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Abstract

The existing ammonia synthesis process modeled in HYSYS is aimed to be op-

timized. But it is not possible to implement general optimization solvers to di-

rectly optimize the HYSYS model, since the derivative information is not avail-

able in HYSYS and the estimation of derivatives is difficult to achieve. Hence the

surrogate model is introduced to replace the original HYSYS model to make the

optimization feasible.

The ammonia process consists of four interconnected sections, the makeup

section, the reaction section, the separation section and the refrigeration sec-

tion. We aim to construct a surrogate model for each section and then combine

all the models to obtain the complete model for the whole process. Then the

process can be optimized based on the new surrogate model. The objective of

this thesis is to construct the surrogate model for the separation-refrigeration

section.

First, variable analysis including variable classification, variable reduction

and variable identification is performed to determine the input and output vari-

ables for surrogate model generation. The input variables are then sampled by

adaptive sampling to obtain the input sample space with minimized number of

sample points. Next the input sample data are imported in the HYSYS model

so that the output sample data can be calculated. Then based on the input and

output sample data, the surrogate model is generated using artificial neural net-

work. Finally, The resultant surrogate model is validated by comparing its out-

put prediction with HYSYS’ output results.
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Summary and Conclusions

In this thesis, a surrogate model is aimed to be constructed for the separation-

refrigeration (S-R) section in the ammonia plant. First, the variables defining

the process are classified by input variables and output variables. Then the vari-

ables are reduced as many as possible using the dependency relationships. After

the input and output variables are determined by variable identification, adap-

tive sampling is implemented to sample the input variables to obtain the input

sample space with minimized number of sample points. The resultant input

sample data is imported to HYSYS to obtain the corresponding output sample

data. However, the HYSYS model was not able to calculate the corresponding

output samples due to convergence issues. In order to address this issue, we

divided the separation-refrigeration section furthermore into the HEx part, the

separator part and the refrigeration section. Then we use the same approach

to construct a surrogate model for the HEx part. We used two different variable

identifications to define the output variables, of which one used the absolute

output variables and the other one used variables differences. Sample spaces

of both cases are obtained and surrogate models are generated using artificial

neural network based on the sample spaces. The resultant surrogate models are

validated by comparing their output predictions with the HYSYS’ output results

and the relative deviations are calculated.

It can be concluded that the surrogate models can be efficiently constructed

based on the approach used in this thesis. Using the adaptive sampling, the

number of sample points required to generate surrogate models can be suc-

cessfully minimized, which saved computational expense of model construc-

tion effectively. In the approach of surrogate model construction, the variable

identification is extremely crucial. It can affect both the computational expense
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of surrogate model generation and the accuracy of resultant surrogate models.

Generally, the variable differences can save the computational expense but re-

sults in less accurate surrogate models than absolute variables. The approach

used in this thesis can also be implemented to construct the surrogate models

for other simulators.
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Chapter 1

Introduction

An ammonia synthesis process modeled in HYSYS is aimed to be optimized.

However, it is difficult to directly optimize the HYSYS model since the HYSYS

simulator is essentially a black-box model, where the derivatives are difficult to

obtain or estimated, leading to infeasibility of implementation of general opti-

mization solvers [6]. To address this issue, the idea is firstly dividing the HYSYS

model into four sections, the makeup section, the reaction section, the refriger-

ation section and the separation section. Then We build surrogate models for

different sections and combine all the surrogate models together to form the

complete model of the whole process. Hence the resultant complete model of

the process can be optimized using general optimization solvers. The objective

of this thesis is to construct a surrogate model for the separation section.

1.1 Ammonia Synthesis Process

The ammonia synthesis process modeled in HYSYS is an integrated plant which

can be viewed as four interconnected sections, the makeup section, the reaction

section, the separation section and the refrigeration section. The raw material

1
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in the feed to the plant is typical syngas consisting of N2 and H2 with a molar

ratio of 3:1, and other impurities including He, Ar, H2O, CH4 and CO2. The feed

stream to the plant firstly enters the makeup section, where the fresh syngas is

compressed by multiple compressors and washed with liquid ammonia to re-

move the water in the feed. Then the syngas enters the reaction section where it

is heated by integrated heat exchanger network and feed to the reactor beds for

reactions. Next, the product stream from the reaction section passes to the sep-

aration section where it is cooled down and separated. The liquid stream leaving

the separation section, mainly consisting of ammonia, then enters the refrigera-

tion section, where the remaining impurities of water and some dissolved gases

in the liquid stream are removed. Finally, the liquid ammonia leaving the re-

frigeration section is the main product. Other by-products are stored or used as

fuel gas. A detailed process description is illustrated in the Chapter 2.

1.2 Optimization of HYSYS with Surrogate Models

Most commercial steady-state simulators, like Aspen HYSYS, SimSci PRO/II, or

UniSim Design Suite utilize the sequential-modular approach to solve the flow-

sheet, where each unit operation is solved sequentially [7]. The sequential meth-

ods are based on the natural hierarchy of the chemical process flowsheet [2], of

which the main advantages are the ability to solve a problem in a intuitive way

and achieve straightforward process design [8].

However, problems arise when the process modeled in these simulators are

aimed to be optimized. The optimization of general models usually utilize derivative-

based or algebraic solvers. But in these simulators, the input and output are cal-

culated by black-box models where the model functions can not be available di-

rectly in the desired algebraic form, and hence the derivative information is not
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possible to obtain or it is difficult to estimate the derivatives. This leads to in-

feasibility of implementation of optimization solvers to optimize the processes

in these simulators. In order to overcome this issue, the surrogate models have

been constructed to substitute the original black-box models, making it feasible

to implement the general solvers for optimization [9, 10].

1.3 Scope of Work

The objective of this thesis is to construct a surrogate model for the separation

sections in the ammonia process modeled in HYSYS. The resultant surrogate

model will be validated by comparing their output prediction with the original

HYSYS’ output.

1.4 Structure of the Thesis

This thesis consists of 6 chapters and 3 appendices.

Chapter 1. Gives a brief introduction to the ammonia process and the moti-

vation for constructing surrogate models of the HYSYS model for optimization

purpose.

Chapter 2. Describes the whole ammonia process in details and the process

flow diagrams for all the sections are present .

Chapter 3. Discusses about general surrogate modeling techniques, the

variable analysis and sampling methods.

Chapter 4. Constructs the surrogate models for two sections in the process.

Chapter 5. Validates the resulting surrogate models and discusses about the

results.

Chapter 6. Summarizes the work and gives recommendations for future

work.



4 CHAPTER 1. INTRODUCTION

Appendix A. Shows the nominal conditions and variation ranges of corre-

sponding variables.

Appendix B. Shows the process flow diagrams of the separation-refrigeration

section.

Appendix C. Shows the various variable defined in different sections.



Chapter 2

Process Description

This chapter gives descriptions of the ammonia synthesis process modeled in

HYSYS. An overview of the process is illustrated first, and then each individual

section in the process is described.

2.1 Overview of the Ammonia Plant

The objective process is an ammonia plant modeled in HYSYS. The whole plant

is an integrated plant that can be viewed as four interconnected sections, the

makeup section, the reaction section, the separation section and the refrigera-

tion section. The configuration of these sections are visualized in the block dia-

gram in Figure 2.1, where the blocks represent different sections, the solid lines

represent the mass flows and the dash lines represent the energy flows. The raw

material feed to the plant is typical syngas consisting of N2 and H2 with a molar

ratio of 3:1 and other impurities including He, Ar, H2O, CH4 and CO2. The main

product of the plant is NH3 and other by-products are stored, purged or used as

fuel gas.

The ammonia process is described briefly by individual sections with corre-

5



6 CHAPTER 2. PROCESS DESCRIPTION

Figure 2.1: Block diagram of main processes in the ammonia plant

sponding process flow diagrams (PFD) in the following sections. In the PFD fig-

ures, the red streams note the inlet streams to the corresponding sections while

the blue streams note the outlet streams of the corresponding sections. Besides,

the green streams represent the flows leaving the plant.

2.2 Makeup Section

The syngas feed firstly enters the makeup section in the plant. The incoming

syngas is compressed by the compressor C1-BP to make the pressure match the

requirement. After the pressure is increased, the syngas is cooled down by both

cooling water through CW-1 and the ammonia flow from the refrigeration sec-

tion through HEx-1. Because of the cooling, some water condenses in the flow

and it is then removed by the separator S-1. Next, the remaining H2O and CO2

in the gas flow out of S-3, which could damage the catalyst within the reactor,

are removed through washing with liquid NH3. Then the gaseous flow with syn-
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Figure 2.2: The PFD for the makeup section of the ammonia plant

gas and NH3 is cooled down by HEx-2 and becomes a two-phase stream due to

addition of liquid NH3. The flow is then separated by the separator S-2 where

H2O, CO2 and some other gases are dissolved in the liquid ammonia. The liquid

stream leaves the separator S-2 with most of NH3 and passes to the separation

section. The gas flow out of the separator S-2 is then provided as cooling me-

dia in HEx-2 and afterwards compressed by compressor C1-HP to match the

pressure of the recycle syngas from the separation section. After mixed with the

recycle syngas, the flow is compressed again by C1-RE and then feed to the re-

action section. The PFD for the syngas makeup section is presented in Figure

2.2.

2.3 Reaction Section

The syngas stream out of the makeup section enters the reaction section and

is firstly heated through the heat exchanger HEx-3 as shown in the PFD in Fig-

ure 2.3. Then the syngas stream is split into three substreams, of which two are

heated by heat exchangers IEX and HEx-4. After heated, the three substreams
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Figure 2.3: The PFD for the reaction section of the ammonia plant

are mixed and feed to the reactor, which is a jacked two-bed tubular reactor. The

feed enters the reactor bed PFR-1 and the outlet flow of PFR-1 is then cooled

down by quenching through IEX. Next, the gas flow enters the reactor bed PFR-

2 which produces the product stream. The product stream leaving the reactor

is cooled down through HEx-4 with quenching and then cooled down again by

providing heat for the HP-steam boiler. Afterwards, the product stream is fur-

ther cooled by the air cooler AC-1. The cooled product stream passes to the

reactor jacket to cool the reactor beds before it heats the syngas feed stream

through HEx-3. After HEx-3, the product stream leaves the reaction section and

is then feed to the separation section.

2.4 Separation Section

The stream from the reaction section entering the separation section is firstly

cooled down with cooling water through CW-1. Then the stream is split into two
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Figure 2.4: The PFD for the separation section of the ammonia plant

substreams as shown in the PFD in Figure 2.4. The upper substream is cooled

by the recycle syngas stream, which returns to the makeup section, through the

heat exchanger HEx-8. The lower substream is cooled by two heat exchangers

HEx-5 and HEx-6, then mixed with the upper substream and further cooled by

HEx-7. All the cooling media is provided by the streams from the refrigeration

section containing mainly liquid ammonia. After cooling, the stream becomes

a two-phase flow which is then separated in the separator S-3. The gas phase

from S-3 passes to HEx-8 to cool down the upper substream and then returns

to the makeup section as recycle syngas flow. A small part of the liquid stream

leaving S-3 passes to the separation section for water washing. The majority

of the liquid stream is mixed with the liquid ammonia flow from the makeup

section and then passes to the separator S-4. The gas flow out of S-4 is purged

and the liquid flow is then feed to the refrigeration section.

2.5 Refrigeration Section

The liquid stream, mainly consisting of ammonia, from the separation section

is feed to the refrigeration section and firstly enters the separator S-5, as shown
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in the PFD in Figure 2.5. Part of the liquid stream out of S-5 passes to the heat

exchanger HEx-7, provided as the cooling media, and the other part passes on to

storage. The pattern of the cooling cycle involving S-5/HEx-7 are repeated for S-

6/HEx-6 and S-7/HEx-5/HEx-1. The gas flow from the top of S-5 is compressed

by the compressor C2-1 at the first compression stage, then mixed with the gas

flow from S-6 and compressed by C2-2 at the second compression stage. After,

the resulting gas stream is mixed with the gas flow from S-7 and the mixed flow

is compressed by the compressor C2-3 at the third compression stage. To be no-

ticeable, the three compressors C2-1, C2-2 and C2-3 are driven by the same shaft

so that they have the same revolution speed. The three-stage compression leads

to a significant temperature increase which is partly reduced by inter-stage cool-

ing through the cooler CW-3. After the three-stage compression, the gas flow is

further cooled by the air cooler AC-2 and cooling water through CW-4, lead-

ing to the majority of flow condensing in the stream. The two-phase flow then

passes to the separator S-8. The uncondensed ammonia out of S-8 is further-

more cooled by the HEx-9 and separated again by S-9 where the gas flow leaves

the plant as fuel gas. The liquid stream out of S-8 is partly recycled to S-7 and

the remaining ammonia leaves the plant as the main product.
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Figure 2.5: The PFD for the refrigeration section of the ammonia plant



Chapter 3

Surrogate Model Techniques and

Sampling Methods

Since it is difficult to optimize the objective ammonia process directly in the

HYSYS model, the surrogate modeling is introduced to address the infeasibil-

ity problem of optimizing the HYSYS model. Some typical surrogate modeling

techniques are introduced and compared in this chapter. In order to gener-

ate the surrogate model, the input and output variables need to be determined

primarily. The variables are determined by variable analysis including variable

classification, variable reduction and variable identification. After the variables

are determined, sample spaces are designed for the variables using adaptive

sampling. The adaptive sampling is explained in this chapter and other general

sampling methods are introduced and discussed briefly.

3.1 Surrogate Modeling and Optimization

A general optimization problem can be expressed as [6].

12
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min f (x)

s.t. g (x) ≤ 0

x ∈ A ⊂Rn

where the cost function f (x) is aimed to be minimized, with respect to the vari-

ables x. At the same time, the variables x are required to fulfill the constrains

g (x) ≤ 0 as well as the box constraint A which contains the upper and lower

bounds.

The optimization of this kind of problems usually utilize derivative-based

or algebraic solvers (e.g., CONOPT [11], IPOPT [12], and SNOPT [13]) where the

information of derivatives and the algebraic form of objective functions are re-

quired. But for some simulators like HYSYS, where for any given x, the corre-

sponding f (x) and g (x) are calculated by an input-output black-box model, the

functions f (x) and g (x) can not be available directly in the desired algebraic

form, and hence the derivative information is not possible to obtain or it may

take costly computational expense to estimate the derivatives. This issue leads

to infeasibility of implementing the optimization solvers to optimize the simu-

lators like HYSYS.

One alternative approach to overcome this issue is using derivative-free op-

timization algorithms, which are utilized to solve the optimization problems

where derivatives are unavailable or expensive to estimate [14, 15]. These solvers

can use a minimal number of black-box model calls to locate an optimal feasible

point [6]. Even though the derivative-free optimization methods have the abil-

ity to deal with the black-box models, they have difficulties to find the optimal

solutions when the number of the variables x is more than 10 [14].

Therefore, in order to make the optimization of the models with numerous

variables x feasible, the black-box models as the objective functions are approx-

imated before optimization. Significant work has been done to construct the
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surrogate model to substitute the original black-box models for optimization

purpose [9, 10].

In this project, for the purpose of optimizing the ammonia plant modeled in

HYSYS, we firstly decompose the whole process into different sections and then

construct surrogate models for individual sections. Then the surrogate models

can be combined together to form the complete surrogate model of the whole

process and hence the whole process can be optimized using general optimiza-

tion solvers. The surrogate models of individual sections are connected in the

pattern as the output variables Ys,n−1 of the upstream sections are the input

variables Us,n of the downstream sections. An example of a possible connection

configuration of surrogate models is illustrated in the block diagram in Figure

3.1.

As mentioned in Chapter 2, the separation section and the refrigeration sec-

tion are coupled with each other by three recycle loops so we consider the com-

bined separation-refrigeration (S-R) section as one single section. Hence we

divide the whole process into three sections as the makeup section, the reaction

section and the separation-refrigeration section. The PFD of the S-R section

is shown in the Figure B.1, where the sections are represented simply by grey

shadow blocks.

3.2 Introduction to Surrogate Modeling

Nowadays, there exists much engineering analysis based on specialized math-

ematical models consisting of running complex computer codes or other sim-

ulators [16, 1]. However, these computer codes or simulators are usually com-

putationally expensive, making it difficult to handle for analysis or further opti-

mization [17, 16]. The surrogate model is proposed to address this issue.
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Figure 3.1: A possible connection configuration of surrogate models

The surrogate model, also know as metamodel [18], is an approximation

model of the original specialized models. The surrogate model is built using

some statistical techniques based on the available data, so that the surrogate

model has the ability to replace the actual computer codes or simulators and

predict the results without the original models [19]. The resulting surrogate

model is also aimed to be many orders of magnitude faster than the original

model and meanwhile it has a satisfied accuracy when predicting results.

Denoting x and y as the vectors of the input variables, also known as design

variables, and the corresponding output variables also known as response vari-

ables, of the original model respectively [17]. If the true nature of the original

model is [1]

y = f (x) (3.1)

then a surrogate model can be denoted as

ŷ = g (x) (3.2)
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hence

y = ŷ+ε (3.3)

where ε represents the errors due to approximation.

In essence, surrogate modeling is an approach which aims to determine a

function g of a set of input variables x from a limited amount of sample data

obtained from the original model y = f (x) [17]. Hence the resulting surrogate

model can replace the existing computer codes or simulators, providing a good

understanding of the relationship between x and y and faster analysis tools for

optimization and other explorations of the original models [1].

In order to design the sample data space that is used to construct the surro-

gate models, the design of experiments (DOE) [1] is applied to identify a efficient

set of runs (x1,x2, ...,xn) for computer codes or simulators to obtain the corre-

sponding output data (y1,y2, ...,yn). The design of experiment mainly concerns

identification of the variable design space and the sampling plan to obtain the

sample points in the variable design space. Hence the key issue in this part is

what variables are required to determine the design space and how to get the

sample data of design space as well as how to assess the goodness of such de-

signs since the number of samples is severely limited due to expensive compu-

tation cost of the original models [17]. As the computation of each sample is

expensive, the variables are aimed to be reduced as many as possible to obtain

a reduced design space. Based on the reduced design space, multiple sampling

methods can be utilized to design the sample space, such as complete sampling

[20], simple random sampling [21, 22], Latin hypercube sampling [22, 23] and

orthogonal Latin hypercube sampling [24, 25, 26, 27]. Based on specific sam-

pling methods, the sample space used to construct the surrogate model can be

determined. More detailed discussions are presented in Section 3.4.1 and Sec-
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Figure 3.2: Key stages of the surrogate modeling approach [1]

tion 3.4.2.

Based on the determined sample space, a variety of approximation model-

ing methods can be implemented to construct the surrogate models, of which

three widely used ones are Polynomial Regression [28, 29], Kriging modeling

[30, 16, 31] and Artificial Neural network [32, 2, 33]. An illustration of these

methods is presented in Section 3.3.

After constructing the surrogate model, it should be validated by evaluat-

ing its predictive capabilities using new data space, which is different from the

sample data used to build the surrogate model. If the errors are acceptable, the

surrogate model is considered accurate enough to replace the original model

for further optimization or other exploration usage. The key procedures of the

surrogate modeling is illustrated in Figure 3.2.
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3.3 Surrogate Modeling Techniques

There is a variety of techniques to build the surrogate models by fitting data.

These techniques can be categorized in two classes as parametric and non-

parametric approaches for constructing surrogate models [17]. The parametric

approaches specify the global functional form of the relationship between the

output variables and the input variables, such as Polynomial Regression [28, 29]

and Kriging modeling [30, 16, 31]. The non-parametric approaches use differ-

ent types of simple, local models in different regions of the sample data to build

up the overall model [17], such as Radial Basis Functions [34, 31] and Artifi-

cial Neural network [32, 2, 33]. Other statistical techniques such as Multivariate

Adaptive Regression Splines [35] can be implemented using either parametric or

non-parametric modeling approach. In this section, we illustrates three widely

used surrogate modeling techniques, known as Polynomial Regression, Kriging

method and Artificial Neural Network.

3.3.1 Polynomial Regression

The polynomial regression has been widely applied to design the models for

statistics or engineering systems by a number of researchers [3, 36, 37]. The

first-order polynominal used for low curvature can be expressed as in Equation

(3.4a); the second-order polynominal including all two-factor interactions is ex-

pressed as in Equation (3.4b) [1, 3, 17].

ŷ =β0

m∑
i=1

βi xi (3.4a)

ŷ =β0 +
m∑

i=1
βi xi +

m∑
i=1

βi i x2
i +

m−1∑
i=1

m∑
j=i+1

βi j xi x j (3.4b)

Where ŷ is the set of output variables and xi is the set of input variables; βi is the
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linear affect parameter and βi i is the quadratic affect parameter. The regression

parameters β are usually calculated using least squares regression analysis by

fitting the output data to input data [1].

The application of polynomial regression model has an advantage of fast

convergence because of its smoothing capability [38]. However, the drawback of

instabilities could arise when using this method to model highly nonlinear be-

haviours though high-order polynomials can be utilized [39]. Besides, in high-

dimension system, it may be too difficult to calculate all the parameters in the

polynomial equation because it requires too much sample data for fitting the

model [3].

3.3.2 Kriging Method

The Kriging model is a combination of a polynomial function and departures of

the form [3]

y(x) =
k∑

j=1
β j f j (x)+Z (x) (3.5)

where y(x) is the unknown function of interest, f j (x) is a known fixed function

and β j is the corresponding parameter of the function. And Z (x) is assumed

to be the realization of a normally distributed Gaussian random process with

mean zero variance σ2, and non-zero covariance. The term
∑k

j=1β j f j (x) ap-

proximates the design space globally while Z (x) makes up the local deviations

so that the kriging model is able to interpolate the whole design space. The co-

variance matrix of Z (x) is given by [1]

cov[Z (xi ), Z (x j )] =σ2R(xi ,x j ) (3.6)

where R(xi ,x j ) is the correlation function between any two of the ns sample

points, xi and x j , in the data space. The function of R(xi ,x j ) can be chosen
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from a variety of correlation functions. A most widely used one is the Gaussian

correlation function such as [1]

R(xi ,x j ) = exp[
ns∑

k=1
θk | xi

k −x j
k |2] (3.7)

where θk are the unknown correlation parameters that are used to fit the model,

one θk for each of the k dimensions in the design space, and the xi
k and x j

k are

the kth components of the two sample points xi and x j . The specifics for fitting

a kriging model is elaborated by Simpson et al. [30].

The Kriging model has an advantage of extreme flexibility due to the wide

range of the correlation functions [3]. It can also provide a good basis for a step-

wise algorithm which is able to determine the important factors, and the same

data can be used to build the predictor model [40]. The main disadvantage of

the kriging method is that it may be computationally expensive to fit a surro-

gate model in the case of a large sample space, as the thet a parameters used

for model fitting are determined by solving a k-dimensional optimization prob-

lem which requires significant computational time when the sample data space

is too large [3]. In addition, the correlation matrix R could be singular due to

particular distribution of the sample points [3].

3.3.3 Artificial Neural Network (ANN)

The artificial neural network, also called neural network, is a mathematical mod-

eling structure inspired by biological neural network [41]. The ANN is used to

model complex relationships between large sets of input data and output data

and find out the latent patterns inside the data sets. The ANN sets up a number

of nodes and connections which connects the input data with corresponding

output data through some weights or so-called hidden neurons [42].
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Figure 3.3: Graphic representation of a multilayer perceptron (MLP) [2]

One of the most widely used ANN configurations is the so-called multilayer

perceptron (MLP) [43]. A typical MLP is a highly parallel computational struc-

ture composed by a series of layers [2]. In this structure, the output of each

neuron is connected to every neuron in the subsequent layers, and the connec-

tion structure is in a cascade form with no connections between neurons in the

same layer [43]. A representation of a typical MLP structure is presented in Fig-

ure 3.3. In essence, each layer k in the MLP structure acts as a transformation

from an input vector uk−1 to an output vector uk , which can be expressed math-

ematically as [2]

uk = f (Wk ·uk−1 +bk ), k ∈ K = {1, ...,K } (3.8)

The relations defined in Equation (3.8) represents the mapping between the

input u0 to the network and its corresponding output uk . Each layer k consists

of nk neurons with different parameters bk and Wk . The bk is a layer bias vector

with nk dimensions and the Wk is a weight matrix with nk ×nk−1 dimensions.

The function f is known as the so-called activation function, and generates the

output vector uk by acting on every component of its argument vector. The last
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layer of this configuration is known as the output layer, whereas the rest of the

layers are known as hidden layers. [2]

The fitting of ANN is known as training. Generally, the training mainly in-

volves the minimization of total squared model deviations with respect to a sub-

set of the sample points in the design space which is known as the training set

[2]. There always exists a criterion to terminate the training. This termination

criterion involves monitoring and evaluating the model deviations with respect

to another subset of the sample points in the design space which is known as

the validation set [2].The trained network features small deviations with respect

to both the training set and the validation set can guarantee a good network

with the capacity to reproduce data away from the training set. Hence the re-

sulting network ensures a good model to replace the original model and predict

the output data with satisfied accuracy.

3.3.4 Comparison of Different Surrogate Modeling Techniques

The three surrogate modeling approaches discussed above are summarized and

compared in Table 3.1. In this project, the objective process is an ammonia

plant modeled in HYSYS, indicating a deterministic process with no random

errors present, and it involves highly nonlinear behaviors. In this case, ANN is

well-suited for modeling this HYSYS process due to its ability to handle highly

nonlinear behaviors as well as flexibility and parsimony.

There has been some works that utilized ANN to build surrogate models for

process synthesis, optimization and control. Henao and Maravelias [2] con-

structed the main equipment models used in chemical plants with ANN-based

surrogate modeling and applied the approach to process synthesis and opti-

mization. Meert and Rijckaert [44] applied ANN to modeling a polymerisation

reactor in a chemical process using two types of networks. Bloch and Denoeux
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Table 3.1: Comparison of three surrogate model techniques [1, 3, 4]

Surrogate model techniques Characteristics

Polynomial Regression • Well-established and easy to use
• Difficult to construct for

high-dimension system
• Fast convergence
• Instabilities may arise when modeling

highly nonlinear behavior

Kriging method • Extremely flexible
• Complex to construct
• May be infeasible due to possible

singular correlation matrix
• Suitable for deterministic applications

Artificial Neural network • Suitable for highly nonlinear or
very large problems

• Suitable for deterministic applications
• Best for repeated application
• Universal approximation capabilities
• Parsimonious and flexible

[4] used ANN-based modeling technique in the control of alloying process in

a hot dipped galvanizing line in steel industry and the control of a coagula-

tion process in a drinking water treatment plant in water treatment, to address

the complexity and non-linearity issues in the processes. Fernandes [45] con-

structed a neural network to substitute the complex reaction mechanism for

optimization of diesel and gasoline production based on limited experimental

data of the reaction. Mujtaba et al. [46] utilized ANN-based modeling tech-

nique in developing and implementing three different types of nonlinear con-

trol strategies in batch reactors. Therefore, in this project, ANN is chosen as the

modeling technique to construct the surrogate models.
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3.4 Design of Experiment

The design of experiment is performed to collect the sample data that can be

used to generate the surrogate model. In this thesis, the term "experiment" es-

sentially means the HYSYS model. The design of experiment consists of two

steps. First the input variables and output variables are determine so that the

variable design space can be determined. Next, the input design space is sam-

pled using specific sampling method to obtain the input sample space. Then

the input sample data can be imported to HYSYS to calculate the output sample

space. The sample spaces are aimed to have the ability to provide enough in-

formation for the generation of surrogate models. More samples can certainly

increase the accuracy of generated surrogate models. But the number of sam-

ples is severely limited due to the expensive computational cost of the HYSYS

model, so the variables are desired to be reduced to a limited number. At the

same time, the sampling method is aimed to be highly efficient so that we can

use as few samples as possible to represent the variable design spaces. Based on

the two aspects, variable analysis is performed to determine the variable design

space and the proper sampling method is proposed in the following sections.

3.4.1 Variable Analysis

The variable analysis is crucial for surrogate modeling since the model genera-

tion fully depends on the sample data of input and output variables. It is desired

to use as few variables as possible to save the computational expense of HYSYS

and decrease the complexity of surrogate model generation. The variable anal-

ysis is performed by the variable classification, the variable reduction and the

variable identification.
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Variable Classification

In essence, a process modeled in HYSYS is a synthesis of individual unit models,

which contains equations establishing relationships among different variables

[2]. Therefore, a complete HYSYS model can be decomposed into different sub-

models which consist of various unit models. In this thesis, the submodels of

HYSYS corresponds to the different sections of the ammonia process as men-

tioned in the Section 2. A modeling-oriented classification of variable sets are

defined as follows:

Uh : Set of input variables of a submodel in HYSYS;

Yh : Set of output variables of a submodel in HYSYS;

Ih : Set of independent variables of a submodel in HYSYS;

Dh : Set of dependent variables of a submodel in HYSYS;

Us : Set of input variables of a surrogate model;

Ys : Set of output variables of a surrogate model;

All the sets defined above is in the context of an individual submodel in

HYSYS, corresponding to a single section of the ammonia process, which is

aimed to be further re-modeled by surrogate modeling. For a particular sub-

model, the input variables (Uh) are used to close the degrees of freedom, and

they are usually not unique since there is normally not only one way to spec-

ify the input variables for HYSYS model definition. The input variables used to

close the degrees of freedom are subset of independent variables (Ih), and once

some input variables are specified to close the degrees of freedom meanwhile

the other input variables (Uh\ Ih) then become dependent variables (Uh∩Dh).

The selection of variables for Ih is important because it will affect the model

fitting and also influence the performance of fitted surrogate models, which is

discussed in details in Section 3.4.1. Certainly, all the output variables (Yh) are

subsets of dependent variables (Dh).
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Figure 3.4: Venn diagrams representing relations among different variable sets
for an individual model

The input variables (Us) and output variables (Ys) for model fitting are gen-

erally identical to or subsets of Uh and Yh . Since usually the surrogate models

are desired to be easily handled, Us and Ys are higher likelihood to be subsets

of Uh and Yh . Selecting the variables for Us and Ys are achieved by reducing the

number of variables using internal relationships among the variables and\or

other statistic methods. Figure 3.4 shows a Venn diagram for the relationships

among different variable sets, where red arrow and sets represent the mapping

and corresponding sets for surrogate models while blue arrow and sets repre-

sent the mapping and corresponding sets for the original HYSYS model.

Variable Reduction

When generating surrogate models, a certain level of accuracy is necessarily re-

quired. To fulfill the accuracy requirements, the variables used to construct the

surrogate model should be identical to or at least contain the major information

of the HYSYS variables. After the input and output variables for surrogate model
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generation are determined, the resulting variable design spaces are sampled to

obtain the sample spaces which are used to generate the surrogate models.

A key issue could arise when obtaining the sample spaces, which is the so-

called curse of dimensionality [19], where the dimension indicates the number

of variables. To demonstrate this issue, assuming a simple case where there

are k = 2 input variables. Within the variation ranges, we need n = 9 samples

of variables to generate a surrogate model satisfying the accuracy requirement.

Hence, the total number of sample points for input sample space is 29, which

means we need to call the HYSYS model 29 times to get the corresponding out-

put sample data. This seems to be not too complex and we can still handle

it. When it comes to a more complicated case where we have k = 9 variables.

In order to obtain the sample space with the same sample density as the case

only containing two input variables, the sample space would contain 99 points

which is an incredibly large number. Calling the HYSYS for 99 times take a lot of

computational expense. The situation could be worse if the number of variables

is more or we need more sample points. Hence if the HYSYS model has many

variables (in this thesis we got more than 9 variables for both input and output

variables), the number of points needed to give reasonably uniform coverage

of the variable design spaces rises exponentially [19]. This could cause massive

trouble in obtaining sample spaces from the HYSYS model. Furthermore, the

massive sample space could lead to incredible complexity for surrogate model

generation. For example, if there are k1 input variables and k2 output variables

of which n samples are required for all the variables in order to fulfill the accu-

racy requirement. Then the surrogate model need to be fitted based on the in-

put sample space with nk1 points and the output sample space with nk2 points,

which could spend a lot of computation expense on model generations and may

cause unexpected troubles in further model manipulation. To tackle this issue,
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one alternative approach is to reduce the number of variables used to generate

surrogate models by utilizing some dependency relationships among the vari-

ables.

Dependency relationships among the variables are based on the physical

properties and the specific features of the process itself. For example, the mass

is always conserved throughout the process which implies that the mass flow

of all inlet streams corresponds to the mass flow of all outlet streams. Other

relations can be properties like input energy plus energy generation are equal

to output energy plus energy consumption, or extent of reaction which indi-

cates the mass conservation of the reactions [47]. Generally, relationships like

these are basically based on mass balance or energy balances. Besides, other

dependency relationships can be utilized such as the relations of temperatures

and pressures which are often highly dependent on each other. For example, if

there is a gas stream where the gas is assumed as classical thermodynamic ideal

gas [48]. Then the properties of the ideal gas follow the ideal gas law noting as

PV = nRT so that the pressures can be determined by temperatures with the

equation of ideal gas law or vice versa. Hence either the variable of pressure

or temperature can be reduced using the ideal gas law equation. For describ-

ing the relation between vapor pressure and temperature for pure components,

thermodynamic equations such as Antoine equations [49, 50] can be utilized to

define the dependency of temperatures and pressures.

In addition, variable reduction can be also done by simply neglecting trivial

variables. In some particular cases, some variables which have very limited in-

fluence on the process compared with the other ones can be neglected directly.

For example, if there are two streams containing the same compositions mixed

up with each other and the molar flow of one of them is 1000 times larger than

the other one, the smaller one obviously has no significant influence on this
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mixing process so that it can be kept as constants, meaning their variations are

neglected, making the problem much simpler.

Variable Identification

After variable reduction, the initial variables are reduced to design variables,

which are able to identify the process with a minimized number of variables.

These design variables are then used to generate the surrogate model. But the

design variables can be determined in different ways. For example, we need

the pressures of both inlet streams and outlet streams to identify the process.

Meanwhile, we can also use the pressure of the inlet stream and the pressure

difference between the inlet and outlet streams to obtain the same information.

These two options are essentially based on the same information but the de-

sign variables are different in these two cases, which could have a significant

influence on surrogate model generation.

3.4.2 Sampling Methods

After variable reduction and identification, the design variables are determined

with corresponding variation ranges. Hence the variable design space is deter-

mined by discretizing the continuous input variables using the so-called space-

filling design which treat all regions of the design space equally [51]. This is

done by dividing the variation ranges into m equal intervals and hence a design

space for the input variables is obtained. For example, if there are k input vari-

ables with m intervals for each, a design space with k dimensions and m values

in each dimension is obtained. Consider a simple case where k = 2 and m = 9,

the design space can be demonstrated as a rectangular square with 81 cells as

shown in Figure 3.5a, where each cell contains a data point with two variable

values.
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(a) The variable design space, where each
cell represents one data point

(b) The sample space obtained by com-
plete sampling, where the black point rep-
resenting the sample points selected from
the data points

Figure 3.5: The design space and the sample space designed by complete sam-
pling

Based on the design space, a sample space needs to be determined using

specific sampling methods. The most straightforward way to sample the de-

sign space is using the full design space as the sample space, meaning all the

data points in the cells in the design space are selected as samples, the result-

ing sample space can be illustrated as Figure 3.5b. This way to design a sample

space is called complete sampling [20], also known as full factorial sampling

[19], where the sample space is in a uniform matter containing a full rectangu-

lar grid of points. However, the so-called problem curse of dimensionality [19]

mentioned in Section 3.4.1 would be present.

To deal with the curse of dimensionality, variable reduction is used as men-

tioned in Section 3.4.1. By using dependency relationships, the variables can

be reduced in some extent. Hence the computation expense of sample space

design as well as the complexity of the resulting surrogate model are decreased.

Furthermore, the manipulation of the surrogate model would be more efficient

and easily handled. However, the reduction of the variables have limited im-

provements for solving curse of dimensionality because we need at least a cer-

tain number of variables to generate the surrogate model in order to fulfill the
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desired accuracy. Although the variables are reduced, the sample points still in-

crease exponentially with the minimized number of variables using complete

sampling. The issue of curse of dimensionality is not essentially solved by just

reducing the variables when using complete sampling. Hence instead of com-

plete sampling, the sampling strategy used for sampling the variables should be

more efficient, so that with a certain number of samples it can make the sample

space contain as much information of the design space as possible. This abil-

ity depends on the wide spread of sample points throughout the design space,

known as the property of space-filling [19]. In order to result in a certain level of

surrogate model accuracy, a good space-filling design is required, in which the

sample points throughout the design space can yield minimal unsampled re-

gions [26], and hence the resultant sample space can represent the design space

efficiently.

Therefore, instead of the complete sampling, other sampling strategies which

could take less sample points but still can represent the design space efficiently

are desired to design the sample space, such as simple random sampling [21,

22], Latin hypercube sampling [22, 23] and orthogonal Latin hypercube sam-

pling [24, 25, 26, 27].

The simple random sampling (SRS) is a sampling design, where n distinct

items are selected from the N items of the population in such a way that every

possible combination of n items is equally likely to be the sample selected [52].

For example, we still consider the case where there are k = 2 variables and each

variable has m = 9 intervals in between its variation range. If n = 9 samples are

desired in the design space with a population of N = 81 cells in total, two possi-

ble sample spaces have equal probability of being selected, which are depicted

in Figure 3.6. However, there is a significant disadvantage making this method

less effective for this project. Because the samples existing in the same rows
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(a) (b)

Figure 3.6: Two sample spaces designed by simple random sampling

or columns as shown in Figure 3.6 contain the repetitive information, so that

the samples cannot represent the design space efficiently enough with a cer-

tain sample number, leading to waste of computational expense. In this project,

the objective of sampling is to use limited number of samples to represent the

whole design space efficiently. Hence a sampling method which can make sam-

ples containing the data information as much as possible is desired. Obviously,

SRS is not satisfactory in this case.

The latin hypercube sampling (LHS) is a sampling method for generating a

near-random sample space from a multidimensional design space, which can

be viewed as a multidimensional extension of Latin square sampling [22]. In

contrast with the complete sampling of the two-dimension design space, a Latin

square is a square grid containing samples where there is only one sample in

each row and each column. We still consider a case with two variables, indicat-

ing design space with two dimensions. Assuming n = 9 samples are required

from the design space with a population of N = 81 cells, then the sampling

method of LHS can be depicted as shown in Figure 3.7. Compared with Figure

3.6, it can be seen that for LHS there is only one point in each row and column.

Hence with the same number of sample points, LHS can make samples contain

more information of the design space so that it can represent the variables more
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(a) A typical sample space designed by Latin
hypercube sampling

(b) A sample space designed by Latin hy-
percube sampling where high correlations
occur among the sample points

Figure 3.7: Two sample spaces designed by Latin hypercube sampling

efficiently.

However, the conventional construction of LHS by mating samples near-

randomly is possible to have potential high correlations among the samples

[27] as depicted in Figure 3.7b. The sample space with high correlations may

result in incorrect statistic features when representing the design space. Hence

some optimal improvements have been introduced to LHS, of which the sam-

pling method are known as orthogonal Latin hypercube sampling [26, 27], also

known as orthogonal-array-based latin hypercubes [53]. The basic idea of this

sampling method is dividing the whole design space into subspaces and using

LHS in each subspace. Then the sample points are selected in the whole de-

sign space simultaneously, ensuring that the samples in both subspaces and

the whole space are LHS samples. Hence it can result in a well-distributed sam-

ple space with good space-filling property, which has a good ability to represent

the whole design space as we desire. Two examples with k = 2 variables and

m = 9 intervals of each variable are shown in Figure 3.8. The uniformity can

be designed as the desired form using optimal orthogonal-array-based latin hy-

percubes [53] as shown in Figure 3.8b but with a cost of higher computational

expense.
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(a) A sample space designed by orthogonal
Latin hypercube sampling

(b) A sample space designed by orthogonal
Latin hypercube sampling with desired uni-
formity

Figure 3.8: Two sample spaces designed by orthogonal Latin hypercube sam-
pling

In this project, we utilize a nearly orthogonal Latin hypercube sampling method

to design the sample space as shown in Figure 3.7a, which can ensure the re-

sultant sample space contains as much information as possible with a certain

number of sample points. Hence it can be a good representative of the variable

design space.

Adaptive Sampling

A main problem of sample space design is how many sample points are re-

quired. Obviously more sample points can increase the accuracy of the gener-

ated surrogate model but at the same too many sample points require unafford-

able computation expense. Hence an approach is aimed to be implemented to

decide the number of sample points, so that the sample points can be as few as

possible meanwhile the sample space can still ensure the accuracy of the surro-

gate model generation.

In this purpose, a sampling method called adaptive sampling proposed by

Straus and Skogestad [54] was implemented to sample the input design space.

The adaptive sampling is based on the LHS sampling method mentioned in the
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Section 3.4.2. Since LHS requires sample points more than the number of in-

put variables k, the adaptive sampling start with sample points equal to k at the

initial sampling step s = 0. At each following sampling step s, the number of

samples increase by a interval t . The interval t could be 1, 10 or more depend-

ing on the implementation situations. At the sampling step s, the number of

samples n can be calculated as

n = k + s · t (3.9)

At each sampling step, the input samples of Us are imported to HYSYS to

obtain the corresponding output samples of Ys . We store the input sample space

as a matrix X and the output sample space as a matrix Y. In the matrices, each

row contains the data of one sample point and each column corresponds to

different variables. Hence X is a n-by-k matrix and Y is a n-by-m matrix where

m is the number of output variables. Then we compute a partial least square

regression of Y on X with ncomp partial least square regression components.

In this thesis, the PLS regression is calculated using MATLAB. The calcula-

tion results in the predictor loadings of input sample space denoted as XL. The

XL is a k-by-ncomp matrix where each row contains coefficients which define a

linear combination of the PLS components that approximate the original input

variables. Hence XL contains the latent information and properties of the input

sample space.

In MATLAB, the PLS regression is calculated using the SIMPLS algorithm

[55]. First, X and Y are centered by subtracting off the column means to get cen-

tered variables X0 and Y0. Since it does not rescale the columns, normalization

of X and Y are performed before implementing PLS regression. The predictor

scores XS can be also obtained, which contains the PLS components that are
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linear combinations of the variables in X. The matrix XS is an n-by-ncomp

orthonormal matrix with rows corresponding to observations and columns to

components. The relationships between the scores XS, loadings XL and cen-

tered variables X0 are shown in the Equation 3.10.

XL = (XS\X0)′ = X0′ ·XS (3.10)

As the number of sampling points is increased at each sampling step s, the

corresponding XLs is recalculated. By comparing the current loadings XLs and

the loadings XLs−1 of the last step, we can know whether the new sample space

contains the same information. If the deviations of the loadings are very small

and below a desired threshold, we think the current sample space have the abil-

ity to explain the input variables with the desired accuracy. Therefore the input

sample space and the corresponding output sample space can be used to gen-

erate the surrogate model.

However, not all the PLS components have significant contributions to the

input sample space. Hence we also compute the percentage of variance ex-

plained in X by each component, which is stored in a 1-by-ncomp vector de-

noted as XV. If the element X Vncomp is less than a threshold of σ, we think the

corresponding component does not make a significant contribution to explain

the input variables and hence they are not necessary to be compared at each

sampling step.

The comparison of the significant components is achieved by calculating

the 2-norm of the difference between the current components and the last com-

ponents. If the number of the significant components are not the same, we use

the more components for comparison. If the norm is below some threshold

θ, we think the sample space is good enough to represent the input variables.
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Then the input sample space and the corresponding output sample space can

be used to generate the surrogate model.

The adaptive sampling has the advantage of saving the computation ex-

pense. Since the HYSYS simulation takes time and so does the ANN fitting of

surrogate models, this sampling method is able to minimize the number of re-

quired sample points with the defined criterion. The termination condition and

other parameters such as the sample step size are adjustable so that it is flexible

enough to fulfill the desired accuracy requirement.



Chapter 4

Constructing the Surrogate

Model

In this chapter, a surrogate model is aimed to be constructed for the S-R sec-

tion. The variable analysis is firstly performed to determine the variables which

can define the process in the HYSYS model. Then the variables are reduced us-

ing dependency relationships in order to decrease the computational expense

of both sampling and subsequent surrogate model generation. After reduction,

the resultant variables are identified differently based on absolute outlet vari-

ables and variable differences. Then different variable design spaces are ob-

tained. The adaptive sampling is implemented to sample these design spaces

to obtain sample spaces. Based on the resulting sample spaces, two surrogate

models are aimed to be generated using ANN. However, since the convergence

issue occurred in the HYSYS model, the surrogate model is not able to be gen-

erated for the S-R section. To address this issue, we decompose the S-R section

furthermore into three sections as the HEx part, the separator part and the re-

frigeration section. The surrogate model has been generated for the HEx part

38
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using the same approach. The surrogate models are then saved as functions for

validation.

4.1 Model Construction for the S-R Section

As mentioned in Section 3.1, the separation section and refrigeration section

are coupled with each other by three recycle loops hence they are considered as

one single S-R section. The PFD of the S-R section is shown in the Figure B.1,

where the shadow grey blocks represents the connected reaction section and

the makeup section, the red flows note the inlet streams to the S-R section, the

blue flows note the outlet streams from the S-R section to other sections and the

green flows note the streams leaving the plant. We now consider the S-R section

as the objective process and the aim is to construct a surrogate model for this

section. Regarding the HYSYS model as the "experiment", the construction of

the surrogate model follows the approach as shown in the Figure 3.2.

4.1.1 Variable Analysis

As mentioned in the Section 3.4.1, in order to construct a surrogate model for

the HYSYS model process, the variables defining the HYSYS model are needed

to be classified primarily as the set of input variables Ih , which are used to close

the degree of freedom of the HYSYS model defining the process, and the set of

output variables Yh which are the resulting variables calculated by the HYSYS

simulation.

The input variables of Ih consist of the manipulated variables and the inlet

stream variables. The manipulated variables are the variables that can affect the

operation conditions of the process, and the inlet stream variables are the mo-

lar flows, temperatures and pressures. In the S-R section as shown in the Figure
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B.1, the manipulated variables are the mass flow of cooling water in the coolers

CW-2, CW-3 and CW-4, denoted as mBFW,2, mBFW,3 and mBFW,4 respectively,

the split fraction of lower substream in split Sp-1, denoted as rSp , the revolu-

tion speed of the air cooler AC-2, denoted as RP MAC−2, the temperature differ-

ence between the outlet and inlet flows of the heat exchanger HEx-1, denoted

as ∆THE x−1, and the revolution speed of the compressors C2-1, C2-2 and C2-3,

denoted as RP MC 2. Since the compressors C2-1, C2-2 and C2-3 have the same

draft, the revolution speed of them are hence the same and count for only one

input variable. The nominal conditions and corresponding variation ranges of

these manipulated variables are shown in Table A.1.

The S-R section has two inlet streams denoted as NRH and NMS as shown in

Figure B.1. The stream NRH is from the reaction section and the stream NMS is

from the makeup section. Both of the inlet streams contain the input variables

as the molar flows of different compositions, the temperatures and the pres-

sures in the streams, which are denoted as Ni , j , T j and p j respectively, where i

represents the compositions with i ∈ {N H3,C H4, H2, H2O, He, Ar, N2} and j rep-

resents the streams with j ∈ {RH , MS}. The nominal conditions and variation

ranges of the variables in the two inlet steams are identified in Table A.2.

By importing the input variables to the HYSYS model, the resulting variables

can be obtained which are hence the output variables defined as the set Yh . The

output variables are essentially the variables in the outlet streams of the S-R sec-

tion. This section has six outlet streams in total as NH M , NSM , NS , NR1, NR2 and

NR3 shown in the Figure B.1, which contains the output variables as the molar

flows of different compositions Ni ,k , the temperatures Tk and the pressures pk ,

where i ∈ {N H3,C H4, H2, H2O, He, Ar, N2} and k ∈ {H M ,SM ,S,R1,R2,R3,R4}.

The resulting output variables exported from HYSYS with the input variables at

nominal conditions are listed in Table A.3.
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The input and output variables defined above can identify the HYSYS model

of the S-R section. Based on the set definition and the corresponding variables

classification, the sets of input variables Ih and output variables Yh of the S-R

section are summarized in Table C.1.

Variable Reduction

The variables that are needed to define the HYSYS model has been classified as

the set of input variables Ih and the set of output variables Yh . In essence, the

surrogate model is constructed to describe the mapping relationships from Ih

to Yh . Hence the computation expense mainly depends how many variables are

needed. In order to decrease the computational expense of both sampling and

surrogate model generation, the variables of Ih and Yh are aimed to be reduced

as many as possible without affecting the accuracy requirement of the resultant

surrogate model. This section concerns the possible ways to reduce the vari-

ables.

Neglecting Trivial Variables

One straightforward way to reduce variables is neglecting the trivial vari-

ables. The trivial variables do not have significant influence on the process so

that they can be neglected. In this process, some molar flows can be neglected

due to their negligible contributions compared with other molar flows. For ex-

ample, as shown in the Table A.2, the molar flow of H2O in the inlet stream

NH2O,RH is about 1000 times smaller compared to NH2O,MS . Since they are both

input variables of the process concerning the same composition, NH2O,55 does

not have significant contribution to the H2O amount imported into the process.

Hence it can be neglected and reduced form the input variables. The same situ-

ations can also be observed for the molar flows of NAr,MS , NC H4,MS and NHe,MS

since they are all about 1000 times smaller than the molar flows with the same
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compositions. Therefore, NAr,MS , NC H4,MS and NHe,MS can be neglected and

reduced from the input variables.

Some of the output variables are also trivial variables and can be reduced.

From Table A.3, it can be found out that NH2,R1, NHe,R1, NAr,R1 and NN2,R1 are too

small and hence can be reduced from the output variables. To be noticeable,

the composition of H2O is only present in the inlet stream NMS and the out-

let stream NR1, indicating all the H2O feed to the process will eventually leaves

the process through the outlet stream NR1. Hence the molar flow of H2O is es-

sentially not a design variable for surrogate model generation and the relevant

variables can be reduced from both the input and output variables.

Mass Conservation

As mentioned in the Section 3.4.1, mass conservation is a crucial property to

be utilized to reduce the variables such as molar flows. In order to illustrate the

mass conservation throughout the S-R section, the process is divided into sev-

eral parts as shown in the Figure B.2 and it is also simplified as a block diagram

with only mass flows present as shown in the Figure 4.1.

In the Figure B.2, the S-R section is divided into two sections as separa-

tion section and the refrigeration section which are represented by grey shadow

blocks. Furthermore, the separation section is divided into two parts as the HEx

part, which mainly contains the heat exchanger network plus one separator, and

the separator part, which contains only one isolated separator. The HEx part

and separator part are represented by dark blue shadow blocks. In the simpli-

fied diagram in Figure 4.1 The connecting flows, inlet flows and outlet flows of

different sections and parts are clearly visualized. From Figure 4.1, following the

flow moving pattern, the mass conservation relationships of the molar flows can

be illustrated as Equations (4.1).
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Figure 4.1: The simplified block diagram of the S-R section

NRH = NH M +NHS (4.1a)

NHS +NMS = NSM +NS +NR1 +NR2 +NR3 (4.1b)

From Equation (4.1), it can be seen that some output molar flows are not

independent variables and can be calculated by the input molar flows and the

other output molar flows. Hence these dependent output molar flows can be

reduced based on the Equations (4.1). However, since some trivial flows have

been neglected, the mass balance equations (4.1) can not be fulfilled exactly

for every composition. In order to address this issue and reduce some of the

output molar flows, we introduce the fractional factors γ and β as the ratios be-

tween independent outlet molar flows and inlet molar flows, which are defined
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in Equations 4.2.

γ= NHS

NRH
(4.2a)

β1 = NSM

NHS +NMS
(4.2b)

β2 = NS

NHS +NMS
(4.2c)

β3 = NR1

NHS +NMS
(4.2d)

β4 = NR2

NHS +NMS
(4.2e)

(4.2f)

Hence we can use the input variables and the corresponding fractional fac-

tors to calculate both the independent and dependent output molar flows. Here

we consider molar flows in NR3 and NH M as the dependent variables and they

can be calculated by input molar flows with fractional factors by Equations 4.3.

Therefore, molar flows in NR3 and NH M can be reduced from the output vari-

ables and fractional factors are introduced to substitute the dependent output

molar flows.

NH M = (1−γ) ·NRH (4.3a)

NR3 = (1−β1 −β2 −β3 −β4) · (γNRH +NMS) (4.3b)

The input variables of Ih and the output variables of Yh have been reduced

to a minimal number by variable reduction. Hence at this point the remaining

variables are essentially the variables of the set Us and the set Ys to generate the

surrogate models. Since here we use the absolute outlet variables to define Ys ,

it is denoted as Ys,abs . The resultant variables of Us and Ys,abs are listed in Table
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C.2.

Comparing the Table C.4 with the Table C.2, it can be observed that the

number of input variables are reduced from 25 to 21, and the number of output

variables are reduced from 54 to 42. The variables have been reduced effectively

by the dependency relationships and neglecting trivial variables. The variable

reduction saves the computational expense of both sampling and model gener-

ation. Besides, it also makes the resulting surrogate model easier to handle for

the further optimization.

Variable Identification

The variables to generate surrogate models are determined after variable reduc-

tion as shown in Table C.2. But some output variables can be identified in an-

other way while still contain the same variable information as the previous. The

output variables such as the pressures and temperatures can be substituted by

the pressure differences and temperatures differences instead of the absolute

values. The variables differences are defined in Equations 4.4. With the variable

differences, the variables can be identified as shown in the Table C.3, where the

output variables are denoted as Ys,di f f now.

The different identifications of the input and output variables essentially

contain the same data information, but it may have significant influence on the

surrogate model generation even using the same modeling techniques. This will

be discussed in Chapter 5.
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∆pH M = pH M −pRH

∆pSM = pSM −pRH

∆pS = pS −pRH

∆pR1 = pR1 −pRH

∆pR2 = pR2 −pRH

∆pR3 = pR3 −pRH

∆TH M = TH M −TRH

∆TSM = TSM −TRH

∆TS = TS −TRH

∆TR1 = TR1 −TRH

∆TR2 = TR2 −TRH

∆TR3 = TR3 −TRH

(4.4)

4.1.2 Sampling of the Design Space

The design space of the input variables in Us is determined after variable iden-

tifications. The input design space is aimed to be sampled to obtain the input

sample space X which will be imported in the HYSYS model, and hence the cor-

responding sample space of the output variables Y can be obtained.

We utilize adaptive sampling mentioned in Section 3.4.2 to sample the input

design space. Since there are 21 input variables in this case, the initial sample

points must be more than 21 points. We start from n0 = 30 points and then in-

crease the number of the sample points by an interval of t = 10 at each sampling

step. We set the thresholds σ= 1% and θ = 0.5 for the adaptive sampling.

Unfortunately, the sampling did not work out since the convergence issues

arose in the heat exchangers of the HYSYS model, and we cannot get the out-

put sample data. This issue is mainly caused by the recycle loops involving the

heat exchangers. Hence, we decided to decompose the S-R section furthermore

into HEx part, separator part and refrigeration section as illustrated in Figure

B.2. Then surrogate models are constructed for individual parts using the same

approach.
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Figure 4.2: The simplified diagram of the HEx part

4.2 Surrogate Model Construction for the HEx Part

Since it was not feasible to model the whole S-R section, we divided it into three

parts as shown in Figure B.2 and aim to construct surrogate models for each

part. In this section, the surrogate model is constructed for the HEx part. The

model construction follows the approach shown in the diagram of Figure 3.2.

The following sections describe the detailed procedures of the construction.

4.2.1 Variable Analysis

Similar to the S-R section, Ih and Yh should be defined firstly for HEx part. Since

the HEx part is separated with the refrigeration section by breaking the three re-

cycle loops as shown in Figure B.2, three new inlet streams and three new outlet

stream are present additionally as NRH1, NRH2, NRH3, NHR1, NHR2 and NHR3 as

shown in the PFD of Figure B.2. The flowsheet can then be simplified as a block

diagram with noting flows as Figure 4.2.

However, the molar flows of all the compositions in the six recycle streams

are not varying much and can be regarded as constants. Hence these molar
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flows are not considered as variables. But the variations of the pressures and

temperatures in these streams can not be neglected.

In the HEx part, the manipulated variables are the mass flow of cooling wa-

ter in the cooler CW-2, denoted as mBFW,2 and the split ratio of the split Sp-1,

denoted as rSP−1. The HEx part process has four inlet streams, the feed to the

process NRH and three inlet streams to the heat exchangers as NRH1, NRH2 and

NRH3. The input variables with their nominal conditions and variation ranges

are listed in Table A.4.

The output variables as the resulting variables yielded from HYSYS simula-

tions are the variables of outlet streams, including three outlet streams leaving

the heat exchangers as NHR1, NHR2 and NHR3, one stream leaving the HEx part

to the makeup section as NH M , and one stream passing to the downstream sep-

arator part as NHS . The stream configuration can be visualized in Figure 4.2.

The output variables at nominal conditions are listed in Table A.5.

The input and output variables defined above can identify the HYSYS model

of the HEx part. Based on the set definition and the corresponding variables

classification, the sets of input variables Ih and output variables Yh of the HEx

part process in the HYSYS model are identified in Table C.4.

Variable Reduction

The variables defining the HEx part has been classified as the set of the input

variables Ih and the set of the output variables Yh . The input variables are used

to close the degree of freedom of the HYSYS model but they are not exactly in-

dependent with each other. For instance, temperatures could be dependent on

pressures in a stream with specific compositions. The output variables also have

dependency relationships within themselves or with the input variables due to

mass conservation throughout the process. The dependency between pressures
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and temperatures as well as the mass conservation throughout the process are

considered in the following sections to reduce the input and output variables.

Mass conservation

As mentioned in Section 3.4.1, mass conservation is a crucial property to be

utilized to reduce the variables such as molar flows. Based on the simplified

flow diagram in Figure 4.2, the mass balance through out the HEx part can be

expressed as

NRH = NH M +NHS (4.5)

From the nominal conditions of input variables in Table A.4 and output vari-

ables in Table A.5, H2O is only present in the inlet stream NRH and outlet stream

NHS . Hence NH20,HR is always equal to NH2O,RS , indicating they are not required

for surrogate model generation. Therefore, NRH and NHS can be reduced from

the input and output variables.

The Equation (4.5) defines the dependency of the outlet molar flows on the

inlet molar flows. Similar to the Section 4.1.1, here we define the fractional fac-

tor α as Equation 4.6, and consider the stream NH M as dependent variables.

Therefore variables in the stream NH M can be calculated by the input variables

and the fractional factor α.

α= NHS

NRH
(4.6)

Hence the variables in the stream NH M can be calculated by the input vari-

ables NRH and the fractional factor α as

NH M = (1−α)NRH (4.7)

Antoine equation

From Figure B.2, it can be seen that the inlet streams to the heat exchangers



50 CHAPTER 4. CONSTRUCTING THE SURROGATE MODEL

Composition NRH1 (HEx5) NRH2 (HEx6) NRH3 (HEx7)

NH3 0.9999 1.0000 0.9995
CH4 0.0001 0.0000 -
H2O - - 0.0005

Table 4.1: The compositions in the three recycle loops

HEx-5, HEx-6 and HEx-7 come from the corresponding upstream separators S-

7, S-6 and S-5 in the refrigeration section. The gas and liquid phase inside the

separators are in thermodynamic equilibrium, and hence the the outlet streams

of the separators contain the liquid under the saturated vapor pressure, indicat-

ing there is dependent relationship between the temperature and the pressure

in the outlet streams out of the separators. The composition of the three streams

are mainly ammonia with little impurities, and the composition fractions of the

streams are shown in the Table 4.1. The three compositions are almost pure

ammonia so that the behavior of the temperature and the pressure may be ap-

proximately described using the Antoine equation [56] or other modified forms

of the Antoine equation. The dependency relationship between the tempera-

ture and the pressure is aimed to be described by these equations so that one of

these two variables can be reduced form the input variables.

The Antoine equation is a class of semi-empirical correlations describing

the relation between vapor pressure and temperature for pure components. A

typical Antoine equation is given by

ln p = A− B

C +T
(4.8)

where P [bar] represents the vapor pressure and T [K] represents the tem-

perature. The A, B and C are the parameters of the specific conditions and vary

in different temperature range. The temperature range for considering all the 3
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Temperature [K] A B C

239.6 - 371.5 4.86886 1113.928 -10.409

Table 4.2: Parameters of the Antoine equation of ammonia [5]

Temperature [K] A B C D E F

239.8 - 405.55 59.655 -4261.5 0 -6.9048 1.0017·10−5 2

Table 4.3: Parameters of the modified Antoine equation of ammonia from the
HYSYS’ library

streams in this case is between 253 K and 288 K. The corresponding parameters

in this temperature range are shown in the Table 4.2.

Instead of the original Antoine equation, the HYSYS’ library utilize various

modified forms of the Antoine equation, of which one can be expressed as Equa-

tion (4.9).

ln p = A+ B

C +T
+D lnT +ET F (4.9)

where p is the vapor pressure with the unit of kPa and T is the temperature

with the unit of K. The A, B , C , D , E and F are the parameters, which are listed

in the Table 4.3 for the corresponding temperature range.

The Antoine equation and the modified Antoine equation are implemented

by using the pressures p as the independent variable and then the equations

calculate the temperatures T as the resulting variables. The idea is to use the

equations and the pressures p to get the temperatures T , so that the tempera-

tures T are dependent variables that can be reduced from the input variables.

They results from the equations are validated by comparing them with the sim-

ulation data extracted from the HYSYS model calculated by the same pressures.

It was found out that there exist the deviations between the equations and the

HYSYS model. The reason could be that the composition is essentially not pure
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ammonia and hence the equations with the proposed parameters are not suf-

ficient to describe the behaviors between the pressures and the temperatures.

However, this means the approach of using Antoine equation or modified An-

toine equation to describe the dependency of temperatures on pressures did

not work out and can not be used to reduce the variable of the temperatures T .

Another way to describe the dependency of T on p is to fit a simple surro-

gate model for them. Since the typical curve pattern of the Antoine equation

is like a quadratic function form, it is reasonable to use the quadratic polyno-

mials to model the relationships between the pressures p and the temperatures

T for all the three streams, and hence the corresponding model equations can

be obtained. The input variables of this equation are pressures p and the out-

put variables are the corresponding temperatures T . Using this function the

temperatures can be reduced from the input variables of the HEx part since the

temperatures can be calculated by the pressures. The polynominal function is

fitted for each stream using MATLAB. The resulting functions of polynomials are

validated by using new data other than the data used to fit the polynomials. And

it was shown that the polynomials can describe the dependency relationship

quite good without significant deviations. The curves of the Antoine equation,

modified Antoine equation and three quadratic polynominal models are visual-

ized in Figure 4.3. The patterns of the curves are almost the same whereas small

deviations can be observed among different curves.

After variable reduction, the input variables of Ih and the corresponding

output variables of Yh are reduced to Us and Ys respectively, which contain the

variables for surrogate model generation. To note the outlet molar flows are

defined in absolute values, the output variables are denoted as Ys,abs . The vari-

ables of Us and Ys,abs defined for the HEx part are listed in the Table C.5.

Comparing the Table C.4 with the Table C.5, it can be known that the num-
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ber of input variables are reduced from 17 to 13 and the number of output vari-

ables are reduced from 24 to 16. The variables are reduced effectively using the

dependency relationships and hence it could help with saving the computation

expense of both sampling and model generation.

Variable Identification

Similar to the Section 4.1.1, the output variables in the HEx part such as the

pressures and temperatures can be defined in another way by using the pressure

and temperature differences instead of the outlet pressures and temperatures.

The variable differences for corresponding outlet pressures and temperatures

are defined in Equations (4.10). By substituting the absolute pressures and tem-
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pratures with variable differences, the input and output variables denoted as Us

and Ys,di f f can be identified in Table C.6.

∆pHR1 = pHR1 −pRH1

∆pHR2 = pHR2 −pRH2

∆pHR3 = pHR3 −pRH3

∆pH M = pH M −pRH

∆pHS = pHS −pRH

∆TH M = TH M −TRH

∆THS = THS −TRH

(4.10)

The different identifications of the input and output variables essentially

contain the same data information, but it can have significant influence on the

surrogate model generation even though using the same modeling techniques.

The detailed discussions are presented in Chapter 5.

4.2.2 Sampling of the Design Space

The design space of the input variables of Us is determined after variable iden-

tifications. Then we use the adaptive sampling mentioned in Section 4.2.3 to

obtain the input sample space X. And the corresponding output sample space

Y. Since there are 13 input variables in Us , the initial sample points must be

more than 13 points. We start from n0 = 20 points and then increase the num-

ber of the sample points by an interval of t = 10 at each sampling step. We set

the thresholds σ= 1% and θ = 0.5 for this adaptive sampling.

Since the output variables can be identified in two ways as Ys,di f f in Table

C.6 and Ys,abs Table C.5. The adaptive sampling is implemented for both cases

to obtain the sample spaces X and Y.
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Figure 4.4: The cascade-forward networks representation

4.2.3 Surrogate Model Generation

Using adaptive sampling, the input sample space X and the output sample space

Y are obtained. Then we use ANN to build the surrogate model based on X and

Y. There are many different types of networks in ANN. Here, we use the so called

cascade-forward networks [57] to train the networks which determine the map-

ping from the input X to the output Y. The cascade-forward networks consist of

a series of layers of which the first layer has a connection from the network input

X. Each subsequent layer has connections from the input and every previous

layer and the final layer produces the network’s output. The cascade-forward

networks has a main advantage of flexibility for any kind of input to output map-

ping. Hence it can be suitably implemented for a black-box model like HYSYS

in this case. In addition, the cascade-forward networks does not include the

feedback loops in the networks so that it can save unnecessary computational

expense. Therefore it is suitable to be used for surrogate model generation of

this HYSYS model process. In this case, we use 3 hidden layers and each hid-

den layer contains 5 neurons. The configuration of the used cascade-forward

networks is shown in the Figure 4.4.

We used MATLAB to build the networks which utilize the Levenberg-Marquardt
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algorithm [58] to train the cascade-forward networks. The resulting network

functions are essentially the surrogate models we desired. The surrogate mod-

els are generated based on Ys,abs and Ys,di f f respectively, the corresponding

resultant functions are saved as netabs and netdi f f . Hence the output data Y

can be calculated by the functions with the input data X as

Y = netdi f f (X) (4.11)

The function netabs and netdi f f are then validated in Chapter 5.



Chapter 5

Model Validation

Two surrogate models are generated based on different identifications of vari-

ables. The model netdi f f is generated with the variables identified in Table C.6

and the model netabs is generated based on the variables in Table C.5. With

the same input validation space, the models are validated by comparing their

output data with the output data extracted from the HYSYS model. Validation

figures are drawn to show the overall performance of the surrogate models. Fur-

thermore, the mean, median and max relative deviations between the the out-

put data of surrogate models and the HYSYS model are also calculated for val-

idation. At the end, we compared the computation expenses for constructing

the two surrogate models.

5.1 Model Validation for netdi f f

The resultant surrogate model netdi f f of the HEx part needs to be validated to

check if it has the ability to substitute the original HYSYS model with required

accuracy. Hence a new sample space of input variables with 1000 points is firstly

designed using the LHS sampling method, denoted as Xv . As mentioned in the
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Section 4.2.1, there are 13 input variables and 16 output variables in the HEx

part, hence Xv is a 1000-by-13 matrix with each row corresponding to one sam-

ple point data and columns corresponding to the input variables. Using Xv as

the input sample space, the output sample space of surrogate model and HYSYS

model can be obtained, which are denoted as Yv,s and Yv,H respectively. Both

Yv,s and Yv,H are 1000-by-16 matrices with each row corresponding to one sam-

ple point data and columns corresponding to output variables.

We validate the surrogate model by plotting the results of output variables of

both the surrogate model and the HYSYS model as shown in Figure 5.1, 5.2 and

5.3, where the red circles represent the resultant points of surrogate model and

the black line represents the HYSYS model results. Therefore, if it the red circles

fits the black line exactly, the surrogate model is considered has the ability to

replace the HYSYS model.

As shown in the Figure 5.1, the surrogate model has fairly good performance

for the variables ∆pH M , ∆TH M , ∆pHS and ∆THS . As for the fractional factor α,

the validation plots are shown in the Figure 5.2. The surrogate model also has

a good performance for α. The validation plots for the pressures and tempera-

tures in the three recycle loop streams NHR1, NHR2 and NHR3 are shown in the

Figure 5.3.

As shown in the Figure 5.3, the temperatures THR1, THR2 and THR3 can be

predicted using the surrogate model with satisfied accuracy. However, the pres-

sure differences ∆pHR1, ∆pHR2 and ∆pHR3 can not be predicted with satisfied

accuracy using the surrogate model. The reasons could be that the pressure

differences have fluctuating variations. Hence unstable fitting is present, indi-

cating the surrogate model can not predict ∆pHR1, ∆pHR2 and ∆pHR3 stably.

As mentioned in the Section 3.4.1, the identification could affect the resulting

surrogate model. In Section 5.2, the surrogate models can have a good perfor-
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(a) ∆pH M (b) ∆TH M

(c) ∆pHS (d) ∆THS

Figure 5.1: Validation of ∆pH M , ∆TH M , ∆pHS and ∆THS for netdi f f
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(a) αC H4 (b) αH2

(c) αHe (d) αN2

(e) αN H3 (f) αAr

Figure 5.2: Validation of the fractional factors α for netdi f f
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(a) ∆pHR1 (b) THR1

(c) ∆pHR2 (d) THR2

(e) ∆pHR3 (f) THR3

Figure 5.3: Validation of ∆pHR1, THR1, ∆pHR2, THR2, ∆pHR3 and THR3 for
netdi f f
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mance with the absolute pressures of pHR1, pHR2 and pHR3 as output variables

instead of the pressure differences.

To show the deviations more clearly, for each output variable m, we calcu-

lated relative deviations of the n = 1000 sample points and obtain the mean

values by εmean,m and the maximum values denoted by εmax,m as expressed in

the Equations (5.1). The median value of the relative deviations are also found

out which is denoted as εmed ,m . The resulting relative deviations are listed in the

Table 5.1. From the table it can been observed that εmax,m of most variables are

fairly small. But the εmax,m of ∆pHR1, ∆pHR2 and ∆pHR3 are 47.179%, 21.904%

and 18.886% respectively, which are certainly not acceptable. Hence the surro-

gate model netdi f f can not be used to replace the original HYSYS model.

εmean,m =
∑1000

n=1 |Yv,s(n,m)−Yv,H (n,m)|
1000

(5.1a)

εmax,m = max
n

|Yv,s(n,m)−Yv,H (n,m)| (5.1b)

5.2 Model Validation for netabs

In this section, the resultant surrogate model netabs is generated with the ab-

solute output variables defined in Ys,abs . And it is validated using the same ap-

proach as mentioned in Section 5.1. The validation plots are shown in Figure

5.4, 5.5 and 5.6. And the calculated deviations are listed in Table 5.2.

Comparing Figure 5.6 with Figure 5.3. It can be seen that the prediction of

pHR1, pHR2 and pHR3 using netabs have much better performance than pre-

diction of ∆pHR1, ∆pHR2 and ∆pHR3 using netdi f f . The improvements can

also be observed by comparing the Table 5.1 and Table 5.2, the εmax,m for the
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Output variable Ys,di f f εmax,m [%] εmean,m [%] εmed ,m [%]

∆pH M 1.6818 0.14376 0.10983
∆TH M 0.94493 0.063332 0.038143
∆pHS 2.4543 0.11496 0.087914
∆THS 0.81318 0.043036 0.022058

αH2 0.86128 0.060409 0.040706
αN H3 0.80756 0.02981 0.018972
αHe 0.56454 0.050002 0.034496
αAr 0.60886 0.03899 0.026946
αN2 0.65954 0.060827 0.039767
αC H4 0.35584 0.029217 0.019267

TRH1 0.12508 0.0043488 0.0032052
∆pRH1 47.179 0.75797 0.54603
TRH2 0.071066 0.0075646 0.0061685
∆pRH2 21.904 1.613 1.0349
TRH3 0.058634 0.001476 0.00070335
∆pRH3 18.886 0.26541 0.079716

Table 5.1: The relative deviations between the surrogate model netdi f f and the
HYSYS model for output variables

three pressures are reduced from 47.179%, 21.904% and 18.886% to 0.0084084%,

0.031511% and 0.058145%. Hence netabs has a good performance to predict

pHR1, pHR2 and pHR3. The predictions of other variables also have satisfied

performance. The different performance for netdi f f and netabs indicates that

the variable identification may have significant influence on surrogate model

generation.

5.3 Comparison of netdi f f and netabs

As mentioned in the previous sections, a lot of approaches are utilized to reduce

the variables and the adaptive sampling is used to minimize the sample points

required to generate the surrogate models. These strategies are implemented



64 CHAPTER 5. MODEL VALIDATION

(a) pH M (b) TH M

(c) pHS (d) THS

Figure 5.4: Validation of pH M , TH M , pHS and THS for netabs
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(a) αC H4 (b) αH2

(c) αHe (d) αN2

(e) αN H3 (f) αAr

Figure 5.5: Validation of the fractional factors α for netabs
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(a) pHR1 (b) THR1

(c) pHR2 (d) THR2

(e) pHR3 (f) THR3

Figure 5.6: Validation of pHR1, THR1, pHR2, THR2, pHR3 and THR3 for netabs
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Output variable Ys,abs εmax,m [%] εmean,m [%] εmed ,m [%]

pH M 0.014595 0.0022376 0.0015808
TH M 1.9882 0.084529 0.049647
pHS 0.038062 0.0032719 0.0024392
THS 2.3274 0.1613 0.096058

αH2 0.4368 0.040509 0.028473
αN H3 0.34788 0.02375 0.015088
αHe 0.41258 0.042658 0.030454
αAr 0.30183 0.038395 0.02696
αN2 0.34068 0.037824 0.026545
αC H4 0.40724 0.014016 0.0086241

TRH1 0.031611 0.0034433 0.0023714
pRH1 0.0084084 1.4397 ·105 3.7482 ·106

TRH2 0.16463 0.01224 0.0087845
pRH2 0.031511 0.0022238 0.0015407
TRH3 0.03914 0.00009259 0.00049691
pRH3 0.058145 0.00059877 0.00030716

Table 5.2: The relative deviations between the surrogate model netabs and the
HYSYS model for output variables

to decrease the computational expense as much as possible. We evaluate the

computational expense mainly by the total time used to construct the surro-

gate models, including sampling time and model generation time. The number

of required sample points determined by adaptive sampling and the construc-

tion time for both surrogate models netdi f f and netabs are compared in Table

5.3. It can be observed that the construction of netdi f f requires more sample

points and hence takes more construction time than netabs . The reason could

be that netdi f f is constructed based on the set Ys,di f f with the variable differ-

ences. The variable differences actually contain both input and output data in-

formation, indicating they can provide the information of the process more effi-

ciently than absolute output variables. Hence, to generate the surrogate model

for the same process, less variable differences are required than absolute vari-
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Surrogate model netdi f f netabs

Required sample points 520 790
Construction time [s] 1.57 ·103 2.09 ·103

Table 5.3: The required sample points and construction time of two surrogate
models

ables. However, the drawbacks of using variable differences have been shown

in Section 5.1. The resulting surrogate model could be not stable for some vari-

able differences which vary not significantly. Therefore, variable identification

is crucial for construction of surrogate models and there is trade-off between

ensuring accuracy and saving computational expense when constructing sur-

rogate models.

As for the accuracy of the two model, netabs has a better performance to pre-

dict the pressures pHR1, pHR2 and pHR3 as discussed in Section 5.1. For netdi f f ,

the εmax,m of the variables are all below 0.5% except ∆pH M and ∆pHS , of which

εmax,m are 1.6818% and 2.4543% respectively. Meanwhile, the εmax,m of pH M

and pHS are fairly small, being 0.014595% and 0.038062% respectively. Hence if

we replace ∆pH M and ∆pHS by pH M and pHS for surrogate model generation,

the resultant model function might have good performance to predict all the

variables. This could be done in the future work.



Chapter 6

Summary and Recommendations

for Further Work

In this chapter, we summarize the work in this thesis and give recommendations

for future work.

6.1 Summary and Conclusions

In this thesis, the existing ammonia synthesis process modeled in HYSYS is aimed

to be optimized. The process consists of four interconnected sections, the reac-

tion section, the makeup section, the separation section and the refrigeration

section. The whole process is described in Chapter 2.

Since the HYSYS simulator is a black-box model, indicating the derivative

information are not available, it is difficult to utilize some optimization solvers

to optimize the process in the HYSYS model. Hence, the surrogate model is in-

troduced to address this issue. The relevant theories are mentioned in Chapter

3.

The surrogate models are construed in Chapter 4. First, the variables defin-

69



70 CHAPTER 6. SUMMARY

ing the process are classified by input variables and output variables. Then the

variables are reduced as many as possible using the dependency relationships.

After the input and output variables are determined by variable identification,

adaptive sampling is implemented to sample the input variables to obtain the

input sample space with minimized number of sample points. The resultant

input sample data is imported to HYSYS to obtain the corresponding output

sample data. However, the HYSYS model of S-R section was not able to calcu-

late the corresponding output samples due to convergence issues. In order to

address this issue, we divided the S-R section furthermore into the HEx part, the

separator part and the refrigeration section. Then we use the same approach to

construct a surrogate model for the HEx part. We used two different variable

identifications to define the output variables, of which one used the absolute

output variables and the other one used variables differences. Sample spaces of

both cases are obtained and surrogate models are generated using artificial neu-

ral network. The resulting surrogate models are validated by comparing their

output prediction with the HYSYS’ output results and the deviations are calcu-

lated in Chapter 5.

It can be concluded that the surrogate models can be efficiently constructed

based on the approach used in this thesis. Using the adaptive sampling, the

number of sample points required to generate surrogate models can be suc-

cessfully minimized, which simplified the model generation effectively. In this

approach, the variable identification is extremely crucial in surrogate model

construction. It can affect both the computational expense of surrogate model

generation and accuracy of resultant surrogate models. Generally, the variable

differences can save the computational expense but results in less accurate sur-

rogate models than absolute variables. The approach used in this thesis can also

be implemented to construct the surrogate models for other simulators.
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6.2 Recommendations for Further Work

In the short term, the surrogate models for other parts of the S-R section need

to be generated based on the same approach. After model generation, the indi-

vidual models will be combined to form the complete separation section. How-

ever, since the decomposition of the S-R is due to convergence issues in HYSYS,

it is possible that the similar convergence issues arise when combining the in-

dividual models. If the convergence issues occur, a possible solution is to de-

compose the S-R section in another way and construct surrogate models for

new decomposed parts. If the model of the S-R section is obtained successfully

by combining individual models, then surrogate models of the reaction section

and makeup section need to be constructed. By combining the models of all the

sections, the complete model for the whole process can be obtained so that the

process can be optimized using some optimization solvers.



Appendix A

Nominal Conditions and

Variation Ranges of Variables

This appendix includes the nominal conditions and variation ranges of corre-

sponding variables in the S-R section and the HEx part.

Manipulated variables Nominal conditions Upper bounds Lower bounds

mBFW,2 [tonne/h] 545.2 907.4 544.5
mBFW,3 [tonne/h] 399.2 500 300
mBFW,4 [tonne/h] 1500 1875 1125

rSp−1 [-] 0.535 0.54 0.53
RP MAC−2 [RPM] 173 300 100

RP MC 2 [RPM] 7739 10180 7000
∆THE x−1 [◦C] 0.068 0.090 0.068

Table A.1: The variation ranges of manipulated variables in the S-R section
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Inlet variables Nominal conditions Upper bounds Lower bounds

NN H3,RH [kmole/h] 3713.2681 +20% -20%
NC H4,RH [kmole/h] 1274.7321 +20% -20%
NH2,RH [kmole/h] 15350.1440 +20% -20%

NH2O,RH [kmole/h] 0.0002 +20% -20%
NHe,RH [kmole/h] 345.1839 +20% -20%
NAr,RH [kmole/h] 1658.7192 +20% -20%
NN2,RH [kmole/h] 4800.2236 +20% -20%

TRH [◦C] 53.73 63.73 43.73
pRH [bar] 131.2 136.2 126.2

NN H3,MS [kmole/h] 27.2754 +20% -20%
NC H4,MS [kmole/h] 0.003526 +20% -20%
NH2,MS [kmole/h] 0.01384 +20% -20%

NH2O,MS [kmole/h] 1.4474 +20% -20%
NHe,MS [kmole/h] 0.0001 +20% -20%
NAr,MS [kmole/h] 0.0003 +20% -20%
NN2,MS [kmole/h] 0.009486 +20% -20%

TMS [◦C] -34.38 -24.38 -44.38
pMS [bar] 15.12 20.12 10.12

Table A.2: The variation ranges of inlet variables in the S-R section



74APPENDIX A. NOMINAL CONDITIONS AND VARIATION RANGES OF VARIABLES

Output variables Nominal conditions Output variables Nominal conditions

NN H3,H M [kmole/h] 629.1933 NN H3,SM [kmole/h] 131.0039
NC H4,H M [kmole/h] 1259.1391 NC H4,SM [kmole/h] 0.6625
NH2,H M [kmole/h] 15343.6344 NH2,SM [kmole/h] 0.2768

NH2O,H M [kmole/h] 0.0000 NH2O,SM [kmole/h] 0.0000
NHe,H M [kmole/h] 344.7035 NHe,SM [kmole/h] 0.02043
NAr,H M [kmole/h] 1656.42654 NAr,SM [kmole/h] 0.09749
NN2,H M [kmole/h] 4797.0018 NN2,SM [kmole/h] 0.1370

TH M [◦C] 26.28 TSM [◦C] -17.03
pH M [bar] 127.3 pSM [bar] 127.7

NN H3,S [kmole/h] 3.0845 NN H3,R1 [kmole/h] 2838.1790
NC H4,S [kmole/h] 4.3073 NC H4,R1 [kmole/h] 0.02283
NH2,S [kmole/h] 5.8286 NH2,R1 [kmole/h] 0.000003622

NH2O,S [kmole/h] 0.0000 NH2O,R1 [kmole/h] 1.4476
NHe,S [kmole/h] 0.3718 NHe,R1 [kmole/h] 0.000009673
NAr,S [kmole/h] 1.7305 NAr,R1 [kmole/h] 0.00006962
NN2,S [kmole/h] 2.7377 NN2,R1 [kmole/h] 0.00001695

TS [◦C] -14.53 TR1 [◦C] -29.56
pS [bar] 15.11 pR1 [bar] 1.1749

NN H3,R2 [kmole/h] 152.7128 NN H3,R3 [kmole/h] 5.9285
NC H4,R2 [kmole/h] 0.7142 NC H4,R3 [kmole/h] 9.8879
NH2,R2 [kmole/h] 0.001711 NH2,R3 [kmole/h] 0.4216

NH2O,R2 [kmole/h] 0.0000 NH2O,R3 [kmole/h] 0.0000
NHe,R2 [kmole/h] 0.001125 NHe,R3 [kmole/h] 0.08748
NAr,R2 [kmole/h] 0.005849 NAr,R3 [kmole/h] 0.4607
NN2,R2 [kmole/h] 0.002584 NN2,R3 [kmole/h] 0.3568

TR2 [◦C] -33.03 TR3 [◦C] 0.4084
pR2 [bar] 1.013 pR3 [bar] 13.59

Table A.3: The nominal conditions of output variables in the S-R section
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Input variables Nominal conditions Upper bounds Lower bounds

NN H3,RH [kmole/h] 3700.9387 +20% -20%
NC H4,RH [kmole/h] 1270.4051 +20% -20%
NH2,RH [kmole/h] 15300.8893 +20% -20%

NH2O,RH [kmole/h] 0.00024 +20% -20%
NHe,RH [kmole/h] 344.0365 +20% -20%
NAr,RH [kmole/h] 1653.2608 +20% -20%
NN2,RH [kmole/h] 4784.5849 +20% -20%

TRH [◦C] 53.73 500 300
pRH [bar] 131.2 1875 1125
TRH1 [◦C] 12.14 - -
pRH1 [bar] 6.698 7.698 5.698
TRH2 [◦C] -6.147 - -
pRH2 [bar] 3.337 3.837 2.737
TRH3 [◦C] -28.92 - -
pRH3 [bar] 1.2202 1.3202 1.1202

mBFW,2 [◦C] 725.9 907.4 544.5
rSP−1 [-] 0.535 0.54 0.53

Table A.4: The variation ranges of input variables in the HEx part

Output variables Nominal conditions Output variables Nominal conditions

NN H3,H M [kmole/h] 625.8417 NN H3,HS [kmole/h] 625.8417
NC H4,H M [kmole/h] 1254.8587 NC H4,HS [kmole/h] 1254.8587
NH2,H M [kmole/h] 15294.4030 NH2,HS [kmole/h] 15294.4030

NH2O,H M [kmole/h] 0.0000 NH2O,HS [kmole/h] 0.0002
NHe,H M [kmole/h] 343.5579 NHe,HS [kmole/h] 343.5579
NAr,H M [kmole/h] 1650.9762 NAr,HS [kmole/h] 1650.9762
NN2,H M [kmole/h] 4781.3751 NN2,HS [kmole/h] 4781.3751

TH M [◦C] 12.61 THS [◦C] 12.61
pH M [bar] 12.61 pHS [bar] 12.61
THR1 [◦C] 12.61 pHR1 [bar] 6.696
THR2 [◦C] -6.168 pHR2 [bar] 3.333
THR3 [◦C] -28.85 pHR3 [bar] 1.2140

Table A.5: The nominal conditions of output variables in the HEx part



Appendix B

Process Flow Diagrams for

Separation-Refrigeration Section

This appendix includes the PFDs for the S-R section.
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Figure B.1: The PFD of the S-R section



78APPENDIX B. PROCESS FLOW DIAGRAMS FOR SEPARATION-REFRIGERATION SECTION

Figure B.2: The PFD of the decomposed S-R section



Appendix C

Variable Definitions

This appendix includes the variables defined in the S-R section and HEx part.

Ih Inlet stream variables: Ni , j , T j , p j

Manipulated variables: mBFW,2, mBFW,3, mBFW,4, rSp−1,
RP MAC−2, RP MC 2, ∆THE x−1

Yh Outlet stream variables: Ni ,k , Tk , pk

Number of variables:
Total: 79
Input: 25
Output: 54

i ∈ {N H3,C H4, H2, H2O, He, Ar, N2}
j ∈ {RH , MS}
k ∈ {H M ,SM ,S,R1,R2,R3}

Table C.1: The sets of Ih and Yh defining the S-R section
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Us Inlet stream variables: NRH : NN H3,RH , NC H4,RH , NH2,RH , NHe,RH ,
NAr,RH , NN2,RH , TRH , pRH ,

NMS : NN H3,MS , NH2,MS , NH2O,MS ,
NN2,MS , TMS , pMS

Manipulated variables: mBFW,2, mBFW,3, mBFW,4, rSp−1,
RP MAC−2, RP MC 2, ∆THE x−1

Ys,abs Outlet stream variables: NH M : TH M , pH M ,
NSM : TSM , pSM

NS : TS , pS

NR1: TR1, pR1

NR2: TR2, pR2

NR3: TR3, pR3

α: αN H3 , αC H4 , αH2 ,
αHe ,αAr , αN2 ,

β1: β1,N H3 , β1,C H4 , β1,H2 ,
β1,He ,β1,Ar , β1,N2 ,

β2: β2,N H3 , β2,C H4 , β2,H2 ,
β2,He ,β2,Ar , β2,N2 ,

β3: β3,N H3 , β3,C H4 , β3,H2 ,
β3,He ,β3,Ar , β3,N2 ,

β4: β4,N H3 , β4,C H4 , β4,H2 ,
β4,He ,β4,Ar , β4,N2 ,

Number of variables:
Total: 63
Input: 21
Output: 42

Table C.2: The sets of Us and Ys,abs identified in the S-R section
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Us Inlet stream variables: NRH : NN H3,RH , NC H4,RH , NH2,RH , NHe,RH ,
NAr,RH , NN2,RH , TRH , pRH ,

NMS : NN H3,MS , NH2,MS , NH2O,MS ,
NN2,MS , TMS , pMS

Manipulated variables: mBFW,2, mBFW,3, mBFW,4, rSp−1,
RP MAC−2, RP MC 2, ∆THE x−1

Ys,di f f Outlet stream variables: NH M : ∆TH M , ∆pH M ,
NSM : ∆TSM , ∆pSM

NS : ∆TS , ∆pS

NR1: ∆TR1, ∆pR1

NR2: ∆TR2, ∆pR2

NR3: ∆TR3, ∆pR3

α: αN H3 , αC H4 , αH2 ,
αHe ,αAr , αN2 ,

β1: β1,N H3 , β1,C H4 , β1,H2 ,
β1,He ,β1,Ar , β1,N2 ,

β2: β2,N H3 , β2,C H4 , β2,H2 ,
β2,He ,β2,Ar , β2,N2 ,

β3: β3,N H3 , β3,C H4 , β3,H2 ,
β3,He ,β3,Ar , β3,N2 ,

β4: β4,N H3 , β4,C H4 , β4,H2 ,
β4,He ,β4,Ar , β4,N2 ,

Number of variables:
Total: 63
Input: 21
Output: 42

Table C.3: The sets of Us and Ys,di f f identified in the S-R section
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Ih Inlet stream variables: Ni ,RH , TRH , pRH ,
T j , p j

Manipulated variables: mBFW,2, rSp−1

Yh Outlet stream variables: Ni ,k , Tk , pk

Tl , pl

Number of variables:
Total: 41
Input: 17
Output: 24

i ∈ {N H3,C H4, H2, H2O, He, Ar, N2}
j ∈ {RH1,RH2,RH3}
k ∈ {H M , HS}
l ∈ {HR1, HR2, HR3}

Table C.4: The sets of Ih and Yh defining the HEx part

Us Inlet stream variables: Ni ,RH , TRH , pRH ,
p j

Manipulated variables: mBFW,2, rSp−1

Ys,abs Outlet stream variables: Tk , pk

Tl , pl

α: αi

Number of variables:
Total: 29
Input: 13
Output: 16

i ∈ {N H3,C H4, H2, He, Ar, N2}
j ∈ {RH1,RH2,RH3}
k ∈ {H M , HS}
l ∈ {HR1, HR2, HR3}

Table C.5: The sets of Us and Ys,abs identified in the HEx part
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Us Inlet stream variables: Ni ,RH , TRH , pRH ,
p j

Manipulated variables: mBFW,2, rSp−1

Ys,di f f Outlet stream variables: ∆Tk , ∆pk

Tl , ∆pl

αi

Number of variables:
Total: 29
Input: 13
Output: 16

i ∈ {N H3,C H4, H2, He, Ar, N2}
j ∈ {RH1,RH2,RH3}
k ∈ {H M , HS}
l ∈ {HR1, HR2, HR3}

Table C.6: The sets of Us and Ys,di f f in the HEx part
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