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Abstract: The modeling of volatility and correlation is important in order to calculate hedge ratios, value at risk estimates, CAPM 

(Capital Asset Pricing Model betas), derivate pricing and risk management in general. Recent access to intra-daily high-frequency data 

for two of the most liquid contracts at the Nord Pool exchange has made it possible to apply new and promising methods for analyzing 

volatility and correlation. The concepts of realized volatility and realized correlation are applied, and this study statistically describes 

the distribution (both distributional properties and temporal dependencies) of electricity forward data from 2005 to 2009. The main 

findings show that the logarithmic realized volatility is approximately normally distributed, while realized correlation seems not to be. 

Further, realized volatility and realized correlation have a long-memory feature. There also seems to be a high correlation between 

realized correlation and volatilities and positive relations between trading volume and realized volatility and between trading volume 

and realized correlation. These results are to a large extent consistent with earlier studies of stylized facts of other financial and 

commodity markets. 

Key words: Realized volatility and correlation, high-frequency data, distribution properties, temporal dependence, Nord Pool forward 
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1. Introduction

Balance risk and expected returns within a portfolio 

approach constitute some of the key concepts in 

modern finance. Accordingly, the estimation and 

forecasting of both volatility and correlation is 

arguably among the most important pursuits in 

empirical asset pricing, asset allocation and risk 

management. Examples of the crucial role that 

volatility and correlation estimates and applications 

play in finance include the calculation of hedge ratios, 

the calculation of portfolio value at risk estimates, the 

calculation of CAPM (Capital Asset Pricing Model) 

betas, option and derivate pricing, and volatility 

transmission between assets and markets.  

                                                          
Corresponding author: Gudbrand Lien, professor, research 
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Many classical models in financial economics 

assume constant volatilities and correlations, even if 

the dynamic properties of volatilities and correlations 

have been widely accepted. The research on dynamic 

properties of volatilities and correlation has typically 

been based on the estimation of parametric univariate 

and multivariate ARCH (autoregressive conditional 

heteroscedasticity) (and its generalizations) and 

stochastic volatility models. One drawback with these 

models (and parametric models in general) is that they 

depend on specific distributional assumptions, which 

reduce the robustness of the empirical findings [1]. 

The recognition of the limitations of the traditional 

volatility and correlation models has led to a different 

approach. The development of computer technology 

over the past decades and the increased availability of 

high-frequency financial data have opened up a new 
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field of research within this framework [2]. The idea 

has been used to historically relevant and reliable 

high-frequency data in order to improve the modeling 

and forecasting of outcome variability and correlation. 

The availability of high-frequency data has made it 

possible to construct i.e. “Afterward”, “after the event”, 

post realized daily volatilities and correlations, through 

the summation of squares and cross-products of 

intraday observations, respectively. This approach has 

the advantage of allowing for the characterization of 

the distributional features of the volatilities and 

correlation without an attempt to fit multivariate 

conditional and stochastic volatility models. 

Andersen and Bollerslev’s [3] seminal paper shows 

that realized volatility computed from high-frequency 

intraday returns is effectively a model-free volatility 

measure. On the basis of mainly the same ideas and 

procedures as for univariate realized volatility, both 

Andersen, [4] and Barndorff-Nielsen [5] have spelled 

out the concept of realized covariances and correlations. 

With this framework, volatility and correlation can 

simply be treated as observables (and not latent or 

modeled), which has opened up several opportunities. 

For example, conventional statistical techniques can be 

used to characterize i.e. “Afterward”, “after the event”, 

post realized volatilities and correlations measures’ 

distributional properties. Further, these observed 

measures can be modeled and dynamically forecasted 

with simple standard regression techniques. 

Some studies have also given some indication that 

nonparametric models based on high-frequency data 

provide superior out-of-sample forecasts of volatility 

compared to parametric volatility models based on 

daily data (e.g. Refs. [6-8]).  

Until about the late 1980s only sparse data were 

available, and the research consisted of formulating 

adequate models and verifying that the models 

reproduced the data patterns and gave reasonable 

predictions for the future, with an emphasis on the 

methodology. In a situation with sparse data, it was 

important to gather as much as possible information 

from what little there was, and so it was natural for the 

researcher to take great pains to make sure that the 

methodology was correct. Of course, it is equally 

important for studies to employ the correct 

methodology and to implement certain analytical 

improvements. However, owing to the availability of 

high-frequency data, the research community has 

begun to focus on in-depth, model-free (or models with 

less strict assumptions) analyses in order to discover 

the fundamental statistical properties of the data. These 

studies aim to document the statistical characteristics 

of the financial returns or the “stylized facts”, as it is 

often named in the econometric and finance literature, 

where the understanding of the market is of interest in 

itself and can give useful information for the 

specification and estimation of predictive models. 

Notable examples of studies within the financial field 

of stylized facts are those of individual stocks and stock 

indices [9-12], bonds [11], currencies [2, 4, 11, 12] and 

agricultural commodities [12]. Some of these studies, 

in addition to variance and volatility analyses, also 

focus on the stylized facts of realized covariances and 

correlations between assets investigated [4, 9, 11]. To 

our knowledge, Ref. [13] has been the first to examine 

the distributions of realized energy-futures volatilities 

and correlation in their study of the NYMEX light 

crude oil and natural-gas futures contracts.  

Ulrich [14] and Chan [15] have analyzed 

high-frequency US and Australian electricity 

spot-market data. Haugom, et al. [16] have studied 

univariate realized volatility on the basis of 

high-frequency electricity-futures data from the Nord 

Pool market. However, to our knowledge, nobody has 

analyzed realized covariance based on high-frequency 

financial electricity data.  

The main findings obtained in these earlier studies 

mentioned above show that the logarithmic realized 

volatility and correlation are approximately normally 

distributed. Further, realized volatility and correlation 

have a long-memory feature, which can be modeled by 

fractionally integrated processes, and there seems to be 
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a high correlation between realized correlation and 

volatilities. 

Recently, high-frequency, tick-by-tick data have 

also become available for the two most liquid 

electricity forward contracts (year and quarter contracts) 

at the central Nord Pool data source. This is a quickly 

growing derivative market, and more knowledge and 

tools for risk management and trading applications are 

needed. This study builds on the build framework 

employed in Refs. [4, 9] on stylized volatility and 

correlation facts, and high-frequency data is applied in 

the electricity market to analyze the stylized volatility 

and correlation facts of these electricity forward 

contracts. As far as it is aware, this is the first study to 

undertake this endeavor. As electricity is distinct in 

several important ways from other commodities (e.g., 

non-storability, uncertainty in load and generation, 

inelastic demand, oligopolistic generation), it is 

interesting to compare whether the use of 

high-frequency data reveals that the behavior of the 

financial electricity market differs significantly from 

traditional financial markets. The data covers the 

period of June 2005 to May 2009.  

The next section includes a brief review of the 

concepts of realized volatility and correlation, followed 

by a description of the data sets. The main results of the 

analysis are presented in Section 4. The last section 

offers some implications for future research and 

concluding comments. 

2. The Concepts of Realized Volatility and 

Correlation

The main focus in this study is covariance and 

correlation between series. A N-dimensional log-price 

process p(s) over the period  is considered. 

Assumed that the N-dimensional or multivariate 

log-price process is governed by a diffusion process, 

which can be formulated as follows: 

(1)

where the drift, , is a N-dimensional vector 

process, the instantaneous volatility, , is a 

 matrix such that  is the 

covariance matrix process of the continuous sample 

path component and  is a vector of 

independent Brownian motions. Assuming that the 

returns do not allow arbitrage and they have a finite 

instantaneous means, the multivariate log-price process 

in Eq. (1) belongs to the class of semi-martingales. 

Because the price process in Eq. (1) is a 

semi-martingale, it has a well-defined quadratic 

variance/covariance process. 1  Then, the quadratic 

covariance,  in Eq. (2) below is the theoretical 

covariance of the price process in Eq. (1). 

(2) 

Assumed that the value of this price process is 

observed in equally spaced intervals, , in the period 

. The log price is observed every  units of 

time, where  is small, and , as equally 

spaced intraday returns. Then, the i-th intraday return 

of day t is: 

(3)

Practical implementation of the quadratic covariance 

measure in Eq. (2) confronts the reality that no market 

provides continuous-time arbitrage-free trading 

environment. However, the quadric covariation may be 

approximated directly from high-frequency intraday 

returns by the realized covariance measure, :

(4) 

where  is now defined as an  vector. Note, 

the realized variance,  are simply the diagonal 

elements of the matrix . When  in Eq. (4) 

converges to the theoretical quadratic covariance 

measure in Eq. (2). Also, Eq. (4) is a consistent 

estimator for Eq. (2). 

In this study the distributional properties and 

temporal dependencies for the following daily 

measures are investigated: 

Realized variance, ;

Root of , or realized volatility measure, 
                                                          
1 Semi-martingales allows for a decomposition of the price 
process into a predictable finite variation process and a local 
martingale including an infinite variation component. More 
specific details about the theory of quadratic variation and 
semi-martingale assumptions are described in for example Refs. 
[4, 6]. 
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henceforth named ;

Logarithm of the root of , that is, realized 

logarithmic volatility measure, denoted ;

Realized covariance measure, .  and 

refer to reported realized covariance between assets 

or variables  and , at day . It is here referred to the 

element  of the matrix, not the whole matrix. The 

same applies for the measure is mentioned below; 

Realized correlation, 

All estimates in this study were calculated with the 

OxMetrics package called RE@LIZED [17]. 

3. Data 

The Nord Pool data source includes transactional 

prices and trading volume (per contract) in MW 

(megawatt). The data encompass forward prices for 

two financial contracts: (1) one-quarter-ahead prices 

traded the last quarter before maturity; (2) 

one-year-ahead prices traded the last year before 

maturity. The financial trading at Nord Pool takes place 

between 08:00 to 15:30. The average time between 

tick-observations for the two contracts is 2 minutes and 

53 seconds for quarter series and 6 minutes and 17 

seconds for year series. The average number of unique 

ticker observations over the business day is therefore 

approximately 178 and 73 for the quarter and year 

contract series, respectively. The analysis concept 

requires a strategy about sampling schemes, where in 

this study equally spaced price and return interval 

(calendar time sampling) is applied.2 It will always be 

a balance between the accuracy of the 

continuous-record asymptotics underlying the 

construction of the realized volatility and correlation 

concept on the one hand, and the influences from 

market microstructure noise on the other [6]. As it is 

implausible to push the continuous record asymptotics 

                                                          
2 An overview and discussion of different sampling schemes, 
both in univariate and multivariate applications, are discussed 
in e.g. Ref. [18]. 

beyond an average (or median) level of trade duration, 

equally spaced 30-minute intervals were constructed 

from the raw data, using closest tick interpolation [2].3

The contract series consist then of approximately 

16000 contract price interval observations from June 1, 

2005 up to May 29, 2009.  

In the sample used in this study, there are 22% and 

35% of the samples consisting of zero-returns, for the 

quarter and year time series, respectively. Zero-returns, 

caused by flat prices (consecutively sampled prices in 

calendar time with the same value) and no-trading (no 

observation at sampling points), are a potential bias 

source in estimation of realized volatility and 

correlation. Intraday seasons in the trading pattern can, 

among others, be a reason for flat-prices. For example, 

the volatility may be larger at the opening and closing 

than during the lunch time. It will also typically be an 

increase in volatility in the electricity market at the 

time of publication of the spot price. At Nord Pool for 

example, the spot price, which is being decided in an 

auction market, is announced at approximately 13:00 

every day for the 24 hours the following day 

(00:00-24:00).  

30-minutes returns were calculated from the equally 

spaced price data. A few observations that did not 

match in date were removed from the sample. In order 

to avoid problems with large jumps in returns between 

contracts, the returns at 08:00 for the first trading day of 

the new contract are defined as missing for both 

data-sets. Some earlier studies have argued for dropping 

overnight returns in the volatility and correlation 

measures because these non-trading overnight hours 

may differ from the volatility and correlation during 

trading hours and consequently introduce more noise 

than useful information (e.g. Ref. [19]). The 

contract-price data used in this study show very small or, 

more typically, no changes during the night, between 

15:30 and 08:00, which further supports dropping these 

observations. Hence, in this study the daily realized 

                                                          
3 In the highly liquid Deutschemark/Dollar and Yen/Dollar 
spot exchange rate markets equally-spaced 30-minutes return 
strikes are also used. 
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volatilities and correlation measures were calculated 

based on 15 intraday prices, i.e. M = 15. The sample 

used in this study consists of 995 daily-return data and 

daily-realized variability measures. 

4. Results 

4.1 The Distribution of Daily Volatility and Correlation 

The summary statistics in Table 1 show that all 

realized variances, realized volatilities and realized 

covariance distributions for both quarter and year 

contracts are significantly right-skewed and have 

significantly excessive kurtosis that exceeds the normal 

value of zero; the result is that the normal distribution 

is a poor approximation (based on a number of 

normality tests). The normality tests used are the 

Jarque-Bera test, the Anderson-Darling test and the 

Shapiro-Wilk test.4

The realized logarithmic volatility ( ) seems to 

be approximately normal distributed, especially the 

quarter contract (see the two uppermost panels in Table 

1 and the two uppermost rows of panels in Fig. 1). 

Compared to the corresponding variance measure, 

the realized correlation ( ) is more symmetric, 

with less skewness and kurtosis, but non-normally 

distributed (see the lowermost panel in Table 1 and the 

lowermost rows of panels in Fig. 1). Note, as expected, 

the strong positive realized correlation, on average, 

between the year and quarter contracts. However, these 

correlations also display high variation, ranging from 

-0.67 to 0.99. A highly negative correlation is 

unexpected, due to the fact that both contracts analyzed 

have the same underlying market. However, a closer 

look at the results show that only 3 (out of 995) 

daily-realized correlation estimates were less than -0.5 

and only 36 estimates less than zero.5

The electricity forward-contract distributional 
                                                          
4 For data with long memory, the Jarque-Bera test over-rejects 
normality and is thus not recommended [11]. Owing to this, a 
number of normality tests were used. 
5  Inspection of the extreme negative correlation estimates 
association to zero-returns in the quarterly and yearly contracts 
did not show any systematic pattern, compared to the 
non-extreme correlation estimates association to zero-returns.  

property evidence on realized variance, covariance, 

volatility, logarithmic volatility and correlation is to a 

large extent consistent with earlier studies of individual 

stocks and stock indexes (e.g. Refs. [9, 11]), bonds (e.g. 

Ref. [11]), currencies (e.g. Refs. [2, 4, 11]) and oil and 

gas (e.g. Ref. [13]). 

Table 1 Summary statistics of realized variance, volatility, 

covariance and correlation

Variance and volatility
Quarterly

RVar RV lnRV 

Mean 0.00076 2.359% -3.90 

Median 0.00039 1.980% -3.92 

Min. 0.00001 0.348% -5.66 

Max. 0.01987 14.096% -1.96 

Std.Dev. 0.00119 1.429% 0.56 

Skew. 6.84 ** 2.01 ** 0.06 

Kurt. 81.72 ** 7.66 ** -0.10 

JB 284580 ** 3105 ** 1.06 

AD +Inf. ** 32.11 ** 0.30 

SW 0.513 0.851 ** 0.999 

Yearly 

RVar RV lnRV 

Mean 0.00043 1.724% -4.24 

Median 0.00018 1.359% -4.30 

Min. 0.00000 0.209% -6.17 

Max. 0.01852 13.608% -1.99 

Std.Dev. 0.00082 1.140% 0.58 

Skew. 12.12 ** 2.47 ** 0.18 * 

Kurt. 240.95 ** 13.95 ** -0.16 

JB 2431220 ** 9073 ** 6.39 * 

AD +Inf ** +Inf ** 2.60 ** 

SW 0.390 ** 0.816 ** 0.994 **

Covariance and correlation 

 RCov RCorr  

Mean 0.00037 0.598  

Median 0.00016 0.669  

Min. -0.00034 -0.677  

Max. 0.01819 0.986  

Std.Dev. 0.00079 0.292  

Skew. 12.53 ** -0.955 **  

Kurt. 257 ** 0.715 **  

JB 2765775 ** 172 **  

AD +Inf. ** 20.52 **  

SW 0.384 ** 0.923 **  

RVar = realized variance, RV = realized volatility, lnRV = 
logarithmic realized volatility, RCov = realized covariance, 
RCorr = realized correlation. 5% significant level is marked by *, 
1 % by **. JB = Jarque-Bera test, AD = Anderson-Darling test, 
SW = Shapiro-Wilk test. 
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Fig. 1  Density distribution (solid line), histogram (bars) 

and normal reference distribution (dots) (to the left) and 

QQ-plot (to the right) of quarter contract, lnRV_quarterly, 

for year contract, lnRV_yearly, and for realized correlation 

between quarter and year contracts, RCorr. 

4.2 Temporal Dependence 

In this section the time-series properties of the 

realized variance, volatility, covariance, and 

correlation of the quarter and year forward contract 

data are explored. Table 2 reports a number of test 

statistics about the temporal-dependency properties for 

the aforementioned variables. The lines denoted Q20 

summarize the value of the standard Box-Pierce test for 

joint significance of the first 20 autocorrelations. The 

null hypothesis of no autocorrelation is clearly rejected 

for all realized variance, volatility, covariance and 

correlation measures analyzed. The right panels of Fig. 2 

depict the autocorrelations for logarithmic realized 

volatility for quarter and year contracts. The figure 

illustrates that autocorrelations are systematically 

above the conventional Bartlett 95% confidence error 

bounds (at least for more than 100 lags), which confirm 

the autocorrelation tests from the Box-Pierce tests. 

Moreover, the realized correlation ( ) measure in 

Fig. 3 shows evidence of autocorrelation in the data, 

but weaker than for the individual variance variables. 

Fig. 2 shows that the autocorrelations for the 

volatility variable starts around 0.5 and decays very 

slowly, which suggests a long-memory pattern. The 

correlation measures are less autocorrelated and have 

fewer significant lags than the volatility measures 

(Dropped c.f. Fig. 3). In any case, the autocorrelation  

Table 2  Temporal dependence of realized variance, 

volatility, covariance and correlation. 

Variance and volatility
 Quarterly  

RVar RV lnRV 

Q20 509.24 ** 1911.18 ** 3115.86**

ADF -6.18 ** -6.27 ** -4.84 ** 

KPSS 1.373 ** 4.142 ** 3.055 ** 

AR 9 4 10 
d RH 0.221 ** 0.310 ** 0.353 ** 

 Yearly 

 RVar RV lnRV 

Q20 669.03 ** 3072.44 ** 3883.26**

ADF -9.34 ** -5.35 ** -4.52 ** 

KPSS 2.407 ** 3.617 ** 3.297 ** 

AR 4 6 9 

d RH 0.296 ** 0.357 ** 0.343 ** 

Covariance and correlation 

 RCov RCorr  

Q20 344.85 ** 347.00 **  

ADF -9.81 ** -5.65 **  

KPSS 2.173 ** 1.402 **  

AR 4 10  

d RH 0.234 ** 0.168 **  

RVar = realized variance, RV = realized volatility, lnRV = 

logarithmic realized volatility, RCov = realized covariance, 

RCorr = realized correlation. The Q20 is the Box-Pierce 

statistics, where the null hypothesis rejects zero autocorrelation 

from lag 1 up to 20. ADF is the augmented Dickey-Fuller test 

(where the null-hypothesis is non-stationarity) with an 

intercept and no time trend. The test by Kwiatkowski, Phillips, 

Schmidt, and Shin [20], named the KPSS test, where the 

null-hypothesis is conventional stationarity, also has no time 

trend. Number of lags in the ADF and KPSS tests are 

determined by the AIC (Akaike’s Information Criteria), and are 

given in the rows denoted AR. dRH is the long-memory test in 

Ref. [21]. A level of significance of 5% is marked by *, 1% by 

**. 

functions seem to decay at a slow hyperbolic rate, in 

contrast to the geometric decay rate associated with the 

conventional stationary I(0) process, or alternatively to 

an infinite persistence pattern resulting from a 

non-stationary unit-root I(1) process. The 

hyperbolic-decay process is a fractionally integrated 

process with a fractional order ranging from 0 to 1. 

When the fractional order is between 0 and 0.5, the 

process is mean-reverting stationary [12]. To test the 

decay rate both the unit-root ADF test [22] and the KPSS 
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Table 3  Pearson’s correlation coefficients between realized 

correlation, the corresponding logarithmic realized 

volatility, time-to-delivery (in days) and change in trading 

volume (from day to day). 

Variables
InRV
yearly 

InRV
quarterly 

RCorr

InRV yearly  0.670 0.397

Time-to-delivery yearly -0.027  -0.105

Volume change yearly 0.139  0.122

InRV quarterly   0.270

Time-to-delivery quarterly  -0.235 -0.062

Volume change quarterly   0.131 0.109

Values in bold are different from 0 with 5% significance level. 

Non-relevant correlation coefficients are not reported. 

are a positive contemporaneous relation between 

volume and volatility in financial markets. Moreover, 

the multivariate analysis for stock returns in Ref. [24] 

also reports evidence of contemporaneous relationship 

in volatility. 

According to Samuelson [25], the volatility of 

futures price returns should increase as 

time-to-maturity decrease. For the year contracts, the 

realized volatility measure shows no statistically clear 

evidence of the Samuelson effect. However, the 

quarter-contract series show evidence of increasing 

realized volatility as time-to-delivery decreases 

(significant at the 5% level). Table 3 also shows that 

decreasing time-to-delivery is positively related to 

increasing realized correlation. 

For modeling and forecasting realized volatilities 

and correlation, future studies will do well to take the 

stylized facts into account that are described in this 

section. 

5. Implications and Conclusions 

The main findings obtained in this study of Nord 

Pool electricity forward data show that the logarithmic 

realized volatility are approximately normally 

distributed, while realized correlation seems not to be. 

Further, realized volatility has a long-memory feature, 

and there is a high correlation between realized 

correlation and volatilities. These results are to a large 

extent consistent with early, similar studies of stylized 

facts of other financial and commodity markets. In 

contrast to the study of crude oil and natural gas in Ref. 

[13], the result in this study also find a long-memory 

pattern in realized correlation.  

The results from this study have implications for 

future research and modeling. Electricity volatility 

modeling and forecasting based on high-frequency data 

can draw from similar studies of other financial and 

commodity markets. Models based on constant 

correlation seem inappropriate. Realized correlation is, 

as expected, almost always positive, but very volatile 

and so the hedge position with these quarter and year 

electricity forward contracts points to high risk.  

Realized volatilities and probably also realized 

correlation should account for the long-memory 

feature in modeling. Since the logarithmic realized 

volatility is approximately normal distributed a 

fractionally integrated processes (ARFIMA model) 

with normal distributed error terms may be 

appropriate. Realized correlation seems not to be 

normally distributed, and an ARFIMA model with 

non-normal distributed error terms should describe 

this process well. The strong correlation between 

realized volatilities and correlation demands a 

multivariate GARCH/VARFIMA framework (e.g. 

[26]). For modeling of realized volatility and 

correlation dynamic, quantile regression models and 

state space regression models could be useful 

approaches and should also be investigated. 

Future research could also combine realized 

correlation with similar measures from multivariate 

conditional volatility models, multivariate stochastic 

volatility models and implied correlation from 

option-market data. Further, realized correlation 

analyses between various energy markets and between 

energy and other markets would be fruitful areas for 

future research.  

This study has the ignored possibility for 

discontinues jumps and co-jumps in the price process. 

To account for jumps and co-jumps the multivariate 

diffusion in Eq. (1) would be replaced by a multivariate 

jump-diffusion equation. Further, the quadratic 
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covariance specification in Eq. (2) would be replaced 

by two variation components, one accounting for the 

continuous covariance components and one accounting 

for the jump/co-jump component of the discontinuous 

part. It is an extensive ongoing research on how to 

estimate this model in a reliable way.6 One challenge 

for future research in that respect is how to empirically 

estimate the continuous covariance matrix, that are 

robust to co-jumps. While in the univariate case there 

exists formal tests for significant jumps, based on the 

authors’ knowledge, it don’t exist any formal test that 

can distinguish significant differences between 

and continuous covariance matrix for the multivariate 

case. In other words, for the multivariate case it is not, 

at this point, possible to separate out significant 

co-jumps. More research is also needed to document 

the eventually improved forecasting abilities for 

realized variance and correlation by using decomposed 

continuous and jump/co-jump variables in modeling.  

Another challenge is the ways to account for market 

microstructure noise in the estimation of realized 

covariance and correlation. The realized covariance 

and correlation estimates may be affected by 

microstructure noise. 7  In this study the traditional 

realized covariance and correlations by Andersen, et al. 

[4] and Barndorff-Nielsen, et al. [5] have been used. 

Some recent alternative realized covariance and 

correlations estimators that deal with non-synchronous 

trading are discussed in for example Refs. [33, 34]. 

Schulz [35] proposes a robust approach in the case of 

flat prices and zero-returns in the univariate framework. 

Ideas considering how to deal with zero-returns in a 

multivariate setting are welcome. These extensions are 

left for further research and will be dealt with in a 

separate article.  

                                                          
6  Several alternative integrated covariance estimators exist. 
Examples are the Bipower Covariation estimator [27], the 
nearest-neighbor truncation estimator [28], the range-based 
covariance estimator [29], the Gaussian rank covariance 
estimator [30], and the realized outlyingness weighted 
quadratic covariation estimator [31]. 
7 Ref. [32] discusses potential microstructure noise problems 
in detail. 
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