


5.3. COMPARISON OF N ETD I F F AND N ETABS 67

Output variable Ys,abs εmax,m [%] εmean,m [%] εmed ,m [%]

pH M 0.014595 0.0022376 0.0015808
TH M 1.9882 0.084529 0.049647
pHS 0.038062 0.0032719 0.0024392
THS 2.3274 0.1613 0.096058

αH2 0.4368 0.040509 0.028473
αN H3 0.34788 0.02375 0.015088
αHe 0.41258 0.042658 0.030454
αAr 0.30183 0.038395 0.02696
αN2 0.34068 0.037824 0.026545
αC H4 0.40724 0.014016 0.0086241

TRH1 0.031611 0.0034433 0.0023714
pRH1 0.0084084 1.4397 ·105 3.7482 ·106

TRH2 0.16463 0.01224 0.0087845
pRH2 0.031511 0.0022238 0.0015407
TRH3 0.03914 0.00009259 0.00049691
pRH3 0.058145 0.00059877 0.00030716

Table 5.2: The relative deviations between the surrogate model netabs and the
HYSYS model for output variables

to decrease the computational expense as much as possible. We evaluate the

computational expense mainly by the total time used to construct the surro-

gate models, including sampling time and model generation time. The number

of required sample points determined by adaptive sampling and the construc-

tion time for both surrogate models netdi f f and netabs are compared in Table

5.3. It can be observed that the construction of netdi f f requires more sample

points and hence takes more construction time than netabs . The reason could

be that netdi f f is constructed based on the set Ys,di f f with the variable differ-

ences. The variable differences actually contain both input and output data in-

formation, indicating they can provide the information of the process more effi-

ciently than absolute output variables. Hence, to generate the surrogate model

for the same process, less variable differences are required than absolute vari-
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Surrogate model netdi f f netabs

Required sample points 520 790
Construction time [s] 1.57 ·103 2.09 ·103

Table 5.3: The required sample points and construction time of two surrogate
models

ables. However, the drawbacks of using variable differences have been shown

in Section 5.1. The resulting surrogate model could be not stable for some vari-

able differences which vary not significantly. Therefore, variable identification

is crucial for construction of surrogate models and there is trade-off between

ensuring accuracy and saving computational expense when constructing sur-

rogate models.

As for the accuracy of the two model, netabs has a better performance to pre-

dict the pressures pHR1, pHR2 and pHR3 as discussed in Section 5.1. For netdi f f ,

the εmax,m of the variables are all below 0.5% except ∆pH M and ∆pHS , of which

εmax,m are 1.6818% and 2.4543% respectively. Meanwhile, the εmax,m of pH M

and pHS are fairly small, being 0.014595% and 0.038062% respectively. Hence if

we replace ∆pH M and ∆pHS by pH M and pHS for surrogate model generation,

the resultant model function might have good performance to predict all the

variables. This could be done in the future work.



Chapter 6

Summary and Recommendations

for Further Work

In this chapter, we summarize the work in this thesis and give recommendations

for future work.

6.1 Summary and Conclusions

In this thesis, the existing ammonia synthesis process modeled in HYSYS is aimed

to be optimized. The process consists of four interconnected sections, the reac-

tion section, the makeup section, the separation section and the refrigeration

section. The whole process is described in Chapter 2.

Since the HYSYS simulator is a black-box model, indicating the derivative

information are not available, it is difficult to utilize some optimization solvers

to optimize the process in the HYSYS model. Hence, the surrogate model is in-

troduced to address this issue. The relevant theories are mentioned in Chapter

3.

The surrogate models are construed in Chapter 4. First, the variables defin-
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ing the process are classified by input variables and output variables. Then the

variables are reduced as many as possible using the dependency relationships.

After the input and output variables are determined by variable identification,

adaptive sampling is implemented to sample the input variables to obtain the

input sample space with minimized number of sample points. The resultant

input sample data is imported to HYSYS to obtain the corresponding output

sample data. However, the HYSYS model of S-R section was not able to calcu-

late the corresponding output samples due to convergence issues. In order to

address this issue, we divided the S-R section furthermore into the HEx part, the

separator part and the refrigeration section. Then we use the same approach to

construct a surrogate model for the HEx part. We used two different variable

identifications to define the output variables, of which one used the absolute

output variables and the other one used variables differences. Sample spaces of

both cases are obtained and surrogate models are generated using artificial neu-

ral network. The resulting surrogate models are validated by comparing their

output prediction with the HYSYS’ output results and the deviations are calcu-

lated in Chapter 5.

It can be concluded that the surrogate models can be efficiently constructed

based on the approach used in this thesis. Using the adaptive sampling, the

number of sample points required to generate surrogate models can be suc-

cessfully minimized, which simplified the model generation effectively. In this

approach, the variable identification is extremely crucial in surrogate model

construction. It can affect both the computational expense of surrogate model

generation and accuracy of resultant surrogate models. Generally, the variable

differences can save the computational expense but results in less accurate sur-

rogate models than absolute variables. The approach used in this thesis can also

be implemented to construct the surrogate models for other simulators.
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6.2 Recommendations for Further Work

In the short term, the surrogate models for other parts of the S-R section need

to be generated based on the same approach. After model generation, the indi-

vidual models will be combined to form the complete separation section. How-

ever, since the decomposition of the S-R is due to convergence issues in HYSYS,

it is possible that the similar convergence issues arise when combining the in-

dividual models. If the convergence issues occur, a possible solution is to de-

compose the S-R section in another way and construct surrogate models for

new decomposed parts. If the model of the S-R section is obtained successfully

by combining individual models, then surrogate models of the reaction section

and makeup section need to be constructed. By combining the models of all the

sections, the complete model for the whole process can be obtained so that the

process can be optimized using some optimization solvers.



Appendix A

Nominal Conditions and

Variation Ranges of Variables

This appendix includes the nominal conditions and variation ranges of corre-

sponding variables in the S-R section and the HEx part.

Manipulated variables Nominal conditions Upper bounds Lower bounds

mBFW,2 [tonne/h] 545.2 907.4 544.5
mBFW,3 [tonne/h] 399.2 500 300
mBFW,4 [tonne/h] 1500 1875 1125

rSp−1 [-] 0.535 0.54 0.53
RP MAC−2 [RPM] 173 300 100

RP MC 2 [RPM] 7739 10180 7000
∆THE x−1 [◦C] 0.068 0.090 0.068

Table A.1: The variation ranges of manipulated variables in the S-R section
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Inlet variables Nominal conditions Upper bounds Lower bounds

NN H3,RH [kmole/h] 3713.2681 +20% -20%
NC H4,RH [kmole/h] 1274.7321 +20% -20%
NH2,RH [kmole/h] 15350.1440 +20% -20%

NH2O,RH [kmole/h] 0.0002 +20% -20%
NHe,RH [kmole/h] 345.1839 +20% -20%
NAr,RH [kmole/h] 1658.7192 +20% -20%
NN2,RH [kmole/h] 4800.2236 +20% -20%

TRH [◦C] 53.73 63.73 43.73
pRH [bar] 131.2 136.2 126.2

NN H3,MS [kmole/h] 27.2754 +20% -20%
NC H4,MS [kmole/h] 0.003526 +20% -20%
NH2,MS [kmole/h] 0.01384 +20% -20%

NH2O,MS [kmole/h] 1.4474 +20% -20%
NHe,MS [kmole/h] 0.0001 +20% -20%
NAr,MS [kmole/h] 0.0003 +20% -20%
NN2,MS [kmole/h] 0.009486 +20% -20%

TMS [◦C] -34.38 -24.38 -44.38
pMS [bar] 15.12 20.12 10.12

Table A.2: The variation ranges of inlet variables in the S-R section
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Output variables Nominal conditions Output variables Nominal conditions

NN H3,H M [kmole/h] 629.1933 NN H3,SM [kmole/h] 131.0039
NC H4,H M [kmole/h] 1259.1391 NC H4,SM [kmole/h] 0.6625
NH2,H M [kmole/h] 15343.6344 NH2,SM [kmole/h] 0.2768

NH2O,H M [kmole/h] 0.0000 NH2O,SM [kmole/h] 0.0000
NHe,H M [kmole/h] 344.7035 NHe,SM [kmole/h] 0.02043
NAr,H M [kmole/h] 1656.42654 NAr,SM [kmole/h] 0.09749
NN2,H M [kmole/h] 4797.0018 NN2,SM [kmole/h] 0.1370

TH M [◦C] 26.28 TSM [◦C] -17.03
pH M [bar] 127.3 pSM [bar] 127.7

NN H3,S [kmole/h] 3.0845 NN H3,R1 [kmole/h] 2838.1790
NC H4,S [kmole/h] 4.3073 NC H4,R1 [kmole/h] 0.02283
NH2,S [kmole/h] 5.8286 NH2,R1 [kmole/h] 0.000003622

NH2O,S [kmole/h] 0.0000 NH2O,R1 [kmole/h] 1.4476
NHe,S [kmole/h] 0.3718 NHe,R1 [kmole/h] 0.000009673
NAr,S [kmole/h] 1.7305 NAr,R1 [kmole/h] 0.00006962
NN2,S [kmole/h] 2.7377 NN2,R1 [kmole/h] 0.00001695

TS [◦C] -14.53 TR1 [◦C] -29.56
pS [bar] 15.11 pR1 [bar] 1.1749

NN H3,R2 [kmole/h] 152.7128 NN H3,R3 [kmole/h] 5.9285
NC H4,R2 [kmole/h] 0.7142 NC H4,R3 [kmole/h] 9.8879
NH2,R2 [kmole/h] 0.001711 NH2,R3 [kmole/h] 0.4216

NH2O,R2 [kmole/h] 0.0000 NH2O,R3 [kmole/h] 0.0000
NHe,R2 [kmole/h] 0.001125 NHe,R3 [kmole/h] 0.08748
NAr,R2 [kmole/h] 0.005849 NAr,R3 [kmole/h] 0.4607
NN2,R2 [kmole/h] 0.002584 NN2,R3 [kmole/h] 0.3568

TR2 [◦C] -33.03 TR3 [◦C] 0.4084
pR2 [bar] 1.013 pR3 [bar] 13.59

Table A.3: The nominal conditions of output variables in the S-R section
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Input variables Nominal conditions Upper bounds Lower bounds

NN H3,RH [kmole/h] 3700.9387 +20% -20%
NC H4,RH [kmole/h] 1270.4051 +20% -20%
NH2,RH [kmole/h] 15300.8893 +20% -20%

NH2O,RH [kmole/h] 0.00024 +20% -20%
NHe,RH [kmole/h] 344.0365 +20% -20%
NAr,RH [kmole/h] 1653.2608 +20% -20%
NN2,RH [kmole/h] 4784.5849 +20% -20%

TRH [◦C] 53.73 500 300
pRH [bar] 131.2 1875 1125
TRH1 [◦C] 12.14 - -
pRH1 [bar] 6.698 7.698 5.698
TRH2 [◦C] -6.147 - -
pRH2 [bar] 3.337 3.837 2.737
TRH3 [◦C] -28.92 - -
pRH3 [bar] 1.2202 1.3202 1.1202

mBFW,2 [◦C] 725.9 907.4 544.5
rSP−1 [-] 0.535 0.54 0.53

Table A.4: The variation ranges of input variables in the HEx part

Output variables Nominal conditions Output variables Nominal conditions

NN H3,H M [kmole/h] 625.8417 NN H3,HS [kmole/h] 625.8417
NC H4,H M [kmole/h] 1254.8587 NC H4,HS [kmole/h] 1254.8587
NH2,H M [kmole/h] 15294.4030 NH2,HS [kmole/h] 15294.4030

NH2O,H M [kmole/h] 0.0000 NH2O,HS [kmole/h] 0.0002
NHe,H M [kmole/h] 343.5579 NHe,HS [kmole/h] 343.5579
NAr,H M [kmole/h] 1650.9762 NAr,HS [kmole/h] 1650.9762
NN2,H M [kmole/h] 4781.3751 NN2,HS [kmole/h] 4781.3751

TH M [◦C] 12.61 THS [◦C] 12.61
pH M [bar] 12.61 pHS [bar] 12.61
THR1 [◦C] 12.61 pHR1 [bar] 6.696
THR2 [◦C] -6.168 pHR2 [bar] 3.333
THR3 [◦C] -28.85 pHR3 [bar] 1.2140

Table A.5: The nominal conditions of output variables in the HEx part



Appendix B

Process Flow Diagrams for

Separation-Refrigeration Section

This appendix includes the PFDs for the S-R section.
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Figure B.1: The PFD of the S-R section
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Figure B.2: The PFD of the decomposed S-R section



Appendix C

Variable Definitions

This appendix includes the variables defined in the S-R section and HEx part.

Ih Inlet stream variables: Ni , j , T j , p j

Manipulated variables: mBFW,2, mBFW,3, mBFW,4, rSp−1,
RP MAC−2, RP MC 2, ∆THE x−1

Yh Outlet stream variables: Ni ,k , Tk , pk

Number of variables:
Total: 79
Input: 25
Output: 54

i ∈ {N H3,C H4, H2, H2O, He, Ar, N2}
j ∈ {RH , MS}
k ∈ {H M ,SM ,S,R1,R2,R3}

Table C.1: The sets of Ih and Yh defining the S-R section
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Us Inlet stream variables: NRH : NN H3,RH , NC H4,RH , NH2,RH , NHe,RH ,
NAr,RH , NN2,RH , TRH , pRH ,

NMS : NN H3,MS , NH2,MS , NH2O,MS ,
NN2,MS , TMS , pMS

Manipulated variables: mBFW,2, mBFW,3, mBFW,4, rSp−1,
RP MAC−2, RP MC 2, ∆THE x−1

Ys,abs Outlet stream variables: NH M : TH M , pH M ,
NSM : TSM , pSM

NS : TS , pS

NR1: TR1, pR1

NR2: TR2, pR2

NR3: TR3, pR3

α: αN H3 , αC H4 , αH2 ,
αHe ,αAr , αN2 ,

β1: β1,N H3 , β1,C H4 , β1,H2 ,
β1,He ,β1,Ar , β1,N2 ,

β2: β2,N H3 , β2,C H4 , β2,H2 ,
β2,He ,β2,Ar , β2,N2 ,

β3: β3,N H3 , β3,C H4 , β3,H2 ,
β3,He ,β3,Ar , β3,N2 ,

β4: β4,N H3 , β4,C H4 , β4,H2 ,
β4,He ,β4,Ar , β4,N2 ,

Number of variables:
Total: 63
Input: 21
Output: 42

Table C.2: The sets of Us and Ys,abs identified in the S-R section
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Us Inlet stream variables: NRH : NN H3,RH , NC H4,RH , NH2,RH , NHe,RH ,
NAr,RH , NN2,RH , TRH , pRH ,

NMS : NN H3,MS , NH2,MS , NH2O,MS ,
NN2,MS , TMS , pMS

Manipulated variables: mBFW,2, mBFW,3, mBFW,4, rSp−1,
RP MAC−2, RP MC 2, ∆THE x−1

Ys,di f f Outlet stream variables: NH M : ∆TH M , ∆pH M ,
NSM : ∆TSM , ∆pSM

NS : ∆TS , ∆pS

NR1: ∆TR1, ∆pR1

NR2: ∆TR2, ∆pR2

NR3: ∆TR3, ∆pR3

α: αN H3 , αC H4 , αH2 ,
αHe ,αAr , αN2 ,

β1: β1,N H3 , β1,C H4 , β1,H2 ,
β1,He ,β1,Ar , β1,N2 ,

β2: β2,N H3 , β2,C H4 , β2,H2 ,
β2,He ,β2,Ar , β2,N2 ,

β3: β3,N H3 , β3,C H4 , β3,H2 ,
β3,He ,β3,Ar , β3,N2 ,

β4: β4,N H3 , β4,C H4 , β4,H2 ,
β4,He ,β4,Ar , β4,N2 ,

Number of variables:
Total: 63
Input: 21
Output: 42

Table C.3: The sets of Us and Ys,di f f identified in the S-R section
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Ih Inlet stream variables: Ni ,RH , TRH , pRH ,
T j , p j

Manipulated variables: mBFW,2, rSp−1

Yh Outlet stream variables: Ni ,k , Tk , pk

Tl , pl

Number of variables:
Total: 41
Input: 17
Output: 24

i ∈ {N H3,C H4, H2, H2O, He, Ar, N2}
j ∈ {RH1,RH2,RH3}
k ∈ {H M , HS}
l ∈ {HR1, HR2, HR3}

Table C.4: The sets of Ih and Yh defining the HEx part

Us Inlet stream variables: Ni ,RH , TRH , pRH ,
p j

Manipulated variables: mBFW,2, rSp−1

Ys,abs Outlet stream variables: Tk , pk

Tl , pl

α: αi

Number of variables:
Total: 29
Input: 13
Output: 16

i ∈ {N H3,C H4, H2, He, Ar, N2}
j ∈ {RH1,RH2,RH3}
k ∈ {H M , HS}
l ∈ {HR1, HR2, HR3}

Table C.5: The sets of Us and Ys,abs identified in the HEx part
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Us Inlet stream variables: Ni ,RH , TRH , pRH ,
p j

Manipulated variables: mBFW,2, rSp−1

Ys,di f f Outlet stream variables: ∆Tk , ∆pk

Tl , ∆pl

αi

Number of variables:
Total: 29
Input: 13
Output: 16

i ∈ {N H3,C H4, H2, He, Ar, N2}
j ∈ {RH1,RH2,RH3}
k ∈ {H M , HS}
l ∈ {HR1, HR2, HR3}

Table C.6: The sets of Us and Ys,di f f in the HEx part
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