 3.1: Partitioning of the unit cell into two regions: atomic spheres centered around Rg in
region I and an interstital part, region IlI. There may generally be more than one sphere making up
region I, each sphere corresponding to a nucleus in the unit cell.
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3.1.1 RegionI

In order to evaluate the overlap in region I, we first focus our attention on a given sphere 3.
The plane-wave €57, appearing in (3.3) is expanded into Bessel functions and Spherical
harmonics with their origin at point R at the center of sphere 3 in region I (see figure
3.1).

= 4K B Zz Ji(brg) ZYlm VY (P3) (3.6)

where j; (| K|rg) is a Bessel function, Ylm isa Sphencal Harmonics function and finally
K and 7 unit vectors pointing in the same direction as K and 73 , respectively. i’ de-
notes the imaginary unit. While the initial plane-wave was expressed in terms of a global
origin, we have now managed to change to rg which is centered around the sphere £,
making the overlap in region I tractable.

Inserting the basis expression for region I, from equation (3.5), and the Bessel expansion
(3.6) into the first overlap integral of (3.4), [, o d®rul ., (T)unk(r)e ™, we get an ex-
pression for the overlap in region I

IDIIN

limq lomso lgms

[ak' llmlul ll (rﬁ) + bZ’ llmlui,ll (T‘B) + c;‘;',llmluz,ll (TB)} lfljml (T,B) X (3'7)

dret® Rﬁzlzjl (brﬁ)}/bmz (K)}fbmz (TAB) X

[k t3ms 1,15 (75) + Dhetyms 01,15 (18) + C,tami 2,1 (78) | Yiams ()
where the first line is inserted for w, ., (), second line is inserted for the expansion of
e*®° and the third line is inserted for u,x (7). Since these depend on their own respective
summation indices 1 and m, a sub-subindex has been added to prevent mixing them up: 1
corresponds to expansion coefficients for w, ... (), 2 corresponds to expansion coefficients
for 5" and finally 3 corresponds to k(7). (3.7) consists of radial and an angular

integrals over the chosen sphere 3 in region I . Sorting the different factors out, we are left
with a prefactor given by

dreiE-Rejlzy, (K (3.8)

the angular integral is given by

/ / 4O (75)Yiama (75)Yigms (5) (3.9)
=0J9=0

and the radial integral by

PB
drﬁr% [al*c’,llml u;:ll (7‘5) + b::ﬁllmlu%{,ll (Tﬂ) + CZ’,llmluz,ll (Tﬁ)]jl2 (|K|r6)

[a’kJsm:sul,ls (7’5) + bk,l3m3u17ls (Tﬁ) + Ch,lyms U205 (Tﬂ)]
(3.10)
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where the radial integral goes from radius zero to pg, the radius of atomic sphere 3. The
contribution to equation (3.4) now reads

2.2

limy lama lzmg

dme'K-Rojlzy, (K

2 T
/ / 4O} (75) Vi () Vigms (75)
$=0Jo=0

PB
/0 drﬁré I:a';t:’,llmluf,ll (rﬁ) + bz',llmlu}lk,ll (T,B) + c:ﬂ",llmlu;,ll (Tﬁ)]]l2(|K|rﬁ)

[kt 1,15 (73) + bk tams 01,05 (18) + Chetama 2,1, (1) ]
(3.11)

But this is only the contribution from region I. We also need the contribution from region
II.

3.1.2 Region II

We similarly evaluate the overlap for region II by inserting the plane-wave basis in equa-
tion (3.5) into the first integral on the RHS in (3.4)

1 . 0 _
- Y Ci(G1)Cw(Ga) / dire 0Tl TG et Gty (3.12)
C1Ga IT
We assume now that ¢“(¥' —%)" ~ 1 which should work if the unit cell is sufficiently small
1 .
v D Ci(G1)Ck(Ga) | dPre!G2mGrtEOr (3.13)
GG IT

where the integral runs over region II. We now split the integral f 7 BretE-K)T jnio
one over the unit cell and another over region I, the latter subtracted to give the right

integration domain

% Z C}ZI(G1)Ck(G2)/ BBrei(G2—Gi+K)-r _

! o~ | , (3.14)
Vv Z CI:’(Gl)Ck:(Gz)/dBTel(GZ*G1+K)-r
G1G2 I

Since G'1, G2 and K are recirpocal lattice vectors, so is G2 — G1 + K. This results in a
delta-function for the integral over the unit cell

1
v 2 (Vo(Ga—G1+ K)) (3.15)
G1G2
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The integral over region I is on the other hand a sum over each and every atomic sphere,
denoted by ( in the unit cell. r represents the coordinate within the unit cell, so we write
r = Rg + rg to express the integral in terms of coordinates centered inside each sphere
B of region I

1 . )
7 3 S GGG OGO [ opeiGaGrrine (a1
G1Gz 8 !

and the sum runs over all atomic spheres 8. Orienting the z-axis along |Gz — G1 + K|
and switching to spherical coordinates, the integral may be evaluated to yield

1 . ; _
T Y. Y 8Vpel GGt R sin(z) x;“os(”‘") (3.17)
G1G2 8

where = pg|G2 — G1 + K|, Vg = %Wp:;; and pg is radius of sphere 5. By adding the
contributions to the overlap from region I and II, i.e (3.11) and (3.17), we obtain the first
integral in (3.4). The second integral is simply the complex-conjugated of the first, and
thus we have the overlap.

The expression presented here is based on an expression implemented in Wien2Wannier.[4]
As mentioned in the end of Chapter 2.4, the computed overlaps in Wien2Wannier are re-
stricted to neighbouring overlaps and were not found to be useful. The numerical ex-
pression they present is nonetheless suitable in our case since the overlap considered is
otherwise the same apart from some slight modifications arising from the overlap we are
interested in. As seen from equation (3.1), our overlap has an exponential factor e%",
and we also average over initial spin-states and sum over final ones.

3.1.3 Total overlap

To summarize, we have an expression from region I

2.2

limy lama lzmg

dreBERojly, - (K)

2 T
/ / A} (75) Vi () Vigms (75)
$=0Jo=0

PB
/0 drﬁrg I:a'z:’,llmluf,ll (rﬁ) + bl:',llmlu}lk,ll (T,B) + c:ﬂ",llmlu;,ll (Tﬁ)]]l2(|K|rﬁ)

[kt 1,15 (73) =+ Bkt 01,0 (78) + Chetama 2,1, (1)
(3.18)

and the expression from region II reads

1 , ; —
V Z V(S(Gz _ Gl + K) _ Z 3VB€1(G2—G1+K)'R5 Sln(.’E) 1'3.'17008(1') (319)
G1G2 B
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Added together, these correspond to the overlap integral

/ A3rud g (1)t (r)e KT (3.20)
u.c

and finally, when multiplied with its complex conjugated, we have the desired overlap
expression

G’nn/(k,k'):/ A3rut g (1) tng (1)e T

u.c (3.21)
A1 g (7 s (' )e KT
u.c

3.2 Wannier overlap

Starting with the overlap factor between two Bloch states, we use the inverse Wannier
transformation (2.33) to acquire the overlap factor in terms of Wannier overlaps. The
overlap factor is given by

G (K, k) = ‘ / d3rul ertinre T (3.22)
u.c

where K = k — k’ + q is the reciprocal lattice vector, u.,x is the cell-periodic part of the
Bloch state and the integral runs over the unit cell. k and k’ are initial and final scattering
wavevectors respectively, and q is a Fourier component of the perturbed potential causing
scattering. Since the inverse Wannier transform (2.33) in its current form is related to the
general Bloch state, we express it in terms of the cell-periodic part in order to insert the
inverse Wannier transform into (3.22). The cell-periodic part u,g of the Bloch state is
associated with the BlocH state through

Yk (1) = U (7)e*T (3.23)

The inverse Wannier transformation in terms of the cell-periodic part of the wavefunction
now reads

Uk (T Z e* Ry p(r) (3.24)

Isolating the Bloch periodic part of the wavefunction on LHS yields

Ung (1) = 7T Z e* Ry r(r) (3.25)
R

We will also need the complex-conjugated Bloch periodic function
u* _ zk' r Z e—zk R ZR (326)

Inserting the Bloch periodic functions (3.25) and (3.26) into (3.22) yields
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(ke K') =

2
’ ’ . . 24 .
‘ / ddrezk 7- 7zk ‘R wan,(’l")eilk'T § ezk-R WnR (,,,)ezK~'r-
u.c I

R

(3.27)

Reorganizing a bit

1.7 ’y . ’ 2
Gnn’ (k, k,) — ‘ Z Zefzk: ‘R +lk-R/ dgrel(K+k 7’9)'7‘0‘);/1%1 (r)wnR(T)‘ (328)
R’ R

u.c

Butsince K + k/ — k = g, we get

AR =Y . 2
G (K, E') = ’ Z Z e ik Rtik-R /u . dre' W, g (r)wnR(r)‘ (3.29)
R R :

Writing out the absolute square

Grn (k, kl) =

S [ ()]

R, Ry (3.30)
(3037 o R / A7 e oy (7)o (1)

R, Ra u.c

and reorganizing a bit

G (k,E') =

SN R R

e (3.31)
/ dPre' Tk, b (r)wan(r)/ d3T/6_iq'rlwn/R'2(T/)WZRz(T,)

u.c * u.c

What we are left with is a sum over four summation variables, each one running over all
lattice points R in the electronic structure. For each term in the summation, two integrals
involving Wannier functions and an interaction is involved. Therefore, at the current stage,
the expression (3.31) for G,,,,/ (k, k) is not tractable for the Monte Carlo program. In
order for that to happen, the summation should ideally be limited by a cut-off radius to
limit the computational costs involved. In addition, a scheme should be developed to
numerically evaluate the overlaps of Wannier functions in each term.
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Chapter

Results and discussion

In this section, results for materials GaAs, Si and HgCdTe are presented. For Silicon and
GaAs, the effect of spin-orbit coupling on the valence band is investigated, and symmetries
of the band edge wavefunctions presented. Silicon and GaAs are well-studied semicon-
ductor materials and therefore offer an opportunity to test Wien2k, Wien2Wannier and
Wannier90 on these materials. The properties of Silicon and GaAs tested against may for
example be found in J. Singh, Electronic and optoelectronic properties of semiconductor
structures and Ridley B. K, Quantum Processes in Semiconductors [2] [14]. For CMT, the
badgap and the effect of LDA+U is discussed.

Bandstructure plots for every material are plotted in the same format, i.e along the same
symmetry lines. These are from left to right on the plots (in reciprocal lattice vector units)

1

L_(iaoao)

T = (0,0,0)

11
X=(0> = 4.1
0.5:3) @

5 3

K4 = -, =

0.2.3)

T = (0,0,0)

4.1 GaAs

Gallium arsenide is a III-V direct bandgap semiconductor with a zinc blende structure.
Since GaAs is often presented in elementary textbooks on semiconductors, it provides a
good opportunity to test the validity of the input data acquired from Wien2k and Wan-
nier90 which will be used for the Monte Carlo transport program. The lattice parameter
used is @ = 5.65 A, acquired from crystallography.net. The effect of spin-orbit coupling
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on the degeneracy in valence band is investigated, and symmetries of the band edge states
presented.

It is well-known that essentially all semiconductors have a four-fold symmetry at the top
most valence band, and a 2-fold symmetry band slightly below. However, a tight-binding
calculation using s and p orbitals , where relativistic effects are not taken into account, will
incorrectly yield a six-fold symmetry at the valence band edge. Thus, a first-principles cal-
culations made on GaAs excluding spin-orbit effects can be expected to yield a six-fold
symmetry at the valence band edge. The bandstructure for GaAs without spin-orbit effects,
calculated with Wien2k, is shown in figure 4.1a. This matches well with calculations made
on GaAs with DFT where spin-orbit effects have been excluded. The valence bands that
give this six-fold symmetry are highlighted in blue and red, obtaining their peak at  just
under the shaded area across the figure representing the band gap. The six-fold symmetry
corresponds to the three orbitals px, py and pz, each state associated with a spin-up state
and a spin-down state.

Taking spin-orbit effects into account, we expect this degeneracy to be lifted and the sym-
metry of band edge states to match those of experiments on semiconductors. In other
words, there should be a 4-fold symmetry at the top most valence band, and a 2-fold sym-
metry band slightly below. Results are shown in figure 4.1b. As indicated, the degeneracy
of the valence band has been lifted around the band edge to form bands conventionally
named (I) the Heavy Hole (in blue), (IT) the Light Hole (in red) and (III) the Split-Off band.
Exactly at the valence band edge, there is a two-fold symmetry due to the Heavy-Hole -
Light-Hole degeneracy, and the Split-Off band falls below the Heavy-Hole - Ligh-Hole
band edge. Taking spin degeneracy into account, one arrives at the experimentally correct
band edge symmetry of four-fold symmetry at the top valence band with another two-fold
symmetry slightly below.

Another interesting feature of GaAs is its direct bandgap. Direct bandgap semiconductors
are characterized by the lowest point on the conduction band occurring at I". The elec-
tron states near the conduction band have a central cell periodic state that is spherically
symmetric, i.e we say the states are described by s-orbitals (as one moves away from the
conduction band edge however, p-orbitals mix in). The valence band edge is analogously
made up of p-orbitals with a spherically symmetric state further below these states. The
symmetries exhibited by the central cell part of the valence band are however similar.
Using Wien2Wannier and Wannier90 to post-process the eigenfunctions acquired from
Wien2k, we arrive at Wannier functions for states near the band edge that are plotted using
XCrysDen [ref]. This has been done for the non-spin-orbit case of GaAs. Isosurfaces, i.e
points of equal absolute value of the Wannier functions are plotted in the conventional cell
of GaAs, with a purple bullet indicating a gallium-atom, and yellow bullet indicating an
arsenide-atom. Red and blue surfaces indicate same absolute value but different sign of the
isosurface plotted. Figure 4.2a shows an isosurface of the valence band state correspond-
ing to the bottom valence band (black) depicted in figure 4.1a. As can be seen from the
plot, the isosurface is spherically symmetric and centered around a gallium atom. In figure
4.2b, the valence band edge states are plotted. These are also centered around a gallium
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(a): Bandgap of GaS calculated with Wien2k without taking spin-orbit effects into account. The
direct bandgap for this calculation is found to be Egyqp, = 0.291 eV. The bandgap area has been
shaded and a dotted rectangle highlights the valence and conduction band edges, both appearing at
I'. The lowest conduction band edge is found on the lowest black band while the valence band edge
appears on the red and blue bands. The conduction band and valence bands are indicated by arrows

to the right.

(b): Bandgap of GaAs calculated with Wien2k including spin-orbit effects. The direct bandgap for
this calculation is found to be Eg.p, = 0.163 eV. The bandgap area has been shaded and a dotted
rectangle highlights the lifted degeneracy due to spin-orbit effects. (1) is called the Heavy Hole band,
(1l) the Light hole band and (111) the Split-Off band.
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(a) s type valence band Wannier function (b) p type valence band Wannier function

‘§7

(c) s type conduction band Wannier function  (d) s+p type conduction band Wannier function

Figure 4.2: GaAs lattice shown in the conventional unit cell. Purple bullets correspond to Ga
atoms and yellow bullets represent As. (a): spherically symmetric Wannier function isosurface
corresponding to the lowest valence band in 4.1a. Centered around Ga atom. (b): p-orbital type
Wannier function isosurface corresponding to the blue and yellow bands in 4.1a. Centered around
Ga atom. (c): s-orbital type Wannier function isosurface corresponding to the black lowest lying
conduction band in 4.1a. Spherical symmetry in the conduction band edge is characteristic for direct
bandgap material. Centered around As atom. (d): p and s-orbital type Wannier function isosurface
corresponding to conduction band with lowest point on L (to the left in ref 4.1a).
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atom, but the isosurface in this case exhibits axial symmetry characteristic of p-orbitals.
The lowest conduction band state, figure 4.2c exhibits spherical symmetry. This is as ex-
pected since GaAs is a direct bandgap semiconductor. Furthermore, it is centered around
an arsenide atom. For high electric field transport, the second lowest conduction band
valley, occurring at L, might be relevant. As shown in figure 4.2d, this Wannier function
shows mixture of both s- and p-orbitals and is centered around an arsenide atom.
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4.2 Silicon

Silicon crystal is another interesting structure to test Wien2k and Wannier90 on. It differs
from GaAs by having an indirect bandgap. Furthermore, it is known to have a very weak
spin-orbit effect. The lattice parameter used is a = 5.43 A, acquired from crystallogra-
phy.net. The spin-orbit effect and band edge states around the bandgap of Silicon crystal
are discussed here.

Calculations from Wien2k on silicon crystal are shown in figure 4.3a and 4.3b. First, the
indirect bandgap nature of Si is successfully reproduced. While the conduction band edge
is located near I in the case of GaAs, Si has its lowest conduction band valley near X. This
characteristic is emphasized by a dotted rectangle in 4.3a and indirect bandgap shaded.

While the valence band edge of almost all semiconductors are described as being made up
of p-orbitals, the spin-orbit effect is generally of different magnitude depending on mate-
rial. In Si, the Split-Off band, analogous to the Split-Off band described for GaAs in the
previous section, has been shown to be lower in energy with only A = 0.04 eV. Including
spin-orbit effects in the case of Silicon should therefore not alter the bandstructure sig-
nificantly. This is indeed the case as one compares figure 4.3b which includes spin-orbit
effects with the original bandstructure in figure 4.3a. There is a small lifting in the degen-
eracy with a black band, barely visible, appearing just below the red band, but as expected
this change is very small compared to that of GaAs.

Finally, Wannier function isosurfaces for the upper valence band edge and lower conduc-
tion band edge have been plotted in 4.3a and 4.3b, respectively. The Wannier functions are
plotted in the conventional cell, with light blue bullets indicating Si atoms. Due to Wien2k
demanding inversion symmetry about the origin, the origin can not be taken to be at one of
the Si atoms, as was done for Ga in the case of GaAs. This is why the plots from XCrys-
Den in the case of Si look different compared to GaAs even though they both belong to
the face-centered cubic crystal structure. In figure 4.4a, it is shown that the upper valence
band edge Wannier functions display axial symmetry, which is indicative of p-orbitals, as
for GaAs. The next plot, an isosurface for the conduction band edge near X is shown in
4.4b. As seen in the figure, the indirect bandgap of Si results in a conduction band edge
wavefunction character which is neither an s-orbital nor a p-orbital, but a mixture. This is
in agreement with the behaviour of indirect bandgap materials.
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Figure 4.3:

(a): Bandgap of Silicon calculated with Wien2k without taking spin-orbit effects into account. The
indirect bandgap for this calculation is found to be Egqp, = 0.484 eV. The bandgap area has been
shaded and a dotted rectangle highlights the valence band appearing at I' and conduction band
edge near X. The lowest conduction band edge is found on the yellow band while the valence band
edge appears on the red and blue bands. The conductuction band and valence bands are indicated
by arrows to the right.

(b): Bandgap of Silicon calculated with Wien2k including spin-orbit effects. The indirect bandgap
for this calculation is found to be E4qp, = 0.467 eV. The bandgap area has been shaded and a dotted
rectangle highlights the small effect spin-orbit effects have on Si. The degeneracy in the valence band
edge is barely lifted, but if one looks closely, a black band has appeared just below the red band at
the valence band edge.
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(a) p type valence band state (b) s+p type conduction band state

Figure 4.4: (a): Isosurface plotted for p-orbital type Wannier function corresponding to the red and
blue bands in 4.3a. (b): Isosurface plotted for s+p - orbital type Wannier function corresponding to
yellow the lowest lying conduction band in 4.3a. This mixed symmetry in the conduction band edge
is characteristic for indirect bandgap materials.
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4.3 HgCdTe

Mercury Cadmium Telluride (MCT, CMT, HgCdTe) is a ternary alloy of CdTe and HgTe.
It has a tuneable bandgap between 0 eV and 1.5 eV. The bandgap of Hg ,,Cdy.28Te is
calculated from Wien2k and discussed in light of DFT and LDA+U. A simulation with
only LDA is compared to one where LDA+U has been used. To obtain a more realistic
bandstructure and the correct bandgap, LDA+U allows one to better account for strongly
correlated d-states. Since both simulations include spin-orbit effects, extra RLO’s have
been added, as explained in more detail for GaAs. The potential U was adjusted until a
bandgap of I/, = 0.212 eV was obtained, corresponding to Hg, ,,Cdg.2sTe at 80 K. This
happened at U = 35.8 eV

The lattice parameter for Hg, »,Cd 25 Te has been determined using Vegard’s law. Veg-
ard’s law is an empirical law and states that the lattice parameter of two constituents is
given by

aa, B, = (1—1r)as+zap 4.2)

which yields a lattice parameter of aHg, .,Cdg 25Te = 6.39 A. Lattice parameters used are
for HgTe, apggre = 6.36 A, and for CdTe, acgr. = 6.48 A. These are acquired from
crystallography.net.

When performing spin-orbit calculations, Wien2k allows the inclusion of relativistic local
orbitals (RLOs) to the eigenfunctions. These relativistic local orbitals appear as solutions
to the Dirac equation, the relativistic equivalent of the Schroedinger equation, for an elec-
tron in a spherically symmetric potential. They differ from the local orbitals currently used
in that all current p-orbitals used are zero at the origin while relativistic local orbitals have
a finite value at the origin. Particularly for heavier elements such as Hg, the mismatch
between local orbitals currently used and the behaviour of the relativistic p% becomes sig-
nificant. [31] Thus, in both simulations of which results are shown below, RLOs have been
included for all atoms.

First, a simulation for Hg, ,,Cdg 28 Te including spin-orbit coupling has been performed,
shown in figure 4.5a. This simulation predicts Hg, ,,Cdg.28Te to be metallic when in fact
itis 0.19 eV at 0 K and increasing with temperature [35]. This underestimation of the
bandgap may partly be attributed to the general issue of DFT consistently underestimating
the bandgap in electronic systems [36]. There is however also a significant contribution to
the underestimation of the bandgap stemming from the modelling of strongly correlated
states 2.2.3. This is explained below.

For HgCdTe, the local density approximation does not provide a good model for the d-
bands, so an interaction has been added to better model these states for Hg (5d) and Cd
(4d). The simulation including LDA+U is shown in 4.5b. It was run with an orbital po-
tential of U = 35.8 eV. It is clear that the high-lying d-bands have fallen down when one
compares with the first simulation from figure 4.5a. This is caused by the additional inter-
action specifically added for these d-states to lower their energies. A little simplified, this
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Figure 4.5: (a): Bandgap of Hg, 7,Cdo.28Te calculated with Wien2k with spin-orbit effects, but
without an orbital potential U. According to experimental models, there should be a finite bandgap
for this material, but this is not predicted in this calculation. The area where the bandgap should be
is highlighted by a dotted rectangle.

(b):  Bandgap of Hg, 7,Cdo.2sTe calculated with Wien2k with spin-orbit effects and an orbital
potential of U = 35.8 eV. The bandgap is E4 = 0.212 eV and corresponds to Hg ,Cdo.28Te at 80
K. As indicated on the figure, the high-lying d states have been adjusted downwards to establish a
bandgap.

lowering in energy may be justified as follows: strongly correlated electrons will corre-
late in such a way that they avoid each other as best as possible. If they consistently avoid
each other through correlated movement, this corresponds to a lower energy than predicted
in the local density approximation since only local correlations are taken into account in
LDA.

From figure 4.5D, it is clear that thanks to the LDA+U model, a bandgap has been estab-
lished. The bandgap E, = 0.212 eV corresponds to Hg, ,Cdp 25Te at 80 K. To see how
LDA+U yields a bandgap, we look at its effect on the conduction band edge and valence
band edge. As explained earlier, LDA+U will lower the d states in energy and conse-
quently radially. This results in a screening of the nucleus which creates an increased
negatively charged environment for states higher up than the d states. Particularly s states
will, due to their general concentration near the nucleus, be sensitive to this change in
electronegativity and shift upwards. On the other hand, p states which are bell curved
and less concentrated near the nucleus, will be less sensitive to this screening effect. In
other words, the conduction band edge, which is s type for direct bandgap materials like
HgCdTe, will shift upwards to a larger degree than the valence band edge, consisting of p
type states.

Even though a realistic bandgap has been obtained after adjusting for an orbital potential U,
there is room for improvements. First, Wien2k supports so-called supercell structures. A
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supercell is a repeating number of primitive cells where a selected number of the primitive
cells may be perturbed, e.g with an impurity. A supercell of HgCdTe would offer an
improvement since it is a much more realistic model for HgCdTe than Vegard’s law. This
perturbation of the crystal structure will at the same time perturb the electronic system
in such a way that an "unfolding’ of the bandstructure is required to recover the Bloch
character of electronic eigenstates [37]. A second improvement would be to replace the
local density approximation currently used with mbJ, a semilocal model for the exchange-
correlation potential. mbJ has been shown to capture the behaviour of orbital-dependent
potentials well, and it does so at almost the same expense as LDA [38]. Using mbJ+U
would therefore represent a better model than the current LDA+U.
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Chapter

Conclusion and future work

During the work with this specialization project, a number of achievements have been
made. First, the overlap integral between eigenfunctions in the LAPW function and
MLWEF bases have been derived. The objective has been to obtain expressions that are
suitable for numerical integration over the Brillouin zone so that scattering rates for each
individual scattering mechanism may be calculated. These scattering rates are needed in
the carrier simulation in semiconductor materials using the Monte Carlo method. The
overlap expression derived between eigenfunctions in the LAPW basis have been found
good enough for the above mentioned application. On the other hand, more work remains
to be done for an expression in the Wannier basis, since in this case the expression ob-
tained was not satisfactory. In addition, calculations have been made for materials GaAs,
Silicon and HgCdTe using Wien2k, Wien2Wannier and Wannier90. For GaAs, the pre-
dicted degeneracy lifting in the valence band caused by spin-orbit effects was successfully
reproduced, and the eigenstates near the band edge were found to match literature data.
For Si, the weak effect of spin-orbit coupling was validated, and calculated properties of
the bandgap matched characteristics of Silicon’s indirect bandgap. Finally, the bandstruc-
ture of Hg,, -,Cdy.2sTe was calculated using LDA+U and Vegard’s law. The The orbital
potential U was adjusted to reach a bandgap of F;, = 0.212 eV, which corresponds to
Hg0_72Cd0_ggTe at 80 K.

There is much that can be done to develop this work further. An applicable expression
was not found for the Wannier basis, and the approximations used in the calculations of
Hg, -, Cdg.2sTe are unrealistic. Suggestions for future work are therefore:

e Continue the work of finding numerically suitable expressons for scattering rates
with Wannier functions.

e Use a supercell model accompanied by unfolding instead of Vegard’s law for HgCdTe
e Replace the current LDA model for the exchange-correlation potential with mbJ+U.

e To generate and plot Maximally localized Wannier functions for HgCdTe.
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