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In this review paper we describe a hierarchy of simulation models for modeling state of the art
devices. Within the semiclassical simulation arena, emphasis is placed on particle-based device
simulations that can model devices operating from diffusive down to ballistic regime. In here, we
also describe in detail the proper inclusion of the short-range Coulomb interactions using real-space
approach that eliminates double-counting of the Coulomb interaction (due to its partial inclusion
via the solution of the Poisson equation). Regarding the quantum transport approaches, emphasis
is placed on the description of the CBR method that is implemented in ASU’s 2D and 3D NEGF
device simulator (that is used for modeling 10 nm gate length FinFETs, which are likely to be the
next generation of devices that the Industry will be mass-producing in year 2015). Comparison with
existing experimental data is presented to verify the accuracy and speed of the quantum transport
simulator. We conclude this review paper by emphasizing what kind of semiconductor tools will be
needed to model next generation devices.
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1. COMPUTATIONAL ELECTRONICS

As semiconductor feature sizes shrink into the nanometer
scale regime, even conventional device behavior becomes
increasingly complicated as new physical phenomena at
short dimensions occur, and limitations in material proper-
ties are reached.1 In addition to the problems related to the
understanding of actual operation of ultra-small devices,
the reduced feature sizes require more complicated and
time-consuming manufacturing processes. This fact signi-
fies that a pure trial-and-error approach to device opti-
mization will become impossible since it is both too time

∗Author to whom correspondence should be addressed.

consuming and too expensive. Since computers are consid-
erably cheaper resources, simulation is becoming an indis-
pensable tool for the device engineer. Besides offering the
possibility to test hypothetical devices which have not (or
could not) yet been manufactured, simulation offers unique
insight into device behavior by allowing the observation
of phenomena that can not be measured on real devices.
Computational Electronics2–4 in this context refers to the
physical simulation of semiconductor devices in terms of
charge transport and the corresponding electrical behavior.
It is related to, but usually separate from process simu-
lation, which deals with various physical processes such
as material growth, oxidation, impurity diffusion, etching,
and metal deposition inherent in device fabrication5 lead-
ing to integrated circuits. Device simulation can be thought
of as one component of technology for computer-aided
design (TCAD), which provides a basis for device mod-
eling, which deals with compact behavioral models for
devices and sub-circuits relevant for circuit simulation in
commercial packages such as SPICE.6 The relationship
between various simulation design steps that have to be
followed to achieve certain customer need is illustrated in
Figure 1.

The goal of Computational Electronics is to provide
simulation tools with the necessary level of sophistication
to capture the essential physics while at the same time
minimizing the computational burden so that results may
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be obtained within a reasonable time frame. Figure 2 illus-
trates the main components of semiconductor device simu-
lation at any level. There are two main kernels, which must
be solved self-consistently with one another, the transport
equations governing charge flow, and the fields driving
charge flow. Both are coupled strongly to one another,
and hence must be solved simultaneously. The fields arise
from external sources, as well as the charge and cur-
rent densities which act as sources for the time varying

Process simulation

Device simulation

Parameter extraction

Circuit level simulation

yes

Computational
electronics

no

Customer need

Fig. 1. Design sequence to achieve desired customer need.

electric and magnetic fields obtained from the solution of
Maxwell’s equations. Under appropriate conditions, only
the quasi-static electric fields arising from the solution of
Poisson’s equation are necessary.

The fields, in turn, are driving forces for charge trans-
port as illustrated in Figure 3 for the various levels of
approximation within a hierarchical structure ranging from
compact modeling at the top to an exact quantum mechan-
ical description at the bottom. At the very beginnings of
semiconductor technology, the electrical device character-
istics could be estimated using simple analytical models
(gradual channel approximation for MOSFETs) relying on
the drift-diffusion (DD) formalism. Various approxima-
tions had to be made to obtain closed-form solutions, but
the resulting models captured the basic features of the
devices.7 These approximations include simplified doping

Fig. 2. Schematic description of the device simulation sequence.
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Compact models

Drift-Diffusion
equations

Hydrodynamic
equations

Boltzmann transport
equation

Monte Carlo/CA methods

Quantum
hydrodynamics

Quantum
Monte Carlo/CA methods

Quantum-kinetic equation
(Liouville, Wigner-Boltzmann)

Green’s functions method

Direct solution of the n-body
Schrödinger equation

Appropriate for circuit
design

Good for devices down to
0.5 µm, include µ(E)

Velocity overshoot effect
can be treated properly

Accurate up to the
classical limits

Keep all classical
hydrodynamic features +

quantum corrections

Keep all classical
features + quantum corrections

Accurate up to single
particle description

Includes correlations in both
space and time domain

Can be solved only for small
number of particles

Fig. 3. Illustration of the hierarchy of transport models.

profiles and device geometries. With the ongoing refine-
ments and improvements in technology, these approxi-
mations lost their basis and a more accurate description
was required. This goal could be achieved by solving the
DD equations numerically. Numerical simulation of car-
rier transport in semiconductor devices dates back to the
famous work of Scharfetter and Gummel,8 who proposed
a robust discretization of the DD equations which is still
in use today.

However, as semiconductor devices were scaled into the
submicrometer regime, the assumptions underlying the DD
model lost their validity. Therefore, the transport mod-
els have been continuously refined and extended to more
accurately capture transport phenomena occurring in these
devices. The need for refinement and extension is primar-
ily caused by the ongoing feature size reduction in state-
of-the-art technology. As the supply voltages can not be
scaled accordingly without jeopardizing the circuit perfor-
mance, the electric field inside the devices has increased.
A large electric field, which rapidly changes over small
length scales, gives rise to non-local and hot-carrier effects
which begin to dominate device performance. An accurate
description of these phenomena is required and is becom-
ing a primary concern for industrial applications.

To overcome some of the limitations of the DD model,
extensions have been proposed which basically add an
additional balance equation for the average carrier energy.9

Furthermore, an additional driving term is added to the
current expression which is proportional to the gradient
of the carrier temperature. However, a vast number of
these models exist, and there is a considerable amount

of confusion as to their relation to each other. It is now
a common practice in industry to use standard hydrody-
namic models in trying to understand the operation of
as-fabricated devices, by adjusting any number of phe-
nomenological parameters (e.g., mobility, impact ioniza-
tion coefficient, etc.). However, such tools do not have
predictive capability for ultra-small structures, for which
it is necessary to relax some of the approximations in
the Boltzmann transport equation.10 Therefore, one needs
to move downward to the quantum transport area in the
hierarchical map of transport models shown in Figure 3,
where, at the very bottom we have the Green’s function
approach.11–13 The latter is the most exact, but at the same
time the most difficult of all. In contrast to, for exam-
ple, the Wigner function approach (which is Markovian
in time), the Green’s functions method allows one to
consider simultaneously correlations in space and time,
both of which are expected to be important in nano-scale
devices. However, the difficulties in understanding the var-
ious terms in the resultant equations and the enormous
computational burden needed for its actual implementa-
tion make the usefulness in understanding quantum effects
in actual devices of limited values. For example, the only
successful utilization of the Green’s function approach
commercially is the NEMO (Nano-Electronics Modeling)
simulator,14 which is effectively 1D and is primarily appli-
cable to resonant tunneling diodes.

From the discussion above it follows that, contrary to
the recent technological advances, the present state of the
art in device simulation is currently lacking in the ability
to treat these new challenges in scaling of device dimen-
sions from conventional down to quantum scale devices.
For silicon devices with active regions below 0.2 microns
in diameter, macroscopic transport descriptions based on
drift-diffusion models are clearly inadequate. As already
noted, even standard hydrodynamic models do not usu-
ally provide a sufficiently accurate description since they
neglect significant contributions from the tail of the phase
space distribution function in the channel regions.15�16

Within the requirement of self-consistently solving the
coupled transport-field problem in this emerging domain
of device physics, there are several computational chal-
lenges, which limit this ability. One is the necessity to
solve both the transport and the Poisson’s equations over
the full 3D domain of the device (and beyond if one
includes radiation effects). As a result, highly efficient
algorithms targeted to high-end computational platforms
(most likely in a multi-processor environment) are required
to fully solve even the appropriate field problems. The
appropriate level of approximation necessary to capture
the proper non-equilibrium transport physics, relevant to
a future device model, is an even more challenging prob-
lem both computationally and from a fundamental physics
framework.

4 J. Comput. Theor. Nanosci. 5, 1–32, 2008
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2. SEMICLASSICAL TRANSPORT
APPROACHES

2.1. Drift-Diffusion Model

In Section 1, we discussed the various levels of approxima-
tions that are employed in the modeling of semiconductor
devices. The direct solution of the full BTE is challeng-
ing computationally, particularly when combined with field
solvers for device simulation. Therefore, for traditional
semiconductor device modeling, the predominant model
corresponds to solutions of the so-called drift-diffusion
equations, which are ‘local’ in terms of the driving forces
(electric fields and spatial gradients in the carrier density),
i.e., the current at a particular point in space only depends
on the instantaneous electric fields and concentration gra-
dient at that point. The complete drift-diffusion model is
based on the following set of equations:
(1) Current equations

Jn = qn�x��nE�x�+qDn

dn

dx

Jp = qp�x��pE�x�−qDp

dn

dx

(1)

(2) Continuity equations


n


t
= 1

q
� ·Jn+Un


p


t
=−1

q
� ·Jp+Up

(2)

(3) Poisson’s equation

� · ���V �=−�p−n+N+
D −N−

A � (3)

where Un and Up are the net generation-recombination
rates. The continuity equations are the conservation laws
for the carriers. A numerical scheme which solves the con-
tinuity equations should
(1) Conserve the total number of particles inside the
device being simulated.
(2) Respect local positive definite nature of carrier density.
Negative density is unphysical.
(3) Respect monotonicity of the solution (i.e., it should
not introduce spurious space oscillations).

Conservative schemes are usually achieved by subdivi-
sion of the computational domain into patches (boxes) sur-
rounding the mesh points. The currents are then defined
on the boundaries of these elements, thus enforcing con-
servation (the current exiting one element side is exactly
equal to the current entering the neighboring element
through the side in common). In the absence of generation-
recombination terms, the only contributions to the over-
all device current arise from the contacts. Remember that,
since electrons have negative charge, the particle flux is
opposite to the current flux. When the equations are dis-
cretized, using finite differences for instance, there are lim-
itations on the choice of mesh size and time step:17

(1) The mesh size �x is limited by the Debye length.

(2) The time step is limited by the dielectric relaxation
time.

A mesh size must be smaller than the Debye length where
one has to resolve charge variations in space. A simple
example is the carrier redistribution at an interface between
two regions with different doping levels. Carriers diffuse
into the lower doped region creating excess carrier distri-
bution which at equilibrium decays in space down to the
bulk concentration with approximately exponential behav-
ior. The spatial decay constant is the Debye length

LD =
√
�kBT

q2N
(4)

where N is the doping density. In GaAs and Si, at room
temperature the Debye length is approximately 400 Å
when N ≈ 1016 cm−3 and decreases to about only 50 Å
when N ≈ 1018 cm.−3

The dielectric relaxation time, on the other hand, is the
characteristic time for charge fluctuations to decay under
the influence of the field that they produce. The dielectric
relaxation time may be estimated using

tdr =
�

qN�
(5)

The drift-diffusion semiconductor equations constitute
a coupled nonlinear set. It is not possible, in general, to
obtain a solution directly in one step, but a nonlinear iter-
ation method is required. The two most popular methods
for solving the discretized equations are the Gummel’s
iteration method18 and the Newton’s method.19 It is very
difficult to determine an optimum strategy for the solution,
since this will depend on a number of details related to the
particular device under study.

Finally, the discretization of the continuity equations in
conservation form requires the determination of the cur-
rents on the mid-points of mesh lines connecting neigh-
boring grid nodes. Since the solutions are accessible only
on the grid nodes, interpolation schemes are needed to
determine the currents. The approach by Scharfetter and
Gummel8 has provided an optimal solution to this prob-
lem, although the mathematical properties of the proposed
scheme have been fully recognized much later.

2.2. Hydrodynamic Model

The current drive capability of deeply scaled MOSFETs
and, in particular, n-MOSFETs has been the subject of
investigation since the late 1970s. First it was hypothe-
sized that the effective carrier injection velocity from the
source into the channel would reach the limit of the sat-
uration velocity and remain there as longitudinal electric
fields increased beyond the onset value for velocity sat-
uration. However, theoretical work indicated that velocity
overshoot can occur even in silicon,20 and indeed it is
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routinely seen in the high-field region near the drain in
simulated devices using energy balance models or Monte
Carlo. While it was understood that velocity overshoot
near the drain would not help current drive, experimental
work21�22 claimed to observe velocity overshoot near the
source, which of course would be beneficial and would
make the drift-diffusion model invalid.

In the computational electronics community, the neces-
sity for the hydrodynamic (HD) transport model is nor-
mally checked by comparison of simulation results for HD
and DD simulations. Despite the obvious fact that, depend-
ing on the equation set, different principal physical effects
are taken into account, the influence on the models for the
physical parameters is more subtle. The main reason for
this is that in the case of the HD model, information about
average carrier energy is available in form of carrier tem-
perature. Many parameters depend on this average carrier
energy, e.g., the mobilities and the energy relaxation times.
In the case of the DD model, the carrier temperatures are
assumed to be in equilibrium with the lattice temperature,
that is TC = TL, hence, all energy dependent parameters
have to be modeled in a different way.

2.2.1. Extensions of the Drift-Diffusion Model

In the DD approach, the electron gas is assumed to be in
thermal equilibrium with the lattice temperature. (Tn = TL)
However, in the presence of a strong electric field, elec-
trons gain energy from the field and the temperature Tn
of the electron gas is elevated. Since the pressure of the
electron gas is proportional to nkBTn, the driving force
now becomes the pressure gradient rather then merely
the density gradient. This introduces an additional driving
force, namely, the temperature gradient besides the electric
field and the density gradient. Phenomenologically, one
can write

J = q�n�nE+Dn�n+nDT �Tn� (6)

where DT is the thermal diffusivity.

2.2.2. Stratton’s Approach

One of the first derivations of extended transport equations
was performed by Stratton.23 First the distribution function
is split into the even and odd parts

f �k� r�= f0�k� r�+ f1�k� r� (7)

From f1�−k� r� = −f1�k� r�, it follows that �f1� = 0.
Assuming that the collision operator C is linear and invok-
ing the microscopic relaxation time approximation for the
collision operator

C�f �=− f − feq

���� r�
(8)

the BTE can be split into two coupled equations. In par-
ticular f1 is related to f0 via

f1 =−���� r�
(
v ·�rf0 −

q

�
E ·�kf0

)
(9)

The microscopic relaxation time is then expressed by a
power law

����= �0

(
�

kBTL

)−p
(10)

When f0 is assumed to be heated Maxwellian distribution,
the following equation system is obtained

� · J = q

n


t
(11)

J = qn�E+kB��n�Tn�

� · �nS�=−3
2
kB
�nTn�+E · J − 3

2
kBn

Tn−TL
��

nS =−
(

5
2
−p

)(
�nkBTnE+ k2

B

q
��n�Tn�

)

Equation for the current density can be rewritten as:

J = q�

(
nE+ kB

q
Tn�n+

kB

q
n
(
1+!n

)
�Tn

)
(1)

with

!n =
Tn
�


�


Tn
= 
 ln�


 lnTn
(2)

which is commonly used as a fit parameter with values in
the range [−0.5, −1.0]. For !n =−1"0, the thermal distri-
bution term disappears. The problem with Eq. (10) for � is
that p must be approximated by an average value to cover
the relevant processes. In the particular case of impurity
scattering, p can be in the range [−1.5, 0.5], depending on
charge screening. Therefore, this average depends on the
doping profile and the applied field; thus, no unique value
for p can be given. Note also that the temperature Tn is
a parameter of the heated Maxwellian distribution, which
has been assumed in the derivation. Only for parabolic
bands and a Maxwellian distribution, this parameter is
equivalent to the normalized second-order moment.

2.2.3. Balance Equations Model

The first three balance equations, derived by taking
moments of Boltzmann Transport Equation (BTE), take
the form


n


t
= 1

e
� · Jn+Sn


Jz

t

= 2e
m∗

∑
i


Wiz


xi
+ ne2

m∗ Ez−
〈〈

1
�m

〉〉
Jz


W


t
=−� ·FW +E · J −

〈〈
1
�E

〉〉
�W −W0�

(13)
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The balance equation for the carrier density introduces the
carrier current density, which balance equation introduces
the kinetic energy density. The balance equation for the
kinetic energy density, on the other hand, introduces the
energy flux. Therefore, a new variable appears in the hier-
archy of balance equations and the set of infinite balance
equations is actually the solution of the BTE. The momen-
tum and energy relaxation rates, that appear in Eq. (13) are
ensemble averaged quantities. For simple scattering mech-
anisms one can utilize the drifted-Maxwellian form of the
distribution function, but for cases where several scatter-
ing mechanisms are important, one must use bulk Monte
Carlo simulations to calculate these quantities.

One can express the energy flux that appears in Eq. (13)
in terms of the temperature tensor. The energy flux, is
calculated using

FW = 1
V

∑
p

vE�p�f �r�p� t� (14)

which means that the i-th component of this vector equals to

FWi = vdiW +nkB

∑
j

Tijvdj +Qi (15)

where Qi is the component of the heat flux vector which
describes loss of energy due to flow of heat out of the vol-
ume. To summarize, the kinetic energy flux equals the sum
of the kinetic energy density times velocity plus the veloc-
ity times the pressure, which actually represents the work
to push the volume plus the loss of energy due to flow of
heat out. In mathematical terms this is expressed as

FW = vW +nkB

↔
T ·v+Q (16)

With the above considerations, the momentum and the
energy balance equations reduce to


Jz

t

= 2e
m∗

∑
i





xi

(
Kiz+

1
2
nkBTiz

)
+ ne2

m∗ Ez−
〈〈

1
�m

〉〉
Jz

(17)

W


t
=−� · �vW +Q+nkB

↔
T ·v�+E ·Jn

−
〈〈

1
�E

〉〉
�W −W0�

For displaced-Maxwellian approximation for the distribu-
tion function, the heat flux Q = 0. However, Blotekjaer24

has pointed out that this term must be significant for
non-Maxwellian distributions, so that a phenomenologi-
cal description for the heat flux, of the form described by
Franz-Wiedermann law, which states that

Q =−,�Tc (18)

is used, where , is the thermal or heat conductivity.
In silicon, the experimental value of , is 142.3 W/mK.

The above description for Q actually leads to a closed set
of equations in which the energy balance equation is of
the form


W


t
= −� · �vW −,�Tc +nkBTcv�+E ·Jn

−
〈〈

1
�E

〉〉
�W −W0� (19)

It has been recognized in recent years that this approach
is not correct for semiconductors in the junction regions,
where high and unphysical velocity peaks are established
by the Franz-Wiedemann law. To avoid this problem,
Stettler et al.25 have suggested a new form of closure

Q =−,�Tc +
5
2
�1− r�

kBTL
e

J (20)

where J is the current density and r is a tunable parameter
less than unity. Now using





x
�2Kiz� =





xi
�nm∗vdivdz�= nm∗ 



x
�vdivdz�

= nm∗
[

vdi

xi

vdz+vdz

vdz

xz

]
(21)

and assuming that the spatial variations are confined along
the z-direction, we have





xz
�2Kiz�=





xz
�nm∗v2

dz� (22)

To summarize, the balance equations for the drifted-
Maxwellian distribution function simplify to


n


t
= 1

e
� · Jn+Sn


Jz

t

= e

m∗




xz
�nm∗v2

dz+nkBTc�+
ne2

m∗ Ez−
〈〈

1
�m

〉〉
Jz (23)


W


t
=− 



xz

[(
W +nkBTc

)
vdz−,


Tc

xz

]

+ JzEz−
〈〈

1
�E

〉〉
�W −W0�

where

Jz =−envdz =− e

m∗ Pz

W = 1
2
nm∗v2

dz+
3
2
nkBTc

(24)

2.3. Particle Based Device Simulation Methods

In the previous sections we have considered contin-
uum methods of describing transport in semiconductors,
specifically the drift-diffusion and hydrodynamic models,
which are derived From moments of the semi-classical
Boltzmann Transport Equation (BTE). As approximations
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to the BTE, it is expected that at some limit, such
approaches become inaccurate, or fail completely. Indeed,
one can envision that, as physical dimensions are reduced,
at some level a continuum description of current breaks
down, and the granular nature of the individual charge par-
ticles constituting the charge density in the active device
region becomes important.

The microscopic simulation of the motion of individ-
ual particles in the presence of the forces acting on them
due to external fields as well as the internal fields of the
crystal lattice and other charges in the system has long
been popular in the chemistry community, where molecu-
lar dynamics simulation of atoms and molecules have long
been used to investigate the thermodynamic properties of
liquids and gases. In solids, such as semiconductors and
metals, transport is known to be dominated by random
scattering events due to impurities, lattice vibrations, etc.,
which randomize the momentum and energy of charge par-
ticles in time. Hence, stochastic techniques to model these
random scattering events are particularly useful in describ-
ing transport in semiconductors, in particular the Monte
Carlo method.

The Ensemble Monte Carlo techniques have been used
for well over 30 years as a numerical method to simulate
nonequilibrium transport in semiconductor materials and
devices and has been the subject of numerous books and
reviews.26–28 In application to transport problems, a ran-
dom walk is generated using the random number generat-
ing algorithms common to modern computers, to simulate
the stochastic motion of particles subject to collision pro-
cesses. This process of random walk generation is part of
a very general technique used to evaluate integral equa-
tions and is connected to the general random sampling
technique used in the evaluation of multi-dimensional
integrals.29

The basic technique as applied to transport problems
is to simulate the free particle motion (referred to as the
free flight) terminated by instantaneous random scattering
events. The Monte Carlo algorithm consists of generat-
ing random free flight times for each particle, choosing
the type of scattering occurring at the end of the free
flight, changing the final energy and momentum of the
particle after scattering, and then repeating the procedure
for the next free flight. Sampling the particle motion at
various times throughout the simulation allows for the
statistical estimation of physically interesting quantities
such as the single particle distribution function, the aver-
age drift velocity in the presence of an applied electric
field, the average energy of the particles, etc. By simulat-
ing an ensemble of particles, representative of the physi-
cal system of interest, the non-stationary time-dependent
evolution of the electron and hole distributions under
the influence of a time-dependent driving force may be
simulated.

This particle-based picture, in which the particle motion
is decomposed into free flights terminated by instanta-
neous collisions, is basically the same approximate picture
underlying the derivation of the semi-classical Boltzmann
Transport Equation (BTE). In fact, it may be shown
that the one-particle distribution function obtained from
the random walk Monte Carlo technique satisfies the
BTE for a homogeneous system in the long-time limit.30

This semi-classical picture breaks down when quantum.
mechanical effects become pronounced, and one cannot
unambiguously describe the instantaneous position and
momentum of a particle, a subject which we will com-
ment on later. In the following, we develop the standard
Monte Carlo algorithm used to simulate charge transport
in semiconductors. We then discuss how this basic model
for charge transport within the BTE is self-consistently
solved with the appropriate field equations to perform par-
ticle based device simulation.

2.3.1. Free Flight Generation

In the Monte Carlo method, particle motion is assumed
to consist of free flights terminated by instantaneous scat-
tering events, which change the momentum and energy of
the particle after scattering. So the first task is to gener-
ate free flights of random time duration for each particle.
To simulate this process, the probability density, P�t�, is
required, in which P�t�dt is the joint probability that a
particle will arrive at time t without scattering after a pre-
vious collision occurring at time t = 0, and then suffer a
collision in a time interval dt around time t. The proba-
bility of scattering in the time interval dt around t may be
written as / [k(t)]dt, where / [k(t)] is the scattering rate of
an electron or hole of wavevector k. The scattering rate,
/ [k(t)], represents the sum of the contributions from each
individual scattering mechanism, which are usually calcu-
lated quantum mechanically using perturbation theory, as
described later. The implicit dependence of / [k(t)] on time
reflects the change in k due to acceleration by internal
and external fields. For electrons subject to time indepen-
dent electric and magnetic fields, the time evolution of k
between collisions is represented as

k�t�= k�0�− e�E+v×B�t
�

(25)

where E is the electric field, v is the electron velocity and
B is the magnetic flux density. In terms of the scattering
rate, / [k(t)], the probability that a particle has not suffered
a collision after a time t is given by exp�− ∫ t

0 /�k�t
′��dt′�.

Thus, the probability of scattering in the time interval dt
after a free flight of time t may be written as the joint
probability

P�t�dt = /�k�t�� exp
[
−
∫ t

0
/�k�t′��dt′

]
dt (26)
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Random flight times may be generated according to the
probability density P�t� above using, for example, the
pseudo-random number generator implicit on most modern
computers, which generate uniformly distributed random
numbers in the range [0, 1]. Using a direct method (see,
for example Ref. [26]), random flight times sampled from
P�t� may be generated according to

r =
∫ tr

0
P�t�dt (27)

where r is a uniformly distributed random number and tr
is the desired free flight time. Integrating Eq. (27) with
P�t� given by Eq. (26) above yields

r = 1− exp
[
−
∫ tr

0
/
[
k�t′�

]
dt′

]
(28)

Since 1− r is statistically the same as r , Eq. (28) may be
simplified to

− ln r =
∫ tr

0
/
[
k�t′�

]
dt′ (29)

Equation (29) is the fundamental equation used to gener-
ate the random free flight time after each scattering event,
resulting in a random walk process related to the under-
lying particle distribution function. If there is no external
driving field leading to a change of k between scatter-
ing events (for example in ultrafast photoexcitation experi-
ments with no applied bias), the time dependence vanishes,
and the integral is trivially evaluated. In the general case
where this simplification is not possible, it is expedient to
introduce the so called self-scattering method,31 in which
we introduce a fictitious scattering mechanism whose scat-
tering rate always adjusts itself in such a way that the total
(self-scattering plus real scattering) rate is a constant in
time

/ = /
[
k�t′�

]+/self

[
k�t′�

]
(30)

where /self[k(t′)] is the self-scattering rate. The self-scat-
tering mechanism itself is defined such that the final
state before and after scattering is identical. Hence, it
has no effect on the free flight trajectory of a particle
when selected as the terminating scattering mechanism, yet
results in the simplification of Eq. (29) such that the free
flight is given by

tr =− 1
/

ln r (31)

The constant total rate (including self-scattering) / , must
be chosen at the start of the simulation interval (there may
be multiple such intervals throughout an entire simulation)
so that it is larger than the maximum scattering encoun-
tered during the same time interval. In the simplest case, a
single value is chosen at the beginning of the entire sim-
ulation (constant gamma method), checking to ensure that
the real rate never exceeds this value during the simulation.
Other schemes may be chosen that are more computation-
ally efficient, and which modify the choice of / at fixed
time increments.32

2.3.2. Final State After Scattering

The algorithm described above determines the random free
flight times during which the particle dynamics is treated
semi-classically. For the scattering process itself, we need
the type of scattering (i.e., impurity, acoustic phonon, pho-
ton emission, etc.) which terminates the free flight, and
the final energy and momentum of the particle(s) after
scattering. The type of scattering which terminates the
free flight is chosen using a uniform random number
between 0 and / , and using this pointer to select among
the relative total scattering rates of all processes including
self-scattering at the final energy and momentum of the
particle

/ = /self�n�k�+/1�n�k�+/2�n�k�+· · ·/N �n�k� (32)

with n the band index of the particle (or subband in
the case of reduced-dimensionality systems), and k the
wavevector at the end of the free-flight. This process is
illustrated schematically in Figure 4.

Once the type of scattering terminating the free flight is
selected, the final energy and momentum (as well as band
or subband) of the particle due to this type of scattering
must be selected. For elastic scattering processes such
as ionized impurity scattering, the energy before and after
scattering is the same. For the interaction between elec-
trons and the vibrational modes of the lattice described
as quasi-particles known as phonons, electrons exchange
finite amounts of energy with the lattice in terms of
emission and absorption of phonons. For determining the
final momentum after scattering, the scattering rate, /j
[n, k; m, k′] of the jth scattering mechanism is needed,
where n and m are the initial and final band indices, and k
and k′ are the particle wavevectors before and after scat-
tering. Defining a spherical coordinate system as shown
in Figure 5 around the initial wavevector k, the final
wavevector k′ is specified by �k′� (which depends on con-
servation of energy) as well as the azimuthal and polar
angles, 0 and 1 around k. Typically, the scattering rate,
/j [n, k; m, k′], only depends on the angle 1 between k
and k′. Therefore, 0 may be chosen using a uniform ran-
dom number between 0 and 22 (i.e., 22r), while 1 is

Self

Γ1 + Γ2 + Γ3 + Γ4 + Γ5

Γ1 + Γ2 + Γ3 + Γ4

Γ1 + Γ2 + Γ3

Γ1 + Γ2

Γ

1

3

2

4

5

rΓ

Γ1(E(tr))

Fig. 4. Selection of the type of scattering terminating a free flight in
the Monte Carlo algorithm.
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kz

kx

ky

k

k′

θ

ϕ

Fig. 5. Coordinate system for determining the final state after
scattering.

chosen according to the angular dependence for scattering
arising from /j [n, k; m, k′]. If the probability for scatter-
ing into a certain angle P (1)d1 is integrable, then random
angles satisfying this probability density may be generated
from a uniform distribution between 0 and 1 through inver-
sion of Eq. (27). Otherwise, a rejection technique (see,
for example, Refs. [26, 27]) may be used to select random
angles according to P (1).

The rejection technique for sampling a random variable
over some interval corresponds to choosing a maximum
probability density (referred to here as a maximizing func-
tion) that is integrable in terms of Eq. (27) (for example
a uniform or constant probability), and is always greater
than or equal to the actual probability density of interest.
A sample value of the random variable is then selected
using a uniform number between 0 and 1, and then apply-
ing Eq. (27) to the maximizing function to select a value
of the random variable analytically according to the prob-
ability density of the maximizing function. To now sam-
ple according to the desired probability density, a second
random number is picked randomly between 0 and the
value of the maximizing function at the value of the ran-
dom variable chosen. If the value of this random number
is less than the true value of the probability density (i.e.,
lies below it) at that point, the sampled value of the ran-
dom variable is ‘selected.’ If it lies above, it is ‘rejected,’
and the process repeated until one satisfying the condition
of selected is generated. In choosing random samples via
this technique, one then samples according to the desired
probability density.

2.3.3. Ensemble Monte Carlo Simulation

The basic Monte Carlo algorithm described in the previ-
ous sections may be used to track a single particle over
many scattering events in order to simulate the steady-state
behavior of a system. However, for improved statistics over
shorter simulation times, and for transient simulation, the
preferred technique is the use of a synchronous ensemble
of particles, in which the basic Monte Carlo algorithm is
repeated for each particle in an ensemble representing the
(usually larger) system of interest until the simulation is

n = 1

2

3

4

5

6…
…

N

0 ∆t 2∆t 3∆t 4∆t…… ts

�

� � � � � �

� � � � �

� � � � � � �

� � � � � � �

� � � � � �

� � � � � �

� �� � � � �

� � � � � � �

� = Collisions

Fig. 6. Ensemble Monte Carlo simulation in which a time step, �t,
is introduced over which the motion of particles is synchronized. The
squares represent random scattering events.

completed. Since there is rarely an identical correspon-
dence between the number of simulated charges, and the
number of actual particles in a system, each particle is
really a super-particle, representing a finite number of
real particles. The corresponding charge of the particle is
weighted by this super-particle number. Figure 6 illustrates
an ensemble Monte Carlo simulation in which a fixed time
step, �t, is introduced over which the motion of all the
carriers in the system is synchronized. The squares illus-
trate random, instantaneous, scattering events, which may
or may not occur during a given time-step. Basically, each
carrier is simulated only up to the end of the time-step,
and then the next particle in the ensemble is treated. Over
each time step, the motion of each particle in the ensemble
is simulated independent of the other particles. Nonlin-
ear effects such as carrier–carrier interactions or the Pauli
exclusion principle are then updated at each times step, as
discussed in more detail below.

The non-stationary one-particle distribution function and
related quantities such as drift velocity, valley or sub-
band population, etc., are then taken as averages over the
ensemble at fixed time steps throughout the simulation.
For example, the drift velocity in the presence of the field
is given by the ensemble average of the component of the
velocity at the nth time step as

v̄z�n�t��
1
N

N∑
j=1

vjz�n�t� (33)

where N is the number of simulated particles and j labels
the particles in the ensemble. This equation represents an
estimator of the true velocity, which has a standard error
given by

s = 4√
N

(34)

where 42 is the variance which may be estimated from
Ref. [29]

42 � N

N −1

{
1
N

N∑
j=1

�vjz�
2 − v̄2

z

}
(35)
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Similarly, the distribution functions for electrons and
holes may be tabulated by counting the number of electrons
in cells of k-space. From Eq. (35), we see that the error in
estimated average quantities decreases as the square root of
the number of particles in the ensemble, which necessitates
the simulation of many particles. Typical ensemble sizes for
good statistics are in the range of 104–105 particles. Vari-
ance reduction techniques to decrease the standard error
given by Eq. (35) may be applied to enhance statisti-
cally rare events such as impact ionization or electron–hole
recombination.27

An overall flowchart of a typical Ensemble Monte Carlo
(EMC) simulation is illustrated in Figure 7. After initial-
ization of run parameters, there are two main loops, and
outer one which advances the time step by increments of
�T until the maximum time of the simulation is reached,
and an inner loop over all the particles in the ensemble
(N ), where the Monte Carlo algorithm is applied to each
particle individually over a given time step.

2.3.4. Device Simulation Using Particles

Within an inhomogeneous device structure, both the trans-
port dynamics and an appropriate field solver are coupled
to each other. For quasi-static situations, the spatially vary-
ing fields associated with the potential arising from the
numerical solution of Poisson’s equation are the driv-
ing force accelerating particles in the Monte Carlo phase.

Main Loop

N+1<N?

YES

YES

YES

YES

YES

INITIALIZATION: Input run parameters, read material
parameters, tabulate scattering rates, choose maximum gamma,
initialize distribution, choose initial flight times for each electron

T=T+∆T

N=N+1

Accelerate to T+∆T

Scatter again before T+∆T?

Choose New Flight Time

Choose Final State

Choose scattering

Accelerate to TL

Check time left, TL; TL<∆T?

Calculate Averages

T<Tmax?

Fig. 7. Flow chart of an ensemble Monte Carlo (EMC) simulation.

Likewise, the distribution of mobile (both electrons and
holes) and fixed charges (e.g., donors and acceptors) pro-
vides the source of the electric field in Poisson’s equation.
By decoupling the transport portion from the field portion
over a small time interval (discussed in more detail below),
a convergent scheme is realized in which the Monte Carlo
transport phase is self-consistently coupled to Poisson’s
equation, similar to Gummel’s algorithm. In the following
section, a description of Monte Carlo particle-based device
simulators is given, with emphasis on the particle-mesh
coupling and the inclusion of the short-range Coulomb
interactions.

As mentioned above, for device simulation based on
particles, Poisson’s equation is decoupled from the particle
motion (described e.g., by the EMC algorithm) over a suit-
ably small time step, typically less than the inverse plasma
frequency corresponding to the highest carrier density
in the device. Over this time interval, carriers acceler-
ate according to the frozen field profile from the pre-
vious time-step solution of Poisson’s equation, and then
Poisson’s equation is solved at the end of the time interval
with the frozen configuration of charges arising from the
Monte Carlo Phase. It is important to note that Poisson’s
equation is solved on a discrete mesh, whereas the solu-
tion of charge motion using EMC occurs over a contin-
uous range of coordinate space in terms of the particle
position. An illustration of a typical device geometry and
the particle mesh scheme is shown in Figure 8. There-
fore, a particle-mesh (PM) coupling is needed for both the
charge assignment and the force interpolation. The size of
the mesh and the characteristic time scales of transport
set constraints on both the time-step and the mesh size.
We must consider how particles are treated in terms of the
boundaries, and how they are injected. Finally, the deter-
mination of the charge motion and corresponding termi-
nal currents from averages over the simulation results are
necessary in order to calculate the I–V characteristics of
a device. These issues are discussed briefly below, along
with some typical simulation results.

As in the case of any time domain simulation, for sta-
ble Monte Carlo device simulation, one has to choose the
appropriate time step, �t, and the spatial mesh size (�x,
�y, and/or �z). The time step and the mesh size may
correlate to each other in connection with the numerical

Source DrainGate

Substrate

V(x, y )

Boundary

Fig. 8. Schematic diagram of a prototypical three-terminal device where
charge flow is described by particles, while the fields are solved on a
finite mesh.
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stability. For example, the time step �t must be related
to the plasma frequency. From the viewpoint of numerical
stability, �t must be much smaller than the inverse plasma
frequency above. Since the inverse plasma frequency goes
as 1/

√
n, the highest carrier density occurring in the mod-

eled device structure corresponds to the smallest time used
to estimate �t. If the material is a multi-valley semicon-
ductor, the smallest effective mass encountered by the car-
riers must be used as well.

The mesh size for the spatial resolution of the poten-
tial is dictated by the spatial variation of charge variations.
Hence, one has to choose the mesh size to be smaller
than the smallest wavelength of the charge variations. The
smallest wavelength is approximately equal to the Debye
length (for degenerate semiconductors the relevant length
is the Thomas-Fermi wavelength).

Based on the discussion above, the time step (�t�, and
the mesh size (�x, �y, an/or �z� are chosen indepen-
dently based on the physical arguments given above. How-
ever, there are numerical constraints coupling both as well.
More specifically, the relation of �t to the grid size must
also be checked by calculating the distance lmax, defined as

lmax = vmax ×�t (36)

where vmax is the maximum carrier velocity, that can be
approximated by the maximum group velocity of the elec-
trons in the semiconductor (on the order of 108 cm/s).
The distance lmax is the maximum distance the carriers can
propagate during �t. The time step is therefore chosen to
be small enough so that lmax is smaller than the spatial
mesh size chosen. This constraint arises because for too
large of a time step, �t, there may be substantial change
in the charge distribution, while the field distribution in
the simulation is only updated every �t, leading to unac-
ceptable errors in the carrier force.

To illustrate these various constraints, Figure 9 illus-
trates the range of stability for the time step and mini-
mum grid size. The unshaded region corresponds to stable
selections of both quantities. The right region is unsta-
ble due to the time step being larger than the inverse

H
/λ

D

 

10

1 

0.1
0.1

ωpeDT
1 10

v δt /H < 1

v δt /H > 1

Unstable

Fig. 9. Illustration of the region of stability (unshaded regions) of the
time step, 9t, and the minimum grid size, H . ;pe is the plasma frequency
corresponding to the maximum carrier density.

plasma frequency, whereas the upper region is unstable
due to the grid spacing being larger than the Debye length.
The velocity constraint bounds the lower side with its lin-
ear dependence on time-step.

An issue of importance in particle-based simulation is
the real space boundary conditions for the particle part of
the simulation. Reflecting or periodic boundary conditions
are usually imposed at the artificial boundaries. For Ohmic
contacts, they require more careful consideration because
electrons (or holes) crossing the source and drain contact
regions contribute to the corresponding terminal currents.
In order to conserve charge in the device, the electrons
exiting the contact regions must be re-injected. Commonly
employed models for the contacts include:33

• Electrons are injected at the opposite contact with the
same energy and wavevector k. If the source and drain
contacts are in the same plane, as in the case of MOSFET
simulations, the sign of k, normal to the contact will
change. This is an unphysical model, however.34

• Electrons are injected at the opposite contact with a
wavevector randomly selected based upon a thermal dis-
tribution. This is also an unphysical model.
• Contact regions are considered to be in thermal equilib-
rium. The total number of electrons in a small region near
the contact are kept constant, with the number of elec-
trons equal to the number of dopant ions in the region.
This approximation is most commonly employed in actual
particle based device simulation.
• Another method uses ‘reservoirs’ of electrons adjacent
to the contacts. Electrons naturally diffuse into the con-
tacts from the reservoirs, which are not treated as part of
the device during the solution of Poisson’s equation. This
approach gives results similar to the velocity-weighted
Maxwellian, but at the expense of increased computa-
tional time due to the extra electrons simulated. It is an
excellent model employed in some of the most sophis-
ticated particle-based simulators. There are also several
possibilities for the choice of the distribution function–
Maxwellian, displaced Maxwellian, and velocity-weighted
Maxwellian.33

The particle-mesh (PM) coupling is broken into four
steps: (1) assignment of particle charge to the mesh;
(2) solution of Poisson’s equation on the mesh; (3) calcu-
lation of the mesh-defined forces; and (4) interpolation to
find the forces acting on the particle. The charge assign-
ment and force interpolation schemes usually employed
in self-consistent Monte Carlo device simulations are
the nearest-grid-point (NGP) and the cloud-in-cell (CIC)
schemes.35 Figure 10 illustrates both methods. In the NGP
scheme, the particle position is mapped into the charge
density at the closest grid point to a given particle. This
has the advantage of simplicity, but leads to a noisy charge
distribution, which may exacerbate numerical instability.
Alternately, within the CIC scheme, a finite volume is
associated with each particle spanning several cells in the
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NGP CIC

Fig. 10. Illustration of the charge assignment based on the nearest grid
point method (NGP) and the cloud in cell method (CIC).

mesh, and a fractional portion of the charge per particle
is assigned to grid points according to the relative volume
of the ‘cloud’ occupying the cell corresponding to the grid
point. This method has the advantage of smoothing the
charge distribution due to the discrete charges of the parti-
cle based method, but may result in an artificial ‘self-force’
acting on the particle, particularly if an inhomogeneous
mesh is used.

The requirements for constant permittivity (P) and con-
stant mesh (M) severely limit the scope of devices that may
be considered in device simulations using the NGP and the
CIC schemes. Laux36 proposed a new particle-mesh cou-
pling scheme, namely, the nearest-element-center (NEC)
scheme, which relaxes the restrictions (P) and (M).
The NEC charge assignment/force interpolation scheme
attempts to reduce the self-forces and increase the spa-
tial accuracy in the presence of nonuniformly spaced
tensor-product meshes and/or spatially-dependent permit-
tivity. In addition, the NEC scheme can be utilized in one
axis direction (where local mesh spacing is nonuniform)
and the CIC scheme can be utilized in the other (where
local mesh spacing is uniform). Such hybrid schemes offer
smoother assignment/interpolation on the mesh compared
to the pure NEC. The NEC designation derives from
the appearance, of moving the charge to the center of
its element and applying a CIC-like assignment scheme.
The NEC scheme involves only one mesh element and
its four nodal values of potential. This locality makes
the method well-suited to non-uniform mesh spacing and
spatially-varying permittivity. The interpolation and error
properties of the NEC scheme are similar to the NGP
scheme.

The motion in real space of particles under the influ-
ence of electric fields is somewhat more complicated due
to the band structure. The velocity of a particle in real
space is related to the E-k dispersion relation defining the
bandstructure as

v�t�= dr
dt

= 1
�
�kE�k�t��

dk
dt

= qE�r�
�

(37)

where the rate of change of the crystal momentum is
related to the local electric field acting on the particle

through the acceleration theorem expressed by the sec-
ond equation. In turn, the change in crystal momentum,
k(t), is related to the velocity through the gradient of E
with respect to k. If one has to use the full bandstructure
of the semiconductor, then integration of these equations
to find r(t) is only possible numerically, using for exam-
ple a Runge-Kutta algorithm. If a three valley model with
parabolic bands is used, then the expression is integrable

v = dr
dt

= �k
m∗ <

dk
dt

= qE�r�
�

(38)

Therefore, for a constant electric field in the x direction,
the change in distance along the x direction is found by
integrating twice

x�t�= x�0�+vx�0�t+
qE0

x t
2

2m∗ (39)

To simulate the steady-state behavior of a device, the
system must be initialized in some initial condition, with
the desired potentials applied to the contacts, and then
the simulation proceeds in a time stepping manner until
steady-state is reached. This process may take several
picoseconds of simulation time, and consequently several
thousand time-steps based on the usual time increments
required for stability. Clearly, the closer the initial state of
the system is to the steady state solution, the quicker the
convergence. If one is, for example, simulating the first
bias point for a transistor simulation, and has no a priori
knowledge of the solution, a common starting point for the
initial guess is to start out with charge neutrality, i.e., to
assign particles randomly according to the doping profile
in the device and based on the super-particle charge assign-
ment of the particles, so that initially the system is charge
neutral on the average. For two-dimensional device simu-
lation, one should keep in mind that each particle actually
represents a rod of charge into the third dimension. Sub-
sequent simulations at the same device at different bias
conditions can use the steady state solution at the pre-
vious bias point as a good initial guess. After assigning
charges randomly in the device structure, charge is then
assigned to each mesh point using the NGP or CIC or NEC
particle-mesh methods, and Poisson’s equation solved. The
forces are then interpolated on the grid, and particles are
accelerated over the next time step. A flow-chart of a typ-
ical Monte Carlo device simulation is shown in Figure 11.

As the simulation evolves, charge will flow in and out
of the contacts, and depletion regions internal to the device
will form until steady state is reached. The charge passing
through the contacts at each time step can be tabulated,
and a plot of the cumulative charge as a function of time
gives the steady-state current. Figure 12 shows the particle
distribution in 3D of a MESFET, where the dots indicate
the individual simulated particles for two different gate
biases. Here, the heavily doped MESFET region (shown
by the inner box) is surrounded by semi-insulating GaAs
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Fig. 11. Flow-chart of a typical particle based device simulation.

forming the rest of the simulation domain. The upper curve
corresponds to no net gate bias (i.e., the gate is positively
biased to overcome the built-in potential of the Schottky
contact), while the lower curve corresponds to a net nega-
tive bias applied to the gate, such that the channel is close
to pinch-off. One can see the evident depletion of carriers
under the gate under the latter conditions.

Fig. 12. Example of the particle distribution in a MESFET structure
simulated in 3D using an EMC approach. The upper plot is the device
with zero gate voltage applied, while the lower is with a negative gate
voltage applied, close to pinch-off.

After sufficient time has elapsed, so that the system
is driven into a steady-state regime, one can calculate
the steady-state current through a specified terminal. The
device current can be determined via two different, but
consistent methods. First, by keeping track of the charges
entering and exiting each terminal, the net number of
charges over a period of the simulation can be used to
calculate the terminal current. This method, however, is
relatively noisy due to the discrete nature of the carriers,
and the fact that one is only counting the currents crossing
a 2D boundary in the device, which limits the statistics.
A second method uses the sum of the carrier velocities in
a portion of the device are used to calculate the current.
For this purpose, the device is divided into several sections
along, for example, the x-axis (from source to drain for the
case of a MOSFET or MESFET simulation). The number
of carriers and their corresponding velocity is added for
each section after each free-flight time step. The total
x-velocity in each section is then averaged over several
time steps to determine the current for that section. The
total device current can be determined from the average
of several sections, which gives a much smoother result
compared to counting the terminal charges. By breaking
the device into sections, individual section currents can
be compared to verify that the currents are uniform. In
addition, sections near the source and drain regions of a
MOSFET or a MESFET may have a high y-component
in their velocity and should be excluded from the current
calculations.

2.3.5. Simulation Example

The fully depleted (FD) Silicon-On-Insulator (SOI)
MOSFET (Fig. 13) was of much interest a decade
ago, because of its projected superiority over the par-
tially depleted (PD) and the bulk-silicon counterparts.37

Its advantages, due mainly to the gate-substrate charge
coupling enabled by the thin FD Si-film body on a
thick buried oxide (BOX)38�39 included higher drive cur-
rent/transconductance, near-ideal subthreshold slope, low-
junction capacitance and suppression of the floating-body
effects. However, in the deep sub-micrometer regime,
because of velocity saturation, two-dimensional effects in
the BOX and the technological limits of scaling the SOI-
body thickness, these advantages diminished,40 the interest
subsided and classical (i.e., bulk-Si and PD SOI) CMOS
prevailed.

Now, as the scaling of classical CMOS approaches
its limit, interest in non-classical FD devices-particularly
double-gate (DG) and ultra-thin-body (UTB) MOSFETs—
is rapidly growing. These devices deliver fundamen-
tal improvements over the performance of the bulk Si
MOSFET devices.41 And, while DG FinFETs42 seem most
promising, their complex and immature process technol-
ogy has led to a renewed interest in single-gate FD SOI
UTB MOSFETs.43
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Fig. 13. FD SOI MOSFET device structure.

The dimensions of the n-channel FD SOI MOSFET
being investigated using the particle-based device simu-
lator discussed in the previous section are: the channel
length is 25 nm, the silicon film width, which is equal to
the source/drain junction depth is 10 nm, the gate oxide
width is 2 nm, the BOX width is 50 nm, the source/drain
doping is 1× 1019 cm−3 and the channel doping is 1×
1018 cm−3.

To simulate the steady-state state behavior of a device,
the system is started in some initial condition, with the
desired potential applied to the contacts, and then the
simulation proceeds in a time stepping manner until
steady-state is reached. This takes several picoseconds of
simulation time and consequently several thousand time
steps based on the usual time increments required for sta-
bility. A common starting point for the initial guess is
to start out with charge neutrality, i.e., to assign particles
randomly according to the doping profile in the device,
so that initially the system is charge neutral on the aver-
age. After assigning charges randomly in the device struc-
ture, charge is then assigned to each mesh point using
an adequate PM coupling method, and Poisson’s equation
is solved. The forces are then interpolated on the grid,
and particles are accelerated over the next time step. At
this stage, typical simulation result that is shown is the
variation of the scattering rates of the various scattering
mechanisms included in the model. In our case, we have
included acoustic phonon scattering, g- and f -intervalley
phonon scattering (see Fig. 14). Afterwards, bias is applied
and the carriers undergo the free-flight scattering sequence
until steady-state is achieved. At this point, it is important
to present the simulation results for the average drift veloc-
ity and the average carrier energy in the channel region
of the device. These results are shown in Figures 15(a)
and (b), respectively. They demonstrate the need for per-
forming Monte Carlo device simulations that are more
time consuming then solving either the drift-diffusion or
the hydrodynamic model discussed previously.

The choice of the Monte Carlo device simulation is
justified with the fact that in the devices simulated, we
observe significant velocity overshoot near the drain end
of the channel. Namely, the saturation velocity of the elec-
trons in Si is 1"1×105 m/s and from the results shown in
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Fig. 14. Scattering rate variation versus energy for the various scatter-
ing mechanisms included in the model.

Figure 15(a) it is evident that the electrons are in the over-
shoot regime near the drain end of the channel and their
average drift velocity exceeds 2×105 m/s. Proper model-
ing of the velocity overshoot effect, which leads to larger
current drive, is only possible via a Monte Carlo device
simulation scheme. Another issue that is worth mentioning
is the fact that the average carrier energy in the channel
region of the device is less than 0.5 eV which justifies
the use of the non-parabolic model that is adopted in this
work.

After sufficient time has elapsed, so that the system
is driven into a steady-state regime, one can calculate
the steady-state current through a specified terminal. As
already discussed, the device current can be determined
via two different, but consistent methods. First, by keep-
ing track of the charges entering and exiting each terminal,
the net number of charges over a period of the simula-
tion can be used to calculate the current (Fig. 16(a)). The
method is quite noisy due to the discrete nature of the
carriers. In a second method, the sum of the carrier veloc-
ities in a portion of the device are used to calculate the
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Fig. 15. (a) Average carrier drift velocity along the channel. (b) Average
carrier energy. Different currents correspond to the different gate biases
denoted on Figure 16.

current (Fig. 16(b)). For this purpose, the device is divided
into several sections along, for example, the x-axis (from
source to drain for the case of a MOSFET simulation).

The number of carriers and their corresponding veloc-
ity is added for each section after each free flight time
step. The total x-velocity in each section is then aver-
aged over several time steps to determine the current
for that section. The total device current can be deter-
mined from the average of several sections, which gives a
much smoother result compared to counting the terminal
charges. By breaking the device into sections, individual
section currents can be compared to verify that the currents
are uniform. In addition, sections near the source and the
drain regions of a MOSFET may have a high y-velocity
and should be excluded from the current calculations.
Finally, by using several sections in the channel, the aver-
age energy and velocity of electrons along the channel is
checked to ensure proper physical characteristics. The two
ways of determining current through the device are demon-
strated in Figures 16(a and b).

In Figure 17 we show the device transfer characteristics
for different drain biases. It is obvious from the results
presented that the threshold voltage shifts due to the Drain
Induced Barrier Lowering (DIBL) of the source barrier
(see Fig. 18). This observation also demonstrates the need
of using computer simulations for modeling semiconduc-
tor devices as fields and potentials are two-dimensional
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Fig. 16. (a) Cumulative charge versus time for drain bias Vd = 0"6 V
and different gate biases. The slope of the curve gives the source and
drain currents. (b) Current density calculated by using the average drift
velocity of the carriers in the x-direction. Both methods give the same
value of the current through the device which suggests that conservation
of particles in the system is being preserved.

quantities and one-dimensional models can not properly
capture effects such as DIBL.

Finally a snapshot of the electron density in the channel,
when the transistor is turned on, is shown in Figure 19(a).
We see the existence of electrons in the channel region
of the device. The corresponding conduction band pro-
file, for the same biasing conditions, that is smoothed over
time, is shown in Figure 19(b) and demonstrates the two-
dimensional character of the potential and the electric field
profiles in the active portion of the device.

2.3.6. Direct Treatment of Inter-Particle Interaction

In modern deep-submicrometer devices, for achieving
optimum device performance and eliminating the so-called
punch-through effect, the doping densities must be
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Fig. 17. Transfer characteristics of the device shown in Figure 1. Notice
the increase in threshold voltage with increasing drain bias.

quite high. This necessitates a careful treatment of the
electron–electron (e–e) and electron–impurity (e–i) inter-
actions, an issue that has been a major problem for quite
some time. Many of the approaches used in the past have
included the short-range portions of the e–e and e–i inter-
actions in the k-space portion of the Monte Carlo transport
kernel, thus neglecting many of the important inelastic
properties of these two interaction terms.44�45 An addi-
tional problem with this screened scattering approach in
devices is that, unlike the other scattering processes, e–e
and e–i scattering rates need to be re-evaluated frequently
during the simulation process to take into account the
changes in the distribution function in time and spatially.
The calculation and tabulation of a spatially inhomoge-
neous distribution function may be highly CPU and mem-
ory intensive. Furthermore, ionized impurity scattering is
usually treated as a simple two-body event, thus ignor-
ing the multi-ion contributions to the overall scattering
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Fig. 19. (a) Snapshot of the Electron density in the device. We use
Vg = 0"6 V and Vd = 0"6 V in these simulations. (b) Variation of the
conduction band edge for the same bias conditions.

potential. A simple screening model is usually used that
ignores the dynamical perturbations to the Coulomb fields
caused by the movement of the free carriers. To overcome
the above difficulties, several authors have advocated cou-
pling of the semi-classical molecular dynamics approach
to the ensemble Monte-Carlo approach.46–48 Simulation
of the low field mobility using such a coupled approach
results in excellent agreement with the experimental data
for high substrate doping levels.48 However, it is proven
to be quite difficult to incorporate this coupled ensemble
Monte-Carlo-molecular dynamics approach when inhomo-
geneous charge densities, characteristic of semiconductor
devices, are encountered.45�49 An additional problem with
this approach in a typical particle-based device simulation
arises from the fact that both the e–e and e–i interactions
are already included, at least within the Hartree approxi-
mation (long-range carrier–carrier interaction), through the
self-consistent solution of the Poisson equation via the PM
coupling discussed in the previous section. The magnitude
of the resulting mesh force that arises from the force inter-
polation scheme, depends upon the volume of the cell, and,
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for commonly employed mesh sizes in device simulations,
usually leads to double-counting of the force.

To overcome the above-described difficulties of incor-
poration of the short-range e–e and e–i force into the
problem, one can follow two different paths. One way
is to use the P3M scheme introduced by Hockney and
Eastwood.35 An alternative to this scheme is to use the
corrected-Coulomb approach due to Gross et al.50–53

2.3.6.1. The P3M Method. The particle-particle-
particle-mesh (P3M) algorithms are a class of hybrid
algorithms developed by Hockney and Eastwood.35 These
algorithms enable correlated systems with long-range
forces to be simulated for a large ensemble of particles.
The essence of the method is to express the interparticle
forces as a sum of two component parts; the short range
part Fsr, which is nonzero only for particle separations
less than some cutoff radius re, and the smoothly varying
part F, which has a transform that is approximately band-
limited. The total short-range force on a particle Fsr is
computed by direct particle–particle (PP) pair force sum-
mation, and the smoothly varying part is approximated by
the particle-mesh (PM) force calculation.

2.3.6.2. The Corrected Coulomb Approach. This sec-
ond approach is a purely numerical scheme that generates
a corrected Coulomb force look-up table for the individ-
ual e–e and e–i interaction terms. To calculate the proper
short-range force, one has to define a 3D box with uniform
mesh spacing in each direction. A single (fixed) electron is
then placed at a known position within a 3D domain, while
a second (target) electron is swept along the ‘device’ in,
for example, 0.2 nm increments so that it passes through
the fixed electron. The 3D box is usually made sufficiently
large so that the boundary conditions do not influence the
potential solution. The electron charges are assigned to the
nodes using one of the charge-assignment schemes dis-
cussed previously.36 A 3D Poisson equation solver is then
used to solve for the node or mesh potentials. At self-
consistency, the force on the swept electron F = Fmesh is
interpolated from the mesh or node potential. In a separate
experiment, the Coulomb force Ftot = Fcoul is calculated
using standard Coulomb law. For each electron separation,
one then tabulates Fmesh, Fcoul and the difference between
the two F ′ = Fcoul − Fmesh= Fsr, which is called the cor-
rected Coulomb force or a short-range force. The later is
stored in a separate look-up table.

As an example, the corresponding fields to these three
forces for a simulation experiment with mesh spacing of
10 nm in each direction are shown in Figure 20. It is
clear that the mesh force and the Coulomb force are iden-
tical when the two electrons are separated several mesh
points (30–50 nm apart). Therefore, adding the two forces
in this region would result in double-counting of the force.
Within 3–5 mesh points, Fmesh starts to deviate from Fcoul.
When the electrons are within the same mesh cell, the
mesh force approaches zero, due to the smoothing of the
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Fig. 20. Mesh, Coulomb and corrected Coulomb field versus the dis-
tance between the two electrons. Note: F =−eE.

electron charge when divided amongst the nearest node
points. The generated look-up table for F ′ also provides
important information concerning the determination of the
minimum cutoff range based upon the point where Fcoul

and Fmesh begin to intersect, i.e., F ′ goes to zero.
Figure 21 shows the simulated doping dependence of the

low-field mobility, derived from 3D resistor simulations,
which is a clear example demonstrating the importance of
the proper inclusion of the short-range electron–ion inter-
actions. For comparison, also shown in this figure are the
simulated mobility results reported in Ref. [17], calcu-
lated with a bulk EMC technique using the Brooks-Herring
approach54 for the e–i interaction, and finally the measured
data55 for the case when the applied electric field is paral-
lel to the (100) crystallographic direction. From the results
shown, it is obvious that adding the corrected Coulomb
force to the mesh force leads to mobility values that are in
very good agreement with the experimental data. It is also
important to note that, if only the mesh force is used in the
free-flight portion of the simulator, the simulation mobility
data points are significantly higher than the experimental
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ones due to the omission of the short-range portion of the
force.

The short-range e–e and e–i interactions also play sig-
nificant role in the operation of semiconductor devices.
For example, carrier thermalization at the drain end of
the MOSFET channel is significantly affected by the
short-range e–e and e–i interactions. This is illustrated
in Figure 22 on the example of a 80 nm channel-length
n-MOSFET. Carrier thermalization occurs over distances
that are on the order of few nm when the e–e and e–i
interactions are included in the problem. Using the mesh
force alone does not lead to complete thermalization of the
carriers along the whole length of the drain extension, and
this can lead to inaccuracies when estimating the device
on-state current.

3. QUANTUM TRANSPORT

Semiconductor transport in the nanoscale region has
approached the regime of quantum transport. This is sug-
gested by two trends: (1) within the effective-mass approx-
imation, the thermal de Broglie wavelength for electrons
in semiconductors is on the order of the gate length of
nano-scale MOSFETs, thereby encroaching on the physi-
cal optics limit of wave mechanics; (2) the time of flight
for electrons traversing the channel with velocity well in
excess of 107 cm/sec is in the 10−15 to 10−12 sec region—a
time scale which equals, if not being less than the momen-
tum and energy relaxation times in semiconductors which
precludes the validity of the Fermi’s golden rule.

The static quantum effects, such as tunneling through
the gate oxide and the energy quantization in the inver-
sion layer of a MOSFET are also significant in nanoscale
devices. The current generation of MOS devices has oxide
thicknesses of roughly 15–20 Å and is expected that, with
device scaling deeper into the nanoscale regime, oxides
with 8–10 Å thickness will be needed. The most obvi-
ous quantum mechanical effect, seen in the very thinnest

oxides, is gate leakage via direct tunneling through the
oxide. The exponential turn-on of this effect sets the
minimum practical oxide thickness (∼10 Å). A second
effect due to spatial/size-quantization in the device channel
region is also expected to play significant role in the opera-
tion of nanoscale devices. To understand this issue, one has
to consider the operation of a MOSFET device based on
two fundamental aspects: (1) the channel charge induced
by the gate at the surface of the substrate, and (2) the
carrier transport from source to drain along the channel.
Quantum effects in the surface potential will have a pro-
found impact on both, the amount of charge which can be
induced by the gate electrode through the gate oxide, and
the profile of the channel charge in the direction perpen-
dicular to the surface (the transverse direction). The criti-
cal parameter in this direction is the gate-oxide thickness,
which for a nanoscale MOSFET device is, as noted earlier,
on the order of 1 nm. Another aspect, which determines
device characteristics, is the carrier transport along the
channel (lateral direction). Because of the two-dimensional
(2D), and/or one-dimensional (1D) in the case of narrow-
width devices, confinement of carriers in the channel, the
mobility (or microscopically speaking, the carrier scat-
tering) will be different from the three-dimensional (3D)
case. Theoretically speaking, the 2D/1D mobility should
be larger than its 3D counterpart due to reduced den-
sity of states function, i.e., reduced number of final states
the carriers can scatter into, which can lead to device
performance enhancement. A well known approach that
takes this effect into consideration is based on the self-
consistent solution of the 2D Poisson–1D Schrödinger–
2D Monte Carlo, and requires enormous computational
resources as it requires storage of position dependent scat-
tering tables that describe carrier transition between vari-
ous subbands.56 More importantly, these scattering tables
have to be re-evaluated at each iteration step as the Hartree
potential (the confinement) is a dynamical function and
slowly adjusts to its steady-state value. It is important to
note, however, that in the smallest size devices (10 nm
feature size), carriers experience very little or no scatter-
ing at all (ballistic limit), which makes this second issue
less critical when modeling these nanoscale devices (e.g.,
Refs. [57–59]).

On the other hand, the dynamical quantum effects in
nanoscale MOSFETs, associated with energy dissipating
scattering in electron transport can be physically much
more involved.60 There are several other fundamental prob-
lems one must overcome in this regard. For example, since
ultrasmall devices, in which quantum effects are expected
to be significant, are inherently three-dimensional (3D),
one must solve the 3D open-Schrödinger equation.

Another question that becomes important in nanoscale
devices is the treatment of scattering processes. Within the
Born approximation, the scattering processes are treated
as independent and instantaneous events. It is, however, a
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nontrivial question to ask whether such an approximation
is actually satisfactory under high temperature, in which
the electron strongly couples with the environment (such
as phonons and other carriers). In fact, many dynamical
quantum effects, such as the collisional broadening of the
states or the intra-collisional field effect, are a direct con-
sequence of the approximation employed for the scatter-
ing kernel in the quantum kinetic equation. Depending on
the orders of the perturbation series in the scattering ker-
nel, the magnitude of the quantum effects could be largely
changed. Many of these issues relevant to quantum trans-
port in semiconductors are highlighted in Table I. Note
that at present there is no consensus as to what can be “the
best” approach to model quantum transport in semiconduc-
tors. Density matrices, and the associated Wigner function
approach, Green’s functions, and Feynman path integrals
all have their application strengths and weaknesses.

3.1. Open Systems

A general feature of electron devices is that they are of
use only when connected to a circuit, and to be so con-
nected any device must possess at least two terminals,
contacts, or leads. As a consequence, every device is an
open system with respect to carrier flow.61 This is the
overriding fact that determines which theoretical models
and techniques may be appropriately applied to the study
of quantum devices. For example, the quantum mechan-
ics of pure, normalizable states, such as those employed
in atomic physics, does not contribute significantly to an
understanding of devices, because such states describe
closed systems.

To understand devices, one must consider the unnor-
malizable scattering states, and/or describe the state of the
device in terms of statistically mixed states, which casts
the problem in terms of quantum kinetic theory. As a prac-
tical matter of fact, a device is of use only when its state is
driven far from thermodynamic equilibrium by the action
of the external circuit. The non-equilibrium state is charac-
terized by the conduction of significant current through the

Table I. Quantum effects.

1. Static quantum effects
• Periodic crystal potential and band structure effects
• Scattering from defects, phonons
• Strong electric and magnetic field
• Inhomogeneous electric field
• Tunneling-gate oxide tunneling and source-to-drain tunneling
• Quantum wells and band-engineered barriers

2. Dynamical quantum effects

• Collisional broadening
• Intra-collisional field effects
• Temperature dependence
• Electron–electron scattering
• Dynamical screening
• Many-body effects
• Pauli exclusion principle

device and/or the appearance of a non-negligible voltage
drop across the device.

In classical transport theory, the openness of the device
is addressed by the definition of appropriate boundary con-
ditions for the differential (or integro-differential) trans-
port equations. Such boundary conditions are formulated
so as to approximate the behavior of the physical contacts
to the device, typically Ohmic or Schottky contacts.62 In
the traditional treatments of quantum transport theories,
the role of boundary conditions is often taken for granted,
as the models are constructed upon an unbounded spatial
domain. The proper formulation and interpretation of the
boundary conditions remains an issue, however. It should
be understood that, unless otherwise specified, all mod-
els to be considered here are based upon a single-band,
effective-mass open-system Schrodinger equation.

3.2. Evaluation of the Current Density

To investigate the transport properties of a quantum sys-
tem one must generally evaluate the current flow through
the system, and this requires that one examine systems
that are out of thermal equilibrium. A common situation,
in both experimental apparatus and technological systems,
is that one has two (or more) physically large regions
densely populated with electrons in which the current den-
sity is low, coupled by a smaller region through which the
current density is much larger. It is convenient to regard
the large regions as “electron reservoirs” within which the
electrons are all in equilibrium with a constant temperature
and Fermi level, and which are so large that the current
flow into or out of the smaller “device” represents a neg-
ligible perturbation. The reservoirs represent the metallic
contacting leads to discrete devices or experimental sam-
ples, or the power-supply busses at the system level. Con-
sequently the electrons flowing from a reservoir into the
device occupy that equilibrium distribution which char-
acterizes the reservoir. In a simple one-dimensional sys-
tem with two reservoirs, the electrons flowing in from the
left-hand reservoir have k > 0 and those flowing from the
right-hand reservoir have k < 0. Then, the current density
is calculated using the Tsu-Esaki formula

J = q
∫ �

V0

dE�
22�

T �E�� ln

{
1+ exp

[−@(E� −EF l

)]
1+ exp

[−@(E� −EFr

)]
}

(40)

where E� is the in-plane carrier energy, @= 1/kBT , T �E��
is the transmission coefficient and EF l and EFr are the
Fermi levels of the left and the right lead, respectively.
Note that this expression is valid in general with respect
to the dispersion relation in the x direction, but requires
a parabolic dispersion relation in the transverse directions.
The separation of variables leading to Eq. (40) is never
rigorously valid in a semiconductor heterostructure. The
reason for this is that the transverse effective mass m∗

⊥
will vary with semiconductor composition, which varies
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in the x direction. In principle, one must do at least a
two-dimensional integral (if axial symmetry holds, other-
wise a three-dimensional integral). Nevertheless, Eq. (40)
is widely used to model the current density in heterostruc-
ture devices.

If the transverse dimensions are constrained, but separa-
tion of variables is still possible, the transverse motion of
the electrons consists of a discrete set of standing waves
or normal modes. Such systems are referred to as “one-
dimensional” systems, quantum wires, or electron wave-
guides. The symbol k⊥ is now interpreted as an index for
the discrete transverse modes, and the expression for the
current density now becomes

Jr = 2q
∑
k⊥

∫ −�

0

dE�
22

T �k�� k⊥�

× [
fFD�E� +E⊥−EF l�− fFD�E� +E⊥−EFr�

]
(41)

3.3. Landauer-Buttiker Formalism and
Related Numerical Methods

The Landauer-Buttiker formalism,63�64 is the most widely
used scheme to calculate the ballistic transport through
an open system. Within this approach, current is calcu-
lated using the transmission function that is obtained from
the solution of the Schrödinger equation with scattering
boundary conditions. While this is a significant simpli-
fication compared to a rigorous calculation that includes
the relaxation of carriers, even this approach becomes
computationally very challenging for higher dimensional
nanostructures with complex geometry. A number of
methods have been developed in the past to calculate
the ballistic transport through quantum devices. Transfer
matrix method,65�66 a well-known approach appears to be
unstable67 for larger devices in its original form. How-
ever, this drawback was overcome by a series of gen-
eralizations developed by Frensley,68 Lent et al.,69 and
Ting et al.70 respectively. These approaches take into
account the coupling to the leads using the quantum
transmitting boundary method (QTBM),69 and can han-
dle structures of arbitrary geometry. There are QTBM
implementations applied to one-dimensional tight-binding
Hamiltonian,70�71 k ·p-based multi-band calculations,72 and
two-dimensional single-band calculations.69�73 A three-
dimensional self-consistent scheme based on QTBM on
the assumption of separable device potential has been
reported.74 The boundary element method75 is computa-
tionally efficient, but so far the published applications are
limited to wave-guide structures, i.e., structures possessing
a flat potential76 or consisting of piecewise homoge-
neous materials with constant potentials.77 The Recur-
sive Green’s function (RGF) method,1�14 an efficient and
widely used algorithm, has been successfully implemented
for two-dimensional devices,78�79 and for small three-
dimensional structures such as nano-wires.80 It is very

well suited for 2-terminal devices that can be discretized
into cross-sectional slices with nearest neighbor interac-
tions, but has difficulties dealing with additional (i.e., more
than two) contacts.81 A closely related approach, modu-
lar recursive Green’s function method82 is applicable to
devices that can be divided into regions of sufficiently high
symmetry, where the Schrödinger equation is separable,
and has been recently adopted to include magnetic fields.83

Another method that is applicable in a case of separable
device potentials and when current can flow through two
leads (e.g., in the situation of quasi-1D transport) has been
termed the mode-space approach.84 This method has been
implemented using effective-mass approximation in sim-
ulator NanoMOS (2 · x and 3.0) that has been extended
recently to include the simulation of devices with chan-
nels along arbitrary crystallographic directions.85�86 A 3D
simulator with effective mass approximation using the
mode-space approach for silicon nano-transistor has been
reported where scattering is taken into account via Buttiker
probes.87 An application of the mode-space approach to
the simulations of ultra small FinFET has been presented88

in which phonon scattering and surface roughness have
been taken into account. Very recently a 3D simulation
of silicon nanowires, based on effective-mass approxima-
tion and the mode-space approach, has been presented.89

In that work the simulation has been performed assuming
that the device potential is separable in the confinement
(mode representation) and the transport direction, along
which the potential is assumed to be close to uniform.
The resulting quasi-1D transport problem is solved using
a simplified NEGF formalism self-consistently. The inter-
and intra-valley scattering on phonons has been included
in that work89 via deformation potential theory, which
allowed the authors to check the validity of ballistic model
on 15 nm gate wire transistor. Finally, a modified version
of the QTBM has been developed that expands the scat-
tering solutions in terms of two different closed system
wave functions in an efficient way.90 This 2D scheme is
charge-self consistent and has also been implemented for
effective-mass Hamiltonians and different crystallographic
directions.91 One of the advantages of this approach is that
the transport is considered to be “truly 2D,” i.e., the cor-
responding quantum transport equation is not assumed to
be separable in the confinement direction. Therefore, using
the Laux’s method,� gate leakage currents can be calcu-
lated self-consistently with the rest of the device.

Thus, despite the significant progress in developing
quantum transport simulator, at present there is no simu-
lators that treat the quantum-mechanical transport in three
spatial dimensions rigorously, and only few simulators
treat transport as truly 2D. In the following, we describe
an approach that goes beyond quasi-1D transport modeling
and allows us to take into account gate-leakage and other
2D and 3D transport effects.
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3.4. Contact Block Reduction Method

An efficient method based on Green’s function approach,
termed as Contact Block Reduction (CBR) method,81�92�93

that is presented next has been developed at Walter
Schottky Institute and ASU and used by the group from
ASU to calculate self-consistently transport properties in
nanoscale 10 nm gate length FinFET device operating
in the ballistic regime. The method rigorously separates
the open system problem into the solution of a suitably
defined closed system (energy-independent) eigen-problem
and the energy-dependent solution of a small linear sys-
tem of equations of size determined by the contact regions
that couple the closed system to the leads. The calculation
of the charge density of the open system throughout the
device can be performed with an effort comparable to a
single calculation of a small percentage of the eigenstates
of a closed system.

The CBR method allows one to calculate 2D or 3D bal-
listic transport properties of a device that may have any
shape, potential profile, and most importantly any num-
ber of external leads. In this method, quantities like the
transmission function and the charge density of an open
system can be obtained from the eigenstates of the corre-
sponding closed system defined as H 0�A� = �A�A�, and the
solution of a very small linear algebraic system for every
energy step E. The retarded Green’s function GR�E� can
be calculated via the Dyson equation through a Hermitian
Hamiltonian H0 of a closed system represented by,94

GR�E�=A−1�E�G0�E�� A�E�≡[
I−G0�E�C�E�

]
G0�E�≡[

IE−H0
]−1=∑

A

�A��A�
E−�A

(42)

The inversion of the matrix A can be easily performed
using the property of the self-energy C in real space rep-
resentation: it is non-zero only at boundary regions of the
device, which are in contact with the external leads. We
denote these boundary regions (=contacts) with index C,
and the rest of the device with index D. As a result, the
Green’s function matrix of the open system can be written
in the following form:

GR =
[

GR
C GR

CD

GR
DC GR

D

]

=
[

A−1
C G0

C A−1
C G0

CD

−ADCA−1
C G0

C+G0
DC −ADCA−1

C G0
CD+G0

D

]
(43)

The left-upper matrix block GR
C =A−1

C G0
C fully determines

the transmission function whereas the left-lower block
GR

DC determines the density of states, charge density, etc.
The particle density n�r� can be obtained using,

n�r�=∑
A�@

�r � A��@ � r�DA@ (44)

where DA@ is the density matrix and is given by,

DA@ =
L∑

E=1

∫
F

�E�
A@ �E�fE�E�dE

F
�E�
A@ �E�=

1
22

Tr
([�@��A�]

C
B−1
C /

�E�
C B−1†

C

)
�E−�A+ iH��E−�@− iH�

∣∣∣∣
H→0+

(45)

/C = i
[
CC −C†

C

]
� BC = 1C −CCG0

C

In Eq. (45), L denotes the total number of external
leads of the device, index E denotes individual lead
number and fE�E� is the distribution function associ-
ated with lead E. The integration in Eq. (45) is per-
formed over the energy interval, where both the density
matrix distribution F

�E�
A@ �E� and the distribution function

fE�E� are non-negligible. Consequently, the density matrix
distribution defines the lower integration limit, and the
distribution function fE�E� the upper integration limit.
The advantage of using Eqs. (43)–(45) for determining
electron density is in splitting numerical costs between
calculation of position-independent density matrix and
position-dependent, but energy-independent charge density
in Eq. (44). Then the total numerical cost can be estimated
as Nn�r� = N 2

eigenNE +N 2
eigenNgrids, where NE is number of

energy steps, Neigen is number of eigenstates to be used,
and Ngrids is the number of grid points in real space.81 Note
the absence of a large terms like NE ×Ngrids.

However, a slightly different approach to calculate par-
ticle density can be adopted that is also very efficient.
This approach appears to be more suitable for self-
consistent calculation. For a self-consistent calculation
using a predictor-corrector approach described below, it is
important to have an expression for the local density of
states (LDOS), I�r�E�. To obtain the expression for the
LDOS using CBR algorithm, we note that the lower-left
block GR

DC of the matrix in Eq. (43) can be also written in
the following form,

GR
DC = G0

DCB−1
C (46)

Next, using the formula I�r�E�= �r�GR/GR†�r�/22 and
performing simple algebraic manipulations one gets

I�r�E�= 1
22

∑
m

�GR
rm�2/mm

GR
rm = 〈

r �G0
DCB−1

C �m〉
(47)

= ∑
m′�A

�r � A��A �m′�
E−�A

�m′�B−1
C �m�

The term GR
rm in Eq. (47) is the retarded Green’s func-

tion in a mixed space and mode representation,81 and the
second line in this equation is the CBR expression for it.
One can check now that the total numerical cost of LDOS
using Eq. (47) can be estimated as

NI = NENgridsNeigenNmodes (48)
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where Nmodes is the number of non-zero elements in /C ,
which is diagonal in the mode representation (thus Nmodes

is the number of propagating modes81). It is usually much
more efficient to express the quantities with index C (con-
tacts) in mode representation, due to the possible mode
reduction. The advantage of using Eq. (47) is the absence
of quadratic and higher order terms with Ngrids or Neigen.

3.4.1. Bound States Treatment

It is important to note that the density matrix DA@ in
Eq. (45) and the derived quantities may also account for
bound states, if they are present in the system. Indeed, as
it has been shown in Ref. [81], the term F

�E�
A@ �E� does not

disappear when the coupling to the leads (represented by
CC and /C terms) is zero (i.e., when system states are not
coupled to the outside world), but instead results in

FA@�E�−−−−−−−→
C�E�=iH→0+

9A@9�E−EA� (49)

that assures the inclusion of bound states into the total
charge density. We point out, however, that in the case of
numerical evaluation of Eq. (49), the delta-functions cor-
responding to the bound states should be integrated ana-
lytically, leading to the expression

DTOTAL
A@ = ∑

K∈BS
9A@9AKf ��K�+

L∑
E=1

∫
F

�E�
A@ �E�fE�E�dE (50)

where the sum with index K is performed over all bound
states (BS) in the system. While in the idealized ballistic
case, it is generally unclear how these states are occupied
if the bias is applied, however, in a presence of small scat-
tering in the system these quasi-bound states (QBS) can be
viewed as states that get occupied as a result of scattering
of carriers coming from one of the leads E= 1 " " " L. In the
later case, if one knew ‘from what lead has a carrier come
from,’ one could assign to the carrier the corresponding
distribution function. Exploring this idea, one can make
an assumption that the distribution function f ��K� of the
quasi-bound state �K� depends on the “coupling strength”
to the outside leads. If a quasi bound state �K� is coupled
more strongly to lead E, then it is reasonable to expect
that its distribution function is close to the one of lead E.
Generally, one can speculate that if the scattering is small,
then the quasi-bound states can be occupied according to
the following approximate formula

DBSA@ = ∑
K∈BS

9A@9AK

L∑
E=1

FKEfE��K�

/ L∑
E=1

FKE (51)

where the coupling strength, FKE, of state K to lead E is
given by

FKE =
ME∑
m=1

��K � N�E�
m ��2 (52)

The summation in Eq. (52) is performed as the squares of
the absolute values of projections of states �K� over ME

transverse modes N�E�
m in lead E. FKE can be used to deter-

mine what states �K� should be treated as “quasi-bound”
ones. We find this approach to be essential, in particu-
lar, for a superior convergence of the self-consistent cycle.
An example of using the coupling strength for determin-
ing the quasi-bound states is given in Figure 23. The solid
circles represent the coupling strength FKE of an eigen-
state �K� to the lead E (for simplicity data for only one
(source) lead are shown on Fig. 23). We see that the vast
majority of eigenstates are strongly coupled to the lead,
except the lower 6 circles, for which FKE < 0"2. It is possi-
ble, therefore, to introduce a threshold in coupling strength
(for example Fth = 0"19�, so that eigenstates with cou-
pling strength less than the threshold would be identified
as QBS. Furthermore, every peak in the DOS corresponds
to a certain QBS (there are 6 peaks and 6 QBS shown
in Fig. 23). While the former property is not always the
case (some QBS do not result in resonant peaks in the
DOS), it is generally possible to find a QBS “responsi-
ble” for every resonant peak in the DOS. Therefore, most
of the hard-to-integrate resonant peaks in the DOS can be
eliminated, by excluding the responsible weakly-coupled
eigenstates from the eigenstate set O�A�P, which we use
to calculate the retarded Green’s function G0 of a closed
device. These excluded states then are taken into account
with the following resulting expression for the charge
density:

n�r�= ∑
A∈BS

��r � A��2DBSAA +
∑

A�@�BS
�r � A��@ � r�DA@ (53)

If the explicit relation between the charge density and
the LDOS is desired, the following formula can be use

Fig. 23. Quasi-bound state (QBS) detection using the coupling strength
in Eq. (52). The graph shows DOS energy dependence (solid curve, left-
hand scale) and the coupling strength for the device eigenstates (solid
circles, right-hand scale). Note the resonant peak of open-system DOS at
each QBS.
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instead:

n�r�= ∑
A∈BS

��r � A��2DBSAA +
L∑

E=1

∫
IE�r�E�fE�E�dE (54)

where the LDOS due to lead E is IE�r�E�.

3.4.2. Energy Discretization

For an efficient numerical implementation of a self-
consistent scheme, the choice of the energy grid is of high
importance. To integrate the continuous part of the carrier
density, the LDOS is discretized in energy space and then
a simple numerical integration is done by summing up the
values for each energy step weighted by the Fermi distri-
bution and the energy grid spacing �Ek with k being the
index of the energy grid. Using a regular grid with con-
stant grid spacing, the integral over the peak deriving from
the resonant states is very poor since the relative distance
between the nearest energy grid point Ek and the resonant
energy Em is, generally, arbitrary. In addition, the resonant
energy is slightly shifted with each iteration step, lead-
ing to a varying integration error during the self-consistent
cycle, which acts as an obstacle against convergence for
any self-consistent algorithm. Thus, a solution to this prob-
lem is to use the physical information about the system and
employ an adaptive energy grid that resolves each known
peak with a local energy grid of a few tens of grid points
that is fixed to the resonant energy Em. The location of
resonant states is easy to find, since the resonant energies
are close to (selected) eigenstates of the closed system.
Another advantage of the CBR method is that these eigen-
states are already known, since in this method the solution
for the open system is being expressed in the basis of the
closed system. As a result, the integration error is reduced
compared to the case of using regular grid and remains
constant within the iteration, since the grid is locally fixed
to the shifted mode energies.

3.4.3. Self-Consistent Solution

The self-consistent solution of the ballistic or quasi-
ballistic transport properties of an open device requires
repeated solution of the Schrödinger and Poisson equa-
tions. In principle, it is possible to simply iterate the solu-
tion of the Schrödinger and Poisson equations and with
enough damping this will yield a converged result. How-
ever, this approach leads to hundreds of iteration steps for
each bias point that do not pose a reasonable scheme. To
improve the convergence of a highly non-linear set of cou-
pled equations, such as the Schrödinger-Poisson problem,
the Newton algorithm is usually the first choice. How-
ever, the exact Jacobian for the Schrödinger-Poisson set
cannot be derived analytically, and its numerical evalu-
ation is rather costly (while certainly possible, see e.g.,
Ref. [90]). In the case of a closed system this problem has

been solved using the predictor-corrector approach.95�96

The aim of this method is to find a good approximation
for the quantum density as a function of the electrostatic
potential where an expression for the Jacobian is known.
In this work we adopted this approach to open systems. At
first, the Schrödinger equation is solved for the closed sys-
tem with the Hartree potential, 0H�r�, and the exchange
and correlation potential, 0XC�r� taken into account. Then
the local density of states I�r�E� of the open system is
calculated using the CBR method. The Hartree potential
0H and carrier density n are then used to calculate the
residuum, F , of the Poisson equation using,

F �0H�= A0H − �n−ND� (55)

where A is the matrix derived from the discretization of
the Poisson equation. If the residuum is smaller than a
predetermined threshold the solution is taken to be a con-
verged one. If the residuum is still too large, the correction
to the Hartree potential �0H�r� is calculated in the pre-
dictor step, where the predictor carrier density npr�r� is
calculated, assuming it to be the functional of the change
�RH�r� in the Hartree potential as follows:

npr�r�= 2

L∑
E=1

∫
IE�r�E�f

(
E+�0H�r�−E

�E�
F

kBT

)
dE

A�0H�r�+�0H�r��= npr�r�−ND�r�
(56)

where f �x� = �1+ exp�x��−1 for 3D systems or the cor-
responding Fermi integral for systems with lower dimen-
sions, the energy E

�E�
F is the Fermi energy level in lead E,

and a factor of 2 is taken into account for the spin degener-
acy of the electrons. Note that the Jacobian for the system
Eq. (56) can be easily found analytically:

Jrr′ =

F �r�


�0H�r′�
= Arr′ +


npr�r�


�0H�r′�

= Arr′ +9rr′
2

kBT

L∑
E=1

∫
IE�f −1�f dE (57)

After applying the Newton method, the obtained correction
to the Hartree potential �0H and the corresponding carrier
density are used to update the Hartree 0H , exchange �LDA

X

and correlation �LDA
C potentials for the next iteration (i+1)

as follows:

0
�i+1�
H = 0

�i�
H +�0

�i�
H

0
�i+1�
XC = �LDA

X �n�i�pr ��0
�i�
H ��+�LDA

C �n�i�pr ��0
�i�
H ��

(58)

The loop is repeated until convergence is achieved, that is
��0�i�

H �<�, with � being the absolute error of the potential.
We find that typically only very few (5–7) solutions of
the Schrödinger equation are necessary to yield a solution
with 3 converged digits in the potential and currents.
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3.4.4. Device Hamiltonian, Algorithm and
Some Numerical Details

In this work FinFET devices with varying fin width
(4 nm∼12 nm) have been simulated. With 12 nm fin width
the simulation real space domain is fairly large. While
the CBR method for quantum transport simulation can
be used with any multi-band Hamiltonians, including the
tight-binding and k ·p,81 in this work, we choose to adopt
the effective mass model and finite difference discretiza-
tion scheme to be able to simulate relatively ‘large’ Fin-
FET device within a reasonable time frame. The structure
and the size of the corresponding effective mass Hamilto-
nian are determined by the dimensionality of the transport
problem and the number of real space grid points. Due to
the presence of non-equivalent valleys in Si, we need to
solve the open-system problem for each valley, and then
add up the contributions from different valleys (weighting
them with the corresponding valley degeneracy).

In ultra-scaled nano-transistors source, drain and gate
regions are usually heavily doped, therefore it is important
to include quantum-mechanical effects of exchange and
correlation. In this work this is done via the local density
approximation (LDA). The phenomenological scattering
on the phonons using the relaxation time approximation
has been taken into account. Since this phonon scatter-
ing model relies on phenomenological parameters, in this
work we present results that include into account this phe-
nomenological scattering on phonons as well as purely
ballistic ones (that do not depend on such parameters).

After the initial guess for the potential and the initial
number of device eigenstates, the CBR loop is started. For
each CBR-Poisson iteration the following tasks are per-
formed: (i) transverse lead modes are calculated; (ii) eigen-
problem is solved for closed-system with von Neumann
boundary conditions at the contacts; (iii) open-system solu-
tion is constructed. The simulator has been modified to
incorporate the automatic determination of the required
number of device eigenstates and lead modes for each
iteration to yield desired accuracy. Due to this dynamic
nature of eigenstate and lead modes determination, CPU
time can be saved and also memory requirements have
been optimized.

The accuracy � also determines the upper error norm
for the functional F ; if �F �< � then the solution is con-
sidered to be converged and the next bias point can be
processed, otherwise the predictor-corrector approach is
invoked to determine correction �0 to the potential. With
updated potential 0 CBR routine is called again and the
loop continues until convergence is achieved. Note that the
CBR module is called for each non-equivalent Si valley
to obtain the LDOS and transmission function for each
valley; then the total charge density, currents, etc. are cal-
culated as the corresponding sums. Table II shows the
average values of required number of device eigenstates
and lead modes in off- and on-state of a FinFET device

Table II. Convergence data and average number of generalized von
Neumann eigenstates used for construction of open system solution.

Parameter\operation
regime Subthreshold On-state

Number of grid points/mesh size 17169/2.5 Å 17169/2.5 Å
Number of device eigenstates used 470 (2.7%) 270 (1.5%)

in calculation (averaged over
valleys)

Number of total lead transverse 39 (20%) 31 (16%)
modes used in calculation
(averaged over valleys)

Average absolute error of 10−5/3 10−5/3
potential (eV)/average number of
converged digits of the current

Average number of CBR-Poisson 5 6
iterations

being simulated. One can see that the CBR method allows
us to use a small fraction of device eigenstates and lead
modes to get a well-converged solution within 5–6 iter-
ations, on average. It is significant that this excellent
rate of convergence has been observed on a wide variety
of devices with different doping profiles and geometries.
However, in order to achieve this result, a combination
of all the steps has to be performed. For example, in the
absence of QBS detection, the average number of itera-
tions would be about 20–30, and in some cases there could
be no converged solution at all (see also Ref. [90]). Simi-
larly, it would be significantly harder to achieve any con-
vergence in the absence of adaptive energy discretization,
etc. However, we find that the full scheme presented in
this section, resolves convergence problems in most cases.
As a real-life example, the convergence of the non-linear
Poisson equation for a FinFET with different gate voltages
changing from +0.2 to −1.0 V and fixed drain-to-source
voltage (0.1 V) is shown in Figure 24. The corresponding
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error in the source-drain current is also plotted in the same
figure. The maximum error in the source-drain current val-
ues is 2% for the potential accuracy fixed at 2×10−5 eV.
No convergence-tuning parameters of any kind have been
used in the simulation: the energy grid, energy cut-off,
number of eigenstates, lead modes, etc., are automatically
determined by the CBR simulator in every iteration and
for each bias point.

3.4.5. Simulation Example

Over the decade many novel structures have been pro-
posed for the nanoscale regime of operation, among them
fully depleted MOSFETs, in particular Double-gate (DG)
MOSFETs emerged as the leading candidate for the ulti-
mate scaling of silicon MOSFETs down to 10 nm. In
these devices effective control of the gate over the chan-
nel has been enhanced by using multiple gates and thin-
ning of body thickness.97 For a given insulator thickness
theoretical study shows that DG devices can be scaled
to the lowest channel length keeping the short channel
effects within acceptable limits.98 Theoretically, cylindri-
cal or surround-gate MOSFET is found to show the best
gate control of channel but realization of this structure
from fabrication point of view is quite challenging.99�100

Different orientation of double-gate MOSFETs have been
proposed101 as shown in Figure 25. In type I device102 the
current direction is in plane but gate-to-gate direction is
normal to the wafer plane. The fabrication process with
this type of devices is complex and contacting the bottom
gate is rather difficult. Type II devices99 have gate-to-gate
direction in plane but the current direction is perpendicular
to the plane. This type of devices suffers from inabil-
ity to easily control the channel and source/drain doping

Fig. 25. Three possible orientations of DG MOSFETs in silicon wafer.
Adapted with permission from [101], H.-S. P. Wong et al., IEDM Tech.
Dig. 427 (1997). © 1997.

profiles.103 Type III devices104 have the advantage of both
in-plane gate-to-gate direction and in-plane current direc-
tion but the width of the device is normal to the plane.

The major disadvantages of these double gate
MOSFETs are (i) non-planer structure as opposed to
the planar structure of conventional bulk MOSFETs
(ii) self-alignment of the gates with each other and with
source/drain and, (iii) formation of ultra thin silicon film.
FinFET105–107 is a special category of type III devices
in which the height is reduced to maintain quasi-planar
topography for the ease of fabrication.108 In FinFETs gates
are automatically self-aligned with each other105 and also
the packing density is large compared to other double-gate
structures.101

The geometry of a typical FinFET device is shown
in Figure 26. The fin thickness, tSi, is considered to be
the most important process parameter as it controls the
carrier mobility as well as threshold voltage. The fin is
made thin enough when viewed from above, as shown in
Figure 26(b), so that both gates simultaneously control the
entire fully depleted channel film. Usually the top surface
of the fin is covered by a thicker oxide compared to the
thickness of the side gates (front and back), tox; therefore
channels form only along the vertical surfaces of the fin.
The fin height, h here is equivalent to the “gate width” of
the conventional bulk MOSFET. Therefore, the effective
channel width in FinFET devices is equal to 2h when only
side gates are considered. For higher drive current differ-
ent channel width is achieved by introducing multiple fins
in parallel. In that case, the resultant width of the chan-
nel can be represented as 2×h×Nfins with Nfins being the
number of fins.

In this work we have modified our 2D CBR simula-
tor in such a way that semiconductor devices on wafers
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Fig. 26. (a)—3D schematic view of a prototype FinFET, (b)—top view
along A-A′ cross section and, (c)—side view along B-B′ cross-section.
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of arbitrary crystallographic orientation can be simulated.
This was necessary to match the experimental data109

for a FinFET device of which the channel is on (110)
wafer plane. The conventional approach assumes wafer in
(001) plane, and with the real space axes X�Y �Z being
along crystallographic directions [100] and [010] and [001]
respectively, the effective mass tensor is diagonal and
the Schrödinger equation can be discretized and solved
accordingly. However, for FinFET devices with channel
oriented in (110) wafer plane, the effective mass tensor is
non-diagonal (e.g., Ref. [86]). The resulting Schrödinger
equation has mixed second derivative and first derivatives
terms of which the coefficients are the non-diagonal ele-
ment of effective mass tensor. Considering 2D simulation,
it is possible to eliminate the mixed second derivative term
by rotating the device in real space by a suitable angle.91

The first derivative term can be eliminated with the wave-
function change of variable after the elimination of sec-
ond derivative terms.91 As a result, to simulate FinFET
devices with channel orientation in (110) wafer plane it
is sufficient to use modified effective masses along device
coordinates.86 Note that the above procedures are rigor-
ously valid for 2D (and 1D) transport simulations; a full
3D simulation with the wave-function depending on the
device depth (e.g., fin height) would require a somewhat
different treatment of the coefficients in the discretized
Schrödinger equation containing effective masses. Regard-
ing 2D simulation, however, we assume that the wave-
functions depend on device length and width directions,
but neglect the explicit height dependence, thus assum-
ing that the transport in this 3D FinFET device is two-
dimensional (2D).

With the inclusion of the modifications specified above,
sets of 2D simulation have been performed in order to
match experimental data with fin thickness of 12 nm and
physical gate oxide thickness of 1.7 nm. In the experiment
the gate electrode consisted of dual doped n+/p+ polysil-
icon. Also the gate insulator is nitrided oxide for which
the dielectric constant might not be exactly the same as
that of SiO2.110 However, in our simulations we use the
same device geometry (fin width, gate length and gate
oxide thickness) but assume n+ polysilicon gate and SiO2

as the gate insulator. The effects of top gate on trans-
port are assumed to be negligible considering much thicker
gate oxide compared to side gate oxide. As mentioned
earlier, the experimental FinFET device has been fabri-
cated with the channel oriented in (110) wafer plane. In
our simulations we also adopt the same wafer plane and
assume that carrier propagation is along �11̄0� crystallo-
graphic direction.

In order to obtain the closest match to the experimental
results, a series of simulations with different combinations
of doping profiles (source/drain doping concentration) and
gate-source/drain underlap regions (which defines the dop-
ing gradient) have been performed. The doping profile

which gives the closest fit of simulation results to the
transfer characteristics of experimental FinFET at low
drain bias can be described as-source/drain doping of 7×
1018 cm−3 which follow a Gaussian envelope over a gate-
source/drain underlap length of 12 nm to reach the body
doping of 1015 cm−3. The resulting doping gradient is
around 3 nm/dec. We use uniform doping of 7×1018 cm−3

in the gate electrodes. Since the exact doping profile in
the gate electrode is not specified, the simulated transfer
characteristics can be shifted in voltage-scale (gate volt-
age) to match experimental data. However, it is important
to mention that in selecting the above mentioned doping
profiles as the appropriate one to match experimental data
we consider simultaneously that (i) the value of subthresh-
old slope being in good correspondence to that obtained
in experiment, (ii) over the gate voltage range of interest
(−0.8 V to 0 V) the current values are reasonably close
to the experimental data and, (iii) at very low gate voltage
transfer characteristics do not show any bending which we
do not observe in experimental data.

As one can see from Figure 27, the transfer character-
istics obtained using the above mentioned doping profile
gives current values close to the experimental ones in the
subthreshold regime at a drain voltage of 0.1 V. In order
to check that this result is not a coincidence, the trans-
fer characteristics with the same geometry but with a high
drain voltage of 1.2 V have been calculated, and found to
be in good correspondence with the experimental data (see
Fig. 31).

One can see from Figure 27, above threshold, with the
increase in gate voltage, the deviation between simulated
and experimental data increases rapidly. We predict that
presence of very high parasitic series source/drain resis-
tance, a critical issue in FinFET device, might be a reason
for the smaller value of the drain current at high gate bias
in the experiment. In order to examine the influence of the
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Fig. 27. Comparison of simulated transfer characteristics to the experi-
mental data at low drain bias of 0.1 V.
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series parasitic source/drain resistance, RSD we extract the
value of RSD of experimental device from a plot of total
resistance, Rtot (sum of device resistance, Rint and series
parasitic source/drain resistance,RSD� versus gate voltage
as shown in Figure 28.

For sufficiently large value of gate voltage, Rint becomes
very small and one can reasonably assume that Rtot ≈
RSD. The value of total parasitic series source/drain resis-
tance extracted for the experimental device is found to be
around 400 V-�m. Including the effects of RSD the mod-
ified transfer characteristics is also shown in Figure 27
and one can see that the simulation result is very close
to the experimental findings even at high gate bias. After
including the effects of series resistance still we see some
deviation of simulation results from the experiment in on-
state. It is well known that in nanoscale devices, the pres-
ence of an unintentional dopant in the channel is highly
probable.111 Even if the fin is lightly doped, the unavoid-
able background doping might give rise to a one ionized
dopant being present at a random location within the chan-
nel. Also, if an electron becomes trapped in a defect state
at the interface or in the silicon body, it will introduce
a fixed charge in the channel region. Depending on its
position and applied bias, this unintentional dopant can
significantly alter the device behavior, particularly when
the channel is very lightly doped. An unintentional dopant
sitting at a random location within the channel introduces
a localized barrier which impedes the carrier propaga-
tion. The impact is significantly larger for an unintentional
dopant sitting at the beginning of the fin near the source
end compared to other probable positions.112

Figure 29 depicts the effective 1D potential profiles
along X direction at the center of the fin in subthreshold
regime and on-state at low and high drain bias. Also shown
in Figure 30 is the corresponding 1D lateral electric field
profiles along X direction. At low drain bias (VDS = 0"1 V)
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Fig. 29. 1D potential profiles along the length of the device in sub-
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and low gate voltage (VGS = −0"5 V) the intrinsic bar-
rier is already high enough (as shown in Fig. 29) so
that the effects of the localized barrier introduced by the
unintentional dopant can be assumed negligible. There-
fore, over the subthreshold regime, we see a very good
correspondence between simulation and experiment. For
higher gate voltages (VGS = −0"2 V), the intrinsic barrier
is reduced significantly (Fig. 29).

Also the lateral electric field is reduced due to the
increased effects of transverse electric field (Fig. 30).
Thus, the localized barrier due to unintentional dopant is
expected to influence the value of the drain current around
device turn-on point. Therefore, at low drain bias (VDS =
0"1 V), the deviation between simulated drain current and
experimental value increases with increasing gate voltage
(above threshold) up to some cut-off beyond which the
inversion electrons start to screen the potential of a single
dopant ion. Consequently the influence of unintentional
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dopant on drain current gradually diminishes at much
higher value of the gate voltage beyond threshold voltage
which is also evident from Figure 27.

For higher value of drain voltage �VDS = 1"2 V�, we
see some discrepancies between the simulation results and
experimental data in both subthreshold and at high gate
voltages as shown in Figure 31. Inclusion of series para-
sitic source/drain resistance reduces the drain current, but
still the experimental values of drain current remains much
smaller than the simulation results. In this case, due to sig-
nificant DIBL effects, intrinsic barrier reduces, compared
to the case with low drain bias, for both low and high gate
voltages as shown in Figure 29. In subthreshold regime,
the intrinsic barrier is much lower for VDS = 1"2 V than
for VDS = 0"1 V. Consequently, the discrepancy between
the experiment and simulation can be explained by more
‘noticeable’ (with respect to intrinsic barrier) effect of
localized barrier due to unintentional dopant, which was
much less significant for low drain bias. As the gate volt-
age increases, the effects of unintentional dopant become
even more pronounced, which may explain the high volt-
age trend in Figure 31. We note that the position of the
unintentional dopant is crucial in determining its effects on
drain current. At high drain bias, unintentional dopant at
the source side, will affect the drain current stronger than
impurities at other locations.

Finally, we note that the subthreshold slope of
125 mV/dec have been reported for the n-FinFET in the
experiment.109 The corresponding value as obtained from
our simulation is 120 mV/dec. The value of DIBL(at ID =
3× 10−6 A/�m) as extracted from the transfer character-
istics of the experimental device is 145 mV/V and the
corresponding value calculated from our simulation con-
sidering the effects of series parasitic source/drain resis-
tance is 160 mV/V. These numbers clearly show that the
experimentally fabricated109 10 nm FinFET device was
very far from optimal. Consequently, the 10 nm device
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Fig. 31. Comparison of simulated transfer characteristics to the experi-
mental data at VDS = 1"2 V"

characteristics could be significantly improved by a proper
tuning of device geometry. In the work113 we have used
our CBR simulator to optimize the device geometry and
doping profile of a 10 nm FinFET device to meet most of
the performance matrices defined by ITRS114 for high per-
formance 10 nm double-gate devices, which are expected
to be commercially available around 2015.

4. CONCLUSIONS

In this review article we have given a brief description of
currently most important and most physically based semi-
classical and quantum transport approaches. It is important
to note that because of these developments, device simu-
lation has achieved significantly higher maturity level than
process simulation. In fact, particle-based device simula-
tors can capture the essential physics up to ballistic trans-
port regime and, when quantum interference effects start
to dominate device behavior, quantum transport simulators
based on either direct solution of the Schrödinger equa-
tion or its counterpart, the Green’s functions, have been
developed which, with the recent progress of state of the
art computers, can simulate 3D nanoscale devices within
a reasonable time-frame.

However, nanoelectronic device simulation of the future
must ultimately include both, the sophisticated physics ori-
ented electronic structure calculations and the engineering
oriented transport simulations. Extensive scientific argu-
ments have recently ensued regarding transport theory,
basis representation, and practical implementation of a
simulator capable of describing a realistic device. Start-
ing from the field of molecular chemistry, Mujica, Kemp,
Roitberg, Ratner115 applied tight-binding based approaches
to the modeling of transport in molecular wires. Later,
Derosa and Seminario116 modeled molecular charge trans-
port using density functional theory and Green’s func-
tions. Further significant advances in the understanding of
the electronic structure in technologically relevant devices
were recently achieved through ab initio simulation of
MOS devices by Demkov and Sankey.117 Ballistic trans-
port through a thin dielectric barrier was evaluated using
standard Green function techniques118�119 without scatter-
ing mechanisms. However, quantum mechanical simula-
tions of electron transport through 3D confined structures,
such as quantum dots, have not yet reached the maturity (it
is important, for example, for simulating operation of the
next generation quantum dot photodetectors). Early efforts
of understanding the operation of coupled quantum dot
structures were rate equation based120–122 where a simpli-
fied electronic structure was assumed.

Whereas traditional semiconductor device simulators
are insufficiently equipped to describe quantum effects
at atomic dimensions, most ab-initio methods from
condensed matter physics are still computationally too
demanding for application to practical devices, even as
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small as quantum dots. A number of intermediary meth-
ods have therefore been developed in recent years. The
methods can be divided into two major theory categories:
atomistic and non-atomistic. Atomistic approaches attempt
to work directly with the electronic wave function of
each individual atom. Ab-initio methods overcome the
shortcomings of the effective mass approximation; how-
ever, additional approximations must be introduced to
reduce computational costs. One of the critical questions
is the choice of a basis set for the representation of the
electronic wave function. Many approaches have been con-
sidered, ranging from traditional numerical methods, such
as finite difference and finite elements, as well as plane
wave expansions,123–125 to methods that exploit the nat-
ural properties of chemical bonding in condensed mat-
ter. Among these latter approaches, local orbital methods
are particularly attractive. While the method of using
atomic orbitals as a basis set has a long history in solid
state physics, new basis sets with compact support have
recently been developed,126�127 and, together with spe-
cific energy minimization schemes, these new basis sets
result in computational costs which increase linearly with
the number of atoms in the system without much accu-
racy degradation.128�129 However, even with such methods,
only a few thousand atoms can be described with present
day computational resources. NEMO3D uses an empiri-
cal tight-binding method130�131 that is conceptually related
to the local orbital method and combines the advantages
of an atomic level description with the intrinsic accuracy
of empirical methods. It has already demonstrated consid-
erable success132�133 in quantum mechanical modeling of
electron transport as well as the electronic structure mod-
eling of small quantum dots.134 NEMO3D typically uses
sp3s⇑← or sp3d5s⇑← model that consists of five or ten
spin degenerate basis states, respectively. Note that for the
modeling of quantum dots, three main methods have been
used in recent years: k ≤ p,135�136 pseudopotentials,123 and
empirical tight-binding.134

As already discussed in Section 3, there are a num-
ber of methods developed by solid state theorists over
the last several decades to address the issue of quan-
tum transport in nano-devices. Among the most commonly
used in nanostructure calculations schemes are the Wigner-
function approach,137 the Pauli master equation,138 and the
non-equilibrium Green’s functions (NEGF).81�139�140 The
growing popularity of the latest (sometimes referred to
as the Keldysh or the Kadanoff–Baym) formalism is con-
ditioned by its sound conceptual basis for the develop-
ment of the new class of quantum transport simulators.141

Among its doubtless advantages are the clear physical con-
ceptions, rigorous definitions, well-developed mathemati-
cal apparatus and flexibility of the algorithmization.

Thus, in our opinion, the goal of any future simula-
tion effort is to merge the electronic structure calculations
with the quantum transport calculations and develop such

a NEGF technique that is numerically efficient and ready
for engineering applications in 3D objects on the one
hand (such as QDIP), and rigorously quantum-mechanical
on the other hand so that it properly incorporates the
electronic structure of, for example, regular or disordered
quantum dots used in QDIPs.

The groups from ASU and Purdue are currently work-
ing on the development of such simulator in order to
be able to calculate all the properties of 3D open quan-
tum systems, particularly QDIPs. The transport kernel of
the simulator is based on the Contact Block Reduction
(CBR) method81�92�93 and is discussed in more details in
Section 3.4 of this review article. As already noted, the
CBR method is applicable to fully self-consistent quan-
tum transport calculations in arbitrarily shaped 3D struc-
tures using either the effective mass approximation or the
mutli-band Hamiltonian description.81 The band-structure
of the QDIP’s will be calculated using NEMO3D simula-
tion software.

In summary, from the discussion above it follows that
the ultimate goal of semiconductor transport calculation of
future nanoscale devices will be to merge the 3D quantum
transport approaches with ab-initio band structure cal-
culations. This will ensure the most accurate simulation
and better understanding carrier transport and operation of
novel nano-device structures.
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