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It is well known that in crystalline solids the energy levels are arranged 
in “bands,” and that, strictly speaking, one must take account of the 
multiplicity of these bands in solving problems in solid state physics. It is 
equally well known that, nevertheless, one can obtain considerable infor- 
mation, frequently sufficient to interpret experiments, by considering only 
one band and treating the electrons in this band by methods similar to 
those applicable to free electrons. Considerable progress has been made in 
the last decade in understanding this fact, in developing techniques for 
exploiting it, and in the actual application to problems. This subject has 
not been reviewed recently, however, and the published accounts stop con- 
siderably short of what can actually be done. The purpose of this paper is 

305 



306 E. I. BLOUNT 

to fill this gap at least partially. The various procedures used will be 
developed, not in the historical order, but from a point of view closely akin 
to that of Adams. We shall develop the Crystal Momentum Representation 
(CMR) ab initio and relate the other methods to it. These include the 
Kohn-Luttinger or Modified Crystal Momentum Representation (MCMR) 
and the Wannier Representation (WR) as well as a new procedure 
developed by the author. 

The procedures discussed in this article have their roots in a paper by 
Wannier in 1937.' Wannier was interested in the problem of the large 
exciton, which is similar to but more difficult than the usual type of prob- 
lem to be attacked by the methods we will discuss. He introduced 
Wannier functions in order to have localized states to describe the system, 
and later derived an equation for the relative motion of the hole and 
electron which is very similar to the equations we shall discuss here. 

Slate? directed attention to this formalism in 1949 and rederived the 
Hamiltonian and equations of motion for an electron in a perturbed 
periodic lattice. 

Adamsa further generalized the Wannier representation approach to  
include some corrections, and later4 showed that the whole procedure can 
be carried out exactly and more easily in the CMR. He also initiated the 
development of a compact operator formalism which greatly facilitates 
calculations. The present paper follows Adams in regarding the CMR as 
the logical basis for discussing these problems. 

1. Crystal Momentum Representation 

1. INTRODUCTION 

The basic concept of the crystal-momentum formalism is t o  use a 
representation whose basis consists of the energy eigenstates of the electrons 
in the crystal. When such a representation is used, it matters little what 
the precise nature of the original Hamiltonian may have been. Thus our 
results will be valid for any of the following three Hamiltonians: 

(a) Schrodinger 

G. H. Wannier, Phys. Rev. 52, 191 (1937). 
* J. C. Slater, Phys. Rev. 76, 1592 (1949). 
a E. N. Adams, Phys. Rev. 85, 41 (1952). 
E. N. Adams, J .  Chem. Phys. 21, 2013 (1953). 
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where m is the mass of the electron and U is the periodic crystalline potential 
energy. 

(b) Pauli (we shall use this term to indicate the Schrodinger 
Hamiltonian with spin-orbit coupling included) 

where d refers to the Pauli matrices. 
(c) Dirac 

H = c a - p  + U 

where a is a four-component spinor. For each of these Hamiltonians we 
can define a velocity operator 23 such that 

i 

n 23 = --[x, H ]  = 0s. 

For our three Hamiltonians, 8 takes the forms 

e2 
d x vu P a=- .+-  

m 4m2c2 

(c) 8 = C Q .  

For the first two, we have the commutator 

i 1 

n m 
--[x, B] = - 

while for the Dirac equation 

i 

n -- [x, a] = 0. 

(1.3) 

( 1 . 3 4  

It is well known that when U is a periodic potential, the eigenfunctions 
of these Hamiltonians can be classified by the quantum numbers (k, n), 
where k is a vector lying in the so-called first Brillouin zone (BZ) (or in 
any unit cell in reciprocal space), and n is a discrete index labeling the 
so-called bands [see below, Eq. (1.6)]. The eigenfunctions can be written 
in the form 

$'nk (x) = exp ( ~ 1 . x )  Unk (x) 

where Unk is a periodic function with the same periodicity as U ,  That the 
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eigenfunctions have this form is seen most easily by constructing the matrix 
element of H for two such functions belonging to different values of k. 
This is easily shown to vanish. 

It now follows that instead of the equation for $' 

H$'nk (X) = E n  (k) $'nk (X) 

H (k) Unk (X) = En (k) Unk (X) 

H(k) E exp( - z k x ) H  exp(zk.x). 

(1.4) 

(1.5) 

(1.6) 

we can write an equation for u in the form 

where 

The periodic solutions of Eq. (1.5) form a complete set of periodic 
functions. Thus the functions $'& and the functions $'n,k+K, where K is a 
reciprocal lattice vector, span the same space, and only one of the sets 
should be included in our catalog of eigenfunctions. This is the reason for 
restricting k to a unit cell in k space. For the first two Hamiltonians (a) 
and (b) , H (k) has the simple form 

fiw . 
2m 

H(k) = H + fik*B + - (1.7) 

while for the Dirac equation, the last term is omitted. 
From Eq. (1.6) we also obtain 

where 

fik 
= B + -  

m 

where again the last term is omitted for the Dirac Hamiltonian. From 
Eq. (1.8) it is apparent that if the ?&k are known for some k, they can be 
found for nearby (k + q) by perturbation theory. The question of the 
convergence of this expansion is discussed in Appendix C. 

2. REPRESENTATION OF WAVE FUNCTIONS AND OPERATORS 

We have now stated some of the important properties of our Hamil- 
tonians and can proceed to consider the representation of wave functions 
and some important operators in the CMR. 
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Any wave function can be written as a superposition of Bloch functions 

fn(k) is then the wave function in the CMR. One important point should 
be emphasized; we frequently must solve differential equations for fn (k) . 
Strictly speaking, k is limited to one Brillouin zone-any points outside it 
provide no new information. On the other hand, we have the option of 
continuingf(k) in k space as we see fit. As one might suppose, the simplest 
procedure is to impose periodic boundary conditions in k space, requiring 
fn(k: + K) = fn(k) ; also for operators, Onnt(k + K,, k’ + Kz) = 

On,,# (k, k’) where K is a reciprocal lattice vector. We shall always assume 
that such conditions have been imposed. 

The simplest operator is the crystal momentum itself pc = fik, the 
operator whose matrix elements are 

pc,,,*(k, k’) = fik 6(k - k’) (2.1) 

The true momentum has the form 

where dr is integrated over a unit cell. 
The momentum, however, is less important, in general, than the 

velocity, which is also diagonal in k, with matrix elements B,,. (k) . We 
shall sometimes find it convenient to split B into two operators: v with 
only intrabaad matrix elements v,, = Bnn, and V, with only interband 
elements Vnnf = Bnnr(n # n’ ) .  

The representation of x is somewhat more subtle. Thus if we simply 
try to evaluate the following integral 

I n f k f n k  = #*,#k&nk d3x 1 
we see that it has no well-defined value. For instance, we might try to 
break the integral up into a sum of integrals over unit cells 

I n f k * , n k  = exp [i(k - k’)-R] 1 exp [i(k - k’). (X - R ) ] U ~ t k J U n k d r  

C exp [i(k - k’) .R]R + C exp [i(k - k’) *R]&#n(k) 

R 

= 
R 
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where the integral is over the unit cell with R = 0. We see that not only 
is the first sum not very well defmed mathematically speaking (a problem 
familiar from free electrons), but the second term depends on the particular 
choice of unit cell.6 

A different approach to this problem is to write Ink,n’k’ in the following 
form4 : 

i a%, 
ak. 

-I- 1 i:tk, exp [i(k - k’) a x ]  - d8x 

a 
alcr 

= -i- Annn(k’, k) + 6(k - k’)X;, ,(k) 

where 

(2.3a) 

We have not written A n # n ( k ’ )  k) = 6(k - k’)6,,1 because it is phase- 
sensitive in the sense to be discussed shortly. This does not matter unless 
it is to be differentiated, but that is precisely what we are doing, and some 
care is, therefore, advisable. The procedure in Eq. (2.3) is somewhat more 
acceptable because %tn is not sensitive to the choice of unit cell, but it is 
open to the nontrivial objection that #nk is not differentiable with respect 
to k. For no matter how small 6k may be, #n,k+ak - #nk is not small and 
#n .k+)k does not approach #nk. Therefore, we investigate this subject more 
carefully in Appendix A. The conclusion is that Eq. (2.3) gives the right 
answer in practically all cases; the limitations are discussed in the appendix. 
From Eq. (A12) in the appendix we find that the action of x on a wave 
function fn(k) is given by 

(2.4) 

6 K. Fuchs, Proc. Roy. Soc. A176,214 (1940) has used this representation of z in a treat- 
ment of energy levels in a perfect crystal. 
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There is, however, an indeterminacy in the I’s also. This arises from 
the fact that the u’s are not completely specified but can be multiplied by 
an arbitrary phase factor exp [-icp(k)]. If this change is made, i aulak 
becomes exp ( -icp) (i &/ilk + u acp/ak) and the E’s become 

E’nn. = exp ( ivn)Enn#  exp ( - icpnt)  12 # 12’ 

(2.5) 

Thus, while En,# transforms like an operator, under such a transformation 
t, does not. A compensatory change occurs in i af/ak so that the sum 
xc = (ia/ak + t,) does transform like an operator. Thus our final 
form for x in the CMR is 

x = x c + x  (2.6) 
where X, like V, is an operator with only interband matrix elements, in 
this case equal to the En,.. If we consider the matrix elements (2.3), this 
phase-invariance follows from the fact that A,,,,l(k, k’) is altered by the 
phase transformation so that the sum (2.3) is merely multiplied by 
exp [i(p,t - cp,)], the intraband terms, therefore, being unaffected. 

While En, is indeterminate, its curl is a well-defined quantity in- 
variant under the phase transformations and is thus a characteristic of 
the band structure, which we shall designate as a,. 

The reader may have noticed that there is a close similarity here to 
the representation of momentum in the Schrodinger representation, where 
there is also an arbitrary phase factor related to gage invariance. The 
operator -i a/az is not gage-invariant, but ( -i a/ax + (e/c)A) is. En, 
thus plays a role analogous to that of A .  In the present case also, only 
9, = curl X,, has any invariant meaning as only B = curl A has physical 
meaning. 

When spin degeneracy is taken into account, with or without spin- 
orbit coupling, the energy bands are doubly degenerate throughout k 
space if a center of inversion exists in a crystal. This means that the eigen- 
functions have not. only an arbitrary phase, but also that arbitrary linear 
combinations of the pairs can be taken. The most general arbitrary trans- 
formation can be conveniently written in the form exp (icp) exp ( iuiai) ,  
where the ui are the Pauli matrices (61 = uz, u2 = uy, u3 = a,), which in 
the present case do not refer to the spin of an electron but are purely 
algebraic symbols. If only a3 is nonzero, this transformation simply consists 
of phase transformations for the two degenerate states. When a1 and a 2  

are also nonzero, the transformation can be thought of as analogous to a 
rotation of the spin axis. 
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When this situation exists, it  is convenient to  consider a band as con- 
sisting of the two degenerate states. Wave functions in the CMR will 
then still be written in the form fn (k) , but for each band fn will be a two- 

just as in the Pauli representation for spin-orbit problems. Intraband 
matrix elements of operators will be taken to  be 2 X 2 matrices with 
elements Xnl,nrn ( I ,  m = 1, 2) ; interband elements will be 2 X 2 blocks 
of infinite-rowed matrices. With this economical notation, it will be possible 
to discuss this type of problem in exactly the same way as problems for 
which the bands are not degenerate. 

In particular, Xnn will now have the form 

Xn1,nl Xn1,nZ 

Xnn = 

Xn2,nl Xa3~n2.n~ 

Frequently it .will be convenient to write this as follows 

Xnn = C Xnn(')ui + Xnn(O)I 
i 

where I is the identity matrix 

(2.7) 

(2.7a) 
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This can be written as 

3E’ = S5St + s 65s 
(2.8a) 

a st as 
ak’ 

6Znn = (i--)s = - i s  - 

We now consider the derivatives of L,,, which we shall now designate as 
f for convenience, using (2.8a) 

Thus 

Vk’E = S v * E S t  + is[6& * E]st + S V ‘ 6 g S t  (2.9) 

vk X E’ = S ( V k  X E + v k  X 6g + i 6~ X E + ig X 6~ + 2i 68 x 6 g ) S t .  

(2.10) 

Hence even Vk X E is not invariant under our more general transformation, 
applicable to bands which are everywhere degenerate. However, let us 
now consider E’ X g t  

E’ x E’ = S(E x E + 6 E  x & + E x 6 E  + 6E x 6E)St. (2.11) 

Now, observing that V X 6gnn = -i6g X Sg we see that 

V X Enn - i gnn  X E = S ( V  X Enn - ig X E)St. (2.12) 

Thus V X E - iE X E does behave like an operator under S. When the 
bands are not degenerate so that the IC are numbers, not matrices, 
E X E = 0; hence the operator behavior of V X f - if X g includes the 
simpler case and we now designate it as 52,. 

We can now consider the commutator [xc’, xcv]  where x, is in general a 
2 X 2 matrix operator 

a 
xc = i - I + E - i[xC’, xcv] 

ak 

= ( v  X g)’” - i(& x .I!)’” 3 flnA(k)cAPv. (2.13) 

The quantity nn(k) plays a role analogous to that of the magnetic 
field in real space. The commutator [Eq. (2.13)] is very similar to 
[up,  v v ]  = [p” + (e/c) A’, p’ + (e/c) A”] = HWV. 
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We have obtained the forms of the most important operators in the 
CMR. We now consider their  commutator^.^^^ First we have 

which yields 

(4 
1 aEn 

Vn = Bnn = -- n ak 

(2.14) 

Next we consider 

i i i i i 

f i  n n n -- cx, 81 = -- [xc, v] - - p, V] - n p, v] - - [XC) V]. 

The left side is l /m for the Schrodinger and Pauli Hamiltonians, 0 for the 
Dirac. 

We focus on the diagonal terms and obtain 

i 1 a2E i i 

n n 2  akc ah n -- [XC”, V V I n  = - - - - -- [x”, 8‘1 + n [X”, V]. (2.15) 

For the Schrodinger and Pauli Hamiltonians we obtain 

while the Dirac Hamiltonian yields 

(2.15”) 
1 a2En ( VEn# v;+& + V;d v:%J 
n 2  dkpakl En - En’ - c  

where, however, the sum must now extend over negativeenergy states as 
well as positiveenergy states. For low-lying states n, the sum over negative- 
energy states is very nearly equal to &,/m since for all states n’ with 
significant V,,,, En - En, = 2mc2 if En - mc2 << mc2. Furthermore, the 
velocity operator matrix between positive and negative states is just caw. 

The sum is then approximately (l/m) {a”, a’} = 6,,/m. 
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From (2.14) and (2.15) , we find a rough relation between I X I2 and CUP’ 

(CUP” - P’/rn) 1 
- - (2.16) 

2 (En - En.> 

where the final factor is an appropriate averaged reciprocal energy gap. In 
the particular case where only one band contributes significantly to the 
sum, we have 

f i 2  (CUP” - W / m )  
+(X. ,  x.),, = - (one band case). (2.16’) 

2 E, - En# 

Finally we consider [x’, xv] = 0: 

0 = [x,”, xC’] + [XN, X.] + [@, X.1 + [X,”, xcv]. (2.17) 

We see in particular that the intraband terms give 

[xcfi, x,.], = - [X. ,  PI,. (2.17’) 

All of these relations can also be obtained by detailed calculation, but 
the foregoing derivations have the advantage of conciseness and closer 
contact with the physics of the situation. From a practical point of Gew, 
these formulas imply that if we can obtain theoretical or experimental 
information about the V’s, it can be turned into knowledge of the quantities 
X, afiV, and W, and vice versa. 

Some properties of P, a, v, V, X, which result from time reversal and 
inversion symmetry, are discussed in Appendix B. 

Further insight into the operators x, and X may be obtained by con- 
sidering a normalized wave packet fi(k) composed entirely of wave func- 
tions belonging to band 1. The center of this packet is at  the point 2 

Z = 1 f*x,  f dak 

Thus x, rather than i(a/ak) represents the center of the packet. The 
spread of the packet is given by 

- 
x2 - X2 = / f*G2f d3k + / f*Ff d3k - Z2. (2.18) 
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Let us now choose a definite form for f 

f = Jg exp c- (x2 I k - ko 1'>/21 exp C--icp(k)I. 

Then 

j z  = / I f 2 /  ( E  + Vcp) d3k = IC + v(p 

and 
- 
XZ - jp = +A2 + XZ + (t + VcpI2 - ( E  + vcp)2 

+ / I f  l 2  V * ( E  + Vcp) d3k. (2.19) 

cp can be chosen so that V -  ( E  + Vcp) = 0 and so that E + Vcp = 0 at 
k = ko. If we suppose large enough so that we can be content with the 
linear part of E + Vcp, we can further choose cp so that E + Vcp = $Q1 X 
(k - h) in the neighborhood of h. Then 

(2.19') 

Thus fl is a limit to the spread of a wave packet. The Xnnt may be said 
to play a role analogous to the Compton wavelength for free electrons. 
This point will be pursued in the following in a detailed discussion of the 
Dirac theory regarded from the standpoint of band theory. a, also repre- 
sents a restriction on the localization, but no more than we already have, 
since 1 I Q l2 < I X 2  1 2 .  This fact can be shown easily as follows. From Eq. 
(2.19) 

a, = v x En = i c Xnd x X,%. 
nt 

Thus 

I Q:' 1' < 4 c 1 XAf! 1 ' 1  Xi:),, 1' = 4 ( (  X(') I2)nn(l X'3' I2)nn 

nlntl 

< ( I  x2 p + I x3 12)2 

1 1 !J ( 2  < i(l Q(1)  I + 1 1 + 1 Q ( 3 )  I ) 2  < 1 xz 12. 

It is tempting to say that the Xnnt represent the position of the electron 
in the unit cell and to infer that the E's must be approximately the size 
of a lattice vector. The XE, may in fact be kept small by phase transfor- 
mations, but the XnnI may be very large in special cakes. Thus in Bi one 
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can infer, from the small effective mass and small energy gap: that the 
Xnnt at the electron valleys between the valence and conduction bands is 
of the order of 100 A. In general, one can expect Xnnt to be large between 
bands whose energy separation is small, unless V,,. is also small for some 
reason. 

We previously introduced the quantities inn. which do indeed represent 
the position of the electron in the unit cell. One might suppose that some 
relation exists between them and the 3Ennt. This relation cannot be simple, 
however. The Znn. are independent of the choice of unit cell but depend 
on the choice of phases, whereas the tnn‘ do just the reverse. We can show 
that there is no choice of unit cells and phases such that tnnl = Xnnt. Thus 
from (2.2a) 

i v k  x t = E x f + f x 3E 
while from Eq. (2.17) 

also 
iv x E = 3E x E 

+ iV- f = 3 E . f  - f a x .  

Thus f = 3f is incompatible with these equations unless both vanish. 
Using the operators discussed so far it would be possible in principle 

to construct the representative of any operator. This would, however, be 
quite cumbersome except for operators which are low-order polynomials 
in k, x, 2.3, p, etc. For most functions, it will be simpler to construct the 
matrix elements directly; no particularly simple form is possible. The 
crystal momentum representation is most useful, however, when one is 
dealing with slowly varying perturbations. Thus if we have V(x) such that 

~ ( x )  = / d3q~(q)  exp (iq-x) 

where V ( q )  # 0 only for small q, we can expand the matrix elements in 
powers of q, obtaining 
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To this order we can write the result in the form 

V(k’ - k) - F(k’ - k)*Xnn, 
where (2.20) 

av 
ax 

F = --, 

Further, if we are willing to keep diagonal-in-band terms to first order, 
and throw away interband terms of this order, we have 

Vnn*(k’, k) z 6nn*(V(k’ - k) - F(k’ - k)*Xnn) 

v z V ( X C ) .  

Thus if V is a slowly varying perturbing potential, the complete 
approximate Hamiltonian is 

(2.20‘) 

or, as an operator, to first order in F, 

He@) + V(xC). (2.21) 

This discussion could be carried considerably further, but we shall not do 
so because we will develop much more convenient techniques for handling 
a wider class of perturbation in Part 111. The main point is that we have 
been able to eliminate interband matrix elements for the restricted accuracy 
in which we are interested. We also have a clear procedure for including 
higher order terms in q. With these, however, the convenience is much 
reduced. The use of xc instead of merely i a /ak  introduces effects analogous 
to spin-orbit coupling (see also Part IV) . 

As an example of the role played by a, we will consider the velocity of 
a Bloch electron in an external field V. For this purpose we will not simply 
discard the interhand matrix elements of (2.20), but transform them away 
to first order in V by the transformation eTJ 

Tntk,,nk = F(k’ - k).Sntn/(En - En,) n # n’. 

The entire Hamiltonian to first order in V or F then becomes (2.21), 
while the intraband part of x is 

x = X,  + [T ,  X]nn. 

The in-band velocity operator is then, again to first order in F, 

(2.22) 
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This extra term in the velocity has been called an anomalous velocity by 
Adams and Blount’ and plays an important role in the Hall effect in 
ferromagnetic materials.8 

3. THE MODIFIED CMR 

So far we have discussed the CMR, in which the basic functions are 
Bloch functions. A closely related procedure, used particularly by Kohn 
and L~t t inger ,~  is the modified CMR (MCMR). In this representation 
the crystal momentum is still diagonal. Instead of using Bloch funotions, 
however, one uses what we shall call Kohn-Luttinger (K-L) functions 

h ( r )  = exp (zk4unro(r). 

Here Unk0(r) is the periodic part of the Bloch function at a particular con- 
veniently chosen point k in k space. In this case H is diagonal only at  k, 
but the representative of x is simply i a/ak. This is simpler for some pur- 
poses than having to be concerned with 2’s. In general, however, one must 
expect that the MCMR will be useful only when one is interested in a 
very small area of k space, which is indeed the case for which it was created. 
In many problems, one can achieve the same results with the same accuracy 
in the CMR by setting xe = i a/ak, that is, neglecting inn.  In some other 
cases, computation can probably be performed more simply in the MCMR. 
This is most likely to be true when one cannot ignore the interband matrix 
elements, as in the neighborhood of degeneracies, which was also true for 
the problem Kohn and Luttinger were interested in. 

II. Wannier Representation 

4. THE WANNIER HAMILTONIAN 

In the preceding section we have discussed the CMR, which is evidently 
analogous to the momentum representation of ordinary continuum me- 
chanics. In this section, we shall discuss the Wannier representation’ 
(WR), which is analogous to the coordinate representation. This repre- 
sentation is obtained by making the unitary transformation exp (2k.R). 
The basis functions are the Wannier functions a.(r - R) : 

(4.1) 

7 E. N. Adams and E. I. Blount, Phys. and Chem. Solids 10, 286 (1959). 

9 W. Kohn and J. M. Luttinger, Phys. Rev. 97, 869 (1955). 
J. M. Luttinger, Phys. Rev. 112, 739 (1958). 
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(All integrations dsk are to be taken over one BZ.) 

#nk(r) = exp (zk.R)a,(r - R). 
R 

Conversely, the wave function f (k) is transformed to 

f(R) = 1 exp (zk.R)f(k) dak. (4.2) 

The advantage of this representation is that the Wannier functions are 
localized in a sense which will be clarified in the following. This can be 
seen roughly, however, as follows: consider an(R;) the value of a, at the 
ith lattice site. Then 

a,(Ri - R) = 1 dakunk(0) exp [zk.(Ri - R)]. 

Except for Ri near R, the exponential is rapidly varying, so that the 
integral over k tends to be small. Thus a, (R; - R) becomes small at large 
distance. 

An operator Onnt (k,  k’) becomes 

O,,’(R, R’) = dak dak’ exp [i(k-R - k’.R’)O(k, k’). (4.3) 

In particular, we have the following changes: 

a 
(1) pc = / 4 k  exp [zk-(R - R’)] dak = -ifi - 6(R - R’) (4.4) 

aR 

pc”f(R) = -i- f(R). ( a3” (4.5) 

(3) In general, any function of k, 0 (k) becomes 

O(k) + O(R - R’) = 1 dak exp [zk. (R - R’)]O(k) (4.6) 

O(R - R’) is the Fourier transform of O(k). 
(3a) exp (iL.k) (L a lattice vector) becomes 

6(R - R’ - L) = exp (L.a/aR). (4.7) 
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Thus (2) and (3) show that for any function O(k) which can be expanded 
in either a power or Fourier series, we can write O( -i a/aR). 

(4) 
a 

i - becomes R 
ak 

(5) X, -+ R + z(R - R’). (4.9) 
Thus, if we consider the one-band Hamiltonian of Eq. (2.21), we find in 
the WR the alternative forms 

(4.10a) 

H(R, R’) = Ho(R - R’) + V(R) 6(R, R’) (4. lob) 

where we have neglected z. Equation (4.10a) is the form obtained by 
Slater by a straightforward WR derivation. Adams4 observed that this 
equation could be obtained more readily from the CMR. This Hamiltonian 
can be used to obtain either a difference equation for f(R) 

C Ho(R - R’)f(R’) + V(R)f(R) = Ef(R) (4.11a) 
R, 

or a differential equation 

(4.11 b) 

The first of these equations speaks for itself. Rigorously, the second has 
no meaning other than the first. It has been used by assuming that a 
slowly varying f ( R )  can be treated as a continuous function. The second 
equation can then be treated as a differential equation. This still produces 
no useful simplification without the further assumption that H (  --i a/aR)  
can be replaced by an approximate form, usually quadratic in the argument. 
The first step is usually made rather intuitively with no clear statement 
defining its validity, while the second is made without justification, as if 
obvious. This may lead to the supposition that the first step leads to the 
major approximation. We shall see that, in fact, the first step can be made 
rigorously, and that all the approximation occurs in the second. Moreover, 
we shall find a measure of the approximation involved. 

We start by dejin-ing the continuum Hamiltonian corresponding to a 
CMR H(k, k’)-including both Ho and V-as 

H(x, x’) = LZ d3k d3k‘ exp (zk.x)H(k, k’) exp (-zk’x’) (4.12) 
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where the integrations can be taken over any BZ. This quantity evaluated 
at lattice points is equal to H(R, R’). Now suppose that we have an 
eigenfunction $(x) of H(x, x’) 

1 d%’H(x, x’)$(x’) = E$(x) .  

We multiply on the left by exp (-zk-x) and integrate over all x. If k 
lies in the chosen BZ, we obtain 

1 dak’H (k, k’) cp (k’) = Ecp (k) ; k in BZ (4.13) 

where 

cp(k) = 1 exp (-zk.x)$(x) dax. (4.14) 

If k is outside the BZ, on the other hand, the left side yields zero, so 

cp(k) = 0 k outside BZ. (4.15) 

Thus, cp(k) satisfies the CMR equation and 

$(x) = IB,  dakcp(k) exp (zk-x). 

The values of $(x) at the lattice points give the WR solution $(R) which 
obeys (4.11). Thus we have established that the replacement of the 
difference equations by differential equations is rigorous. $(x) must not, 
of course, be interpreted as the actual wave function. It is simply a con- 
tinuous function whose value at a lattice point is the WR wave function. 
It should be noted that the preceding discussion shows that for V(x), we 
should use 

V(x) = 1 V(R) exp [ik. (x - R)] dak. (4.16) 

We now turn to the problem of approximating Ho(k) by some simple 
polynomial, usually a quadratic. This is most easily considered in the CMR. 
Suppose that in a range of energy near E, Ho(k) is well approximated by 
H’(k), and that we have a solution f for H ’ ( k )  : 

R 

H’(k)f(k) + V(xc)f(k) = E m .  (4.17) 

If H ’ ( k )  = Ho(k)  over a region in k space and f(k) is zero outside this 
region, f(k) is an eigenfunction of ( H o  + V) with energy E. These con- 
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ditions are, of course, never satisfied in practice, but they may be nearly 
satisfied, in which case we expect that f and E will be a good approximation. 
We can indeed formulate a simple test. 

Suppose we have solutions cpi for H‘ 

(H’ + V)cpi = Ei’cpi (4.18) 

and that the solutions for Ho are # j  

#j*(Ho + V) = Ej+j*. (4.19) 

Then, multiplying by # j *  and cp;, respectively, we have 

(Ei‘ - Ej) ( # j j  ~ i )  = ( # j ,  (H’ - H o ) v ~ ) .  (4.20) 

Squaring and summing over j ,  

C (Ei’ - Ej)’I ( # j ,  P i )  1’ = (pi, (H’  - H ~ ) ~ p i ) .  (4.21) 
j 

The left side of (4.21) is greater than the minimum value of ( E i  - Ej)*, 
which is, therefore, less than the right side. Thus we can say that there is 
a level of HO which lies closer to Ei’ than (cpi, (H’  - Ho)2cpi)1/2. If the 
latter is much less than the separation of levels, we can also be confident 
that the wave function is quite close to cp;. In some cases in which the 
accuracy is not as good as might be desired, it could be improved by 
treating (Ho - H’) as a perturbation. 

Finally, it will usually be easier to solve (4.18) by transforming from 
k space to x space. We can then write 

H’ -i- cp(x) + V(X)(P(X) = E v ( x ) .  ( a:> (4.22) 

As with other #(x), only the values cp(R) at lattice points are meaningful. 
Here also we must be careful that (p can be written with Fourier compo- 
nents in only one BZ. This will always be leas restrictive than the require- 
ment that (cpi(H’ - Ho)2cpi) be small, however, provided we choose the 
BZ in such a way as to keep the surface Ho(k) = E as far from the zone 
boundaries as possible. 

Our emphasis on the derivation of (4.22) should not obscure the fact 
that the difference equations (4.1 la) may in some cases be more convenient 
to work with. This will tend to be the case, for instance, when dealing with 
deep energy levels. The question, in practice, will generally be whether 
the difference equation, approximated by using only nearest neighbors, 
is more accurate than the best quadratic H‘. In a rough sort of way one 
expects that the quadratic approximation will be quite good, so long as the 
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energies involved are small compared to vertical band separations. When 
this condition is violated, however, one must consider the effect of other 
bands on the energy levels. 

5. PROPERTIES OF WANNIER FUNCTIONS 
Aside from their role in justifying the effective mass theory, the Wannier 

functions are of some interest in themselves. In particular one is concerned 
with their localization. Before discussing this last subject a t  some length, 
we shall consider a variational approach used by Parzen'O and by Koster." 

These authors observed that the Wannier function has the following 
property: for functions subject to the restrictions 

1 #*(x)#(x + R J  d3x = 0 R i  # 0 

(5.1) 

the integral 

I = 1 #*H# d x  (5.2) 

has an extremum for the Wannier function. Let us consider this condition 
in detail, in the CMR, setting 

#(x) = C 1 d31Cfnk#nk(x) 
n 

(5.3') 

] I # I2d3x = C ,/ I fn p d 3 k  = 1. 

These two restrictions then mean that En I fn I* = 1, independent of k. 
Thus evidently the absolute minimum of Z is obtained when 1 fn(k) l 2  = 1 
for the lowest band at each k. But this corresponds exactly to the Wannier 
lo G. Parzen, Phys. Rev. 89, 257 (1953). 

G .  F. Koster, Phys. Rev. 89, 67 (1953). 
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function for this band. We can examine the general extremal properties by 
means of Lagrangian multipliers. The restraints are taken in the form 

Ifn(k) l 2  = 1 for each k. (5.4) 
n 

The equations obtained are 
[Hn(k) - X(k)Ifn(k) = 0. (5.5) 

This can be satisfied only by 

fn(k) = 1 

fn(k) = 0 

if Hn(k) = X(k) 

for all other n. 
(5.6) 

Thus X(k) can, in general, be any function which is, at each k, equal to 
some H,(k) ; 1 fn(k) I is equal to 1 for the same n, and 0 for all others. 
For any f (k) ,  f(k) exp ( zk-Ri)  describes, for each i, an orthogonal func- 
tion, whose center is removed from that off by Ri. For another function g 
to be orthogonal to this whole family of functions generated by f, we 
must have fn*(k)gn(k) = 0 for all k. Thus if we generate a complete set 
by the Schmidt process, requiring that each function minimize 1 subject 
to being orthogonal to all previously obtained functions, we obtain precisely 
the Wannier function for each band (see next paragraph) in which the 
bands are defined as follows: the nth band has at each k the nth energy 
level, counting from the bottom. There are some special cases in which 
other choices of bands may be preferable. In such cases, the Wannier 
functions correspond to  extrema of I, for they have the form mentioned 
above, but not to minima. 

Actually the variational procedure determines only the magnitude of 
f(k),  not the phase cp(k). We shall see in the following that an additional 
variational procedure can be used to determine cp (k) , namely minimization 
of the spread of the Wannier function. 

We now turn to the location and spread of the Wannier functions. 
First we observe that in the CMR the Wannier function u,(r - R;) is 
represented by 

- 

f.a,(k) = exp (-2k.Ri) J& (5.7) 

where f2 is the volume of the unit cell. 

WF can be represented as follows 
On the basis of the discussion in Appendix A, the operation of x 011 a 
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except for the case where there are planes of degeneracy. The matrix 
elements for R; = 0 are given by 

dak (5.9) 

where 

S,,,,(k, k') = ,/ d k ' h k '  dr. 

S is the transformation matrix between the u's at  k and k'. 
In particular, the matrix elements of z and x2 are as follows: 

1 a,*(x - R)xa,,,(x) dV = dSk&-ik.R 

1 u,,*(x - R)x2a,,,(x) dV = -a ' / dsk( (P),,,,, + iV.3E,,,,,)e-ik'R 
(2*) 

If we are concerned with bands everywhere degenerate, there are two 
Wannier functions for each degenerate band. Thus, we can consider each 
of the foregoing matrix elements as being a 2 X 2 matrix. 

Let us now consider the position and spread of a given WF, an(x) 

(5.11) 

- - ' 1 dak(X2)nn = (X2)nn = (X2)nn + 2. 
(5.12) 

g,, and ( gn2) are sensitive to generalized phase transformations whereas 
- - 
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the first term in 2 is not. Thus if we make a phase transformation e i v ( k ) ,  f 
is modified as follows 

(5.13) 

Here the surface integral is over the planes bounding the BZ in the direction 
indicated, and Acp is the change in cp across the zone. The periodicity of 
ei* requires that Acp be a multiple of 2 r  and the integral is, therefore, a 
lattice vector. Thus 

It' = 2 + L. (5.14) 
f can in this way be made to be in the unit cell including the origin. 

The surface integral is to be taken over the BZ boundary and surfaces 
surrounding any degeneracies, as discussed in the Appendix. The former 
integrals give zero if cp is periodic, that is, if it does not move f .  The integrals 
around degeneracies also vanish unless Q has such a strong singularity at 
the degeneracy that the integral of ( V P ) ~  diverges and dominates (5.15). 
If the degeneracy occurs on a curve, it is possible to choose cp to be multiple- 
valued in which case (5.15) is not really valid unless we also introduce a 
branch cut. In that case, the surface integral may diverge, but then 2 
diverges anyway as shown in the following paragraphs. 

Excluding this last situation, 2 can be minimized, the minimum 
occurring when V.gnn is zero everywhere. This is an absolute minimum. 
The condition V * g  = 0 together with the value of V X g;which is given 
everywhere suffices to determine g completely save for a constant equal to 
a lattice vector, provided the phase is so chosen near degeneracies as not 
to add any surface terms to  2. This is then a natural choice of phases and 
corresponds to the choice V .  A = 0 for the vector potential. Similarly, we 
could have added a phase factor to (5 .7)  with the same result. 

It should be noted that even if V X g = 0 everywhere as when the 
crystal has a center of inversion, g may not necessarily be taken to be zero 
everywhere, unless the band in question has no lines or curves of de- 
generacy with other bands. If such lines exist, and the energies of the 
intersecting bands separate linearly away from the line, .f ' g *&  = 



328 E. I. BLOUNT 

(2n + 1)u where n depends on the particular choice of phases. If the 
bands diverge quadratically, .$' g - d k  = 2nu. If all lines are of the latter 
type, all n's can be made zero and g can then be made zero. This cannot 
be done in the former case. 

If there is inversion symmetry and spin-orbit coupling, we have the 
added possibility of generalized transformations. Using the form 

we have 

(5.16) 

(5.17) 

It is convenient to treat these two parts separately. First we consider 
the I term. g(O) is invariant under the rotations eiA.a and g(') is invariant 
under the phase transformations eiP. Thus the. effects of the two trans- 
formations can be considered separately. The phase transformations are 
treated exactly as above. The rotations have the effect of changing 5 to 

g'2 = 2 + (g.6g) + (6d2. (5.18) 

This problem is complicated by the fact that 6g is no longer a gradient. A 
convenient form for 6g is found by writing S = exp (ieuiA;/2), where A 
is a unit vector in the "spin space." Then 68 becomes 

(5.19) 

- 

6g = v a i A i  sin 8 + ( 1  - cos 8 )  (a iAi  vB + cij2aiAi v A r ) .  

The I term is then 

((ve)2 + 2(1 - cosB)[(vp)z + sin2 ( P ( V ) ~ ] )  d3k. (5.20) +&/ 
The vanishing of V-g is necessary and sufficient for the first term to 

vanish. Since the second and third terms are of at least second order in 8, 
this is also the requirement for a stationary value of ?. It is not obviously 
sufficient although it is necessary for an absolute minimum. This consti- 
tutes an existence proof that V.g(') can be made to vanish everywhere, 
since 2 is positive definite, The actual solution of this problem appears to 
be very complicated and we have not solved it. It is worthwhile to point 
out, however, that if we restrict ourselves to transformation with constant 
A,, then V q  = 0 is a sufficient condition. Also if we are interested in 
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minimizing the spread of WF, composed from BF's whose diagonal compo- 
nents of magnetic moment are pointing in a given direction, the V.g = 0 
condition is sufficient. 

Turning our attention to the u, terms in (5.17), we note that in A p  
pendix B it is shown that &(O) must be of the form vklp .  On integrating the 
second term in (5.17), we obtain, therefore, 

The same remarks apply to this surface integral as to that in (5.15) Again 
excluding the case of lines of additional degeneracy-beyond the twofold 
degeneracy everywhere-we see that if V k * g ( i )  = 0, J$~).&(O) vanishes, so 
that 2 has no ui terms. 

So far we have not included the treatment of bands with planes of 
degeneracy. It is shown in the Appendix that the 2 is not finite in this 
case. This is a rather unsatisfactory situation and it is desirable to remove 
the divergence if possible. The difficulty has its root in the fact that if we 
follow a path along one of the bands from one plane to the next one in k 
space, we come back to a different band. This circumstance, however, 
enables us to define new WF's which do not have the divergence in x2. 
This is done by using both intersecting' bands to define the WF. Thus, if 
we follow one band from k = - K / 2  to K / 2  and continue into the next 
zone without changing the slope of the energy a t  the degeneracy, we have 
no discontinuities. If we suppose that we have thus defined one band 
throughout a double zone (DBZ), we can form WF's defined by 

(5.21) 

Here we can permit W to be either a lattice vector R or R + a where a is 
a vector extending from a lattice point to that point to which it is carried 
by the twofold screw axis which is present in all crystals with planes of 
degeneracy. In terms of the original bands 

If 

If 
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The second of these relations is slightly inconsistent since the a's are not 
defined for R + a. In this case we define the functions anl, an, by sub- 
stituting (R + a) for R in (4.1) anyway. The representation of a' in the 
CMR is 

(5.23) 

Thus if !R = R, fl and f2 are periodic and continuous at  the plane, while, 
if !R = R + a, each can be taken periodic, but is then discontinuous. 
f&l + f2#2 is continuous and periodic in k space in both cases; the surface 
contribution discussed in the Appendix accordingly vanishes. It is easily 
verified that a'(x; a) and a'(x; 3') are orthogonal. 

We can now investigate t and f for a'. 

= R + $(1ii + 1n + 1 1 2  + 1 2 1 )  (5.24) 

2 = 9 + C / fi(5')ij fj  dak 
i.j-1,2 - 

.= 9 + C j i X i n * X n j  j j  + C j i€ ir*€l j  jj. (5.25) 
nZ1.2 i ,  j,1-1,2 

i , i - 1 , 2  

The phase-sensitive part of this is 

r:, + r:, + (L + 511) (L + X21) 

If we make the phase transformations ei+", eiw, we obtain 

- -  n 
5'2 = z2 - - 

(2*) a 

'IZ "')] dak. (5.26) ./ [alV.(zll + + 2 521)  + &(a& + 2 

Thus a minimum is achieved if 
v. (3Em + 1 2 1 )  

2 
v.111 = V.53) = - (5.27) 
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(There is no question of a generalized phase transformation here, because 
bands which are doubly degenerate throughout k space never have ad- 
ditional degeneracies over entire planes.) Thus the new WF are similar in 
all their important properties to those in a medium without plane de- 
generacies. They do not satisfy the Parzen-Koster variational principle, 
however, since more than one f is finite everywhere. 

We have devoted time to these functions because an important class of 
material has this plane degeneracy. In general, this happens to all bands in 
crystals having twofold screw axes perpendicular to primitive reciprocal 
lattice vectors, except if inversion symmetry is present and spin-orbit 
splitting is not neglected. This includes, in particular, close-packed hex- 
agonal crystals. The new functions are clearly better suited to these 
materials than the normal WF, for the latter are assigned only to atoms 
in planes separated by the lattice spacing, whereas in these materials there 
are always other identical atoms in identical environments on planes 
spaced twice as closely. There is an a' for each of these atoms also. Thus 
the a' conform much more to our notion of localized functions about each 
atom than do the standard WF. 

We now turn to the question of the asymptotic behavior of WF's. This 
discussion will be divided in two parts. The first is concerned with WF's 
of bands which do have degeneracies a t  a given k with other bands, the 
second with bands with no such degeneracies. To discuss the former we 
must see how the X's  behave in the neighborhood of degeneracies. 

The general behavior is fairly trivial. Near a degeneracy, the Bloch 
function is, in lowest approximation, a linear combination of the BF's a t  
the degeneracy, depending only on the direction of the shortest vector 
from the point to the degeneracy. That is S(ko, k) = S(B, c p ) .  Since 
X = 8-' aS/ak, X X k/( k I varies a~ I k I-' while X-k/l k 1 is zero in this 
approximation and, in general, varies as I k 1 or I k 12. Thus I X,,,,e l2 behaves 
as I k Its integral diverges logarithmically for a curve of degeneracy 
and is finite for a point of degeneracy. The integral of I Xa ( *  diverges as 
k-' for a point. Formally, X* would diverge logarithmically; however, the 
Hamiltonian must have twofold symmetry about a degeneracy to lowest 
orders. Thus the divergent contribution to the Xa integrals vanishes, in 
fact. Hence if a band haa a curve of degeneracy with another band, 2 
diverges for its WF. In contrast only, 2 diverges if it has a point of de- 
generacy. In fact, the WF falls off like r2 if there is a line of degeneracy, 
and like ra if there is point degeneracy. This follows from the fact that a 
logarithmic divergence of the integral over k corresponds to a logarithmic 
divergence of the spatial integral if we consider periodic boundary 
conditions. 
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The integrals of all powers of x would appear to converge if there are 
no degeneracies, and one would anticipate an exponential falloff of the 
WF. To investigate this point more closely, we recall that 

Hence 

(5.28) 

n 1 a 1  
e K . 1  = lim - 1 d3k 7 (iu--) S(k, k’). (5.29) 

kt-k ( 2 d 3  1 1 .  ak’ 

Thus the integral has a finite value if K is less than the minimum radius of 
convergence of the power series expansion of S(k, k’) for k - k’ parallel 
to K. This implies that S(k, k’) must be defined and analytic for complex 
values of k if convergence is to occur for any K, no matter how small. 
Another approach to this point is more direct. Thus 

Therefore if S(k, k‘) can be extended into the complex plane as far as K,  

the same result may be obtained simply by letting q = iu. We demonstrate 
in the Appendix that this is possible for nondegenerate bands, the limits 
arising from a surface of branch points. This has also been shown by 
Kohn12 for one-dimensional bands by a different method not easily gen- 
eralized to three dimensions. Thus we can say that J I a l 2  e2...= is finite if 
K is less than KO, the minimum distance of the branch surface from the 
real k space in the direction of K.  It is easily seen that this means that 1 a I 
falls off as e--lrollzl in this direction. 

6. PROBLEMS CAUSED BY DEGENERACIES 

Just as the asymptotic behavior of the a’s depends on the presence of 
degeneracies, so does that of H ( R )  itself. Let us consider first the effect 
of degeneracies near which the bands separate linearly. 

(1) The sum of the squares of the Fourier transform of the first deriva- 
tive converges, if the degeneracy occurs over a plane, while this is not true 
for the second derivative with respect to the component of K perpendicular 
to the plane. This, in fact, diverges linearly, so that H(R) goes as R-2 for 
R in this same direction, and becomes small exponentially for R in 
directions parallel to the plane. 
I* W. Kohn, Phys. Rev. 116,809 (1959). 
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(2) For line degeneracies, the divergence is weaker. The first derivative 
of H ( k )  approaches a constant which depends on the direction of approach 
to the line, so the second derivative becomes large as 1 k 1-l. Thus the 
integral of the square of V2H diverges logarithmically. Correspondingly, 
the sum ZR I R2H l 2  diverges logarithmically, which implies that I H ( R )  I 
goes as I R 

(3) For point degeneracy, the foregoing arguments show that 
Z I R2H ( R )  l2 converges. In this case we must consider the third derivatives, 
some of which clearly go as 1 k near the degeneracy. Thus the integral 
of I V3H l 2  diverges as I k (-I, corresponding to a linear divergence in the 
sum ,Z 1 R3H 12. This implies that 1 H 1 goes asymptotically as I R [--I. 

In the case of line degeneracies a t  which the bands separate quad- 
ratically, the second derivatives of the energy approach a constant near 
the line, while the third derivatives go as I k 1-l. Thus in this case 
Z I R3H l2 diverges logarithmically and I H (  R )  I decreases like I R I+ at  
large 1 R 1. This behavior again applies only in directions normal to the 
line of degeneracy, the decrease being exponential in the direction of this 
line. 

Finally, in order to see how the representation of slowly varying per- 
turbations are affected by band degeneracies, we shall consider the matrix 
elements of 

for R in the plane perpendicular to the degeneracy. 

Its matrix elements are 

Snd(Rt ,  R ;  q) = 1 d3k d3k'eik'.R'e-ik'RSnn"(k', k )  6(k' - k - q) 

If there are no degeneracies, S,,'(k, k - q) approaches S,,' as q approaches 
zero, for all k,  so that for small q 

S,,,,'(R', R ;  q + 0 )  - 6,,teiq'R 6 ( R  - R') .  (6.2) 

However, S,,' does not approach 6,,,,' in the neighborhood of degeneracies. 
As a result, there are contributions to S which not only have interband 
elements but also connect WF's centered at different R's. These fall off 
with (R  - R') only as small inverse powers of 1 R - R' I .  Such contri- 
butions may be small numerically but can seriously affect the asymptotic 
behavior of the wave functions. 

Thus, the WF's, Ho, and V all acquire undesirable characteristics when 
the bands have degeneracies, even though these may occur for energies 
far from those of interest. In particular, the use of the difference equations 
involving only a few nonzero terms Ho(R - R') and V ( R )  is clearly 
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unjustified in localized problems and could lead to improper asymptotic 
behavior of the solutions. On the other hand, the results obtained seem 
physically correct and one may assume that the concomitant bad behavior 
of the WF’s somehow compensates for this. Nevertheless, one would like 
a more justifiable procedure. 

One such procedure is to use not Wannier functions, but combinations 
of them defined as follows 

an(x - R) = J$/ - dake-”%Pk(x) Tn*n(k) 

in which T(k) is some unitary matrix. The quantities Znt )Ln#Tntn = pn 

define new functions which are not energy eigenfunctions but could be 
chosen so as to have no singularities when regarded as functions of k. For 
instance, one could add a periodic perturbation represented by Ann#(k) 
which would remove all degeneracies between bands. The WF’s for the 
newly defined bands would then be well behaved, as would Ho and V. To 
be useful a t  an energy El one would want to be sure that Tnfn &,en for 
k’s such that H(k) - E; this would require only. that Ann’(k) be very 
small a t  such k. This change in the energy spectrum can be justified by 
the arguments used to justify the approximate Hamiltonian H’(k). It is 
worthwhile to note that in actual problems attacked with the use of the 
WR, one does not know the WF’s anyway, and attempts only to get the 
general shape of the envelope. The a’s are quite as useful as the a’s for 
this purpose. This argument also justifies the common use of no more 
than nearest neighbor values of H( R - R‘) , for, near the bottom of the 
band where the effective ma58 Hamiltonian is valid, these terms are, or 
can be chosen to be, sufficient to describe the band shape. This will be a 
good approximation if the resulting levels are reasonably close to the band 
edge, which can be tested as in Eq. (4.21). 

Another procedure for getting well-behaved pseudo-WF’s will be 
applicable even when the degeneracies are close to the energy of interest. 
This situation is possible when a group of bands is isolated, or can be iso- 
lated, as in the last paragraph, from the other bands. One can then choose 
the Tnn1 not to be 6,,,,# at  the energy of interest, but to make WF’s which 
are very well localized, and have desirable symmetry properties. Our 
treatment of structures with planes of degeneracy is an example of this 
procedure. Another example is provided by the valence band of Ge and Si, 
where four bands apparently intersect no other bands. In this case, we 
assert without demonstration that one can define bond functions, one for 
each of the four valence bands in a unit cell. They correspond to the 
bonding orbitals used by chemists. They have been used by the author in 
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a very crude discussion of energy levels a t  vacancies and interstitials in 
Ge.” 

Either of these procedures will result not only in well-behaved WF’s 
and H (R - R’) , but also in better behaved values of V (  R) because of 
the improved localization. In particular, the first procedure constitutes a 
justification of the results of WR calculations which have been made for 
crystals with bands which have degeneracies. 

111. A ”Mixed Representation” 

7. BASIC PROPERTIES 

In this section, we shall develop a new procedure for working with 
slowly varying perturbations, which is less restricted by the strength of 
the perturbations than the CMR and WR procedures. It will be seen that 
the formalism is in a sense intermediate between these two, although it is 
not, properly speaking, a representation in the quantum-mechanical sense 
at  all. 

We begin by considering an operator Om, (k, k’) in the CMR, and rewrite 
it as follows. 

(1) We rewrite 

Om, (k’, k”) = Om, (” k“; kf - kll) 

= Om,&; q) (7.1) 

where the semicolon is used to distinguish the function O(k; q) from 
O(k, k’). O,,(k‘, k”) is periodic in k’ and k”. O,,(k; q )  on the other 
band is not periodic in q, but has the following properties 

O(k + K; q) = O(k; q) 
(7.2) 

where K is any reciprocal lattice vector. 
(2) We define 

1) E. I. Blount, Phys. Rev. 113,995 (1959). 
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which is then analogous to  a classical quantity. (The reverse transform 

O,,(k; q) = O,,(k, R)e-iq’R (7.4) 
R 

must be used with caution, for i t  is periodic in q, and can thus be correct 
only in the first BZ of q space.) The quantum nature of O(k ,  R )  lies in 
the multiplication rules which are derived in Appendix D, where final 
result for P ( k ,  R )  if P = NO is given, with certain limitations, by 

aiNC(k + (K1/2) ,  R )  a’O(k + (K2/2) ,  R ) ]  
P ( k ,  R )  = / d a K I d 3 K z  

i . i  aBj  aR1 
R L R L  

i W ( - l ) i  ai a l  

exp [ i (K1*  Rz - K z .  R 1 ) ]  -- X 
j!Z! aK; aKf 

i aNaO a N a o  

2 ak aR aRak 
P ( k ,  R )  = N(k ,  R)O(k ,  R )  - - (- - - -- -) 

(7.5) 

(To avoid complication of the equation, this is written as if for one di- 
mension, but the generalization to  three dimensions is trivial.) 

The first term is just the classical, local product. The second is half the 
Poisson bracket (P.B.) , which we shall designate by angular brackets, 

a N a o  a N a o  
= (N ,  0 ) .  - - _ - _  

aR ak ak aR 
(7.6) 

The remaining terms have no classical analogies, but may be thought 
of as higher order P.B.’s. 

When we are concerned with functions whose variation with R is slow, 
characterized by a maximum wave number q which is small,-the terms in 
Eq. (7.5) are of order 1 q I1+j .  In  this sense we may speak of them as suc- 
cessive orders in an expansion whose parameter is the speed of variation 
of the functions with R .  This is the point of view we shall adopt; when we 
speak of functions of some “order,” it will be meant in this sense. We 
might also say that the expansion parameter is (i a /aR) .  
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8. UNITARY OPERATORS .4ND PERTURBATION THEORY 

It is easy to show that a Hermitian operator O,,#(k, k') yields a 
Hermitian matrix Omn#(k, R).  The identity 6,, 6(k - k') is simply 1. On 
the other hand, the criterion for unitarity does not have a simple form. 
We require, in the general case [see (D5)], 

A case where the criterion is simple is that of a matrix independent of 
R. Then, U ( k )  must be a unitary matrix. Similarly, if U is independent 
of k, U(R) must be a unitary matrix. For U's which vary slowly with R, 
the expansion [Eq. (7.5)] is useful 

It will be convenient to consider unitary operators to be generated by 
unitary matrices by an iterative procedure. We write such an operator in 
the following form 

The superscript on the right will signify a quantity of nth order, while the 
superscript on the left means that all orders up to n may be present. It 
will also be necessary to distinguish between matrix multiplication and 
operator multiplication. For the rest of the section, operator products 
will be indicated by an asterisk P = N * 0. 

G(') can be partially determined by the equation 

For the nth order we will obtain 
(dU* (n)Ut = 1 + A(n+l) + (8.4) 

where ACn+l) is of order (n + 1) and AR is of higher order. Then G(n+l) is 
chosen so that 

G(n+l) + G(n+l)t + A(n+l) = 0 (8.5) 
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So far we have determined only the Hermitian part of the G's. This 
leaves us with the freedom needed to diagonalize any particular operator 
0. We seek U such that 

U * O * u t  = O D  

where OD is diagonal. Thus we require 

while 
U'O'OU'O't = 0 ' 0 )  

D 

U(0) * o* U(0) t = o p  + O(1) + 0 R. 
Hence the determination of G(') is completed by 

G(UO(0) + O(O)G(l)t + O(1) = 0. 
D D 

+[(G(n+U - G(n+l)t), Oho)] = -O(n+l) - +( A(n+l), OLo)} (8.7) 

where the curly brackets mean the anticommutator. The diagonal elements 
of (8.6) yield 

(8.8) 

where OF+'' is the diagonal part of O("+l). We now have a complete itera- 
tion procedure for the diagonalization of 0. Of course we cannot expect 
that it will converge, a failing it shares with normal perturbation theory. 

We also note that the imaginary parts of the diagonal elements of 
G("(k, R) are not determined. This simply means that we can at  each 
stage make an intraband canonical transformation, as in classical physics. 
The only important difference is that when a time-independent canonical 
transformation is made in classical physics, the Hamiltonian is generally 
considered to be the same function of p, q which, however, are expressed 
in terms of the transformed variables P, Q. The effect of a one-band 
unitary operator in our present formalism is to leave k, R invariant while 
changing the functional form of the Hamiltonian and also the relation 
between actual observables to k, R. The procedures are equivalent, but the 
labeling is different. In the application of our procedure, this freedom can 
be used to make the most convenient choice of G(i). 

O(n+l) = O ( n + l )  - A(n+1)0(0)  
d D 
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The procedure given in the foregoing is the most direct and naive 
perturbation theory, and could undoubtedly be made more efficient as is 
the case with the Rayleigh-Schrodinger perturbation theory. 

We will now go through this procedure for a Hamiltonian to first order 
in addition to  setting the Hamiltonian up in the mixed representation in 
the first place. We want the matrix elements Hnn# (k, R) of the Hamiltonian 
H(P, x) 

Hnng(k, R) 

@ is an operator function of p and x with indices k and R. For x far from 
R, @ is very small. If H(p, x) is nearly periodic, it will be very nearly the 
same as the @ defined for a periodic H which, near R, closely approximates 
H(p, x). The matrix elements of @(k, R) between the Unk will be called 
Qnn) (k, R) , so on expanding u ~ , ~ ~ ( ~ ~ )  we find 

(8.11) 

when the second term is of first order in our sense. 

choose to make unitary to first order by multiplying on the left by 
We now apply the transformation U(O)(k, R) which we immediately 

[i + +(au(O)t/aR). (au(o)t/ak) 1. 

Keeping only first-order terms we obtain 

(')Ho = E(k, R) - +(F(k,  R).X(k, R ) }  + +(v(k, R)*a(k, R)}  (8.12) 
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where E(k, R) is the diagonal form of the matrix @,,,,#(k, R) ,  

1 aE 
v(k, R) = - - n ak 

(8.13) 

Thus v is, of course, the expectation value of the velocity, F is essentially 
a force, Z(k, R) is the required modification of X(k), and a acts like a 
vector potential. If H(p, x) represents a constant electric field applied to 
the crystal, a vanishes, F is just the electric field, and all remaining quanti- 
ties are independent of R. The first-order interband terms could now im- 
mediately be removed, as in perturbation theory. The intraband term in a 
can be modified by the addition of any gradient by means of the transfor- 
mation eir(r.a). In particular it can be made solenoidal as can f(k, R),  
though it is not clear that they can, in general, be made solenoidal 
simultaneously. 

The meaning of our results so far is clear. If a perturbation varies 
slowly in space an electron adjusts adiabatically to the changes and sees 
only the changes in its energy. This amounts to a generalization of the 
“deformation potential” idea to an arbitrary nearly periodic perturbation; 
similarly it is related to the common procedure of drawing “bent” bands 
in regions of high field such as junctions. Previous treatments have been 
valid only for weak perturbations or for nearly constant fields. The present 
derivation will apply as well to strong nearly periodic perturbations, and 
it provides a straightforward means of proceeding to higher accuracy. It is 
particularly useful for the treatment of electrons in a magnetic field, as is 
shown in a forthcoming paper by the author. 

We have presented this formalism as a means of manipulating operators, 
which is particularly well-suited to nearly periodic perturbations, and have 
treated the objects O,,#(k, R) as numbers with certain multiplication 
rules. It should be pointed out, however, that at the same time this is the 
natural way to obtain objects which are functions of the operators k and 
R, just as quantum mechanics customarily deals with functions of the 
operators p and‘ x. The difference is that in most elementary quantum- 
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mechanical problems, the operators are given originally as functions of p 
and x, which are then given explicit quantum-mechanical representations, 
possibly as matrix elements. Our situation is the reverse. From the 
Schrodinger representation, we find matrix elements which we then convert 
to operator form as functions of k and R. We take the matrix multiplica- 
tion as basic and derive the rule (7.5) which is functional but only approxi- 
mate. While the analog of (7.5) is valid in regular quantum mechanics, i t  
is of little use. Its primary use to us is to remove interband matrix elements 
in the perturbation theory. This situation does not normally occur in 
normal quantum-mechanical problems (though it does occur in the Dirac 
equation, and our formalism might well be useful in the removal of matrix 
elements between positive- and negative-energy states, as an alternative 
to that of Foldy and Wouthuysen.'.") There, one is usually concerned with 
finding states which diagonalize the Hamiltonian. This implicitly involves 
finding a new momentum variable P which is in general of a different 
character from p, so that no useful one-to-one correspondence can be 
found between p and P. This is the same situation which confronts us in 
the treatment of the one-band Hamiltonian, once we have it. 

So far in this section we have developed a procedure for manipulating 
operators and removing the interband matrix elements of the Hamiltonian 
to any desired order. Let us now suppose that we have in this way obtained 
a one-band Hamiltonian as outlined. We can then proceed in two different 
fashions. The first is simply to treat k, R as quantum-mechanical operators 
and determine energy levels or scattering effects by standard quantum- 
mechanical methods in either the k or R representations. This seems to 
require no further discussion. 

Frequently, however, we will be satisfied to obtain pseudoclassical 
information from the equations of motion of k and R. We shall proceed 
to set up equations like Hamilton's equations for k, R. 

We suppose that by a transformation U we have obtained a diagonal 
Hamiltonian H ( k ,  R ) .  As a result of U ,  x is no longer represented by 
R + X ,  but by 

x = R + U*X>kUt + 
To lowest order this is R. The complete intraband part of x is written as 
R + g(k, R), with 

I4 L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950). 
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The intraband velocity becomes 

or, to first order, 

(8.15) 

The second term is a generalization of the anomalous velocity discussed 
in Part I, Eq. (2.22). The entire motion can be determined from the 
equations 

(8.16) 

1 aH 

n a R  
1;= 

which are identical in form to Hamilton’s equations. 
In many quantum-mechanical problems one is concerned with the 

density matrix p(k ,  k‘) . This is a Hermitian matrix which immediately is 
seen to take the form p ( k ,  R) in our formalism. It is the precise analog of 
the distribution function in classical mechanics. The equation of motion 
of p i s  

ap i 

at n - = - [ p ,  * H I .  

The operator product can be evaluated by (7.5) and we obtain 
a P  i i 
- = i [p ,  H ]  = 5 ( p ,  H )  - - ( H ,  p )  + 
at 2 

(matrix products). (8.17) 

If we suppose that we have removed interband components of H ,  p 
will be intraband and we have 

a P  - = i ( p ,  H )  
at 

(8.17a) 

as in classical problems. 

space density and the developments based on it due to Moyal.16 
The formalism in this section is closely related to Wigner’s15 phase 

E. P. Wigner, Phys. Rar. 40, 749 (1932). 
J. E. Moyal, Proc. Cambridge Phil. SOC. 46, 99 (1949). 
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A different procedure for obtaining some degree of localization in both 
k and R, has been proposed by McIrvine and Overhauser.16* Their pro- 
cedure uses a true quantum-mechanical representation which they call the 
“superlattice representation.” The basis functions are wave packets which 
are partially localized in both k space and R space, the relative localization 
in each being quite arbitrary. Wannier functions and Bloch functions are 
both special cases. It is our opinion that the complicated nature of the basis 
functions leads to similar complication of matrix elements, with the result 
that the procedure we have outlined above is considerably more con- 
venient to use in most cases. 

IV. The Dirac Equation 

In order to convey a more intuitive feeling for some of the subjects 
discussed in this paper, we shall discuss the Dirac equation in the ter- 
minology of band theory. While there is no lattice involved in the Dirac 
theory, the positive and negative energy states do form a pair of bands. In 
the CMR the only effect of absence of a lattice is to remove the periodic 
character of k space. 

In order to bring the Dirac equation into a form convenient for this 
discussion, it is necessary to transform from the usual representation to a 
representation whose basic functions-analogs of BF’s-are eigenfunctions 
of the Hamiltonian. This is analogous to transforming from the K-L 
functions to Bloch functions. This transformation is elementary and has 
been given by Foldy and Wouthuysen.14 It is 

E p  = d m 2 c 4  4- p2c2. 

The Hamiltonian takes the form 
E = BE,. 

The momentum is unchanged, while x becomes 
xfi = 2,’ + xw 

(IV. 1) 

in 
Ba” N- 

ilic ihaB(a*P) P ,  
x c  = - Bar - 

2EP 2Ep2(Ep + me2) 2mc 

E. C. McIrvine and A. W. Overhauser, Phys. Rev. 115,1531 (1959). 
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and the velocity is 
?w = vr + vr 

(IV.3)  

We readily verify Eq. (2.14),  while the commutator of x and ?8 yields 
an inverse effective mass of 

This yields the familiar transverse and longitudinal masses applicable 
perpendicular and parallel to the direction of motion, respectively. We see 
that they arise in a way entirely similar to the effective mass in band 
theory. 

The term 6(v X d ) / 2 (  Ep + m2) corresponds to g in band theory and 
represents an electric moment arising from the motion of the magnetic 
moment in the Dirac theory. It is phase dependent and the form given 
Seems to be the most convenient. The operator s2 has the form 

C2 
= fid + 

( E F ( E p  + mc') 2 ( E ,  

d . W  2 

- ?  ("> (IV.5)  
2 E p ( E p  + mc2) 2 mc 

+ 
while X 2  is 

tiw h2v4 + 
2 E p ( E p  + m2) C 2 ( E p  + m2)2 

(IV.6) 

This result confirms our remarks on the similarity between X and the 
Compton wavelength. 

Another operator of interest in magnetic problems is the diagonal-in- 
band contribution to the magnetic moment from the nonsingular part of 
x. In band theory this has the form ( e / 2 c ) [ ( X  X V )  + 2g X v]. 
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The presence of the factor 2 in the second term is surprising at first 
sight. A rigorous derivation is outside the proper scope of this paper, and 
it will appear in a forthcoming paper by the author on the behavior of 
Bloch electrons in a magnetic field. We shall give a simple-minded deriva- 
tion here. A charge cloud whose center of charge and mass is a t  r + Z 
moves in a magnetic field H with an angular velocity o = (eH/m). It 
also has internal motion characterized by a current density j(x) whose 
integral is zero. Its magnetic moment is then 

p . H  = - a  (0 X r) X r + 2(0 X r) X x 
2c eH 1 

Its total velocity is i + f = o X (r + t) and p . H  can be written 

p . H = -  i X r + 2 i X t +  j(x) X ( ~ - t ) d ~ x + ( ~ X f ) ~ .  

Thus the term i s %  has the extra factor 2, while the third term does 'not. 
Now if we identify r with i(a/ak), which like r does not represent the 
center of the wave packet for an electron, i = (i /f i)  (dE/dk) = v and t 
corresponds to E .  The third term in the last equation then corresponds to 
the contribution of nondiagonal velocity and position operator, for the 
average of j(x) and of (x - x) are both zero. Thus the second and third 
terms above correspond to our expression for the magnetic moment and 
the factor 2 is present in the same way. 

In the Dirac theory the diagonal elements of the magnetic moment 
take the form 

2c eH r 1 1 

e e h  
- ( 2 g X V + X x V )  =-@ti 
2c 2EP 

efi 

2 m  
Bd. N- 

Thus we see that in this theory the spin magnetic moment is the analog 
of the contribution of X to the magnetic moment in band theory. We also 
see that the g factor is given at  all energies by e/2m*c where in* is the 
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transverse mass. In addition to this term there are interband terms of the 
magnetic moment, which vanish at p = 0. 

H = Ep/3 + V(x, + X )  

If we consider a perturbation V ( s )  , the Hamiltonian is 

av 
ax 

z EpS + V ( X , )  + - - . X  

av n d ~ v  

ax 4 ~ ~ 2 '  
+ -.- (IV.7) 

The third term, analogous to the term Fa&,, in (2.20') is the spin- 
orbit energy. The X term can be removed to higher order by perturbation 
theory as in the discussion preceding (2 .22) .  

In the presence of the perturbing potential, the velocity has the form 
(after removing the interband terms) 

(IV.8) 

This is not equal to aH/ap, whose second term would be only half that 
above. The difference is the term ( i / f i ) [ V ,  x,] which can be interpreted 
as a change in the electric dipole moment as the electron is accelerated. 
The corresponding term in band theory arises from the variation in g(k) 
with k. This term cannot contribute to the current in a steady-state 
situation as pointed out by Adams and Blount.' 

When using the Pauli form for the Hamiltonian including spin-orbit 
coupling, g is customarily disregarded and the velocity is taken to be 
simply aH/ap. We see that this leads to no difficulties for steady-state 
situations, but might in other cases if velocities of this order are observable 
at all. It is clear that the anomalous velocities (2.22) are entirely analogous 
to the spin-orbit contribution to the velocity of the Dirac electron, which 
can be written 

As in the band case we can write the eigenfunctions of the unperturbed 
Hamiltonian in the Bloch form 

$'nk = eik"?&k (IV.9) 
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where u k  is now independent of x and is, of course, a four-component 
symbol describing the Foldy-Wouthuysen one-band functions in terms of 
the original Dirac basis. We can also establish the relation 

(IV. 10) 

analogous to Eq. (2.3). 
To form localized functions from one band we proceed as in Part I1 

where R is now a continuous variable. Because of the k dependence of 
u n k ,  these functions are not delta functions, but are spread out over a 
Compton wavelength as pointed out by Foldy and Wouthuysen. This is 
also related to the fact that no one-band wavepacket can be more tightly 
localized than fl which in the Dirac theory’ is equivalent to fi/m*c. 
Foldy and Wouthuysen split x into two parts, a mean position equal to 
our ia/ak and a remainder equal to our Xnnl. The diagonal part of the 
velocity is the motion of ia/ak or xc, while the Xnne lead to the offdiagonal 
velocity elements which at low p are equal to c. This is the “Zitterbe- 
wegung.” The fact that it is not completely random gives rise to the spin 
(IV.7). The diagonal part of X contributes no velocity in the absence of 
acceleration, but does contribute to the magnetic moment, or vice versa. 

We see that there is a perfect analogy between band theory and the 
Dirac theory, which we hope may clarlfy the meaning of some of the un- 
familiar aspect’s of both. In a more practical vein, one occasionally has 
situations in crystals where only two bands seem to matter.I7 In such 
cases it will sometimes be possible to take over the results of the Dirac 
theory directly or with only some scale changes required. 

V. Self-consistent Field Theory 

In any actual crystal, forces between the electrons cannot be ignored, 
of course. The band theory is commonly said to be based on a treatment 
of these forces by the Hartree-Fock method. On the other hand, nearly 
all formal treatments, including the preceding, use the properties of a 
strictly oneelectron Hamiltonian. 

We suppose, therefore, that the electronic wave functions are solutions 
of the equation 

H$ = (Ho + H M ) $  = 4 
17 M. H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960). 
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Here H ,  is the self-consistent field, which can be written as 

HEC = U D ( x )  + u E ( x ,  z’) 

where p ( x ,  x’ )  is the total density matrix of the electrons in the crystal, 
and p~ (z) is its diagonal part. UD is the “direct” part of the self-consistent 
potential, while U E  is the exchange term represented as a nonlocal potential. 
The relation (1 .1)  does not hold since the velocity operator is still given 
by (1.2). 

On the other hand, the operator w = - ( i / h )  [ x ,  H ]  is a very useful 
one as will be seen in the following. With it one can set up a formalism 
nearly identical to that in the first part of Part I. 

This has been done in part by Kane.‘* The important changes from 
Part I are twofold. First, we no longer have the relation (1.3) , so that the 
expression for the effective mass in terms of W and X (2.18) contains an 
additional t,erm. Related to the removal of relation (1.3) is the fact that 
H ( k  + q )  is no longer a quadratic in q but, in general, an infinite series. 
These matters have no serious consequences for the formalism. The second 
change is that the perturbing potential must include a self-consistent term. 
This will be discussed below. When such a formalism is used, the relation 
between X and W is the same as that between X and V in Part I, and 
the effective masses are likewise defined in terms of X and W ,  the inverse 
effective mass tensor being now 

The representation of operators is the same as in Part I. 
When a perturbation is applied to this system, not only is the wave 

function in which one is interested changed but also all the others. Hence 
the self-consistent potentials are perturbed and H becomes 

H + V = H + Vo + V ,  (V.4) 

where Vo is the applied perturbation and V ,  is 

p(’) ( 5 ,  z’) 
d a d ’  + e2 . (V.5) 

I x - x ’ (  
V s c ( x ,  2’)  = 6 ( x ,  x‘)e2 

E. 0. Kane, Phys. and Chem. Solids 6, 236 (1958); 8, 38 (1959). 
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Here the superscripts indicate the perturbed values of the density matrix. 
We can now write this in the formalism of Part I11 as 

t 
vD(1, R’; k, R) = 1 d’tS (k + 2 + K, k - 

K 

t 
V E ( ~ ,  R’, k, R) = c 1 d3tS (k + 2 + K, 1 + 

K 

The S’s have been defined in Eq. (5.9). (Actually the V’s should have four 
band indices; one should be associated with each k and 1 in the expression 
on the right. These have been suppressed to avoid extra complication in the 
expression.) There is a natural division of VD into two parts 

t t 

VD’ and V, lead to short-range effects. This is apparent for nonintersecting 
bands since for them S can be extended a finite distance into the complex 
k space as in Appendix C. Thus VD’ and VE fall off exponentially at large 
(R - R’). Even if there are discontinuities in the band, however, this 
will be compensated by corresponding discontinuities in the p’s, so that 
no long-range effects actually result. VLR, however, has additional singu- 
larities due to the tZ in the integrand. In fact, the leading term in VLR goes 
as I R - R’ 1-l at large values of I R - R’ I. This term is just the long- 
range Coulomb interaction arising from charge density fluctuation. 
Additional terms of higher order in t can be interpreted in terms of multipole 
density fluctuations. 
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For a sinusoidal p(') of wave number q, we require only V,,,,(l, k; q) : 

= c eiq.m-R')Vac(l, R'; k, R) 
Vna(1, k; Q) 

R , R I  

VD'(1, k; q) 

SCk + (4/2) + K, k - (4/2)1 s c1 - (q/2) - K, 1 + (4/2)1 

I q + K 1 2  

" + (4/2) + K, 1 + ( a 1 1  23 [ I -  (V2)  - K, k - (4/2)1 

= c  
KZo 

V E ( k  k; q) 

1 k - 1 + K 1' = c  
V L R ( 1 ,  k; (I) 

- SCk + (q/2)1 k - (4/2)1 s c1 - (q/2), 1 + (4/2)1 

K 

(V. 10) - 
I Q l 2  

If we consider a crystal with the static lattice-periodic perturbation 
represented by Vo(k), its total perturbed H is 

H(k) = Ho + Vo(k) + c p(')(k)Vsc(l, R'; k, R) d'k. (V . l l )  
R I  

Comparing (V . l l )  with (V.4) and (V.6), we see that, for a given 
R, H(k, R) is the same as H(k) in a crystal with the periodic perturbation 
Vo(k) = Vo(k, R) and p(')(k) = p(')(k, R) .  However, p( ' )  and Vo cannot 
be given independently but are related. p(')(k) is determined by the 
requirement that 

p + p"' = f ( H  - r> 
where { is determined by the total density of electrons. This requirement 
implies that 

[ ( p  + H I  = 0. (V. 13) 

For a static Vo(k, R ) ,  p ( ' ) ( k ,  R )  is determined by the same equation, 
which in lowest order (in the sense of Part 111) has the consequence that 

~ ( k ,  R) + ~ " ' ( k ,  R) = f(H(k, R) - { ( R ) ) .  (V.14) 

This equation is similar but not identical to (V.12). It differs because 
{ ( R )  may not be constant and because H(k, R )  may contain terms from 
VLR which do not occur in the periodic case. Two important special cases 
exist, however. 

(1) In a crystal all of whose bands are full except one, which is nearly 
empty, the density fluctuations and VLR may be negligible. Then { will be 
so far removed from the filled bands that its variations do not affect V. In 

(V.12) 
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this case, applicable to nearly pure semiconductors, p(')(k, R) = p(')(k) if 
V(k, R) is substituted for V(k). Applying this result to acoustic waves 
leads to the deformation potential.18* 

(2) In a metal or semimetal, neutrality is maintained so closely that 
the difference between the long-range potential and T(R) is constant and 
is determined by the constant density. This condition again restores the 
equality of p(')(k, R) and p(I)(k). The result is that Vo plus the short- 
range self-consistent field are just as in the uniform perturbation. The 
lack of neutrality, however, does lead to a significant long-range potential 
because the factor l/q2 for long wavelengths greatly magnifies the im- 
portftnce of even small density fluctuations. This effect has been discussed 
by Bardeen in connection with the electron-phonon interaction and by 
the author in relation to acoustic atten~ati0n.l~ 

In other cases, the p(')(k, R) can be calculated by straightforward 
perturbation theory. This will frequently lead to essentially similar results, 
but the procedure now centers about a perturbation treatment involving 
the strength of the interaction, rather than only its effective wave number. 

In the case of perturbations which are not constant in time but vary 
slowly compared to interband and plasma frequencies, essentially similar 
arguments can be used to reach the same conclusions. 

Application of the foregoing procedure to an applied magnetic field 
shows that the leading term is simply H[k + (e/k)A], where A includes 
only the terms in R, not those in X. In particular, the velocity to be used 
in the interaction with a vector potential of long wavelength that varies 
slowly is w not v. Kane obtained a similar result from an argument involving 
gage-invariance. l8 

The discussion 50 far shows that practically all of the previous formalism 
can be maintained in the self-consistent field theory. The only problem we 
have noticed is that the velocity w differs from v. Actually, w can be 
used in calculating the current, if properly interpreted. If we consider the 
error thus introduced, it is the trace of p(w - v )  : 

= 0. (V.15) 

Thus w will give the right answer, provided the exact .w, determined 
from the correct density matrix p not the unperturbed density matrix 
p(O), is used. This, however, is an inconvenience and it seems easier, probably, 
to use the velocity v in calculating currents. 

lo  J. Bardeen, Phys. Rev. 52,688 (1937); E. I. Blount, ibid. 114,418 (1959). 
J. Bardeen and W. Shockley, Phye. Rev. 80, 72 (1950). 
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VI. The (N + 1)-Electron Problem 

In this section we shall consider a case in which an exact many-body 
theory leads to results very similar to that of simple band theory. This is 
the problem of an insulator, with one extra electron, which has been 
treated previously by KohnZo and Ambegaokar21s22 and by Klein.23 It is 
beyond the scope of this paper to use the diagrammatic techniques which 
appear to be necessary for careful proof of some results. For these points 
the reader is referred to the original papers. 

We shall consider the Hamiltonian 

where U is the oneelectron periodic potential and N is the number of 
electrons in the insulator. We have included the spin-orbit interactions of 
the electrons with the nuclei, but not the interelectronic spin-orbit or 
magnetic interactions. This is a reasonable procedure since the possibility 
of large values of nuclear charge permits the term we have kept to be 
important, while the small electronic charge and the exclusion principle 
keep the interelectronic effects small. 

Since the Hamiltonian is unchanged if we add any lattice vector R to 
all the electronic coordinates, we can write the eigenfunction in the form 

(VI.2) 

where u is periodic in the sense just used and is antisymmetric in the 
electronic coordinates. If we increase each x by R, $',,k is multiplied by 
e(N+l)k.R. When periodic boundary conditions are used, N must be a multiple 
of the number of cells in the lattice in each of the main directions and k 
is, therefore, restricted in such a way that eiNk.R = 1 for all admissible k. 
Therefore we can omit the N in the previous exponential; the character of 
$'nk is eik.R, as in the oneelectron case. We shall assume this as a charac- 
teristic of the insulator-plus-one-electron problem in either periodic or 
infinite boundary condition. 

*O W. Kohn, Phys. Reu. 105, 509 (1957); 110.857 (1958). 

*l V. Ambegaokar and W. Kohn, Phys. Rev. 117,423 (1960). 

fs V. Ambegaokar, Phys. Rev. 121.91 (1961). 
Is A. Klein, Phys. Rev. 115, 1136 (1959). 
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We first consider the variable x = c xi .  Just as in the oneelectron 
CMR, 

a 
x = i - + X  

ak 

(VI.3) 

where the integral is taken over all xo xN, subject to the condition 
thab x lie in the unit cell including the origin. 

As written, we have no reason to expect that n is a discrete index. 
Following Kohn, we shall select the assumption that n is discrete a t  low 
energies as providing the definition of the insulator-plus-oneelectron 
problem. 

As indicated in Appendix A for the oneelectron case, this representation 
of x is valid only when applied to wave functions for which 2 (not xt) 
is bounded. 

The total velocity ?23 is given by 

i 

6 
23 = --C [x i ,  H ]  

i 
= - n  [x ,  H ]  

Thus again 

As in the oneelectron case, we can define 
H ( k )  = , - ik .xHeik .x  

(VI.4) 

(VI.5) 
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The only important difference lies in the factor (N + 1)  in the last term. 
Let us now attempt to find an equation analogous to (1.7) by considering 
the commutator 

i N + 1  -- [x, 231 = - 
f i  m 

(VI.6) 

where we have kept only the terms which contribute to the diagonal 
matrix elements. These yield 

(VI.7) 
1 av 1 a2E - (I = - -  =-- -- 
nak  ~ a k a k  m 

This again is identical to (2.18)) except for the factor ( N  + 1) which at 
first sight appears rather strange. 

Let us consider the perfect insulator for a moment. We could treat it 
in much the same way that we have proceeded above, except that in the 
ground state v = 0 and N + 1 is replaced by N. Thus 

N i  

m f i  
0 = - + - cv, XI0 (VI.8) 

where the subscript means the value of the commutator in the ground 
state of the insulator. Thus we can rewrite (VI.7) in the form 

1 i  i 

m f i  n = - + - p, XI - - p, XI0 (VI.9) 

showing that we must remove the filled band contribution to the com- 
mutator or f sum in calculating the effective mass. In terms of the diagrams 
of Kohn and Ambegaokar, this means that we need only use graphs like 
the “extra-particle response” graphs. 

This sum rule differs from that obtained by Ambegaokar for finite 
wavelengths but is not in contradiction. (Without going into detail, we 
will remark that (VI.9) can be obtained from his sum rule by eliminating 
all improper graphs. This procedure can be shown to give a null contribution 
at  zero frequency. This result is not immediately apparent in his paper 
because he takes the limit q + 0 before letting w + 0. For the zero-frequency 
response, in which he was not primarily interested, one should reverse this 
order. This in no way invalidates any of his results.) 
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All other relations between v's and X's obtained in Part I now follow 
immediately. We turn next to the representation of one-electron perturba- 
tions. If the potential c V(xJ is applied to the system, we first rewrite 
it as 

(VI.10) 

Thus the matrix elements of V are 

Kohn has shown that a t  small g, P(q)nk,ntk+p approaches 

1 
lim pnnp(q) = - 6nnn 

K 

where K is the static dielectric constant of the insulator. Thus for small 
q, V can be represented as 

v = - v ( 2 ) .  1 
K 

The term linear in q takes the form 

Here we have a difference from the oneelectron case 
t n e  

- # -. 
as. K 

(VI. 12) 

(VI. 13) 

SinCe 

(VI. 14) 

The difference between them can be interpreted as a periodic perturbation 
arising from the fact that the polarization of the core charge by the field 
is not uniform in space, but varies over a unit cell. In general, p replaces 
S in (2.20) for the representation of oneelectron potentials. 

We have obtained above a result for slowly varying fields. If we consider 
a constant field so that V(xi) = -eE.x; we obtain for V the representation 

V = -eEi*- - eE.E (VI.15) 
a 

ak 
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This expression differs in two respects from (VI.12) and (VI.13). First, 
the 1 / ~  is missing; second, we have replaced ap/aq by i. The first is not a 
serious problem, for in writing the potential in this way, we are implying 
that E is the real electrostatic field whereas in our previous treatment 
aV/ax would correspond to D in Maxwell’s theory. The second problem is 
more serious and shows that while the use of the dielectric constant describes 
the long-range effect of the field sufficiently, it fails to take into account 
the periodic polarization of the insulator which produced a periodic per- 
turbation. In other words when we write V ( z J  = -eE.xi ,  we are pre- 
supposing a very special charge distribution which cancels out the effect 
of the core polarization. This, of course, is not what we use in practice in 
applying a static uniform electric field. Hence if we have occasion to work 
to this accuracy, as in anomalous Hall effects, we should add a term 
describing this atomic polarization to the potential E.x .  

Thus for the special case of an insulator plus oneelectron we recover a 
band theory which exhibits only slight variations from the oneelectron 
theory. The same conclusions hold in the magnetic case, as has been shown 
in part by Klein and Ambegaokar. We may anticipate that these results 
also apply for a few electrons in an insulator until the number of added 
electrons becomes great enough to cause important interactions among 
them. 
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Appendix A. The Representation of x 

In Part I we saw that the representation of x in the CMR is not com- 
pletely straightforward. This is basically related to the fact that the 
operator x does not have the whole Hilbert space for its domain. That is, 
there exist normalizable functions 9 for which J I ~ ( x )  I x2 dx is not finite. 
Under these circumstances the easiest way to find the representation of x 
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is to let it operate on a function p which is in its domain and see what form 
it takes. For any function p we take its representation in Bloch functions: 

Then for xp we obtain 

The surface integral is to be taken over a limiting surface in k space 
surrounding any points of discontinuity in f,,(k)$',k(x). Purely in- 
tuitively, it seems unlikely that any physically realizable wave function 
could have such discontinuities. More mathematically, it can be shown 
that, for functions in the domain of x, there are no discontinuities. For c fn(k)$'nk(X) = cp p(k 4- K)ei(k+K).x where K is a reciprocal lattice 
vector and p(k) is the Fourier transform of p(x). Thus if p(k) has no 
discontinuities, there are none in C fnk$'nk. But any function p, for which 
J 1 p(x) l 2  x2 d3x exists, has a uniformly continuous Fourier transform 
which is nearly everywhere differentiable. Thus for all p in the domain of 
x, we can in fact write 

In Part II, however, we discuss Wannier functions, whose representation 
in the CMR is given by 

Wherever two bands are degenerate at one point in k space, there is a 
question as to how to number the bands. Generally, the only feasible 
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procedure is to define the nth band a t  each k as that whose energy is nth 
from the bottom. This may, however, result in a situation whereby un(k) 
changes discontinuously on passing through such a point. This will generally 
be true if the energy contours are linear along the path through the de- 
generacy. Thus in this case it is more convenient to consider the dis- 
continuity to reside in the u than in f. We find then for the Wannier 
functions for R = 0 

If there is a surface of discontinuity, the surface integral term can be 
written 

the surface now being considered as one-sided. If the discontinuity is a 
line or point, the surface shrinks to zero area. Since the unk(x) are bounded, 
the contribution of these surfaces vanishes. 

On the other hand, plane discontinuities may occur in structures with 
twofold screw axes. The bands separate in energy proportionally to distance 
from the plane, so if the bands are labeled in order of their energy, there 
is a discontinuity in Unk, and the surface does not shrink in the limit. 
Thus the surface contribution is finite. If we calculate the expectation 
value of X, we obtain 

52 
- i - 1 d S d3k ( x )  - uii) (x) ) 

(27) 

Here the two terms in the surface integral cancel and we are left with only 

If we now consider the integral of x2, 
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If we call z the direction perpendicular to the plane, k, = k,' and the 
integration over z diverges. (In box normalization it would be proportional 
to the length of the box.) More particularly the integral of z2 diverges, 
while the corresponding surface integrals for x and y vanish and Wannier 
function is, so far, well-behaved in these directions. 

Near lines and points of degeneracy, as we have seen, the surface 
contributions to xu and thus to J I a l 2  x2 dV vanish. This is not necessarily 
the case for higher power of x. Suppose that xna can be expressed as 
[i(a/ak) + t-j"f, but that the integral of this quantity over a surface 
around a discontinuity does not vanish. There is then a surface contri- 
bution to xn+'a and to J x2("+l) 1 a l 2  dV. However, a detailed examination 
shows that in such a case the contribution to (J x("f1) 1 a l 2  d V )  from the 
volume integral diverges if n is odd, and that to J xn 1 a l2 dV diverges if n 
is even. Thus the surface contributions do not play any vital role in these 
cases. 

Appendix B. Consequences of Inversion and Time Reversal 

A large number of crystals possess inversion symmetry J, including 
the great majority of those which have been seriously investigated. In the 
absence of magnetic fields, or to the extent that such fields are neglected, 
all crystals have time reversal symmetry K .  Since each of these operations 
transform a wave function of wave vector k into one of wave vector - k, 
their product leaves the wave vector unchanged. This operator, which we 
shall call conjugation and denote by C ,  is thus a symmetry operator 
diagonal in k for all points in the BZ. 

The operator C has two important properties which can be used to 
obtain restrictions on the matrix elements of operators: 

antilinearity: Ca# = aC# 

antiunitarity C+ = U$ 

where U is a unitary operator. 
Both properties follow immediately from the nature of KZ4 and the 

linear, unitary character of J. These are the same properties possessed by 
time reversal itself, which suffice to determine its consequences. If there is 
no spin, U has the property U2 = C2 = 1, while if spin is included U2 = 

C2 = - 1. On the other hand, when there is spin but no spin-orbit coupling, 
U itself, which is spin-reversal, is a symmetry of the syst.em and the 

24 E. P. Wigner, Naehr. Akad. Wiss.  Goltingen, Math.-physik. Kl. p. 546 (1932); also 
"Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra," 
p. 325. Academic Press, New York, 1959. 



360 E. I. BLOUNT 

operation of complex conjugation alone is, therefore, also a symmetry 
which can replace K. Thus we will adopt the point of view that U2 = 1, 
unless there is spin-orbit coupling. 

Since C is antiunitary it cannot be adequately represented by a matrix. 
On the other hand, its operation on a base vector can be so represented 
and we will define the matrix C in such a way that Ccpi = (o,Cii. 

With these properties WignerI6 showed that K produces no extra 
degeneracy in the absence of spin-orbit coupling, but does make every level 
doubly degenerate in the presence of spin-orbit coupling. 

Thus, C also produces no degeneracy at  k in the absence of spin, but 
makes each level a t  k doubly degenerate in its presence, as shown by 
Elliott.26 C can be represented by the identity in the former case. In the 
latter case, the wave functions can be chosen in pairs in such a way that 
C has the representation iu, in the two-dimensional space associated with 
each pair. Using (Bl)  it is easy to show that if a unitary transformation 
R is made, the matrix C representing C is transformed according to the 
rule 

If we restrict ourselves to generalized phase transformations, we need only 
consider each pair of functions separately. If R = ei*eiAiui, we find that if 
c = iu, 

In the absence of spin we consider only R = e iV .  Then if C = 1, 

C' = RCRT. (B3) 

C' = e+2ispiay. 034) 

(B5) 
In either case C is a unitary matrix but does not transform as a unitary 
operator. 

C' = e+2+. 

Using (B2), we obtain for the matrix elements of an operator 0 
(C+, OCcp) = ( W t 0 U o >  

= (cp ,  U+O+i7I)) 

= (cp,  C-lOtC+) 

= (+, COC-'cp). 
Thus 

Cf,O,,C,j = * O i j  

where the + sign applies if 0 is invariant under C, the minus sign if it 
changes sign. 

In the absence of spin-orbit coupling, this becomes 

u R. J. Elliott, Phys. Rev. 96, 280 (1954). 
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where the (0's represent the phases of the two bands relative to phases for 
which C = 1. In particular, if an operator is Hermitian and, like velocity, 
is invariant under C,  its matrix elements can be made real. If 0 is Hermitian 
and changes sign under C like x, it can be made imaginary, and its diagonal 
elements vanish. (In the case of x, whose singularity makes it a special 
case, X,, can be made to vanish locally, but not necessarily everywhere. 
If there are curves of degeneracy it may not be possible to choose the 
phases so as to make the u's continuous in k space in such a way that X,, 
vanishes everywhere. On the other hand, since V X Xnn is invariant under 
phase changes, it vanishes everywhere.) 

En the case of spin-orbit coupling, a similar relation is obtained, but we 
write it only for the matrix elements between wave functions of a given 
pair 

where the ups refer to the Pauli matrices as mathematical objects, unrelated 
to actual spin. If we write 0 = B + c AZUZ,  we obtain 

0 = ++9(rV~gfi+2'9. W b )  

where we preserve the complex conjugate and phase factors to take account 
of operators like x which are not diagonal in k. We see that Hermitian 
operators which are diagonal in k have the form B if they are invariant, 
under C ,  and A - a  if they change sign under C (for A and B must be real 
in that case). In the case of x, 

Hence 

By proper choice of Q'S, aq/ak can be made to vanish locally and X,, has 
the form c A ~ u z .  Therefore, P also has this last form locally, and by its 
invariance, has the same form everywhere. 
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Appendix C. Bands in Complex k Space 

We have seen that in determining the asymptotic properties of Wannier 
functions, the behavior of the wave functions as functions of the complex 
vector k is important. In this section we shall discuss the extension of 
operators and wave functions into the complex plane and their analytical 
properties. Kohn12 has given such a discussion for one dimension. 

In Part I we found it convenient to define the operator H ( k )  which is 
allowed to operate only on periodic functions. If we permit k in Eq. (1.7) 
to take on complex values, H ( k )  is no longer Hermitian except for real k. 
I t  does, however, have the property ; 

H + ( k )  = H ( k ) .  (C1) 

As a consequence of the non-Hermitian character of H ( k ) ,  the eigen- 
vectors of H ( k )  are not orthogonal and H ( k )  can be diagonal only when 
the eigenvalues are distinct. In case there are multiple eigenvalues, the 
matrix can be reduced to the form of diagonal blocks, one corresponding 
to each eigenvalue. These eigenvalues are the diagonal elements in their 
respective blocks; there are no matrix elements between states in different 
blocks. 

There are, of course, two eigenvalues problems associated with H ( k )  

Since H ( k )  is not Hermitian, $ is not in general equal to $t. Instead of 
the orthogonormality relation 

we have 

and the additional relation 

resulting from ( C l ) .  
The relation (Cl)  has, as a special case, the condition that H is Her- 

mitian for real k, and leads to real eigenvalues in real k space. It also 
implies that En(k)  = En(k) .  Another important property is time-reversal 
which states that for any solution $ of the Schrodinger equation H$ = E$, 
with a real eigenvalue E, $ is also a solution since H is real. (In the case 
of spin-orbit coupling the spin must also be reversed.) In complex k 
space, we see that if H$ = E$ for complex E, $ is a solution of H with 

the eigenvalues En( -k) are the complex conjugates of the En(k). Corn- 

($at) $m) = 6nm 

($n, $m) = 6nm (C3) 

$nE = $!k (C4) 

eigenvalue E.  Since the complex conjugate of eik'%nk(x) is ei(-E)'xtZ nk (XI ) 
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bining this result with our previous one, we see that the sets E,,(-k) 
and E,(k) are equal throughout complex k space. Furthermore, if k is 
pure imaginary -li = k. Thus for each n, there is an n' such that 

(C5) E,(k) = E,,(k) k imaginary. 

Thus, either n = n' and the energy is real, or they are conjugate pairs. In 
the latter case, as k approaches zero in imaginary k space, the two bands 
must approach the same real energy. Therefore, if a given level at k = 0 
is nondegenerate, its energy for imaginary k near the real axis must be 
real. For k = (K/2) + im, where K is a reciprocal lattice vector, -k is 
equivalent to k and the same results hold. 

Another important property possessed by H is the fact that it is analytic. 
This means that each matrix element of H is an analytic function of k. In 
the form 

fi2k2 
H(k) = H + nk.V + - 

2m 

each matrix element is in fact a simple quadratic function. The most concise 
statement of the analytic quality is provided by the equation 

[R, H ]  = 0 
where 

and 
k = l + i m  

k = 1 - im. 

Wave functions are analytic if they satisfy the corresponding equation 

R$ = 0. (C8) 

Evidently, if U is an analytic operator with an inverse .UHU-' is also 
analytic. In particular if U satisfies the equation 

HU = UE 
where E is diagonal, 

E = UHU-' 

is analytic, whenever U-' exists, provided U is analytic. 
With certain exceptions, the analytic nature of U is not difficult to 

prove, although it requires some labor. We suppose that at  some point ko, 
the eigenvalue problem has been solved, and the eigenfunction found. 
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Then at  ko + q, we have 
Hnnl(b + q) = Hn6nn# + fiq-vnnt (b) * ( C W  

Here we have neglected the term fi2q2/2m, which evidently does not affect 
the analytic nature of E or U .  At b, the eigenfunctions Ut have the form 

U n t  = 6tn. (C11) 
We want the eigenfunction at  q. We further suppose, for the time being, 
that the eigenvalues are nondegenerate. In this case, the question we are 
considering is essentially the convergence of perturbation theory for the 
present problem. In general, perturbation theory is believed to be con- 
vergent only asymptotically. In the present case, however, we shall prove 
that the U's can in fact be differentiated. We rewrite (C9) 

( C W  - (H, - El) Unt = C fiq.?B~~?U,~t. 
nI 

Taking the absolute square, we find with the Schwartz inequality 

C 1 Hn - Et 1' 1 Unt l2 < I @ 1' C Utn(%2)nn*unlt* 
n nnf 

< f i2  I q 12 ( 8 2 ) t t  ((313) 
At this point the simplest, if not most elegant, procedure is to invoke 
relativity theory, thus guaranteeing that V : ,  < C2. Then as q becomes 
very small, this relation can be satisfied only if U,Z vanishes like q for all 
but one n, and if El approaches the corresponding H,. If there is a de- 
generacy at  b, the only change is that U,I vanishes for all n not belonging 
to one energy level a t  ko. 

We now return to (C12) and consider the level 0, labeling EO as the 
level which approaches Ho at  small q. Then 

(Hn - Eo(q)) Uno(q) = -fiq*Vnn*Unto(q) ((314) 
and for n # 0 

By the previous paragraph this limit is defined so as to yield 

Vno - -  - au, 
ak H, - Ho 
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as would be obtained by assuming the convergence of perturbation theory. 
Since this limit does not depend on the realness of q, the Cauchy-Riemann 
conditions are satisfied. We observe, however, that Urn is not determined 
by the foregoing procedure but by the condition (C3). The equation for 
n = 0 yields instead 

or 

Thus, the Cauchy-Riemann conditions are satisfied a t  ko for both E 
and U. Furthermore, since H is analytic and U and E are continuous, the 
derivatives are continuous in a neighborhood around ko. These conditions 
are sufficient to establish that E and U are analytic. 

At ko, a point of degeneracy between two or more bands, the Hamil- 
tonian can be brought into a form in which the nonzero elements are all 
along the diagonal, or above it; furthermore, Hn,t = 0 unless H,, = H,w. 
For real k, of course, all nondiagonal elements can be removed. At neigh- 
boring points, ko + q interband elements proportional to q will appear. 
By arguments essentially like those already used, the elements connecting 
different eigenvalues can be removed analytically to give an analytic 
matrix for each group of degenerate levels. We can now fix our attention 
on just one of these groups. For simplicity we shall discuss only double 
degeneracies. More complicated cases are equally straightforward, if 
longer. Setting the diagonal elements a t  ko equal to zero, we then have the 
matrix 

q-vo + q.V1+ . * a  u + q-vz + ." 
q.v3 + ... q-vo - q - v 1 +  * * .  . 

The resulting secular equation is 
(E-q*Vo)2 = Uq*V, + (q.VJ2 + q.VzV3.q. 

Let us consider one complex line. (We shall refer in this way to a plane in 
our sixdimensional space, for which the two independent directions can 
be chosen as the real and imaginary parts of one component of k.) Then 
Uq.V3 does not vanish generally and E is not analytic as a function of t, 
say : 

Indeed it has a branch point of order 1. Similarly the wave functions 
have branch points, as we shall now see in detail. 

E* = q.Vo f q;"(UVh + qzVaV2r. + qoV:, + . .-)1'2. 
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The wave functions Cf are determined by 

(q*Vi + q*Vo - Ef) Cif + (U + q.Vz) Czf = 0 

q*VaCif - (q*Vi + q*Vo + E*)CZf = 0 

Cq‘ 

Cxf u + q-vz 

Ef - q.Vi - q.Vo - -  - 

Similarly for the solutions of the transposed equation, Df 

u + q-vz - -  - DZf 
Dif Ef + q*V1”+ q.Vo’ 

Thus, the branch points appear, through E, in C and D. 
It is worthy of note that as q --+ 0, Cz --t 0 and D1 + 0 for both E+ 

and E-. Thus both eigenvectors approach the same vector a t  the de- 
generacy where there is only one eigenvector. For if k = 0, the vector 
C1 = 1, Cz = 0 is an eigenvector, but the vector Cz = 1, C1 = 0 is not, 
and conversely for the D’s. This is a consequence of the non-Hermitian 
character of H ( k )  at  complex k. Near degeneracies, not only are two eigen- 
vectors not orthogonal, they are nearly identical except, of course, for 
real k. 

So far we have considered the general case in which Uq*Pa # 0 for the 
complex line being considered. If Uq- Va = 0, Ef is analytic on the line k. 
For some line of q through any point, q.Va is in fact zero. Along this line, 
the bands diverge linearly and analytically in k rather than as I k ll’z, and 
the C’s and D’s behave similarly, although again, of course, they converge 
to one single eigenvector rather than two. 

If U is zero, however, the behavior is much more like what we find for 
real k. There are two eigenvectors a t  q = 0, and the behavior is analytic 
on any complex line through k. Before passing to the general case, we 
mention some important special cases. 

(a) In crystals with inversion symmetry, the bands are. doubly de- 
generate throughout real k space when spin is included. Analyticness now 
requires that the degeneracy extend throughout complex k space, and that 
U = 0 everywhere. (This can also be proven by group theory, but the proof 
is more difficult than for real k space.) 

(b) In some crystals there are planes of degeneracy in real k space. 
Again analyticness requires the extension of these degeneracies into complex 
k space; U also vanishes on these complex planes (defined analogously to 
complex lines). Thus the energies and wave functions are analytic on and 
near such degeneracies. This is a general feature of ( n  - 1)dmensional 
degeneracies in dimensional space. 
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(c) In one-dimensional problems, if two bands are degeiierate a t  a 
real k, they are analytic in the neighborhood of such a degeneracy. Thus 
Kohn’s analysis1z extends to this case also, albhough such degeneracies are 
vanishingly improbable in Herring’sze sense, and thus of no real importance. 

Returning to the general case, we expect that the conditions U = 0 
and AE = 0 can be satisfied only on a two-dimensional curve in our six- 
dimensional space. This suggests that such curves are the intersections of 
two surfaces of degeneracy, both involving the same pair of bands. When 
two branch surfaces of order 1 intersect, their branch characters cancel so 
far as any complex line through the intersection is concerned, for any 
closed path on such a line must surround an even number of branch points. 
Thus U must be zero at such an intersection. Conversely, if we consider 
the surfaces of degeneracy near a point where U = 0, the lowest order of 
k appearing in the equations defining the surface is the second. Thus there 
are two surfaces of degeneracy of the two bands near any such point. 
Although these points are not branch points for any one complex line, we 
may come back to a different band from the original on a closed contour 
which does not stay in one complex line. This will now be considered in 
more detail in regard to another special case. 

(d) Symmetry lines of degeneracy. Many crystals have lines of sym- 
metry along which degeneracies of bands occur. These degeneracies, like 
those on planes, extend over the complex line by arguments involving 
symmetry or analyticness. Likewise U is zero on the whole complex line. 
Thus on any intersecting complex line, the behavior of the energies and 
wave functions is analytic. Nevertheless, the analytical behavior in three 
dimensions is somewhat complicated. 

(1)  First let us consider the more usual case taking the two-band 
Hamiltonian near the degeneracy to be of the following form 

Then the energy is given by 

On the complex k ,  line we have 
E* = =tVik,. 

In real k space, on the other hand, 

E = f dkzzVi2  + k,2Vn2 

*a C. Herring, Phys. Rev. 52, 365 (1937). 
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where Va = V2 and V1 and Vz are taken as real. Then there is no de- 
generacy except a t  k = 0 real k space. If we follow a path from a point k,  
in the band with energy V l k ,  to a point - k,, avoiding the origin and keeping 
the energy continuous, the energy at  - k ,  is also Vlk,. On the other hand, 
had we followed the analytically defined band on the complex k line we 
should have ended with energy - Vlk, .  Thus, although there is no branch 
point on the k,  line or in real k space, there are two branch surfaces defined 
by the equation 

VZ v3 
k,  = fk, -. 

V12 

Any closed path, either in real space or on the complex line passes around 
both of these or neither of them. A closed path composed of our two 
previously discussed paths, however, circulakes just one, and typical 
branch behavior results. 

(2) If the energies diverge quadratically from the line of symmetry, a 
typical Hamiltonian is 

1 (k? - k,')ai k z k t ~ 2  

( k,k& 

E2 = (YI'( kZ2 - kV2) 

- (k,' - kU2)a1 

+ a2&kz2ku2. 

If we follow the paths defined above, in this case we wind up with the 
same energy we started with in both cases. The explanation is easily seen 
to be that we now have twice asmany branch surfaces as before, since for 
given k,  we now have four values of k,  which make E2 vanish. Our com- 
posite path through real space and the k,  line now surrounds an even 
number of such surfaces. This situation is somewhat simpler in that both 
types of path likely to be of most interest give the same end results, but 
the branch behavior still lurks close behind the surface. In particular it 
means that the bands have singularities a t  the real axis so that the per- 
turbation expansion at  this point does not converge and Wannier functions 
for the bands do not fall off exponentially a t  large distance. 

On the other hand, for bands which have no degeneracies in real k 
space, we can now extend the integrals defining the Wannier functions as 
described in the text out as far as the nearest approach of a degeneracy 
surface. 

In addition to showing the consequences of branch points in complex 
k space, Kohn's analysis demonstrated their existence. This can also be 
done in the present case. To this end, let us consider H(k) at large values 
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of the imaginary part m of k, whose real part is 1 

If m = 0, we know that if we go continuously from 1 to 1 + L, where L is 
a reciprocal lattice vector, the eigenvalues are periodic and analytic. If m 
is large, however, the behavior will be dominated by the eigenvalues of 
B(k).  These are independent of the periodic potential U and increase 
continuously and analytically by L if we go from 1 + im to 1 + L + im. 
Thus the eigenvalues obtained by analytic continuation are periodic for 
m 7 0 but not if m is very large, though of course the set of eigenvalues at  
1 is the same as the set at  1 + L. This situation clearly requires branch 
points, for by following a to a closed circuit from 1 through 1 + im, 
1 + im + L, and 1 + L back to 1 we arrive at  a different energy from that 
with which we started. We may say that the bands at large m are tilted 
relative to those for m = 0. We can also estimate the value of m at which 
the branch points should occur, for, roughly speaking, they will separate 
the region where H(1) is dominant from the region where m-V(l) prevails. 
Thus, m should be of the order of [ V , , f / ( E ,  - En#)]-1 or Xnnt. In simple 
cases where there are two band edges with nearly equal energies at the 
same point in k with all other bands much further away, this is easily 
verified. 

We can also determine something about the location of the branch 
surfaces. Since the eigenvalues at  large m are determined by m-V, they 
will be essentially the same as for free electrons. If 1 = 0, V(0) is just 
p/m for the Schrodinger equation, and the energies will be $m(fiK + im)2. 
At large m, these levels cannot be seriously perturbed by the potential, so 
for general directions of m, the energies are complex. On the ot,her hand, 
we established that near k = 0, the energies of bands which are nonde- 
generate at k = 0 are real for imaginary k. A real analytic function can 
become complex in this way only by having a branch point in the imaginary 
k space in every direction. That is, the branch points in imaginary k 
space form a two-dimensional manifold. Similarly, there is a surface of 
branch points in each three-dimensional manifold k = (K/2) + im, where 
K is a reciprocal lattice vector. Since the branch surfaces are four- 
dimensional and imaginary k space three-dimensional, one would have 
anticipated only a one-dimensional intersection. In the special case of one- 
dimensional bands, this result has the form that each band must have 
branch points in imaginary k space and on the lines (K/2) + im. In this 
case, the branch points might have been anticipated to be completely 
unlikely to lie on the imaginary axis (or any prechosen one-dimensional 
manifold), but in fact they must lie on it. 
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Appendix D. Derivation of Multiplication Rule 

Given two functions N and 0 where product is P, we wish to  find the 
product formula in the mixed representation. We have then 

P(k, R) = \ e-"''P(k; q) d3q (D1) 

= / e-".RP(k + 

where q is limited to  its principal BZ, and e can be taken over any BZ. 

but we run into difficulty because 
We now wish to obtain N[k + ( q / 2 ) ,  k + e l  in terms of N(k, R),  

is periodic in ( q / 2 )  - e when ( 4 2 )  + ( q / 4 )  is held constant, while 
N[k + ( q / 2 ) ,  k + E] is not. We must, therefore, always choose E so that 
I (q'/2) - e' I < I K r / 2  I. Consider Fig. 1, in which we have changed 

FIG. 1. 
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variables to K I ,  KZ: 

The oblique rectangle is the original region of integration, but in 
regions A and B, N[k  + ( ~ 1 / 2 )  ; - K J  is not equal to N [ K  + ( q / 2 ) ,  K + E] 

since 1 K Z ~  1 > I K p / 2  I. The latter is in this region equal to 

N ( k  + ( K 1 / 2 )  4- ( K / 2 ) ;  - K 2  4- K) 

(obtained by adding K to L) . Thus so far as N is concerned, we can replace 
A by At  and B by B' but 0 requires correction in these regions. Fortunately, 
the periodicity of N ( k  -k ( ~ 1 / 2 )  ; - ~ 2 )  in KZ now comes to our aid by 
enabling us to replace A' and D by A" and D" which by exactly similar 
reasoning turns out to give correct results for 0 also. Likewise B and C 
are moved to B" and C". Our result is 

where the region of integration for each pair of components KIP, K Z ~  is the 
heavily outlined region of Fig. 1. We can now rewrite this as 

ei(Ki.Rz-Kz.Ri) d 3 K 1  d 3 K 2 .  (D5) 

To obtain a more useful form, we expand N and 0 in power series in 
R 1  and Rz, obtaining 

where we have written as if for one dimension, the generalization being 
easy, but messy in appearance. The summations over RI and R 2  now give 
derivatives of delta functions, which we integrate by parts, obtaining 

In this derivation we have assumed the existence of continuous func- 
tions of R with an infinite radius of convergence which are equal to Nand 
0 at all lattice points. Such functions always exist and are not even unique. 
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The most suitable function is 

N ( k ,  Z) = c 1 daqN(k, R ) e i q * ( * R ) .  
R BZ 

Even granting this point however, our derivation of (D6) has been 
rather cavalier, involving the rearrangement of a series which is not 
absolutely convergent. Let us then look more carefully at (D6) and its 
derivation. Suppose that O ( k ,  R )  has only one Fourier component O ( k ;  q)  . 
Then if q is greater than the radius of convergence of any alN/aRI, (D6) 
will diverge. Thus clearly if O ( k ;  q)  has finite values for any q outside the 
surface of convergence of N and its dehvatives, divergence will result, 
while if neither 0 nor N has such O(k; q) we expect convergence. The 
latter should include many useful cases, but we would like to extend the 
usefulness of (D6) into the nonconvergent region. To this end we examine 
(D4) and consider the approximation of 0 by 

For a region inside the radius of convergence, this approximation should 
be very good; in fact, there exists an A ( k l )  such that 

where k, is the radius of convergence of O ( k ;  K ~ )  in k, and c is a finite 
positive number, as is A. Furthermore, outside k, - c, the error should 
have an upper bound M. Thus the error arising from using On for 0 in 
(D4) is less than 

where the prime indicates that the integral over ~2 excludes the region of 
the first integral. 

Now if we consider a family of functions N ( k ,  R; X) such that as X 
becomes small the Fourier transform N(k; q; X) becomes more concentrated 
at small \ q 1, we can determine whether (D9) goes to zero faster than X" 
as X goes to zero for all n. If it does, then the expansion is asymptotically 
convergent in A. (For example, suppose N ( h ;  q ;  A) behaves like e- lql 'x . )  If, 
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furthermore, we now reproduce this process for KI ,  we establish that the 
following series is asymptotically convergent. 

but this series is identical to (D6). Thus the possibility of asymptotic 
convergence for (D6) is established. Whether it actually is asymptotically 
convergent depends on whether there is a useful parameter X with the 
sta$ed property. 

Even in cases where the series neither converges nor is asymptotic, 
the use of a few terms may provide a reasonable approximation. Thus we 
may be able to establish that the first three terms will provide an approxi- 
mation better than X2 for small A, which may be useful even if we cannot 
proceed to higher orders similarly. 




