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Abstract: Active control of the production choke valve is the recommended solution to prevent
severe slugging flow conditions at offshore oilfields. The slugging flow constitutes an unstable
and highly nonlinear system; the gain of the system changes drastically for different operating
points. Although PI and PID controllers are the most widely used controllers in the industry,
they need to be re-tuned for different operating conditions. The focus of this paper is to design
a model-based nonlinear controller in order to counteract nonlinearities of the system. Feedback
linearization based on the riser-base pressure and the topside pressure was used for the control
design. Stability and convergence of the closed-loop system was verified in theory as well as by
experiments on a test rig.
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1. INTRODUCTION

The oscillatory flow condition in offshore multi-phase
pipelines is undesirable and an effective solution is needed
to suppress it. One way to prevent this behaviour is reduc-
ing the opening of the top-side choke valve. However, this
conventional solution increases the back pressure of the
valve, and it reduces the production rate from the oil wells.
The recommended solution to avoid slugging flow regime
while maintaining the maximum possible production rate
is active control of the topside choke valve. The control
system used for this purpose is called anti-slug control.
This control system uses measurements such as pressure
and flow rate as the controlled variables and the topside
choke valve is the main manipulated variable (Storkaas
and Skogestad (2007)).

Anti-slug control systems tend to become unstable after
some time, because of large inflow disturbances or plant
changes. In this work, we consider the nonlinearity of the
system as a source of plant change at different operating
conditions. The nonlinearity can be counteracted by gain-
scheduling of PID controllers or by model-based nonlinear
controllers. The focus of this paper is on nonlinear model-
based control by feedback linearization.

A back-stepping design has been used by Kaasa et al.
(2007) and Kaasa et al. (2008) for nonlinear control of slug
flow in risers. Di Meglio et al. (2010a) proposed a partially
linearizing feedback controller that uses the mass of liquid
in the riser for state feedback. Di Meglio et al. (2010b) used
a simple nonlinear Luenberger-type observer to estimate
the state variable needed for the controller. However, the
separation principle does not hold for nonlinear systems
in general, and the closed-loop observer/controller is not
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guaranteed to be stable for all conditions. Jahanshahi et al.
(2013) showed that a nonlinear observer fails in closed-
loop when using the subsea pressure as the measurement.
In this work, we propose a nonlinear controller that
uses the measurements of the system directly without
using any observer. Then, we will look into controllability
limitations of the system when using the top-side pressure
measurement with the proposed nonlinear controller.

This paper is organized as follows. A simplified model
for sever-slugging is introduced in Section 2. In Section
3 we represent the system as a cascade connection of two
subsystems and discuss the stability of the cascade. The
stabilizing feedback control is designed in Section 4 and
the experiments are presented in Section 5. Next, control-
lability limitations are discussed in Section 6. Finally, the
main conclusions are summarized in Section 7.

2. SIMPLIFIED DYNAMICAL MODEL

2.1 Summary of original model

A four-state simplified model for the severe-slugging flow
has been proposed by Jahanshahi and Skogestad (2011).
The state variables of this model are as follows:

• mgp: mass of gas in pipeline [kg]
• mlp: mass of liquid in pipeline [kg]
• mgr: mass of gas in riser [kg]
• mlr: mass of liquid in riser [kg]

The four state equations of the model are

ṁgp = wg,in − wg (1)

ṁlp = wl,in − wl (2)

ṁgr = wg − αw (3)

ṁlr = wl − (1− α)w (4)
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Fig. 2. Pipeline-riser system as a cascaded connection of
two subsystems

Fig. 1 shows a schematic presentation of the model. The
inflow rates of gas and liquid to the system, wg,in and
wl,in, are assumed to be constant. The flow rates of gas
and liquid from the pipeline to the riser, wg and wl,
are determined by pressure drop across the riser-base
where they are described by virtual valve equations. The
outlet mixture flow rate, w, is determined by the opening
percentage of the top-side choke valve, u, which is the
manipulated variable of the control system. The different
flow rates and the gas mass fraction, α, in the equations
(1)-(4) are given by additional model equations provided
by Jahanshahi and Skogestad (2011).

2.2 Cascade system structure

In order to analyse a complicated system, we can separate
it into subsystems and analyse the individual subsystems
and their interconnecting relationships. As illustrated in
Fig. 2, we represent the pipeline-riser system by a cascaded
connection of two subsystems.

The input to the “Riser” subsystem is the choke valve
opening, u, and the output is the pressure at the riser-base,
Prb, which is also the input to the “Pipeline” subsystem.

3. STABILITY ANALYSIS OF CASCADE SYSTEM

Apart from the riser-slugging, other phenomena may
lead to the flow instability in pipeline-riser systems. The
pipeline-riser system may have an unstable oil well as
the inlet boundary, also the density-wave instability can
happen in long risers. Here, we consider only the riser-
slugging instability and we state the following hypothesis
about the “Pipeline” subsystem:

Hypothesis 1. If the riser-slugging is the destabilizing dy-
namic of the pipeline-riser system, then the Pipeline sub-
system with the riser-base pressure, Prb, as its input
is“input-to-state stable”.

We investigated input-to-state stability of the pipeline
subsystem by a simulation test shown in Fig. 3. The riser-
base pressure in this simulation is 19.7 kPa. This pressure
is corresponding to 50% opening of the top-side valve
for which the pipeline-riser system is unstable. However,
the pipeline subsystem separated from the riser is always
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Fig. 4. Stability of a cascaded system

stable. In addition, the local exponential stability can be
verified by looking at eigenvalues. The above hypothesis
is reasonably correct, because the riser-base pressure is a
recommended candidate controlled variable to stabilize the
system (Jahanshahi et al. (2012)). This means when the
riser-base pressure has small variations, the whole system
becomes stabilized which follows L2-gain stability from Prb

to state variables of the pipeline subsystem.

We can now state the following proposition:

Proposition 2. Let hypothesis 1 holds. If the Riser subsys-
tem becomes globally asymptotically stable under a stabi-
lizing feedback control, then the pipeline-riser system is
globally asymptotically stable.

Proof : We use conditions for stability of the cascaded
systems as stated by Corollary 10.5.3 of Isidori (1999).
As shown in Fig. 4, if Σ1 is input-to-state stable (ISS)
and origin of Σ2 is globally asymptotically stable (GAS),
then origin of the cascaded system Σ1 and Σ2 is globally
asymptotically stable (GAS). Therefore, if Hypothesis 1
holds, the proposition is verified.

It is not possible to achieve GAS for the riser subsystem
due to controllability limitations and other physical limits
of the system. Instead, we show partial stabilization with
respect to the output that enters the pipeline subsystem,
Prb, on a set D which is the physical domain of the system.

4. STABILIZING FEEDBACK CONTROL

We use feedback linearization to design a control law. For
simplicity, the outlet mass flow rate, w, is used as a virtual
control input. First, we transform the state equations
and write a model in ‘normal form’ based on the two



measurements, pressure at the riser-base and pressure at
top of the riser.

4.1 Transforming state equations

Two state variables govern the dynamics of the Riser
subsystem. We start with writing the model in the new
coordinates (x3, x4) = (mgr,mlr + mgr). We get the
following system:

ẋ3 = wg − αw (5)

ẋ4 = wg + wl − w (6)

The two measurements are y1 = Prb and y2 = Prt. From
the ideal gas law we get

y2 =
ax3

b+ x3 − x4
, (7)

where a = RTrρl/MG and b = ρlVr are the model pa-
rameters (Jahanshahi and Skogestad (2011)). The pressure
drop over the riser is sum of the hydrostatic head and the
friction term:

y1 = y2 + cx4 + Fr, (8)

where c = gLr/Vr and Fr is the friction in the riser
that depends on constant inflow rates and other constant
parameters. Differentiating and rearranging the equations
gives the system equations in y coordinates.

ẏ1 = (wg + wl) [F (y) + c]− [F (y) + c]w (9)

ẏ2 = (wg + wl)F (y)− F (y)w, (10)

where

F (y) = c
(
1− y2

a

) aα+ y2(1− α)

bc− (y1 − y2 − Fr)
. (11)

Since ρl > ρg, we have that a > y2. In addition, bc = ρlgLr

is the hydrostatic pressure when the riser is full of liquid
which is larger than the gravity term in normal operation
(y1 − y2 − Fr). Thus, the physical domain of the system
outputs is defined as follows:

D = {(y1, y2)|y2 + bc+ Fr > y1 > y2 > 0}. (12)

The numerator in equation (11) is also positive, therefore,
F (y) > 0, ∀(y1, y2) ∈ D. In addition, it can be shown that
F (y) is strictly increasing in y1 and strictly decreasing in
y2.

The transformation T : S → D, y = T (x) in (7) and (8)
where y = (y1, y2)

T , x = (x3, x4)
T and

T (x) =

[ ax3

b+x3−x4
+ cx4 + Fr
ax3

b+x3−x4

]
(13)

is a diffeomorphism on S = {(x3, x4)|x3 > 0, x4 −x3 < b},
because both T (x) and T−1(y) exist and are continuously
differentiable. b = ρlVr is the mass of a volume of liquid
equal to volume of the riser, hence b > mlr = x4 − x3 in
the normal operation of the system where x3 > 0.

For simplicity we will use the following assumption:
Assumption 1. We use gas and liquid inflow rates to the
system to calculate the gas mass fraction, α. Although it is
different from the original model, it is the same at steady-
state:

α =
wg,in

wg,in + wl,in
. (14)

4.2 Partial input-output linearization

With ξ = y1 − ȳ1 and η = y2 − ȳ2, where ȳ1 and ȳ2 are
steady-state values, we can write the system in a normal
form:

ξ̇ = (wg + wl) [F (ξ, η) + c]− [F (ξ, η) + c]w (15)

η̇ = (wg + wl)F (ξ, η)− F (ξ, η)w, (16)

The feedback controller

w =
−1

F (ξ, η) + c
(−(wg + wl) [F (ξ, η) + c] + v) (17)

reduces equation (15) to ξ̇ = v and choosing v = −K1ξ
gives

ξ̇ = −K1ξ, (18)

where K1 > 0 results in exponential stability of the ξ
dynamics. By inserting the control law (equation (17)) into
equation (16) we get

η̇ =
F (ξ, η)

F (ξ, η) + c
v = −FK1ξ, (19)

where

0 < F < F =
F (ξ, η)

F (ξ, η) + c
< F < 1. (20)

Since 0 < F < 1 and ξ → 0 known as exponentially fast, η
will therefore remain bounded. This is partial exponential
stabilization of the system with respects to ξ (Vorotnikov
(1997)).
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Assumption 2. In order to make the control law realizable,
we replace wg + wl by inflow rates to the system, wg,in +
wl,in = win, such that

w =
win(F (y) + c) +K1(y1 − ȳ1)

F (y) + c
(21)

The final control signal to the valve is

u = sat

(
w

Cv

√
ρrt(y2 − Ps)

)
, (22)

where Cv and Ps are the choke valve constant and the
separator pressure, respectively. Fr and ρrt are calculated
based on the two measurements y1 and y2 and model
parameters (see Appendix A).

We can also design a control law that linearizes equation
(16). Although we are using both y1 and y2 in F (y), we
use only y2, the topside pressure, for feedback in the linear
part of the controller. The resulting controller is

w =
1

F (y)
(winF (y) +K2(y2 − ȳ2)) , (23)

and the η-dynamics is exponentially stable. The final con-
trol signal to the valve is same as equation (22). However,
for feedback linearization we need the system to be min-
imum phase, but the linearized 4-state model constitutes
two Right-Half-Plane zeros from the valve position (in-
put) to the top-side pressure (output) (Jahanshahi et al.
(2012)). Although we cannot prove stabilization of the
system using the controller in (23), we will try it in ex-
periments.
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Fig. 5. Schematic diagram of experimental setup

4.3 Stability of composite system

After designing a stabilizing feedback control for the
“Riser” subsystem using feedback linearization, we can
consider the complete pipeline-riser system as a partially
linear composite system.

ẋ = f(x, ξ), x ∈ R2, ξ ∈ D (24)

ξ̇ = −K1ξ, (25)

where f(x, ξ) represents dynamics of the “Pipeline” sub-
system. We can check the conditions for stabilization of
the composite system as stated by Saberi et al. (1989) and
Jankovic et al. (1996):
“A linear controllable-nonlinear asymptotically stable cas-
cade system is globally stabilizable by smooth dynamic state
feedback if (a) the linear subsystem is right-invertible and
weakly minimum-phase, (b) the only variables entering the
nonlinear subsystem are the outputs and the zero dynamics
corresponding to this output.”

We use Hypothesis 1 for stability of the nonlinear
(pipeline) subsystem. The two conditions (a) and (b) are
satisfied when using the pressure at the riser-base as the
output. The riser-base pressure is minimum-phase and it is
the output which enters the nonlinear subsystem as shown
in Fig. 2. Therefore, the composite system is stabilizable
on the domain D by using the riser-base pressure as the
controlled output. However, the top-side pressure is not
minimum-phase and this output does not enter the non-
linear subsystem.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup

The experiments were performed on a laboratory setup for
anti-slug control at the Chemical Engineering Department
of NTNU. Fig. 5 shows a schematic representation of the
laboratory setup. The pipeline and the riser are made from
flexible pipes with 2 cm inner diameter. The length of the
pipeline is 4 m, and it is inclined with a 15◦ angle. The
height of the riser is 3 m. A buffer tank is used to simulate
the effect of a long pipe with the same volume, such that
the total resulting length of pipe would be about 70 m.

The topside choke valve is used as the input for control.
The separator pressure after the topside choke valve is
nominally constant at atmospheric pressure. The feed into
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Fig. 6. Bifurcation diagrams of simplified model (solid)
compared to experiments (dashed)

the pipeline is assumed to be at constant flow rates, 4
litre/min of water and 4.5 litre/min of air. With these
boundary conditions, the critical valve opening where the
system switches from stable (non-slug) to oscillatory (slug)
flow is at Z∗ = 15% for the top-side valve.

Bifurcations diagrams, describing the steady-state and the
dynamics of this system, are used to fit the model to the
experimental rig (Storkaas and Skogestad (2007)). Fig. 6
shows the bifurcation diagrams of the simplified model
(solid lines) compared to the those of the experiments
(dashed lines). The system has a stable (non-slug) flow
when the valve opening Z is smaller than 15%, and
it switches to slugging flow conditions for larger valve
openings. The minimum and maximum of the oscillations
of the slugging together with the steady-state (in the
middle) are shown in Fig. 6.

The desired steady-state (middle line) in slugging condi-
tion (Z > 15%) is unstable, but it can be stabilized by
using control. The slope of the steady-state line is the
static gain of the system, G = ∂y/∂u = ∂P1/∂Z. As
the valve opening increase this slope decreases, and the
gain finally approaches to zero. This makes control of
the system with large valve openings very difficult. The
controller should keep the loop-gain (L = KG, where G
is the process gain and K is the controller gain) constant
in order to stabilize the system over the whole range of
operation.

5.2 Results

The pressure measurements at the riser-base and at top
of the riser are very noisy because of air bubbles and
hydrodynamic slugs which have much faster dynamics
compared to the sever-slugging dynamics. In order to
reduce the noise effect on the control signal, we used a
second order low-pass filter. The experimental result using
the riser-base pressure for feedback-linearization with 30%
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Fig. 7. Experimental result of using riser-base pressure for
feedback linearization with 30% valve opening

of the valve opening is shown in Fig. 7. The low-pass filter
was used for this case and the system could be stabilized
without much noise effect.

It is desirable to open the top-side choke valve as much
as possible to get the maximum production. For example,
one experiment was performed with 60% of valve opening
as shown Fig. 8. We did not need to re-tune the controller;
the control law generates a larger proportional gain to
stabilize the system. On the other hand, the low-pass
filter adds a time-lag to the control loop, and it limits the
controllability. The extra time-lag from the low-pass filter
destabilises the closed-loop system when using the large
control gain. Therefore, we can not filter out the noise
completely; we should keep the system stable in expense
of accepting measurement noises.

We could stabilize the system using the controller in
(23) which has the top-side pressure in the linear part.
The maximum achievable valve opening for this case as
illustrated in Fig. 9 is 20%. This result is same as using a
nonlinear observer and state feedback (Jahanshahi et al.
(2013)).

6. CONTROLLABILITY LIMITATIONS

When using the riser-base pressure for feedback lineariza-
tion the control law counteracts the nonlinearity of the
system and we are able to stabilize the system for very
large valve openings. The only limitation regarding the
riser-base pressure is that with large valve openings the
gain of the system decreases drastically and the controller
generates a very large proportional gain to stabilize the
system. In this situation, the controller can not differ-
entiate between noises and the unstable dynamics. The
controller amplified the noises and the control signal is
very aggressive as shown in Fig. 8. One problem is how fast
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Fig. 8. Experimental result of using riser-base pressure for
feedback linearization with 60% valve opening
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Fig. 9. Experimental result of using top-side pressure for
feedback linearization with 20% valve opening

our valve can follow the control command signal, another
problem is saturation of the valve.

By using the top-side pressure, linear controllers (PID,
LQG, Hinf) are not able to stabilize the system, but
the nonlinear control law based on feedback linearization
could stabilize the system. However, we could stabilize the
system using the top-pressure in a very limited range (20%
valve opening). Although the nonlinear controller law can
counteract the nonlinearity, the fundamental limitations



regarding the non-minimum phase dynamics (Skogestad
and Postlethwaite (2005)) are still in place.

7. CONCLUSION

A nonlinear model-based controller was proposed for anti-
slug control. The proof of convergence was shown in theory
and experiments. The controller was able to stabilize the
system up to very large valve openings without re-tuning.

The advantage of the proposed controller over the previous
works is that it directly uses two pressure measurements at
the riser-base and at the riser top, not the state variable.
We do not have to deal with observers and hope for the
the separation principle to work.

Further, we showed controllability limitations of the sys-
tem when using the riser-base pressure and the top pres-
sure for the feedback linearization design. The fundamen-
tal limitation related to using the riser-base pressure is
the small gain of the system with large valve openings. In
addition to nonlinearity, the top-side pressure has still the
limitation regarding non-minimum phase dynamics which
can not be by-passed by any control solution.
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Appendix A. CALCULATION OF FRICTION AND
DENSITY

Gas mass fraction:

α =
wg,in

wg,in + wl,in
(A.1)

Gas density:

ρg =
y2MG

RTr
(A.2)

Liquid volume fraction:

αlt =
ρgwl

ρgwl + ρlwg
(A.3)

Mixture density at top of riser:

ρrt = αlt.ρl + (1− αlt)ρg (A.4)

Liquid superficial velocity:

Ūsl =
wl,in

ρlAr
(A.5)

Gas superficial velocity:

Ūsg =
wg,in

ρgAr
(A.6)

Mixture velocity:

Ūm = Ūsl + Ūsg (A.7)

Average density in riser:

ρ̄ =
y1 − y2
cLrAr

(A.8)

Reynolds number of flow in riser:

Re =
ρ̄ŪmDr

µ
(A.9)

An explicit approximation of the implicit Colebrook-White
equation proposed by Haaland (1983) is used as the
friction factor in the riser:

1√
λ
= −1.8 log10

[(
ϵ/Dr

3.7

)1.11

+
6.9

Re

]
(A.10)

Pressure loss due to friction in riser:

Fr =
αltλρ̄Ū

2
mLr

2Dr
(A.11)


