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Abstract

A program for calculating the semi-classic transport coefficients is described. It is based on a smoothed Fourier interpolation of the bands. From
this analytical representation we calculate the derivatives necessary for the transport distributions. The method is compared to earlier calculations,
which in principle should be exact within Boltzmann theory, and a very convincing agreement is found.

Program summary

Title of program: BoltzTraP

Catalogue identifier: ADXU_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ ADXU_v1_0

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
Licensing provisions: none

Programming language used: Fortran 90

Computer: The program should work on any system with a F90 compiler. The code has been tested with the Intel Fortran compiler
Operating system: Unix/Linux

RAM: bytes up to 2 GB for low symmetry, small unit cell structures

No. of lines in distributed program, including test data, etc.: 1534213

No. of bytes in distributed program, including test data, etc.: 27473 227

Distribution format: tar.gz

External routines: The LaPack and Blas libraries are needed

Nature of problem: Analytic expansion of energy-bands. Calculation of semi-classic integrals.
Solution method: Smoothed Fourier expansion of bands.

Running time: Up to 3 hours for low symmetry, small unit cell structures.

© 2006 Elsevier B.V. All rights reserved.

PACS: 71.20.-b; 72.10.-d
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1. Introduction

Method developments, the existence of user friendly distrib-
uted codes and the ever increasing computer power are making

the calculation of band-structures, for even relatively complex

This paper Aand its asso.c1aFed computer prograrp are .avallable via the materials, more and more straight forward. As several proper-
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The code presented here relies on a Fourier expansion of the
band energies where the space group symmetry is maintained
by using star functions. The idea of the Fourier expansion is
to use more star functions than band energies, but to constrain
the fit so that the extrapolated energies are exactly equal to the
calculated band-energies and use the additional freedom to min-
imize a roughness function and thereby suppress oscillations
between the data-points [1-3]. Using the analytical represen-
tation of the bands it is then a reasonable simple procedure to
calculate band-structure dependent quantities. The method has
been tested for several applications based on Boltzmann theory,
including the transport coefficients of intermetallic compounds
[4], high T¢ superconductors [5] and thermoelectrics [6]. Fur-
thermore the present code has already been applied to calcu-
late the transport coefficients in a series of different clathrate
structures [7] and a very good agreement was found with ex-
perimental values [8,9]. The good agreement was also found
for the demanding Hall coefficient that depends on the second
derivative of the bands [7,9].

Because of the known limitations of Boltzmann theory [10]
the comparison with experimental measurements is not the best
method for testing the actual algorithm for expanding the bands.
As the interpolated bands pass exactly though the calculated
band-energies, the precision of the present method is mainly
limited by possible band crossings where the band derivatives
will be calculated wrongly. We will therefore test our method
by comparing with the resent results by Scheidemantel et al.
[11]. Scheidemantel et al. calculated transport coefficients of
BiyTes [11] by calculating the group velocities from the mo-
mentum matrix elements. As the momentum matrix elements
can be calculated directly from the wavefunction [12], their
method should avoid any problems at band crossings [11]. As
the calculations were documented in detail [11] and Bi;Te3 has
a complex band-structure that is strongly influenced by spin or-
bit coupling, it constitutes a challenging test-case which we will
use in the present paper.

2. Code implementation
2.1. Algorithms

The code relies on a Fourier expansion of the band-energies
where the space group symmetry is maintained by using star
functions
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where R is a direct lattice vector, {A} are the n point group
rotations. The idea of the Fourier expansion is to use more star
functions than band-energies, but to constrain the fit so &; are
exactly equal to the band-energies, ¢; and use the additional
freedom to minimize a roughness function [1-3]. The choice of
the roughness function, pr, was discussed by Pickett et al. [3]
who found the following expression to be useful for suppressing
oscillations between the data-points
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Table 1
Input variables

bandstyle Format of band-structure to be input

idebug Controls level of output

eferm Fermi level (in Ry)

deltae de (in Ry)

ecut Cut-off energy around Fermi level

setgap Logic switch for band gap manipulation

gapsize New band-gap (in Ry)

lpfac # of times the interpolated mesh should be denser than the cal-
culated

efcut Range of p in which the integrations should be performed

tmax Max temperature at which the integrations should be per-
formed

deltat Temperature step

where Ry, is smallest nonzero lattice vector. C; and C, are
parameters, but our and earlier [3] experience found that the
results are quite insensitive to their actual value and we have
therefore fixed them to C; = C, = 3/4. To ensure that &;
pass exactly through the calculated the band-energies at the
same time as the roughness function is minimized, the algo-
rithm needs sufficient freedom. This means that the number of
planewaves must be larger than the number of band-energies.
The number of planewaves to the number of band-energies is
controlled by the input parameter LPFAC, Table 1, and the pro-
gram prints a warning if the fit is poor (subroutine KCOMP).
The expansion coefficients are given
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The time consuming steps in the Fourier expansion are obvi-
ously the solution of Eq. (4) and the setup of the H,s matrix,
Eq. (5). The matrix setup can be identified as a multiplication
of two k x R matrices and both Egs. (4) and (5) can thus be
handled efficiently by BLAS calls [13,14]. The calculation of
the expansion parameters, cR;, are carried out in the subroutine
FITE4.

3. Test problems
3.1. Boltzmann theory: The semi-classic equations

Boltzmann theory [10,15,16] is a useful tool for gaining in-
sight into the transport properties of real materials. In the pres-
ence of an electric and magnetic field and a thermal gradient the
electric current, j, can be written in terms of the conductivity
tensors

Ji=0ijEj +0ijx EjBr +vijV;T +---. (©6)
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In terms of the group velocity

(i, k) = + ik %
Vo (i, K) = —
* i dkg
and the inverse mass tensor
1 328'1(
Mzl k) = = ——=% 8
R = e ®)
the conductivity tensors can be obtained
oup(i. K) = €T kva (i, K)vg (i, k) ©)

while oy, is elegantly written using the Levi-Civita symbol,
€ijk [16,17]

Oapy (i, K) = €746 u0va (i, W)V, (1, ) M (10)

The notation used in Egs. (9)—(10) gives directly the sym-
metry of the conductivity tensors. F.inst. in an orthorhombic
symmetry oyg is diagonal with all three components indepen-
dent and oyp,, has three independent components and vanishes
unless «, B and y are all different.

The relaxation time, t, in principle is dependent on both
the band index and the k vector direction. However detailed
studies of the direction dependence of t have shown that, to a
good approximation, t is direction independent [18] and that
even in the superconducting cuprates, that have substantially
anisotropic conduction and cell-axes, the t is almost isotropic
[5]. In the present we will use the simplest approximation for
the relaxation time, namely to keep it constant, which is the
most often used in praxis.

Similar to the density of states energy projected conductivity
tensors can be defined using the conductivity tensors, Egs. (9)—
(10)
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where N is the number of K-points sampled. Similarly oug,, (¢)
can be defined. With the expansion of the bands, Eq. (1), the
necessary derivatives, Eq. (7), are straightforwardly calculated
as Fourier sums which can be efficiently evaluated using fast
Fourier transforms (FFTs). Evaluation of the density of states
and transport distributions thus requires a total of 10 FFTs for
each band in the general case. The calculation of the transport
distributions is carried out in the subroutine DOS and are output
to the files: case.transdos, case.sigxx, case.sigxxx.
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The transport tensors, Eq. (6), can then be calculated from
the conductivity distributions

1 Ofu(T;

oup(T5 ) = f Oup (s)[—%] de, (12)
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where «Y is the electronic part of the thermal conductivity. The
Seebeck and Hall coefficients can then easily be calculated

Sij = E«(V;T) ™' = (07 aivej, (16)
Ei}’ld

Rijk = —por=aot = @ Datjapic (@™ Dip. (17)
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Under the assumption that the relaxation time 7 is direction
independent, both the Seebeck and the Hall coefficients are in-
dependent of 7. The integrals in Eqgs. (12)—(15) are performed
in the subroutine FERMIINTEGRALS.

3.1.1. Test case: BiyTe;

The calculation was carried out using the WIEN code [19]
with the same computational parameters as in Ref. [11]. The
calculated transport coefficients were found to be converged us-
ing a non-shifted mesh with 56000 k points (4960 in the IBZ).
The original k-mesh was interpolated onto a mesh four times as
dense.

The calculated transport coefficients are given in Fig. 1.
Fig. 1(a), (b) shows the Seebeck coefficient and the power fac-
tor with respect to scattering time. Both these curves can be
compared to the earlier work [11] and an excellent agreement
is found, both with respect to shape and absolute values.

Fig. 1 demonstrates that potential problems at band cross-
ings have negligible influence on the calculated transport coef-
ficients for BiyTes at 300 K. It should off-course be underlined
that this is just one example and systems could exist where
the present method should fail. However, band crossings only
happen on symmetry lines (Symmetry planes in hexagonal sys-
tems), so, while the problem exists, as long as the k-sampling
is dense enough to keep the error localized at the crossing it
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Fig. 1. Transport coefficients as a function of chemical potential: (a) Seebeck coefficient. (b) Power factor with respect to scattering time Szo/ 7. One obtains the
power factor in the usual units of yW /(cm K?) by multiplying by  in units of 107145,
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Fig. 2. Integrand factor df/de in Eqs. (12)—(15) at T = 300 K. Arbitrary y
units.

will have little effect on global quantities like transport. Further-
more, at T = 300 K, the df/de factor, Fig. 2 is quite broad and
has 5% of its maximum value at ¢ — u = 0.11 eV. The trans-
port coefficients are thus a sum over several Fermi surfaces and
any problems will be smeared out.

As a further illustration and test of the method we have
calculated the electronic thermal conductivity at zero electric
current. This can be defined as

el
ij —

le - Tvia(a_l)ﬁavﬂj

(18)

or approximated through the electronic conductivity via Wie-
demann—Franz law, which for degenerate charge carriers is
given as

2 2
6= (7) our

Fig. 1(c) shows the electronic thermal conductivity calcu-
lated with two different methods, Eqgs. (18) and (19). As ex-
pected the two lines are in very good agreement. The second
term in Eq. (18), which is directly related to the power fac-
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Fig. 3. Electronic thermal conductivity as a function of chemical potential. Full
line: calculated from Eqgs. (14) and (18). Dashed line: Calculated from Wiede-
mann—Franz law, Eq. (19).

tor (Fig. 1), is obviously insignificant far from the band-gap,
where the Seebeck coefficient is small and the conductivity
large. Close to the band gap it is a significant correction, as
illustrated in the small insert in Fig. 3.

3.1.2. Test case: CoSbs

Calculations on CoSbs were carried out using the Engel-
Vosko GGA [20]. The unit cell was Im3 with a = 9.0385 A.
The Sb atom is placed at the g Wyckoff position with
(0,0.33537,0.15788). The plane-wave (PW) cut-off was de-
fined by min(Ry/r) max(k,) = 5.5 corresponding to approx-
imately 588 PW. The Brillouin-zone (BZ) was sampled on a
shifted tetrahedral mesh with 300 k points (17 in the IBZ) for
the self consistent calculation. For the transport calculations a
non-shifted mesh with 24000 k points (1030 in the IBZ) was
used. The necessary derivatives were then calculated on a FFT
grid five times as dense.

The band-structure of the skutterudite CoSb3 has been sub-
ject of some discussion and is sensitive to the lattice parameter
and the exchange correlation function [21-23]. It is generally
agreed that it has parabolic bands close to the Fermi level,
which we also find, Fig. 4. In this region of parabolic bands the
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Fig. 4. Band-structure of CoSb3 together with the inverse Hall coefficient 1/Ry and the calculated number of carriers n (density of states) and the difference

between 1/Rpy and n.
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Table 2
The variables in MODULE bandstructure

REAL(8)

aac_dir (3, 3) Direction cosines for the conventional

(
aac_rec(3,3) direct and reciprocal unit cell
p2c_dir(3,3) REAL(8) Conversion matrix for the primitive to
p2c_rec(3,3) conventional unit cell conversion
nsym INTEGER Number of symmetry operators

symop (3,3,48) REAL(8) Symmetry operators with respect to the

direct primitive lattice

nband INTEGER Number of bands

nkpt INTEGER Number of k-points in the IBZ

xkpoint (:, :) REAL(8) k-points in basis of primitive reciprocal
lattice vectors. Should be allocated as
xkpoint (3, nkpt)

bandenergy (:, :) REAL(8) Eigen-energies in Ry. Should be allocated

as bandenergy (nband, nkpt)

Hall coefficient should be inversely proportional to the num-
ber of carriers. The calculation of the Hall coefficient depends
on the second derivatives of the bands, Eq. (10), and therefore
serves as a demanding test of the precision of the method and
CoSb3 has therefore been chosen as a test example. Fig. 4 il-
lustrates how 1/ Ry and the doping are almost equivalent in the
region of parabolic bands, while they differ when the region of
flat bands.

4. Input parameters

Table 1 gives the input parameters used. bandstyle gives
the format of the band-structure input. The present version of
the code is interfaced to the band-structure code WIEN2k [19],
but can easily be interfaced to any other band-structure codes.
de defines how fine the mesh for the conductivity distribution
should be, Eq. (11). ecut defines the range of bands used
around eferm in the integrals, Eqs. (12)—(15). setgap and
gapsize can be used to apply a scissors operator to force a
certain band-gap. 1pfac defines how much denser the interpo-
lated mesh should be and thereby the R-cutoff in Eq. (1). The
programs outputs the conductivity tensors on a grid of 7 and
u, Egs. (12)—(15), defined by efcut, tmax and deltat. All
output of the program is in SI-units.

5. Porting the code

The present version of the code is interfaced to the band-
structure code WIEN2k [19]. However, as the method uses only
the crystal structure and the eigen-energies on a mesh as data
the code is very easy to interface to other band-structure codes.
The necessary crystal structure and band-structure information
is contained in the MODULE bandstructure, Table 2, and
the user should therefore only supply a subroutine that sets up
the module.

6. Conclusion

We have implemented and tested a method for obtaining an
analytical representation of the band-structure. We have applied

it to the calculation of transport coefficients. The method has
been compared with an earlier calculation [11], which in prin-
ciple should be exact within Boltzmann theory, and we found a
very convincing agreement.

It should be pointed out that the present method also has
several advantages. First of all, when an analytical expres-
sion of the bands is found, they can be interpolated onto a
finer k-mesh. Secondly, because only the energies are needed
the code is easily portable to any band-structure code and
furthermore does not require the storage of potentially large
wavefunction files on disk. Finally, second derivatives neces-
sary for the Hall coefficient are straightforwardly calculated
which is not straightforward from the wavefunction itself.
Even higher derivatives, necessary, e.g., for the calculation of
magneto-resistance, could easily be calculated with the present
method, but it remains to be seen whether the accuracy is high
enough.
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