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June 2014

Supervisors: Trond Brudevoll, Forsvarets forskningsinstitutt
Asta Katrine Storebø, Forsvarets forskningsinstitutt
Jon Andreas Støvneng, NTNU



Preface
This master’s thesis is the fulfilment of my Master’s Degree in ’Applied Physics and Math-
ematics’ at Norwegian University of Science and Technology (NTNU). The work has been
carried out in cooperation with Norwegian Defence Research Establishment (FFI) under
the supervision of Asta Katrine Storebø (FFI), Trond Brudevoll (FFI) and Jon Andreas
Støvneng (NTNU). They have provided reliable help and assistance whenever requested
and I send my sincerest thanks to all of them.
I would also thank my girlfriend, family and friends, for their support and encouragement
throughout this work.

i



empty page

ii



Abstract
During the work with this master’s thesis a number of important upgrades has been made
to the Full Band Monte Carlo program that is under development at FFI.
The program is now able to simulate charge transport in Hg0.72Cd0.28Te, thanks to intro-
ductions of a new ab initio numerical band structure. All necessary changes has been made
to include electrons in the simulations, in addition to holes. The implemented algorithm
used to calculate scattering rates has been modified to utilize interpolated values, and gen-
eralized to calculate both electron- and hole scattering rates. The selection of final states
is now performed with very high precision, where the energy represented by the selected
final state deviate by less than 10−6 eV from the predetermined final energy.
The most important change is the fact that the Monte Carlo program is now able to sim-
ulate both electrons and holes in bulk Hg0.72Cd0.28Te, using a full band model for the
valence and the conduction bands.
The program was finally used to calculate electron mobility in bulk Hg0.72Cd0.28Te, and
the calculated electron mobility is in good agreement with other published simulation re-
sults.

Sammendrag
Under arbeidet med denne masteroppgaven har det blitt gjort en rekke viktige forbedringer
til Monte Carlo programmet som er under utvikling ved FFI.
Programmet har blitt i stand til å simulere transport av ladningsbærere i Hg0.72Cd0.28Te,
takket være innføringen av en ny ab initio numerisk båndstruktur. Alle nødvendige en-
dringer har blitt gjort for å få med elektroner i simuleringene, i tillegg til hull. Algoritmen
som brukes til å beregne sprederater har blitt modifisert for å utnytte interpolerte verdier,
og generalisert for å beregne sprederater for både elektroner og hull. Valg av sluttilstander
blir nå gjort med svært høy presisjon, hvor energien til den valgte sluttilstanden avviker
med mindre enn 10−6 eV fra den forhåndsvalgte sluttenergien.
Den aller viktigste forandringen er at Monte Carlo programmet er nå i stand til å simulere
både elektroner og hull i bulk Hg0.72Cd0.28Te, ved bruk av en fullbåndsmodell for valens-
og ledningsbåndene.
Programmet ble til slutt brukt til å beregne elektronmobilitet i bulk Hg0.72Cd0.28Te, og
den beregnede elektronmobiliteten stemmer godt overens med andre publiserte simuler-
ingsresultater.
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Chapter 1
Introduction

The electronic transport properties of semiconductors are determined by the solution of the
Boltzmann transport equation (BTE) for the system. The Boltzmann transport equation is
commonly solved using two very different approaches, either by explicitly solving the
equation, or by performing Monte Carlo simulations. The first method relies on equation
solving techniques, while the Monte Carlo method uses (computer generated) pseudo-
random numbers to simulate the behaviour of individual charge carriers and thereby indi-
rectly solving the transport equation. Monte Carlo simulations offers great level of details,
but tends to be very CPU intensive and time consuming.
Such a Monte Carlo simulator is under development at FFI, and several students have and
continue to contribute to its development. The ultimate goal is to make a state of the
art Monte Carlo program to simulate transport of charge carriers in both bulk materials,
as well as electronic and optoelectronic devices. The opportunity to accurately simulate
charge carrier transport in various materials and devices without building the actual de-
vices, will be an invaluable resource.

The semiconductor mercury cadmium telluride(MCT), with the chemical formula
Hg1−xCdxTe, will serve as a test material for the Monte Carlo program under develop-
ment. MCT is an alloy of the semimetal HgTe and the semiconductor CdTe. The bandgap
in MCT can by tuned by changing the alloy fraction x of CdTe, thereby having any value
between 0 and 1.5eV. The tunable bandgap in the infrared region and high absorption coef-
ficient, makes MCT well suited as detector material in infrared detectors. With the unique
impact ionization properties can MCT also be used in Avalanche Photo Diodes (APDs).
MCT is also the only common material able to detect infrared radiation in both accessible
atmospheric windows.

The Monte Carlo program was recently upgraded from a less accurate analytical model
to a Full Band model, where the bands are represented numerically over the whole Bril-
luoin zone. Prior to this work, the Full Band Monte Carlo program was able to only
simulate holes in the light- and heavy hole bands, and the method used to select final
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states offered too low precision. The low precision in selection of final states was a se-
rious problem which could potentially lead to artificial heating of the carriers. So a high
precision method, to select final states with correct energy, was proposed in the specializa-
tion project [1]. The proposed method was found to be reliable and effective, and proper
implementation of this method into the Full Band Monte Carlo program became an im-
portant task. The resulting implementation is a further developed approach (used in the
specialization project [1]) with improved efficiency and a more convenient managing of
final states within the final cubes.
Another important part of this work was to include electrons in the simulations. A task
that includes calculation of electron scattering rates, modifying the routine that is used to
select final states, and writing new routines that take care of electron scattering. The rou-
tine that is responsible for calculation of scattering rates has been generalized to include
calculation of electron scattering rates in addition to holes. And the routine that selects
final states has been modified to find final states for electrons in the conduction band.
Also great effort was devoted to include an ab initio energy band structure for Hg0.72Cd0.28Te,
that was calculated using the electronic structure code ABINIT [2] by Bjørnar Karlsen [3].

Of the many existing charge transport Monte Carlo programs, only a handful share the
capabilities of the Full Band Monte Carlo program presented in this work.

Chapter 2 of this work will give a theoretical introduction to how the Monte Carlo method
is applied to simulate charge carrier transport in semiconductors. Chapter 3 will describe
the most important numerical methods and algorithms that are used in the Full Band Monte
Carlo program. Chapter 4 will show and discuss the results of the present work.
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Chapter 2
The Monte Carlo method

The Monte Carlo method is a very powerful numerical method used to describe stochastic
processes. The method has found a large number of applications in science, including
electronic transport. This chapter intends to give a theoretical introduction to how the
Monte Carlo method is applied to semiclassical electronic transport in semiconductors.

The essence of the method is to simulate the charge carriers, in this case electrons and
holes, through a series of free flights and scattering events. The charge carriers are treated
semiclassically. During the free flights the carriers are treated as classical particles, while
the scattering events are treated according to quantum mechanical laws.

Charge carriers in semiconductors can be described by Bloch states |n,~k〉, being in an
energy band n with wavevector (crystal momentum) ~k, thus having energy En(~k). The
evolution of charge carriers position and wavevector during free flights is given by the
semiclassical equations of motion

~v = d~r

dt
= 1
h̄
∇~kEn(~k), (2.1)

d~k

dt
= q

h̄
(~F + ~v × ~B) (2.2)

where ~v is carriers velocity, q is the charge, ~F is the electric field and ~B is the magnetic
field.
The scattering events are a consequence of semiconductors not being perfect crystals.
Semiconductors contain various imperfections, such as lattice vibrations and ionized im-
purities. These imperfection are treated as perturbations to the perfect crystal potential,
which may instantly change carriers Bloch state from |n,~k〉 to |n′,~k′〉, in a so called scat-
tering event. The scattering events are taken into account by the scattering rates, that are
the probability (per unit time) for a scattering event to occur. The scattering rates tell how
often scattering events should occur, and hence affect the length of the free flights.
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Performing the free flights and scattering events are the two main tasks of a Monte Carlo
program. Performing a free flight is just a matter of finding the change in carrier posi-
tion and wavevector over a time step, using the semiclassical equations of motion. The
scattering events are more complicated tasks. A scattering event can be divided into three
parts: calculating the free flight duration, selecting the scattering mechanism, and select-
ing a final Bloch state for the carrier. Both the duration of the free flights and selection of
the scattering mechanism will depend on the scattering rates, as will be shown later in this
chapter. But first a section describing how the scattering rates are calculated.

2.1 Scattering rates
There are number of mechanisms that can cause a charge carrier to scatter between two
Bloch states, and the importance of each mechanisms varies based on material and tem-
perature. Following mechanisms are considered in the present work:

• Acoustic deformation potential phonon scattering (absorption and emission)

• Polar optical phonon scattering (absorption and emission)

• Nonpolar optical phonon scattering (absorption and emission)

• Ionized impurity scattering

• Alloy scattering

As already mentioned, scattering mechanisms may change carriers Bloch state from |n,~k〉
to a new state |n′,~k′〉. The probability of this transition is given by Fermi’s golden rule

Pmnn′(~k,~k′) = 2π
h̄

∣∣∣∣〈~k′, n′|∆Hm|n,~k〉
∣∣∣∣2δ(En(~k)− En′(~k′) + ∆Em(~q)), (2.3)

where the spin flip has been neglected. m is the mechanism causing the transition, ∆Hm

is the perturbing potential, 〈~k′, n′|∆Hm|n,~k〉 is the interaction matrix element. En(~k)
and En′(~k′) are carrier’s initial and final energies, and ∆Em(~q) is the energy transferred
to the carrier during the scattering. ~q is the shift in carriers wavevector caused by the
scattering.
The squared matrix element is often factorized into two parts, an overlap factor denoted
by Gnn′(~k,~k′) and a matrix element |Mm(~k,~k′)|2:∣∣∣∣〈~k′, n′|∆Hm|n,~k〉

∣∣∣∣2 = |Mm(~k,~k′)|2Gnn′(~k,~k′) (2.4)

The overlap factor is given by

Gnn′(~k,~k′) =
∣∣∣∣ ∫
unit cell

d3r u∗
n′,~k′(~r)un,~k(~r) exp(i ~G · ~r)

∣∣∣∣2 (2.5)
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where un,~k(~r) is the cell periodic part of the Bloch wavefunction, ~G is a reciprocal lattice
vector.
The Fermi’s golden rule includes conservation of both energy and crystal momentum. The
Dirac’s δ-function ensures the energy conservation, while the matrix element makes sure
that the crystal momentum is conserved. The conservation of crystal momentum is given
by

~k − ~k′ + ~q = ~G. (2.6)

~q is the shift in carriers wavevector, and ~G is a reciprocal lattice vector. Processes where
~G = 0 are called normal processes, while ~G 6= 0 are known as Umklapp processes, imply-
ing scattering into an another Brillouin zone. Umklapp processes are usually very weak
compared to normal processes, and are therefore neglected in the present work.

The total scattering rate for a carrier in energy band n with wavevector ~k, to the energy
band n′ caused by mechanism m is found by summing the transition probability 2.3 over
all possible final wavevectors ~k′

Smnn′(~k) =
∑
~k′

Pmnn′(~k,~k′) = 2π
h̄

∑
~k′

|Mm(~k,~k′)|2Gnn′(~k,~k′)δ(En(~k)−En′(~k′)+∆Em(~q)).

(2.7)
Since the final wavevector-space (~k′-space) is very dense, can the summation over final
wavevectors be well approximated by an integral

Smnn′(~k) = 2π
h̄
· V

(2π)3

∫
~k′
|Mm(~k,~k′)|2Gnn′(~k,~k′)δ(En(~k)−En′(~k′) + ∆Em(~q))d3k′.

(2.8)
where V is the crystal volume. The integrand in equation 2.8 can be interpreted as a
density function of final states, and becomes very important in selection of final states.
The total scattering rate for a carrier in Bloch state |n,~k〉 is found by simply summing the
equation 2.8 over all possible final bands n′ and mechanisms m:

Sn(~k) =
∑
m

[∑
n′

Smnn′(~k)
]

(2.9)

2.2 Duration of the Free Flights
The scattering rates represents the probability (per unit time) for a carrier to get scattered,
which implies that the durations of the free flights are random by nature. The purpose of
this section is to describe how the duration of a free flight can be generated using a random
number r, that is uniformly distributed between 0 and 1.

The probability density, p(t), for the duration of the free flight is given by

p(t) = Q(t) · Sn(~k(t)), (2.10)

where Sn(~k(t)) is the total scattering rate for carrier in state |n,~k〉, and Q(t) denotes the
probability that the carrier has not been scattered in the interval [0, t].
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The probability Q(t+ dt) that a carrier does not get scattered in the interval [0, t+ dt] can
be written

Q(t+ dt) = Q(t) · [1− S(~k(t))dt], (2.11)

and by letting dt→ 0, the following relation emerges

dQ(t)
dt

= −S(~k(t)) ·Q(t). (2.12)

The solution, Q(t), to equation 2.12 becomes

Q(t) = exp
[
−

t∫
0

Sn(~k(t′))dt′
]
. (2.13)

The probability density, p(t), for the duration of the free flight is now given by

p(t) = Sn(~k(t)) · exp
[
−

t∫
0

Sn(~k(t′))dt′
]
. (2.14)

The probability density, pr(r), of the uniformly distributed random number r, may be
related to the probability density for the duration of the free flights by

pr(r)dr = p(t)dt. (2.15)

Which, with pr(r) = 1 and after integration, gives

r =
t∫

0

p(t′)dt′. (2.16)

Substituting the equation 2.14 for p(t), and the integration could of course be performed,
but may be solved using a simpler approach. The integration of p(t′) from 0 to t is nothing
more than the cumulative probability P (t) for the duration of the free fight, which is the
probability that a carrier will get scattered somewhere in the interval [0, t]. Using the
definition of Q(t), P (t) is simply

t∫
0

p(t′)dt′ = P (t) = 1−Q(t). (2.17)

And the random number r is related to the free flight duration t by

r = 1−Q(t) = 1− exp
[
−

t∫
0

Sn(~k(t′))dt′
]
. (2.18)
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Since r is a random number between 0 and 1, it is equivalent to 1 − r. Thus, replacing r
by 1− r in equation 2.18 and taking the natural logarithm of both sides, results in

− ln r =
t∫

0

Sn(~k(t′))dt′. (2.19)

An elegant way to solve the equation 2.19 for t, is by introducing self-scattering, a fic-
titious scattering mechanism that does not alter the carriers state |n,~k〉. The self-scattering
is described by an arbitrary positive scattering rate S0(~k(t)), and the new total scattering
rate Γ(~k(t)) = Sn(~k(t)) + S0(~k(t)) replaces the Sn(~k(t)) in equation 2.19. The integral
in 2.19 is converted to a sum over fixed time increments, tinc, over which the Γ has a con-
stant value. The value for Γ during each time interval, has to be equal or greater than the
highest real scattering rate the carrier in question can encounter during the time interval.
The integral over each time interval becomes a simple product of Γ and the length of the
time interval.
The integrals over the time intervals accumulate after each time step, and the free flight
ends at the particular time interval when the accumulated sum exceeds the value of − ln r.
The carrier’s state |n,~k〉 changes according to the scattering mechanism, before a new
value for − ln r is generated and a new free flight starts. This particular method of de-
termining the duration of the free flights is the so called constant-time method given by
Yorston [4].

Figure 2.1: Illustrating the constant-time method by Yorston.

2.3 Monte Carlo selection of scattering mechanism
At the end of each free flight, the carriers get scattered by one of the scattering mech-
anisms. The probability for choosing a scattering mechanism has to be proportional to
mechanism’s scattering rate at the end of the free flight. The mechanism is chosen by
generating a random number r, that is uniformly distributed between 0 and 1, multiplying
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it with the total scattering rate Γ(~ke), and picking out the mechanism m that satisfies the
relation

m−1∑
i=0

Si(~ke) < rΓ(~ke) <
m∑
i=0

Si(~ke) (2.20)

where ~ke is the wavevector at the end of the free flight, and Si(~ke) is the scattering rate
for mechanism i at ~ke. The self-scattering mentioned in the previous section is given by
the rate S0(~ke), and is included in the total scattering rate Γ(~ke).

2.4 Selection of final states
After a scattering mechanism is chosen comes the last part of the scattering event, the
assignment of a final state ~k′ to the scattered carrier. The final state ~k′, has to be chosen
so that both the energy and crystal momentum are conserved in the transition. Recall
the calculation of scattering rates where the crystal momentum and the energy has to be
conserved, so the only transitions that contribute to the scattering rates are the ones that
conserve the energy and crystal momentum. Hence one of the final states that contribute
to the scattering rate should be assigned to the carrier after scattering. The state to be
assigned should be chosen at random, with a probability that is proportional to the state’s
contribution to the scattering rate.
However, how the selection of final states is performed in practice depends on the band
model. For instance, when analytical band model is used, the selection of final states is a
matter of selecting polar and azimuthal angles with given probabilities.
When a full band model is used, the selection of final states becomes more challenging.
An algorithm that can be used to select final states is described in section 3.5 in the next
chapter.
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Chapter 3
Numerical approach

The implementation of a properly working full band model has been the main focus of the
present work. This chapter will describe and discuss the most important numerical models
and algorithms that have been implemented in the Full Band Monte Carlo program.

The basis of the full band model, is that all of the information concerning the band structure
is only given at discrete points in ~k-space. This information includes the energy En(~k),
~k-space energy gradient and 2nd derivatives, and for some purposes also the wavefunction.
The energy and energy gradient are very important quantities in Monte Carlo simulations,
since they are used in the semiclassical equations of motion to determine the carriers’ free
flight trajectories. These quantities have to be known at any ~k, so the values has to be
approximated when ~k is somewhere between the discrete points.
The first sections of this chapter intend to describe the layout of the discrete points in ~k-
space where the band structure is given, and describe the interpolation schemes that are
used to approximate the quantities of interest between the discrete points. And finally
the algorithms that are used to calculate the scattering rates and select final states, are
described and discussed.

3.1 Numerical band representation

As mentioned, is all of the information about the band structure given at discrete points
in ~k-space. These discrete points are evenly spaced in the 3 dimensions of the ~k-space,
forming a cubic mesh. The cubic mesh has a total length of 2π

a (in each dimension), where
a is semiconductor’s lattice constant, thereby completely covering the whole 1st Brillouin
zone as shown in figure 3.1b.
In addition to the coarse mesh that covers the whole 1st Brillouin zone, a fine mesh is
present in the center of the Brillouin zone. The fine mesh only covers a small fraction
of the zone center, to offer a much more detailed description of the region. This is done
because the band structure and specially the scattering rates can change very abruptly near
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~k = 0, and a higher resolution of this region is therefore required.

The size of both coarse and fine mesh was set to 33x33x33 in the present work.

(a) Illustrating the layout of the discrete mesh
points used in this work, shown in 2D for sim-
plicity.

(b) 1st Brillouin zone (blue) for a zincblende
semiconductor structure. The transparent cube
represents the volume covered by the cubic
mesh of discrete points.

It is important to notice that the mesh used in this work is somewhat different from the
mesh used by Einar Halvorsen [5]. The difference is not only in the mesh size, but also in
the layout. The main difference is that the mesh used in this work contains the origin as
one of the mesh points, while Halvorsen’s mesh does not, as shown in figure 3.1.

Figure 3.1: Layout of the mesh used by Einar Halvorsen [5]. Notice: the origin is not one of the
meshpoints.

Halvorsen’s mesh was only used to calculate the scattering rates, that did not require any
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interpolation between the mesh points, and to avoid various calculation difficulties the
origin could not be part of the mesh. Thanks to the interpolation routines, these calculation
difficulties are avoided in this work, which allows a more convenient layout of the mesh
to be used.

3.1.1 Energy band structure

One of the main changes that has been made to the Monte Carlo program, is introduction of
a new energy band structure for Hg0.72Cd0.28Te. The energy band structure was calculated
using an ab initio pseudopotential method, by the electronic structure program ABINIT
[2]. Bjørnar Karlsen performed the band structure calculations on a 40x40x40 cubic mesh
during the work with his master’s thesis, and all of the details about the calculations are
well described in his master’s thesis [3]. The band structure for the 33x33x33 cubic mesh
used in the present work, was interpolated from Karlsen’s original 40x40x40 cubic mesh,
using the interpolation scheme described in the next section.
The energy band structure for the 3 highest valence and 4 lowest conduction bands in
Hg0.72Cd0.28Te, is shown in figure 3.2.

Figure 3.2: Band structure plots for the 3 highest valence and the lowest 4 conduction bands in
Hg0.72Cd0.28Te.

All of the energy values in figure 3.2 were interpolated using the interpolation scheme de-
scribed in the next section.

Other programs, such as WIEN2k [6], could also be used to calculate ab initio band struc-
tures to be used as input data for the Monte Carlo program. Even for alloy compounds
such as Hg1−xCdxTe.

11



3.2 Energy interpolation
Since the energy is only given at discrete mesh points, interpolation is used to approximate
the energy at arbitrary ~k. The interpolation scheme used is identical to the one used by
Fischetti and Laux [7].
The interpolation scheme requires a three-dimensional cubic mesh where the energy, first
and second derivatives of the energy are known at all mesh points. The first step of the
interpolation routine is to find the eight mesh points that form a cube that surrounds the ~k,
as shown in figure 3.3.

Figure 3.3: Showing the cube formed by the eight mesh points that surrounds the arbitrary ~k (red
dot), with the ~k inside the cube.

After finding the eight corners (mesh points), the energy is expanded to second order
around each of the corners:

En,λ(~k) = En(~kλ) + ∂En
∂ki

∣∣∣∣
~kλ

· (ki− ki,λ) + 1
2
∂2En
∂ki∂kj

∣∣∣∣
~kλ

· (ki− ki,λ)(kj − kj,λ) (3.1)

where summation must be made over identical indices (i, j). n is the energy band, λ is the
corners (1-8), and ~k = [kx, ky, kz].
Energy contribution from each corner have to be multiplied with appropriate weight,

Wλ(~k) =
(

1− |kx − kx,λ|
l

)(
1− |ky − ky,λ|

l

)(
1− |kz − kz,λ|

l

)
, (3.2)

where l is side length of the cube spanned by the eight corners, as shown in Figure 3.3.
Finally the contributions from all corners are added up, giving the interpolated energy
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(3.3)

En(~k) =
8∑

λ=1
En,λ(~k) ·Wλ(~k)

=
8∑

λ=1

(
En(~kλ) + ∂En

∂kx

∣∣∣∣
~kλ

· (kx − kx,λ) + ∂En
∂ky

∣∣∣∣
~kλ

· (ky − ky,λ) + ∂En
∂kz

∣∣∣∣
~kλ

· (kz − kz,λ) + ∂2En
∂kx∂ky

∣∣∣∣
~kλ

· (kx − kx,λ)(ky − ky,λ) + ∂2En
∂ky∂kz

∣∣∣∣
~kλ

· (ky − ky,λ)(kz − kz,λ) + ∂2En
∂kz∂kx

∣∣∣∣
~kλ

· (kz − kz,λ)(kx − kx,λ) + 1
2
∂2En
∂k2

x

∣∣∣∣
~kλ

· (kx − kx,λ)2 + 1
2
∂2En
∂k2

y

∣∣∣∣
~kλ

· (ky − ky,λ)2 + 1
2
∂2En
∂k2

z

∣∣∣∣
~kλ

· (kz − kz,λ)2

)

·
(

1− |kx − kx,λ|
l

)(
1− |ky − ky,λ|

l

)(
1− |kz − kz,λ|

l

)
.

This interpolation scheme is found to be very accurate, and ensures continuous and smooth
energy.

3.2.1 Gradient interpolation

~k-space energy gradient is another very important quantity that is needed to perform sim-
ulations, and must therefore be interpolated. The interpolation scheme for the gradient is
very similar to the one used for energy.
After finding the eight mesh points that surround the (arbitrary) ~k, the gradient is expanded
to first order around each corner:

∂En,λ
∂ki

(~k) = ∂En
∂ki

∣∣∣∣
~kλ

+ ∂2En
∂ki∂kj

∣∣∣∣
~kλ

· (kj − kj,λ) (3.4)

where the summation is performed over j, giving i′th component of the gradient. n is the
energy band, λ is the corner (1-8), and ~k = [kx, ky, kz].
The contribution from each corner is multiplied with appropriate weight given by equation
3.2, and finally added up giving the i′th component of the gradient

∂En
∂ki

(~k) =
8∑

λ=1

∂En,λ
∂ki

(~k) ·Wλ(~k). (3.5)

Figure 3.4 shows a plot of the kx-component of the energy gradient along two different
lines in ~k-space. All of the values in the plot are interpolated, and the gradient is clearly
continuous and smooth.
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Figure 3.4: Plot of the kx-component of the energy gradient for the 3 highest valence bands and the
lowest conduction band in Hg0.72Cd0.28Te.

One thing should be noted about figure 3.4. There is a small sign of tiny ripples along
the (111)-direction in HH and CB bands. The ripples are believed to be an artefact of the
numerical derivatives, that are known to be notorious sources of noise. However, these
defects are minimal, and should not affect the simulations in ANY way.

3.3 Numerical calculation of the scattering rates

The scattering rate for a particle in state |n,~k〉 to final band n′ is given by equation 2.8,
where the transitional probability (2.3) is integrated over the whole ~k′-space. If ~k′-space
is divided up into cubes, can the integration over the whole ~k′-space in 2.8 be replaced by
a sum of integrals over each cube.

Smnn′(~k) =
all cubes∑

i

2π
h̄

V

(2π)3

∫
~k′∈cube i

|Mm(~k,~k′)|2Gnn′(~k,~k′)δ(En(~k)−En′(~k′)+∆Em(~q))d3k′,

(3.6)
where i denotes a cube.
The integral over the whole ~k′-space, has simply been replaced by a sum of many integrals,
each over a small portion of ~k′-space (cube). Now, if the integral over a cube i is denoted
by a weight Wi, the scattering rate becomes a sum of the weights:

Smnn′(~k) =
all cubes∑

i

Wi, (3.7)
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where each weight is given by

Wi = 2π
h̄

V

(2π)3

∫
~k′∈cube i

|Mm(~k,~k′)|2Gnn′(~k,~k′)δ(En(~k)− En′(~k′) + ∆Em(~q))d3k′.

(3.8)
And the scattering rate calculation has been reduced to calculation of the cube weights.

A consequence of the energy conservation, is that all of the final states that contribute
to the scattering rate lie on the so called energy conserving surface. That is a surface in ~k′-
space where the energy conserving δ-function is 6= 0. Which implies that the only cubes
that will have a non-zero weight W, are those that are intersected by the energy conserving
surface. The energy along the energy conserving surface varies in general with ∆Em(~q).
However, ∆Em(~q) is either a constant or changes very slowly, for all of the mechanisms
considered in this work. So the energy along the energy conserving surface can be consid-
ered to be constant inside each of the intersected cubes. Of course, this also requires the
cubes to be sufficiently small.
The final state energy inside each cube can be well approximated by a first order Taylor
expansion away from the cube center. The energy inside a cube i is then given by

En′(~k′) = En′(~ki) + (~k′ − ~ki) · ∇~kEn′(~ki), (3.9)

where ~ki denotes the center of cube i, and ~k′ is somewhere inside the cube i. This implies
that the energy conserving surface inside an intersected cube, is approximated by a con-
stant energy plane, normal to the energy gradient at the center of the cube. This idea was
taken from Gilat and Raubenheimer [8], who used it to calculate the density of states for
phonons.
Any final state ~k′ that lies on the constant energy plane inside a cube i, can be described
by a sum of three wavevectors

~k′ = ~ki + ~k‖ + ~k⊥. (3.10)

~ki denotes the center of cube i. ~k‖ is a vector from the cube center to the constant energy
plane, along the energy gradient. And ~k⊥ is a vector along the constant energy plane,
thereby normal to the energy gradient. As shown in figure 3.5.
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Figure 3.5: Showing the decomposition ~k′. ~k′ lies on the constant energy plane(marked gray).

The approximations mentioned above, makes it possible to rewrite the expression for
the cube weight Wi. Equation 3.8 becomes

Wi = 2π
h̄

V

(2π)3

∫
~k′∈cube i

|Mm(~k,~k′)|2Gnn′(~k,~k′)δ(En(~k)− En′(~k′) + ∆Em(~q))d3k′

≈ 2π
h̄

V

(2π)3

∫
δ

(
En′(~ki) + k‖|∇~kEn′(~ki)|−En(~k)−∆Em(~ki − ~k)

)
dk‖

(3.11)×
∫
S(k‖)

|Mm(~k,~k′)|2Gnn′(~k,~k′)d2k⊥.

S(k‖) represents the cross-section of the constant energy plane confined by the cube. The
integral of the δ-function is found by using the generalized scaling property of the Dirac’s
δ-function∫

δ

(
En′(~ki) + k‖|∇~kE(~ki)|−En(~k)−∆Em(~ki − ~k)

)
dk‖ = 1

|∇~kEn′(~ki)|
. (3.12)

The last term in equation 3.11, containing the integral of the squared matrix element over
the surface S(k‖), can be replaced using〈

|Mm(~k,~k′)|2Gnn′(~k,~k′)
〉
S(k‖)

= 1
S(k‖)

∫
S(k‖)

|Mm(~k,~k′)|2Gnn′(~k,~k′)d2k⊥,

(3.13)
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which is the definition of the average value of the squared matrix element over the surface
S(k‖).
Inserting equation 3.12 and 3.13 into 3.11, gives the final expression for the cube weights

Wi ≈
2π
h̄

V

(2π)3
S(k‖)

|∇~kEn′(~ki)|

〈
|Mm(~k,~k′)|2Gnn′(~k,~k′)

〉
S(k‖)

. (3.14)

In order to evaluate 3.14 for a chosen cube, one has to find the area of the constant en-
ergy plane S(k‖) confined by the cube, the averaged value of the squared matrix element,
and the energy gradient at the center of the cube.

3.3.1 Area of the constant energy plane

The area of the constant energy plane, confined by a cube i, is calculated using a method
given by Gilat and Raubenheimer [8]. First of all, each cube has a side length 2b, and the
absolute distance to the constant energy plane from the cube center along the gradient, w,
is given by

w = |k‖|=
∣∣∣∣En(~k) + ∆Em(~ki − ~k)− En′(~ki)

|∇~kEn′(~ki)|

∣∣∣∣ (3.15)

where ~ki denotes the cube center, ~k is the initial wavevector, n and n′ are initial and final
bands respectively.
The unit normal vector to the constant energy plane, ~n = [l1, l2, l3], is derived from the
energy gradient at the center of the cube. ~n is transformed so that all of the components
are positive, and satisfy

l1 ≥ l2 ≥ l3 ≥ 0. (3.16)

Because of the cube symmetry, this transformation does not affect the cross-section area.
The shape of the cross-section, and thereby the formula used to calculate the area, depends
on how many corners are ”cut” away by the plane. The distances between a plane, given
by ~n and intersecting the center of the cube, and the 4 corners that may possibly be ”cut”
away, are used to determine the shape and area of the cross-section. The distances are
given by:

w1 = b|l1 − l2 − l3| (3.17)
w2 = b(l1 − l2 + l3) (3.18)
w3 = b(l1 + l2 − l3) (3.19)
w4 = b(l1 + l2 + l3) (3.20)
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And the formulas for the cross-section areas S(k‖), for all possible combinations of w and
w1,2,3,4, are:

S(k‖) = 4b2

l1
, when 0 < w < w1 and l1 ≥ l2 + l3 (3.21)

S(k‖) = 2b2(l1l2 + l1l3 + l2l3)− (w2 + b2)
l1l2l3

, when 0 < w < w1 and l1 < l2 + l3

(3.22)

S(k‖) = b2(3l2l3 + l1l2 + l1l3) + wb(l1 − l2 − l3)− (w2 + b2)/2
l1l2l3

, when w1 < w < w2

(3.23)

S(k‖) = 2b2(l1 + l1)− 2wb
l1l2

, when w2 < w < w3 (3.24)

S(k‖) = [b(l1 + l2 + l3)− w]2

2l1l2l3
, when w3 < w < w4 (3.25)

The equations 3.21-3.25 are based on formulas for the area of the following shapes: par-
allelogram, hexagon, pentagon, trapezoid and triangle respectively. All of the formulas
are taken from Gilat and Raubenheimer [8], except for equation 3.23, which contained a
typographical error in [8]. The error that was corrected by Einar Halvorsen [5].

3.3.2 Average of the squared matrix elements
The average squared matrix element, is another quantity needed to calculate the scattering
rates. Formulas for the squared matrix elements, for all scattering mechanisms except
the alloy scattering, are taken from Brudevoll et al. [9]. While the matrix element for
alloy scattering is given by Ridley [10]. The squared matrix elements are all given as
functions of q = |~k′−~k|, and does not include overlap factors. The scattering mechanisms
considered in this work are, as mentioned in section 2.1:

• Acoustic deformation potential phonon scattering (absorption and emission)

• Polar optical phonon scattering (absorption and emission)

• Nonpolar optical phonon scattering (absorption and emission)

• Ionized impurity scattering

• Alloy scattering

The squared matrix element for all phonon scattering mechanisms is also proportional to
the number of existing phonons, N(q), given by Bose-Einsten statistics

N(q) = 1
exp

(
E(q)
kBT

)
− 1

(3.26)

where q is the phonon’s wavevector and E(q) is the energy of the absorbed or emitted
phonon, kB is Boltzmann’s constant and T is the temperature. All the optical phonons are
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assumed to have same frequency ω0, and therefore energyE(q) = h̄ω0, that is independent
of q. The acoustic phonon energy is approximated by

E(q) = h̄vsq, (3.27)

where vs is the average sound velocity. Alloy and ionized impurity scatterings are elastic,
which means that the carriers have the same energy after scattering as before.

To calculate the average squared matrix element inside a cube, Fischetti and Laux assumed
that the squared matrix element varies slowly over a cube, and used the squared matrix el-
ement at the center of the cube as the averaged value. This approximation is good for most
mechanisms, but could lead to some trouble when dealing with polar optical phonon and
ionized impurity scattering. The formula for the squared matrix element, for both polar
optical phonon and ionized impurity scatterings, has q in the denominator, which leads to
very rapid changes of the squared matrix element for small q. This is typically the case
when the initial ~k is in the same cube as the final state ~k′. The polar optical phonon scat-
tering is saved by the high energy transfer, which makes it unlikely to find any final states
very close to the initial state. Ionized impurity scattering is elastic, so final states could be
found very close to the initial state. But the screening factor β in the denominator of the
squared matrix element, saves the scattering rate from being calculated to infinity.
Using a point on the constant energy plane, ~ki + ~k‖, instead of just the cube center ~ki,
to calculate q and then the squared matrix element, will first of all give more accurate
scattering rate calculations. Because the squared matrix element must be averaged on the
constant energy plane, and a point value on this plane must be a better approximation
than point value in the center of the cube. This method will in addition further reduce the
chance of getting q = 0 for polar optical scattering. Which is why this method is used in
scattering rate calculations for the Monte Carlo simulations.

The overlap factor is a part of the squared matrix element, and is calculated using the
~k · p̂ eigenfunctions. The eigenfunctions are only given at the discrete mesh points, so
the eigenfunctions from the nearest mesh points are used to calculate the overlap factor
between the initial and final state. The overlap factor using the ~k · p̂-eigenfunctions is then
given by

Gnn′(~k,~k) = 1
2

2∑
µ=1

2∑
µ′=1
|F†
n′µ′~k′Fnµ~k|

2 (3.28)

Where Fnµ~k is the ~k · p̂-eigenfunction describing the state |n,~k〉 with spin µ. But at the
present stage, the carriers are only described by the energy band n and crystal momentum
~k (and not the spin), so the overlap factor is therefore averaged over the two spin eigen-
functions.

So far, the only thing that has been said about the division of the Brillouin zone, is that it
has to be divided up into small cubes, in order to use the mentioned method to calculated
scattering rates. Einar Halvorsen [5] implemented this method in the original program
that has served as a basis for the scattering rate calculations. The program was recently
revised by Bjørnar Karlsen [3] who included the alloy scattering, before Tore Bergslid[11]
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included it in the Monte Carlo program.
Until now, the program has relied on a division of the Brillouin zone into cubes that was
formed around the mesh points, where the band structure was known. The mesh points
were at the center of the cubes, simply because the method requires the knowledge of the
energy and energy gradient only at the center of the cubes.
During the present work, the program that calculates scattering rates has been modified,
and no longer relies on the cubes to form around the mesh points. The energy and energy
gradient can be given at any point in ~k-space, thanks to the interpolation schemes in sec-
tion 3.2. The layout and the size of the cubes can now be changed, without changing the
underlying cubic mesh of discrete points, where the band structure is known. One of the
weaknesses to the modified program is that the wavefunctions are only given at the mesh
points, and the overlap factors are therefore calculated using the wavefunctions from the
nearest mesh points. This should not be a big problem if the underlying mesh of discrete
points is not too coarse.

In the present work, the underlying 33x33x33 mesh of discrete points, was used as a basis
for the division of the ~k-space. The ~k-space was divided up into 32x32x32 cubes, where
the mesh points coincide with the corners of the cubes. As illustrated in figure 3.6.

Figure 3.6: Illustrating how the ~k-space is divided up into cubes, for scattering rate calculations.
The mesh points are shown with black dots.

The program flow for the scattering rate calculations is rather simple. Given an initial
band n, initial state ~k, and the initial energy En(~k), the scattering rate to band n′ caused
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by mechanism m is calculated as follows:

• Select a cube i, and use the center of the cube, ~ki, to estimate the energy transition,
and thereby the final energy Eif .

• Check if the final energy Eif is between the maximum and minimum energy found
in the cube i in band n′.

• If the check in the previous point fails, the weight for the cube i is zero, Wi = 0.

• Otherwise, the cube i contains the final energy. Then:

– Interpolate the energy and gradient at the center of the cube, and use the values
at the center to find the vector to the constant energy plane, ~k‖.

– Calculate the cross-section area S(k‖).

– Calculate the squared matrix element using q = |~ki +~k‖ −~k|, and the overlap
factor using the nearest mesh point wavefunctions.

– Finally, calculate the weight Wi using equation 3.14.

• Continue to the next cube until the weights for all cubes are calculated. At the end,
sum up the weights from all cubes to get the scattering rate.

3.4 Scattering rate interpolation
The numerical calculation of scattering rates is quite CPU intensive and time consum-
ing. Therefore, calculating the scattering rates during a simulation would make the Full
Band Monte Carlo program inconveniently slow. The scattering rates are therefore pre-
calculated and stored at the same cubic mesh as the band structure, and interpolated during
simulations. The interpolation routine is similar to the energy and gradient interpolation
routines, but avoids the ~k-space derivatives of the scattering rates. After finding the eight
mesh points that surround the arbitrary ~k, the scattering rate from each of the mesh points
is multiplied by appropriate weights (3.2), and finally summed up.

Smnn′(~k) ≈
8∑

λ=1
Smnn′(~kλ) ·Wλ(~k). (3.29)

The interpolation routine also includes some checks, before returning the interpolated
value. When dealing with optical phonon emission (both polar and nonpolar), the routine
explicitly checks if the carrier energy is actually high enough to emit a optical phonon.
These checks must be seen in the context of explicitly calculated compared to interpolated
scattering rates.
Suppose a carrier with energy just below the optical phonon energy. When the scatter-
ing rate for optical intraband emission is calculated explicitly, the final energy will not be
found inside any of the cubes, and the scattering rate becomes zero. However, if the car-
rier’s ~k is changed slightly, so the carrier’s energy becomes just above the optical phonon
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energy, the same scattering rate becomes 6= 0. However, if the scattering rate is interpo-
lated, the two scenarios will result in almost the same rate that is 6= 0. This may cause
trouble when searching after final states. If an ”illegal” scattering is chosen, no final states
will be found. And the checks are meant to avoid such situations, by making sure that if a
returned rate is 6= 0, then the final energy is within the energy range of the final band.

3.5 Selection of final states
When a carrier reaches the end of a flight, it gets instantly scattered from it’s initial state
~k to a final state ~k′. This section will focus on how this final state is selected in the Full
Band Monte Carlo program.
The selection of final states is done in two parts. First a selection of a cube where the final
state is to be found. Then a selection of the final state ~k′, that represents the desired final
energy, within the selected cube.

3.5.1 Selecting final cube
The cube to be selected is one of the cubes used in scattering rate calculations. When the
scattering rates are calculated, the cubes are assigned different weights. These weights
represent how much the final states inside each cube contribute to the scattering rate. The
probability to pick out a cube should therefore be proportional to the cube’s contribution
to the scattering rate, ie the cube’s weight.
The selection of a final cube could be done using the same method that is applied to
selection of scattering mechanism. But the method would require all of the cube weights to
be calculated. Which could of course be done, but calculating, typically, several thousand
cube weights does not seem to be very efficient during simulations.
Fischetti and Laux used a rejection technique to choose the final cube, which does not
require all of the cube weights. This rejection method is also currently implemented in the
Full Band Monte Carlo program. The method goes as follows (for a given initial state ~k,
initial band n, mechanism m and final band n′):

• A search is performed over all cubes, where all the cubes that contain the desired
final energy are stored in a list. The list contains all the possible final cubes. During
the search, only the final energy is calculated for each cube, and compared to the
energy spanned by the cube.

• Then, two random numbers are generated, r1 and r2, which are uniformly dis-
tributed between 0 and 1. r1 is used to suggest one of the possible final cubes,
say cube i. The weight, Wi, for the suggested cube is then calculated.

• Weight Wi is compared to r2 · WMAX , where WMAX is the maximum of the
possible cube weights. If Wi ≥ r2 ·WMAX , the suggested cube i is chosen as the
final cube.

• Else, if Wi < r2 ·WMAX , the cube is rejected. And the whole procedure, starting
with generation of two random numbers, is repeated until a randomly suggested
cube is chosen as the final cube.
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This rejection method selects the final cube with the proper probability, as long as the
the value WMAX is higher than any of cube weights. However, choosing WMAX too
high, may result in an extremely high rejection rate, thereby reducing the efficiency of the
method. It is important to notice, that WMAX has to be chosen without actually calculat-
ing the cube weights. Choosing a suitable value for WMAX is outside the scope of this
work, but some thoughts have been made on the topic:

- The cube weights are given by the equation 3.14. So one could in principle use the
maximum observed value for each of the factors in equation 3.14, to estimate the maxi-
mum possible cube weight. But, as a simple test showed, the product of the maximum of
each factor lead to a very high value, even higher than the scattering rate. In which case
even the scattering rate will be a better value for WMAX than the product of the maximum
factors, because none of the cube weights will exceed the scattering rate for obvious rea-
sons.
- A different approach, to find a value for WMAX , could involve the power of observa-
tions. The idea is to observe the calculated cube weights, and save the maximum values.
These observations should be done separately, for example during scattering rate calcula-
tions, where all cube weights are being calculated anyway.

Another weakness to the rejection method, is the fact that the cube weights can vary a
lot for some scattering mechanisms. This is typically the case for the ionized impurity
scattering and sometimes also for the polar optical phonon scattering, where the matrix
element varies rapidly between the final cubes. A few of the cube weights could be orders
of magnitude higher than the rest, which will result in very high rejection rate. Figure 3.7
shows a typical plot of the cube weights in case of ionized impurity scattering, illustrating
the problem.

Figure 3.7: Plot of the final cube weights for electron, with energy 0.43 eV along (111)-direction,
scattered by ionized impurity.
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Figure 3.7 shows clearly that a few of the final cube weights are much higher that the
other. Which results in a very high chance of suggesting the cubes with low weights, but
rejecting them because of the low weight. A similar distribution of the cube weights can
also occur for polar optical phonon scattering, as figure 3.8 shows.

Figure 3.8: Plot of the final cube weights for electron, with energy 0.43 eV along (111)-direction,
scattered by polar optical phonon emission.

Also in this case, the cubes with low weights will have a high chance of being suggested,
but also most likely be rejected because of the low weight.

In contrast to the ionized impurity scattering and the polar optical phonon scattering, the
cube weights are much more evenly distributed for the other scattering mechanisms. As il-
lustrated by figure 3.9, that shows a typical distribution of the cube weights for the acoustic
deformation potential phonon emission.
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Figure 3.9: Plot of the final cube weights for electron, with energy 0.43 eV along (111)-direction,
scattered by acoustic deformation potential phonon emission.

The cube weights in figure 3.9 are very similar, atleast compared to figure 3.8 and 3.7.
And in this case the suggested cube will have a relatively large chance of being accepted,
and little time will therefore be wasted to suggesting new cubes.

3.5.2 High precision selection of final states
After a final cube has been chosen, a final state within the cube has to be selected. The
selection has to be done efficiently, but at the same time is it crucial that the selected final
state, ~k′, represents the desired final energy Ef .
Simply choosing the center of the final cube as the final state, ~k′, would be be very ef-
ficient. However, the error in final energy would be unacceptably large, as the energy
represented by the cube center may deviate from the desired final energy by many meV
(10−3eV).
Tore Bergslid [11], corrected the final state along the energy gradient, from the center of
the cube to the constant energy plane. This correction was reported to give an average
error of 2.9 meV in the final energy. However, the energy represented by the chosen final
state was always higher than the desired final energy, which lead to artificial heating of the
carriers.
A different method was introduced in the specialization project [1] prior to this master’s
thesis, that offered to select final states with high precision. The derivation of the method
is given below:
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The energy of the selected final state En′(~k′) is given by the energy interpolation, de-
scribed in section 3.2. So in order to select a final state ~k′ with a predetermined final
energy Ef , one has to somehow invert the expression used to interpolate the energy, the
equation 3.3.
First of all, the expression for interpolated energy, given by equation 3.3, is only valid for
~k’s inside the ”interpolation” cube, defined by the 8 mesh points surrounding the ~k. And
as figure 3.10 shows, any ~k inside the interpolation cube can be expressed by

~k = ~k1 + ~∆k = [kx,1 + ∆kx, ky,1 + ∆ky, kz,1 + ∆kz], (3.30)

where~k1 = [kx,1, ky,1, kz,1] is the vector to mesh point/corner nr 1, and ~∆k = [∆kx,∆ky,∆kz]
is the vector between ~k1 and ~k.

Figure 3.10: Showing an arbitrary ~k (red dot) inside the interpolation cube, with 8 mesh points(black
dots) in the corners.

Note, the corner nr 1 is always defined as the mesh point with the lowest coordinates,
which makes 0 ≤ ∆ki ≤ l by definition.
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Similarly to 3.30, can all of the 8 mesh points/corners be expressed by ~k1 and l:

~k1 = ~k1 + [0, 0, 0] = [kx,1 + 0, ky,1 + 0, kz,1 + 0] (3.31a)
~k2 = ~k1 + [l, 0, 0] = [kx,1 + l, ky,1 + 0, kz,1 + 0] (3.31b)
~k3 = ~k1 + [l, l, 0] = [kx,1 + l, ky,1 + l, kz,1 + 0] (3.31c)
~k4 = ~k1 + [0, l, 0] = [kx,1 + 0, ky,1 + l, kz,1 + 0] (3.31d)
~k5 = ~k1 + [0, 0, l] = [kx,1 + 0, ky,1 + 0, kz,1 + l] (3.31e)
~k6 = ~k1 + [l, 0, l] = [kx,1 + l, ky,1 + 0, kz,1 + l] (3.31f)
~k7 = ~k1 + [l, l, l] = [kx,1 + l, ky,1 + l, kz,1 + l] (3.31g)
~k8 = ~k1 + [0, l, l] = [kx,1 + 0, ky,1 + l, kz,1 + l] (3.31h)

where l is the distance between mesh points, as shown in figure 3.10.
Substituting the expressions 3.31 and 3.30 into 3.3, and expanding the sum, gives the (very
long) expression for the interpolated energy:

En(~k) =
{
En(~k1) + ∂En

∂kx

∣∣∣∣
~k1

∆kx + ∂En
∂ky

∣∣∣∣
~k1

∆ky + ∂En
∂kz

∣∣∣∣
~k1

∆kz

+ ∂2En
∂kx∂ky

∣∣∣∣
~k1

∆kx∆ky + ∂2En
∂ky∂kz

∣∣∣∣
~k1

∆ky∆kz

+ ∂2En
∂kz∂kx

∣∣∣∣
~k1

∆kz∆kx + 1
2
∂2En
∂k2

x

∣∣∣∣
~k1

(∆kx)2 + 1
2
∂2En
∂k2

y

∣∣∣∣
~k1

(∆ky)2

+ 1
2
∂2En
∂k2

z

∣∣∣∣
~k1

(∆kz)2

}
·
[
1− |∆kx|

l

] [
1− |∆ky|

l

] [
1− |∆kz|

l

]

+
{
En(~k2) + ∂En

∂kx

∣∣∣∣
~k2

(∆kx − l) + ∂En
∂ky

∣∣∣∣
~k2

∆ky + ∂En
∂kz

∣∣∣∣
~k2

∆kz

+ ∂2En
∂kx∂ky

∣∣∣∣
~k2

(∆kx − l)∆ky + ∂2En
∂ky∂kz

∣∣∣∣
~k2

∆ky∆kz

+ ∂2En
∂kz∂kx

∣∣∣∣
~k2

∆kz(∆kx − l) + 1
2
∂2En
∂k2

x

∣∣∣∣
~k2

(∆kx − l)2 + 1
2
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where ~k = ~k1 + ~∆k. Equation 3.32 gives the energy as a function of (∆kx,∆ky,∆kz).
The energy contributions from each corner are deliberately kept in curly { } parenthesis,
while the corner weights are kept in square [ ] parenthesis. This is done for slightly better
overview.
The absolute values in the square [ ] parenthesis in equation 3.32 can be eliminated using
the identities: [

1− |∆ki|
l

]
=
[
l −∆ki

l

]
(3.33a)[

1− |∆ki − l|
l

]
=
[

∆ki
l

]
. (3.33b)

where i ∈ x, y, z, the fact that 0 ≤ ∆ki ≤ l has been used.
Replacing the corner weights in equation 3.32, with the identities 3.33, results in the fol-
lowing expression for the interpolated energy, that no longer contains absolute values.
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(3.34)
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where ~k = ~k1 + [∆kx,∆ky,∆kz].
The equation 3.34, describing the interpolated energy inside an ”interpolation” cube, may
look very complicated, but is actually a 5th order polynomial of the 3 variables ∆kx, ∆ky
and ∆kz .
Inversion of the energy is equivalent to finding a solution (∆kx,∆ky,∆kz) for a given
energy. Finding a general solution (∆kx,∆ky,∆kz) for the 5th order polynomial is ex-
tremely difficult or maybe even impossible. However, if the (∆kx,∆ky,∆kz) represent a
straight line, the 5th order polynomial of 3 variables becomes a 5th order polynomial of
only 1 variable. Which is simply because any straight line can be parametrized by only 1
free variable. This means that the energy along any straight line inside the ”interpolation”
cube can be written in the form

E(x) = C0 + C1x+ C2x
2 + C3x

3 + C4x
4 + C5x

5 (3.35)
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where x is the free parameter, and the coefficientsC0,1,2,3,4,5 depend on the actual parametriza-
tion of the straight line (and of course corner point energy and derivatives). This is easily
seen when substituting (∆kx,∆ky,∆kz) in equation 3.34 by a general parametrization of
a straight line, given by (a1 + b1x , a2 + b2x , a3 + b3x), where x is the free variable and
a1,2,3, b1,2,3 are constants.
A solution x′ of the 5th order polynomial (3.35), can be found numerically, for a given
energy E′. And the ~∆k

′
= [∆k′x,∆k′y,∆k′z] associated with the energy E′ is given by

the specific parametrization. The resulting ~k′ = ~k1 + ~∆k
′

will therefore have the given
energy E′. Or in other words, the interpolated energy at ~k′ will be equal to E′.

One important thing must be noted: the method described above can be used to find ~k′

with the desired energy E′, only within an ”interpolation” cube. However, the cube that
is selected as the final cube, is deliberately chosen to be identical to the ”interpolation”
cube. This allows the method described above to be used directly to select a final state ~k′

representing the final energy Ef within the chosen final cube.

There is also no guarantee that a given straight line in the final cube will contain the
desired energy Ef , in which case no solution x′ will be found. So the search after a final
state is performed along several carefully chosen straight lines inside the final cube, in or-
der to maximize the probability of finding a final state. The parametrization of the 7 lines,
that are currently implemented, is given in the table below.

Line nr. (∆x,∆y,∆z)
1. (x, l/2, l/2)
2. (l/2, x, l/2)
3. (l/2, l/2, x)
4. (x, x, x)
5. (l − x, x, x)
6. (l − x, l − x, x)
7. (x, l − x, x)

Table 3.1: The 7 lines given by the parametrization of ~∆k, x is the free variable, and l is the side
length of the final cube.

The 7 carefully chosen lines, inside the final cube, are shown in figure 3.11. That also
shows that all of the 7 lines are inside the final cube, which makes them exclusive for the
chosen final cube. Fischetti and Laux [7] used a somewhat similar approach, where they
placed the final states on predetermined lines. But most of the lines they used were on the
border of the cube, and were therefore shared between the neighbouring cubes, making
the lines non exclusive. Which could lead to accumulation of the final states on the shared
lines. This accumulation is avoided in this work because, as mentioned, all of the lines are
exclusive for the final cubes.
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Figure 3.11: Showing the 7 lines in the final cube, along which the final state is found.

The program flow for the selection of the final state within the final cube is fairly simple.
Given a final cube and the desired final energy Ef : The coefficients, for the energy along
the 7 lines inside the final cube, are calculated using the expressions given in appendix B.
Then for each of the lines, the solution x′ of the 5th order polynomial is found numerically,
before converted to a ~k′ using the parametrization of the line in question and ~k1. In most
cases, several of the lines contain the desired energy, each resulting in a ~k′, one of them is
picked out at random to be the final state ~k′. The chosen final state ~k′ should now represent
the desired final energy Ef .

This method of selecting final states within the final cube, proved to be very precise, dur-
ing testing in the specialization project [1]. In fact, and error less than 10−6eV in the final
state energy was easily achieved. While this high precision method of finding final states
is clearly more CPU intensive than the mentioned inaccurate alternatives, the high increase
in precision should outweigh the small increase in simulation runtime.
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Chapter 4
Results

In this chapter the most important results of the present work will be shown. The first sec-
tion covers on the calculated scattering rates for both electrons and holes, that are impor-
tant to perform the actual Monte Carlo simulations. The following section will show some
actual simulation results, to demonstrate a properly working Full Band model. Before the
electron mobility in Hg0.72Cd0.28Te is calculated in the final section of this chapter.
All of the calculations and simulations were performed for Hg0.72Cd0.28Te at 77K, and in
order to include the ionized impurity scattering, the impurity density was set to 1.0 · 1017

cm−3 (equivalent to heavily doped MCT). The rest of the simulation parameters are given
in the appendix A.
The band structure for Hg0.72Cd0.28Te was already shown in section 3.1, but only the
light- and heavy-hole bands are considered when simulating holes, and only the first con-
duction band is used for electrons. The split-off band is omitted, since it requires the holes
to have very high energies and is therefore rarely occupied. The same applies to the higher
conduction bands, that requires even higher electron energies to be occupied.

4.1 Scattering rates
The calculated scattering rates in the (111)-direction are presented below. These calcu-
lations are closely related to the ab initio scattering rates calculated by Bjørnar Karlsen
[5], as the used band structure is essentially the same. The main difference between the
scattering rate calculations performed in this work and Bjørnar Karlsen’s, are the different
mesh sizes, and the method used to estimate the maximum and minimum energy spanned
by a final cube. Karlsen estimated the energy span by a simple linear extrapolation from
the cube center, but in this work, the energy spanned by each final cube is found by a brute
force technique. Where the energy was interpolated at many points inside each cube and
the maximum/minimum value was saved.

35



Acoustic deformation potential phonon scattering

Figure 4.1: Acoustic deformation potential phonon absorption scattering rates, in the (111)-
direction.

Figure 4.2: Acoustic deformation potential phonon emission scattering rates, in the (111)-direction.
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Polar optical phonon scattering

Figure 4.3: Polar optical phonon absorption scattering rates, in the (111)-direction.

Figure 4.4: Polar optical phonon emission scattering rates, in the (111)-direction.
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Nonpolar optical phonon scattering

Figure 4.5: Nonpolar optical phonon absorption scattering rates, in the (111)-direction.

Figure 4.6: Nonpolar optical phonon emission scattering rates, in the (111)-direction.
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Ionized impurity scattering

Figure 4.7: Ionized impurity scattering rates, in the (111)-direction.

Alloy scattering

Figure 4.8: Alloy scattering rates, in the (111)-direction.
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All of the scattering rates are roughly the same as the the ones calculated by Bjørnar
Karlsen [3], and the differences are caused by the slight differences between the calcula-
tions. Also the difficulties Karlsen encountered while calculating the electron scattering
rates appear to be solved.
The scattering by optical phonons, alloy and ionized impurities are the most prevalent scat-
tering mechanisms for Hg0.72Cd0.28Te at 77K, and should therefore always be included in
Monte Carlo simulations. The scattering rates for acoustic phonons are significantly lower
than the other mechanisms, and could in principle be neglected in Monte Carlo simula-
tions. However, all of the mechanisms mentioned above are always included in the Monte
Carlo simulations of this work.

4.2 Monte Carlo simulations

This section contains the results of some Monte Carlo simulations of both electrons and
holes in Hg0.72Cd0.28Te at 77K, where the purpose is to show that the implemented Full
Band model works properly.
The first simulations were performed without any external field, where the carriers were
randomly distributed around the center of the Brillouin zone. Figures 4.9 and 4.10 shows
the results from a 5 ps long simulation.

Figure 4.9: Evolution of the average hole energy during a bulk simulation without external fields.

The holes in figure 4.9 seems cool down quickly to an average energy around 3
2kBT , that

is the theoretical average energy for parabolic bands. But the bands used in this work are
not exactly parabolic, so some deviation from 3

2kBT is expected. The average hole energy
is also steady after cooling down, showing no sign of artificial heating.
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Figure 4.10: Evolution of the average electron energy during a bulk simulation without external
fields.

The average electron energy shown in figure 4.10, also cools down fairly quickly to an
energy slightly above the band gap energyEg = 0.2184 eV. The cooling down of electrons
is considerably slower than for holes, which is expected, since the electron scattering rates
are considerably lower than scattering rates for holes.

(a) Distribution of holes (red dots) in 1st BZ at
equilibrium (no external fields).

(b) Distribution of electrons (blue dots) in 1st
BZ at equilibrium (no external fields).

Similar (but longer) simulations were performed in order to find the equilibrium distribu-
tion of electrons and holes. The equilibrium distribution was saved, and used as a starting
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point for the other simulations.
Figures 4.11a and 4.11b shows how the electrons and holes are distributed in the 1st Bril-
louin zone, after the equilibrium is reached. Both types of carriers gather nicely at the zone
center, and the magnified versions of the plots shows that the carriers are evenly distributed
in all directions. The holes are clearly much more spread out than the electrons, which is
exactly what could be expected from the band structure. Most of the holes are located in
the heavy-hole band at 77K, that is very ”flat” around ~k = 0, allowing even the holes with
low energies to spread pretty far out from ~k = 0. While the conduction band where all
the electrons are located, is very ”steep” around the zone center, so only electrons with
high energy can be found far from ~k = 0, which is a rare case at 77K without any external
fields.
When an external electric field is applied, the carriers get accelerated by the field and gain
more and more energy. The carriers will at the same time get relaxed by phonon emission
scattering, but will still have a better chance of gaining high energies. Which means that
the carriers get spread further out from the zone center. The actual distributions of carriers
in the Brilluoin zone for low electric fields in Hg0.72Cd0.28Te, is very similar to figures
4.11a and 4.11b. More and more carriers are naturally found further away from ~k = 0,
but it is difficult to see it from a 3D plot, for low fields. However, the conduction band
in Hg0.72Cd0.28Te is anisotropic for high electron energies, which means that the elec-
trons with very high energies will prefer some part of the Brillouin zone over others. This
was observed by turning the electric field up as high as 50 kV/cm. Figure 4.11 shows the
resulting distributions of electrons.

Figure 4.11: Distribution of electrons (blue dots) in 1st BZ at steady state, with electric field at 50
kV/cm in k̂x direction.
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Most of the electrons are still gathered around the center of the 1st BZ, but they spread out
a lot more than for low electric fields. Also, quite a few of the electrons are found far away
from the zone center, in which case they tend to accumulate towards the L-points. The
band plot in figure 3.2 shows that the L-valleys are extremely narrow in the conduction
band in MCT, specially compared to the L-valleys in for instance GaAs. However, some
of the electrons with high energy are still found in the L-valleys in MCT.
The fact that the electrons seem to be distributed evenly between the 6 L-points, is a clear
indication that the carriers wavevector is being properly randomized in scattering events.
Figure 4.11 also illustrates one of the strengths of the Full Band model. The fact that the
band structure is given over the whole Brilluoin zone, allows the carriers to continuously
move over the full zone. While analytical band models are often constrained to small parts
of the Brillouin zone, and the only way particles can move from one part of the zone to an-
other, is by additional, high q, ”intervalley” scattering mechanisms that take care of these
”special” events. Particles can thus be transported to different valleys by continuous migra-
tion or scattered directly into the valleys by the large-wavevector ”intervalley”-phonons.
The simulation examples show that migration can on its own be a strong mechanism for L
valley occupation.

4.3 Electron Mobility in bulk Hg0.72Cd0.28Te

As the previous section showed, the Full Band model appears to be working properly
during bulk simulations of Hg0.72Cd0.28Te, for both electrons and holes, with and without
external electric fields. The program also seems to be stable when it comes to consistency
in the reproduced results, as well as the runtime of the simulations. And with that in mind,
it was decided to use the Full Band Monte Carlo program to calculate the electron mobility
in Hg0.72Cd0.28Te.
The simulations were initialized with equilibrium distribution of the electrons, and an
external electric field (in k̂x-direction) was turned on at t = 0. The average drift velocity
(parallel to the field) of the electrons was measured after the steady state was achieved.
Figure 4.12 shows how the average electron velocity is evolving during a simulation, for
several different electric fields.
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Figure 4.12: Evolution of average electron velocity (parallel to electric field) in time.

The average electron velocity, shown in figure 4.12, increases very quickly before
converging the steady state level after approximately 4 ps. Velocity overshoot is observed
around 1−2 ps into the simulations for electric fields above approximately 250 V/cm. The
steady state average electron velocity was measured first after 10 ps into the simulations,
in order to be confident that the steady state was actually reached. And a summary of the
results are given in table 4.1.

Electric Drift velocity Calculated mobility Number of Simulation
field [V/m] [m/s] [cm2/Vs] electrons runtime

1000 17628 176280 50000 2h16m54s
2500 40237 160950 50000 2h16m35s
5000 75615 151231 50000 2h20m59s
10000 134402 134402 50000 2h21m52s
15000 177998 118665 50000 2h17m02s
20000 210916 105458 50000 2h18m02s
25000 237462 94985 50000 2h19m41s
30000 257268 85756 50000 2h20m00s
35000 274687 78482 50000 2h21m39s
40000 288084 72021 50000 2h23m14s
45000 299858 66635 50000 2h28m31s
50000 307475 61495 50000 2h30m32s

Table 4.1: Summary of the Monte Carlo simulations that were used to calculate electron mobility
in Hg0.72Cd0.28Te.
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The electron drift velocity is plotted against the electric field in figure 4.13.

Figure 4.13: Measured electron drift velocity (parallel to electric field), plotted against the electric
field.

The resulting velocity-field curve in figure 4.13 is qualitatively very similar to the
much cited simulation results reported by Bjørnar Lund [12]. However, the simulations by
Lund [12] was performed for the alloy fraction x = 0.205 and lower doping. But despite
the differences, the resulting velocity-field curve in figure 4.13 seems to be very plausible.
The velocity-field curve in figure 4.13 shows that the drift velocity becomes nonlinear at
very low electric fields, and the calculated electron mobility (table 4.1) seems to be in a
very good agreement with the reported values of ∼ 105 cm2/Vs. This is another good
indication that the Full Band Monte Carlo program is working properly.

The electron mobility calculations in this work were, as mentioned, performed as a part
of the testing of the Full Band model. But if the purpose is to actually explore the elec-
tron mobility in Hg0.72Cd0.28Te, one should consider including degeneracy effects, such
as varying screening length and Pauli exclusion principle. A switch for incorporating the
Pauli exclusion principle is available in the Monte Carlo program, but it was not possible
to test it extensively and properly due to lack of time. A self-consistent screening length
calculation was developed for the Monte Carlo program by Øyvind Skåring [13] [14]. As
reported by Lund [12], these degeneracy effects seem to significantly affect the electron
mobility in HgCdTe.

45



46



Chapter 5
Conclusions

During this work the following important improvements have been made to the Full Band
Monte Carlo program:

• The program is now able to simulate charge transport in Hg0.72Cd0.28Te, thanks to
introductions of a new ab initio numerical band structure.

• All necessary changes has been made to enable simulation of electrons, including:

– The routine handling the calculation of the scattering rates has been general-
ized to include calculation of electron scattering rates, in addition to holes.

– A new routine escatter has been written, that takes care of electron scat-
tering.

– The routine that selects final states has been modified to find final states for
electrons in the conduction band.

• Major improvements have been made to the routine that selects final states:

– The high-precision method, that was proposed in the specialization project [1]
to select final states with proper energy, has been implemented.

– The q-dependence of the final energy has been included in selection of final
cubes.

– The routine has been generalized, and now automatically recognizes the final
band and type of carrier, based on the initial state and the chosen scattering
mechanism.

• The layout of the underlying cubic mesh of discrete points has been changed to a
more intuitive and convenient layout. And all of the interpolation routines have been
adapted accordingly.

• The routine handling the calculation of scattering rates has been modified to use
interpolated quantities. Which allows the layout of the cubes, that are used in these
calculations, to be independent of the mesh points.
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• Mobility calculations have been enabled for both electrons and holes.

However, the most important achievement that was accomplished during this work, is
a stable and properly working Full Band Monte Carlo program, capable of simulating both
electrons and holes in bulk Hg0.72Cd0.28Te. The program is also capable of calculating
bulk mobility, producing plausible and acceptable results.

5.1 Future work
Even though the Monte Carlo software has been significantly improved during this work,
there is still a lot of room for further development and improvement. Some suggestions
for the future work are presented below:

• Include the ab initio wavefunctions, produced by ABINIT [2] (or other software),
in the calculation of the overlap factors.

• The selection of final cubes could be done more effectively by a better estimation
of the maximum value for the cube weights. This could significantly reduce the
simulation runtime, and should therefore be considered.

• Allow the scattering events to take place at arbitrary times between the time steps,
by properly implementing the Yorston Method.

• Include effects such as hot-phonons and Pauli exclusion principle. Both effects were
available in the analytical version of the program, and implementing these into the
Full Band version should be a fairly manageable task.

• Some of the main parts of the program, such as calculations of scattering rates and
selection of final cubes, are very CPU intensive. However, these parts consists of
many smaller independent calculations, and could in principle be performed in par-
allel to reduce the runtime. Parallel parts of the program should be considered if the
simulations become very long.

• A recently published article [15] (dated May 19, 2014!), addresses how supercell
electronic structures can be ”unfolded” back to a standard zincblende Brillouin zone
(used in the MC program). This long awaited approach opens up the opportunity to
get the band structure for alloy compounds from the widely used supercell calcula-
tions, and such ”backfolder” was already requested by Bjørnar Karlsen [3]. It should
be very interesting to test this new approach, not only for the purpose of this MC
program, but also in a MC context on a worldwide basis.
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Appendix A: List of parameters

The table below contains a list of parameters that are used in scattering rate calculations
and in the Monte Carlo simulations of the present work.

Symbol Value Variable Explanation
T 77 K T Temperature
x 0.28 XFRAC Alloy fraction of CdTe
ρ 7.406 g/cm3 RHO Mass density
ε∞ 12.25 EPSINF High frequency relative dielectric constant
εs 16.58 EPSS Low frequency relative dielectric constant
h̄ω0 0.0178 eV HW0 Optical phonon energy
Ni 1.0 · 1017 cm−3 NIMP Concentration of ionized impurities
E1 7.00eV/5.60eV D(2) Acoustic deformation potential (for GaAs)

(electrons/holes)
vs 4570 m/s S Average sound velocity
(DK)2 3.16 · 103 eV2/Å2 DKSQR Squared optical phonon coupling constant
DV 1.5 eV/0.3 eV DV(2) Alloy scattering potential (electrons/holes)
∆t 1.0 · 10−15 s TIME Simulation time step
− 1.0 · 10−6 eV FETOL Energy tolerance used in high precision se-

lection of final states
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Appendix B: Expressions for the
coefficients

As stated in section 3.5.2, the energy along any of the 7 lines can be written in the form
E(x) = C0 + C1x+ C2x

2 + C3x
3 + C4x

4 + C5x
5.

The coefficients are of course different for different lines, and the expressions for all of
them are presented below. The lines are identified by the parametrization is of (∆kx,∆ky,∆kz),
expressed by the free variable x and the side length of the final cubes l.
The coefficients are generally found by inserting the parametrization of any straight line,
(∆kx,∆ky,∆kz), into equation 3.34 and collecting terms.

Line number 1: ~∆k = (∆kx, ∆ky, ∆kz) is given by (x, l
2 , l
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~k7

− 1
8
∂2En
∂kz∂kx

∣∣∣∣
~k7

− 1
4
∂2En
∂k2

x

∣∣∣∣
~k3

− 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k3

+ 1
8
∂2En
∂kz∂kx

∣∣∣∣
~k3

+ 1
8
∂2En
∂k2

x

∣∣∣∣
~k8

+ 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k8

+ 1
8
∂2En
∂kz∂kx

∣∣∣∣
~k8

− 1
4
∂2En
∂k2

x

∣∣∣∣
~k2

+ 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k2

+ 1
8
∂2En
∂kz∂kx

∣∣∣∣
~k2

+ 1
8
∂2En
∂k2

x

∣∣∣∣
~k1

− 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k1

− 1
8
∂2En
∂kz∂kx

∣∣∣∣
~k1

− 1
4
∂2En
∂k2

x

∣∣∣∣
~k6

+ 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k6

− 1
8
∂2En
∂kz∂kx

∣∣∣∣
~k6

C3 = 1
8l
∂2En
∂k2

x

∣∣∣∣
~k7

+ 1
8l
∂2En
∂k2

x

∣∣∣∣
~k2

− 1
8l
∂2En
∂k2

x

∣∣∣∣
~k4

+ 1
8l
∂2En
∂k2

x

∣∣∣∣
~k6

− 1
8l
∂2En
∂k2

x

∣∣∣∣
~k1

− 1
8l
∂2En
∂k2

x

∣∣∣∣
~k8

− 1
8l
∂2En
∂k2

x

∣∣∣∣
~k5

+ 1
8l
∂2En
∂k2

x

∣∣∣∣
~k3

C4 = 0

C5 = 0

Line number 2: ~∆k = (∆kx, ∆ky, ∆kz) is given by ( l
2 , x, l

2)

C0 = 1
4En(~k5) + 1

4En(~k6) + 1
4En(~k2) + 1

4En(~k1) + l2

16
∂2En
∂kz∂kx

∣∣∣∣
~k6

+ l2

16
∂2En
∂kz∂kx

∣∣∣∣
~k1

+ l

8
∂En
∂kx

∣∣∣∣
~k1

+ l2

32
∂2En
∂k2

x

∣∣∣∣
~k1

+ l

8
∂En
∂kz

∣∣∣∣
~k1

+ l2

32
∂2En
∂k2

x

∣∣∣∣
~k2

− l

8
∂En
∂kz

∣∣∣∣
~k5

− l

8
∂En
∂kx

∣∣∣∣
~k2

+ l

8
∂En
∂kz

∣∣∣∣
~k2

+ l2

32
∂2En
∂k2

z

∣∣∣∣
~k6

− l

8
∂En
∂kz

∣∣∣∣
~k6

+ l2

32
∂2En
∂k2

z

∣∣∣∣
~k2

− l2

16
∂2En
∂kz∂kx

∣∣∣∣
~k2

+ l

8
∂En
∂kx

∣∣∣∣
~k5

+ l2

32
∂2En
∂k2

z

∣∣∣∣
~k1

+ l2

32
∂2En
∂k2

x

∣∣∣∣
~k5

+ l2

32
∂2En
∂k2

z

∣∣∣∣
~k5

− l2

16
∂2En
∂kz∂kx

∣∣∣∣
~k5

− l

8
∂En
∂kx

∣∣∣∣
~k6

+ l2

32
∂2En
∂k2

x

∣∣∣∣
~k6
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C1 = l

32
∂2En
∂k2

x

∣∣∣∣
~k4

− l

32
∂2En
∂k2

x

∣∣∣∣
~k1

+ l

32
∂2En
∂k2

x

∣∣∣∣
~k8

− l

32
∂2En
∂k2

x

∣∣∣∣
~k5

− 1
8
∂En
∂kx

∣∣∣∣
~k5

+ 1
4
∂En
∂ky

∣∣∣∣
~k5

+ 1
8
∂En
∂kz

∣∣∣∣
~k5

− l

32
∂2En
∂k2

z

∣∣∣∣
~k1

+ l

8
∂2En
∂ky∂kz

∣∣∣∣
~k1

− l

32
∂2En
∂k2

x

∣∣∣∣
~k2

− 1
4lEn(~k2)− l

32
∂2En
∂k2

z

∣∣∣∣
~k2

+ l

8
∂2En
∂ky∂kz

∣∣∣∣
~k2

+ l

32
∂2En
∂k2

x

∣∣∣∣
~k3

+ 1
4lEn(~k3)

+ l

8
∂2En
∂k2

y

∣∣∣∣
~k3

+ l

32
∂2En
∂k2

z

∣∣∣∣
~k3

− l

8
∂2En
∂ky∂kz

∣∣∣∣
~k3

+ 1
4lEn(~k4) + l

8
∂2En
∂k2

y

∣∣∣∣
~k4

+ l

32
∂2En
∂k2

z

∣∣∣∣
~k4

− l

8
∂2En
∂ky∂kz

∣∣∣∣
~k4

− 1
4lEn(~k5)− l

32
∂2En
∂k2

z

∣∣∣∣
~k5

− l

8
∂2En
∂ky∂kz

∣∣∣∣
~k5

− l

32
∂2En
∂k2

x

∣∣∣∣
~k6

− 1
4lEn(~k6)− l

32
∂2En
∂k2

z

∣∣∣∣
~k6

− l

8
∂2En
∂ky∂kz

∣∣∣∣
~k6

+ l

32
∂2En
∂k2

x

∣∣∣∣
~k7

+ 1
4lEn(~k7) + l

8
∂2En
∂k2

y

∣∣∣∣
~k7

+ l

32
∂2En
∂k2

z

∣∣∣∣
~k7

+ l

8
∂2En
∂ky∂kz

∣∣∣∣
~k7

+ 1
4lEn(~k8)

+ l

8
∂2En
∂k2

y

∣∣∣∣
~k8

+ l

32
∂2En
∂k2

z

∣∣∣∣
~k8

+ l

8
∂2En
∂ky∂kz

∣∣∣∣
~k8

+ l

16
∂2En
∂kz∂kx

∣∣∣∣
~k5

− l

16
∂2En
∂kz∂kx

∣∣∣∣
~k1

− l

16
∂2En
∂kz∂kx

∣∣∣∣
~k8

+ l

8
∂2En
∂kx∂ky

∣∣∣∣
~k5

+ l

8
∂2En
∂kx∂ky

∣∣∣∣
~k1

− l

8
∂2En
∂kx∂ky

∣∣∣∣
~k4

+ l

16
∂2En
∂kz∂kx

∣∣∣∣
~k4

− l

8
∂2En
∂kx∂ky

∣∣∣∣
~k8

− 1
4lEn(~k1) + 1

8
∂En
∂kx

∣∣∣∣
~k4

− 1
4
∂En
∂ky

∣∣∣∣
~k4

+ 1
8
∂En
∂kz

∣∣∣∣
~k4

− 1
8
∂En
∂kx

∣∣∣∣
~k7

− 1
4
∂En
∂ky

∣∣∣∣
~k7

− 1
8
∂En
∂kz

∣∣∣∣
~k7

− 1
8
∂En
∂kx

∣∣∣∣
~k3

− 1
4
∂En
∂ky

∣∣∣∣
~k3

+ 1
8
∂En
∂kz

∣∣∣∣
~k3

+ 1
8
∂En
∂kx

∣∣∣∣
~k8

− 1
4
∂En
∂ky

∣∣∣∣
~k8

− 1
8
∂En
∂kz

∣∣∣∣
~k8

+ 1
8
∂En
∂kx

∣∣∣∣
~k2

+ 1
4
∂En
∂ky

∣∣∣∣
~k2

− 1
8
∂En
∂kz

∣∣∣∣
~k2

− 1
8
∂En
∂kx

∣∣∣∣
~k1

+ 1
4
∂En
∂ky

∣∣∣∣
~k1

− 1
8
∂En
∂kz

∣∣∣∣
~k1

+ 1
8
∂En
∂kx

∣∣∣∣
~k6

+ 1
4
∂En
∂ky

∣∣∣∣
~k6

+ 1
8
∂En
∂kz

∣∣∣∣
~k6

− l

8
∂2En
∂kx∂ky

∣∣∣∣
~k2

+ l

16
∂2En
∂kz∂kx

∣∣∣∣
~k2

+ l

8
∂2En
∂kx∂ky

∣∣∣∣
~k3

− l

16
∂2En
∂kz∂kx

∣∣∣∣
~k3

− l

8
∂2En
∂kx∂ky

∣∣∣∣
~k6

− l

16
∂2En
∂kz∂kx

∣∣∣∣
~k6

+ l

8
∂2En
∂kx∂ky

∣∣∣∣
~k7

+ l

16
∂2En
∂kz∂kx

∣∣∣∣
~k7
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C2 = 1
4l
∂En
∂ky

∣∣∣∣
~k8

− 1
4l
∂En
∂ky

∣∣∣∣
~k5

− 1
4l
∂En
∂ky

∣∣∣∣
~k6

+ 1
4l
∂En
∂ky

∣∣∣∣
~k7

− 1
4l
∂En
∂ky

∣∣∣∣
~k2

+ 1
4l
∂En
∂ky

∣∣∣∣
~k3

+ 1
4l
∂En
∂ky

∣∣∣∣
~k4

− 1
4l
∂En
∂ky

∣∣∣∣
~k1

+ 1
8
∂2En
∂k2

y

∣∣∣∣
~k5

− 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k5

+ 1
8
∂2En
∂ky∂kz

∣∣∣∣
~k5

− 1
4
∂2En
∂k2

y

∣∣∣∣
~k4

+ 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k4

+ 1
8
∂2En
∂ky∂kz

∣∣∣∣
~k4

− 1
4
∂2En
∂k2

y

∣∣∣∣
~k7

− 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k7

− 1
8
∂2En
∂ky∂kz

∣∣∣∣
~k7

− 1
4
∂2En
∂k2

y

∣∣∣∣
~k3

− 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k3

+ 1
8
∂2En
∂ky∂kz

∣∣∣∣
~k3

− 1
4
∂2En
∂k2

y

∣∣∣∣
~k8

+ 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k8

− 1
8
∂2En
∂ky∂kz

∣∣∣∣
~k8

+ 1
8
∂2En
∂k2

y

∣∣∣∣
~k2

+ 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k2

− 1
8
∂2En
∂ky∂kz

∣∣∣∣
~k2

+ 1
8
∂2En
∂k2

y

∣∣∣∣
~k1

− 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k1

− 1
8
∂2En
∂ky∂kz

∣∣∣∣
~k1

+ 1
8
∂2En
∂k2

y

∣∣∣∣
~k6

+ 1
8
∂2En
∂kx∂ky

∣∣∣∣
~k6

+ 1
8
∂2En
∂ky∂kz

∣∣∣∣
~k6

C3 = − 1
8l
∂2En
∂k2

y

∣∣∣∣
~k6

+ 1
8l
∂2En
∂k2

y

∣∣∣∣
~k8

+ 1
8l
∂2En
∂k2

y

∣∣∣∣
~k4

− 1
8l
∂2En
∂k2

y

∣∣∣∣
~k2

− 1
8l
∂2En
∂k2

y

∣∣∣∣
~k5

+ 1
8l
∂2En
∂k2

y

∣∣∣∣
~k7

+ 1
8l
∂2En
∂k2

y

∣∣∣∣
~k3

− 1
8l
∂2En
∂k2

y

∣∣∣∣
~k1

C4 = 0

C5 = 0

Line number 3: ~∆k = (∆kx, ∆ky, ∆kz) is given by ( l
2 , l

2 , x)

C0 = l

8
∂En
∂kx

∣∣∣∣
~k1

+ l2

32
∂2En
∂k2

x

∣∣∣∣
~k1

− l

8
∂En
∂kx

∣∣∣∣
~k2

+ l2

32
∂2En
∂k2

x

∣∣∣∣
~k2

+ l2

16
∂2En
∂kx∂ky

∣∣∣∣
~k1

+ l

8
∂En
∂ky

∣∣∣∣
~k2

+ l2

32
∂2En
∂k2

y

∣∣∣∣
~k2

− l2

16
∂2En
∂kx∂ky

∣∣∣∣
~k2

− l

8
∂En
∂kx

∣∣∣∣
~k3

− l

8
∂En
∂ky

∣∣∣∣
~k3

+ l2

32
∂2En
∂k2

x

∣∣∣∣
~k3

+ l2

32
∂2En
∂k2

y

∣∣∣∣
~k3

+ l2

16
∂2En
∂kx∂ky

∣∣∣∣
~k3

+ l

8
∂En
∂kx

∣∣∣∣
~k4

+ l2

32
∂2En
∂k2

x

∣∣∣∣
~k4

− l2

16
∂2En
∂kx∂ky

∣∣∣∣
~k4

+ 1
4En(~k4) + l

8
∂En
∂ky

∣∣∣∣
~k1

+ l2

32
∂2En
∂k2

y

∣∣∣∣
~k1

− l

8
∂En
∂ky

∣∣∣∣
~k4

+ l2

32
∂2En
∂k2

y

∣∣∣∣
~k4

+ 1
4En(~k3) + 1

4En(~k2) + 1
4En(~k1)
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C1 = − l

32
∂2En
∂k2

x

∣∣∣∣
~k4

− l

32
∂2En
∂k2

x

∣∣∣∣
~k1

+ l

32
∂2En
∂k2

x

∣∣∣∣
~k8

+ l

32
∂2En
∂k2

x

∣∣∣∣
~k5

+ 1
8
∂En
∂kx

∣∣∣∣
~k5

+ 1
8
∂En
∂ky

∣∣∣∣
~k5

− 1
4
∂En
∂kz

∣∣∣∣
~k5

+ l

8
∂2En
∂ky∂kz

∣∣∣∣
~k1

− l

32
∂2En
∂k2

x

∣∣∣∣
~k2

− 1
4lEn(~k2)

− l

32
∂2En
∂k2

y

∣∣∣∣
~k2

+ l

8
∂2En
∂ky∂kz

∣∣∣∣
~k2

− l

32
∂2En
∂k2

x

∣∣∣∣
~k3

− 1
4lEn(~k3)− l

32
∂2En
∂k2

y

∣∣∣∣
~k3

− l

8
∂2En
∂ky∂kz

∣∣∣∣
~k3

− 1
4lEn(~k4)− l

32
∂2En
∂k2

y

∣∣∣∣
~k4

− l

8
∂2En
∂ky∂kz

∣∣∣∣
~k4

+ 1
4lEn(~k5)

+ l

32
∂2En
∂k2

y

∣∣∣∣
~k5

+ l

8
∂2En
∂k2

z

∣∣∣∣
~k5

− l

8
∂2En
∂ky∂kz

∣∣∣∣
~k5

+ l

32
∂2En
∂k2

x

∣∣∣∣
~k6

+ 1
4lEn(~k6)

+ l

32
∂2En
∂k2

y

∣∣∣∣
~k6

+ l

8
∂2En
∂k2

z

∣∣∣∣
~k6

− l

8
∂2En
∂ky∂kz

∣∣∣∣
~k6

+ l

32
∂2En
∂k2

x

∣∣∣∣
~k7

+ 1
4lEn(~k7)

+ l

32
∂2En
∂k2

y

∣∣∣∣
~k7

+ l

8
∂2En
∂k2

z

∣∣∣∣
~k7

+ l

8
∂2En
∂ky∂kz

∣∣∣∣
~k7

+ 1
4lEn(~k8) + l

32
∂2En
∂k2

y

∣∣∣∣
~k8

+ l

8
∂2En
∂k2

z

∣∣∣∣
~k8

+ l

8
∂2En
∂ky∂kz

∣∣∣∣
~k8

− l

8
∂2En
∂kz∂kx

∣∣∣∣
~k5

+ l

8
∂2En
∂kz∂kx

∣∣∣∣
~k1

− l

8
∂2En
∂kz∂kx

∣∣∣∣
~k8

+ l

16
∂2En
∂kx∂ky

∣∣∣∣
~k5

− l

16
∂2En
∂kx∂ky

∣∣∣∣
~k1

+ l

16
∂2En
∂kx∂ky

∣∣∣∣
~k4

+ l

8
∂2En
∂kz∂kx

∣∣∣∣
~k4

− l

16
∂2En
∂kx∂ky

∣∣∣∣
~k8

− 1
4lEn(~k1)− l

32
∂2En
∂k2

y

∣∣∣∣
~k1

− 1
8
∂En
∂kx

∣∣∣∣
~k4

+ 1
8
∂En
∂ky

∣∣∣∣
~k4

+ 1
4
∂En
∂kz

∣∣∣∣
~k4

− 1
8
∂En
∂kx

∣∣∣∣
~k7

− 1
8
∂En
∂ky

∣∣∣∣
~k7

− 1
4
∂En
∂kz

∣∣∣∣
~k7

+ 1
8
∂En
∂kx

∣∣∣∣
~k3

+ 1
8
∂En
∂ky

∣∣∣∣
~k3

+ 1
4
∂En
∂kz

∣∣∣∣
~k3

+ 1
8
∂En
∂kx

∣∣∣∣
~k8

− 1
8
∂En
∂ky

∣∣∣∣
~k8

− 1
4
∂En
∂kz

∣∣∣∣
~k8

+ 1
8
∂En
∂kx

∣∣∣∣
~k2

− 1
8
∂En
∂ky

∣∣∣∣
~k2

+ 1
4
∂En
∂kz

∣∣∣∣
~k2

− 1
8
∂En
∂kx

∣∣∣∣
~k1

− 1
8
∂En
∂ky

∣∣∣∣
~k1

+ 1
4
∂En
∂kz

∣∣∣∣
~k1

− 1
8
∂En
∂kx

∣∣∣∣
~k6

+ 1
8
∂En
∂ky

∣∣∣∣
~k6

− 1
4
∂En
∂kz

∣∣∣∣
~k6
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Line number 4: ~∆k = (∆kx, ∆ky, ∆kz) is given by (x, x, x)

C0 = En(~k1)

C1 = −3
l
En(~k1) + 1

l
En(~k5) + 1

l
En(~k2)− ∂En

∂kz

∣∣∣∣
~k5

+ ∂En
∂kz

∣∣∣∣
~k1

+ l

2
∂2En
∂k2

x

∣∣∣∣
~k2

+ l

2
∂2En
∂k2

z

∣∣∣∣
~k5

+ ∂En
∂ky

∣∣∣∣
~k1

− ∂En
∂ky

∣∣∣∣
~k4

− ∂En
∂kx

∣∣∣∣
~k2

+ 1
l
En(~k4) + ∂En

∂kx

∣∣∣∣
~k1

+ l

2
∂2En
∂k2

y

∣∣∣∣
~k4

58



C2 = − 2
l2
En(~k5) + 1

l2
En(~k3) + 1

l2
En(~k8) + 1

l2
En(~k6)− 2

l2
En(~k4) + 3

l2
En(~k1)

− 2
l2
En(~k2)− 1

l

∂En
∂ky

∣∣∣∣
~k8

+ 1
l

∂En
∂ky

∣∣∣∣
~k5

+ 1
l

∂En
∂ky

∣∣∣∣
~k2

− 1
l

∂En
∂ky

∣∣∣∣
~k3

+ 3
l

∂En
∂ky

∣∣∣∣
~k4

− 3
l

∂En
∂ky

∣∣∣∣
~k1

− 1
l

∂En
∂kz

∣∣∣∣
~k8

+ 1
l

∂En
∂kz

∣∣∣∣
~k4

+ 3
l

∂En
∂kz

∣∣∣∣
~k5

− 3
l

∂En
∂kz

∣∣∣∣
~k1

+ 1
l

∂En
∂kz

∣∣∣∣
~k2

− 1
l

∂En
∂kz

∣∣∣∣
~k6

− 2∂
2En
∂k2

z

∣∣∣∣
~k5

− ∂2En
∂ky∂kz

∣∣∣∣
~k5

− ∂2En
∂kz∂kx

∣∣∣∣
~k5

− 3
l

∂En
∂kx

∣∣∣∣
~k1

+ 3
l

∂En
∂kx

∣∣∣∣
~k2

− 1
l

∂En
∂kx

∣∣∣∣
~k3

+ 1
l

∂En
∂kx

∣∣∣∣
~k4

+ 1
l

∂En
∂kx

∣∣∣∣
~k5

− 1
l

∂En
∂kx

∣∣∣∣
~k6

− 2∂
2En
∂k2

y

∣∣∣∣
~k4

− ∂2En
∂kx∂ky

∣∣∣∣
~k4

− ∂2En
∂ky∂kz

∣∣∣∣
~k4

+ 1
2
∂2En
∂k2

x

∣∣∣∣
~k3

+ 1
2
∂2En
∂k2

y

∣∣∣∣
~k3

+ ∂2En
∂kx∂ky

∣∣∣∣
~k3

+ 1
2
∂2En
∂k2

y

∣∣∣∣
~k8

+ 1
2
∂2En
∂k2

z

∣∣∣∣
~k8

+ ∂2En
∂ky∂kz

∣∣∣∣
~k8

− 2∂
2En
∂k2

x

∣∣∣∣
~k2

− ∂2En
∂kx∂ky

∣∣∣∣
~k2

− ∂2En
∂kz∂kx

∣∣∣∣
~k2

+ 1
2
∂2En
∂k2

x

∣∣∣∣
~k1

+ 1
2
∂2En
∂k2

y

∣∣∣∣
~k1

+ 1
2
∂2En
∂k2

z

∣∣∣∣
~k1

+ ∂2En
∂kx∂ky

∣∣∣∣
~k1

+ ∂2En
∂ky∂kz

∣∣∣∣
~k1

+ ∂2En
∂kz∂kx

∣∣∣∣
~k1

+ 1
2
∂2En
∂k2

x

∣∣∣∣
~k6

+ 1
2
∂2En
∂k2

z

∣∣∣∣
~k6

+ ∂2En
∂kz∂kx

∣∣∣∣
~k6

59



C3 = −3
l

∂2En
∂kx∂ky

∣∣∣∣
~k1

+ 3
l2
∂En
∂kx

∣∣∣∣
~k1

− 1
l3
En(~k1)− 3

l2
∂En
∂kx

∣∣∣∣
~k2

− 2
l2
∂En
∂ky

∣∣∣∣
~k2

− 2
l2
∂En
∂kz

∣∣∣∣
~k2

+ 3
l

∂2En
∂kx∂ky

∣∣∣∣
~k2

+ 3
l

∂2En
∂kz∂kx

∣∣∣∣
~k2

− 1
l3
En(~k6)− 1

l2
∂En
∂kx

∣∣∣∣
~k7

− 1
l2
∂En
∂ky

∣∣∣∣
~k7

− 1
l2
∂En
∂kz

∣∣∣∣
~k7

− 3
2l
∂2En
∂k2

y

∣∣∣∣
~k8

+ 3
l

∂2En
∂k2

y

∣∣∣∣
~k4

+ 1
2l
∂2En
∂k2

y

∣∣∣∣
~k2

+ 1
2l
∂2En
∂k2

y

∣∣∣∣
~k5

+ 1
2l
∂2En
∂k2

y

∣∣∣∣
~k7

− 3
2l
∂2En
∂k2

y

∣∣∣∣
~k3

− 3
2l
∂2En
∂k2

y

∣∣∣∣
~k1

− 3
2l
∂2En
∂k2

z

∣∣∣∣
~k8

+ 1
2l
∂2En
∂k2

z

∣∣∣∣
~k7

+ 3
l

∂2En
∂k2

z

∣∣∣∣
~k5

+ 1
2l
∂2En
∂k2

z

∣∣∣∣
~k2

− 3
2l
∂2En
∂k2

z

∣∣∣∣
~k6

+ 1
2l
∂2En
∂k2

z

∣∣∣∣
~k4

− 3
2l
∂2En
∂k2

z

∣∣∣∣
~k1

+ 1
2l
∂2En
∂k2

x

∣∣∣∣
~k7

+ 3
l

∂2En
∂k2

x

∣∣∣∣
~k2

+ 1
2l
∂2En
∂k2

x

∣∣∣∣
~k4

− 3
2l
∂2En
∂k2

x

∣∣∣∣
~k6

− 3
2l
∂2En
∂k2

x

∣∣∣∣
~k1

+ 1
2l
∂2En
∂k2

x

∣∣∣∣
~k5

− 3
2l
∂2En
∂k2

x

∣∣∣∣
~k3

+ 1
l

∂2En
∂kx∂ky

∣∣∣∣
~k7

+ 1
l

∂2En
∂ky∂kz

∣∣∣∣
~k7

+ 1
l

∂2En
∂kz∂kx

∣∣∣∣
~k7

+ 1
l3
En(~k7) + 1

l

∂2En
∂kx∂ky

∣∣∣∣
~k5

+ 1
l3
En(~k5) + 1

l2
∂En
∂ky

∣∣∣∣
~k6

+ 1
l

∂2En
∂kz∂kx

∣∣∣∣
~k4

+ 1
l3
En(~k4) + 3

l

∂2En
∂ky∂kz

∣∣∣∣
~k5

+ 3
l

∂2En
∂kz∂kx

∣∣∣∣
~k5

+ 2
l2
∂En
∂kx

∣∣∣∣
~k6

+ 2
l2
∂En
∂kz

∣∣∣∣
~k6

− 1
l

∂2En
∂kx∂ky

∣∣∣∣
~k6

− 1
l

∂2En
∂ky∂kz

∣∣∣∣
~k6

− 3
l

∂2En
∂kz∂kx

∣∣∣∣
~k6

+ 3
l

∂2En
∂kx∂ky

∣∣∣∣
~k4

+ 3
l

∂2En
∂ky∂kz

∣∣∣∣
~k4

− 2
l2
∂En
∂kx

∣∣∣∣
~k5

− 2
l2
∂En
∂ky

∣∣∣∣
~k5

− 3
l2
∂En
∂kz

∣∣∣∣
~k5

+ 2
l2
∂En
∂ky

∣∣∣∣
~k3

+ 1
l2
∂En
∂kz

∣∣∣∣
~k3

+ 1
l

∂2En
∂ky∂kz

∣∣∣∣
~k2

+ 1
l3
En(~k2)− 3

l

∂2En
∂ky∂kz

∣∣∣∣
~k1

+ 3
l2
∂En
∂ky

∣∣∣∣
~k1

− 1
l

∂2En
∂kx∂ky

∣∣∣∣
~k8

− 3
l

∂2En
∂ky∂kz

∣∣∣∣
~k8

− 1
l

∂2En
∂kz∂kx

∣∣∣∣
~k8

+ 2
l2
∂En
∂ky

∣∣∣∣
~k8

+ 2
l2
∂En
∂kz

∣∣∣∣
~k8

− 1
l3
En(~k8)

+ 1
l2
∂En
∂kx

∣∣∣∣
~k8

+ 2
l2
∂En
∂kx

∣∣∣∣
~k3

− 3
l

∂2En
∂kx∂ky

∣∣∣∣
~k3

− 1
l

∂2En
∂ky∂kz

∣∣∣∣
~k3

− 1
l

∂2En
∂kz∂kx

∣∣∣∣
~k3

− 1
l3
En(~k3)− 2

l2
∂En
∂kx

∣∣∣∣
~k4

− 3
l2
∂En
∂ky

∣∣∣∣
~k4

− 2
l2
∂En
∂kz

∣∣∣∣
~k4

+ 3
l2
∂En
∂kz

∣∣∣∣
~k1

− 3
l

∂2En
∂kz∂kx

∣∣∣∣
~k1

60



C4 = 3
2l2

∂2En
∂k2

z

∣∣∣∣
~k8

+ 2
l2

∂2En
∂kx∂ky

∣∣∣∣
~k8

+ 3
l2

∂2En
∂ky∂kz

∣∣∣∣
~k8

+ 2
l2

∂2En
∂kz∂kx

∣∣∣∣
~k8

+ 1
2l2

∂2En
∂k2

x

∣∣∣∣
~k8

− 1
l3
∂En
∂kx

∣∣∣∣
~k8

− 1
l3
∂En
∂ky

∣∣∣∣
~k8

− 1
l3
∂En
∂kz

∣∣∣∣
~k8

+ 3
2l2

∂2En
∂k2

x

∣∣∣∣
~k3

+ 3
2l2

∂2En
∂k2

y

∣∣∣∣
~k3

+ 1
2l2

∂2En
∂k2

z

∣∣∣∣
~k3

+ 3
l2

∂2En
∂kx∂ky

∣∣∣∣
~k3

+ 2
l2

∂2En
∂ky∂kz

∣∣∣∣
~k3

+ 2
l2

∂2En
∂kz∂kx

∣∣∣∣
~k3

− 1
l3
∂En
∂kx

∣∣∣∣
~k3

− 1
l3
∂En
∂ky

∣∣∣∣
~k3

− 1
l3
∂En
∂kz

∣∣∣∣
~k3

− 1
l2
∂2En
∂k2

x

∣∣∣∣
~k4

+ 3
l2

∂2En
∂ky∂kz

∣∣∣∣
~k1

+ 3
l2

∂2En
∂kx∂ky

∣∣∣∣
~k1

+ 3
2l2

∂2En
∂k2

x

∣∣∣∣
~k1

+ 3
2l2

∂2En
∂k2

y

∣∣∣∣
~k1

+ 3
2l2

∂2En
∂k2

z

∣∣∣∣
~k1

− 1
l3
∂En
∂kx

∣∣∣∣
~k1

− 1
l3
∂En
∂ky

∣∣∣∣
~k1

− 1
l3
∂En
∂kz

∣∣∣∣
~k1

− 2
l2
∂2En
∂k2

x

∣∣∣∣
~k2

− 1
l2
∂2En
∂k2

y

∣∣∣∣
~k2

− 1
l2
∂2En
∂k2

z

∣∣∣∣
~k2

− 3
l2

∂2En
∂kx∂ky

∣∣∣∣
~k2

− 2
l2

∂2En
∂ky∂kz

∣∣∣∣
~k2

− 3
l2

∂2En
∂kz∂kx

∣∣∣∣
~k2

+ 3
l2

∂2En
∂kz∂kx

∣∣∣∣
~k6

− 1
l3
∂En
∂kx

∣∣∣∣
~k6

− 1
l3
∂En
∂ky

∣∣∣∣
~k6

− 1
l3
∂En
∂kz

∣∣∣∣
~k6

− 1
l2
∂2En
∂k2

x

∣∣∣∣
~k7

− 1
l2
∂2En
∂k2

y

∣∣∣∣
~k7

− 1
l2
∂2En
∂k2

z

∣∣∣∣
~k7

− 2
l2

∂2En
∂kx∂ky

∣∣∣∣
~k7

− 2
l2

∂2En
∂ky∂kz

∣∣∣∣
~k7

− 2
l2

∂2En
∂kz∂kx

∣∣∣∣
~k7

+ 1
l3
∂En
∂kx

∣∣∣∣
~k7

+ 1
l3
∂En
∂ky

∣∣∣∣
~k7

+ 1
l3
∂En
∂kz

∣∣∣∣
~k7

+ 1
l3
∂En
∂kx

∣∣∣∣
~k5

+ 1
l3
∂En
∂ky

∣∣∣∣
~k5

+ 1
l3
∂En
∂kz

∣∣∣∣
~k5

+ 1
l3
∂En
∂kx

∣∣∣∣
~k4

− 1
l2
∂2En
∂k2

y

∣∣∣∣
~k5

− 2
l2
∂2En
∂k2

z

∣∣∣∣
~k5

− 2
l2

∂2En
∂kx∂ky

∣∣∣∣
~k5

− 3
l2

∂2En
∂ky∂kz

∣∣∣∣
~k5

− 3
l2

∂2En
∂kz∂kx

∣∣∣∣
~k5

+ 3
2l2

∂2En
∂k2

x

∣∣∣∣
~k6

+ 1
2l2

∂2En
∂k2

y

∣∣∣∣
~k6

+ 3
2l2

∂2En
∂k2

z

∣∣∣∣
~k6

+ 2
l2

∂2En
∂kx∂ky

∣∣∣∣
~k6

+ 2
l2

∂2En
∂ky∂kz

∣∣∣∣
~k6

− 2
l2
∂2En
∂k2

y

∣∣∣∣
~k4

− 1
l2
∂2En
∂k2

z

∣∣∣∣
~k4

− 3
l2

∂2En
∂kx∂ky

∣∣∣∣
~k4

− 3
l2

∂2En
∂ky∂kz

∣∣∣∣
~k4

− 2
l2

∂2En
∂kz∂kx

∣∣∣∣
~k4

− 1
l2
∂2En
∂k2

x

∣∣∣∣
~k5

+ 1
l3
∂En
∂ky

∣∣∣∣
~k4

+ 1
l3
∂En
∂kz

∣∣∣∣
~k4

+ 1
l3
∂En
∂kx

∣∣∣∣
~k2

+ 1
l3
∂En
∂ky

∣∣∣∣
~k2

+ 1
l3
∂En
∂kz

∣∣∣∣
~k2

+ 3
l2

∂2En
∂kz∂kx

∣∣∣∣
~k1

+ 3
2l2

∂2En
∂k2

y

∣∣∣∣
~k8

61



C5 = − 1
l3

∂2En
∂kx∂ky

∣∣∣∣
~k3

+ 1
l3

∂2En
∂kz∂kx

∣∣∣∣
~k7

+ 1
l3

∂2En
∂kx∂ky

∣∣∣∣
~k7

+ 1
l3

∂2En
∂ky∂kz

∣∣∣∣
~k7

+ 1
l3

∂2En
∂kx∂ky

∣∣∣∣
~k5

+ 1
l3

∂2En
∂ky∂kz

∣∣∣∣
~k5

+ 1
l3

∂2En
∂kz∂kx

∣∣∣∣
~k5

+ 1
2l3

∂2En
∂k2

z

∣∣∣∣
~k7

+ 1
2l3

∂2En
∂k2

x

∣∣∣∣
~k5

+ 1
2l3

∂2En
∂k2

y

∣∣∣∣
~k5

+ 1
2l3

∂2En
∂k2

z

∣∣∣∣
~k5

+ 1
2l3

∂2En
∂k2

x

∣∣∣∣
~k4

+ 1
2l3

∂2En
∂k2

y

∣∣∣∣
~k4

+ 1
2l3

∂2En
∂k2

z

∣∣∣∣
~k4

+ 1
l3

∂2En
∂kx∂ky

∣∣∣∣
~k4

+ 1
l3

∂2En
∂ky∂kz

∣∣∣∣
~k4

+ 1
l3

∂2En
∂kz∂kx

∣∣∣∣
~k4

+ 1
l3

∂2En
∂kx∂ky

∣∣∣∣
~k2

+ 1
l3

∂2En
∂ky∂kz

∣∣∣∣
~k2

+ 1
l3

∂2En
∂kz∂kx

∣∣∣∣
~k2

− 1
2l2

∂2En
∂k2

x

∣∣∣∣
~k8

− 1
2l3

∂2En
∂k2

y

∣∣∣∣
~k8

− 1
2l3

∂2En
∂k2

z

∣∣∣∣
~k8

− 1
l3

∂2En
∂kx∂ky

∣∣∣∣
~k8

− 1
l3

∂2En
∂ky∂kz

∣∣∣∣
~k8

− 1
l3

∂2En
∂kz∂kx

∣∣∣∣
~k8

− 1
l3

∂2En
∂ky∂kz

∣∣∣∣
~k3

− 1
l3

∂2En
∂kz∂kx

∣∣∣∣
~k3

− 1
2l3

∂2En
∂k2

x

∣∣∣∣
~k3

− 1
2l3

∂2En
∂k2

y

∣∣∣∣
~k3

− 1
2l3

∂2En
∂k2

z

∣∣∣∣
~k3

− 1
2l3

∂2En
∂k2

x

∣∣∣∣
~k1

− 1
2l3

∂2En
∂k2

y

∣∣∣∣
~k1

− 1
2l3

∂2En
∂k2

z

∣∣∣∣
~k1

− 1
l3

∂2En
∂kx∂ky

∣∣∣∣
~k1

− 1
l3

∂2En
∂ky∂kz

∣∣∣∣
~k1

− 1
l3

∂2En
∂kz∂kx

∣∣∣∣
~k1

+ 1
2l3

∂2En
∂k2

x

∣∣∣∣
~k2

+ 1
2l3

∂2En
∂k2

y

∣∣∣∣
~k2

+ 1
2l3

∂2En
∂k2

z

∣∣∣∣
~k2

− 1
2l3

∂2En
∂k2

x

∣∣∣∣
~k6

− 1
2l3

∂2En
∂k2

y

∣∣∣∣
~k6

− 1
2l3

∂2En
∂k2

z

∣∣∣∣
~k6

− 1
l3

∂2En
∂kx∂ky

∣∣∣∣
~k6

− 1
l3

∂2En
∂ky∂kz

∣∣∣∣
~k6

− 1
l3

∂2En
∂kz∂kx

∣∣∣∣
~k6

+ 1
2l3

∂2En
∂k2

x

∣∣∣∣
~k7

+ 1
2l3

∂2En
∂k2

y

∣∣∣∣
~k7

Line number 5: ~∆k = (∆kx, ∆ky, ∆kz) is given by (l − x, x, x)
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Line number 6: ~∆k = (∆kx, ∆ky, ∆kz) is given by (l − x, l − x, x)
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Line number 7: ~∆k = (∆kx, ∆ky, ∆kz) is given by (x, l − x, x)
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