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Abstract

In studies of the electronic structure of solids, the augmented plane wave (APW) method is the basis for the solution of the
Kohn–Sham equations of density functional theory (DFT). The different versions and developing steps are discussed in terms
of linearization, full potential, local orbitals, mixed basis sets, relativistic effects and computational aspects, as employed in the
WIEN2k code. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The advanced technology in certain parts of ma-
terial sciences involving condensed matter rely more
and more on reducing the scale of the application and
devices and thus getting closer to atomic dimensions.
A fundamental understanding of such materials re-
quires a quantum mechanical description of the related
solids and thus relies on the calculation of the cor-
responding electronic structure. Such calculations are
mainly done within density functional theory (DFT),
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according to which the many-body problem of inter-
acting electrons and nuclei is mapped onto a one-
electron reference system that leads to the same den-
sity as the real system [1]. The corresponding Kohn–
Sham (KS) equations must be solved iteratively till
self-consistency is reached. The basic quantity is the
electron density which is obtained by summing over
the occupied KS orbitals. DFT includes both exchange
and correlation effects, but in practice they are treated
only approximately. Therefore, the form of the ex-
change and correlation energy and the related poten-
tial is crucial for the quality of DFT calculations. The
first generation of DFT results was obtained using
functionals based on the homogeneous electron gas,
namely the local density approximation (LDA). Then
corrections involving the gradient of the electron den-
sity became available in the form of the generalized
gradient approximations (GGA) [2]. Recently, more
sophisticated treatments of highly correlated systems
were developed such as LDA+U [3].
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Once the DFT equations are defined in terms
of the functional, there are several techniques to
solve them, which shall not be summarized here.
A natural basis for calculating the one-electron wave
functions in periodic solids are plane waves (PWs)
corresponding to Bloch functions labeled by the k-
vector of the first Brillouin zone (BZ). PWs are,
however, a very inefficient basis set for describing the
rapidly varying wave functions close to the nuclei.
In order to overcome this difficulty one can either
eliminate these oscillations, due to the presence of the
core electrons, as done in pseudopotential calculations
or one can augment the PW basis set. One example of
the latter approach has led to the linearized augmented
plane wave (LAPW) method that is now established
to be one of the most accurate schemes and thus will
be the focus of the present work. Different versions of
LAPW and their main developing steps are discussed
below.

2. APW

In 1937 Slater [4] introduced augmented plane
waves (APW) as basis functions for solving the one-
electron equations, which now correspond to the
Kohn–Sham equations within DFT. In the APW
scheme the unit cell is partitioned into two types of
regions: (i) spheres centered around all constituent
atomic sitesrα with a radiusRα , and (ii) the remaining
interstitial region, abbreviated as I in this paper. In the
latter the wave functions are expanded into PWs each
of which is augmented by atomic solutions in the form
of partial waves, i.e. a radial function times spheri-
cal harmonics. In the early work the muffin-tin (MT)
approximation was adopted to the potential and the
charge density, which were both assumed to be spher-
ically averaged inside the atomic spheres and volume
averaged in between. The APWs consist of

φK(r) =
{ ∑

L aαK
L uαl (r

′, ε)YL(r̂′), r ′ <Rα,

Ω−1/2 exp
(
i(k + K) · r

)
, r ∈ I,

whereL is short for lm, Ω is the unit cell volume,
r′ = r − rα is the position inside sphereα with the
polar coordinatesr ′ andr̂, k is a wave vector in the ir-
reducible Brillouin zone (IBZ),K is a reciprocal lat-
tice vector anduαl is the numerical solution to the

Fig. 1. Satisfying the secular equation|H − ES| = 0 in APW by
numerically finding the zeros.

radial Schrödinger equation at the energyε. The co-
efficientsaαK

L are chosen such that the atomic func-
tions for all L components match (in value) the PW
with K at the MT sphere boundary. The KS orbitals
ψi(r) are expressed as a linear combination of APWs
φK(r). Inside the MT sphere a KS orbital can only
be accurately described ifε in the APW basis func-
tions is equal to the eigen-energy,εi . Therefore, a dif-
ferent energy-dependent set of APW basis functions
must be found for each eigenenergy. This leads to a
non-linear eigenvalue problem that is computationally
very demanding. One had to choose an energy, solve
the radial Schrödinger equation to obtain the APW ba-
sis and set up the matrix elements. Then the determi-
nant |H − ES| had to be computed, that should van-
ish according to the secular equation but did not. So
one had to vary the trial energy to numerically find
the zeros of this determinant (see Fig. 1), a procedure
complicated by the presence of asymptotes. This was
the main drawback of the APW scheme which at best
works for simple systems with few eigenvalues only.

3. LAPW

Several improvements to solve the energy depen-
dence of the basis set were tried but the first really suc-
cessful one was the linearization scheme introduced
by Andersen [5] leading to the linearized augmented
plane wave (LAPW) method. In LAPW the energy
dependence of each radial wave function inside the
atomic sphere is linearized by taking a linear combi-
nation of a solutionu at a fixed linearization energy
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Fig. 2. Augmentation of a PW by ap-like partial wave inside the
iron atomic sphere by APW (kink) or LAPW (smooth derivative).

and its energy derivativėu computed at the same en-
ergy.

φK(r) =




∑
L

[
aαK
L uαl (r

′)+ bαK
L u̇αl (r

′)
]
YL(r̂′),

r ′ <Rα,

Ω−1/2 exp
(
i(k + K) · r

)
, r ∈ I.

Each PW is joined continuously (in value and
slope) to the one-center solution defining the relative
weight of u and u̇, i.e. the coefficientsaαK

L and
bαK
L , see Fig. 2. The LAPWs provide a sufficiently

flexible basis to properly describe eigenfunctions with
eigenenergies near the linearization energy, which can
be kept fixed. This scheme allows us to obtain all
eigenenergies with a single diagonalization in contrast
to APW.

Already in 1975 the first implementation was done
by Koelling and Arbman [6] but only with the MT
approximation and without going to self-consistency.
In the following years it was extended to a full band
structure code mainly by Freeman and co-workers
[7,8], who developed the necessary algorithms and
computer codes. In the 80s several groups improved
this scheme and wrote their own programs. One
among them was our group who has—during the last
20 years—developed the WIEN code [9] that is now
used by more than 500 groups worldwide. A good
summary of references concerning the LAPW method
can be found in a book by Singh [10].

The LAPW basis set made it computationally
attractive to go beyond the muffin tin approximation
and to treat a crystal potential (and charge density) of
general shape, making LAPW a full-potential scheme.

This became increasingly important for more complex
materials with open structures or for surfaces, which
can be treated by supercells using periodic boundary
conditions (see, for example, Reuter and Scheffler
[11]).

Another important quantity of interest was the
forces acting on the atoms. Based on the formalism
of Yu et al. [12] the calculation of forces was imple-
mented [13] in the WIEN97 code [14] and allowed
an efficient optimization of structural parameters. The
general shape of the electron density (beyond MT)
is important for the calculation of structure factors
which can be compared with X-ray diffraction exper-
iments (see, for example, [15]). A quantity related to
the ground state density is the electric field gradient
(EFG) tensor which is sensitive to the anisotropy of
the charge density close to the nucleus and can be mea-
sured by nuclear quadrupole interactions [16].

The electronic states are classified into three cat-
egories, the core, semi-core and valence states. The
core states are completely confined inside the corre-
sponding atomic sphere and are treated in an atomic
fashion (fully relativistically) as thawed core, i.e. the
corresponding density is recalculated in each iteration
cycle using the MT part of the actual crystal poten-
tial. The valence states are (partly) delocalized and
are obtained by the LAPW method leading to the va-
lence density. The semi-core states, however, are high-
lying core states with a principal quantum number one
less than for the valence states (e.g., Ti-3p [17]). They
are not completely confined inside the atomic sphere
and thus need special attention. In 1991 Singh [18]
has introduced the concept of local orbitals (LOs)
which—in addition to an improvement in the varia-
tional flexibility—allow the efficient treatment of such
semi-core states. An LO is constructed by the LAPW
radial functionsu and u̇ at one energyε1 in the va-
lence band region and a third radial function atε2 (e.g.,
around the semi-core state energy).

φLO(r) =




[
a
α,LO
L uα1l (r

′)+ b
α,LO
L u̇α1l(r

′)

+ c
α,LO
L uα2l (r

′)
]
YL(r̂′), r ′ <Rα,

0, r ∈ I.

The three coefficients are determined by the nor-
malization and the requirement that the LO should
have zero value and slope at the sphere boundary. Thus
they are not connected to PWs in the interstitial. With
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this scheme, which slightly increases the size of the
basis set, all electrons (including semi-core states) can
be treated accurately and the corresponding states are
orthogonal to each other.

4. APW+lo

Recently, an alternative approach was proposed by
Sjöstedt et al. [19], namely the APW+lo (local or-
bitals) method. Here the augmentation is similar to the
original APW scheme but each radial wave function is
computed at a fixed linearization energy to avoid the
non-linear eigenvalue problem that complicated the
APW method. Thus only the condition of continuity
can be required and the basis functions may contain a
kink at the sphere boundary (see Fig. 2). The missing
variational freedom of the radial wave functions can
be recovered by adding another type of local orbitals
(termed lo in lower case to distinguish them from LO)
containing au andu̇ term.

φlo(r) =




[
a
α,lo
L uαl (r

′) + b
α,lo
L u̇αl (r

′)
]
YL(r̂′),

r ′ <Rα,

0, r ∈ I.

The los are evaluated at the same fixed energy as
the corresponding APWs. The two coefficients are
determined by the normalization and the condition
that the lo has zero value at the sphere boundary. In
this version theu̇ is independent of the PWs, since
it is only included for a few los and not associated
with every PW. Recently it was demonstrated that this
new scheme can reach the same accuracy as LAPW
but converges faster in terms of number of PWs [20].
The highest efficiency was found for a mixed basis
set in which the “physically important”l-quantum
numbers are treated by APW+lo but the higherl by
LAPW. It was shown in [20] that quantities such as
the total energy, forces, or EFGs converge significantly
faster with respect to the number of basis functions
than with the pure LAPW procedure but reach the
same values. This is illustrated in Fig. 3 for one
component of the force acting on an oxygen atom
in SES (sodium electro sodalite) containing 44 atoms
per unit cell (see [20]). In LAPW the force changes
sign and thus the atom would move in the wrong
direction for a too small basis set, whereas in the

Fig. 3. Convergence of the force (Y-component) on oxygen in SES
[20] vs. number of PWs.

APW+lo scheme the force converges smoothly and
much faster. For large systems the matrix sizeN can
be about halved and thus the computational cost can be
an order of magnitude less, since the diagonalization
scales withN3.

The new scheme combines the best features of all
APW-based methods available. The LAPW converges
somewhat more slowly than the APW method as has
already been pointed out by Koelling and Arbman
[6], since the constraint of having differentiable basis
functions makes LAPWs less optimally suited to
describe the orbitals inside the sphere. This justifies
going back to APW but the energy-independent basis
introduced in LAPW is crucial for avoiding the non-
linear eigenvalue problem and thus is kept, too. The
local orbitals provide the necessary flexibility. Further
details of the convergence and how to set up the matrix
elements or compute terms such as the forces which
require the inclusion of surface terms due to the kink in
the basis functions are discussed in [20]. The APW+lo
scheme has been implemented in the WIEN code and
is the default option in the new WIEN2k version [21]
(for further details see www.wien2k.at).

5. Relativistic effects

Another important aspect related to high accuracy
is the treatment of relativistic effects. The standard
procedure is a scalar relativistic version that includes
the mass velocity and Darwin s-shift but omits spin-
orbit coupling (SOC). The latter can efficiently be
included by a second variational treatment [22]. In this
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Fig. 4. The 6p radial semi-core functionr ∗u of thorium represented
by the scalar relativistic version (full line) and by the additional
local orbital (dashed line). The inset showsu (not r ∗ u) close to
the nucleus.

scheme the spin orbit term is set up in a subspace
spanned by the scalar relativistic solution with about
twice the number of the occupied orbitals but much
less than the full basis. The proper treatment of
SOC may require an improved basis set, in particular
for semi-core states of heavy elements. The scalar
relativistic basis contains, e.g., only one type of radial
p-function that is very similar to thep3/2 orbital. Now
we add a local orbital with thep1/2 function that has a
different shape and nodal structure (Fig. 4) and is finite
at the nucleus (see insert). Recently this scheme was
demonstrated for Th [23]. Spin polarized calculations
can provide both spin and orbital moments in magnetic
materials [24].

6. Computational aspects

A modern computer code must combine several
features to be widely used. We summarize considera-
tions which were made in the development of the new
WIEN2k package [21]:

– Accuracy is extremely important in the present
case. It is achieved by the well-balanced basis set
which contains numerical radial functions that are
adapted in each iteration to changes due to charge
transfer or hybridization. It is accurate near the
nucleus (important for EFG) and satisfies the cusp
condition. PW convergence can be controlled by

one parameter, namely the cutoff energy. There
is no dependence on selecting atomic orbitals or
pseudopotentials. It is a full-potential and all-
electron method. Relativistic effects (including
SOC) can be treated with a quality comparable to
solving Dirac’s equation.

– Efficiency and performance should be as high as
possible. The new mixed basis APW+lo/LAPW
optimally satisfies this criterion. The smaller ma-
trix size helps to save computer time or allows
larger systems to be studied. Adapted algorithms
can substantially speed up the performance as dis-
cussed, for example, in [25].

– Parallelization. The program can run in parallel,
either in a coarse grain version where each k-
point is computed on a single processor, or if the
memory requirement is larger than that available
on one CPU, a fine grain scheme is adopted in
which the problem of onek-point is distributed to
several CPUs. In the latter case special attention
must be paid to the eigensolver, the most time
consuming part. Both options, full and iterative
diagonalization, are implemented to allow the
selection of the most efficient routines.

– Architecture. The hardware in terms of proces-
sor speed, memory access, and communication is
crucial. Depending on the given architecture, op-
timized algorithms and libraries are chosen during
the installation of the program package.

– Portability requires the use of standards as much
as possible, such as FORTRAN90, MPI, BLAS
(level 3), SCALAPACK etc.

– User friendliness is achieved by a web based
graphical user interface (w2web) and is comple-
mented by an automatic choice of default options.
In addition an extensive Users Guide is provided.

7. Conclusion

The improved convergence of APW+lo leads to
a reduced matrix size but keeps the high accuracy
already established in the WIEN97 code [14] which
made it a benchmark code for solids. In combination
with the many properties that can be calculated thanks
to contributions from several groups, this new version
of the solid state electronic structure package is a
useful tool for studying materials problems.
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