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Abstract 

Spherical harmonics are of considerable importance for computations involving basis functions corresponding to large values 
of the angular momentum quantum number e. Their use allows efficient coding of programs involving such basis functions 
because the formulae of the coupling coefficients are simple. The choice of real spherical harmonics allows one to avoid the use 
of complex quantities in computer programs that increase storage and CPU time requirements. In this paper, certain properties 
of the coupling coefficients for real spherical harmonics are derived that are necessary for an efficient computation of coupling 
terms. 
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1. Introduction 

Basis sets including functions corresponding to 
larger values of the angular momentum quantum 
number 4? are necessary in linear combination of 
atomic orbital (LCAO) calculations in order to 

approach the self-consistent field (SCF) basis set 
limit, and to increase the accuracy of the correlation 

energy approximation. Such basis functions are also 
important for scattering calculations and for the 
description of Rydberg states. For Cartesian-type 
functions, the angular momentum coupling of such 
basis functions becomes more difficult the higher 4 
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is. Thus, the coding of ab initio programs for these 
functions becomes rather complex in the case of high 

angular momentum quantum numbers. On the con- 
trary, the coupling of spherical harmonics is governed 
by simple formulae even for high values oft?. Thus, it 
is advantageous to use basis sets based on spherical 
harmonics if high e values are necessary. Coding of 
programs [l-3] is much simpler in this way. 

Complex spherical harmonics are often used. How- 
ever, the use of complex quantities in computer pro- 
grams increases storage and CPU time requirements. 
In this respect, it is advantageous to use a unitary 
transformation to real spherical harmonics. Although 
this idea is a rather old one, it seems that there is no 

description to date of the properties of the coupling 
coefficients for real spherical harmonics in the litera- 
ture. The present contribution aims at closing this gap. 

In the following section, various quantities are 
defined and then some general properties of real 
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spherical harmonics are listed. In Section 3, their 
coupling coefficients are studied. Symmetry relations 
and selection rules will be given and the relation to the 
coupling coefficients of the complex spherical harmo- 
nics, i.e. to Gaunt coefficients and their generaliza- 
tion, will be established. 

2. General properties of real spherical harmonics ~{(-l)m[u~_,l*-u~~}y;n(~)=O (8) 

The usual complex spherical harmonics (more pre- 
cisely, complex spherical surface harmonics) (see [4], 
p. 3, Eq. (1.2-1)) 

has to hold. Since the complex spherical harmonics 
are linearly independent, the elements of the unitary 
matrix U, have to obey 

(- 1)“w~_,l* = qrn (9 

or equivalently 

w,“,1* = ( - l)mqm (10) 

We chose as real spherical harmonics the functions 

1 

ti%(Yk’(Q)) for p > 0 

X,“(Q) = Y?(Q) for cc=0 (11) 

@J(YFl(Q)) for p < 0 

where %(.) denotes the real part and 3(.) the imagin- 
ary part. The corresponding unitary matrix Ue has 
elements 

YF((j, 4) = p+ Irn’ 
[ 

2e+l(e-M)! 1’2 - 
4a ([ + IA)! 1 

x $‘(cos 13) exp(im$) (I) 

that are defined in terms of associated Legendre func- 
tions e, obey the relation 

[Y?(& +)I* = ( - l)“Yi”(~, $1 (2) 

The definition (eqn (1)) is consistent with the phase 
convention of Condon and Shortley ([5], p. 487, Eq. 
(3)). One can define real spherical harmonics as 

(3) 

for PE {-e, -e+l,..., e-l,e}. Here, U~={U&} 
denotes for fixed e a (2[+1) x (2e+l) unitary matrix. 
Thus, we have 

and hence 

(5) 

In the following, we also use the notation 62 = (6J,+). 
It follows from Eq. (3) that the parity of X:(n) is 
(-l)(, i.e. identical to that of the corresponding com- 
plex spherical harmonics with the same e. In order to 

obtain real functions, i.e. to ensure 

[x,“wl* -qw) (6) 

the equation 

; u;mY,m(Q) = ; w~ml*w,“(fvl* 

or equivalently 

(7) 

up”,= 6mOspO+ ~e(r)s,,+o(-r)(+i)(-l)ms,, 

+O(-/A)(--)~m_p+O(~)(-l)m~m_p) (12) 

where a,,, is the usual Kronecker symbol, and 

{ 

1 for m > 0 
O(m) = 

0 for m 5 0 
(13) 

Thus 

U!m =0 for lpl # Iml (14) 

Dropping the arguments f3 and 6 for the moment, 
we may thus write 
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1 -1 

Jz 

-i -i 

-i ( - l)ei 

Note that Ue”, is real for ~1 2 0, and purely imaginary 
for p < 0. All other possible choices of real spherical 
harmonics can be obtained from our choice by apply- 
ing a suitable real orthogonal transformation. 

As a direct consequence of the unitarity of Ue, we 
note the identity 

;X#UX#M = ; J$v4)[Y~(~2)1* (16) 

As a first application of this formula, we note that it 
allows one to obtain the following form of the Laplace 
expansion of the Coulomb potential: 

(17) 

with 

r< =min(lrrl, Ir21) r, = max( Irr I, Ir21) (18) 
A more important consequence of eqn (16) is the 

equation (compare [6], p. 91) 

pw,zY~c~,, = p mfhmw2)1* = w-4 - Q2) 
P m 

(19) 
with 

6(& - 62,) = (sin 8r)-‘6(0r - e2)8(& - 42) (20) 

Since complex spherical harmonics form a com- 
plete orthonormal system (CONS) we have (dQ = 
sin tI de d+) 

J X,“(@X$(h2)d0= 2, [U;m]*U&,, 

x 
s 

[YF(Q)]*YJ$-J)dQ = alet ; [U&,]*U& = 6ee&,~ 

(21) 

(15) 

because, again, the matrices U, are unitary. In addi- 
tion, completeness of the real spherical harmonics is a 
consequence of Eqs. (3) and (5). Thus, the real sphe- 
rical harmonics also form a CONS. 

Finally, we note that one can express the real sphe- 
rical harmonics in terms of sine and cosine functions 
of 4 according to (CL > 0) 

24 + 1 (e -CL)! qvw=(-l)~ 2am 

[ .I 1’2p(cos e) cos cc+ 

e 

x,-ye, 4) = ( - ly 
[ 
!?!C!G+ 

2n (e+p)! 1 1’2<(~~~ e) sin pj~ 

(22) 

3. Coupling coefficients of real spherical harmonics 

In this section, we study coupling coefficients of 
real spherical harmonics, i.e. we want to express pro- 
ducts of real spherical harmonics of the same argu- 
ment by linear combinations of such functions. This 
can be done in close analogy to the treatment of prop- 
erties of coupling coefficients of complex spherical 
harmonics given in Appendix A. These properties 
will be used in the following. 

We saw in the last section that real spherical har- 
monics form a CONS, as do their complex counter- 
parts. Thus, the product of two real spherical 
harmonics of the same argument can be represented 
as a linear combination of real spherical harmonics 
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according to 

Similar to the complex case, the orthonormality of 
the real spherical harmonics allows one to compute 
the coefficients in this sum according to 

We call them “coupling coefficients of real sphe- 
rical harmonics” or “R-Gaunt coefficients”. Their 
notation differs from that of the Gaunt coefficients 
defined in Eq. (A2) in Appendix A by the subscript 
“R”. 

In the remainder of this section, we will study the 
properties of the R-Gaunt coefficients. We are inter- 
ested in their symmetries and selection rules, and how 
these coefficients can be computed. Most of these 
questions can be answered by deriving explicit and 
compact formulae that express R-Gaunt coefficients 
in terms of Gaunt coefficients and the unitary matrices 

IJe. 
From Eq. (24), one notes immediately that R-Gaunt 

coefficients are invariant under all permutations of the 
pairs (e,,&, (ez,pz) and (e,,&. For instance, the fol- 
lowing symmetry relation holds. 

(e,&,ct, lk)n =(+i le,k&sct,)a (25) 

Since essentially only the &dependent parts of real 
and complex harmonics are different, it must be pos- 
sible to relate R-Gaunt to Gaunt coefficients. In prin- 
ciple, this can be done by using Eqs. (1) and (22) in the 
defining integrals, and comparing the resulting 
expressions. However, a large number of different 
cases-according to the various sign patterns of the 
pi or their disappearance-then have to be distin- 
guished and treated separately. 

Less cases are required in the following approach 
based on the unitary matrices Ue, introduced in the 
previous section. 

Using Eq. (3) twice and Eq. (7) once in Eq. (24) in 
combination with Eq. (AZ) in Appendix A, one obtains 

x (elm1 Ie2m21e3m3) (26) 

Use of the selection rule Eq. (A3) in Appendix A 

allows this to be simplified to 

(eik.4, lezkle3~3)n = m;, [u:;~, +m3i*~:z;2u~3m3 

x(e,m2+m3te,m,le,m3) (27) 

This formula will be the basis for the following 
considerations. We study three cases corresponding 
to various values of the kj (i = 1,2,3): 

Case A 
CaseB 

Case C 

No fig vanishes. 

Exactly one pl vanishes. Then, using the symmetry 

relation Eq. (29, it suffices to study the case that 

IL3 - 0, PI + 0, P2 + 0. 

Two or more pi vanish. Here, it suffices to consider 

112 - Ll3 - 0. 

In Cases A and B, p2 # 0. Then, according to Eq. 
(12), only the two terms with m2 = + p2 will con- 
tribute to the sum over m2 in Eq. (27). One obtains 

(c1~11e2~21e3~3)R= ~[~;~+lJ~~fiz~::~, 

x (elP2 + m3 le2p21e3m3) 

+ ~[u~,‘~l-~~l*u:-ll*u~~~ 

x (&m3 --cL21e2 -kle3m3) (28) 

in Case A, p3 f 0. Then, according to Eq. (12), only 
the two terms with m3 = 2 p3 will contribute to the 
sums over m3 in Eq. (28). One obtains 

(e1~11e2~21e3~3)R=[u~,~~l+,,i*u~~~2u~~s 

x (eip2 + ~31e2~21e3~3) 

+ [I$;, - jI3 1*u$I, ue”,‘- pg 

x(-e1Pz-P31eZ~21e3 -p3) 

+[~~~1~,-1121*~~~-p2~~~, 

x (e, - p2 ~~~~~~ - p21e3p3) 

+[~~~_cl*_p31*~~_,~~_~~ 

x (4, - p2 - ti3 14, - pale3 - tc3) 

(2% 

Since Gaunt coefficients are unchanged if the signs 
of all magnetic quantum numbers are reversed simul- 
taneously according to Eq. (AS) in Appendix A, the 
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last equation can be simplified to 

(k&CL&&R =(& +c1&&cL3) 

x {[IT& + pg I* ue”-;“ll, ue”,:, 

+[~~~_B*_,,l*~~:-,,~~~_r,} 

x VIP,, - /4~GP*~G -/A 

x {[~~~~lr2-pgl*~~~~z~~~_c3 

+ Kqp, _ J* q_ p* qp, 1 (30) 

The terms in braces are identified using Eq. (10) as 
real parts according to 

x 1 [I$/&* + & 1* qp2 ue”,:, } 

+ 2a.b - h le2d~3 - p3)s 

x 1 [U&* - pj 1* ue;p, ue”,‘- fi3 > (31) 

This is the final result for Case A. 
In Case B, cc3 = 0. Then, according to Eq. (12) only 

the terms with m3 = 0 will contribute to the sums over 
m3 in Eq. (28). Proceeding similarly as before, one 
obtains 

as the final result in Case B. 
In Case C, the final result is 

(elp, le,ole,o& = 6,,0(e10ie201e30) (33) 

Since programs for the computation of Gaunt coef- 
ficients are available [l], the computation of R-Gaunt 
coefficients can be based on Eqs. (31)-(33). 

Selection rules of the R-Gaunt coefficients are 
direct consequences of Eqs. (31)-(33). 

Only if, for given p2 and p3, the value of p1 satisfies 

pl E {~2+~3,~2--~3, -p2+p3> -p2--3) (34) 

can the R-Gaunt coefficient (e1~1k’2~2k’3~3)x be non- 
zero. In Cases A and B, this follows by applying 
Eq. (14) to the lirst in the product of matrix elements 
of the unitary matrices in Eq. (31) and Eq. (32), 
respectively. 

In any case, the R-Gaunt coefficient under consid- 
eration is directly proportional to a single Gaunt 

coefficient (or zero). In Case A, this is a consequence 
of the fact that only one term in Eq. (31) can be non- 
zero for a given combination of quantum numbers: 
either the condition p1 = + (p2+p3) 01 pl = + 

(p2-~3) holds as required in Eq. (34). 
We conclude that the selection rules of this 

single Gaunt coefficient have to be obeyed. In parti- 
cular, the R-Gaunt coefficient (k’1~1k’2~21e3~3)R is zero 
unless 

e, + e2 + e3 = 2n n : integer (35) 

holds. This, together with the general coupling rules 
for angular momenta and the selection rules Eqs. (A5), 
(A6) and (A7), implies that the R-Gaunt coefficient 
~elcLlie2cL2ie3p3)R is zero unless 

e, E {emax,emax-2,...,emin} (36) 

where 

emax = e2 + e3 

and 

I 
K(& k CL~, 1.43) 

(37) 

if K(e2, e3,1.4~, ~3) + emax 

is odd 

(38) 

A further general selection rule is that all R-Gaunt 
coefficients with an odd number of negative pi are 
necessarily zero. This can be read off from Eqs. 
(31)-(33) since U&, with p< 0 are purely imaginary 
or zero (compare Eq. (12)). 

Generalized R-Gaunt coefficients can be defined 
as 

= X;(QX$(62)..X~((62)dQ 
s 

(39) 

They are invariant under all permutations of the 
pairs (k’&. As in the case of generalized Gaunt coef- 
ficients, they can be reduced to sums over products of 
R-Gaunt coefficients using Eq. (23) repeatedly. For 
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instance, we have 

(40) 

Note that the sum over CL’ can be evaluated using 
the selection rule Eq. (34) for each of the R-Gaunt 
coefficients. In addition, the summation over e’ is 
restricted by the requirements 

efqe,+e,,e,+e,-2,...,le,-e,i(+l)j 

and 

(41) 

e~~{e,+e,,e,+e,-2,...,le,-e,i(+i)) (42) 

Hence, both er+& and &,+& must be even or odd 
for a non-zero result. In combination with the above- 
mentioned symmetry of the generalized R-Gaunt 
coefficients, this implies that in the selection rule 
the number of odd ei must be even. Equivalently, 

e,+e, +e2+e3=2n n : integer (43) 

has to hold. 
As a further selection rule for the generalized Gaunt 

coefficient it may be noted that the numbers of 
negative elements in the sets {~1,~2} and {h,~~} 
have to be either both even or both odd. In combina- 
tion with the above-mentioned symmetry of the gen- 
eralized R-Gaunt coefficients, this implies that the 
total number of negative pi must be even as for the 
R-Gaunt coefficients. 

It should be noted that the last selection rule 
also follows from the definition Eq. (39) in 
combination with Eq. (22) and the observation 
that real spherical harmonics are for p < 0 (cc 2 0) 
odd (even) functions of 4 with respect to 4 = a. Like- 
wise, the selection rules Eqs. (35) and (43) follow 
from the defining integrals and the parity (-l)e of 

$VJ). 
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APPENDIX A: Some properties of Gaunt 
coefficients 

Here we state some properties of coupling coeffi- 
cients of complex spherical harmonics. 

Since complex spherical harmonics are a CONS, 
the product of two complex spherical harmonics can 
be represented as a linear combination of complex 
spherical harmonics according to 

Y;~(Q)Y?(~) = F (emlelml le,m,)rr(n) (Al) m 

The coefficients in this sum are from the ortho- 
normality of the complex spherical harmonics given 

by 

(emlelml le2m2)- 
s 

[Y~(n)]*Y~l(n)Y~(Q)dn (~2) 

They are called Gaunt coefficients. These coeffi- 
cients satisfy a number of selection rules which sim- 
plify the range of the summation over P and m in the 
last formula considerably. The selection rules for 
(&&lml ]ezmz) are the following [l]. The magnetic 
quantum numbers have to satisfy the equation 

ml+m2=m G-1 

For the angular momentum quantum numbers, we 
have that 

e+e, +e2=2n n : integer (A4) 

must hold. This, together with the general coupling 
rules for angular momenta, implies that 

eE {&ax,&ax-2,...,&in] (As) 

where 

e max=el+e2 646) 
and 

I 

k(er, e,, ml, m2) if weI, e2, ml, m2) + emax 

is even 
emin = 

k(el, e,, ml, m2) + 1 if kuk e,, ml, m2) + emax 

is odd 

(A7) 

k(el,e2,ml,m2)=m~(le, -e2i, lml +m21) 

If the selection rules are not satisfied, the Gaunt 
coefficient is necessarily zero. Hence, one may also 
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write 

Y{W)Y~(Q) = j (2) (em, + m*lQ?rt k?,m,) 
e- & 

x YT’ ‘“‘(D) (AV 

where 1 (*) indicates summation in steps of two. 
Gaunt coefficients are real. They have the following 

symmetries: 

instance, we have 

(thl~,m,t?,m,l~,m,) 

= J, (t’m’lCImI l~,m,)(hlPm’l~,m,) (All) 

Note that the sum over m' can be evaluated using the 
selection rule Eq. (A3) twice and that this gives rise to a 
selection rule for the generalized Gaunt coefficient. 

(eK7zl@z* @?I,> =(&?&?2*I@??J 

= (4 - mk, - ml le2 - m2) 

=(-i)“+“*(e,-mlle-mle,m,) 

(4 
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