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The physics of electron transport in Si and GaAs is investigated with use of a Monte Carlo tech-
nique which improves the "state-of-the-art" treatment of high-energy carrier dynamics. (1) The
semiconductor is modeled beyond the effective-mass approximation by using the band structure ob-
tained from empirical-pseudopotential calculations. (2) The electron-phonon, electron-impurity,
and electron-electron scattering rates are computed in a way consistent with the full band structure
of the solid, thus accounting for density-of-states and matrix-element effects more accurately than
previous transport formulations. (3) The long-range carrier-carrier interaction and space-charge
effects are included by coupling the Monte Carlo simulation to a self-consistent two-dimensional
Poisson solution updated at a frequency large enough to resolve the plasma oscillations in highly
doped regions. The technique is employed to study experimental submicrometer Si field-effect

transistors with channel lengths as small as 60 nm operating at 77 and 300 K. Velocity overshoot
and highly nonlocal, off-equilibrium phenomena are investigated together with the role of electron-
electron interaction in these ultrasmall structures. In the systems considered, the inclusion of the
full band structure has the effect of reducing the amount of velocity overshoot via electron transfer
to upper conduction valleys, particularly at large biases and low temperatures. The reasonableness
of the physical picture is supported by the close agreement of the results of the simulation to avail-

able experimental data.

I. INTRODUCTION

If we look at the way electronic transport in solids is
currently treated in the context of electron devices, we
find a very wide spectrum of approaches. At the "en-
gineering" end of the spectrum, device designers often
favor the simplicity, flexibility, and fast computing times
of the standard drift-diffusion (DD) equations, despite
their limited range of validity. At the opposite end, we
find many attempts to formulate a rigorous theory of
quantum transport which transcends the semiclassical
Boltzmann transport equation (BTE).

Moving from the traditional DD models in the direc-
tion of a more complete description of the physics of
transport, we find the so-called "hydrodynamic" or
"energy-transport" models, employing higher moments
of the BTE. This improvement of the DD model ac-
counts for modest amounts of carrier heating and nonlo-
cal phenomena of importance in some of the smallest de-
vices currently mass produced. For the submicrometer
devices of the next generations, now under development,
this approach might also be inadequate, and the Monte
Carlo (MC) technique to solve the BTE has gained in-

creasing popularity. Despite its appreciable computa-
tional cost, its simplicity of implementation and its rela-
tively complete description of semiclassical transport
have rendered MC simulations appealing and successful.
Still, the physics of "state-of-the-art" MC device simula-
tions (based almost exclusively on the models presented
in Ref. 5) might not be accurate enough to handle the
submicrometer (&0.25 pm) devices now experimentally
available. We can classify very crudely the problems

which affect present MC simulations into three groups.
Problems in the first group stem from the quantum size

phenomena occurring in devices (or regions of devices) of
a scale length comparable to the de Broglie wavelength of
the carriers: Quantum wells, inversion and accumulation
layers, heterostructures, and tunneling phenomena are a
few common examples. These quantum effects are rela-
tively well understood and have indeed been coupled to
semiclassical MC simulations in the past. If we are wil-

ling to understate the issue, we can say that they do not
constitute a major deviation from the BTE and the corre-
sponding MC simulations, apart from numerical
difficulties. Still, they constitute an important element in
some devices.

A second class of problems is related to the intrinsic
limitations of the BTE at high electric fields, high carrier
energies, and very short lifetimes. A quantitative esti-
mate of the relevance of these problems to devices which
will be manufactured in the foreseeable future is still
lacking. Actually, the issue is still controversial.

Finally, there is a third class of problems to which little
attention has been paid: Even within a semiclassical for-
mulation, the physical models employed in present MC
device simulations can be and must be improved. It
might suffice to recall the rather simple band structure
commonly used which is appropriate only in low-field
(5 10 V/cm) and low-energy (80.2 —0. 5 eV) situations,
but which is often extended outside this range. In our
opinion, the gap between present MC models and formu-
lations of quantum transport beyond the BTE is very
wide for nearly all devices of current technological im-
portance. In other words, we must learn and test more
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semiclassical physics before it will become essential to
treat quantum-transport issues in real devices (quantum
size and tunneling effects apart, as we said above}. We
believe this is a necessary prerequisite for establishing the
real limitations of the BTE.

Working from these motivations and limiting our at-
tention to the case of electron transport only, we believe
that a major problem with the present MC device sirnula-
tions is their aforementioned inability to model correctly
the transport of carriers whose kinetic energy is so large
that a parabolic (or a conventional first-order k p non-
parabolic approximation) description of the semiconduc-
tor conduction band appears unjustified. This problem
has immediate relevance to practical issues arising in de-
vices already in advanced development, such as quarter-
micrometer Si field-effect transistors (FET): impact ion-
ization coefficients in Si (Ref. 10) and GaAs (Ref. 11),
substrate currents in metal-oxide-semiconductor field-
effect transistors (MOSFET's), ' and injection into the
gate insulator of Si MOSFET's (Refs. 13 and 14) (and the
associate Si02 reliability problems) or into the

Al„Ga&, As layer of modulation-doped III-V-compound
FET's (MODFET's), to mention the most important.

The strong role of the band structure and the impor-
tance that the correct density of states (DOS) has on the
electron-lattice scattering rates have been already pointed
out by Shichijo and Hess" and Tang and Hess. ' Also
Al-Omar and Krusius have recently improved the
description of the band structure. ' Essentially, we have
extended these works, including the band-structure
effects, not only on the kinematics, but also on the dy-
namics of carrier transport by computing the electron
scattering rates in a way consistent with the full band
structure of the lattice. We also include the short-range
carrier-carrier interaction in an ensemble MC simulation.
Furthermore, by moving the ensemble of particles in the
electrostatic field obtained by solving self-consistently the
Poisson equation in two dimensions, we account for the
long-range Coulomb interaction together with space-
charge effects. The self-consistency is retained up to fre-
quencies large enough to account for the plasma oscilla-
tions, particularly important in highly doped semicon-
ductor regions. Thus, we are able to handle small struc-
tures at high biases with a degree of confidence greater
than ever before. We must again stress that quantum
effects are ignored in the present work and that some de-
gree of uncertainty obviously affects our predictions. To
"limit the damage" as far as quantum size effects are con-
cerned, we have so far focused our work on high-bias sit-
uations where channel-quantization effects are, we hope,
of minor importance. Regarding high-field quantum
effects, the good agreement of the predictions of our
physical model with experimental data suggests that, as
already argued, the range of validity of the BTE may
have been underestimated in the past. '

This paper is organized as follows. In Sec. II we de-
scribe how the semiconductor band structure is embed-
ded into our MC program kinematically (i.e., how elec-
trons move during free flights) and dynamically (i.e., how
scattering rates are computed and final states are select-
ed). Particular attention is paid to the electron-electron

interaction, as this is a notoriously troublesome issue in
MC simulations. In Sec. III we discuss the procedure
we have employed to "calibrate" the few adjustable
scattering parameters of our Monte Carlo models and
present results relative to homogeneous, steady-state,
bulk transport in Si and GaAs. A description of the nu-
rnerical technique employed to couple the particle model
to the electrostatic field is given in Sec. IV and some de-
tails on the actual program are presented in Sec. V. Fi-
nally, in Sec. VI we present the results of the simulation
of small Si MOSFET's, highlighting some of the main
features of electron transport in structures as small as 60
nm, such as the effect of the higher conduction bands on
the electron energies and velocities at large biases and 77
K.

II. THE MONTE CARLO MODEL

The Monte Carlo technique we employ to treat elec-
tron transport is conceptually identical to the "state-of-
the-art" technique described in the excellent reviews by
Price and Jacoboni and Reggiani. From a computa-
tional point of view, the inclusion of the full band struc-
ture has been already implemented in a MC simulation
by the Urbana group' '" in simple cases. However, there
are some significant differences between our program and
the program developed by Hess and co-workers: (1} a
better interpolation accuracy which arises from employ-
ing a finer mesh of k points in the first Brillouin zone
(BZ), (2) a different evaluation of the scattering rates, and
(3) a different algorithin (and a correspondingly different
physics) for the selection of the final electron states after
collisions. We now discuss these issues in turn.

A. Band structure

The empirical pseudopotentials given by Cohen and
Bergstresser represent a reliable representation of the ex-
citation spectrum of the semiconductors of technological
interest. Unlike pseudopotentials designed to describe
the total energy as a function of atomic coordinates, they
fit experimental transport data and provide a reliable
description of the DOS. We show in Figs. 1 and 2 the
band structure and DOS of Si and GaAs we have used.
In Fig. 1(b) we compare the parabolic DOS of Si to the
pseudopotential DOS to show the different magnitude
and shape at high electron energies.

For the purpose of our MC simulation, we have gen-
erated a mesh of 916 k points in the —,', irreducible wedge
of the BZ, spaced by 0.05(2n /a), a being the lattice con-
stant. At these points we have computed the energy
E„(k), gradients BE„(k)/Bk, , and second derivatives
B E„(k)/Bk, Bk, where i,j =x,y, z, and the index v runs
over the first five conduction bands. These values are
then stored in a look-up table.

In principle, this is all that is needed to recover infor-
mation over the entire BZ, thanks to its symmetry. In
practice, during a MC run, given an electron with an ar-
bitrary wave vector k in band v, we should first translate
k into the first BZ, then rotate it into the irreducible
wedge, in order to obtain its energy E„(k) and group ve-

locity V'i, E (k)/iri, A' being the reduced Planck's constant.
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In performing this operation we must also store the sym-

metry transformation involved in the mapping, so that
the inverse transformation can be applied to the electron
group velocity in order to obtain its correct orientation
over the entire BZ. This last operation, performed over
and over during the run, requires an excessive central-
processing-unit (CPU) time. As a general rule, an in-

crease in storage requirement can usually be traded off
for an enhanced program speed. In this circumstance, we
have found that storing the band-structure information
over about 41000 points in the entire BZ (and a few

points outside for interpolation requirements) increased
significantly the speed of the program by avoiding these
symmetry transformations. Therefore, given a wave vec-
tor k, we find the associated energy in band v by first
finding the eight corners Ik&I (A, =1,2, . . . , 8) of the cu-
bic element of side length 1=0.05(2m la) in the BZ to
which k belongs, expanding the energy quadratically
around each corner, i.e.,

dE (kq)
E q(k)=E„(kq)+ (k; —k; „)

where sums over identical indices must be performed,
and finally adding up the contributions from each corner
with the appropriate weights,

8

E,(k)= g W~E, ~(k), (2)
A, =1

where the weights are given by

k„—k, ~
WA, = 1—

I

k, —k, ~
X

I

The velocity at k is obtained in a similar way by interpo-
lating linearly around each corner. This interpolation
scheme, exact for parabolic bands, was found to be the
best compromise between accuracy and simplicity.

Much more complicated is the task of inverting the
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FIG 1. (a) Band structure and (b) density of states for Si ob-
tained from the empirical-pseudopotential calculation. The
dashed line in (b) corresponds to the density of states obtained
considering six ellipsoidal parabolic valleys. A spin-degeneracy
factor 2 has been included in both the pseudopotential and the
parabolic density of states.
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FIG. 2. (a) Band structure and (b) density of states for GaAs
obtained from the empirical-pseudopotential calculation.
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In MC simulations employing analytic approximations
of the bands, a significant amount of CPU time is saved
by using the so-called "self-scattering" algorithm to
determine the duration of a carrier free flight and com-
pute its final position. However, when a numerical rep-
resentation of the bands is used, the higher efficiency of
the self-scattering algorithm vanishes since the equations
of motion

=—Vi,E„(k),
dt

dk () ()
dt A

' A'

(3a)

(3b)

[where e is the magnitude of the electron charge, P(r) is
the electrostatic potential, and F the electric field at the
electron position r] cannot be integrated analytically.
Furthermore, the simulation of transient phenomena
with the inclusion of carrier-carrier interactions requires
the presence of a synchronous ensemble. For these
reasons, we have decided to use a prefixed time step htb, ~

for the numerical integration of Eqs. (3a) and (3b) over a
free flight. A second-order Runge-Kutta scheme' was
selected as a good compromise between efficiency (lower-
order schemes may require a smaller number of interpo-
lations per time step) and accuracy. This scheme pro-
vides excellent numerical stability over simulation times
exceeding tens of psec for time steps of the order of 10
sec at the higher field gradients present in our simula-
tions. Using time steps of this magnitude, an accuracy of

dispersion E„(k) . This must be done very frequently in

the simulation, since we must find a "new" wave vector
k' corresponding to the final energy E' every time we
have to select a final electron state after any collision
event. The algorithm we use consists of searching
through the first BZ for the cubes which intersect the
constant-energy surface E„(k)=E' over all bands in
which E' might be found. This is done by generating two
meshes in the BZ, the first one (which we shall call the
coarse mesh) using cubes with sides of length 4l, the
second one (fine mesh) using cubes of sides I/2 long.
For every cube in each mesh we store the maximum and
minimum energies spanned. A search is done first over
the coarse mesh, thus reducing the volume of k space
over which the second search (over the fine mesh) must
be done. We then perform a search over the chosen sub-
set of the fine mesh and find all cubes in the fine mesh
which intersect the desired equienergy surface. In each
of them a particular k is chosen along the principal direc-
tions of the cube (edges, side diagonals, and cube diago-
nal) by inverting Eq. (2) up to third order, the coefficients
needed to invert Eq. (2) having been previously stored in
a look-up table. This guarantees that the selected k vec-
tors will correspond to the desired energy E' within an
average variance of 4 meV. Of course, simply selecting
the central wave vector in each of the small cubes, as
done by Hess and co-workers, ' '" would improve
efficiency. However, we found that the average error
would be unacceptably large, up to several tens of meV in
some regions of the BZ.

B. Carrier free flight

C. Scattering rates

The approach we have chosen to compute the scatter-
ing rates emphasizes the role of the band structure and of
the DOS, in the same spirit as Refs. 10 and 11. However,
we have extended this approach down to very low elec-
tron energies (at least in the case of Si) by using a finer
discretization of the BZ. This might be of some impor-
tance in Si around the X symmetry point, where the first
and second conduction bands behave quite differently
from a parabolic-band representation at energies around
130 meV. In GaAs, a similar difference can be expected
at the X valley whose minimum is not exactly at the X
symmetry point but close to 0.9(2n. /a) along the symme-
try line b, (Ref. 19). Therefore, the different kinematics
(via the group velocities) and dynamics (via the different
DOS) of these regions will be well represented by our ap-
proach.

We should stress that even accounting for the "exact"
band structure does not free us from serious difficulties.
The choice of the matrix elements for the electron-
phonon coupling, the determination of the screening
length for the Coulomb electron-electron ' and
electron-ionized-impurity collisions, and the complex
structure of the impact-ionization double matrix ele-
ment, among other issues, remain unresolved problems
in our work. We have bypassed these difficulties by
adopting various empirical, but system-independent, ap-
proaches, as we will discuss.

1. Electron-phonon scattering

The nonpolar scattering rate, 1/r„„(k), between an
electron of wave vector k in the vth band and a phonon
of type (acoustic or optical) and polarization (transverse
or longitudinal) ri has been calculated from the Fermi
golden-rule expression:

4„„(q) ~
2( v, v', k, k')

~

rgv k ~, q p~qq

X5(E„—E' + Ace„q)(n„q+ —,'+—,
' ), (4)

while in a polar semiconductor the rate for the polar col-
lisions with longitudinal-optical phonons, 1/wLo( k )—
usually restricted to the I valley —is given by

better than 1 peV per free flight is guaranteed in the
worst case. The magnitude of the scattering rates poses
an additional constraint on the highest possible value of
htb, ~, as discussed in Sec. IV B.

A final consideration concerning the integration of the
equations of motion (3) is the possibility of band crossing,
which occurs, for example, at the X symmetry point in
Fig. 1(a), or approaching the I point from the X point.
Such an occurrence is dealt with by imposing continuity
of the electron group velocity in a free flight. At highly
degenerate points of zero group velocity (such as the I
point), the continuity of the second derivative (effective
mass) is imposed.
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1

r„o(k)

2F2
i
2(k, k')

i
5(E E—'+Pi-coLo)

q2

X(nLo+ i+i ) (5)

In these formulas the upper and lower signs correspond
to emission and absorption of a phonon, respectively,
while p is the density of the semiconductor, b,„,(q) is a
coupling constant, ~„q is the frequency of the phonon of
type q and wave vector q, k'=k+ q+G is the final elec-
tron wave vector which is mapped into the first BZ by
adding a vector G of the reciprocal lattice. Also, J' is the
overlap integral, E„=E„(k},E'„=E„(k+q},and nv z is
the phonon occupation number at the lattice temperature
T. The polar coupling constant F is given by the usual
Frohlich expression: AN Acorn ~~„1—cos qa

q (2m/a

This, however, would not help us in the opposite limit
which dominates the carrier transport at high energies.
In the absence of better information about the deforma-
tion potentials, the nonpolar electron-phonon matrix ele-
ment has been approximated by an isotropic coupling
constant h„q for longitudinal-acoustic (LA) and
transverse-acoustic (TA}, or (b,K, )„ for longitudinal-
optical (LO) and transverse-optical (TO) phonons. The
overlap integral has been approximated by the rigid-ion
expression in the numerical range, ignoring the band-
index dependence.

The acoustic phonon dispersion has been approximated
by

1/2

Aco LpF2
4

1 1

Ep

Ace„,„, q) 2~/a .

where e„and E'p are the optical and static dielectric func-
tions, respectively. The sum in Eq. (4) extends over all
bands v' and over all phonon wave vectors q in the first
BZ. This implies that for some of the phonon wave vec-
tors q, a nonzero G is required to bring k' into the first
BZ. This corresponds to the inclusion of Umklapp pro-
cesses. Theone mesh previously defined is used to discre-
tize the zone.

The numerical integration over the energy-conserving
5 function is done using an algorithm proposed by Gilat
and Raubenheimer. First, we select all "final" cubes
centered around points k' in the fine mesh which inter-
sect the surfaces E„.(k'}=E', for all bands v'. In each
cube the equienergy surface is approximated by the sur-
face formed by slicing the cube with the plane normal to
P'&E, (k' ), displaced from the cube center by the amount

[E, (k' ) E']/
~

V&E„—(k' )~ along the direction of the
gradient. The area of this surface is proportional to the
DOS at energy E' in band v' in the cube, 2) (E', k' ).
Here and in the followng a factor of 2 is included to ac-
count for spin degeneracy. The nonpolar matrix element

b„„(q ), where q =+(k—k' +G), is then evaluated
in the approximation described below and the scattering
rate in Eq. (4) is obtained as

~

b,„(q )
~

'
~

S(v, v', k, k' )
~

'
v, m ~~gq

XS„(E',k' )(n„+—,
'+

—,
' ), (6)

the primed sum over the cube indices m meaning that
only energy-conserving vectors k' in the BZ must be
considered. The result for each process (phonon type,
emission or absorption, and total electron-phonon
scattering rate) is then stored in a look-up table, together
with the rate gradients. During the Monte Carlo simula-
tion an interpolation is made, as done for the energy and
velocity. A similar procedure is used for the polar rate of
Eq. (5), which can be extended outside the I valley, if
needed.

In principle, the matrix element b,„(q) and the over-
lap integral J(v, v', k, k') can be obtained from the pseu-
dopotential theory in the long-wavelength (stnall-q) limit.

i S(v, v', k, k')
i

4m. Re „i, G (p, + ~k —k'+G~ )

X5(E„(k) —E, (k') ), (8)

where e is the static dielectric, Xd, is the concentration
of ionized dopants, eZ their charge, and the screening pa-
rameter p, has been obtained in the Debye approxima-
tion:

p, ( r, t) =
' 1/2

e n„(r, t)

eks T„(r,t)

where ks is the Boltzmann constant. In Eq. (8) and in

the following, the sum over the vectors of the reciprocal
lattice, G, will be restricted to the particular G needed to
map k —k'+G into the first BZ. The simulation of a syn-
chronous ensemble of particles gives us the possibility of

The maximum phonon frequency co„,„has been chosen
to be 4c„/a, c„being the sound velocity with polariza-
tion rt. This expression underestimates the Lihonon ener-

gy at small q, irised„z-kc„q, by a factor of &2, but it pro-
vides a very good approximation of the zone-edge ener-
gies, as obtained from the spectra of Ref. 26, more impor-
tant in high-energy and high-field transport. As a conse-
quence, at small q the scattering rates will be overestimat-
ed by the same factor of &2. This will be compensated
by smaller coupling constants 6„,as discussed in Sec. III.
The dispersion of the optical phonons has been ignored,
as implied in Eq. (5), and their energy has been taken
from Refs. 5 (Si) and 27 (GaAs).

Before discussing specific values of the various parame-
ters, we shall complete the discussion of the Monte Carlo
technique by examining the other scattering processes
and the selection of the final state after collision.

2. Electron-impurity scattering

The scattering rate I /r; „(k) for the collision suffered

by an electron of wave vector k in the vth band in the
screened Coulomb field of an ionized dopant has been
computed starting from the Brooks-Herring (BH) formu-
la corrected for the band-structure effects:
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ug(k)
1 —exp

„(k) d
d

us(k)raH, (k)
(10)

where u (k) is the electron group velocity and
d =(2n.Nd, )

' is the average distance between the
ions.

estimating the local average electron density n, ~
as a

function of time and position and the average electron en-
ergy E, which is then converted to an effective tempera-
ture T„=2E/3k~. These values are then used to com-
pute the screening parameter P, in a self-consistent way.

Ridley's statistical screening model is then employed to
compute the final rate:

The rate (10) must be calculated during the Monte Car-
lo simulation, since its dependence on many variables
(n„, T,, ,Nd, ~) with a wide dynamic range would imply an
unmanageable size for a look-up table and too many
CPU-time-consuming interpolations.

3. Electron-electron scattering

As is well known, the short-range electron-electron in-
teraction has often been found difficult to treat in Monte
Carlo simulations. The golden-rule expression for the to-
tal rate, 1/r„„(k},for the screened collision suffered at
time t by ap electron at position r and of wave vector k in
the vth band with any other electron in the system can be
obtained in the Born approximation as

1

(k, r, t)
~
J(tt V'pp')

~ ~

S(vv'kk')
~ Q(E )Q f( t)

(P + ~k —k'+G~ )

The sum extends over all final states k', over the distribu-
tion f (r, p, t) of "partner" electrons at r with wave vector
p at time t, over the possible final states p' of the
partners, and over all possible bands, as allowed by con-
servation of total energy,

E„,=E„(k)+Ep(p)—E, (k') —Ep (p') =0,

and momentum,

K=k+p —k' —p'+G=O .

Here G is the vector of the reciprocal lattice —nonzero
for Umklapp processes —such that k —k'+G is in the
first BZ. The recognized difficulty is the presence of the
distribution function f, an unknown, in the expression
for the scattering rate, which renders the BTE nonlinear.
Self-consistent methods of various types have been pro-
posed in the past. The review paper by Jacoboni and
Reggiani gives a detailed account of this issue.

The following considerations help in finding a solution
to the problem: At time t during an ensemble MC simu-
lation, the distribution function at a given position at
time t —Atb„ is known, at least within the statistical un-
certainty caused by the finite number of particles in the
simulation. For a given particle at r at time t we can
search for all particles within a distance R from it. In
this way we can get a statistical estimate of the function f
to compute the rate (11). Opposite requirements work in
putting constraints on the value of R: It must be small
enough so that variations of density, average energy, and
other averaged quantities are negligible and a homogene-
ous situation exists within the distance R from the given
particle. Thus, the statistical sample of the function
f (r, p, t } obtained by looking at all other particles in this
region can be considered to be "local" in a sufficiently ac-
curate way. On the other hand, if the distance R is too

small, the necessity of simulating a finite number of parti-
cles will render the number of partners within the dis-
tance R too small to provide a meaningful statistical sam-
ple of the distribution function. A further constraint
arises when the MC particle simulation is coupled self-
consistently to the space charge: since the long-range
Coulomb electron-electron interaction is already account-
ed for by the self-consistent scheme, a value of R larger
than the spacing Ax of the mesh used to solve the Poisson
equation would result in double-counting the long-range
coupling. ' Unfortunately, there is no clear cutoff for the
long-range interaction handled by the Poisson equation,
since it depends on the local mesh size (for a nonuniform
mesh) and on the algorithm chosen to map the discrete
charges onto the mesh modes. Thus, any choice of R will
result in some amount of "double-counting" in some re-
gions and in some underestimation of the short-range in-
teraction in other regions. We shall clarify this issue in
Sec. IV B and argue that this is not a serious problem in
our case. Finally, a numerical bottleneck is given by the
number of operations to be performed in the search for
neighbors: a straightforward search would grow as the
square of the number of particles in the ensemble, np
Typically, np t 10 too large for the simple search to be
practical.

The solution to this last problem is given by a tech-
nique discussed by Hockney and Eastwood. During a
MC simulation, a list is ultimately constructed contain-
ing, for every particle, pointers to the indices of the
neighbors within the prefixed distance R. The list is up-
dated at every free-flight. The fast updating of this list
requires the layout of a uniform mesh (called the chaining
mesh) for fast location of the particles. The net effect is
that the number of operations required to ascertain
neighbors within a distance R grows only as n „. We
limit R to less than about 20 nm. At this distance (corre-
sponding to the screening length at densities of the order
of 10' cm ) we turn off the short-range electron-
electron interaction. This is justified since the Coulomb
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interaction at these large distances is already accounted
for by the self-consistent particle-Poisson coupling.
Whenever the carrier-carrier scattering rate has to be
computed for a particle, the neighbor list is used to look
for those particular partners closer than the local screen-
ing length from the particle under consideration. The re-
sulting "screening circle" is actually a set of squares (typ-
ically of 2-nm-long sides) whose area A is as close as pos-
sible to the area of the screening circle, determined in the
self-consistent way described in the context of the
electron-impurity scattering [see Eq. (9)]. In the limit of
large n „,this provides a good sampling of the local dis-
tribution function in regions where the electron density
and energy do not exhibit large gradients. If large gra-
dients occur, the function f is not sampled strictly in a lo-
cal way and the determination of the screening parameter
itself is affected by errors. At present, we cannot estimate
quantitatively the effect of this approximation. In our
simulations, problems might arise in the junction regions,
but not in the "active" regions of the devices, such as the
channels of FET's.

Density fluctuations in a two-dimensional simulation
are of some concern. The probability of finding partners
within the screening circle must be rescaled to account
for the fact that, given that JV2D partner particles are
found within the screening circle in two dimensions, the
number of partner electrons JV3D within the screening
sphere in three dimensions is given by

4m.s
~3D= ~2D

3P, A
(12)

where s is the scale factor determining how many elec-
trons per unit length in the third dimension each simulat-
ed particle represents. This factor is determined at the
beginning of the simulations, as we shall see below. If too
few particles are used in the ensemble, large density fluc-
tuations will result in the simulation. In fact, the factor s
will be very large in this case and fluctuations of JV'2D will

result in wildly amplified nonphysical fluctuations of
iV3D. Therefore, both the short-range interparticle
scattering and the long-range Coulomb interaction medi-
ated by the self-consistent particle-Poisson coupling (dis-
cussed below) are correctly accounted for only in the lim-
it of large n „, or, equivalently, of small s factors. In
practice, a reasonable compromise is reached when
s & P, ,„,where P, ;„ is the minimum screening parame-
ter which can be found in the particular simulation to be
performed ( = 10 m ', while s = 5 X 10 m ' in the simu-
lations we have performed to date).

We are now ready to treat the short-range electron-
electron collisions: When the scattering rate is needed
for an electron at position r of wave vector k in band v,
one among its neighbors within the screening circle cen-
tered at r is selected randomly. Denoting by p the wave
vector of this partner and by p its band, we evaluate the
scattering rate for this pair as

1

r„„„(k,p)

3D e
—4mp, 8' lie „„i, p

I &(l v', p, p')
I

'
I

&(v v'k k')
I '@E

(P,'+ I
k —k'+G

I

')' (13)

by using a trivial (but numerically tedious, time consum-
ing, and quite complicated because of the double search
over final states) extension of the technique employed to
compute the electron-phonon rates. As discussed by Ma-
tulionis et al. , if the ensemble is large enough the rate
given by Eq. (13) is a good statistical approximation of
the full rate (11), since all neighbors will be sampled ran-
domly during the simulation.

During the evaluation of Eq. (13), all the possible pairs
(k', p') which satisfy energy and momentum conservation
are stored, so that the selection of the final states after
collision can be made more efficiently.

One extra numerical "trick" is used to speed up the
computation. Equation (13) should be evaluated for
every particle at every time step. But only a small frac-
tion of particles will actually suffer electron-electron col-
lisions. Therefore we use a sort of self-scattering tech-
nique: an upper bound to the rate given by Eq. (13) is
evaluated by using a proper multiple of the rate obtained
in the parabolic-band approximation. Thus, we need to
evaluate the fully numeric rate (13) only for particles
which are selected by this "parabolic" scattering.

4. Impact ionization

A simple Keldysh formula is used to derive the rate for
impact ionization for an electron of energy E (Ref. 33):

0, E&E
1

r;;(E)
roi, (E~h )

2E —E,h E ~E,h
th

(14)

where E,h is a threshold energy and I/r»(E, h) is the
electron —optical-phonon scattering rate averaged over all
electron wave vectors corresponding to the threshold en-
ergy E,h. Finally, P is a coefficient which we consider
merely a fitting parameter.

This is a very simple formula, inconsistent with the
band-structure approach we have followed. In particu-
lar, we do not believe that long standing issues —such as
(1) whether a soft threshold (i.e., low P, low E,h), or a
hard threshold (large P, large E,h), is a better description,
or (2), the controversial issue of the orientation depen-
dence of the ionization coefficients in GaAs (Refs. 11 and
34)—can be resolved with this simple approximation. A
soft threshold seems to be more reasonable, but this must
be coupled to realistic anisotropic thresholds and DOS
available to the recoil and generated particles. In Sec.
III B we shall mention a failure of Eq. (14) in the case of
GaAs. For the time being we shall manage to fit empiri-
cally the Si and GaAs ionization coefficients as best as we
can and avoid the simulation of phenomena depending
crucially on the ionization rate.
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5. Degeneracy sects

Lugli and Ferry have proposed a Monte Carlo Tech-
nique to account for degeneracy effects in Monte Carlo
simulations. Their algorithm has been implemented for
homogeneous, steady-state situations. However, in
space- and time-dependent simulations, tabulating the
distribution function at various locations and times re-
quires an unmanageable amount of storage. Therefore
we looked for a simpler, albeit approximate, method.
Degeneracy effects are important in heavily doped re-
gions. In these regions the large charge density yields
very low fields and negligible carrier heating. The strong
electron-electron interaction is also very efficient in distri-
buting energy among the carriers and driving them to-
wards a Fermi-Dirac distribution. Therefore, we ap-
proximate the distribution function f as

f, (E,r t)= 1

E EF(r—, t)
kqT, , (r, t)

(15)

where EF(r, t) is the Fermi level at position r and time t
obtained self-consistently from the local electron density
during the simulation. (The electron temperature is, in
general, greater than the lattice temperature. ) Any col-
lision process is then rejected if the final electron state, k',
and band index v' selected after the collision are such
that

1 —f, [E„.(k'), r, t]&g, (16)

where g is a random number in [0,1]. Thus, we account
correctly for degeneracy in heavily doped regions, even
when the carriers are slightly heated. Major errors are
made in regions where the carriers are hot and largely off
equilibrium. However, in these regions the densities are
usually low and degeneracy plays an insignificant role.

D. Selection of final states

After a collision process involving a particle in the ini-
tial state (k, v), its final state (k', v') is selected with a tech-
nique similar to the one employed to compute the scatter-
ing rates. First, all cubes centered around the k points in
the fine BZ mesh are scanned to select those which inter-
sect the equienergy surface at the desired final energy E'.
This is done searching over the coarse mesh first, over the
fine mesh afterwards. Once the energy-conserving cubes
are found, each one centered around a vector k', each
cube is assigned a weight given by its DOS 2)„.(E', k' ),
the associated overlap integral 2(v, v', k, k'), and the
squared matrix element ~Af(q ) ~', w, here q =k —k'

+ Cs. This is obtained from the q dependence of Eqs. (4)
and (5), or, in the case of impurity scattering, Eq. (8), and
electron-electron interaction, Eq. (13), from the depen-
dence on k —k'+G. In the case of carrier-carrier col-
lisions, the second overlap integral can be evaluated at
once, since to every (k', v') there corresponds an associ-
ated (p', p') uniquely defined by energy and momentum
conservation. These pairs, as we mentioned above, are
stored during the evaluation of Eq. (13), so that no fur-

ther time is spent in a search for (p', p'). A random vec-
tor k is then selected, with probability given by its
weight. The rejection technique is employed for this
random section. The final-band index and k vector are
then known. A final step is necessary, as the energy asso-
ciated with this wave vector can differ from E' by as
much as a few tens of meV for the mesh size we have
used. Therefore, a correction is made within the selected
small cube to adjust the final state, as explained in Sec.
II A.

In the case of impact ionization a much simpler ap-
proximation is made, consistent with the simplicity of Eq.
(14). The recoil electron is assigned an energy E„(k)

Eg p
where E, is the band gap of the semiconductor,

and a random wave vector at this energy is selected. This
accounts very poorly for DOS effects. Moreover, no ac-
count is made for the matrix-element and overlap-
integral effects. The generated particle is placed at the
bottom of the conduction band.

III. HOMOGENEOUS TRANSPORT

The electron-phonon coupling constants entering the
rates (4) could be obtained from first-principles calcula-
tions. But at high energy above the minimum of the first
conduction band, we lack self-consistent-pseudopotential
or even simpler tight-binding estimates of dilation
coefficients and deformation potentials (even if we were
willing to take this concept seriously much above the
band minima). Considering our present inability to de-
scribe the variations of the electron-phonon matrix ele-
ments b „over the various bands in the BZ, we take a
very empirical approach and treat these constants as
empirical properties of the material. A first reason for
doing so stems from our belief that band-structure effects
play a dominant role at high energies. A second
justification is that some of the best experimental deter-
minations of the deformation potentials have been ob-
tained in the past from low-field transport data fitted to
Monte Carlo simulations. Because of the different band
structure we employ, we expect possible differences from
previous work, even at low fields. Therefore, we shall fol-
low the same "fitting" path of the past, but paying atten-
tion also to high-field and high-energy situations. Our
guideline is "simplicity. " We look for the simplest possi-
ble set of values which match experimental data. In
seach for this simplicity, we shall make many crude ap-
proximations. We now discuss Si and GaAs in turn. In
the following two subsections impurity and electron-
electron scattering are ignored.

It is important to stress that these coupling constants
are determined uniquely by bulk, steady-state transport
data. Therefore, the device-modeling results we shall
present in the following sections are to be considered
transport-parameter-free.

A. Silicon

The simplest possible choice we can make is a unique
acoustic Bardeen-like deformation potential, h„(q)
=A«q =h~~q, for both LA and TA phonons and a
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1.2 eV (band 1)
1.7 eV (higher bands),

(17a)

1.75X10 eV/cm (band 1)

2. 10)& 10 eV/cm (higher bands),

E,h
——1.2 eV, (17c)

unique nonpolar-optical Harrison-like deformation poten-
tial, b,, (q)=(EK),~, for both LO and TO phonons.
Also, considering the small energy difference of the two
optical models, we shall consider LO phonons only.

This simple choice violates some elementary considera-
tions, such as the vanishing of 5~A at the bottom of the I
valley, the anisotropy at the bottom of the valleys along
the symmetry line 6, and effects related to other selection
rules which would be active in various regions of the BZ
(Ref. 5). In order to account for these efFects, local in k
space, we should arbitrarily define the boundary of the
valleys, such as the maximum energy at which the non-
sphericity of the I valley could be ignored, or the max-
imum energy at which a single electron transverse mass
in the X valleys can be used. This would increase the
number of available parameters, but we doubt that a
more meaningful description would be obtained.

With this set of assumptions, we adjust the values of
b,„and (b,E)0~ to match the experimental velocity-field
characteristics at 300 K, and the low-field results of pre-
vious Monte Carlo simulations. We immediately run
into troubles at fields exceeding 10 V/cm. We must
complicate our picture slightly by allowing the deforma-
tion potentials to take different values in the second and
higher bands. We also use the impact-ionization parame-
ters P and E,h to fit the experimental ionization
coefficients and the probability of emission into Si02 (Ref.
40), exactly as done in Ref. 41.

After many laborious attempts, we found a possible set
of parameters which reproduces the desired results:

role and we have the strong doubts expressed above on
modeling injection into the Si02, which remains the only
available experimental information we can use to test the
model. As a low-field internal check, we simulated the
velocity-field characteristics at 77 K without adjusting
the parameters (17), obtaining a very good agreement
with the experimental data. '

We show in Fig. 3 the total electron-phonon scattering
rate as a function of electron energy obtained integrating
numerically our anisotropic rates over all directions:

r, ( ph(E) &(E) „„„r„„(k)5(E„(k)—E ),

where 2)(E) is the density of (initial) states at energy E.
The strong role played by the density of final states is
clearly evident comparing Fig. 1(b) to Fig. 3. The low-
energy rates at 300 K resemble closely the magnitude of
the rates used in previous Monte Carlo work, shown by
the dashed line. In Fig. 4 we show the drift velocities
versus electric field at 300 and 77 K. Barely visible in the
figure is a region of negative differential mobility at 77 K
at high fields ( ~ 3 X 10 V/cm), as a few carriers begin to
transfer into the L valley at about 1 eV. The average
electron energy as a function of electric field, shown in
Fig. 5, is slightly lower than that obtained by "parabolic"
Monte Carlo simulations at high fields. ' More about
this effect and the role played by L-valley transfer in
small devices will be said below. Figure 6 shows the 300-
K electron mean free path at various fields and in Fig. 7
we present the 300-K ionization coefficient obtained from
our model compared to experimental data.

We wish to stress here that we do not have the freedom
to vary the six intervalley deformation potentials nor the
energies of the phonons assisting the processes. These
values are uniquely fixed, respectively, by the choice of
the only two constants we have, the optical and acoustic
deformation potentials, and from the dispersion (7) evalu-

=10 sec
1op th

(17d)

It must be stressed that this set is by no means unique-
ly determined. Many other sets were found which yield-
ed the desired agreement with the velocity-field curves
and the ionization-coefficients data. The information
which restricts tremendously the range of possible pa-
rameters is the injection into Si02. Here, the controver-
sial issue of image-force barrier lowering at the Si-Si02 in-
terface, the absence of tunneling in the simulation, and
the lack of confidence on the use of the Keldysh formula
render the fitting procedure somewhat uncertain. There-
fore, we expect that additional experimental results on
the shape and magnitude of the high-energy tails of the
electron distributions at the Si-Si02 interface from work
now in progress will help us in a more accurate deter-
mination of the parameters.

Despite these words of caution, we are confident that
electron transport up to energies of about 2 eV is de-
scribed very well by our model. Our skepticism is
confined to the description of transport in the range
above 3 eV, where impact ionization plays a dominant

2
C)

C2

1z

1 2 3 4
ELECTRON ENERGY ( eV )

FIG. 3. Total electron-phonon scattering rate for Si at room
and liquid-nitrogen temperature. The rate is plotted as a func-
tion of electron energy by integrating the anisotropic rates given

by Eq. (4j of the text over all directions in the Brillouin zone.
The dashed line corresponds to the total electron-phonon
scattering rate given by Ref 5.
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FIG. 4. Experimental and simulated electron drift velocity as
a function of electric field along two crystallographic directions
in Si at room and liquid-nitrogen temperature.

ated at various q vectors connecting the different valleys.
We do not wish to revive any controversy about these
constants. All we want to say is that our choice in (17)
satisfies a wealth of experimental data, within the approx-
imations we have employed to compute the scattering
rates.

It is instructive to compare the electron-phonon trans-
port parameters implied by our choice in Eq. (17) with
those employed in parabolic-band simulations. In Table I
we show such a comparison. The intravalley and inter™
valley acoustic deformation potentials obtained from Eq.
(17) account for both TA- and LA-phonon-assisted tran-
sitions. We should also recall that the &2 error we make
on the small-q phonon dispersion of Eq. (7) has the effect
of increasing the value of the small-q matrix element for
acoustic transitions, so that our low-q acoustic coupling
constants are depressed by a factor 2' . The intervalley
coupling constants and phonon energies have been ob-
tained by accounting for the q dependence of acoustic
transition and for the phonon wave vectors needed in the
f processes and the g processes. Note that intervalley
and intravalley transitions are not distinct processes in

FIG. 6. Simulated electron mean free path for Si at room
temperature for a field along the (100) crystallographic direc-
tion. The average mean free path and its projection along the
direction of the field are shown.

our model, since the "valleys" themselves are ill-defined
k-space regions. Apart from an apparent "switch" in the
f2 and g, intervalley deformation potentials and phonon
energies, our constants appear consistently lower, with
the exception of the g2 intervalley transition. This is
strictly due to band-structure effects, even at very low en-
ergies. Electrons can flow from one valley along the (100)
direction to an equivalent valley in another BZ without
the assistance of phonons (Bloch oscillations), the cross-
ing between bands 1 and 2 occurring only along the sym-
metry lines from the symmetry point X to the symmetry
point 8'. Thus, lower rates are needed to maintain the
carriers in a low-energy and low-velocity regime in a
homogeneous situation. Also, the ellipsoidal shape of the
equienergy surfaces around the energy minima along the
6 6 directions seems to be a poor representation of the
bands. These surfaces, when cut by a plane normal to the
symmetry line b, are not spherical but noticeably
"square-looking" above 50 meV, implying that the trans-
verse electron effective mass is higher as we move away
from the 5 minimum along the (110) transverse direction

10
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—2)

- - - - Canali et al. (100)
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~ MC (100)
~ MC (111)
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FIG. 5. Simulated average electron energy for Si at room and
liquid-nitrogen temperature as a function of electric field along
two crystallographic directions. Results of previous Monte
Carlo simulations at 300 Ii are shown for comparison.
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FIG. 7. Experimental and simulated impact-ionization
coefficient for Si at room temperature for a field along the (100)
and (111)crystallographic directions.
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Quantity and units

AcoLA, „(meV)
&~TA,„(meV)
AmTo (meV)

WmLo (meV)

~ac, x (eV)

(LK,~) (10' eV/cm)

TABLE I. Transport parameters in Si.

This work

22. 1

44.3

62.0
2.4 (band 1)
3.4
1.75 (band 1)
2.1

Previous works

17.5'
48 4'
59.7'
62.6'

9 0c,d

(EK)f l

(bK)f q

(EK)f 3

(AK)g l

(4K)g,
(EK)g 3

(TA)' (10' eV/cm)
(LA) (10' eV/cm)
(LO,TO) (10' eV/cm)
(TA) (10' eV/cm)
(LA) (10' eV/cm)
(LO) (10 eV/cm)

0.30(14.7)
0.30(7.2)
1.75(62.0)
1.18{44.3)
1.18(22.1)
1.75(62.0)

0.15(18.1), 0.3(18.2)'
3.4(43.1), 2.0(47.4)'
4.0{54.2),"2.0{59.0)'
0.5(12.1), 0.5(12.1)c

0.8(18.1),"0.8(18.5)'
3.0(60.3), 11.0(62.0)'

'G. Nilsson and G. Nelin, Phys. Rev. B 6, 3777 (1972).

~ac, X ~TA+ ~LA'
'C. Canali et al. , Phys. Rev. B 12, 2265 (1975).
C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).

'In parentheses is the energy of the corresponding phonons (meV).

then the value of 0.193m,&, where m, ~
is the free-electron

mass, found along the (100) transverse direction. The
higher DOS at low energies shown in Fig. 1(b) is due to
this effect and to the presence of the second conduction
band at about 130 meV, as already noted by Tang and
Bess. ' This also contributes to an increase in the rates,
even at moderate energy. Thus, a straightforward com-
parison of the various parameters is rendered obscure by
these band-structure considerations. At even higher en-
ergies, no similarities of the two models can be expected.

We would like to stress that the ability to model elec-
tron transport in Si with only four adjustable parameters
for all possible scattering processes is a Uery remarkable re
suit In our op. inion, it emphasizes the fact that a better
description of the band structure is a fundamental in
gredient for the understanding of transport, even at rela
tiuely low ftelds.

B. Gallium arsenide

Considerations similar to those for Si apply to GaAs.
In this case, the band structure is even more important
and some uncertainty remains in the literature about pa-
rameters such as the effective masses in higher valleys,
energy splitting Az I and Az z and nonparabolicity
corrections. In Table II we list the band-structure pa-
rameters obtained from the pseudopotential calculations

compared to typical values employed by different au-
thors. An extensive review of the various published pa-
rameters is outside the scope of this work, but it would
reveal clearly that confusion persists in this matter. The
nonparabolicity parameter a reported in Table II de-
pends on the energy at which the "exact" bands are
matched. At low energies (up to about 0.4 eV), a low
value is reported. This is still larger than the one usually

employed, but it fits the quantum oscillations observed in

TABLE II. Band-structure parameters for GaAs.

Symbol
and units

mr (m, ~)

mL( (m, l)

m, , (m„)

mxl (m, ])
mx, (m„)

aEr L (eV)
~Er, x' (eV}

a (eV ')

This work

0.063

1.538
0.127

1.987
0.229

0.323
0.457

—0.834
—1.158'

Previous works

0.063,' 0.069"

1 473
0.12b

1.58
0.24'

0.33,"0.29
0.522, '0.48

—0.61,' —0.67

'M. A. Littlejohn et al. , J. Appl. Phys. 48, 4587 (1977).
T. Wang and K. Hess, J. Appl. Phys. 57, 5336 {1985).

'Minimum at 0.9(2m. /a) along the symmetry line 5 in our model,
at the symmetry point X in previous Monte Carlo works.
Low-energy value (0.3 eV).

'High-energy value (0.7 eV).

ballistic devices. ' Larger values (due to higher-order
nonparabolic corrections lumped into a single first-order
parameter) are obtained at larger energies. At these ener-

gies, however, the I valley becomes appreciably non-
spherical and the notion of a nonparabolic correction is
dubious anyway.

Of course, the determination of the electron-phonon
coupling parameters depends on the band structure
selected. The calibration of these parameters has been
done in the same spirit as in the approach taken for Si.
Only two parameters are treated as adjustable quantities:
the acoustic-phonon deformation potential b„, and the
optical deformation potential (b,K ), . The polar coupling
with LO phonons in the I valley is not a source of con-
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7.0 eV, E &0.3 eV in I
5.0 eV, otherwise,

0.0, E &0.3 eV in I
(hK), = '

2. 1 && 10 eV/cm, otherwise,

(18a)

(18b)

E,h
——1.7 eV, (18c)

=2.5X10" sec
rop th

(18d)

The impact-ionization coefficients seem to indicate a
hard threshold, opposite to what is found in Si, con-
sistently with the numerical results of Ref. 11. But there
is an important caveat with regard to this model Con-
trary to the theoretical findings of Ref. 11, our anisotrop-
ic electron-phonon scattering rates yield an anisotropic
ionization coefficient. Unfortunately, this orientation
dependence is in complete disagreement with the experi-
mental data. We believe that the oversimplification im-
plied by the Keldysh formula is at the origin of this prob-
lem, the anisotropy of the threshold energy being an im-
portant factor for which we did not account. Thus, in-
stead of settling the controversy, as we had hoped, we
end up confusing the issue even more. Obviously, we
must say that further work is necessary

In Table III we compare our electron-phonon coupling

TABLE III. Transport parameters in GaAs.

cern, as the Frohlich coupling constant can be considered
well known. As for Si, the acoustic deformation poten-
tial has been allowed to vary above some energy thresh-
old (0.3 eV), in order to fit the velocity-field characteris-
tics.

The fitting procedure is expected to exhibit a wider
flexibility than we had in the silicon case. No experimen-
tal information is available in the 3-eV range and the ion-
ization coefficients are still somewhat controversial.
Therefore, the set of parameters below is even less
"unique. " After fitting drift velocity versus field curves
and ionization coefficients, ' the parameters we employ
are

constants to those used elsewhere. The intervalley defor-
mation potentials we have tabulated include both optical-
and acoustic-phonon transitions. The values listed in
Table III are obtained by adding the two contributions as
follows:

(b,lt. );,=[
~

b,„q;, ~

'+(b&)', ]' ',
to facilitate the comparison with the total coupling con-
stant for intervalley transitions from valley i to valley j
assisted by phonons of wave vectors q; . In Table III,
the intervalley phonon energies we use are given by an
average of the acoustic and optical intervalley phonons,
weighted by the respective coupling constants squared.
We show in Fig. 8 the total electron-phonon scattering
rates at 300 K.

Because of the very narrow I valley, the numerical
procedure becomes too inaccurate at low electron energy
(too few cubes in the BZ to describe the I valley). There-
fore, in the case of GaAs we have simulated the electrons
in a first-order nonparabolic band approximation for en-
ergies below 0.3 eV, as done by Shichijo and Hess. " The
transport parameters, in this case, are those used by
Littlejohn et al. Inelastic acoustic-phonon scattering,
the usual Frohlich scattering, overlap integral including
the s-p-wave mixing as done by Fawcett et aI., and the
nonparabolicity parameter of —0.834 eV ' shown in
Table II have been employed. All intervalley processes,
however, have been treated within our full-band-
structure scheme. In Figs. 9-12 we show the drift veloci-
ty, average energy, mean free path, and valley popula-
tions as functions of the electric field at 300 K.

As is the case for Si, we can reproduce the low-field
transport with only three electron-phonon coupling con-
stants. This is in contrast to a Monte Carlo simulation
using parabolic or first-order nonparabolic bands, where
ten or more scattering parameters must be adjusted.
However, our conclusion in the case of GaAs is undoubt-
edly weaker, because of the problems we encountered
with the ionization coefficients, and must be restricted to
the collision processes above 0.3 eV.

Symbol
and units This work Previous work

A'coLA,. „(meV)
AcoLo (meV)

A„q (eV)

5„L (eV)

h„~ (eV)
(AK) (10 eV/cm)
(hK) r „(10 eV/cm)
(dlK)L g (10 eV/crn)
(EK)L L (10 eV/cm)
(AK) (10 eV/cm)

24.3
35.36
7 (below 0.3 eV)
5 (above 0.3 eV)
5.0
5.0
5.2(23.6)
5.9(24.2)
5.2(23.6)
5.9(24.2)
2.1(35.2)

35.36'

70'

90'
9.27'
6.5'(27.8)'
10.0(29.9)'
5.0(27.8)'
10.0(29.0)'
7.0(29.9)'

'M. A. Littlejohn et al. , J. Appl. Phys. 48, 4587 (1977).
In parentheses are the phonon energies in meV. Acoustic and

optical phonons are included in intervalley scattering in this
work.
'J. Shah et al. , Phys. Rev. Lett. 59, 2222 (1987).
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FIG. 8. Total electron-phonon scattering rate for GaAs at
300 K. The polar scattering with LO phonons below 0.3 eV has
been computed in a spherical, nonparabolic-band approxima-
tion for the I valley, as explained in the text.
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FIG. 9. Experimental and simulated electron drift velocity as
a function of electric field along the |,'100) crystallographic direc-
tion in GaAs at 300 K.

FIG. 11. Simulated electron mean free path and its projec-
tion along the direction along the field as a function of the field
itself along the (100) crystallographic direction in GaAs at 300
K.

IV. SPACE-CHARGE EFFECTS

The ability to monitor the time evolution of the electric
fields in the devices self-consistently with the particle
motion is important in small dc;vices. The carrier veloci-
ties are expected to be different from the "equilibrium"
velocities implied by simpler DD models. This, in turn,
implies a redistribution of the charge density in the de-
vice and, consequently, a different electric field config-
uration which feeds back into the particle motion.

At present, this self-consistent scheme can be handled
with almost standard techniques, such as those described
by the pioneers of this approach in Ref. 6. For complete-
ness, we shall outline the procedure we have followed,
emphasizing the few instances which deviate from the
Hockney and Eastwood prescription.

A. Poisson equation

The mesh which describes the two-dimensional cross
section of the device is a tensor-product, nonuniform,
finite-difference mesh with no terminating lines. Mesh
sizes have typically been 100' 50 mesh lines in the x- and
y-axis directions, respectively. (Here, the source-to-drain

direction is the x-axis direction. ) The Poisson equation is
solved on this mesh taking into account the; instantaneous
electron density, the ionized dopant density, potential
boundary conditions, and a piecewise constant dielectric
constant. Holes are included in the zero-current
(constant —quasi-Fermi-level) approximation, so that
the depletion region in the substrate of an n-type-chan-
nel metal-oxide-semiconductor field-effect transistor
(MOSFET) is self-consistently and automatically includ-
ed in the calculation. Therefore, the Poisson equation to
be solved is

—V„(eV,Q)

e [N v ~1/2( (Ev NP ) /k a T ) n, I + ND+ —N„]—
(19)

where 9'«2 is the Fermi-Dirac integral of order one-half,

pp is the hole quasi-Fermi-level, N~V, &2 is the hole con-
centration, E~ the energy of the top of the valence band,
and ND+ and N~ are the concentrations of the ionized
donors and acceptors, respectively. To calculate the frac-
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FIG. 10. Simulated electron average energy in GaAs at 300
K as a function of electric field along the (100) crystallographic
direction.

10-1

10 2
CL

10
—3

I @
]~i

' o l ™ f —valley
I

/

l t
L—valley

10 4- X—valley
I

! I,' — —~- above 07 eV

10-' I

10' 10' 10' 10' 10'
ELECTRIC FIELD ( V/cm )

FIG. 12. Fraction of electrons in each valley and above an
arbitrary cutoff of 0.7 eV as a function of the field along the
(100) crystallographic direction in GaAs at 300 K.
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tion of ionized donors, quasiequilibrium is assumed with
the local electron density. This permits a local electron
quasi-Fermi-level to be defined (assuming parabolic bands
for simplicity) which establishes the donor occupancy ac-
cording to Fermi-Dirac statistics. A similar treatment is
embraced to determine the ionized acceptor from the lo-
cal hole density. A Newton-Raphson method is used to
solve the nonlinear system of equations, together with a
damping scheme proposed by Bank and Rose. A poly-
nornial preconditioned conjugate gradient technique is
used to solve the resultant linearized matrix equations.

The standard cloud-in-a-cell (CIC) algorithm is em-
ployed to assign the particle charge density en, i(r) to the
mesh nodes and to interpolate the mesh forces acting on
the particles, with two extensions. These extensions are
necessary because the standard CIC method applies to a
mesh with uniform spacing in the axis directions and for
a constant dielectric constant. Unfortunately, these con-
ditions are inappropriate for our MOSFET simulatioas.
As a first extension, we continue to use the standard CIC
formula but substitute the local mesh spacings in the
charge assignment process. Hence, where the mesh is
refined, the particle charge is only spread over a small

I

distance, and ~here the mesh is coarse, charge is spread
over a greater distance. This contrasts with the "extend-
ed" CIC method employed by Tomizawa et al. ,

' where
charges are always spread over the same distance, in-
dependent of the nonuniform mesh spacing. We shall
briefly defer discussion of this concern until after the next
paragraph.

Our second extension to the standard CIC method in-
volves the manner in which electric field values are as-
signed to the mesh points, prior to CIC force interpola-
tion at the particle location. We attempt to address the
presence of a piecewise constant dielectric constant in our
mesh as follows. Consider a finite-difference mesh with
mesh lines located at fx;j along the x axis, and fyj J

along the y axis. The dielectric constant in the rectangles
determined by these lines is taken as constant and is
denoted by e;+,&2, +, &2

——e(x,y), x; &x &x;+, and y, &y
(yj+1. Also, define the mesh spacings as hx;+1/2
=x, +, —x, and Ayj+, /, ——yj+, —yj. The electric field F
=(F„,F ) at the four mesh nodes (i j), (i+1,j), (i,j
+1), and (i +1,j+ 1) is required to interpolate the field
for any particle inside this mesh rectangle. These field
values are

~i + I +1/2, j+ 1/2
41+I+ i,j+m 0'1+I j+m

~xi + I + 1/2
+~i + I —1/2, j + 1/2

Pi+Ij +m 0'1+I —1,j +m

~xi + I —1/2

2~i + 1/2, j + 1/2
(20a)

(FI, ),+—i + 1/2, j+ m + 1/2
Pi+Ij +m+1 Ni+Ij +m ( I I+j +m Pi+Ij +m —1

+~i +1/2, j+m —1/2
yj+m +1/2 ~yj+m —1/2

2~i + 1/2, j + 1/2
(20b)

for i, m =0, 1. These formulas attempt to minimize the
self-force on the particle when the mesh spacing is
nonuniform, yet still reduce to a second-order accurate
centered difference approximation when b,x, Ay are both
constant. There are many other prescriptions concern-
ing the force calculation and interpolation which need to
be explored and extended to the case of a nonuniform
mesh spacing and spatially dependent dielectric constant.

Given the possibility of unphysical self-forces when
nonuniform meshes are used with Eq. (20), we construct
our Poisson mesh so that bx and Ay are constant directly
below the Si-Si02 interface to a depth of 10 nm. This
forces the self-force to zero in the region where the rna-

jority of the particles in the channel reside. Questions
concerning the force calculation due to the change in
dielectric constant at the interface beyond those ad-
dressed by Eq. (20) remain for future examination, how-
ever.

B. Monte Carlo —Poisson coupling

We are now ready to describe the structure of the self-
consistent coupling between the Monte Carlo particle
model and the solution of the Poisson equation.

1. Setting up the problem

At the beginning of the simulation, the grid, doping
profiles, and contacts are defined for the device under in-
vestigation. We also need to specify the initial particle
locations in real and k space. We shall now give a few de-
tails of the procedure we followed to start the simulation.

The grid is chosen einpirically, refining the mesh spac-
ings in regions where high gradients of carrier concentra-
tions and electrostatic potential are expected. Doping
profiles of various forms (constant, Gaussian, or empiri-
cal) can be introduced.

Ohmic contacts must be separated from active regions
of the device by a distance sufficient to ensure that an
equilibrium condition (i.e., thermal carriers and charge
neutrality) exists in their immediate neighborhood. Some

experimentation is normally required to guarantee the
fulfillment of this condition. Whenever the local particle
density at the contact drops below the known equilibrium
value (not necessarily spatially uniform, to accommodate
nonuniform doping profiles), carriers are "injected" into
the device with k vectors selected randomly according to
the local Fermi-Dirac distribution at the lattice tempera-
ture.
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To initialize the particle distribution, the particle loca-
tions can be obtained from a previous solution (at a
different bias or temperature, for instance) or from a stan-
dard DD solution of the device and using the resulting
electron density as the probability distribution to place a
predetermined number of particles in the device. As a
crude third alternative, particles can be distributed ac-
cording to the doping profiles. In any case, the total
charge in the simulated region is known. This fixes the
charge, es, associated with each simulated particle per
unit length. The factor s represents the number of real
electrons per simulated particle per unit length as used in

Eq. (12). Whatever starting configuration is chosen, a
transient is simulated at first. Of course, this is physically
meaningful only if the initial configuration itself is physi-
cally meaningful. In the simulations we have performed
to date, we have generated initial particle locations ac-
cording to the doping profiles. The very nonphysical na-
ture of this initial "solution" yields very wild, nonphysi-
cal transients at the onset. The simulation time needed to
reach a physical configuration can be clearly observed by
monitoring the trend of all physical quantities (energies,
velocities, densities, etc. ) towards steady-states values.

The initial wave vector assigned to each particle is ei-
ther obtained from a previous solution or chosen ran-
dornly with a probability distribution given by the local
Fermi function.

Once the initial distribution of particles in real and k
space is obtained, the Poisson equation is solved to ini-
tiate the transient evolution with a consistent electric
field solution.

A characteristic problem of MC device simulations
originates from the fact that in most practical cases the
particle density exhibits a wide dynamic range, since con-
tacts may be degenerately doped. Typically, the program
must be able to handle carrier concentrations ranging
from a few 10' to 10 cm or more. This would result
in a large number of particles in the highly-doped (and
usually, but not always, uninteresting) contact regions.
To avoid spending excessive CPU time simulating these
carriers, we have added three different features to our
model.

(i) Particles with kinetic energies below some low
threshold (typically 50 meV for Si, 0.3 eV for GaAs) are
simulated in a first-order nonparabolic (a= —0.5 eV
for Si, —0.834 eV ' for GaAs) band approximation, as
done in standard MC simulations. ' Since most car-
riers will be quasithermal in the contacts, a significant
amount of CPU time is saved in these regions given the
much higher computational speed of these "analytic"
particles. The energy thresholds we chose are such that
the band-structure features previously discussed are well
preserved.

(ii) A portion of the highly doped regions is cut out
from the domain in which the particle motion is simulat-
ed, while still remaining in the electrostatic portion of the
problem. This "cut" must be such that its boundary
meets the requirement described above for the location of
the Ohmic contacts. Thus, apart from some contact-
resistance effects, there is no loss of accuracy in the sirnu-
lation. If an estimate of the source and drain resistance is

desired, this shortcut may be easily bypassed.
(iii) The usual technique for enhancing rare events in

(MC} simulations is employed in the active regions of
the devices (such as inversion channels in MOSFET's).
Particles within a predefined "statiscally enhanced re-
gion" of real space are assigned a different s factor, s „],.
When a particle enters this region, it is replicated M —1

times. Conversely, a particle leaving it will be kept in the
simulation with probability M '. The charge weight of
each particle in the statistically enhanced region is clearly

sm„~,
——s/M. This technique has also been employed by

Sangiorgi et al. ' to enhance statistically regions of k
space. Particular care must be taken to handle correctly
the short-range electron-electron interaction between
particles with different s factors: the number of neigh-
bors in the screening circle is obtained by counting each
particle outside the statistical-enhancement region M
times. Equation (12}is modified accordingly by summing
over the various s factors. This will ensure that the
correct local density is employed to evalute Eq. (13). If a
collision of particles with different s factor is selected, the
state of the particle outside the statistically enhanced re-
gion (i.e., with larger s) is modified with probability M
The ensures that the total energy of the ensemble is sta-
tistically conserved.

2. Time evolution

Given the initial particle locations and field
configuration in the simulated region, the particles are
moved in free flight for a time Atb, &, as described in Sec.
II B. At the end of this step, we must ensure that all par-
ticles remain within the allowed region. Particles which
leave the region at a contact are tallied as positive current
at that contact. Particles hitting interfaces (such as the
Si-Si02 interface) are specularly reflected, diffused elasti-
cally or inelastically, depending on the physical model
chosen. The results we shall present below are obtained
by using a mixture of specular reflections and elastic
diffusions (each occurring with probability 0.5 at every
"hit"). We shall discuss below the expected limitations of
this approach. Particles will also be injected from the
contacts, and tallied as negative current in response to
charge-neutrality considerations as explained above.

At a time interval At„a check is made to determine
how many particles undergo collisions of any type. This
is done in a very conventional way, by comparing, for
every electron of wave vector k(t), the ratio
ht„/r„, [k(t)] with a random number g in [0,1],
1/r„,(k ) being the total scattering rate. For every
scattering electron, the type of scattering is selected ac-
cording to the relative weight of the various processes in-
cluded in the model and a new state (k', v'} is selected, as
explained in Sec. II D. To account properly for the total
scattering probability, the scattering time step b, t„must
be chosen in such a way that b, t„&&v„, ,„, where
1/~t t,„is the maximum scattering rate occurring in the
simulation. This can be estimated at the beginning of the
simulation from the bias condition, lattice temperature,
device dimensions, and other input parameters. Obvious-
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ly, the free-flight time htb, ~
must be less or equal than

At„.
The Poisson equation is periodically solved, to update

the electric field corresponding to the new positions of
the particles. The frequency at which this update is per-
formed is a critical issue. An electron gas of density n,

~

can develop plasma oscillations of angular frequency co,
which, in the effective-mass approximation, is given by

1/2
e n, &

Emeff
(21)

where m, ff is the electron effective mass, corresponding
to small-q collective excitations arising from the long-
range Coulomb interaction. In highly doped regions, the
frequency of the plasma oscillations may approach the
typical frequency at which free flights and scattering
checks are performed. To quantify the ideas, in our
simulation we used htb, ~-0.2 fsec, while in the contact
regions (where the electron concentration can be as high
as 2.0)(10 cm in the accumulation layers under the
gate contact), we have ru '=2.4 fsec. According to the
Nyquist theorem, the field configuration must be updated
at least every 0.5' '=1.0 fsec, or else an "undersam-
pling" of the plasma modes occurs. Such an undersam-
pling results in catastrophic instabilities, as follows: the
thermal random motion of particles results in density
fluctuations. Whenever a lower density region appears,
the large fields due to the "exposed" dopants strongly
drive the nearby carriers towards the low-density region.
Unless a quick correction to the potential is made, this
would result in even larger "density voids" in nearby re-
gions. Huge, oscillating fields would result, yielding "ex-
plosions" of particles in real and k space. This problem
becomes severe when realistically high concentrations are
employed in the simulation, so that the associated plasma
frequency becomes comparable to the frequency at which
the particle positions are updated. To overcome this
"plasma catastrophe, " two choices are available. The
first one consists of smoothing the potential in some way,
either by performing a suitable average over a time inter-
val longer than ro

' (Ref. 54), or by using a smoothed
charge density to solve the Poisson equation. In the
first case one loses the possibility of simulating fast time
transients and in either case one misses some components
of the long-range Coulomb interaction, such as the plas-
ma losses of hot carriers. If any smoothing algorithm is
chosen, this energy-loss mechanism must be included ex-
plicitly as an additional scattering mechanism. ' There-
fore, we have chosen to update the electric field at a very
high frequency by using a time, At p„„,„,between succes-
sive Poisson updates such that b, t p,;„,„&(5'~ )

(=0.2 —0.4 fsec in our simulation, i.e., every one or two
ballistic steps). The higher CPU time spent in solving Eq.
(19) very often is the price paid for the additional physics
added to the model.

It is not sufficient to resolve the plasma oscillations in
the time domain, since other conditions concerning the
real-space resolution of the simulation must be satisfied.
In the first place, as we stressed above in the context of
the short-range Coulomb scattering, a large number of

particles, np t must be included in the simulation to treat
properly the plasma oscillations. We can state more pre-
cisely this condition in terms of the s factor: in addition
to the condition s &13, ;„stated for the short-range in-

teraction, we must have a number of particles large
enough so that s ~ Ax ', where hx is the mesh spacing,
so that density fluctuations in each two-dimensional mesh
element represent a correct sampling of the real three-
dimensional fluctuations. Secondly, we must face a
rather complicated situation concerning the single-
particle, collective-mode nature of the Coulomb excita-
tions in degenerate regions. With reference to the well-
known Fig. 13 (Ref. 57), plasmons of wave vector q &q,
where Rroz ——A'co+(q) [fico+(q)=E(q+kF) EF, a—nd k~ is
the Fermi wave vector along the direction of q] merge
into the single-particle continuum and quickly decay into
single-particle excitations via Landau damping. In the
simulation, plasmon damping is controlled by the mesh
spacing, since oscillations of q & Ax ' cannot be spatially
resolved. By choosing Ax =q ' we would correctly
damp the short-wavelength plasmons, but we would miss
the single-particle excitations produced by their decay for
4x '

& q &P, . It is not easy to correct the situation in
general, because more constraints effectively limit the
choice of the mesh spacing: it cannot be too large in re-
gions where large gradients of carrier concentration are
anticipated, if an accurate solution of Poisson equation is
to be obtained, nor can it be too small because of CPU-

1.0

0.8

0.2

0.0
0

q()o'm ')
»ngle-particle and plasma dispersion relation at

zero lattice temperature for the degenerate situation occurring
in the accumulation regions of source and drain under the gate
contact (n, ~

——2.0)(10 cm ', T,&

——1335 K). Parabolic bands
are assumed for simplicity in this plot. Long-lived plasmons
should be excited at wave vector q's to the left of the curve la-
beled %co+, single particles in the region between the curves fico

and fico+. In the simulation, single particles are excited only for
q ~P, to account for screening, collective modes for q & hx
Ax being the mesh spacing. In spatial regions in which
b,x '

& q, long-lived plasmons are incorrectly ignored for
Ax ' &q &q. If, instead, q &Ax ', for q &q &Ax ' plasmons
are incorrectly left undamped. In our case, in the degenerate re-
gions hx ' =q and the only error made in the simulation is the
absence of single-particle excitations via Landau damping for
q &q &P, . At a finite lattice temperature the cutoff at q=q is
smeared by the broadening of the curve %co+.
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time and data-storage requirements. Therefore, in a typi-
cal simulation we might have regions in which Ax '

&q,
so that we will ignore long-lived plasrnons for
Ax '&q &q, and Landau damping for q &q. On the
contrary, we might have bx '

& q in other regions and
we shall allow the excitation of incorrectly undamped

plasma oscillations for q &q & Ax '. These errors may
be significant in the junction regions, but not in the high-
ly doped regions (where hx '=q and the only error will

be the absence of Landau-damped excitations for
q &q &P, ) or in the channel, where the energy of the
plasrnons is very small. The distinction between long-
range and short-range Coulomb interaction and the way
it is treated in our model is summarized in Fig. 13.

Finally, average quantities are computed and dumped
onto a mass-storage device. Particle positions, their tra-
jectories, types of collisions, average energies, velocities,
densities, currents, and other possible quantities of in-
terest can be viewed with an interactive graphics pro-
gram developed for this application. Only the size of the
output files thus generated poses a constraint on the fre-
quency at which this information is stored.

V. THE PROGRAM

In typical applications, an ensemble of 5000-10000
particles is employed, with a statistical-enhancing factor
M =10. The Poisson mesh consists typically of 100' 50
nodes. The time steps used were (as mentioned above)

Atb, ~
——2)( 10 ' sec,

2)&10 ' sec, T=300 K
10 ' sec, T=77 K,

Atp „——4)& 10 ' sec

For the small devices we have simulated, steady state was
obtained after 0.4 psec (60 nm channel length) to 2 psec
(0.25 pm channel length). The simulations have been
continued for about 3—5 psec after the end of the tran-
sient in order to gather accurate steady-state solution
statistics.

The program, written in VS/FORTRAN, runs on an IBM
model 3090/600E computer with vector-processor facili-
ties. In many cases, standard algorithms have been
modified for vectorization purposes. Typically, the pro-
gram spends 50—70%%uo of its total CPU time in the vector
hardware. The size of the memory region required by the
look-up tables for the band structure and scattering rates
over the entire BZ makes it necessary to employ the ex-
tended architecture. Region sizes of 400 Mbytes are nor-
rnally required. (Here 1 Mbyte —= 10 bytes and 1 byte =2
binary digits. )

CPU times are typically quite large. These times are
attributable to the large number of interpolations over
the BZ, the high frequency of Poisson solutions to resolve
the plasma osci11ations, and, more important, to the ex-
tremely costly evaluations of Eq. (8) and particularly Eq.
(13). The program requires 1 —6 CPU-sec to simulate one
particle for one psec when the short-range electron-
electron scattering is turned off. This time increases to 10

or even 40 CPU-sec (depending on many parameters,
such as the various time steps, the electron density, the
size and dopant concentration of the contact regions, the
statistical-enhancement ratio M, etc.) when this interac-
tion is included. Thus, a typical bias point requires CPU
times on the order of tens of hours. For comparison, a
simulation using parabolic bands and updating the field
at a frequency ten times smaller requires CPU times
20—100 times shorter.

VI. SUBMICROMETKR Si MOSFET

In this section we present the results of simulations we
have performed on exploratory short n-type-channel Si
MOSFET's. ' We shall not discuss issues strictly relat-
ed to the device aspects of the simulation, but we will
focus on the physical information extracted from the
simulation and its comparison with the experimental
data. New results which emerge from the simulations are
as follows. (1) The quasiballistic nature of electron tran-
port in devices having 60-nm effective channel length at
77 K. (2) The strong role played by the electron-electron
interaction in these conditions. (3) The strong velocity
overshoot predicted theoretically and observed experi-
mentally. (4) The dramatic role that band-structure
effects play at high biases and low temperatures.

The devices we studied have an effective channel length
ranging from a little over 0.25 pm down to 60+5 nm.
Details about the process employed to manufacture the
devices can be found in Ref. 58. It suffices to mention
that direct-write electron-beam lithography was used.
Degenerate source and drain double implants (arsenic
and/or antimony) have a peak concentration of 1.5 && 10
cm . A deep channel implant was used to prevent
punch-through and to minimize the degradation of the
channel mobility by maintaining a low impurity concen-
tration in the channel. Finally, the thickness of the gate
oxide was 4.5 nm and a (100)-oriented Si substrate was
employed. Gaussian profiles matching the implant condi-
tions were employed in the simulation. The devices with
channel length smaller than 0.1 pm are designed for
operation at 77 K with a reduced supply voltage (0.8 V)
and 0.6 V applied to the substrate contact. This substrate
bias was employed for the simulation at liquid-nitrogen
temperature, while the contact was grounded in the 300-
K experiments and simulations.

Before discussing these issues in some detail, we wish
to spend a few words on the limitations of our model and
how they might affect the results. Our concerns focus on
the absence of 2D quantization in the channel, the poor
treatment of interface scattering, the crude approxima-
tion used to handle impact ionization, and general open
issues about high-field transport.

Quantization in the channel and interface scattering
should affect strongly the field-effect mobility at low drain
fields (i.e., at low drain-to-source bias, Vns). It is well

known that the saturated velocity in long channels is
much smaller than in the bulk of the semiconductor.
Unless proper account is taken of the 2D features of elec-
tron transport, of the correct scattering with interfacial
impurities in the gate insulator, ' and of the roughness of
the Si-SiO2 interface, no agreement can be expected
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from the model. Even authors who have accounted for
these features have met some difficulties, with theoretical
analysis predicting mobilities higher than those observed
experimentally. For these reasons, we have concentrat-
ed our attention on the high-VD& characteristics, corre-
sponding to average source-to-drain fields in excess of 10
V/cm, so that the carriers are sufficiently hot over a large
fraction of the channel to be correctly described by their
bulk transport dynamics and kinematics. Hot carriers
will be significantly displaced from the Si-Si02 interface,
so that interface scattering has, hopefully, a minor effect.
Of course, at the source end of the channel 2D effects al-
ways dominate. In very short channels, electrons do not
spend enough time in the channel to thermalize by the
drain end, even when the short-range electron-electron
interaction is included. Thus, some "memory-effect"
might carry information of the 2D configuration from the
source to the drain end. At present, we lack any informa-
tion on the importance of this effect in the shortest de-
vices we have considered.

On the other side, if realistic VDz are to be used, the
maximum energies gained by the carriers are still below
2.5 eV for channel lengths smaller than 0.25 pm. We feel
fairly confident that the band-structure effects and our
"fitting" approach employed to determine the scattering
rates reproduce very well the main features of electron
transport at these energies. However, we must still keep
in mind the uncertainties surrounding the theoretical for-
mulations of transport in this regime. From all these
considerations, our results must be viewed cautiously-
our approach improves significantly the "state of the
art, " but more work and additional experimental
verification are needed to bolster our confidence.

A. Qnasiballistic transport

In the simulation, the metallurgical channel of the
smallest devices we consider was assumed to be 43 nm
long, which yielded an effective channel length of about
60 nm. The efFective channel length was estimated by
plotting the electron quasi-Fermi-level (t)„ from source to
drain at the Si-Si02 interface, and estimating the break-
points in P„at the ends of the channel. This corresponds
roughly to the positions at which the electron density
stops following the doping profiles in the source and
drain implanted regions as one moves from these regions
into the channel. We start by presenting results of the
simulation performed at VD&

——0.6 V, gate voltage

VGz
——0.7 V, i.e., about 0.50 V above the 77-K threshold

voltage of the devices. Results of runs performed without
the short-range electron-electron interaction are dis-
cussed first.

In Fig. 14(a) we show the average energy of the elec-
trons along the channel, 1 nm away from the Si-Si02 in-
terface at 77 K and room temperature. Figure 14(b)
shows the velocity profile along the channel. The low-
temperature results indicate that the electrons can reach,
on average, as much as 0.35 eV, which is a very
significant fraction of the total voltage applied between
the source and drain contact. This suggests that very few
collisions occur along the high-field region of the chan-

nel, as indicated clearly by energy distributions at the
metallurgical junction at the drain end, i.e., just inside the
drain contact. The electron energy distribution [shown
at two temperatures in Fig. 14(c)] indicate that the
highest energies are reached just inside the drain contact.
Very pronounced off-equilibrium features are seen: a
peak at about 0.5 eV at low temperature [the lower aver-

age energy seen in Fig. 14(a) results from the large num-

ber of thermal carriers in the drain] and the absence of
cooler carriers. Most of the collisions are in the form of
LO-phonon emission (intervalley, both g and f scattering)
and interface scattering, but occur mostly in the first half
of the channel. Once the electrons enter the pinched-off
region, their high velocity [shown in Fig. 14(b)] and the
overshoot regime result in mean free paths exceeding 20
nm. Thus, the average electron undergoes at most two
phonon collisions in the high-field region. The room-
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FICs. 14. (a) Average electron energy and (b) x-directed drift
velocity at the distance of 1 nm from the Si-SiO, interface along
the channel of a Si MOSFET having an effective channel length
of 60 nm. The applied biases are VDz

——0.6 V, VG~
——0.7 V, and

V,„b ——0.6 V. The smoothed electron energy distributions at the
drain end of the channel [x=0.085 pm in (a} and (b)] are shown
in (c) for two ambient temperatures.
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temperature behavior is less dramatic, since the shorter
relaxation lengths prevent the carriers from Aowing
quasiballistically along the channel.

B. The role of the short-range e-e collisions

The inclusion of the short-range electron-electron in-
teraction has a very strong effect on the details of the
electron-energy distributions, as shown in Fig. 15.
Despite the remarkable tendency of the energy distribu-
tion to be smeared out" by the interparticle collisions,
the effect is not a complete thermalization. Typically, the
mean free path for the e-e collisions is of the order of 5
nm along the channel at 77 K. However, due to the al-
most coherent motion of the carriers, momentum relaxa-
tion does not occur in any significant amount outside the
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drain contact. On the contrary, some energy redistribu-
tion does occur, as shown by the high-energy tail ob-
served in Fig. 15(c) which is affected significantly.

As the channel length increases, the electron-electron
scattering becomes more effective in thermalizing parti-
cles and relaxing momentum. The partial randomization
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FIG. 15. (a) Average electron energy and (b) x-directed drift
velocity profiles along the channel 1 nm away from the Si-Si02
interface for the same device and bias conditions described in

Fig. 14 with and without the short-range electron-electron in-
teraction. As expected, the difference is negligible. The elec-
tron energy distributions at the drain end of the channel are
shown in (c). The "thermalization" effects of the Coulomb
scattering are evident but not very pronounced due to the short
time the electrons spend in the channel (-375 fsec).
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FIG. 16. (a) Electron average energy and (b) x-directed drift
velocity profiles along the channel 1 nm away from the Si-Si02
interface for a device having an effective channel length of 0.25

pm at 77 K at the bias conditions indicated in the figure with

and without the inclusion of short-range electron-electron
scattering. Electron-energy distributions at the drain end of the
channel [x=0.275 pm in (a) and (b)] are shown in (c). Features
related to DOS effects at about 1 eV (onset of the L valleys) and
1.7 eV [see Fig. 1(b)] can be observed. Notice also the effects of
the short-range electron-electron scattering in this longer device
compared to the situation illustrated in Fig. 15—in the high-

field present in the pinched-off region lower velocities result

from the larger momentum-relaxation rate due to the short-

range electron-electron scattering. These collisions have the
effect of increasing the path length of the electrons and inducing
enhanced energy-loss collisions. The result is a lower average

energy (b) and an electron-energy distribution just inside the
drain (c) shifted to lower energies and slightly broadened. The
average electron transit time is about 2 psec in this case.
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of the electron trajectories results in lower mean free
paths for phonon emissions along the channel. This
yields lower average energies, lower velocities approach-
ing the drain region, and energy distributions shifted to
lower energies. This is illustrated in Figs. 16(a), 16(b),
and 16(c), respectively, for a device having a 0.25-IMm-

long channel.

C. Velocity overshoot

The average drift velocities along the channel shown in
Figs. 14(b} and 15(b) indicate that a significant overshoot
occurs near the drain end of the device, even at room
temperature. ' ' A direct comparison with the experi-
mental data can be made by looking at the small-signal
transconductance g as a function of channel length in
the saturated region. This is illustrated in Fig. 17. For
the shorter devices at 77 K, the "effective" velocity,
u,s ——g /C, „(C,„being the oxide capacitance) extracted
from the extrinsic transconductance (i.e., not corrected
for the contact resistance, amounting to a 5 —10%%uo

correction in any ease) is about 1.2&(10 cm/sec. This
effective velocity actually represents a lower bound to the
actual average electron velocity along the channel.
Its value, very close to the saturated bulk drift velocity at
77 K in the (100} crystallographic direction, indicates
clearly the presence of velocity overshoot in the experi-
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FIG. 17. Experimental and simulated small-signal transcon-
ductance as a function of the channel length. The metallurgical
channel length —about 17 nm shorter than the "effective" chan-
nel length defined in the text —has been used for a direct com-
parison with the experimental data of Ref. 64. This difference is
significant for the shortest devices. The experimental data were
obtained at a gate bias of 0.6 V above threshold and V» ——0.8
V. The estimated error in the determination of the metallurgi-
cal channel is indicated by the horizontal error bars. The simu-
lated values are obtained by taking the difference between the
drain currents at VG+ ——1.0 and 0.7 V for the 0.06-pm device
(0.043 pm metallurgical length) with VDz ——0.6 V, at VGz

——1.0
and 0.8 V for the 0.07-pm device (0.053 pm metallurgical
length) with VDz

——0.6 V, and at VG& ——1.0 and 0.8 V for the
0.12- and 0.25-pm devices with Vzz ——1.0 V. Both the experi-
mental and the simulated values are plotted "as measured, "
without correcting for the series resistance in the source and
drain contacts. This amounts to a 5—10% increase of the
transconductance in both cases at the smallest channel lengths.

mental data, even ignoring series-resistance corrections.
The value of g obtained from the simulation agrees
within an error better than a few percent with the extrin-
sic experimental value. This does not prove that the ac-
tual velocity distribution is, in reality, as shown in Fig.
14(b). Nevertheless, it proves that the model can predict
the macroscopic behavior of these small devices. A
simpler DD model with realistic values for the electron
mobility and saturated velocity is obviously unable to
yield velocities larger than 1.2X10 cm/sec and would
underestimate the transconductance of the device by
about 30%.

The room-temperature simulations also predict
overshoot along a significant fraction of the channel. But
in this case both the simulated and the experimental tran-
sconductance (once more in very good agreement) imply
a value of U,z which is smaller than the bulk saturated
value. This can be understood by looking at Fig. 14(b):
the amount of overshoot at 300 K is much smaller than
at 77 K and it extends over a smaller fraction of the
channel. The average drift velocity in the channel is thus
below the saturated va1ue also in the MC model. For this
reason, DD models can be "stretched" to fit the experi-
mental transconductance, provided low-field electron mo-
bility is adjusted to fit the value of g on longer devices,
and the bulk saturation velocity is used. However, the
"microscopic" pictures provided by MC and DD models
are totally different: for a DD model to provide the
correct g, the electron velocity must be at the saturated
value over a very large fraction of the channel. Thus, the
charge density and potential configuration of the device
wi11 differ greatly from the MC picture, despite the agree-
ment of the two models as far as the macroscopic (or
"terminal" ) characteristics are concerned.

Finally, the simple model we adopt for interface
scattering has the net effect of yielding the maximum
drift velocities at a distance of about 4—10 nm from the
Si-Si02 interface, as illustrated by the velocity contour
lines of Fig. 18(b).

The message we wish to convey is that situations might
occur where even very simplistic models, such as drift
diffusion, might provide a satisfactory description of the
macroscopic characteristics of the device. This is partic-
ularly true in well-designed devices. In most cases,
though, parameter adjustments will be necessary, such as
the low-field mobility used in DD models, to obtain the
results mentioned above. Much more important, howev-
er, is that the internal physical characterization of the de-
vice may bear little or no resemblance to "reality" in
spite of the satisfactory macroscopic picture. This infor-
mation is of vital importance for a basic understanding,
for device design, and for modeling degradation processes
associated with hot carriers.

D. Band-structure e8ects

One example of what we just said is clearly illustrated
in Fig. 19. A device having a 0.25-pm channel length has
been simulated using our model including the full band
structure of Si. The results have been compared with
those obtained by simulating the same device with a more
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conventional model employing a parabolic approximation
to the conduction band. We have looked for a "worst-
case," but relevant, situation: a relatively high bias
(VDz ——2. 5 V, VGz ——2.5 V) at low temperature (77 K) in a
device short enough to exhibit strong nonequilibrium
effects. The rather large mean free path allows the elec-
trons to become hot enough, so that a significant region
of the BZ is populated and a good idea of the kinematic
and dynamic effects of the band structure can be ob-
tained. The electron-electron interaction has been
suppressed in these runs, as well as first-order nonpara-
bolicity corrections to the band, in order to reproduce the
modeling configuration employed in recent simulations. '

While the terminal currents obtained from the two mod-
els are virtually identical, the band-structure effects on
the internal behavior of the device are indeed dramatic.
The parabolic model appears to overestimate consistently
the average energies by a large factor, as high as 2, along
the channel [Fig. 19(a)]. A similar situation was already
hinted at by the high-field, homogeneous results of Fig. 5.
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Similar results apply to the electron drift velocity, shown
in Fig. 19(b): the parabolic model deviates from the full-
band-structure model already in the low-field portion of
the channel, and it exhibits velocities in excess of 6&(10
cm/sec at the high field (=3)&10 V/cm) present in the
pinched-off region. Figure 19(c) illustrates the electron
energy distribution at the drain end of the channel, stress-
ing, if still necessary, the enormous difference between
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constant for the intervplley g scattering with LO phonons
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FIG. 18~ Contour plot of (a) the electron energy and (b) x-
directed drift velocity for the 0.25-pm-long device of Fig. 20 at
300 K. Note the different scales for the x and y axes we have
employed for clarity. The highest velocities are reached about
5—10 nm away from the Si-Si02 interface. The Gaussian doping
profiles in source and drain have steep gradients, decreasing
from 10 cm to about 10' cm in 20 nm at about x =0 nm
(source) and x =250 nm (drain). The metallurgical junctions are
about 140 nm deep.

FIG. 19. (a) Electron average energy and (b) x-directed drift
velocity at 77 K along the channel 1 nm away from the Si-Si02
interface for the device and bias conditions of Fig. 16 obtained
from a model including the full band structure and from a mod-
el employing a parabolic-band approximation. In (a) the higher
velocities obtained from the parabolic-band model imply longer
inelastic electron mean free paths and a reduced energy relaxa-
tion rate. In (b) much lower velocities are seen in the numeric
case, because of band-structure effects. In (c) we show the elec-
tron energy distribution at the drain end of the channel
[x=0.275 pm in (a) and lb)].
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and yield even larger discrepancies at low temperature.
To understand the origin of the large di6'erence, we

have plotted in Fig. 20 three "snapshots" of the electron
population in the BZ at the source end of the channel (10
nm outside the source junction), at mid-channel, and at
the drain end (10 nm outside the drain junction) in the
full band-structure. We see how the electrons tend to fill

almost uniformly the entire BZ close to the drain. A
significant fraction of the carriers appears to be very close
to the L symmetry point, one electron having even been
scattered to the I valley. For electrons to reach energies
in excess of 1 eV in the "correct" band structure, regions
of the zone having low group velocities (or even holelike
dispersion) must be populated. This has the effect of
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slowing down the carriers even in the absence of scatter-
ing. As an example, a look at Fig. 1 shows that electrons
accelerated from the band minimum towards the I point
have to climb through a "crest" of zero group velocity.
Therefore, the electron mean free path is reduced and
more phonon emissions occur. On the other side, a
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FIG. 20. Distributions of electrons in the BZ at various spa-
tial locations along the channel of the 0.25-pm device of Fig. 19:
at (a) x =0.035 pm, (b) x =0.15 pm, and (c) x =0.265 pm of
Fig. 19(a). As they are accelerated by the drain field (along the
—k direction in this figure), the electrons shift in the k„direc-
tion and expand around the six valleys along the symmetry line

thus filling the entire BZ. Electrons within a distance
0.2(2m/a) from the L symmetry point are indicated by solid
squares in (c), one electron in this sample (solid triangle at the
zone center) being close to the I symmetry point. To help the
visualization, not all electrons in the ensemble are plotted.

FIG. 21. (a) Electron average energy and (b) x-directed drift
velocity profiles at 300 K along the channel 1 nm away from the
Si-Si02 interface for the device and bias conditions of Fig. 19
obtained from a model including the full band structure and
from models employing analytical approximations of the con-
duction band with and without first-order nonparabolic correc-
tions. As expected, the higher temperature and the inclusion of
nonparabolic corrections help to reduce the difference between
the models. The sharper drop of the average energy in the drain
in (a) and the smaller low-energy tails seen in (c) exhibited by
the numeric model are due to its lower diffusion constant which
prevent the cool electrons from "spreading" outside the drain
region. The inclusion of nonparabolicity does not provide a
good agreement with the numeric model for the average ener-
gies and energy distributions. The agreement between the full-
band-structure model and the nonparabolic approximation in

(b) is remarkably good because the nonparabolic scattering pa-
rameters of Ref. 5 are fitted to the experimental data on drift-
velocity vs field curves.
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parabolic-band approximation yields unlimited group ve-

locities, thus missing altogether the important kinemati-
cal effects we just discussed. Indirect dynamic effects fur-
ther worsen the picture, since the higher velocities imply
longer mean free paths and even smaller energy-loss
rates.

Admittedly, we chose a worst-case scenario. We can
now look at the opposite limit, by increasing the tempera-
ture (so that the carriers will not be too hot and will sam-

ple a smaller region of the BZ) and by introducing the
nonparabolic corrections to the approximated band
structure. The introduction of a nonparabolicity parame-
ter, though quite unjustified at these high energies, damps
the velocities very effectively and increases the scattering
rates, but it does not change the picture qualitatively as
far as average electron energies and energy distributions
are concerned. We show in Fig. 21 results of simulations
performed at higher temperatures including the nonpara-
bolic correction (a= —0.5 eV ') compared to those ob-
tained from the model based on the full band structure.
The drift velocities resulting from these two models agree
remarkably well. This has to be expected, since the non-
parabolic correction has been shown to improve
significantly the prediction of the approximated model
for the high-temperature drift velocities. The average
energy, on the contrary, still exhibits values higher than
those obtained by accounting for the full band structure.
Therefore, despite the mild improvement obtained by the
inclusion of first-order nonparabolic corrections, band-
structure sects (Figs 19 and . 21) and the short range-
electron electron int-eraction (Fig 16) appea. r to be major
factors in controlling even the gross features of the distri
bution of the hot electrons in the channel

VII. CONCLUSIONS

From the work we have presented it is clear that there
is still room for improvement in the semiclassical descrip-

tion of electron transport. The introduction of the full
band structure of the semiconductor, the calculation of
scattering rates consistent with the DOS, and the in-
clusion of short-range and long-range electron-electron
interaction are factors which play a major role in control-
ling the microscopic behavior of short devices. We have
shown that these effects can have dramatic consequences
in realistic situations in submicrometer Si devices. Band-
structure effects, in particular, can be important even at
low fields and have dramatic effects at low temperatures
and high biases.

Coulomb screening, high-energy transport, and quan-
tum size effects have been either crudely approximated or
ignored in our model. Their effect on our results remains
to be determined.
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