Multi-factor Models and the Risk Premiums: A
Simulation Study

Arne Andresen and Johan M. Sollie
February 23, 2013

Abstract

The estimation of commodity spot price models often involves the esti-
mation of risk premiums. We show in a simulation study that the market
prices of risk cannot be accurately estimated using two popular estimation
techniques; the Kalman filter and an iterative routine. Risk premium pa-
rameters may be dependent on the starting value for the iterative routine,
and cannot be accurately estimated using the Kalman filter technique.
We conclude with a short analysis of results from the spot price model
literature by examining the implied volatility term structure from other
published research papers.

1 Introduction

The rate of development of commodity spot price models has increased during
the last decades. Incomplete commodity markets give rise to a wide variety of
specifications ranging from the mean reverting model of Schwartz (1997), the
two factor model of Schwartz and Smith (2000), to the more general model by
Cortazar and Naranjo (2006).

Spot price models are often fitted to data using the Kalman filter, since
they include some possibly unobservable state variables. Another approach is
an iterative routine as suggested by Lucia and Schwartz (2002), and further
examined in Cortazar and Schwartz (2003). The algorithm offers a way of
calibrating factor models to observed spot and forward prices.

When calibrating spot price models, estimates of the risk premium parame-
ters are routinely reported. See for example Schwartz and Smith (2000), Wilkens
and Wimschulte (2007), Cartea and Williams (2008), Bhar and Lee (2011) and
Nomikos and Soldatos (2010). If the Kalman filter is applied, standard devi-
ations of parameter estimates are readily available. The iterative algorithm,
however, does not provide any measure of the precision of the parameter esti-
mates.

As discussed by Schwartz and Smith (2000), the risk premium parameters
cannot be estimated with much accuracy. They argue that a possible solution
to the problem is using a much longer time series of forward prices. The aim



of this paper is to shed light on the accuracy of the risk premium parameter
estimates obtained using the Kalman filter or the iterative algorithm. That is,
how the accuracy differs between the two methods, how the accuracy depends
on the sample size and the volatility parameters. We focus on the estimation of
the risk premium parameters in the two-factor model by Schwartz and Smith
(2000). This model is chosen based on its popularity as a basis for commodity
pricing models. In addition, if the risk premium parameters cannot be accu-
rately estimated in this simple and intuitively appealing model, it is unlikely
that risk premium parameters are identifiable in more complicated models.

The finite-sample properties of some of the standard techniques used to esti-
mate term structure models are studied in Duffee and Stanton (2012). One find-
ing is that maximum likelihood produces strongly biased parameter estimates
when the model includes a flexible specification of the dynamics of interest rate
risk. The authors argue that this result underscore the importance of perform-
ing detailed Monte Carlo analysis to study the small-sample properties of new
estimators.

We extend the literature by examining the properties of the Kalman fil-
ter and the iterative estimator applied to a commodity spot price model with
constant market price of risk. The experiment is a simulation study where
samples are generated from the model and the parameters of the model are
re-estimated. By using simulated data, and not real observed data, the true
values of the process are known a priori, and effects of market imperfections are
minimized. Examples of market imperfections can be poor liquidity, resulting
in noisy data, transaction costs or investor sentiment. In a real world setting,
it is not plausible that the parameters of a two factor model are stable over
time. Risk aversion tends to fluctuate, see Lee et al. (1990) for a discussion on
time varying risk aversion, and De Long et al. (1990) for a broader discussion
of investor behavior. In addition, the volatility of commodity prices is known
to be non-constant, see for example Pindyck (2004). Using a simulation study,
the problem of estimating the risk premiums can be isolated, and the results
will not be subject to other sources of randomness.

The paper is organized as follows: Section 2 introduces the two-factor model
used in the study. Section 3 demonstrates how the model can be set in state
space form and estimated with the Kalman filter, while Section 4 explains the
alternative iterative estimation routine. Section 5 outlines how the model can
be used for simulation. The results of the simulation study are discussed in
Section 6 together with a short analysis of the implied volatility term structure
of other published research papers. Section 7 concludes the paper.

2 Model formulation

This study examines the estimation of the short- and long-term risk premiums
implied by the Schwartz and Smith (2000) model. In this model the spot price
S(t) is decomposed into two components,

s(t) = S(t) = xi + &- (1)



X¢ is assumed to follow an Ornstein-Uhlenbeck process and &; is assmued to
follow a Wiener process with drift.
dxt = —kXxdt + 0y dWy, (2)
d&s = pedt + oedWe, (3)
where dW, and dW,, are increments of standard Wiener processes, and dW, dW, =

pdt. Given xo and &p, the vector of expected values and covariance matrix is
given by

E [Xtv ét] = [e_KtX(L 50 + ,ufﬂ ) (4)
1— —2kKt i 1— —Kt\PIxT¢
Cov [x¢, &] = é - ee_ﬁt)pgf%’ég ( eagt) raall i (5)

The log of the future spot price is then normally distributed with expectation
given by
InS(t) = e "xo + &o + pet.

The latent stochastic factors of the model can be interpreted as short- and long-
term components as follows. The influence of x; on the expected future spot
price decays monotonically to 0. Hence it may be viewed as a short-term factor.
The short-term factor typically captures temporary price changes that are not
expected to persist. The mean reversion parameter x describes the rate at which
short-term deviations are expected to persist. {; may be viewed as a long-term
factor since changes to this factor will have a permanent effect on the expected
future spot price.

To obtain the risk neutral dynamics two additional parameters, A, and A,
are introduced.

dxt = (=KXt — Ay )dt + o dWy, (6)
dft = (,LLE — )\g)dt + O’gde, (7)
where dWé“ and dW§ are increments of standard Wiener processes, and dWy de =
pdt. That is, the risk-neutral process for the short-term deviation is now an
Ornstein-Uhlenbeck process reverting to A, /k, and the long-term factor has
drift g = pe — Ae.
The tractability of the model allows us to solve for the log forward prices
implied by the model, as given by

ID(FT70) = h’l(E* [ST])

=e "Txo + & + A(T), (8)
A
AT) = wiT — (1 — e FT)2X
(T)=wT —(1—e >/~;+
1 —2kT ‘7>2< 2 —KkT\ POXT¢
2((1—6 )%+U§T+2(1—e )T .

The rest of the paper will focus on the estimation of the short- and long-term
risk premiums.



3 State space form

The state variables, x; and &, are not directly observable, but can be esti-
mated by casting the model into state space form and employing a Kalman
filter procedure, see Schwartz and Smith (2000). The Kalman filter facilitates
the calculation of the likelihood, which allows us to estimate parameters using
maximum likelihood techniques. A well-known property of maximum likelihood
estimators is that they are efficient when the sample size tends to infinity. That
is, for large sample sizes no other unbiased estimator has a lower mean squared
error.
Let the state equation be given by

X, =c+Gxy_1+w; t=1,...,N (9)
where
Xt = [Xu ft]/
c= 10, qut]/
eant 0
S

and w; ~ N(0,3), where X is given by Eq. (5). The measurement equation is
given by
yt:d+FXt+Vt, tzl,...,N, (10)

where

Vi = [lnFTl,...lnFTn]/

d=[AT)... A(T,)]
e T 1

F = . .
—rTy 1

vy ~ N(0,V), V = O']%In, where n equals the number of different forward
contracts.

The Kalman filter is a recursive procedure for computing the optimal esti-
mate of the unknown state vector x;, t = 1,2,..., N, assuming that the model
parameters are known. Let X;;_; and X;; denote the estimate of the state
vector based on available information up to time ¢ — 1 and ¢, respectively. Let
P;j;—1 and Py, denote the covariance matrix of the estimate of the state vector
based on information up to time ¢t — 1 and ¢, respectively. The Kalman filter is
described be the following equations:

L X1 =c+ GXp_qpp—1



2. Pyy—1 =GP, 1G' + X
Vit—1 =Yt — (d + Ff(t\t—l)
Hy, 1 =FPy, F' +V

Xepe = Xyp—1 + Kevype—a

SO A

Pt|t = Pt|t—1 - KtFPt|t—1
where K; = Pt|t—1FIHJ,§1,1 is the Kalman gain.

Assume X1 is N(x1j9, P1j9) where x;j9 and Py|g are known. The log likeli-
hood function of the data is

1 1 — _
InL = —3 ZIH(QWHt\t—l) -3 sz\t—lHt\th"tlt—l' (11)
t=1

t=1

The parameters of the model can now be estimated by maximizing the likelihood
of the model with respect to the model parameters. The likelihood is evaluated
using R and the package KFAS by Helske (2010). See Durbin and Koopman
(2001) for details on the Kalman filter and the likelihood function.

Both the model parameters and the distribution of the state vector X; have
to be initialized. It is common to provide a diffuse initialization of the Kalman
filter, that is setting the variance to a large value, for example Py = 108 -
I. When estimating the model to real data, we can obtain starting values of
the model parameters by utilizing that the long-term factor will approximately
follow the dynamics of a long forward contract, while the short-term factor
will closely follow the spread between a short and long forward contract. Since
these quantities are observable, the model parameters can be estimated using
standard techniques. To ensure that the maximum likelihood estimation routine
has reached a global maximum, it is also advised to run the optimizing routine
using several different initial parameter values.

4 Iterative procedure

The unobserved state vector can also be recovered using an iterative procedure,
as first described in Lucia and Schwartz (2002). For a given parameter con-
figuration, for each day, the squared distance between model and observed log
prices is minimized with respect to the state variables. From the estimated state
variables, the covariance matrix and the long-term drift parameter are obtained.
The last step in each iteration of the algorithm is once again minimizing the
squared distance between model implied prices and observed prices, but with
respect to the risk premiums and mean reversion parameters.

The state vector is initialized with vectors of zeros. After the algorithm has
completed one iteration, the previous values of the state variables are used as
starting values in the optimization to provide faster convergence. i.e., x; ;—1 and
&;.;—1 is used as starting values for x; ; and ; ; respectively, with x; 0 = &0 = 0.



The minimization is done using the Nelder-Mead algorithm, as implemented
in optim in R. A convergence criteria must be set with regards to the sum of
pricing errors, e. The convergence criteria is set to

In (ej_l) <4,
€j
and 6 = 0.0001.
The details are as follows;

71
while (lne;j_; —Ine;) > do

for 1 :} to N do

{Xig &gt < argn?in[Yi —£(x. §)?
X
end for
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end while

where Y is panel of simulated log forward prices, f(-) is a panel of model implied
log forward prices, x_; ; and §_; ; denote the lagged short- and long-term state
vectors, respectively.

5 Simulation procedure

The model allows for direct simulation of the log forward price curve via Eq.
(8). We simulate the log forward price curve consisting of 20 log forward prices
equally spaced in time, reaching up to five years ahead. The prices are computed
daily for 2500 days, totaling 50000 observations.

Let € be a matrix of correlated normal random variables with expectation 0
and covariance matrix given by

[ o} pUXZUﬂ
poyoe  OF

The details of the simulation are as follows!;

L¢ is initialized with an arbitrarily chosen value of 3. The initial value of the state variables
do not influence the estimation of the model parameters.



Generate €

X0 < 0

fo 3

for i = 1 to 2500 do

Xi ¢ Xi—1€xp(—KAL) + 4/ WGM
& &1+ peAt + VAte; o
end for

Given the x and & vectors, Eq. (8) is evaluated with the suitable time
to maturity to get a panel Y, dim(Y) = 20 x 2500 of forward prices, 50000
observations. A small measurement error, e ~ N (O,JJ%) is added to each of
the 50000 observations to avoid numerical issues in the Kalman filter.2 The
procedure is repeated each time a sample is generated.

The simulation study is conducted by choosing a set of reasonable parameter
values as configuration for the simulation. These values are not changed during
the study. Step 1 — 3 in the procedure below is repeated five times, each time
with a different set of starting values.

1. For the given configuration, a set of forward prices is simulated according
to the previously described algorithm.

2. For a given set of starting values, the model is fitted to the simulated data
using both the Kalman filter and the iterative routine.

3. Step 1 — 2 repeated 100 times, and the estimated parameters stored.

The parameter configuration of the simulated process is chosen to be the
same as estimated for the Enron data in Table 2 of Schwartz and Smith (2000);
pe = —0.0386, g = 0.0161,x = 1.19,p = 0.189,0, = 0.158,0¢ = 0.115,0¢ =
0.001, A, = 0.014. The starting values u*, 5*, p*, oy, 0¢, 0} are all given the true
value. First, the starting value of the short-term risk premium is changed,
Ay = Ak, where Ay = —0.114 + (k x 0.05) for k = {0,1,2,3,4}. Le., only
the value of the short-term risk premium A, is changed, and the other model
parameters are initialized at the same configuration as used for the simulation.
Then the same procedure is followed for the long-term risk premium, A¢. Since
A¢ is given implicitly by the two p parameters, we let p1f = fig m, where e =
—0.1547 + (m x 0.05) for m = {0,1,2,3,4}. When examining the short-term
risk premium, the long-term risk premium is initiated at its true value in the
numeric search and vice versa.

2While the price of financial assets usually are observed without measurement error, the
model can be slightly misspecified, giving rise to an error term. Regardless of the economical
interpretation of the error term, the variance of the innovation in this experiment is given
such a low value that it does not affect the estimated model parameters. We set oy = 0.001.

3To better isolate the problems that occur in the estimation of the risk premium parameters
the initial configuration of the model parameters is fixed at their true value.



6 Results

In this section the results of the study are presented together with a short
analysis of the volatility term structure.

The results from the study show that while both the Kalman filter and the
iterative routine recover the correct values for “Z’ K, P, 0y, 0¢, both routines fail
in estimating the risk premiums with sufficient accuracy. Summary statistics
for the Kalman filter routine are shown in Table 1 and the corresponding results
for the iterative routine in Table 2.

The estimated value of the short-term risk premium is shown in Figure 1.
The starting values clearly affect the parameter estimate using the iterative
routine. This means the model will always give reasonable estimates of this
parameter if it is given a reasonable starting value. This is not the case for
the Kalman filter routine, but this routine is also not able to recover the true
parameter value with any reasonable precision. The long-term risk premium
results are shown in Figure 2 where the results from the estimation routines are
plotted against each other. Two insights can be drawn from the plot; none of
the routines result in accurate parameter estimates, and estimated parameters
are highly correlated.

It is interesting to see how the uncertainty of the parameter estimates is
affected by the sample size and volatility parameters. We choose two different
parameter configurations. The first is the Enron data in Table 2 of Schwartz
and Smith (2000) referred to above, while the second is the Nord Pool data esti-
mates in Table 1 of Nomikos and Soldatos (2010); pe = 0.097, pg = 0.0623, k =
1.32,p = —=042,0, = 1.00,0¢ = 0.3248,05 = 0.001, A\, = 0.5416. Electricity
prices are know to be highly volatile, which is reflected in the o parameters of
the Nord Pool data. For each parameter configuration we generate 9 x 250
samples and estimate the parameters using the Kalman filter. In each sam-
ple we simulate the log forward price curve consisting of 20 log forward prices
equally spaced in time, reaching up to five years ahead. Years of simulated data
is chosen to be 1,2.5,5, 10, 15, 20, 25, 35 and 50 years.

Figures 3 and 4 show how the uncertainty of the estimate is reduced with the
sample size. It is seen that the risk premium parameters cannot be accurately
estimated even with 50 years of data (250000 data points), but the uncertainty
is greatly reduced from the sample of one year. The uncertainty of the estimates
is highest for Nord Pool data, especially for the short-term risk premium. This
is as expected, because the short-term volatility of the Nord Pool data is over
six times higher compared to the Enron data. Both parameter estimates are
centered on the true value, confirming that the Kalman filter yields unbiased
parameter estimates.

As discussed by Schwartz and Smith (2000), the risk premiums determine
the difference between the expected future spot price and forward prices. Be-
cause the expected future spot price is unobserved, the risk premiums are not
accurately estimated. In more details, if we are given the risk-neutral drift K
the equilibrium drift pe plays no role in the risk neutral price process. In addi-
tion, any shift in the short-term risk premium can be offset by a scaled (scaled



Maximum likelihood estimates

Min 1st Qu. Median Mean 3rd Qu. Max
He -0.1480 -0.0635 -0.0382 -0.0389 -0.0156 0.0977
g 0.0158 0.0161 0.0161 0.0161 0.0161 0.0164
K 1.1881 1.1902 1.1901 1.1902 1.1902 1.1921
p 0.1228 0.1759 0.1885 0.1886 0.2016 0.2378
Oy 0.1524 0.1569 0.1580 0.1580 0.1591 0.1623
o¢ 0.1122 0.1146 0.1148 0.1148 0.1149 0.1174
UJ% 9.816e-07  9.955e-07 1.000e-06 1.000e-06 1.005e-06 1.023e-06
Ay -0.1376 -0.0220 0.0162 0.0158 0.0510 0.1461
A¢ -0.1642 -0.0797 -0.0543 -0.0551 -0.0317 0.0815

Table 1: Descriptive statistics for the Maximum likelihood estimation routine.
Notice the filtration of noise as given by J]%, and the high dispersion of the risk
premium parameters, A, and A\¢. The parameter estimates are initiated at their
true values, except for A, and A¢.

Iterative routine estimates

Min 1st Qu. Median Mean  3rd Qu. Max

e -0.1466 -0.0632 -0.0402 -0.0390 -0.0148 0.0990
g 0.0154 0.0159  0.0161 0.0161  0.0162  0.0166
K 1.1890  1.1900  1.1910 1.1911 1.1911 1.195
p 0.1170  0.1692  0.1814  0.1818  0.1956  0.2302
Oy 0.1525  0.1587  0.1602  0.1601  0.1614 0.1666
O¢ 0.1105 0.1141  0.1151 0.1152  0.1162 0.1214
Ay -0.0876 -0.0364 0.0139 0.0139  0.0644 0.1159
Ae -0.1630 -0.0793 -0.0561 -0.0551 -0.0307  0.0828

Iterations 4.00 6.00 7.00 7.28 8.00 16.00

Table 2: Descriptive statistics for the iterative estimation routine. The param-
eter estimates are initiated at their true values, except for A, and A¢.



Ay estimated using the iterative algorithm Ay estimated using the Kalman filter
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Figure 1: Estimated short-term risk premium, A,. The solid line shows the
correct value, A\, = 0.014. None of the algorithms can recover the correct
parameter value.
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Figure 2: Estimated long-term risk premium, A¢ obtained from the Kalman filter
routine plotted against the estimated parameter values given by the iterative
routine. The samples are generated using A¢ = —0.0547.
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Figure 3: Uncertainty of the risk premium estimates of the Enron data. Dotted
lines indicate the 95,90, 75,50,25,10 and 5th percentile of the risk premium
parameters estimates. Solid lines represent the true parameter values. The
short-term risk premium A, is shown in the upper plot, and the long-term risk
premium, )¢, is shown in the lower plot.

11



A uncertainty

o

N

e

—

o

2

o

|

! T T T T T T
0 10 20 30 40 50

Years of data
Ag uncertainty

<

<

e

o

<

S 4

1
T T T T T T
0 10 20 30 40 50

Years of data

Figure 4: Uncertainty of the risk premium estimates of the Nord Pool data.
Dotted lines indicate the 95,90, 75, 50,25, 10 and 5th percentile of the risk pre-
mium parameters estimates. Solid lines represent the true parameter values.
The short-term risk premium A, is shown in the upper plot, and the long-term
risk premium, A¢, is shown in the lower plot.
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with the mean reversion coefficient, k) change in the initial value of the state
vectors. Hence, we cannot precisely estimate the true process.

The estimate of the short-term risk premium provided by the iterative rou-
tine is dependent on the starting values for the same reason. In the iterative
routine the state vectors are estimated conditional upon all model parameters,
and the parameters are estimated conditional upon the state vectors. Assume we
initialize the short-term risk premium with a perturbation §. The unobserved
short- and long-term vectors will then be estimated as x — §/k and & + §/k,
where x and ¢ are the true state vectors. Conditional upon these shifted state
vectors the estimate of the short-term risk premium is A, + J, where is A, the
true value of the short-term risk premium which was used to generate the true
state vectors.

The simulation results show that the uncertainty of the risk premium param-
eters increases if the volatility parameters increases. This lead to an economical
reason for the difficulty of estimating statistically significant risk premiums.
Risk premiums are premiums offered to hold financial risk. In the model, the
financial risk is measured using volatilities, i.e., the short- and long-term diffu-
sion coefficients. If the diffusion coefficients are large, market participants will
require a large risk premium to compensate for the financial risk of holding the
commodity. If the market is sufficiently integrated with other financial mar-
kets, no arbitrage conditions will ensure the higher risk premium as capital is
allocated towards the highest risk adjusted rate of return. This implies that it
will be challenging to obtain estimates of the risk premium parameters that are
significant different from zero for any realistic parameter configuration of the
model.

It should also be noted that the iterative algorithm cannot contrast the signal
from noise, which can increase the uncertainty in parameter estimates in the
presence of noisy observations. The Kalman filter approach does not suffer the
same shortcoming, since measurement errors are filtered. The two-factor model
is sometimes used in real options analysis, where the investment horizon tends
to be quite long. In this setting, it is crucial to obtain accurate estimates of the
long-run volatility.

Noisy observations may result in an inflated volatility estimate using the
iterative routine, as there is no explicit filtering of measurement errors. The
Kalman filter can separate the signal from the noise, and is recommended in the
case of noisy observations given by low liquidity or other market imperfections.

6.1 Volatility term structure

Both algorithms described above are designed to minimize the squared pricing
error. In commodity markets, the volatility of observed forward contracts is
often found to be monotonically declining, also known as the Samuelson (1965)
effect. If the model describes the data well, the volatility term structure implied
from the model should also be in accordance to the observed volatility term
structure.

13
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Figure 5: Volatility term structure implied by previous studies on EEX and oil
data. The EEX results are not in line with the expected declining volatility
term structure.

As shown, the iterative algorithm does not always converge to the true val-
ues, but is highly dependent on the starting values. During additional simulation
studies, it was revealed that the iterative routine does converge to sensible values
for all parameters except the risk premiums (for details, contact the authors).
The algorithm however may need a large number of iterations to converge if it
is initialized far from the correct values. In order to demonstrate the results the
iterative routine can give, we graph the volatility term structure implied by pre-
viously published research papers. We choose to illustrate the volatility term
structure with two examples from energy markets. Wilkens and Wimschulte
(2007) use electricity swap prices from the European Energy Exchange (EEX),
while Schwartz and Smith (2000) use data on oil forwards. The first example
uses the iterative algorithm, while the last employs the Kalman filter. Figure 5
shows the volatility term structure implied by their results. The data from the
EEX results in a u-shaped term structure, not in line with the expected shape.
On the other hand, the data from the oil market seem to result in a reasonable
volatility term structure.

The unrealistic volatility term structure is taken as an indication of the
problems that can occur using the iterative routine. Also the Kalman filter
routine does not always provides a good fit to the volatility term structure, see
for example Manoliu and Tompaidis (2002) and Cortazar and Naranjo (2006).
Note however, that the Kalman filter routine can easily be extended to provide
a good fit to the volatility term structure by including the empirical volatility
in the observation vector.
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7 Conclusion

The paper analyzes the estimation of the risk premium parameters in the two-
factor model by Schwartz and Smith (2000) by the iterative algorithm first
described by Lucia and Schwartz (2002) and by employing the Kalman filter.
The study shows that the risk premiums cannot be estimated with any reason-
able precision, even under a controlled experiment such as a simulation study.
The iterative procedure is highly dependent on its starting values for the short-
term risk premium, while the Kalman filter approach does not return estimates
within a reasonable range. This parameter indeterminacy does not affect the
robustness of the model for use of valuation purposes, but it does affect its
robustness regarding forecasting purposes (Schwartz and Smith (2000)).

The Kalman filter facilitates the calculation of the likelihood, which allows
us to estimate parameters using maximum likelihood techniques. We examine
the relationship between volatility parameters, sample size and accuracy of pa-
rameter estimates using the maximum likelihood estimator. It is shown that the
uncertainty of the risk premium parameters increases if the volatility parameters
increases. The sample size is varied between 5000 and 250000 observations. The
accuracy increases as the sample sizes increases, but even 250000 data points are
not enough to achieve precise estimates of risk premium parameters. However,
if the risk premium parameters are relatively far from zero, we should be able
to tell the sign of the risk premium using a large sample size.

Maximum likelihood estimators are efficient when the sample size tends to
infinity, hence our results indicates a lower bound for the uncertainty of the
risk premium parameter estimates. The iterative method does not provide any
measure of the precision of the parameter estimates, therefore our results can
serve as an useful indication of the minimum uncertainty of parameters estimates
obtained using this method.
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