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Abstract

In this paper we explore the use of the Integrated Laplace Approximation
(INLA) for Bayesian inference in some widely used models in Spatial Econo-
metrics. Bayesian inference often relies on computationally intensive simulation
methods, such as Markov Chain Monte Carlo. When only marginal inference is
needed, INLA provides a fast and accurate estimate of the posterior marginals
of the parameters in the model.

Furthermore, we have compared the results provided by these models to
those obtained with a more general class of Generalised Linear Models with
random effects. In these models, spatial autocorrelation is modelled by means
of correlated Gaussian random effects.

We also discuss a procedure to extend the class of models that the R-INLA
software can fit. This approach is based on conditioning on one or more pa-
rameters so that the resulting models can be fitted with R-INLA across sets
of values of the fixed parameters. The posterior marginals of these parameters
of interest are then obtained by combining the marginal likelihoods (which are
conditioned on the values of the parameters fixed) of the fitted models and a
prior on these parameters. This approach can also be used to fit even more
general models.

Finally, we discuss the use of all these models on two datasets based on
median housing prices for census tracts in Boston and the probability of business
re-opening in New Orleans in the aftermath of hurricane Katrina.
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1. Introduction

Economic data often shows spatial patterns, for example housing prices are
similar across adjacent neighbourhoods, or GDP varies smoothly across regions
in countries. Spatial econometrics models aim at including this spatial depen-
dence so that the value of an observation depends on the observed values of its
neighbours.

Traditionally, for a continuously observed variable, such as housing prices,
this dependence has been expressed explicitly, i.e., the price at an observed lo-
cation is centred at a weighted average of the observed values at its neighbours
plus perhaps the effect of other covariates at the observation. Several autore-
gressive models described by Cliff and Ord [4] have been built on this idea, as
described in Section 2.1. When the response is non-Gaussian, autoregressive
models are difficult to handle, as discussed in Section 2.2. In particular, we will
consider the case of a binary outcome with a Bernoulli distribution, but this
approach can easily be extended to other variables from the Exponential family.

Bayesian hierarchical models provide a slightly different approach to the
same problem by considering a spatially-structured latent random effect to ac-
count for spatial correlation. The random effects specification accounts for spa-
tial autocorrelation in the disturbances rather than among the observed re-
sponses.

In all cases, the resulting models can be complex and model fitting becomes a
problem. In a Bayesian framework, inference is often based on computationally
intensive methods such as Markov Chain Monte Carlo (MCMC) to obtain the
joint posterior distribution of the parameters, see, for example, Besag et al. [3].
Once this has been obtained, it is easy to compute summary statistics of the
model parameters, credible intervals and other quantities of interest.

When only marginal inference is needed, other methods are available. Rue
et al. [23] describe the Integrated Nested Laplace Approximation (INLA) to
obtain an approximation to the posterior marginals of the parameters of interest.
They also provide the R-INLA software (http://www.r-inla.org) to fit a wide
range of models which in most cases reduce computation time to seconds and
allow for the use of larger datasets. See Eidsvik et al. [5] for a discussion of the
benefits of using INLA on large datasets.

Our aim is to apply this new methodology to spatial econometrics models.
LeSage and Pace [13] provide a full description of the most important models in
Spatial Econometrics, which they fit using a Bayesian approach. Furthermore,
they provide software for Bayesian inference with MCMC in their Spatial Econo-
metrics Toolbox (http://www.spatial-econometrics.com/). In this work, we
also consider Bayesian inference but using a completely different model fitting
technique based on INLA.

Although many of the spatial econometrics models cannot be fitted with
R-INLA, we have devised a new approach for fitting models (after condition-
ing on some parameters) using the R-INLA software. These models are then
combined using Bayesian Model Averaging to obtain the posterior marginals of
the required model. It should be stressed that, even though we focus on spatial
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econometrics models, the approach presented in this paper can be used to fit
many other models not explicitly included in R-INLA.

The paper is organised as follows. In Section 2 we provide a summary of the
spatial econometrics models used in this paper. Section 3 describes Integrated
Nested Laplace Approximation for approximate Bayesian inference. Some com-
putational details needed to fit spatial econometrics models with R-INLA are
given in Section 4. A simulation study comparing model fitting under differ-
ent assumptions has been included in Section 5. Two examples are discussed
in Section 6. In Section 7 we have included a discussion on other importants
models and issues on Spatial Econometrics. Finally, Section 8 includes a general
discussion of the paper.

2. Spatial Econometrics Models

Spatial models have been used in spatial econometrics for a long time, see
Anselin [2] for a review. In general, the interest in spatial econometrics is on
modelling spatial interaction in an autoregressive way, so that the observation
at a given area, yi, depends on a weighted sum of the values of the variable at its
neighbours plus some other (fixed) effects and some random noise. This makes
the spatial dependence explicit but it also introduces a particular variance-
covariance structure in the error term of the models, as seen below.

2.1. Gaussian models

A popular model is the Simultaneous Autoregressive (SAR) model (or Spa-
tial Error Model, SEM model), which can be expressed as follows:

y = Xβ + u;u = ρErrWu+ e; e ∼MVN(0, σ2In). (1)

Here, y = (y1, . . . , yn) is the vector of observations, X is a design matrix of
p covariates, β = (β1, . . . , βp) are the coefficients of the covariates, In is the
identity matrix of dimension n × n and W is a row-standardised adjacency
matrix. ρErr is a parameter that measures spatial autocorrelation. Furthermore,
the error terms are modelled to be a weighted sum of the random errors at their
neighbours plus some random noise e, which is multivariate Normal (MVN) with
zero mean and diagonal variance-covariance matrix σ2In. LeSage and Pace [13]
also describe a variation of this model where the variance-covariance matrix of
the error term is diagonal with n different variance parameters (i.e., σ2

1 , . . . , σ
2
n).

We will not discuss this class of models in this paper, but the resulting models
can be easily derived from the equations included here.

The SEM model can be re-written as

y = Xβ + e′; e′ ∼MVN(0, σ2(In − ρErrW )−1(In − ρErrW
′)−1). (2)

In this case, the model is a general linear regression with a non-diagonal variance-
covariance matrix for the error term.

Another important model in spatial econometrics is the Spatial Lag model
(SLM model), which is referred to as the SAR model in LeSage and Pace [13].
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In this model, the response is modelled as depending on a weighted sum of the
responses at their neighbours, plus a linear term on covariates and an error
term:

y = ρLagWy +Xβ + e; e ∼MVN(0, σ2In). (3)

This model can be rewritten as:

y = (In − ρLagW )−1Xβ + e′; e′ ∼MVN(0, σ2(In − ρLagW )−1(In − ρLagW
′)−1).

(4)
Finally, a third model that is widely used in spatial econometrics is the

Spatial Durbin model (SDM model):

y = ρLagWy +Xβ +WXγ + e = [X,WX][β, γ] + e; ; e ∼MVN(0, σ2In). (5)

γ is a vector of coefficients for the spatially lagged covariates WX, so that
the response now depends not only on the (weighted) values of the response at
neighbours and the covariates, but also on the (weighted) values of the covariates
at neighbours.

The Spatial Durbin model can be expressed as a Spatial Lag model as follows:

y = ρLagWy +X∗β′ + e; X∗ = [X,WX]; β′ = [β, γ], (6)

and

y = (In−ρLagW )−1X∗β′+e′; e′ ∼MVN(0, σ2(In−ρLagW )−1(In−ρLagW
′)−1).

(7)
In all these models, the error term is Gaussian with zero mean and variance-

covariance matrix given by a SAR specification. The Spatial Lag and Durbin
models have also a more complex structure in the linear term on the covari-
ates which needs to be dealt with. Furthermore, the spatial autocorrelation
parameter ρ (regardless of the model used) is restricted to be in the range
(1/λmin, 1/λmax), where λmin and λmax are the minimum and maximum eigen-
values of W , respectively. When W is row-standardised this implies that λmax =
1 and ρ < 1. See Haining [10] for details.

LeSage and Pace [13] provide Matlab code to fit all these models and obtain
estimates and summary statistics of the model parameters. Using MCMC can
sometimes be computationally intensive and simulations may take a while.

While these models are latent Gaussian, they have not been implemented
within the R-INLA software. In the next section we will discuss how to overcome
this problem by fitting these models by repeatedly conditioning on the values
of ρ. This is a general approach which could be used for other models that
cannot be fitted with R-INLA but that become “R-INLA fittable” once some
parameters (usually, one or two) have been fixed.
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2.2. Non-Gaussian models

When the response variable is binary (i.e., the outcome is zero or one), the
previous models are not adequate. LeSage et al. [14] provide a Spatial Probit
model to estimate the probability of re-opening a business in New Orleans after
hurricane Katrina. They model the outcome yi as follows:

yi =

{
1 if y∗i ≥ 0
0 if y∗i < 0

, (8)

where y∗i is a latent variable which measures the latent net profit (i.e., if it is
higher than zero the business will re-open). This latent variable is modelled in
turn using a Spatial Lag model:

y∗ = ρLagWy∗ +Xβ + e; e ∼MVN(0, σ2In). (9)

We will use the following expression to represent this model

y∗ = (In−ρLagW )−1Xβ+e′; e′ ∼ N(0, σ2(In−ρLagW )−1(In−ρLagW
′)−1), (10)

as it can be used with the Generalised Linear Models described below. Also, it
is clear from equation (8) that the relationship between yi and y∗i is non-linear.

2.3. Generalised Linear Models with random effects

A different way of modelling the outcome and accounting for covariates and
spatial autocorrelation is by means of the Generalised Linear Models [17]. The
outcome yi is assumed to come from a distribution of the Exponential family
with mean parameter µi. The relationship between µi and the linear predictor
on a vector of covariates Xi is established through a link function g(·):

g(µi) = ηi = Xiβ. (11)

Spatial dependence is included in the model by means of correlated random
effects:

ηi = Xiβ + ui, (12)

where u = (ui, . . . , un) is multivariate Normal distributed with zero mean and
variance-covariance matrix Σ. Different structures for Σ have been proposed
to model spatial dependence. In previous models a SAR specification has been
considered:

Σ = σ2(In − ρW )−1(In − ρW ′)−1. (13)

Another widely used specification is the Conditionally autoregressive (CAR)
specification:

Σ = σ2(In − ρW )−1. (14)
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Note that now W is a symmetric matrix, and not a row-standardised one, in
order to have a valid variance-covariance matrix.

Model fitting and interpretation of this kind of models is somewhat easier
in the SAR probit as the effects of the covariates and spatial correlation are
included in different terms. In the Spatial Lag model, for example, the term on
the covariates is

(I − ρLagW )−1Xβ, (15)

clearly showing that the effect of a covariate depends on its coefficients β and
the spatial correlation ρLag.

Also, if a spatial lag on the covariates is required in the model (as in the
Spatial Durbin model) it can be added as follows:

ηi = Xiβ +WXiγ + ui. (16)

The models described in Sections 2.1 and 2.2 can be expressed as Generalised
Linear Models. The Gaussian models described in Section 2.1 are Gaussian
GLMs with random effects after conditioning on ρ. The variance-covariance
matrix is a SAR specification. Similarly, for a given value of ρ, the Spatial
Probit model is a binomial GLM with a probit link function. Other models to
deal with a binary response include spatial filtering with an autologistic model
[9].

In other words, the Spatial Econometrics models described before can be
fitted using methods and standard software for Generalised Linear Mixed-effects
models conditioning on ρ. Based on this insight, we provide a way of fitting these
models with R-INLA in Section 4.

Bayesian inference for these models often requires the use of Markov Chain
Monte Carlo techniques. LeSage and Pace [13] provide Matlab code to fit these
and many other models in their Spatial Econometrics Toolbox. Running this
code for large datasets however can be time consuming and our aim is to find
alternative ways of providing Bayesian inference. For this reason we will rely on
the Integrated Nested Laplace Approximation, which is discussed in the next
Section.

2.4. Impacts

LeSage and Pace [13] and LeSage et al. [14] discuss how changes of a covariate
at location i will affect the output at location j. To measure these effects, they
define direct and indirect impacts.

For the case of the Gaussian models, the impacts are defined as the partial
derivatives of the linear predictor at site i, ηi on xv,j , the value of covariate v
at site j:

∂ηi
∂x

′
v,j

. (17)

The matrix of impacts for covariate v can be easily derived but will depend on
the model. For the SEM model, it is
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∂η

∂x′
v

= Inβv; v = 1, . . . , p. (18)

For the SLM model the impacts become

∂η

∂x′
v

= (In − ρLagW )−1βv; v = 1, . . . , p , (19)

while for the Spatial Durbin model we have

∂η

∂x′
v

= (In − ρLagW )−1(βv +Wγv); v = 1, . . . , p. (20)

The average total impact is defined as the average (over n, the number of obser-
vations) of the n×n impacts. The average direct impact associated to covariate
v is defined as the average of the diagonal of the previous matrix. This mea-
sures the average impact of changing covariate v at site i on the same site. The
average indirect impact is defined as the average (over n) of the off-diagonal
elements. Hence, this measures the average effect of changing covariate v at a
site on any other site.

The case of the spatial probit is slightly different. Now the impacts are based
on computing the partial derivatives of

∂Pr(yi = 1)

∂x
′
v,j

, (21)

which involves a non-linear term due to the fact that the response and the linear
predictor are connected via a link function (i.e., the probit link). In this case
the matrix of partial derivatives for the SEM model is

∂Pr(y = 1)

∂x′
v

= D(f(η))βv; v = 1, . . . , p. (22)

Here f(η) is a vector of the standard Normal distribution evaluated at the values
of the linear predictors ηi, i = 1, . . . , n. D(·) simply represents a diagonal matrix
made from its argument.

For the SLM we have

∂Pr(y = 1)

∂x′
v

= D(f(η))(In − ρLagW )−1βv; v = 1, . . . , p , (23)

and for the SDM

∂Pr(y = 1)

∂x′
v

= D(f(η))(In − ρLagW )−1(βv +Wγv); v = 1, . . . , p. (24)

Direct and indirect effects are defined from the matrix of partial derivatives
as in the Gaussian case. See LeSage and Pace [13], LeSage et al. [14] for details on
how the impacts and effects are derived. They also provide some computational
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hints on how to compute the direct and indirect effects. In particular they avoid
computing (In − ρW )−1 and instead they use an approximation of order k of
the form

(In − ρW )−1 '
k∑
i=0

(ρW )i. (25)

The posterior distribution of the impacts can be computed when the Bayesian
model is fitted using MCMC. In this case, the impacts are computed at each
iteration with the current values of the model parameters, so that at the end of
the simulations we have a sample of the posterior distribution of the impacts.

LeSage and Pace [13, page 39] define the different average impacts as

M(r)direct = n−1tr(Sr(W )) (26)

M(r)total = n−1i
′

n(Sr(W ))in (27)

M(r)indirect = M(r)total −M(r)direct. (28)

Here Sr(W ) is the matrix of partial derivatives with respect to xr, tr(·) is the
trace of a matrix and in is an n vector of 1’s.

Table 1 summarises the different values of Sr(W ) and direct and indirect
impacts for the spatial econometrics models discussed before. The traces that
appear in two of the direct effects can be computed as

tr
(

(In − ρW )−1
)
' tr(In + ρW + ρ2W 2 + . . .+ ρkW k) = (29)

= tr(In) + ρtr(W ) + . . . ρktr(W k)

tr
(

(In − ρW )−1W
)
' tr(W ) + ρtr(W 2) + . . .+ ρktr(W k+1). (30)

Hence, the traces of W i; i = 1, . . . , k can be used at the same time to compute
the direct effects for the SLM and SDM models.

The expressions of the total effects for the Probit models are similar to those
of the Gaussian models but taking into account that Sr(W ) now includes the
term D(f(η)). The total effects are those of the Gaussian case multiplied by

f(η) =
∑n
i=1

f(ηi)
n . Note that this is a non-linear combination of the linear

predictors ηi and that, in addition, the total effects are non-linear on f(η) and
βr. Hence, the total effects cannot be computed using INLA for a Probit model.
The same restriction also applies to the direct effects, which depend on D(f(η)),
a non-linear function of η.

An approximation may be computed by replacing each ηi by η̂i = E[ηi|y],
so that D(f(η)) is replaced by D(f(η̂)). Note that this will require fitting the
model twice. Firstly, to obtain η̂i and, secondly, to include D(f(η̂)) in the
computation of the effects and impacts. Looking at equations (22), (23) and
(24), we can see that taking D(f(η̂)) will make the impacts a linear combination
on βr and, possibly, γk but will ignore the uncertainty about η.
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Table 1: Different types of impacts for the different spatial econometrics models assuming a
Gaussian response.

Model Sr(W ) M(r)direct M(r)total

SEM Inβr βr βr

SLM (In − ρLagW )−1βr n−1tr
(

(In − ρLagW )−1
)
βr

1
1−ρLag

βr

SDM (In − ρLagW )−1(βr +Wγr) n−1tr
(

(In − ρLagW )−1
)
βr+

+n−1tr
(

(In − ρLagW )−1W
)
γr

1
1−ρLag

(βr + γr)

Table 2: Different types of impacts for the different Spatial Econometrics models assuming a
Binary response.

Model Sr(W ) M(r)direct M(r)total

SEM D(f(η))βr βr
∑n
i=1

f(ηi)
n βr

∑n
i=1

f(ηi)
n

SLM D(f(η))(In − ρLagW )−1βr n−1tr
(
D(f(η))(In − ρLagW )−1

)
βr

βr

(1−ρLag)

∑n
i=1

f(ηi)
n

SDM D(f(η))(In − ρLagW )−1(βr +Wγr) n−1tr
(
D(f(η))(In − ρLagW )−1

)
βr+

n−1tr
(
D(f(η))(In − ρLagW )−1W

)
γr

βr+γr
(1−ρLag)

∑n
i=1

f(ηi)
n
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3. Approximate Inference using the Integrated Laplace Approxima-
tion

Rue et al. [23] and Lindgren et al. [15] have developed an approximate
method for Bayesian inference based on focusing on the marginals of the pa-
rameters of the models. They consider the class of Latent Gaussian Markov
Random Fields, which are flexible enough to be used in many different types of
applications.

Briefly, given a vector of observed variables y = (y1, . . . , yn), the distribution
of yi is assumed to belong to the exponential family with mean µi. The relation
between µi and a linear predictor of some latent effects is expressed through a
link function. The linear predictor ηi can include fixed and random effects as
well as other non-linear terms on some covariates. The distribution of y may
also depend on a vector of hyperparameters θ1.

The vector of latent effects x (which will include the ensemble linear predictor
for each observation, coefficients of the covariates, etc.) is assumed to be a
Gaussian Markov Random Field (GMRF) with precision matrix Q(θ2), where
θ2 is a vector of hyper-parameters.

Hence, the observations are independent given x and θ = (θ1, θ2) and the
model likelihood can be written down as

π(y|x, θ) =
∏
i∈I

π(yi|xi, θ), (31)

where xi is the latent linear predictor ηi and I represents the indices of the
observations. Note that some of the values in y may be missing and this is why
the product is over a set of indices I and not from 1 to n.

INLA will provide accurate approximations to the posterior marginals of
the model parameters and hyper-parameters. These approximations are based
on providing a multidimensional integration of all the other latent effects and
hyperparameters. For example, the joint distribution of the model parameters
and hyperparameters is:

π(x, θ|y) ∝ π(θ)π(x|θ)
∏
i∈I

π(yi|xi, θ) ∝ (32)

∝ π(θ)|Q(θ)|n/2 exp{−1

2
xTQ(θ)x +

∑
i∈I

log(π(yi|xi, θ)}.

Note that the expression |Q(θ)| will include what is referred to as the ’Jacobian’
(i.e., In − ρW ) in the spatial econometrics literature [see, for example, 1].

The marginal distributions for the latent effects and hyper-parameters can
be written as

π(xi|y) ∝
∫
π(xi|θ,y)π(θ|y)dθ, (33)

and
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π(θj |y) ∝
∫
π(θ|y)dθ−j . (34)

Rue et al. [23] provide a simple approximation to π(θ|y), denoted by π̃(θ|y),
which is then used to compute the approximate marginal distribution of a latent
parameter xi:

π̃(xi|y) =
∑
k

π̃(xi|θk,y)× π̃(θk|y)×∆k, (35)

where ∆k are the weights of a particular vector of values θk in a grid for the
ensemble of hyperparameters.

Rue et al. [23] also discuss how the approximation π̃(xi|θk,y) should be in
order to reduce numerical error and they provide different alternatives. Finally,
an R [19] package called R-INLA is available to fit a large range of models using
the Integrated Nested Laplace Approximation. For a general discussion on the
applications of INLA in spatial statistics see Gómez-Rubio et al. [6].

4. Model fitting with INLA

At the moment, the R-INLA software cannot fit the class of models described
in Sections 2.1 and 2.2. First of all, the SAR specification for the variance-
covariance matrix is not available yet. Secondly, the linear term on the covariates
in the Spatial Lag and Spatial Durbin models is multiplied by (I−ρW )−1, which
is clearly not a standard linear term. Note that in this section we will use ρ for
the spatial autocorrelation parameter regardless of the model used.

After conditioning on a value of ρ, these models belong to the class of models
that R-INLA can fit and the posterior marginals are also conditioned on the
value of ρ. Hence, for a given ρ = ρ0 the likelihood will become π(y|θ, ρ0) and
hence INLA will provide approximations to the (conditioned) marginals

π(xi|y, ρ0), (36)

and the marginal likelihoods reported by INLA are also conditioned on the value
of ρ, i.e., we obtain π(y|ρ0) instead of π(y). The marginal distribution of ρ is

π(ρ|y) =
π(y|ρ)π(ρ)

π(y)
∝ π(y|ρ)π(ρ), (37)

where π(ρ) represents a prior distribution for ρ.
As discussed in Section 2.1, ρ is restricted to a bounded interval. We can take

a fine one-dimensional grid in this interval {ρj}rj=1, so that for each value we
can fit a different model and use all the information reported to approximate the
marginal distribution of ρ. In practice, this interval will depend on the domain
of the prior distribution on ρ. For example, when a uniform prior on (0,1) is
used, the grid will be defined in this interval.

For each value of ρj we can compute π(y|ρj)π(ρj), a value that is propor-
tional to the actual values of π(ρj |y). π(ρ|y) can be obtained by fitting a curve
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(for example, using splines) to points {(ρj , π(y|ρj)π(ρj))}rj=1 and re-scaling it
to integrate one.

Note that in our case, the values of the parameter of interest are bounded and
this makes the approach easier. We may be interested in applying this approach
to other models where we would like to compute the marginal distribution of
a parameter which is not bounded. In this case, we may proceed in a different
way to make computations more efficiently.

First of all, if our parameter is, say, λ, we could use an optimisation algorithm
to find the maximum (mode) of π(y|λ). This requires the evaluation of several
models for different values of λ. Once the mode has been obtained, an interval
around the mode can be set so that the difference in the marginal log-likelihoods
between the mode and the interval limits is large (for example, 10). This can
be easily implemented as well. At this stage, the interval can be divided using a
one-dimensional grid {λj}lj=1, computing π(y|λj)π(λj), fitting a curve to these
values and then obtaining π(λ|y) by re-scaling the curve to integrate one.

Although this approach may seem computationally intensive and not pro-
viding fast results, most computations can be done in parallel. In particular,
the models that arise from different values of λ can be fitted on separate nodes
of a cluster. Although MCMC methods can run several chains in parallel, com-
putation for single chains is often impossible to run on several nodes as future
samples depend on current values.

Furthermore, this approach could be used to compute the posterior distri-
bution of pairs of parameters. For example, in the Spatial Durbin Model we
may be interested in any possible interaction between the spatial autocorrela-
tion parameter ρ and the coefficient of one of the lagged covariates γl. For a
fixed values of ρ and γl (ρ0, γl,0) the model can be fitted to obtain π(y|ρ0, γl,0).

Again, we can create a grid of values {{(ρj , γl,k)}rj=1}
g
k=1 (in two dimensions

now) to compute the marginal likelihood given a pair of values for ρ and γl. Now
the (bivariate) posterior distribution of the pair (ρ, γl) is given by:

π(ρ, γl|y) ∝ π(y|ρ, γl)π(ρ, γl). (38)

A convenient way of taking a prior for ρ and γl is

π(ρ, γl) = π(ρ)π(γl). (39)

Hence, the posterior distribution can be computed by fitting a surface to
points (

ρj , γl,k, π(y|ρj , γl,k)π(ρj , γl,k)
)

; j = 1, . . . , r; k = 1, . . . , g , (40)

and re-scaling it to integrate one.
From this bivariate distribution credible regions can be computed and cor-

relation between ρ and γl can be assessed. Again, this procedure can be easily
parallelized to reduce computational time. Note also that accuracy can be im-
proved by defining a less coarse grid.
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Extending this idea to more than two variables is easy, but the computational
burden increases as well and at some point it may be preferable to fit the models
using MCMC methods. Finally, we would like to mention that INLA can be
integrated into more general MCMC algorithms to integrate parameters out at
some stages. For example, when fitting a model using Reversible-jump, INLA
could be used to fit the resulting model after the dimension of the model has
been sampled. How all the resulting models can be combined is explained in
Section 4.2. Using INLA within MCMC might need further assumptions, as we
compute marginals but the joint is required. So unless a Gaussian (or a mixture
thereof) is used, errors will be introduced.

4.1. Bayesian Model Selection

When making inference on ρ, it can be regarded as a truly discrete variable
and we may be interested in estimating the posterior probabilities for each
value. Hence, we will try to estimate a probability function. Each value of ρ
will produce a slightly different model, so in the end we are performing a model
selection.

Suppose that we have a set of models {Mj}rj=1, each one associated to a
value of ρ = ρj . First, we need to assign a prior distribution to each model.
A uniform distribution can be used as a vague prior to give the same prior
probability to each model, i.e., π(Mi) = 1/r, ∀j = 1, . . . , r. Hence, π(y|Mi) ≡
π(y|ρ = ρj).

The posterior probability for each model can be computed as

π(Mi|y) ∝ π(y|Mi)π(Mi). (41)

Given that now the number of models proposed is r, the posterior probabilities
can be re-scaled to integrate one dividing by

r∑
j=1

π(y|Mi)π(Mi), (42)

so that

π(Mi|y) =
π(y|Mi)π(Mi)∑r
j=1 π(y|Mi)π(Mi)

. (43)

When a uniform prior is assigned to the models the previous expression
simplifies to

π(Mi|y) =
π(y|Mi)∑r
j=1 π(y|Mi)

. (44)

Then, inference on the other parameters can be based upon the model with
the highest posterior probability with no need of model averaging. This is an
alternative approach when the computational burden of estimating the posterior
distribution of ρ is too high.
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LeSage and Pace [13] use MCMC to estimate the posterior distributions of
the model parameters and, in particular, a griddy Gibbs sampler [21] for ρ. In
the next section we propose the use of Bayesian Model Averaging to estimate
the posterior marginal of ρ and all the other model parameters.

4.2. Bayesian Model Averaging with INLA

So far, we have explained how R-INLA can be used to obtain an approx-
imation to π(ρ|y) and π(ρ, γl|y) even if our model is not implemented in the
software. In order to obtain the marginal distributions of the other parameters
in the model, the parameters we are conditioning on need to be integrated out
as follows. For the unidimensional case with ρ, this proceeds as follows:

π(xi|y) =

∫
π(xi|ρ, y)π(ρ|y)dρ =

∫
π(xi|ρ, y)

π(y|ρ)π(ρ)

π(y)
dρ. (45)

This integral can be approximated using a grid on the values of ρ:

π(xi|y) '
r∑
j=1

π(xi|ρj , y)π(ρj |y)∆j , (46)

where ∆j are weights which, in the simplest case, are equal to the size of the
intervals in the grid. If our grid is equally spaced, then ∆j = ∆ ∀j.

Noting that

π(y) =

∫
π(y|ρ)π(ρ)dρ '

r∑
j=1

π(y|ρj)π(ρj)∆j , (47)

the approximation can be written as

π(xi|y) '
r∑
j=1

π(xi|ρj , y)
π(y|ρj)π(ρj)∑r

j′=1 π(y|ρj′)π(ρj′)∆j′
∆j . (48)

For equally spaced grids, where ∆j = ∆j′ = ∆ the previous expression simpli-
fies, so that:

π(xi|y) '
r∑
j=1

π(xi|ρj , y)
π(y|ρj)π(ρj)∑r

j′=1 π(y|ρj′)π(ρj′)
. (49)

Alternatively, this can be expressed as a weighted sum of the marginal dis-
tributions provided by each of the fitted models (for a given value of ρ):

π(xi|y) '
r∑
j=1

π(xi|ρj , y)λj ; λj =
π(y|ρj)π(ρj)∑r

j′=1 π(y|ρj′)π(ρj′)
. (50)

Hence, marginal inference is still possible with this Bayesian Model Averag-
ing approach [12]. Note that weights only depend on the marginal likelihood
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and the prior of ρ and not on the parameter of interest xi. Furthermore, this
procedure can be easily parallelised to reduce computational time.

Summary statistics for the distribution of xi can be easily derived as well
using this approach. For example:

E[xi|y] '
r∑
j=1

E[xi|ρj , y]λj . (51)

That is, the posterior mean of xi is a weighted sum of the different posterior
means computed by conditioning on different values of ρ. If vague priors for the
other parameters in the model are used, the posterior modes should be close to
maximum likelihood estimates.

4.3. Computing the impacts with INLA

In order to compute the distribution of the impacts with INLA it si clear
that that for the Gaussian case, and conditioning on ρ, the impacts are a linear
combination of βk and, possibly, γk. These linear combinations can easily be
computed with INLA and then the final distribution of the impacts can be
computed by Bayesian Model Averaging.

As already discussed in Section 2.4, for the Probit models the impacts also
depend on D(f(η)) which has its own posterior distribution. An approximation
to the posterior distribution of the impacts can be provided by using D(f(η̂)),
where f(η̂) is the vector of the posterior mean of f(η), so that the impacts
become a linear combination of βk and, possibly, γk.

4.4. INLA versus MCMC

LeSage and Pace [13] describe a number of MCMC samplers to fit the differ-
ent models described therein. In general, they implement Gibbs and Metropolis-
Hastings samplers for the spatial autocorrelation parameter. In both cases, the
value of the determinant of the Jacobian (denoted by |I − ρW |) is required for
many different values of ρ which are not known beforehand. As this is compu-
tationally expensive, LeSage and Pace [13] use the following procedure.

A grid of values in its domain is defined so that |I−ρW | is precomputed for
each value of ρ in the grid. For values of ρ not in the grid, the value of |I−ρW |
is interpolated (using a spline, for example). This computational approach is
important as computing the Jacobian can be computationally expensive when
large matrices are involved. Furthermore, the grid of values of ρ needs to be
thin, with a step size of 0.01.

The (approximated) value of |I − ρW | is later used to compute the different
conditional distributions that appear in the griddy Gibbs sampling or the ratio
in the Metropolis-Hastings algorithm. This means that a new interpolated value
needs to be obtained at each step of the MCMC algorithm.

Note that the approach described in this paper also relies on fitting models
given different values of ρ in a grid. This reduces the computational burden as
well. Griffith [8] describes a different approach to estimate the Jacobian which
is also computationally efficient.
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Our approach also requires a good approximation to the marginal likelihood
of the different values fitted given ρ. R-INLA provides a good approximation
to the marginal likelihood. The marginal likelihood should vary smoothly for
slighty different values of ρ, which in turn will produce a smooth posterior
distribution for ρ. We have noticed that in some cases the values of the marginal
likelihood may wiggle (for models associated to similar values of ρ).

This is not due to errors in the computation of the marginal likelihood but
to differences in the estimation of the hyperparameters. In general, for two
different but similar values of ρ we have obtained similar posterior marginals of
the fixed effects but slightly different posterior marginals of the hyperparameters
(namely, the precission of the spatial effects). In any case, we believe that this
is not a problem as the marginal likelihood is estimated with accuracy and poor
estimates of the distribution of the hyperparameters will lead to lower values of
the marginal likelihood.

Finally, we have not explored the possibility that the marginal likelihood is
multimodal, as it is known to happen to the likelihood for some spatial models
[see 20, 16]. This is not a problem per se in our examples but it may require a
finer grid on the values of ρ to capture this variability.

5. Simulation study

In order to assess the differences between the models we have conducted a
simulation study. We are interested in how data generated under one model are
fitted by other models. This will provide some insight into the adequacy of the
different specifications for the spatial structure in the data.

To simulate the datasets, we have considered the Gaussian and Binomial
cases. In the Gaussian case, we have simulated 500 datasets considering a model
with a single covariate and proper CAR random effect with variance-covariance
matrix Σ = σ2(In − ρ

λmax
W )−1. This model can be written down as

yi = βxi + ui; ui ∼ N(0, σ2(In −
ρ

λmax
W )−1); i = 1, . . . , 100. (52)

β has been set to 1, ρ to 0.5 and σ to 3. In this case, W is a binary and symmetric
adjacency matrix and λmax is the maximum eigenvalue of W. In order to develop
the spatial structure, we consider observations to be on a straight line, so that
neighbours are the observations to the left and right. The edges are considered
as neighbours too. In practice, the spatial structure is as if observations are
located on a circle and all locations have 2 neighbors. Hence, the adjacency
matrices for the CAR and SAR specifications are the same except for a scaling
factor of exactly 1/2.

Furthermore, we have simulated another 100 datasets according to each of
the 3 spatial econometric models described in Section 2.1. The parameters are
the same as in the previous model. For the Spatial Durbin Model the coefficient
of the lagged covariates has been set to 1. For these models, the weight matrix
W is row-standardised.
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Table 3: Relative Root Mean Square Error of different Gaussian models fitted to 4 × 500
datasets simulated under those models.

Model
CAR SEM SLM SDM

data CAR 3.330101e-11 3.319643e-11 3.531584e-11 3.539592e-11
data SEM 4.654049e-11 5.103125e-11 4.775117e-11 5.120926e-11
data SLM 4.746212e-11 4.759239e-11 4.703661e-11 4.686431e-11
data SDM 6.077251e-11 6.677201e-11 7.368624e-11 7.650566e-11

Hence, for the Gaussian case we have 4 × 500 different datasets generated
under four different models. Our aim is to assess how good are predictions from
one model on the different datasets.

For the Binomial case we have simulated 400 datasets in a similar way. In
this case, a latent variable y∗i has been simulated in the same way as in the
Gaussian case. Then it has been transformed according to a probit link and the
resulting probability rounded to 0 or 1.

For each dataset and model fit we will consider the Relative Root Mean
Square Error (RRMSE) as a measure of goodness-of-fit:

RRMSE =

√√√√ 1

100

100∑
i=1

(yi − ŷi)2
y2i

. (53)

In the case of the Binomial data, we have computed the average of the rightly
classified observations.

5.1. Gaussian models

Table 3 shows the averages of the RRMSE for each type of dataset and the
models fitted. In general, all of them provide similar fitting, and being good in
all cases.

5.2. Non-Gaussian models

Table 4 shows the averages of the proportion of correctly classified observa-
tions. We have also included results from a näıve model with no spatial structure
at all for reference. All models predict with an accuracy higher than an 58%.
The SEM model seems to be the one with the worst performance in all cases,
being close to the näıve model. The CAR model shows the highest prediction
rate, except for data generated under the SDM model. The SLM and SDM
models show a good performance in all cases.

5.3. Implementation issues

For the implementation of the methods described in this paper we have made
extensive use of the R programming language and the R-INLA package. The
methods described in this paper have been implemented in package INLABMA,
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Table 4: Percentage of right classified using different Probit models to different datasets
simulated under those models.

Model
CAR SEM SLM SDM Näıve

data CAR 62.44 58.29 58.45 59.47 58.28
data SEM 60.53 58.41 58.77 60.31 58.41
data SLM 64.97 60.96 61.31 61.97 60.96
data SDM 66.77 63.29 64.58 68.02 63.29

which is available from CRAN, and the full code used in this paper is available
from the authors on request. We have also tested our methods on a small
example with the proper CAR model that R-INLA can fit to make sure that
we obtained the same results. This has been done for the Gaussian and non-
Gaussian cases and we found that our code fitted the results provided by INLA
quite well. Finally, we have double-checked with an R implementation of some
of the functions in the Spatial Econometrics toolbox.

We have also observed that thinning was often required to obtain the marginal
distributions with MCMC, and that it was not clear how many iterations where
required beforehand. This is not a problem using our approach. Another ad-
vantage that we have found in using R-INLA is that it is easier to use different
priors on the model parameters. In particular, the number of available priors in
R-INLA is larger. This allows us to assess the impact of priors on the results,
or choose informative priors when there is not enough information in the data.

Furthermore, R-INLA provides other latent effects not discussed in this pa-
per that may be used with our current implementation. These effects may be
used, for example, to include temporal or longitudinal effects in the data. Our
code and approach will still be valid when other latent effects are included in the
model using a standard call to the R-INLA function for model fitting inla().

Finally, INLA and R-INLA can handle missing data to provide predictive
distributions. This means that the uncertainty about the missing data is taken
into account when computing the marginals of the model parameters and that
we can compute summary statistics on the missing values. Needless to say, when
using spatial models, spatial dependence will help to obtain better predictions
of the missing values.

6. Examples

6.1. Boston housing data

In this example we re-analyse the Boston housing data described by Harrison
and Rubinfeld [11]. Here the interest is in estimating the median value of
owner-occupied houses (which has been censored at $50k) using 13 relevant
covariates and the spatial structure of the data Pace and Gilley [18]. The data
is available in the R package spdep (boston dataset), that also includes methods
for maximum likelihood estimation of the models discussed in this paper. We
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Table 5: Point estimates of the fixed effects for the Boston housing data using different models.

MLCAR INLACAR MLSEM INLASEM MLSLM INLASLM
(Intercept) 4.11e+00 4.116596 3.84e+00 3.923540 2.279626 2.308686

CRIM -8.14e-03 -0.008197 -5.29e-03 -0.005886 -0.007105 -0.007267
ZN 1.56e-04 0.000150 4.73e-04 0.000372 0.000380 0.000365

INDUS -4.87e-05 -0.000019 -2.52e-05 0.000158 0.001257 0.001376
CHAS1 3.18e-02 0.033327 -3.88e-02 -0.008519 0.007368 0.012609

I(NOXˆ2) -4.61e-01 -0.467009 -2.23e-01 -0.339600 -0.268916 -0.286864
I(RMˆ2) 8.08e-03 0.008042 7.96e-03 0.008052 0.006724 0.006763

AGE -4.88e-04 -0.000478 -1.05e-03 -0.000787 -0.000277 -0.000226
log(DIS) -1.64e-01 -0.164862 -1.18e-01 -0.136482 -0.158301 -0.157636

log(RAD) 7.83e-02 0.078420 6.55e-02 0.074014 0.070689 0.073167
TAX -3.97e-04 -0.000399 -5.00e-04 -0.000475 -0.000366 -0.000364

PTRATIO -2.10e-02 -0.021258 -1.77e-02 -0.020105 -0.012011 -0.012743
B 5.07e-04 0.000507 5.94e-04 0.000585 0.000284 0.000289

log(LSTAT) -3.21e-01 -0.321995 -2.66e-01 -0.276658 -0.232161 -0.232201

have fitted the 3 spatial econometrics models described in this paper plus a
spatial model with a CAR error term. In addition, we have fitted the spatial
econometrics models using maximum likelihood to compare the estimates of the
model parameters. Adjacency is defined in the R object boston.soi and a binary
weight matrix has been used to fit the CAR model whilst a row standardised
matrix has been used for all the other models.

The results are summarised in Tables 5, 6 and 7. In general, Bayesian and
maximum likelihood estimates are close. For the Bayesian models we also have
the posterior marginals that allow us to compute exact credible intervals for the
covariate coefficients and the spatial autocorrelation parameter ρ.

Furthermore, we have plotted the posterior marginal distribution of ρ un-
der different models in Figure 1. The different posterior distributions should
not be surprising as the models are in fact different and they have different
spatial correlation structures. Table 7 summarises the estimates of the spatial
autocorrelation parameter ρ. Again, the Bayesian estimates are close to those
obtained by maximum likelihood. The actual estimates for the CAR models
with INLA are at a different scale than the maximum likelihood ones, because
INLA re-scales the adjacency matrix by its maximum eigenvalue (same as the
proper CAR model described in Section 5), which is 5.306. Hence, the values
reported in Table 7 are the original values divided by 5.306 so that they can
be compared to the maximum likelihood estimates. Taking this into account,
we notice that both estimates are close to each other. Also, estimates for the
maximum likelihood CAR and SEM models have been computed by resampling
from the fitted models.

Impacts are displayed in Tables 8, 9 and 10. Although only mean and
standard deviation are displayed it is possible to obtain credible intervals and
other statistics from the posterior marginal distributions of the impacts. These
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Table 6: Point estimates of the fixed effects for the Boston housing data using a Spatial Durbin
Model.

MLSDM INLASDM lag-MLSDM lag-INLASDM
(Intercept) 1.898178 1.998026 — —

CRIM -0.005710 -0.005833 -0.004642 -0.004727
ZN 0.000691 0.000630 -0.000379 -0.000256

INDUS -0.001113 -0.001495 0.000251 0.001274
CHAS1 -0.041632 -0.028905 0.125183 0.100878

I(NOXˆ2) -0.010349 -0.006873 -0.386407 -0.418873
I(RMˆ2) 0.007950 0.007825 -0.004513 -0.004206

AGE -0.001288 -0.001214 0.001497 0.001523
log(DIS) -0.124041 -0.122184 -0.004539 -0.011101

log(RAD) 0.058635 0.055938 -0.009407 0.003441
TAX -0.000491 -0.000474 0.000411 0.000350

PTRATIO -0.013199 -0.013531 0.000603 -0.000595
B 0.000564 0.000540 -0.000508 -0.000429

log(LSTAT) -0.247245 -0.249890 0.098467 0.091380

Table 7: Estimates of the spatial autocorrelation parameter for the different models.

rho rhosd LLrho ULrho
MLCAR 0.186 0.0039 0.178 0.194

INLACAR 0.183 0.0024 0.177 0.186
MLSEM 0.708 0.0335 0.642 0.774

INLASEM 0.687 0.0318 0.623 0.749
MLSLM 0.485 0.0294 0.428 0.543

INLASLM 0.477 0.0274 0.423 0.529
MLSDM 0.596 0.0384 0.520 0.671

INLASDM 0.571 0.0378 0.496 0.643
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Figure 1: Marginal distributions for the spatial autocorrelation parameter ρ under differ-
ent models (Boston housing data). Lines show ML point estimates with approximate 95%
confidence intervals.

can be useful to assess significance of the impacts.

6.2. After-Katrina business data

In this example we consider the data analysed in LeSage et al. [14] regarding
the probability of re-opening a business in the aftermath of hurricane Katrina.
In this case we have a non-Gaussian model because we are modelling a proba-
bility and the response variable can take either 1 (the business re-opened) or 0
(the business didn’t re-open). As in the previous example, we have fitted four
models, but we have now used a GLM with a Binomial family and a probit
link. Adjacencies have been obtained using k-nearest neighbours (with k = 11)
on the coordinates of the businesses. A binary weight matrix has been used to
fit the CAR model, whilst a row standardised matrix have been used to fit the
remaining models.

LeSage et al. [14] split the data into four periods according to different time
frames. In our analysis we focus on the first period, i.e., the business re-opened
during the first 3 months (90 days). The model used there is the one that we
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Table 8: Direct impacts for the Boston housing data. Impacts for the SEM model are not
displayed as they are equal to the point estimes of the fixed effects.

mean (SLM) sd (SLM) mean (SDM) sd (SDM)
CRIM -0.007791 1.04e-03 -0.007454 0.001008

ZN 0.000393 4.12e-04 0.000651 0.000508
INDUS 0.001481 1.91e-03 -0.001407 0.002915
CHAS1 0.013343 2.72e-02 -0.012034 0.028185

I(NOXˆ2) -0.307155 9.26e-02 -0.091868 0.183783
I(RMˆ2) 0.007262 1.08e-03 0.007883 0.001086

AGE -0.000243 4.29e-04 -0.001048 0.000485
log(DIS) -0.169146 2.69e-02 -0.138429 0.089886

log(RAD) 0.078528 1.53e-02 0.063073 0.021372
TAX -0.000391 9.94e-05 -0.000458 0.000119

PTRATIO -0.013642 4.12e-03 -0.015206 0.005691
B 0.000310 8.40e-05 0.000516 0.000108

log(LSTAT) -0.248953 2.12e-02 -0.260125 0.022665

Table 9: Total impacts for the Boston housing data. Impacts for the SEM model are not
displayed as they are equal to the point estimes of the fixed effects.

mean (SLM) sd (SLM) mean (SDM) sd (SDM)
CRIM -0.013923 0.001837 -0.024623 0.003721

ZN 0.000703 0.000739 0.000872 0.001154
INDUS 0.002656 0.003428 -0.000485 0.005003
CHAS1 0.023598 0.048572 0.167016 0.084658

I(NOXˆ2) -0.548308 0.163024 -0.992875 0.217646
I(RMˆ2) 0.012993 0.002043 0.008482 0.003240

AGE -0.000436 0.000768 0.000721 0.001216
log(DIS) -0.302466 0.049318 -0.310654 0.069526

log(RAD) 0.140451 0.027923 0.138643 0.044279
TAX -0.000700 0.000180 -0.000289 0.000305

PTRATIO -0.024347 0.007237 -0.032946 0.011023
B 0.000554 0.000152 0.000261 0.000215

log(LSTAT) -0.444868 0.037011 -0.368753 0.057901

22



Table 10: Indirect impacts for the Boston housing data. Impacts for the SEM model are not
displayed as they are all equal to zero.

mean (SLM) sd (SLM) mean (SDM) sd (SDM)
CRIM -0.006119 9.05e-04 -0.017169 0.003303

ZN 0.000310 3.28e-04 0.000221 0.001140
INDUS 0.001173 1.52e-03 0.000922 0.005570
CHAS1 0.010220 2.14e-02 0.179050 0.077119

I(NOXˆ2) -0.240802 7.25e-02 -0.901008 0.276120
I(RMˆ2) 0.005711 1.02e-03 0.000599 0.002825

AGE -0.000193 3.39e-04 0.001769 0.001164
log(DIS) -0.133018 2.41e-02 -0.172225 0.110585

log(RAD) 0.061787 1.33e-02 0.075570 0.047068
TAX -0.000308 8.37e-05 0.000169 0.000301

PTRATIO -0.010690 3.21e-03 -0.017740 0.011819
B 0.000244 6.97e-05 -0.000255 0.000216

log(LSTAT) -0.195394 2.03e-02 -0.108629 0.054616

Table 11: Point estimates of the fixed effects for the Katrina dataset using different models.

INLACAR INLASEM INLASLM INLASDM
(Intercept) -16.926 -18.599 -8.067 -10.326

flood -0.446 -0.459 -0.204 -0.476
log(medinc) 1.646 1.809 0.767 1.948

sizeempsmall -0.376 -0.364 -0.423 -0.420
sizeemplarge -0.402 -0.389 -0.441 -0.340
sesstatuslow -0.482 -0.348 -0.502 -0.025

sesstatushigh 0.110 0.111 0.085 0.035
owntypesole 0.837 0.820 0.854 0.903

owntypenational 0.089 0.102 0.166 0.130

have termed the Spatial Lag Model in this paper. For comparison purposes, the
model that they have termed SAR (spatial auto-regressive) is our SLM model.
Following LeSage and Pace [13, page 283] we have also set σ2

e = 1 because of
the identifiability problem between β and σ2

e .
Table 11 shows the point estimates of the coefficient covariates used in the

model. In this case we do not report maximum likelihood estimates because
there is no similar code available in spdep. The spprobitml in the McSpatial
package re-casts the spatial weights matrix as block-diagonal, and thus does not
estimate the same model because a different weight matrix is used; the spprobit

function in the same package fits a linearized GMM model. The coefficient
estimates are close to those obtained by fitting a standard probit model with
the glm() function in R. In addition, our estimates for the SLM model are similar
to those reported in LeSage et al. [14].

Regarding spatial autocorrelation, Table 12 shows summary statistics of ρ
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Table 12: Estimates of the spatial autocorrelation parameter for the different models on the
Katrina dataset.

rho rhosd LLrho ULrho
INLACAR 0.836 0.135 0.474 0.983
INLASEM 0.597 0.105 0.345 0.756
INLASLM 0.495 0.107 0.251 0.669
INLASDM 0.214 0.144 0.018 0.521

Table 13: Direct impacts for the SLM model (after-Katrina business data).

Mean Lower 0.05 Upper 0.95
flood -0.044 -0.065 -0.027

log(medinc) 0.167 0.063 0.281
sizeempsmall -0.093 -0.162 -0.026
sizeemplarge -0.097 -0.258 0.060
sesstatuslow -0.111 -0.187 -0.037

sesstatushigh 0.019 -0.044 0.081
owntypesole 0.189 0.095 0.284

owntypenational 0.037 -0.145 0.215

under different models. We have found a small difference between our estimate
using the SLM model and the one reported by LeSage et al. [14]. The posterior
marginals have been plotted in Figure 2. Note the SDM model seems to favour
a null value of ρ meaning that once we have included the lagged covariates there
is no positive spatial autocorrelation left.

As discussed in Section 2.4, impacts cannot be computed in an exact way but
we believe that a reasonable approximation can be obtained. We have included
direct, total and indirect and total impacts for the SLM model in Tables 13,
14 and 15, respectively. Point estimates and credible intervals are often similar
to those reported for the SAR model. Not having a perfect match should not
be surprising considering how we have approximated the posterior marginals of
the impacts. If credible intervals are used to assess significance of the impacts,
however then we obtained the same conclusions as in LeSage et al. [14].

7. Other models and applications in Spatial Econometrics

In this paper we have considered a reduced family of the Spatial Economet-
rics models described in LeSage and Pace [13]. They describe a good number of
other spatial models that could benefit from INLA, such as models with different
spatial scales and techniques for model selection.

The SLM model includes a single weight matrix but LeSage and Pace [13,
page 150] discuss a model in which there are two different weight matrices to
model autocorrelation on the response and autocorrelation on the error term.
They have termed this model SAC and it is defined as follows:
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Figure 2: Marginal distributions for the spatial autocorrelation parameter ρ under different
models (after-Katrina business data).

Table 14: Total impacts for the SLM model (after-Katrina business data).

mean Lower 0.05 Upper 0.95
flood -0.086 -0.113 -0.060

log(medinc) 0.323 0.138 0.503
sizeempsmall -0.183 -0.330 -0.050
sizeemplarge -0.192 -0.526 0.116
sesstatuslow -0.216 -0.367 -0.074

sesstatushigh 0.037 -0.086 0.162
owntypesole 0.369 0.178 0.586

owntypenational 0.071 -0.289 0.429
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Table 15: Indirect impacts for the SLM model (after-Katrina business data).

mean Lower 0.05 Upper 0.95
flood -0.041 -0.058 -0.025

log(medinc) 0.151 0.060 0.256
sizeempsmall -0.087 -0.175 -0.019
sizeemplarge -0.093 -0.276 0.054
sesstatuslow -0.103 -0.194 -0.029

sesstatushigh 0.018 -0.042 0.083
owntypesole 0.175 0.062 0.310

owntypenational 0.034 -0.145 0.219

y = ρLagWy +Xβ + u
u = ρErrMu+ ε
ε ∼ N(0, σ2In).

(54)

Here, W and M represent two different spatial weight matrices, associated to
spatial autocorrelation parameters ρLag and ρErr, respectively. This model is
useful when spatial correlation on the response and the residuals are thought to
occur at two different spatial scales and they need to be modelled in a different
way.

This model can be fitted following the approach described in this paper by
conditioning on pairs of values of the spatial autocorrelation parameters ρLag

and ρErr. Note that in this case it is necessary to deal with the determinants of
the form |In − ρLagW | and |In − ρErrM |.

Another interesting model includes spatial autocorrelation on the response
at two different spatial levels, so that two spatial correlatation parameters and
associated weight matrices are used LeSage and Pace [13, page 151]:

y = ρLagWy + ρ′LagV y +Xβ + u
u = ρErrMu+ ε
ε ∼ N(0, σ2In).

(55)

ρ′Lag is a new spatial autocorrelation parameter and V another weight to model
spatial dependence at a different administrative level. Hence, spatial autocor-
relation on the response at two different administrative scales can be included
in the model.

Now we have three different spatial autocorrelation models. Fitting this
model using Bayesian model averaging can be tricky as we need to condition on
triplets of values for ρLag, ρ

′
Lag and ρErr. Furthermore, we will need to have to

deal with determinants of the form |In − ρLagW − ρ′LagV | and |In − ρErrM |.
Finally, LeSage and Pace [13, Chapter 6] discuss model comparison in Spa-

tial Econometrics. They focus on two particular cases: comparing the same
structural model with different weight matrices and comparing models with dif-
ferent explanatory variables. As a first approach, the marginal likelihood of the
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fitted models could be used, so that models with higher values are preferred. In
addition to the marginal likelihood, R-INLA reports the Deviance Information
Criterion [DIC, 24] and Conditional Predictive Ordinate [CPO, 22] for model
comparisson and selection.

Bayesian model selection techniques can be used to compare the same model
based on different weight matrices LeSage and Pace [13, Section 6.3.1] and
compute model probabilities similarly as described in Section 4.1. Namely,
say we have m models M1, . . . , Mm based on m different weight matrices.
The associated marginal likelihoods can be written as π(y|Mj); j = 1, . . . ,m.
Hence, following LeSage and Pace [13, Section 6.3.1] and assuming that all m
models are equally probable (i.e., the prior probabilities π(Mj) = 1/m; j =
1, . . . ,m) we can write down the model posterior probabilities as:

π(Mi|y) =
π(y|Mi)π(Mi)

π(y)
=

π(y|Mi)π(Mi)∑m
j=1 π(y|Mj)π(Mj)

=
π(y|Mi)∑m
j=1 π(y|Mj)

. (56)

For comparing models with different (explanatory) variables, LeSage and
Pace [13, Section 6.3.2] propose the use of reversible jump MCMC [7], which is
similar to a Bayesian model averaging method but without the need to ellicitate
and fit all possible models. For a small number of variables, posterior model
probabilities can be computed as in the case of models with different weight ma-
trices. Unfortunately, implementing this approach with R-INLA is not feasible
as the number of models grows exponentially with the number of explanatory
variables. For example, 15 explanatory variables will produce 32768 different
models, which are difficult to evaluate even with INLA. Stepwise selection pro-
cedures based on the marginal likelihood or the DIC can be easily implemented
using R-INLA but this may not lead to the optimal model. This procedure is
particularly problematic when there is collinearity among the covariates. This
happens, for example, when they have similar spatial patterns.

8. Discussion and final remarks

Bayesian spatial econometric models play an important role in the analysis
of data with spatial structure. In this paper we have shown an alternative
model fitting approach based on the Integrated Nested Laplace Approximation
(INLA). Although it only provides marginal inference, INLA is computationally
faster than MCMC and its implementation in the R-INLA package for the R
programming language can fit a wide range of models. Although the R-INLA
package cannot fit the spatial econometrics models discussed in this paper we
have shown how it is possible to fit conditional models (by fixing one or more
parameters in the full model) that can be combined by means of Bayesian Model
Averaging to obtain the posterior marginals of the model of interest. In our case,
the conditional models arise by fixing the spatial autocorrelation parameter ρ,
but this approach can be generalised to other models where more than one
parameter is fixed. This involves fitting many different models, but this is not
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really a computational burden as computations can be parallelized to reduce
computational time.

We have compared standard spatial econometrics models and other models
based on Generalised Linear Models with spatially correlated random effects.
Our simulations show that model fitting using GLMs with random effects pro-
vides worse results to those provided by Spatial Econometrics models. This may
be due to the different ways in which these models consider spatial dependence.

In the last part of this paper, we have analysed data from examples previ-
ously discussed by other authors. In general, our models provide similar results
to those obtained in other papers.

The use of INLA can be extended to many other types of econometrics
models. Spatio-temporal econometrics models can also be developed with our
approach and it would involve only minor modifications to the R code that we
have developed. The use of INLA has other advantages that do not require any
further work. For example, it is easy to include other types of additive effects
on the covariates (such as splines or random effects) in our models. R-INLA
provides a wide range of priors that can be used in our models as well. If we
have missing observations in our dataset, we can easily obtain their predictive
distribution.

As future work, we are planning an implementation of the methods described
in this paper within the R-INLA software as latent models. This will provide
an easier interface and access to all the options within this software (prior spec-
ifications, tuning options, etc.)
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