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Abstract. Efficient storage schemes are presented for storing Clebsch—Gordan, Wigner 35 and
67 symbols, as well as Gaunt coefficients, which are the integral over three spherical harmonics. Use
is hereby made of the large number of symmetries which these symbols exhibit. Computer codes have
been written and benchmarked against well-known published programs which usually use recursion
relations for the evaluation. It is shown that our codes can be an order of magnitude or more faster
in execution speed, maintaining full double precision accuracy.
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1. Introduction. In many applications of physical and chemical interest, where
a problem is decomposed using basis functions or a partial wave analysis, one encoun-
ters vector coupling coefficients, i.e., Clebsch—-Gordan, Wigner 3j and 65 symbols, as
well as Gaunt coefficients, which are the integral over three spherical harmonics (see
(4.1), section 4). The problem is that these vector coupling coefficients need to be
calculated thousands if not millions of times [1], [2], [3]. Depending on the complex-
ity of the program, it is not uncommon that these coefficients are recalculated many
times so that the question immediately arises of whether it is possible to precalculate
and store them in memory or on disk in order to speed up the calculation.

All three coefficients we are going to consider here depend on 6 parameters. Any
straightforward storage scheme in a six dimensional array would require prohibitively
large memory requirements. Furthermore, it would be extremely wasteful since a large
proportion would be zero or contain identical values due to the various symmetry
properties these coefficients possess.

Due to the complexity of the current quantum chemistry and physics codes, larger
and larger values of the angular momentum quantum numbers [ and m that enter the
coefficients are being calculated. The analytic expressions that are known for these
coefficients, however, contain very large factorials that are notoriously difficult to
evaluate on a computer. It is therefore not surprising that a large number of schemes
have been devised to deal with this problem [6], [8], [11], [17], [18]. These schemes may
give high accuracy but are not always the fastest. Any efficient storage scheme would
therefore not only alleviate the problem of speed but simultaneously the problem of
precision, since these coefficients could be calculated as accurately as possible and
stored without the overhead of recalculating them. In the following we would like to
present such schemes for the 3j, 65, and Gaunt coefficients.

2. Wigner 33 symbols and Clebsch—Gordan coefficients. Wigner 3j sym-
bols and Clebsch—Gordan coefficients are very closely related by the formula (see,
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e.g., [4])

J1 J2 J3 (—)r—d2mms ) _
2.1 _ ()T o
( ) (m1 meo m3> 2]3 +1 (jlml ]2m2|j3 m3)

We will therefore in the following concentrate on Wigner 3; symbols since they exhibit
more symmetry properties than Clebsch—Gordan coefficients, which also helps in the
numerical evaluation.

A common expression for the 35 symbol is [4]

(2-2) (73;1 TerQQ TJTSS) - €(j1vj27j3)A(j17j27j3)5m1 +77L2+7rz3,0(_)j17j27m3

< \/(j1 + m1)! (1 — ma)!(ja + m2)! (G2 — m2)!(js + ms3)!(js — ms)!

()
< D
W K+ G2 — s = R)NG — ma — R)!(j2 +ma — k).
1

X = ; ; ; s
(js — jo +ma + E)!(js — j1 — ma + k)!

where Emax = min(ji + j2 — js, j1 —mu1, jo +ma) and kpin = max(—jz +j2 —mi, —jz +
j1 + me,0) such that nowhere does a factorial of a negative number appear. The
symbol A is here and in the following defined as the triangle coefficient

(2.3)

i

L g1+ g2 — 73)'(J1 — Jo + J3)!(—J1 + J2 + J3)!
A(j1, jo, j3) = ( M = jo + )(, )
(j1 +j2 + g3+ 1)!

where

.. .y | 1 if (1, jo, js) form a triangle,
(2:4) (-2, J3) = { 0 otherwise.
Formula (2.2) is only valid if j; and m; are both integers or both half-integers for
1=1,2,3 and if

(2.5) J=j1+Jj2+J3

is an integer. Equation (2.2) and to some extent (2.3) symptomatically show the
difficulties encountered in evaluating these coefficients. Even moderately small j
values go beyond the accurate representation of 32 and 64 bit machines; for ex-
ample, for 32 bit machines, problems occur for as low as j; = jo = 7 such that
(7+ 7)! = 87178291200 > 232 = 4294967296. Similarly, for 64 bit machines one has
(11 + 11)! = 1124000727777607680000 > 264 = 18446744073709551616. At the same
time, (2.2) is ideal for symbolic algebra packages, which will evaluate the sum over
rational numbers exactly and the square root to any precision specified.

2.1. Symmetries. In the following we summarize the various symmetries known
for Wigner 3j symbols that are in common use. In particular they are
(1) invariant under any permutation of the columns (with the exception of a sign
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change)
(2.6) (;7711 J2 Js) _ (J3 Jide) _ <J2 IE ]1) eyelic
1 M2 ms3 m3 my ma ma m3 my
(2.7) — (=)’ Jz J2 o1 _ () Ji Js J2
: ms Mo My mi1 ma3 ma
_ (I (T2 g1 3 o
=(-) <m2 my m3> anticyclic;
(2) invariant under space inflection, i.e.,
(2.8) <rjnl J2 J3) = (=)’ (_31 _32 _J3 >;
1 M2 M3 mi —mip —mq

(3) symmetric with respect to the additional symmetries based on the work of [5];
(4) zero for Iy, la, I3 not fulfilling triangle relation;

(5) zero for my + mo + mg # 0;

(6) zero for violating any one of the conditions

(2.9) I > |mal, la > |mal, ls > |mg|.

As can be seen, 3j symbols are zero for a wide range of parameter values. Any efficient
storage scheme should take this into account.

The first two symmetries (1), (2) are well known and usually found and used in the
literature and account for 12 symmetries. However, additional symmetries were found
by Regge [5] showing that the 3j symbol has a total of 72 symmetries. These can best
be displayed by the definition of a Regge symbol which assumes the properties of a
magic square:

—Ji1+je+i3 Jji—J2+ti3 J1+J2—7J3
(2.10) R:=| j1—m J2 —ma Jz —ms
J1+m Jo2 + mo Jjs +mg

In contrast to the usual definition of a magic square, we only require that all rows
and columns have the same sum, but no conditions are placed on the diagonals (see
section 2.2.1). The 72 symmetries now correspond to 3! row and 3! column inter-
changes plus a transposition of the matrix. For odd row or column permutations of
the matrix the 3j symbol has to be multiplied by (—)”. The permutation symme-
tries (1) and the space inflection (2) correspond to the permutation of columns and
the exchange of the second and third row of the magic square (2.10). Tables of explicit
formulas for the 3j symbol corresponding to the transposition of the square and the
additional row interchanges can be found in [7]. Use of the magic square has been
made to evaluate 3j symbols numerically [8]. More properties of magic squares are
also given in section 2.2.1, where these properties are used for devising an efficient
storage scheme. With these properties one has a unique one-to-one mapping between
R and the corresponding 35 symbol [13].

2.2. Storing Wigner 35 symbols. Wigner 3;5 symbols with integer values for
j1,72,7J3 can be stored in a similar fashion as Gaunt coefficients (see section 4.2 for
more details). However, the memory storage scheme which we devise in the following
can also deal with half-integer values and is based on magic squares (2.10) as intro-
duced in [5]. We shall first give a short summary of properties of magic squares which
can be used for an efficient storage scheme.
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2.2.1. Magic squares. We shall consider here only the 3 x 3 magic square. The
usual condition is that the sum of all row and column entries adds up to the same
number J. This would give 6 conditions for the 9 possible entries; however, only 5
of them are linearly independent. We will furthermore consider a semimagic square
where we do not place any restraints on the diagonal which would give another 2
conditions. Since the sum J is itself a free variable we are left with 9 —5+1 =5
independent variables. This is what we would expect since condition (5) eliminates
one of the parameters m;.

It is now possible to deduce further information about those 5 independent vari-
ables [8]. In particular, one can choose the smallest S and largest L entries as inde-
pendent variables. Both have to be on the same row or column, which can be seen
as follows: If one assumes that S and L are on a diagonal, then the row containing
S and the column containing L share a common element C. It now follows that the
addition of the row of S and column of L yields J = L+C+(S+a) = S+C+(L—b),
and therefore we have the contradiction that a 4+ b = 0 with positive a, b. This means
S and L have to be on the same row or column. We can now put S and L at the first
and second position of the first row. The remaining 3 variables can be arranged by
requiring that Rso < Rsg or if Roy = R3o, then Ros < Rs3. We finally get

S L X+B-T
(2.11) R= X B S+L-T
L+B-T S+X-T T

With this arrangement and the fact that S+ X —T > S and L > L+ B —T, we get
the ordering

(2.12) L>X>T>B>5,

which we will be exploiting in the following section for storing the Wigner 35 symbols.

2.2.2. Storing magic squares. The unique ordering of the Regge square (2.11)
and its one-to-one mapping results in a corresponding 3j symbol which exhibits an
ordering of the form j; > js > jo, and furthermore ms > 0 and if my = 0, then
mg > 0, although we will not make use of this in the following.

However, we will make use of the ordering (2.12). It allows for the creation of an
ordered one dimensional array of 35 symbols which can be indexed with the help of
these 5 identifying variables. In practice this means that a file can be created that
contains the Wigner 3; symbols in consecutive order indexed by L, X, T, B, S.

In order to retrieve an individual 35 symbol with parameters j1, j2, j3, m1, M2, M3
from this array, one first has to calculate the corresponding Regge parameters L, X, T,
B, S. From this an index ¢(L, X, T, B, S) can be calculated according to

(2.13)

L-11-12—-1t—-1b-1 X—-1z—1t—10b-1 T—-1t—10b-1 B—-1b—1 S—1
=222 2D 1+ PRSP MREDIDRED LS
=0 =0 t=0 b=0 s=0 =0 t=0 b=0 s=0 t=0 b=0 s=0 b=0 s=0 s=0

1 1
=90 (24 + L(50+ L(35+ L(10+ L)))) + ﬂX(G +X(11+X(6+ X)))
1 1

+6T(2 +T(3+1)) + 5B(B +1)+S+1.
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The total number of stored Regge squares for all indexed values up to L is
> 1+1
1

(2.14) = ﬁOL(274+L(225+L(85+L(15+L))))+1.

In (2.13) and (2.14) it is understood that the sums are zero if any of the upper limits
are negative, e.g., Z;O 1 = 0. Any 3j symbol can now be retrieved by calculating the
corresponding Regge square, which in turn has to be reordered to the form (2.11) to
extract the 5 numbers L, X, T, B, S. Then the index ¢(L, X, T, B, S) can be calculated
to retrieve the 35 symbol from memory.

Unfortunately, this storage scheme makes use of only 36 instead of 72 symmetries.
The reason is that the sum over X, B, and T includes redundancies since we have
not made use of the fact that the Regge square is ordered such that Ros < Rsg or if
Ros = R3o, then Ro3 < R33. However, extracting those redundancies and introducing
additional bookkeeping will almost certainly reduce the effect of gaining a factor of 2
in memory saving and fast retrieval of the 35 symbol. Therefore we have not made
use of it.

In Table 1 we have listed the required number of 35 symbols for typical values of
L using this storage scheme. Also shown is the total number of nontrivial zeros which
occur naturally and are not enforced by any known symmetry. They were first found
and investigated by Biedenharn and Louck [9], [13].

TABLE 1
Shown is the storage required for storing Wigner 3j symbols. N is the total number of the non-
trivial zeros stored in the data file. The column labeled R shows the number of R symbols which have
to be stored according to (2.14). X is the overall storage required for the R wvector given in bytes,
assuming that 8 bytes are required for a double precision number.

L N R P

20 328 53,130 425,040
25 635 142,506 1,140,048
30 930 324,632 2,597,056
35 1528 658,008 5,264,064
40 || 2092 | 1,221,759 | 9,774,072

3. Wigner 65 symbols and Racah coefficients. Whenever 3 angular mo-
menta have to be coupled, the Wigner 65 symbols or the closely related Racah co-
efficients are encountered. Usually Wigner 65 symbols are used since they exhibit a
higher symmetry than Racah coefficients. We shall refer to the vast literature for a
detailed account of these coefficients and merely state the most important properties
and the ways of evaluating them. Wigner 65 symbols can usually be defined in terms
of Clebsch—Gordan coefficients, and all their properties can subsequently be derived
from them. Since the relation between 65 and Racah coefficients can be written as

(3.1) {ﬁ j? jg} = (=) TR (i jagsdas jae)

we will mainly concentrate on 65 symbols which exhibit higher symmetry properties
than Racah coefficients. A typical formula for evaluation of Wigner 65 symbols is [4]
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(3.2) {‘” I ‘73} — A(j1, j2s d3) A3, das 35) AU, G5, J6) Ay Ja, Je)

Ja Js Je
Kmax
<Y i
pi (=1 = jo = ja)!/(k = J1 = Js = Jo)'(k = Jz = Ju — Jo) (k — Ja — ja — Js)!
(k+1)!

(J1+de+da+is =)+ 3+ Ja+ s — k) (J2 + js + Js + je — k)!

where each triplet satisfies the triangle conditions and kp,in = max(j1+j2+Js, j1 +Jj5+
J6s JetjatJe, j3+ja+tJs), kmax = min(ji+ja+ja+Js, j1+J3+ja+je, je+js+js + o),
and A is defined as the triangle coefficient (2.3).

3.1. Symmetries. Again let us summarize the most important symmetries of
Wigner 65 symbols which will be the basis for an efficient storage scheme.
1. Wigner 65 symbols are left invariant under any permutation of the columns

(3.3) Jijadsl _ JJsdrJ2d _ JJ2 0301 cyclic
Ja Js Je J6 Ja Js J5 J6 Ja
(3.4) _ {Js J2 3.1} _ {9.1 s 1.2} _ {3.2 i J.s} anticyclic.
J6 J5 J4 Ja Je J5 J5 Ja Je

2. They are invariant under the exchange of the upper and lower arguments in
each of any two columns, i.e.,

s (na) Lol _ figzio) _ fisis i)
J4 Js5 Jeé Ja J2 J3 J1J5 J3 J1J2 Je
3. Symmetries based on the work by Regge [12] account for a total of 144 sym-
metries.

4. The Wigner 65 symbols are zero unless one can draw a tetrahedron with sides
of lengths j1, j2, J3, j4, J5, j¢ and such that the sum of the lengths of the sides
of each triangular face sum to an integer.

The first two symmetries (1), (2) are the main symmetries of these coefficients which
are usually found and described in the literature. They account for a total of 24
symmetries corresponding to the symmetries of a tetrahedron, where each j value
corresponds to the edge of such a tetrahedron. An additional 6 symmetries were
found such as (see [12] for more details)

s : —jatjatistie j2—jatis+i
(3 6) 1 J2 J3 _ J1 .]2 ‘%2 ‘J5 ‘Je j,Q ?32?5 j,s
ja j5 e ja .72+J3;Js+]6 .72"1‘]3'5475_]6 ’

which can be superimposed on the 24 tetrahedral symmetries giving a total of 144
symmetries as found by Regge [12]. These 144 symmetries can easily be demonstrated
by rewriting the 65 symbol in the following 3 x 4 array (see [8], [9], [14]):

—Js+jatis J2tja—Js J1tis—Js J1ti2—Js
(3.7) R=|—jo+jas+js Ja+ja—Js J1—J2+73 J1—Js+Js
—J1+Jjs+js —Jji+jeti3s J3—Ja+Js J2—Ja+tJe

The symmetries correspond now to 3! - 4! = 144 row and column permutations.



Downloaded 07/24/17 to 129.241.223.158. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1422 J. RASCH AND A. C. H. YU

It is furthermore possible to represent the 65 symbol as a 4 x 4 magic square;
however, this mapping is no longer a one-to-one correspondence as in the case of the
3j symbol (see [8], [13], [14]).

3.2. Storing Wigner 63 coefficients. As in the case of the Wigner 3j symbols,
we will be making use of the symmetries of the Regge symbol (3.7) for devising an
efficient storage scheme for Wigner 65 symbols.

From the triangle condition it is clear that all entries in the R symbol (3.7) are
nonnegative. Furthermore, every entry can be written as [8]

(3.8) Rij = a; — f;,
where

a1 = j1+ j2 + ja + Js, ag = j1 + j3 + ja + Js, az = ja2 +J3 + Jj5 + J,
B1 = j1 + j2 + ja, B2 = j1 + Js + Je, B3 = j2 + ja + Je, Ba = j3 + ja + Js.
(3.9)

Furthermore, as shown in [8] each a and 3 is a nonnegative integer and «; > 3; for
all 7, j. Together with the symmetry property for the elements of the R symbol

(3.10) Rij + Ry = Ri + Ryj,

one can represent the R symbol as [14]

Ry R+ 4y Rii + Ay Rii + As
(3.11) R=| R +Ay Ru+A1+Ay Ru+Ax+Ay Riuy+As+Ay
Riin+As Ru+A1+A5 Riui+As+As Rii+Az+As

where the A; are integer differences.
This representation enables us now to define a unique ordering. If we order the
a’s and (’s such that

a1 > Qg > as,
(3.12) pr > P2 > PBs > P,

then the first row and last column of the R symbol give us 6 numbers, i.e.,

S B T X
(3.13) R = L,
FE
which are ordered such that
(3.14) E>L>X>T>B>S.

With this ordering we can now apply the same method as in section 2.2.2 except
that instead of looping over 5 parameters we loop over 6. Correspondingly, the index
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¢(E,L, X, T, B,S) which is needed for the retrieval needs to be calculated according
to

E—-le—11-12z—1t—10b-1 L—-11-12—-1t—1b—-1 X—1lz—1t—10b-1
29303 3)3) D) NED ) I) ) ) NE: !
e=0 [=0 =0 t=0 b=0 s=0 =0 =0 t=0 b=0 s=0 =0 t=0 b=0 s=0
T—-1t—1b— B—-1b—1 S—1
+ 1+ 1+ ) 141
t=0 b=0 s=0 b=0 s=0 s=0
1
= ﬁE(mO + E(274+ E(225+ E(85+ E(15 + E)))))
1 1
+ﬁL(24 + L(50 + L(35+ L(10+ L)))) + ﬂX(6 +X(11+X(6+ X)))

1 1
(3.15) +6T(2 +T(B+17))+ §B(B +1)+S+1.

The total number of stored Regge symbols for 6; coefficients for all parameters up to
the value F is

E e-11-12z—-1t—10b-1

Ctotalzzzzzz_: 1+1

e=0 [=0 z=0 t=0 b=0 s
1

(3.16) = oo B(1764 + E(1624 + E(735 + E(175 + E(21 + E))))) + L.

Il
=)

Table 2 shows the number of 65’s for given value of E' and the required memory. It
should be noted that all 144 symmetries have been taken into account. Also shown
is the total number of nontrivial zeros which occur naturally and are not enforced
by any known symmetry. They were first found and investigated by Biedenharn and
Louck [9], [13].

TABLE 2
Shown s the storage required for storing Wigner 65 symbols. N is the total number of the non-
trivial zeros stored in the data file. The column labeled R shows the number of R symbols which have
to be stored according to (3.16). X is the overall storage required for the R wvector given in bytes,
assuming that 8 bytes are required for a double precision number.

E N R by

20 || 164 | 230,230 | 1,841,840
25 || 279 | 736,281 | 5,890,248
30 || 448 | 1,947,792 | 15,582,336
35 || 800 | 4,496,388 | 35,971,104

4. Gaunt coefficients. We will make use of the following definition (see, for
example, [4]):

l l l
R / Vi (0Yhy s (Y5, () A

mi1 mg ms

(4.1) _ \/@11 +1)(21 +1)(205 + 1) (11 Iy zg) (11 ly Iy )

47 000 mi Mo M3

where Y, m, () is a spherical harmonic and dQ? = sind di dy is the element of the
solid angle. Although Gaunt coefficients can be calculated by evaluating the two 3j
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symbols separately, a more combined expression can also be given [15] as follows.

I la 1 .
(4.2) Ym - T: = A(l1,l2,13) bmod(2(11 +12+15),2),0 6m1+m2+m370(_)L+l3+
y \/ (20 + 1) (2l + 1) (215 + 1) I
4m (L— )L — L)L —13)!
X \/(h + my)l(ly — m1)! (o + m2)!(la — m2)!(I3 + m3)!(l3 — mg3)!
Eumax Iy
s )
k=kmin Kk + 13 — i — m2)l(k + 13 — la +ma)!(k + I3 — la + mq)!
1
X

(l1 —mp — k)'(lg + meo — k)“

where L = %(h + 1y + l3), kmin = max(—l3 4+ 11 +mo,—l3+ 15 — ml,O), and kpax =
min(ly + me,l; —mq,l1 + I3 — I3) such that nowhere a factorial of a negative number
appears. The Kronecker delta émod(2(1,+12+15),2),0 0 (4.2) ensures that only even
numbers of {1 + I3 + I3 give a nonzero contribution. The symbol A(lq,ls,13) is defined
in (2.3).

4.1. Symmetries. The symmetries of the Gaunt coefficients are essentially the
same as the Wigner 3j symbols and can most easily be derived from (4.1). However,
due to the fact that they are a product of two 3j symbols, they have additional
symmetry properties; in particular, Gaunt coefficients are

1. left invariant under any permutation of the columns

(4.3)
i la I3 I3 11 Iz la I3 Iy .
Y =Y =Y cyclic
mi mso M3 ms3 mip mso m2 m3 mi
I3 l2 I li Iz 2 la 11 I3 . .
(4.4) =Y =Y =Y anticyclic;
ms3 mo M1 mi ms3 ms m2 mi ms3

2. invariant under space inflection, i.e.,

Ji g2 g3
?

(4.5) le J2 J3 -y

m1 mo ms —mi1 —ma2 —ms3
3. symmetric with respect to the Regge symmetries as inherited for the 35 sym-
bols [5];

4. zero for Iy, lo, I3 not fulfilling the triangle relation;
5. zero for violating any one of the conditions

(4.6) I > |may|, ly > |ma, I3 > |msl;
6. nonzero only for an even sum of the [;, i.e.,
(47) J211+lg+l3=2n, neN & ll+l2+1320 mod 2.

In particular, condition (4.7) comes from the first 35 symbol in (4.1) with m; =0, i =
1,2, 3, together with the antisymmetry property (2.7).
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4.2. Storing Gaunt coefficients. The fact that makes Gaunt coefficients more
attractive for storing is that they exhibit more symmetry properties than 3; symbols.
Furthermore, two 3 symbols plus a square root coefficient (see (4.1)) can be stored in
one go. The storage scheme we propose here can also be used for Wigner 35 symbols
with integer values. However, the scheme devised in section 2.2 is more generic and
can deal with half-integer values.

The cyclic and anticyclic permutation properties (4.3) and (4.4) make it possible
to store only Gaunt factors where l; > Iy > l3. Furthermore, by using rule (4.5) we
can always arrange mgs > 0. It is advantageous to use mg instead of m; since the
latter has a wider range and can force mg > 3, which leads to redundancies. We can
now use ly, l2, l3, m3 to form a pointer pointing to an object which has only two indices
left: mq, ms. Although this object appears to be a matrix, it can be stored as a vector
depending on mg, where the value of my is fixed by symmetry (4.5). The value of mq
is hereby in the range —ly < mg < min(ly — ms,l2) as required by relation (4.6).

In the following we will use the syntax of the programming language C which has
the concept of pointers and is therefore more adapted for the problem at hand. We
can now define a one dimensional array of pointers p[] indexed by ¢(l1,ls,l3,m3) as
given by
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1 1
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Each entry of this pointer p [c] points to the beginning of a vector indexed by ms that
stores the actual Gaunt coefficient. All these vectors can be stored in a consecutive
array y[].

Although by construction this array of Gaunt coefficients should not contain any
redundancies in the form of consecutive zeros, this is not the case. This is due to
the fact that the 3j symbols contain additional zeros which are not related to any
symmetry properties as pointed out by [13]. However, the storage method as given
above can easily cater to such redundancies. Whilst storing the Gaunt coefficients it
is easy to test whether they are zero for a whole set of my values. In this case one
simply skips filling the storage vector y[] and lets the pointer p[c] become the NULL
pointer. As can be seen in Table 3, about 20% of memory can be saved. We found
that in practice all zeros could be eliminated this way.

Even though we have used C to store the coefficients, the above algorithm can
also be implemented in Fortran, where the pointer p[c] becomes an integer array
holding the index of the array holding the Gaunt coefficients, i.e., y(p(c)). Since
in this case additional index arithmetic is required, we found that the C program is
on average 2.7% faster than the equivalent Fortran 77 program (see Table 4). In
Table 3 we have listed the required number of Gaunt coefficients for typical values of
l1. It should be noted that it is difficult to compare Tables 1 and 3. This is because
there is no direct one-to-one correspondence between L and [;. In fact, all symbols
up to Iy = ly = I3 = L/2 are stored. Above this value and especially for m; ~ l; the
L values are exceeded so that these symbols would have to be recalculated.

5. Benchmarking of the Wigner 35 and 65 symbols retrieval and calcu-
lation routines. We have used published computer codes, which calculate Wigner
37 and 65 symbols, to benchmark our storage routine against. Those computer codes
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TABLE 3
Shown is the storage required for storing Gaunt coefficients. The column labeled Y shows the
number of Gaunt coefficients which have to be stored after all the zero elements have been removed
(see text for more details). YO includes those zero elements. p shows the number of pointer entries
needed. X is the overall storage required for both Y and p vectors given in bytes, assuming that 8
bytes are required for a double precision number and 4 bytes for a pointer variable.

1 Y0 Y P )

20 121,794 102,962 10,627 866,204
25 334,336 280,828 23,726 2,341,528
30 785,402 657,154 46,377 5,442,740
35 || 1,611,164 | 1,343,720 | 82,216 | 11,078,624
40 3,043,735 | 2,533,071 135,752 | 20,807,576

TABLE 4
The time for retrieving Gaunt coefficients. N is the total number of retrieved Gaunt coefficients;
C and Fortran denote the timings obtained in seconds for our programs written in C' and Fortran
77, respectively; Recursion denotes the timing in seconds for the recursion algorithm [11].

L N Fortran C Recursion
20 17145051 1.51 1.47 56.21
25 59708376 6.22 6.07 195.62

30 || 167613776 18.19 17.68 548.39
35 || 404219376 44.19 43.00 1318.59
40 || 870793301 95.32 92.80 2855.81

are the highly accurate 3j and 65 routines of Schulten and Gordon [10], [11]. We found
that for the range of values tested here, close to machine precision was obtained for
those recursion routines. They are therefore ideal candidates for comparison since
our stored 3j5 and 6j routines provide these symbols exactly to 16 digits in double
precision. There are other methods [8], [17]; unfortunately, with most of them com-
puter codes have not been published, and attempts to contact the authors proved
unsuccessful.

In our test we have assumed that the 3j routines are called with unpredictable
parameter values for ji, jo, j3, m1, mo, m3 by looping over all 6 parameters up to a
chosen maximum value of j; including half-integer values. This also tests for the
ability of the routines to return zeros for the cases where the symmetry properties in
section 2.1 are violated. We feel that this accounts for the most typical accessing of
these subroutines in real codes of physical interest [1], [2], [3]. A similar methodology
has been applied to the 65 routines as well. For all benchmarks a standard PC with
a 500 MHz Intel Celeron processor and 256 MB of RAM was used.

5.1. Wigner 35 symbols. In Table 5 we compare our program for calculating
3j symbols written in C and Fortran 77, respectively, with the recursion routines due
to Schulten and Gordon [11]. We found that on average the CPU time for the C
program is about 12-16% faster than the Fortran77. The reason is explained in the
previous section and is due to the fact that the C program has the concept of pointers.
Also, both our programs are much faster than the recursion method which is written
in Fortran 77. The factor column F shows how many times our C program is faster
than the recursion method. We achieve a maximum of 41 times faster!

5.2. Wigner 65 symbols. In Table 6 a comparison is made between our storage
routine for retrieving Wigner 65 symbols written in C and the recursion routines due
to Schulten and Gordon [11]. Again we see a clear increase for our program.

It appears that the recursion routine for Wigner 65 symbols is faster than for
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TABLE 5
CPU time required by different programs to calculate the 35 symbols; N is the total number of
calling the 35 symbol subroutines. The columns labeled Fort3j and C3j show the timings in seconds
for our 3j subroutines written in Fortran 77 and C, respectively; the column labeled Recur3j shows
the timings for the recursion method [11]. The column labeled F denotes the comparison speed in
retrieving Wigner 3j symbols between our C routine and the recursion method.

J N Fort3j C3j Recur3j F

20 4084101 10.39 8.71 354.12 40.66
25 11881376 31.72 26.86 1052.59 39.19
30 28629151 80.41 68.79 2612.15 37.97
35 60466176 177.81 154.34 5676.78 36.78
40 115856201 | 356.53 | 313.09 | 11035.64 | 35.25

TABLE 6
CPU time required by different programs to calculate the Wigner 65 symbols. N is the total
number of calling the 65 symbol subroutines. The column labeled C6j shows the timing in seconds
for our 6j subroutines. The column labeled Recur6j shows the timing in seconds for the recursion
method [11]. The column labeled F denotes the comparison speed in retrieving Wigner 65 symbols
between our C routine and the recursion method.

J N C6j Recur6j F

20 4641791 4.22 14.48 3.43
25 16199001 13.83 53.80 3.89
30 45549416 39.02 160.8 4.12
35 109992786 | 92.30 414.18 4.49

Wigner 35 symbols. This is largely due to the fact that the triangle conditions for
Wigner 65 symbols are more restrictive, and therefore the recursion sequences to be
calculated tend to be shorter.

6. Conclusion. We have shown that with the help of the large numbers of
symmetries that Wigner 35, 65 and Gaunt coefficients exhibit, very efficient storage
routines can be devised. Retrieving those Wigner 35 and 65 symbols outperforms
the calculation of those symbols by more than an order of magnitude. Furthermore,
these Wigner 35 and 65 symbols can be precalculated by using MuPAD [16], which
is a symbolic algebra package, so that no loss of machine precision occurs in the
retrieval of these numbers. In addition we have shown that computer codes written
in C outperform the same codes in Fortran by about 16% due to the use of pointer
arithmetic. All computer codes can be easily modified to provide quadruple precision
numbers. We intend to publish the computer codes elsewhere.
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