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Summary 

Long chain omega-3 polyunsaturated fatty acids (LC omega-3 PUFA) are vital for physiological 

functions and have therapeutic and health benefits. The consumption of LC PUFA in the Western 

world has been below recommended intake levels the past decades, despite promotion of seafood 

and omega-3 supplements. Incorporation of the LC PUFA into processed food consumed on a daily 

basis might therefore bridge the gap between the recommended and actual consumption of LC 

omega-3 PUFA. Unfortunately, the development of omega-3 enriched food is hampered by a very 

high susceptibility of LC PUFA to oxidative deterioration. Furthermore, oxidised lipids are believed to 

create health risks. It has also been suggested that gastric juice may deteriorate the healthy LC PUFA 

after they are ingested. Important lipid oxidation promoters in food are low molecular weight (LMW) 

iron (Fe) and methemoglobin (metHb). To incorporate the LC omega-3 PUFA safely into food with 

respect to oxidation, it is necessary to understand both Fe- and metHb-mediated oxidation of PUFA 

and how the oxidation is influenced by conditions and dietary antioxidants. 

The main objective of this thesis is therefore to study Fe- and metHb-mediated lipid oxidation in 

food-related lipid model systems – emulsions stabilised with phospholipids and liposomes made of 

phospholipids – containing LC omega-3 PUFA from fish. The focus was on clarifying the reaction 

mechanisms and the impact of different factors, including dietary antioxidants and gastric juice, on 

the prooxidant activity of Fe and metHb. Measurement of the consumption rate of the essential 

substrate for lipid oxidation – oxygen – by the LC PUFA was used for assessment of lipid oxidation. 

The continuous measurement of the dissolved oxygen concentration has been shown to be a robust 

method for direct and instantaneous monitoring of peroxidation in both the liposomes and 

emulsions. The method was especially useful for measurement of the oxygen consumption kinetics in 

the lipid systems. The determination of oxygen uptake rates (OUR) enabled screening and evaluation 

of the impact of the different factors and antioxidants on the prooxidant activity of Fe and metHb. 

Pre-formed lipid hydroperoxides (LOOH) were shown to be essential for the prooxidant activity of 

both Fe and metHb, and the prooxidant activity of metHb was not affected by the lack of light. The 

oxygen uptake kinetics revealed that iron behaved as a catalyst in lipid oxidation while the 

prooxidant activity of metHb weakened over time, presumably due to degradation of meHb molecule 

during lipid oxidation. MetHb was shown to be a stronger prooxidant than Fe, but the strong 

prooxidative activity was facilitated by a complete structure of the metHb molecule. The prooxidant 

mechanism of both Fe and metHb was not limited by the level of dissolved oxygen, as long as oxygen 

was present, or the level of pre-formed LOOH and double bonds in fatty acids, as long as they were 

present in higher concentrations than the prooxidant. 
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The extent of the prooxidative activity of Fe was shown to vary in dependence on: 

 The total surface area: Smaller liposomal vesicles with lower lipid content were more prone to 

oxidation than larger emulsion droplets with a higher lipid content, presumably due to more 

frequent interactions of Fe with pre-formed LOOH in the interphase. 

 The amount of phospholipid emulsifier: Higher levels of phospholipids resulted in the formation 

of smaller droplets. The highest OUR were measured for emulsifier concentrations ranging from 

5 – 10% (w/w lipid base).  

 pH of the aqueous phase: Fe-mediated oxidation was highest at pH interval 4.5 – 5.5. 

 Dissolved compounds: Sodium chloride (NaCl) and 0.2% of xanthan gum dissolved in the 

aqueous phase inhibited Fe-mediated oxidation in a concentration dependent manner. 

Electrostatic retention of Fe by phosphate groups within phospholipid heads has been suggested to 

facilitate the contact between pre-formed LOOH and Fe, and to create competitive reactions for iron 

precipitation at pH > 5 and iron complexation by chelating compounds. 

The activity of dietary antioxidants has been shown to be affected by the type of prooxidant in the 

lipid system. Ascorbic acid, caffeic acid, propyl gallate, -tocopherol, 

-tocopherol inhibited metHb-mediated oxidation in concentration dependent manners. EDTA 

had a minor effect on metHb-mediated oxidation. 

In Fe-mediated oxidation, caffeic acid, ascorbic acid -tocopherol were prooxidants. They 

directly interacted with Fe, reducing Fe3+ to the more catalytically active Fe2+. The magnitude of the 

pro-oxidative behaviour was dependent on the Fe-to-antioxidant ratio, antioxidant concentration 

and pH. Ascorbic acid was depleted by interactions with Fe, and decreased the pro-oxidative activity 

-tocopherol. EDTA and citric acid inhibited Fe-mediated oxidation completely at twice the ratio to 

Fe and pH > 3.5. Propyl gallate efficiently inhibited Fe-mediated oxidation, while as -

carotene had only minor effects. In addition, chemical structure and physical location of the 

antioxidants determined their effects. 

The work in this thesis shows that for correct interpretation of the effects of antioxidants it is 

important to assess what types of prooxidants are present in the system. 

Both gastric juice and hydrochloric acid solution (HCl) did not prevent oxidation of marine lipids in 

emulsions and liposomes (pH 4.0). Furthermore, gastric juice did not inhibit metHb-mediated 

oxidation, but it was capable of reducing the prooxidant activity of dietary LMW iron, compared to 

HCl solution. Berry juice, green tea, red wine, and caffeic acid reduced the OUR in the acidic 

environments while coffee, ascorbic acid and orange juice increased the OUR. Therefore, beverages 

accompanying foods rich in marine lipids will affect the course of post-prandial lipid oxidation. 
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1 Introduction 

Long chain omega-3 fatty acids (LC -3 PUFA) from marine organisms are vital for physiological 

functions in the human body and have numerous therapeutic and health benefits 1. Docosahexaenoic 

acid (DHA) is mainly incorporated into the phospholipids of cell membranes and serves as a structural 

element, improving the membrane properties 2. DHA plays a critical role in vision and cognitive 

functions and in the development of foetuses. Eicosapentaenoic acid (EPA) is involved in regulatory 

functions, such as gene expression and eicosanoid production 3. It has been shown that EPA and DHA 

are preventive against the development of cardiovascular diseases 1. 

In the Western world, the intake of EPA and DHA has been far below the recommended daily 

intake levels (RDI = 250 mg EPA+DHA/day, current daily intake estimate is < 100 mg EPA+DHA/day) 4, 

despite promotion of seafood and omega-3 supplements by various health organizations and dietary 

programs (for example matprat.no and godfisk.no in Norway). As shown for fish consumption 5, it is 

difficult to change eating habits of populations and preferences of individuals, and for some 

countries seafood may even be a luxurious commodity. 

Incorporation of the LC omega-3 PUFA into processed food consumed on a daily basis might 

therefore bridge the gap between the recommended and actual consumption of LC omega-3 PUFA 

without major adjustments in the diet composition. Enrichment of various daily food with LC omega-

3 PUFA (fish oil) is possible due to advances in food technology 6, but the fortification concept faces 

several challenges. 

The main challenge is a very high susceptibility of LC omega-3 PUFA to oxidative deterioration 

which makes fish oils difficult to use as food ingredients. Lipid oxidation leads to development of off-

flavours and unpleasant "fishy" aromas, and it shortens the shelf-life of fortified products which 

leads to issues with sensorial perception and marketing 7. Therefore, the challenges to overcome are 

mainly related to the control of oxidation processes in complex food matrices 1, 8. 

Another negative aspect of lipid oxidation is health risks associated with oxidised LC omega-3 

PUFA. Oxidised derivatives of LC omega-3 PUFA are believed to be toxic and involved in the 

development of atherosclerosis, thrombosis and cancer 9, 10. Lipid oxidation is unfortunately not 

restricted to food production and storage only. After the LC omega-3 PUFA are ingested, they are 

exposed to the environment of the stomach and intestinal tract. It has been proposed that LC 

omega-3 PUFA may further deteriorate in the gastrointestinal environment before they are 

metabolised 11. Therefore, more studies on post-prandial oxidation of marine lipids are needed to 

elucidate this topic. 

A large number of foods suitable for fortification with LC omega-3 PUFA is in the form of 

emulsions or is in an emulsified form at some time during the production (for instance, dairy and 
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bakery products, meat products, infant formulas, sauces or beverages). Systematic studies on lipid 

oxidation in variously complex emulsions have been undertaken during the past 30 years to better 

understand the oxidation processes in emulsions. Nevertheless, despite intensive research in this 

area, production of oxidatively stable food emulsions enriched with LC omega-3 PUFA is still 

problematic 12, 13. A part of the problem is the complexity of food emulsions. Many factors may affect 

the rate and extent of lipid oxidation simultaneously and identifying the key factors in such multi-

component and multi-phase systems is very difficult or even impossible 13.  

LC omega-3 fatty acids are incorporated into emulsions as triacylglycerols (bulk oil) or 

phospholipids. Due to the amphiphilic character, phospholipids may serve not only as the source of 

the LC omgea-3 fatty acids, but also as a natural emulsifier. In addition, emulsion droplets stabilised 

with phospholipids may improve bioavailability of the emulsified lipids during digestion 14. In this 

respect, marine phospholipids may have numerous functions in fortified food. 

Low molecular weight (LMW) iron (also known as "free" or "ionic" iron) is a potent mediator of 

lipid oxidation even at trace levels. Unfortunately, free iron is a ubiquitous element in food and is 

considered the most common endogenous prooxidant in food emulsions 1, 15. Another potent dietary 

prooxidant is hemoglobin which is found mainly in bodily organs and meat, including fish muscle 16. 

Methemoglobin is generated as a result of blood hemoglobin degradation in post mortem tissue, and 

it therefore a likely type of hemoglobin to be present in muscle food. 

One way to protect the LC omega-3 PUFA from oxidation is to add antioxidants. Even though 

antioxidant mechanisms of different dietary antioxidants are well described, the efficiency of the 

antioxidants in food is variable and needs to be better understood 13. 

 

To incorporate the healthy LC omega-3 PUFA safely into food emulsions in respect to oxidation, 

it is necessary to understand both free iron- and methemoglobin-mediated oxidation of LC omega-3 

PUFA in emulsified systems and how the prooxidant activity of these two dietary prooxidants is 

affected in emulsified systems. To develop effective strategies for stabilization of LC omega-3 PUFA 

against oxidation in emulsions with the use of antioxidants, the effects of dietary antioxidants on 

LMW iron- and metHb-mediated oxidation need to be characterized. Understanding individual 

factors which affect LMW iron- and metHb-mediated oxidation will help to better understand 

oxidation of LC omega-3 PUFA in more complex food emulsions. 
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2 Aim of the work 

The main objective of this work was to study low molecular weight iron- and methemoglobin-

mediated oxidation of marine lipids in food-related model systems – emulsions stabilised with 

phospholipids and liposome dispersions made from phospholipids – in order to better understand 

the behaviour of the two prooxidants in emulsified systems. Elucidation of the prooxidant 

mechanisms of the prooxidants, and how the prooxidant activity is affected by dietary antioxidants 

and various factors (incl. gastric juice) was in focus. The measurement of the dissolved oxygen 

consumption (oxygen uptake) by unsaturated fatty acids was used as a tool for studying iron- and 

methemoglobin-mediated oxidation of marine lipids. 

 

The specific scientific objectives were to answer the following questions: 

 Can the oxygen uptake method, used for studying iron-mediated lipid oxidation in liposome 

dispersions, be used for lipid oxidation studies in fish oil emulsions? 

 What is the oxygen consumption kinetics in methemoglobin-mediated oxidation in the 

emulsified systems? What are the differences between oxygen uptake kinetics in iron- and 

methemoglobin-mediated oxidation? 

 Is the prooxidant activity of iron in liposome dispersions comparable to prooxidant activity 

in emulsions? 

 What is the impact of the system's properties on the prooxidant activity of iron? Factors, 

such as pH of the aqueous phase, unsaturation level of lipids, oxidative status of lipids, 

composition/size of emulsion droplets, and presence of other dietary compounds, such as 

salt and thickener, in the system were of interest. 

 Do prooxidants affect the activity of antioxidants? Do dietary antioxidants interact with 

prooxidants? What is the impact on lipid oxidation in emulsified systems? 

 Is lipid oxidation limited only to emulsions outside the human body? – Can human gastric 

juice aid lipid oxidation after the marine lipids are ingested? Does human gastric affects the 

prooxidant activity of iron and methemoglobin? Can post-prandial oxidation of marine 

lipids be influenced by antioxidants in beverages? 



Aim of the work 

4 

 

 



Background 

5 

 

3 Background 

3.1 Marine lipids and humans 

3.1.1 Intake 

Marine lipids is a collective term for a group of lipids originating from marine organisms and 

containing n-3 polyunsaturated fatty acids (PUFA) which contain a carbon chain counting C  20. 

These acids are also known as long chain polyunsaturated fatty acids (LC PUFA), marine omega-3 

fatty acids or simply omega-3. The source of LC omega-3 PUFA in the diet is predominantly fatty fish 

and in some countries, such as Norway, tran (refined cod liver oil). Alternatively, supplements of 

high-quality fish oil, or food to which fish oil was added, so called functional food or fortified food, 

provide the marine omega-3 intake 17. 

The human body is, to a certain degree, able to synthesize the most important LC omega-3 

PUFA, eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) (Figure 1), 

provided the body has sufficient intake of their precursor, the essential -linolenic acid (ALA, 18:3 n-

3). The dietary source of the latter is predominantly plants. It has been disputed whether it is 

possible for humans to produce adequate supplies of EPA and DHA from a sufficient supply of ALA, or 

whether these two acids must be part of a healthy diet. It has been estimated that 5% of EPA and 

< 0.5% of DHA is converted from ALA, although these values may vary between for instance 

individuals who eat fish and non-fish eaters 18. The ability to convert ALA is higher for women of 

reproductive age than for men, due to supply of DHA to the placenta and foetus during pregnancy, 

and to the milk during breast-feeding. 17, 19 

 

 
eicosapentaenoic acid (EPA, 20:5 n-3) 

 
docosahexaenoic acid (DHA, 22:6 n-3) 

 

Figure 1 Structures of dietary important long chain omega- 3 polyunsaturated fatty acids – EPA and DHA – 

showing multiple double bonds interrupted by a methylene group (–CH2–) 
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Recent daily intake recommendations for omega-3 fatty acids, EPA and/or DHA given by official 

organizations are rather inconsistent. In addition, the values are further specific for infants, small 

children and adults, elderly people, and pregnant/breastfeeding women. There is also a separate 

category for prevention of coronary heart and other diseases. Many organisations recommend 

regular fatty fish consumption over specific quantities of EPA and DHA (overview in Table 1) 4, 17, 20-22. 

Table 1 Recommendations for intake of omega-3 fatty acids, EPA and DHA by various health organisations 

Organisation Recommendations for healthy people 

Food and Agriculture 
Organization of the United 
Nations/The World Health 
Organisation (FAO/WHO) 
(2010) 

Total omega-3 fatty acid intake = 0.5 – 2.0 E%* 
Adults = 250 mg EPA + DHA/day 
Pregnant/lactating adult women = 300 mg EPA + DHA/day, of which 
at least 200 mg should be DHA 

Nordic Nutrition 
Recommendations (2004) 

Total omega-3 fatty acid intake = 
0.5 E% for children from 2 years of age and adults 
1.0 E% for infants between 6 – 11 months and pregnant/lactating 
women 

National Food 
Administration in Sweden 
(2007) 

100 – 300 mg DHA/day for pregnant/lactating women 

European Food Safety 
Authority (EFSA) (2010) 

250 mg/day EPA + DHA/day for children from 2 years of age and 
adults 

British Nutrition Foundation 
(2002) 

1250 mg EPA + DHA/day 

French Food Safety Agency 
(AFFSA) (2010) 22 

Young children (1 – 3 years): 70 mg EPA+DHA/day 
Children (3 – 9 years): 125 mg EPA/day + 125 DHA/day 
Adolescents (10 – 18 years) / Adults, incl. elderly / Pregnant women / 
Breastfeeding women: 250 mg EPA/day + 250 mg DHA/day 

 Recommendations for primary prevention of coronary heart disease 

FAO/WHO (2003) 
1 – 2 servings of fatty fish per week (each serving providing equivalent 
of 200 – 500 mg EPA + DHA) 

American Dietetic 
Association/Dieticians in 
Canada (2007) 

2 servings of fatty fish per week 

American Heart Association 
(2006) 

2 servings of fatty fish per week 

American Diabetes 
Association (2008) 

2 or more servings of fatty fish per week 

Australia and New Zealand 
National Health and Medical 
and Research Council (2006) 

430 mg DHA/day for adults 
610 mg EPA + DPA/ day for adults 



Background 

7 

 

Table 1 Recommendations for intake of omega-3 fatty acids, EPA and DHA by various health organisations 

(continuation) 

EFSA (2010) 1 – 2 servings of fatty fish per week or 250 mg EPA + DHA/day 

National Food 
Administration in Sweden 
(2007) 

1 – 2 servings of fatty fish per week or 250 mg EPA + DHA/day 

AFFSA (2010) 22 500 mg EPA + DHA/day out of which at least 250 mg is DHA 

European Society for 
Cardiology (2003) 

Eating fatty fish 

Health Council of the 
Netherlands (2010) 

2 servings of fatty fish per week or 450 mg omega-3 fatty acids/day 

Superior Health Council of 
Belgium (2004) 

EPA + DHA = 0.3 E% for adults (approx. 667 mg/day) 

International Society for the 
Study of Fatty acids and 
Lipids (2004) 

500 mg EPA + DHA/day 

United Kingdom Scientific 
Advisory Committee on 
Nutrition (2004) 

2 servings of fatty fish per week or 450 mg EPA + DHA/day 

Report from the National 
Council of Nutrition in 
Norway (2011) 

Eating fatty fish or omega-3 supplements 

* E% = per cent of total energy intake; sources: 4, 17, 20-22 

 

3.1.2 Physiological and health effects of marine lipids 

LC omega-3 PUFA have a series of important physiological functions in the human body 1. DHA is 

mainly incorporated into the phospholipids of cell/organelle membranes and serves as a structural 

element improving the membrane properties 2. EPA is, in addition to being a structural element of 

membranes, involved in regulatory functions, such as gene expression and eicosanoid production 3. 

Omega-3 fatty acids are required for normal conception, growth and development of embryos. 

During the third trimester of pregnancy, 50 – 60 mg/day of maternal DHA are transferred to the 

foetus via the placenta. DHA is highly concentrated in the brain and retinal membranes, especially in 

photoreceptors, and is therefore assumed to play a critical role in both vision and cognitive 

functions 3. 

Therapeutic benefits in preventing and curing heart, coronary, mental and chronic diseases have 

been reported in a vast number of animal, epidemiological and clinical studies, and many of these 

studies have been extensively reviewed and critically evaluated 1, 3, 21, 23, 24. Even though the research 
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on health benefits of omega-3 fatty acids has been intensive since their discovery in 70's, there is still 

a controversy whether healthy people benefit from dietary omega-3 fatty acids and whether the 

observed health benefits are manifested only in people with clinical symptoms. Nevertheless, it is 

more than clear that the intake of marine omega-3 fatty acids has a positive influence on human 

body and the beneficial effects have the potential to improve healthiness of individuals. For example, 

a reduction of the coronary heart disease risk is believed to be mediated through the ability of 

omega-3 fatty acids to lower heart rate and blood pressure, prevent arrhythmias and modify the 

plasma lipid profile by decreasing the levels of plasma triacylglycerols and low-density-lipoprotein 

(LDL) cholesterol 24. 

However, marine lipids may, under certain conditions, have adverse health effects. It has been 

found that at high dosages (up to 7 g/day) bleeding time is increased and peroxidation of the fatty 

acids within chylomicrons (blood lipids) occurs. Taste perversion (so called "fishy taste") and some 

gastrointestinal disturbances have been associated with high intake of oily food in general 21. 

 

Unfortunately, the modern (so called "Western") diet has evolved into a diet rich in plant and 

saturated fats with low proportion of seafood and marine oils. This has resulted in a high omega-

6/omega-3 ratio in the diet, which is believed to be associated with development of many chronic 

diseases. The present Western diet has the omega-6/omega-3 ratio of 15/1 – 16.7/1 compared with 

the diet of our early ancestors, which was estimated to have the ratio of 1/1 25. 

The public awareness of health benefits of marine lipids increases due to various health 

campaigns (for instance, matprat.no and godfisk.no in Norway). Despite efforts of authorities to 

propagate seafood, fish especially, in the diet, the consumption of LC PUFA is still too low in modern 

societies (  100 mg/day) 4. Therefore, production of omega-3 supplements as well as addition of 

marine lipids into daily food is greatly encouraged. This may help to increase the levels of EPA and 

DHA in the diet and thus contribute to better health of the population 6, and consequently reduce 

the overall costs for medical treatments and hospitalisation due to cardiovascular and other diseases. 

 

3.1.3 Negative health effects of oxidized fatty acids 

Owing to the polyunsaturated nature, the omega-3 fatty acids easily suffer oxidative 

deterioration 17 (a detailed description of lipid oxidation pathways is given in Section 3.2.2). Due to 

the oxidative deterioration, the quality of fish oils, seafood, and food fortified with LC omega-3 PUFA 

may become poor, which may bring negative aspects into the omega-3 diet. 

The effect of dietary oxidised fat on human health has been far less explored than the effects of 

presumably intact marine lipids. Cellular, animal and human studies on this topic have been reviewed 
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by Turner et al. 10 The authors concluded that oxidised lipids have numerous harmful effects on 

health – for instance, increasing the risk of atherosclerosis, thrombosis and cancer. The damaging 

effects have been attributed to toxic and reactive lipid oxidation products, such as oxygenated -, - 

unsaturated aldehydes 9, malondialdehyde 26, or trans-4-hydroxy-2-hexenal 27. 

Oxidised lipids could be responsible for the varying degrees of effectiveness and other 

discrepancies associated with supplementation of marine lipids in clinical studies; in other words, 

oxidised marine lipids may attenuate or even cancel the beneficial effects 10. 
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3.2 Lipid oxidation in food 

3.2.1 Implications 

Lipid oxidation is responsible for impaired food quality due to changes primarily in flavour 

and aroma, and secondarily in colour and texture 6. Marine lipids are especially susceptible to 

oxidation, therefore production of food containing marine lipids, both naturally and fortified, is 

challenging for the food industry 28. Low molecular weight compounds with low threshold values are 

produced during oxidation of marine lipids, which makes the food less acceptable or even 

unacceptable by consumers, and in case of pure marine oils unsuitable as food ingredient 29. 

In addition, oxidation of long-chain polyunsaturated fatty acids destroys the essential fatty 

acids and results in a generation of cytotoxic and genotoxic compounds which are believed to create 

health risks 9, 10. The free radicals generated during oxidation may also co-oxidize other compounds, 

such as saccharides, proteins 30, vitamins etc., affecting the overall nutritional quality of food 31. Lipid 

oxidation may occur at any stage during food processing, handling and storage, therefore 

development of efficient and long-lasting strategies for minimizing lipid oxidation is desired. 

In order to overcome these barriers it is necessary to understand the factors and 

mechanisms involved in oxidation of LC omega-3 PUFA in food. Understanding the impact of both 

dietary prooxidants and antioxidants is of great importance. Prooxidants are ubiquitous in food, in 

trace or significant amounts, while antioxidants are usually added during production to hinder 

oxidation, but also may be present endogenously. 

 

3.2.2 Theoretical aspects 

Lipid oxidation is a term for a highly complex set of free radical reactions, where lipid 

hydroperoxides (LOOH) play a pivotal role as a primary oxidation product. A scheme of fundamental 

radical reactions involved in lipid oxidation is shown in Figure 2. 

Three stages are typically associated with oxidation – initiation, propagation and termination 32. 

 

3.2.2.1 Initiation 

Initiation of lipid oxidation, i.e. producing the ab initio alkyl radical (L ) (reaction 1 in Figure 2), is 

not entirely understood. Thermodynamically, molecular oxygen (O2) cannot react directly with 

double bonds because the spin states are different – oxygen is in triplet state (3O2), whereas the 

double bond is in a singlet state. Initiators are therefore required to remove an electron from either 



Background 

11 

 

the lipid or oxygen, forming a radical, or to change the electron spin of the oxygen, forming highly 

reactive singlet oxygen (1O2). 32 

eq. 1, eq. 2, eq. 3, eq. 4, eq. 5, eq. 6, eq. 7, eq. 8, eq. 9, eq. 10, eq. 11, eq. 12 

 

Figure 2 Fundamental free radical reactions involved in lipid oxidation (figure from 32). 

 

 



Background 

12 

 

Several initiators have been identified for these processes: 

 ultraviolet light (hv) 

 photosensitizers 

 metals 

 heat 

 ozone 

 free radicals 

 lipoxygenases (production of LOOH) 

 

The ease of formation of the ab initio alkyl radical (L ) increases with increasing unsaturation. In 

PUFA, the double bonds are interrupted by a methylene group (–CH2–) (Figure 1). Since the C–H 

covalent bonds of the methylene carbon are weakened by two adjacent double bonds, their bond 

dissociation energy is lower, and hydrogen abstraction becomes easier. 33 This is the reason for the 

high susceptibility of PUFA to oxidation. 

With respect to initiation, alkyl radical formation due to UV irradiation occurs at wavelengths 

< 200 nm, where photon energy is sufficient to cleave covalent C–H and C–C bonds into free 

radicals 32. 

Pigments in foods, such as chlorophylls, porphyrins (found in heme-proteins), and riboflavin, 

aromatic amino acids, and molecules with an extended conjugated double bond system (e.g. 

xanthene 34) have photosensitizing properties, i.e. ability to convert energy of light into chemical 

energy 17, 32. In food lipids, the singlet oxygen (1O2) reaction pathway mainly occurs. The sensitizer in 

singlet ground state (1Sen) becomes excited (1Sen*) by absorbing light energy (hv), and by 

intersystem crossing (ISC), the excited singlet sensitizer is converted into an excited triplet state 

sensitizer (3Sen*). The energy of the excited triplet state sensitizer is transferred to 3O2 to form 1O2 

while the sensitizer returns to its ground singlet state (1Sen) (eq. 13). Electrophilic 1O2 can then 

directly react with high-electron-density double bonds forming LOOH 31. 

 
1Sen    1Sen*    3Sen*    1Sen  +  1O2 (eq. 13) 

 

Under favourable conditions, higher valence metals (M(n+1)+) can directly remove an electron 

from a double bond forming the ab initio alkyl radical (eq. 14). It has been found that the electron 

transfer is exothermic, i.e. energy is released upon the reaction, and extremely rapid in non-polar 

media, including pure oils. 32 

 

hv 
*  3ISC 

  1
3O2 
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LH  +  M(n+1)+    L   +  H+  +  Mn+ (eq. 14) 

 

Lower valence metals (Mn+) can initiate oxidation through formation of activated complexes 

with O2 or through autoxidation. Autoxidation of reduced metals generates oxygen radicals that then 

react with lipids. 32 

 

Mn+  +  O2    M(n+1)+  +  O2   HOO     L   +  H2O2  (eq. 15) 

 

High temperatures (e.g. frying temperatures) have sufficient energy to cleave covalent C–H and 

C–C bonds and form the ab initio alkyl radicals. Atmospheric ozone (O3) adds directly to double 

bonds to form ozonides, which then undergo a number of subsequent reactions, yielding alkyl (L ), 

alkoxyl (LO ) and peroxyl (LOO ) radicals. 

Radicals generated from various side reactions can lead to generation of the ab initio alkyl 

radical. Hydroxyl radicals (HO ) are the strongest oxidizing radicals. They attack fatty acids 

indiscriminately at all sides along the acyl chains. The half-life of HO  is however extremely short   

(10–9 s) and they most likely react with adjacent solvent molecules, producing other and longer living 

radicals that can attack lipids. Lifetimes and hydrogen abstraction rates of various radicals are listed 

in Table 2. O2
– radical, which is often present in aqueous environment, does not react with lipids but 

it can be a source of the highly reactive HO  and moderately reactive HOO .

Lipoxygenases are often overlooked as initiators of lipid oxidation, even though they are present 

in all plant and animal tissues. The enzyme catalyses aerobic oxidation of fatty acids to form LOOH 

without a release of lipid radicals. LOOH produced by lipoxygenases can accumulate to relatively high 

levels, which then can trigger oxidation when LOOH are decomposed into radicals by heat, light or 

metals. 

It is assumed that several initiators are always operative simultaneously, and only trace 

(< micromolar) quantities are required for generation of the ab initio radicals. Elimination, or at least 

inhibition, of production of these radicals is suggested to be the key strategy for attaining a long term 

stability of any material. However, for the reasons mentioned above, control over the initiation is 

impossible from a practical standpoint. Once the ab initio radicals are formed, they start the 

propagation. Consequently, lipids are always oxidized to some degree. The formation of the ab initio 

radicals is often "non-visible" and very difficult to detect. Therefore, initiation of lipid oxidation is 

sometimes wrongly perceived as "spontaneous". 32 

H+ LH 
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Table 2 Lifetimes and hydrogen abstraction rates of various radicals that can initiate lipid oxidation (figure 

from 32). 

 
 

3.2.2.2 Propagation 

Propagation of oxidation happens via multiple pathways. The classical pathway is referred to as 

autoxidation (eq. 2, 3 and 4 in Figure 2). Hydrogen abstraction by LOO  is however relatively slow and 

selective giving plenty of room for alternative pathways, which compete with autoxidation. This is 

the reason for complicated lipid oxidation kinetics and an extreme variety of oxidation products. 

The competing reactions to autoxidation are: 

 atom or group transfer (hydrogen abstraction), 

 rearrangement/cyclization, 

 additions to double bonds leading to crosslinks, 

 disproportionation, 

 -scission, 

 recombination, 

 electron transfer (LOO  +  e–  LOO–), e.g. metal-catalysed propagation. 
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These mechanisms contribute to chain propagation, branching, isomerization and termination 

reactions. Which mechanism is prevailing depends strongly on reaction conditions, particularly on 

temperature. 32 

Lipid mono hydroperoxides (LOOH) are the key products of lipid oxidation and the only products 

of autoxidation, and are therefore perceived as the primary oxidation products. Some of the 

competing reactions may however generate various derivatives of LOOH (e.g. polyperoxides, 

epidioxides, hydroperoxy epidioxides, peroxidized polymers) and other compounds (e.g. epoxides 

and alcohols), which are often neglected as primary oxidation products. 

The competing reactions mainly operate with alkoxyl (LO ) and peroxyl (LOO ) radicals 

generated by LOOH decomposition. Most of these radicals abstract hydrogens and propagate 

oxidation. The reactions lead to formation of various aldehydes, ketones, acids, alcohols, short chain 

hydrocarbons, etc., commonly grouped as secondary oxidation products. 

The -scission of alkoxyl radicals cleaves the aliphatic chain of the fatty acid producing typically 

an aldehyde and an alkyl radical. It is the main pathway responsible for decomposing fatty acids into 

low molecular weight compounds that are volatile enough to be perceived as oxidative rancidity. In 

case of PUFA, decomposition products can be unsaturated and have intact unsaturated structures, 

meaning that the oxidation products can be further oxidized or cleaved. 32, 33 

Lipid hydroperoxides accumulate in lipids over time. The following factors cause decomposition 

of LOOH into alkoxyl (LO ) and peroxyl (LOO ) radicals, which consequently branch the propagation 

and accelerate the oxidation:  

 heat, 

 metals, 

 heme-compounds, 

 UV light, 

 peroxyl radicals, 

 nucleophiles. 

 

One or more of these decomposing factors are nearly always present. Metal- and heme-

catalyzed oxidation is more closely described in Section 3.2.4. 

The reaction pathways for lipid oxidation change with the type of reaction system, system 

conditions and with numerous other factors (e.g. solvent polarity, oxygen concentration and 

temperature).  

It has been established that alkoxyl (LO ) radicals react several orders of magnitude faster than 

peroxyl (LOO ) radicals, and that these radicals abstract hydrogen atoms much faster from LOOH 
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than from allylic positions. It has also been established that all the above mentioned propagation 

pathways happen simultaneously and only small modifications in reaction conditions are sufficient to 

shift the balance between them. 

Shifting among propagation pathways critically affects the kinetics of oxidation and product 

distributions, which has consequences for monitoring progress of oxidation. Without information 

about dominant and active propagation pathways, the most effective antioxidant strategies may not 

be applied. It has been suggested to control all active propagation pathways with antioxidant 

strategies to achieve long-term stability of lipids. 32 

 

3.2.2.3 Termination 

Termination refers to quenching of individual radicals, forming non-radical products (eq. 11 and 

eq. 12 in Figure 2), but not to stopping the overall chain reaction. Free radicals are quenched by four 

major mechanisms:  

 radical recombinations 

 radical scissions 

 radical transfer (co-oxidation of non-lipid molecules) 

 eliminations 

The mechanisms dominating in a given system are influenced by the nature and concentration 

of the radicals, temperature, oxygen pressure, and solvent. 

The number of variations for radical recombination is nearly limitless, which leads to a broad 

range of secondary oxidation products. Scissions of alkoxyl radicals are the major source of 

aldehydes, which are responsible for flavour and odour. 

One of the best known scission products of lipid oxidation is malondialdehyde (MDA) – a scission 

product from five-membered cyclic hydroperoxides, which can only be formed in linolenic acid (18:3 

n-3) and PUFA. Formation of MDA first requires appropriate conditions to generate cyclic peroxide 

precursors, and then conditions for cleavage of the endoperoxides. 32 

Alkoxyl and peroxyl radicals can abstract hydrogen from non-lipid molecules, such as amino 

acids, nucleic acids, antioxidants, carotenoids and other pigments, and even carbohydrates. Radicals 

transferred to these non-lipid molecules may follow processes similar to lipids and in this way, lipids 

transfer oxidation to other molecules 30. 

Radicals formed in non-lipid molecules may combine with lipid radicals to generate co-oxidation 

adducts. These adducts may not be extracted and included into lipid analysis. This has been often 

neglected in respect to lipid analysis of foods and biological systems. Lipid radical adducts to amino 

acids are important flavour precursors 32. 
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3.2.3 Oxidation of phospholipids 

Phospholipids are a class of lipids containing a phosphoric acid residue. A phospholipid molecule 

consists of a polar/hydrophilic part (head) composed of glycerol, phosphate and a specific 

substituent, and a non-polar/lipophilic part (tail) composed of fatty acids (the basic structure is 

shown in Table 3). Due to their amphiphilic character, phospholipids are major components of 

biological membranes, and act as emulsifiers in food by adsorbing at the interface of aqueous and oil 

phases, thus lowering the interfacial tension 35. 

 

Table 3 Basic classification of phospholipids 

Basic structure Substituent Name of phospholipid 

 
 
R1, R2 … fatty acids 
Glycerol 
Phosphate group 
X … substituent 

Hydrogen atom –H Phosphatidic acid PA 

Choline 

 

Phosphatidylcholine PC 

Ethanolamine  Phosphatidylethanolamine PE 

Serine 

 

Phosphatidylserine PS 

Glycerol 

 

Phosphatidylglycerol PG 

Inositol 
 

Phosphatidylinositol PI 

 

It has recently been shown that in addition to the classical autoxidation and oxidation mediated 

by prooxidants, phospholipids are subjected to further degradation as a result of peroxidation of 

fatty acids. These subsequent reactions are characterized as non-enzymatic browning of 

phospholipids. 

In non-enzymatic browning reactions, the primary oxidation products or their degradation 

products (aldehydes) react with the amine group of phosphatidylethanolamine, forming highly 

coloured pyrroles. 36, 37. These compounds have not been detected in oxidation of triacylglycerols 38 

and might be used in the future as markers for evaluation of oxidative status in phospholipids. 
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3.2.4 Prooxidants 

3.2.4.1 Metals 

Redox-active metals undergoing one-electron transfers (Fe, Cu, Co, Mn, Mg, Cr and V) are 

considered to be of the greatest importance for lipid oxidation in oils and foods because they are 

ubiquitous (ever present) in food and active in many forms, even at trace (nanomolar) 

concentrations. Redox-active metals break the O O bond in LOOH by electron transfer to generate 

radicals and ions. Oxidising metals (M(n+1)+) decompose LOOH at rates several orders of magnitude 

slower than reducing metals (Mn+) (eq. 16 and eq. 17). 

 

Reducing metals: Mn+  +  LOOH   (fast)  M(n+1)+  +  LO   +  OH– K  109 M s  (eq. 16) 

Oxidizing metals: M(n+1)+  +  LOOH   (slow)  Mn+  +  LOO   +  H+ K  104 M s  (eq. 17) 

 

Red-ox cycling: 2 LOOH    LO   +  LOO   +  H2O (eq. 18) 

 

The abundance of low molecular weight (LMW) ferric iron (Fe(H2O)6
3+) and ferrous iron 

(Fe(H2O)6
2+), also known as free iron or ionic iron, in food makes its prooxidant activity highly  

important. The prooxidant effect of iron is immensely amplified when red-ox cycling occurs, i.e. one 

iron atom "oscillates" between its Fe2+ and Fe3+ valence state. In this respect iron behaves as a 

catalyst of LOOH decomposition (eq. 18); this pathway is considered predominant when LOOH are in 

excess of LMW iron 32. This requirement is almost always fulfilled in foods because food processing 

generates oxidative stress. Mozuraityte et al. 39 confirmed red-ox cycling of LMW iron in liposomes 

made of cod roe phospholipids and concluded that in this system one red-ox cycle is accompanied by 

consumption of five O2 molecules by the generated radicals. The scheme for iron-mediated 

hydroperoxide decomposition is given in Figure 3. 

Degradation of enzymes, pigments and metalloproteins during processing of raw materials as 

well as ingredients, tap water (containing  0.2 mg Fe/L) and well/mineral water (containing > 

680 mg Fe/L) 40, steel processing equipment and packing materials may release ionic iron into food 

matrices. 

Iron is found endogenously in food but may also be added exogenously to increase the 

nutritional value of the food. Recommended daily intakes (RDI) of dietary iron for healthy infants are 

1 mg/kg/day and for children, men and women the RDI varies between 10 – 15 mg/day 41. Therefore 

various foods, such as bakery and dairy products, infant formulas, beverages, and even ingredients 

(salt, sugar, flour) may be enriched with iron. The iron content in certain products may reach values 

up to 500 mg/kg – for more details, see a review paper by Martínez-Navarrete et al. 41 

Fe 
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Figure 3 Iron-mediated lipid hydroperoxide decomposition (red-ox cycling of iron); LOOH = lipid hydroperoxide, 

LOO  = lipid peroxyl radical, LO  = lipid alkoxyl radical, L  = lipid alkyl radical, LH = fatty acid, LOOL and LOH = 

lipid oxidation products 

 

3.2.4.2 Heme-proteins 

Heme-compounds (hemoglobin, myoglobin, catalase, peroxidase), i.e. proteins containing a 

porphyrin structure with embedded iron atom (Figure 4), are known to catalyse lipid oxidation at 

much higher rates than LMW iron. Hemoglobin and myoglobin are typically present in muscles (meat 

incl. fish) and tissues rich in blood, such as organs 16. 

In living tissues, hemoglobin exists basically in the reduced form (Fe2+) either saturated with an 

oxygen molecule (oxyhemoglobin), or desaturated of oxygen molecules (deoxyhemoglobin). After 

death (post mortem), the concentration of oxy- and deoxy-hemoglobin progressively decreases as it 

is converted (oxidised) to methemoglobin which cannot bind oxygen. Therefore methemoglobin is 

the likely hemoglobin species to be involved in peroxidation of post mortem tissues. 

Studies on the reaction mechanism of heme-mediated oxidation indicate that an intact 

porphyrin-Fe structure inside a pocket formed by surrounding proteins is an absolute requirement 

for heme-catalysed lipid oxidation, and that hypervalent iron complexes – mainly ferryl iron 

complexes (Fe4+=O and Fe4+(OH)) – are responsible for the rapid catalysis. The basic reaction 

mechanism involves binding of preformed LOOH to Fe3+-heme which generates the ferryl iron 

complex in a very fast reaction (K  109 M s ). The LOOH is then decomposed either heterolytically 

or homolytically inside the heme- LO , respectively. The 



Background 

20 

 

resulting ferryl iron complex is an extremely strong oxidant and rapidly abstracts H from either a new 

LOOH or the fatty acid directly, which generates lipid radicals for chain reactions. The hypervalent 

iron complexes can be maintained by electron transfers, thus keep their oxidizing power. Eventually, 

they are reduced back to Fe3+-hemes. The overall mechanisms of heme-catalyzed lipid oxidation is 

shown in Figure 5 32. 

The composition and arrangements of amino acids in the heme-pocket, as well as heme pocket 

size and orientation, affect lipid binding and proton abstraction, while the protein structure and 

ligands influence electron transfer processes and stabilisation of the ferryl iron complex. The reaction 

environment influences whether the LOOH cleavage is homolytic or heterolytic. Therefore variable 

catalytic activity between different heme-compounds and the same heme-compounds from different 

animals has been observed. 

 

   

Figure 4 Left: -chain 1 and 2, -chain 1 and 2), each 

unit containing a heme group; Right: Heme group = porphyrin structure with embedded iron atom (also known 

as hemin if the group is loose and the iron is Fe3+); figure retrieved from:  

http://commons.wikimedia.org/wiki/File:1904_Hemoglobin.jpg 

 

In Section 3.2.2.1, it is mentioned that porphyrin structures are capable of producing singlet 

oxygen via photosensitisation. This mechanism may contribute to oxidation in processed food where 

the whole heme-compound may be disintegrated and at the same time the heme-group is exposed 

to light, i.e. located on the surface of the product 32. 
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Figure 5 Heme-catalysed lipid oxidation via ferryl-iron complexes (figure from 32) 

 

3.2.5 Lipid models for studying lipid oxidation 

Studying lipid oxidation in food is often complicated due to the complex nature of most food 

matrices. Many components can have an impact on lipid oxidation simultaneously and identification 

of the key factors affecting lipid oxidation can be very difficult, or even impossible. Consequently, the 

interpretation of measured data may be erroneous or misleading. Using simpler systems which allow 

looking at individual factors separately may help to better understand these complex systems. 

Most food fortified with omega-3 lipids would be in the form of emulsions, because fish oil 

can be evenly distributed throughout the volume as globules (emulsion droplets). Alternatively, 

marine omega-3 can be added to the food in the form of emulsions or liposomes and dispersed in 

the matrix. Dairy products, such as milk, and yoghurt, mayonnaise, spreadable fats, dressings, and 

beverages, such as juices, bakery products (bread), sausages and sauces are examples of daily food 

fortified with omega-3 available on the world's market 6. 
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In this thesis liposomes and emulsions were used as food-related emulsified systems for 

studying lipid oxidation. These systems allow manipulation of lipid composition, pH and content of 

various compounds in a controlled way 42. 

 

3.2.5.1 Liposomes 

A liposome, in its simplest form, is a microscopic spherical structure composed of a 

phospholipid bilayer enclosing an aqueous compartment (Figure 6). The liposome vesicle can range 

in size from 10 nm to 10 m in diameter and be composed of more than one concentric phospholipid 

bilayer, depending on the method of preparation 42. Due to the bilayer vesicular structure liposomes 

resemble cell membranes. The only lipids in lean fish muscle are the phospholipids of the cell 

membranes. Therefore, the liposome model may to a certain degree mimic oxidation of lean fish 

meat. Liposomes have also been related to cell membranes in a number of in vitro biological studies 
43, 44, and in systematic studies on the activity of various pro- and antioxidants 45, 46. 

The main applications of liposomes have been in pharmacology, as a drug delivery system, 

and in cosmetics 47. In food, liposomes have been used scarcely – as carriers or for encapsulation of 

important nutrients, such as vitamins, peptides, enzymes etc. Liposomes might be the future delivery 

system of omega-3 phospholipids into food 48, or oral supplements of LC omega-3 PUFA 49. 

 

 

Figure 6 Cross-section of an emulsion droplet stabilised with phospholipids (left) and a liposome vesicle (right) 

3.2.5.2 Emulsions 

Most lipids in food exist as dispersions and emulsions. Emulsions are either water dispersed in 

oil (water-in-oil emulsion (w/o), e.g. margarines) or oil dispersed in water (oil-in-water emulsion 

(o/w), e.g. milk). The latter type is more common in food. 
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In kinetically stable emulsions, lipid droplets are evenly distributed in the surrounding aqueous 

phase, i.e. they do not exhibit creaming, coalescence, flocculation, or Ostwald ripening over a specific 

period. The kinetic stability is largely achieved by emulsifiers which absorb to the lipid-water 

interphase and lower the surface tension between the two phases. In this thesis, phospholipids were 

mainly used as an emulsifier (phospholipid stabilised emulsion droplet is shown in Figure 6), but 

surface-active proteins (e.g. casein) and small molecule surfactants (e.g. Tweens, sodium dodecyl 

sulphate (SDS), Brijs, Citrem) are also common 30, 50. 

Different molecules partition themselves among the three regions of an emulsion (i.e. aqueous 

phase, interface, and lipid phase), according to their polarity, affinity to the interface and surface 

activity. Non-polar molecules are located predominantly in the oil phase, polar molecules in the 

aqueous phase and surface-active molecules at the interface. The composition of the emulsion 

droplet, and especially the interface, plays a key role in lipid oxidation because it can dictate how 

lipids (poly-unsaturated fatty acids, lipid hydroperoxides) will interact with components dissolved in 

the aqueous phase, especially prooxidants and reactive oxygen species 30. 

 

3.2.6 Factors affecting lipid oxidation in emulsions and liposomes 

The oxidation in bulk lipids (oils/fats) has been studied extensively, and nowadays there is a 

fairly good understanding of the factors that affect lipid oxidation in these bulk systems 51, 52. 

Oxidation processes in emulsions/liposomes are more complex than in bulk lipids due to the 

following aspects: 

 presence of the interfacial region and the aqueous phase, 

 partitioning of different molecules in the different phases, 

 presence of water-soluble components which are not likely to be present in bulk lipids, 

 contact of the lipids with water rather than with air 30. 

The nature of the interphase is perhaps the most important factor determining the oxidation 

rates in iron-mediated oxidation (and possibly other prooxidants as well). In the studies of Mei et al. 

it was demonstrated that iron-mediated oxidation had the lowest rates in emulsions stabilised with 

cationic emulsifiers and the highest rates with anionic emulsifiers (phospholipids belong to the latter 

category) 53, 54. This was explained by association of the positively charged iron ions with negatively 

charged emulsifier molecules. 

Therefore, techniques that control physical location of metals could be effective in controlling 

oxidation in emulsions. One way to alter the physical location of prooxidants is to introduce 

emulsifier micelles into the emulsion. The micelles may divert the location of prooxidants (but also 
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antioxidants) from the droplet interphase 55. Another way is to introduce substances with chelating 

abilities (described in Section 3.3.1). 

The thickness of the emulsifier also plays a key role in iron-mediated lipid oxidation. An 

emulsifier which would create a physical barrier between the prooxidants in aqueous phase and 

lipids in the core of the emulsion droplet could make it more difficult for the iron to interact with the 

lipids 56. Thick emulsifiers (such as Brij 700) are not approved for food applications. Whey proteins 

may have sufficient thickness, but their use is limited by the pH of the aqueous phase. They are 

useful only when the pH is below the pI (isoelectric point) of the protein, at which the protein is 

cationic 12. 

Hydroperoxides contained in the emulsifiers have been suggested to be another important 

factor in iron-mediated oxidation. Tweens, Brijs and lecithins (phospholipids) were shown to contain 

significant levels of endogenous hydroperoxides, which then trigger iron-mediated oxidation 55, 57, 58. 

The size of emulsion droplets can vary from 0.2 m to 100 m in diameter meaning that the 

total surface area, which is in contact with the aqueous phase, varies greatly. Some studies have 

proposed that oxidation rates do not change dramatically with large variations in the total surface 

area of droplets, claiming that the surface in most cases is large enough not to limit the reaction 

rates 12. 

The aqueous phase is a carrier for multiple components which are directly or indirectly involved 

in lipid oxidation, such as: 

 dissolved oxygen, which is absolutely necessary for oxidation processes; 

 inorganic acids and bases, which determine the pH of the system; 

 prooxidants and reducing agents, which may adsorb on the interface; 

 antioxidants, which partition in the three phases of emulsions, based on their polarity 

and type of emulsifier 59, 60; 

 inorganic salts, which may adsorb on the interphase; 

 other organic molecules (proteins, carbohydrates), which may form an additional layer 

on the surface of emulsion droplet 61, 62. 

Therefore, the composition of the aqueous phase will also determine the final rates of lipid 

oxidation emulsions. An overview on important factors which may affect lipid oxidation in emulsions 

is shown in Table 4.  



Background 

25 

 

Table 4 Factors capable of inhibiting lipid oxidation in oil-in-water emulsions (table from 12) 

Characteristic Property Factors 
Lipid phase Composition  Degree of unsaturation 

 Prooxidant impurities (e.g., free fatty acids, 
hydroperoxides) 

 Inherent and added antioxidants 
 Physical state – solid fat 

content and crystal properties 
 Solubility, partitioning and diffusion of antioxidants 

and prooxidants 
 Physical properties  Rheology determines diffusion of antioxidants and 

prooxidants 
 Polarity determines partition coefficients 

Aqueous phase Composition – pH, ionic 
strength, solutes 

 Prooxidant impurities (e.g., transition metals, 
photosensitizers, enzymes) 

 Inherent and added antioxidants 
 Micelles may alter location of antioxidants and 

prooxidants 
 Reducing agents that can redox cycle prooxidant 

metals 
 Physical state – ice crystal 

structure and location 
 Solubility, partitioning and diffusion of reactants and 

products 
 Physical properties  Rheology determines diffusion of antioxidants and 

prooxidants 
 Polarity determines partition coefficients 

Interphase Composition  Anti-/prooxidant activity 
 Impurities (hydroperoxides) 

 Thickness  Steric hindrance of interactions between water- and 
oil-soluble components 

 Charge  Electrostatic attraction/repulsion of antioxidants and 
prooxidants 

 Permeability  Diffusion of antioxidants and prooxidants in lipid and 
aqueous phase 

Structural  Emulsion  Droplet concentration 
 Droplet size distribution (surface area and light 

scattering) 
 Spray-dried powder  Porosity 

 Exposed lipid levels 
 Emulsion droplet characteristics upon rehydration 

 Hydrogel particles  Hydrogel composition, structure and properties 
 

 



Background 

26 

 

3.3 Antioxidants  

Antioxidants have been defined as "any substances that delay, prevent or remove oxidative 

damage to a target molecule" 63. This definition opens for a wide range of compounds which can be 

defined as antioxidants. Consequently, the antioxidant activity can be manifested by various 

mechanisms. In relation to lipid oxidation, the following antioxidant mechanisms are recognized: 

 inhibition of reactive oxygen species 

 quenching free radicals 

 quenching singlet oxygen 

 quenching photosensitizers 

 chelation of metals 

 inhibition of pro-oxidative enzymes 

 synergism with other antioxidants 

 scavenging triplet oxygen (by reducing agents) 

It is not unusual that one substance is capable of multiple antioxidant mechanisms. Which 

mechanism dominates often depends on the surrounding conditions. Under specific conditions, an 

antioxidant may increase oxidation rates, thus turning into a prooxidant. 

 

3.3.1 Metal chelators 

Metal chelators decrease the prooxidant activity of metals by 

 preventing metal red-ox cycling by occupation of metal's coordination sites, 

 formation of insoluble metal complexes, 

 providing steric hindrance for interactions between metals and lipids or oxidation 

intermediates (e.g. hydroperoxides) 33, 64. 

The most common metal chelators contain multiple carboxylic acid groups (e.g. 

(ethylenediaminetetraacetic acid (EDTA), citric acid) or phosphates (e.g. polyphosphates and 

phytates). Metals can also be controlled by metal binding proteins, such as transferrin, ferritin, 

phosvitin 65, lactoferrin, albumin and casein 66. 

Flavonoids with the 3',4'-dihydroxy group in the B ring, the 4-carbonyl and 3-hydroxy group in 

the C ring, or the 4-carbonyl group in the C ring together with the 5-hydroxy group in the A ring, can 

also bind metal ions (depicted in Figure 7) 67.  
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Figure 7 Metallic ion complexation by flavonoids via the 3'4'-dihydroxy group in the B ring (left), 4-carbonyl and 

3-hydroxy group in the C ring (middle) and 4-carbonyl group in the C ring together with the 5-hydroxy group in 

the A ring (right) 

 

Most of the above mentioned compounds are soluble in aqueous solutions. Citric acid can be to 

some degree dissolved in oils 64. 

Chelators must be ionized to be active. Therefore their activity decreases at pH values below the 

pKa of their ionizable groups. Some metal chelators can increase oxidative reactions by increasing 

metal solubility or altering the redox potential of the metal. This is often dependent on metal-to-

chelator ratio. A typical example is EDTA: It is said to be ineffective or prooxidative when EDTA-to-iron 

ratio is  1 and antioxidative when EDTA-to-iron ratio is  1 33. 

 

3.3.2 Radical scavengers 

Radicals involved in lipid oxidation are described in Section 3.2.2. Radical scavengers (HX) 

quench these radicals by donating hydrogen atom to them, becoming relatively stable antioxidant 

radicals themselves (eq. 19). Radical scavengers are believed to react mainly with peroxyl radicals 

(LOO ) due to the long life time of this radical (shown in Table 2). 

LOO   +  HX    LOOH  +  X  (eq. 19) 

 

Phenolic compounds, a group of approximately 8 000 compounds, all possessing one common 

structural feature: a phenol – an aromatic ring bearing at least one hydroxyl  group, are 

effective radical scavengers 68. Phenolic compounds can be classified into three main categories 

according to the number of phenol units in the molecule: 

a)  simple phenols – one phenol unit, 

b)  flavonoids – two phenol units, 

c)  tannins – at least three phenol units. 
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Flavonoids and tannins are referred to as polyphenols, and all three groups can be further 

subdivided into numerous sub-groups based on various structural features. Phenolic compounds are 

widely spread throughout the plant kingdom as secondary plant metabolites. They are present either 

in free form or, more typically, conjugated to various molecules (acids, sugars). It is not in the scope 

of this thesis to provide detailed overview on the categories and occurrence of phenolic compounds, 

but plenty of literature exists to cover these topics – for instance 68-72. 

Several phenolic compounds have been developed in the past for food, feed and cosmetic 

applications, known as synthetic antioxidants. These are butylated hydroxytoluene (BHT), butylated 

hydroxyanisole (BHA), propyl gallate (PG), octyl gallate (OG), dodecyl gallate (DG), tertiary-

butylhydroquinone (TBHQ), 4-hexylresorcinol and ethoxyquin (EQ). Nowadays trends in food 

manufacturing are to avoid using synthetic antioxidants because of healthy concerns and negative 

attitudes of customers to synthetic additives 73. 

The number of natural (or natural identical) radical scavengers legally approved as food 

additives is very limited, counting only a few compounds (tocopherols, ascorbates, some 

carotenoids, extract of rosemary and some anthocyanins), and the legislation differs between 

countries and regions (e.g. European Union, United States, Australia, Asian countries) 74. Therefore, 

identifying highly efficient and non-toxic antioxidants in the natural resources, which are suited for 

food/feed and cosmetic applications, is one of the goals in the research on antioxidants for the past 

two decades. 

 

3.3.2.1 Hydroxycinnamic acid derivatives 

Hydroxycinnamic acid derivatives (HCAD) (Figure 8) belong to the group of simple phenols. They 

are ubiquitous in the plant kingdom and abundant in the human diet 75, 76. Hydroxycinnamic acid 

derivatives studied in PAPER II were: caffeic acid (3,4-dihydroxycinnamic acid, CaA), ferulic acid (4-

hydroxy-3-methoxycinnamic acid, FeA) and p-coumaric acid (trans-4-hydroxycinnamic acid, CoA). 

Caffeic acid was also studied in PAPER III. The mechanisms of hydrogen donation are therefore 

described for this group of compounds. 

 

OH

O

R3

R2

R1

 

R1 = R2 = R3 = H Cinnamic acid (precursor) 
R1 = R3 = H, R2 = OH p-Coumaric acid 
R1 = R2 = OH, R3 = H Caffeic acid 
R1 = OCH3, R2 = OH, R3 = H Ferulic acid 
R1 = R3 = OCH3, R2 = OH Sinapic acid 

Figure 8 Hydroxycinnamic acid derivatives 
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The following text provides an overview on the radical scavenging mechanisms and conditions at 

which each mechanism prevails for HCAD. These mechanisms and similar factors are likely to be 

involved in radical scavenging by other phenolic compounds. 

The reaction mechanisms involved in the free radical scavenging by HCAD follow two pathways: 

1)  hydrogen transfer (HT), in which –OH group donates hydrogen radical (H ), and 

2)  single electron transfer (SET), in which the –OH group donates hydrogen proton (H+). 

Recently it was found that hydrogen transfer is the key mechanism for reactions in non-polar 

media and in aqueous solutions at acidic pH for HO , HOO  and LOO . The SET mechanisms is on the 

other hand dominant for reactions in aqueous solutions at physiological and more basic pH, and for a 

large variety of radicals (N3 , Br2 , Cl3COO , SO4 , NO2 , DPPH radical, radical cations of dAMP and 

dGMP) and also LOO  in basic solutions. For the reaction with a hydroxyl radical (OH ), a radical 

adduct formation (RAF) has been found to be significant alongside HT 77 (summarized in Table 5). 

 

Table 5 Reaction mechanisms involved in the free radical scavenging by hydroxycinnamic acid derivatives 

Reactions in non-polar medium 

Hydrogen transfer (HT):  H2X + LOO   HX  + HOOH (eq. 20) 

Radical adduct formation (RAF):  H2X + LOO   [H2  (eq. 21) 

Reactions in aqueous medium 

Single electron transfer (SET): a)  HX  + LOO   HX  + HOO  

b) X  + LOO   X  + HOO  

(eq. 22) 

(eq. 23) 

Hydrogen transfer (HT):  HX  + LOO   X  + HOO  (eq. 24) 

Radical adduct formation (RAF):  HX  + LOO    (eq. 25) 

 

The role of the side chain in the inherent antiradical activity of HCAD has not been fully 

established yet. Results from several papers suggest that the ethylenic side chain may not be an 

important factor for the antiradical activity 78, 79. On the other hand, Amorati et al. proposed that it 
80. According to León-Carmona et al., in non-polar 

media and aqueous solutions at acidic pH, the side chain contributes to HT via its electron donating 

character 77. 

The role of pH on the antioxidant activity of HCAD is another unresolved issue. It has been 

reported that the antiradical activity depends on the pH of the solution, becoming larger as the pH 

increases from 4 to 8, due to higher activity of the phenolate anion, compared to the neutral 

phenolic group 80. However, it has been reported that that there is no relationship between the 
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antiradical activity and pKa values of the compounds 78. Recently, it was published that pH 

determines the radical scavenging mechanisms. Hydrogen transfer occurs at acidic pH, while SET is 

prevailing at physiological (7.4) and more basic pH. 77 

At the conditions where HT is the main mechanism, the key factor ruling the order of reactivity 

is the other group in the phenolic moiety. The presence of another OH group (catechol group, such 

as in caffeic acid) leads to a higher reactivity, the presence of the OCH3 group (ferulic acid) has an 

intermediate effect, and no other group in the phenolic ring (p-coumaric acid) gives lower 

reactivity 77. 

 

3.3.2.2 Tocopherols 

Lipid soluble vitamin E compounds – tocopherols and tocotrienols – are well recognized for their 

inhibition of lipid oxidation in both foods and biological systems. Rich sources of tocopherols are for 

instance cereals, oilseeds, and nuts. ,  (Figure 9), 

which differ in number and positions of methylene groups on the chromanol ring 68. In this thesis, the 

antioxidant - -tocopherol in LMW iron- and metHb-mediation was measured 

(PAPER III, Additional data). 
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Figure 9 Chemical structure of tocopherols 

 

The antioxidant activity of tocopherols is mainly due to their ability to donate hydrogen from 

their 6-phenoxyl group to lipid free radicals (eq. 26) which terminates the radical chain reactions and 

yields resonance stabilized tocopheroxyl radicals (Toc-O ). These may continue to eliminate lipid 

radicals by forming adducts with them (eq. 27) or may form non-radical products when reacting with 

each other (eq. 28) 30. There is a confusion concerning their relative potency in food systems. The 

chemical structures of tocopherols support a hydrogen-  >  >  > 

a    > ) was obtained in fats and oils, and under various conditions 81. 

Therefore, beside absolute chemical reactivities toward lipid radicals, other factors, such as 

tocopherol concentrations, temperature and light, lipid substrate, and other chemical compounds 
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present (metals, reductants, other radical scavengers) and reaction conditions (polarity, pH, etc.) 

may determine the efficacy. 

 

LOO   +  Toc-OH    LOOH  +  Toc-O  k = 1.85  106 s (eq. 26) 

LOO   +  Toc-O     adducts k = 1.23  108 s (eq. 27) 

Toc-O   +  Toc-O     non-radical products k = 1.28  103 s (eq. 28) 

 

Under certain conditions tocopherol may act as prooxidants. The prooxidant effects have been 

related to high concentrations of accumulated tocopheroxyl radicals, which may react both with 

intact lipids (LH) or lipid hydroperoxides (reversed eq. 26, k = 10.6 s). However, rates of these 

reactions have been found to be much lower than the rates of adduct  formation (eq. 27) and 

coupling of tocopheroxyl radicals (eq. 28), and are therefore considered less significant 30, 81. 

Oxidation products of tocopherols (tocopheroklquinones) have been reported to be more significant 

in pro-oxidation reactions of tocopherols than tocopheroxyl radicals 30. 

The tocopherols and tocopheroxyl radicals can reduce metal ions by donation of an electron 

(eq. 29 and eq. 30) and in this respect they may be considered as prooxidant synergists 81. 

 

Toc-OH  +  M(n+1)+    Toc-O   +  H+  +  Mn+ (eq. 29) 

Toc-O   +  M(n+1)+    TO+  +  Mn+ (eq. 30) 

 

Synergistic effects have been observed for tocopherols. Three mechanisms for the synergism 

have been recognized: a) sparing, b) regenerating, and c) trace metal chelation. 

Sparing of tocopherol occurs when another radical scavenger/singlet oxygen quencher is 

present alongside tocopherol and works by the same or different antioxidant mechanism. 

Regenerating of tocopherol occurs in the presence of substances which are capable of donating 

an electron to the tocopheroxyl radical, thus re-creating the original tocopherol molecule. 

Biologically relevant tocopherol regenerators are ascorbic acid and glutathione. 

Trace metal chelation enhances the activity of tocopherols by elimination of the reactions 

between tocopherol and metals (eq. 28 and eq. 29). Apart from typical metal chelators (e.g. citric 

acid), phosphatidylinositol and acidic phospholipids, some amino acids, peptides, and Maillard 

reaction products (melanoidins) were found to act synergistically with tocopherol due to their metal-

chelating abilities 81.  
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3.3.2.3 Ascorbic acid and ascorbyl palmitate 

Ascorbic acid (Vitamin C) has multiple functions in relation to lipid oxidation in food systems. It 

has been reported to act as: 

 oxygen scavenger, 

 scavenger of reactive oxygen species generated in the aqueous phase (e.g. hydroxyl 

radical (HO )), 

 singlet oxygen quencher, 

 reducing agent, 

 regenerator of tocopherol. 

 

There is also a negative aspect of ascorbic acid action. Due to its reducing abilities, ascorbic acid 

can act as a prooxidant by reducing transition metals such as iron, copper and vanadium to the more 

catalytically active forms 82. 

Ascorbyl palmitate and ascorbyl stearate are lipid soluble esters of ascorbic acid which scavenge 

lipid radicals in the oil phase 83. The effect of ascorbic acid and ascorbyl palmitate on low molecular 

iron and metHb-mediated oxidation in emulsions and liposomes was studied in this thesis (PAPER III, 

Additional data). 

 

3.3.3 Singlet oxygen quenchers 

Singlet oxygen (1O2) quenching includes both physical and chemical quenching. 

Physical quenching leads to deactivation of 1O2 to the ground state triplet oxygen (3O2) via 

energy transfer by a ground state quencher, producing a triplet state quencher (eq. 31). The triplet 

state quencher dissipates the energy in the form of heat into the environment returning to the 

original ground state (eq. 32). Physical quenching happens when the energy level of the ground state 

quencher is very near or below the energy level of singlet oxygen. 

Carotenoid pigments, such as carotenes (e.g. -carotene, lycopene, lutein) and xanthophylls 

(e.g. isozeaxanthin, astaxanthin) represent the most active 1O2 quenchers. It has been estimated that 

one carotenoid molecule is able to quench   1 000 1O2 molecules 84. 

conjugated double bonds are good 1O2 quenchers, and the efficiency improves with increasing 

number of the conjugated double bonds. The efficiency is also dependent on the functional groups 

attached to the carbon chain and the cyclopentane ring 85. 
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1O2  +  1carotenoid    3carotenoid  +  3O2 (eq. 31) 
3carotenoid    1carotenoid  +  heat (eq. 32) 

 

Chemical quenching leads to deactivation of 1O2 to the ground state 3O2 via charge transfer, and 

happens when the quencher has high reduction potential and low triplet state energy. Ascorbic acid, 

-carotene, tocopherols, amino acids (histidine, tryptophan, cysteine and methionine), amines, 

sulphides, iodides and azides are examples of 1O2 chemical quenchers. The quencher donates an 

electron to 1O2 forming a singlet state charge transfer complex and then changes the complex to a 

triplate state complex by intersystem crossing. The triplet state charge transfer complex is then 

dissociated into 3O2 and an oxidised quencher (Q') (eq. 33). This means that the quencher molecule is 

modified after the reaction is completed 64. 

 
1O2  +  1Q    [O2- 1    [O2- 3    3O2  +  Q' (eq. 33) 

 

It has been reported that tocopherols are also capable of both physical and chemical quenching 

of singlet oxygen. Tocopherols can deactivate about 40 – 120 1O2 molecules, before they are 

destroyed which is considerably less in comparison to carotenoids 81. 

 

3.3.3.1 Carotenoids 

Carotenoids are a group of more than 600 lipid soluble compounds, which are responsible for 

most of the red, orange and yellow colours in the plant and animal kingdoms 86. The main function of 

carotenoids is protection against photo-sensitized oxidation, i.e. absorption of light. In the human 

diet, carotenoids serve as a source of vitamin A, which is necessary for low-light and colour vision, 

but they are also believed to have health beneficial effects against degenerative diseases 30, 87, 88. 

Carotenoids consist of two classes of compounds: 

a) Carotenes, which are pure hydrocarbons (e.g. -carotene, lycopene) 

b) Xanthophylls, which contain oxygenated functional groups (e.g. astaxanthin, lutein).  

 

The presence of an oxy (=O) and hydroxyl ( OH) group in the molecule modifies its polarity and 

thereby its solubility, stability, distribution in different solvents, orientation/location in phospholipid 

membranes, and reactivity to other compounds. The groups also enhance the antioxidant properties 
30. 
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-Carotene 

 

Astaxanthin 

Figure 10 Chemical structure of -carotene and astaxanthin 

As mentioned above, carotenoids are efficient quenchers of singlet oxygen and as well as of 

excited photosensitizers. The long conjugated double bond system of carotenoids makes them an 

excellent substrate for radical attack. Lipid peroxyl (LOO ) and alkoxyl (LO ) radicals react with 

carotenoids at much higher rates than with unsaturated fatty acids. Therefore, carotenoids have also 

radicals scavenging abilities. Carotenoids are postulated to scavenge lipid radicals through addition of 

the radical to the conjugated system so that the resulting carbon-centred radical is stabilized by 

resonance. Another proposed mechanism is abstraction of hydrogen (similar to phenolic 

antioxidants) 30. Synergistic effects with -tocopherol and ascorbic acid have been reported as well 30, 

89. 

Under certain conditions, carotenoids can also show prooxidant effects. At low oxygen pressure 

( 2.0 kPa / 2% O2) carotenoids have been shown to act as antioxidants. The antioxidant activity was 

however supressed at high oxygen pressure (99.99 kPa / 100% O2) turning carotenoids into 

prooxidants. When carotenoids absorb blue light (400 – 500 nm) or heat, they can get excited to 

triplet states which might initiate or propagate lipid oxidation (eq. 13) 30. 

The activity of -carotene and astaxanthin (Figure 10) in LMW iron- and methemoglobin-

mediated oxidation was studied in this thesis (PAPER III and Additional data). 
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3.4 Post-prandial lipid oxidation 

Much attention has been paid to oxidation of food lipids during processing and storage, and 

positive and negative health effects of omega-3 fatty acids have therefore been mainly discussed in 

relation to the quality of the lipids determined prior to ingestion. Peroxidation of omega-3 fatty acids 

seems, however, not to end with the food production. Since the stomach is the entry organ for food, 

Kanner et al. 90 suggested that the stomach containing gastric juice may act as a “bioreactor” 

promoting peroxidation of dietary lipids after digestion, which is called post-prandial lipid oxidation. 

It has also been postulated that peroxidation of dietary lipids may continue in subsequent parts of 

the gastrointestinal (GI) tract – the small and large intestine 11. 

Varying health effects reported in clinical studies could therefore be to some degree attributed 

to oxidation occurring after ingestion of the lipids, and the overall health effect might be governed by 

the oxidative state of the fatty acids right before absorption by the GI tract 10. 

Secondary lipid oxidation products, such as aldehydes, malondialdehyde and 4-hydroxy-2-trans 

nonenal, have been reported to be cytotoxic 9, 27, 91, 92. Consumption of oxidised PUFA or oxidation of 

PUFA after ingestion would expose the cells of the GI tract to the full force of these toxic agents, 

forming a risk factor for cancer development primarily in the GI tract. 11 

 

3.4.1 Gastric juice 

Gastric juice is a complex solution of components secreted by the parietal cells of the stomach. 

The component governing the level of acidity (pH 1 – 4) is hydrochloric acid (up to 0.1 M). Other 

important component are inorganic salts (KCl, NaCl, CaCl2, bicarbonates, and calcium and 

magnesium phosphates), a series of digestive enzymes (pepsin, gastricin, gelatinase and other gastric 

lipases and amylases), proteins (gastroferrin, glutathione, albumins and globulins) and glycoproteins 

(mucin, intrinsic factor) and various hydrocarbons 93. Gastric juice also contains saliva which enters 

the stomach with the ingested food. 

The use of authentic human gastric juice for in vitro digestion models, rather than animal 

analogues or artificial formulations has recently been highlighted, since the human digestive juices 

(both gastric and duodenal juice) contain enzymes of various isoforms that may differ from those 

obtained from animals when it comes to both specificity and activity. In addition, the physiological 

combination and ratios of gastric juice constituents are unlikely to be achieved in artificial gastric 

juice formulations 94. 

Gastric mucosa also secrets the tripeptide glutathione. Among other functions, glutathione 

works as an endogenous antioxidant (reducing agent) directly participating in the neutralization of 
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free radicals and reactive oxygen species 95, as well as it may maintain exogenous antioxidants such 

as vitamin C (ascorbic acid) and vitamin E (tocopherols) in their reduced, i.e. active, forms 96. 

 

3.4.2 Oxidation of lipids in stomach 

The stomach is an entry organ for food and can be seen as an intermediate station, sort of a 

dynamic bioreactor, before the food is moved further to the gastrointestinal tract – intestines and 

metabolised. 

Hydrolysis of the lipid molecules by gastric and lingual lipases occurs to a certain degree (up to 

30%) already in the stomach, but lipids are mainly metabolized by intestinal lipases and transferred 

into the blood stream from the intestines 97. It is therefore reasonable to assume that during the 

time the LC omega-3 fatty acids from food, both hydrolysed and non-hydrolysed, are retained it the 

stomach, they can oxidatively deteriorate, i.e. undergo post-prandial oxidation. 

For LC omega-3 fatty acids to oxidise in the gastric juice, oxygen needs to be supplied to the 

closed stomach. It has been proposed that saliva, masticated food, liquids and swallowed air bring 

enough oxygen into the stomach, which can then facilitate post-prandial oxidation of lilpids 90. 

However, studies evaluating and quantifying post-prandial oxidation of sensitive LC omega-3 

PUFA are scarce. The reason for this lies in difficulties with in vitro simulation of the complex 

physiological processes occurring in the gastrointestinal tract after the food/lipids are ingested, 

including modelling of the compositionally complex gastric and duodenal juices 98. To date, no 

published study attempted to investigate post-prandial lipid oxidation in vitro, i.e. using humans as 

experimental models. However, a recent study by Chen et al. 99 attempted to develop a simple device 

for routine in vitro gastric digestion investigations. 

Lipids are usually not the only nutrients entering the stomach. Food also frequently contains 

prooxidants and antioxidants, which implies that both oxidation mediated by prooxidants and 

antioxidative reactions facilitated by dietary antioxidants may occur during post-prandial oxidation of 

lipids. The idea that the gastrointestinal tract could be the location for the protective activity of 

antioxidants, such as tocopherols, ascorbic acids, carotenoids and phenolic compounds, was initially 

presented by Halliwell et al. 11 

Relevant studies on post-prandial lipid oxidation are mentioned here and a few more are 

mentioned in PAPER IV: 

A recent study of Larsson et al. 100 investigated oxidation of cod liver oil during a gastrointestinal 

static in vitro digestion in artificial gastric and duodenal juices. The authors concluded that fresh 

mari -tocopherol, can give rise to toxic oxidation 
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products during the gastrointestinal passage, and that relatively small difference in the initial oil 

quality may be enlarged during digestion. 

In the study of Kenmogne-Domguia et al. 101, protein and phospholipid-stabilised emulsions 

containing tuna oil oxidised during in vitro digestion in the gastric step and also during the intestinal 

phase (measured by quantification of malondialdehyde, 4-hydroxy-2-hexenal and 4-hydroxy-2-

nonenal, and head space oxygen). Furthermore, the endogenous tocopherols were consumed 

throughout the digestion.  

Lapidot et al. 102 studied how iron (Fe3+), myoglobin and dietary antioxidants (ascorbic acid, 

polyphenols) affect lipid oxidation in both human and simulated gastric juice. The oxidizable fatty 

substrate was grilled red turkey muscle and linoleic acid emulsion. The authors concluded that 

peroxidation of the meat, and iron- and myoglobin-mediated oxidation in the emulsion can be 

inhibited by high concentrations of ascorbic acid and polyphenols. 

In the studies of Gorelik et al. 103, 104 it has been observed that the consumption of meal rich in 

oxidisable fat together with a rich source of antioxidants, red wine concentrate, reduced the 

absorption of lipid hydroperoxides and their secondary oxidation products (MDA) into the plasma, as 

a consequence of the antioxidative effect of the red wine polyphenols. 

Because of small number of studies addressing post-prandial oxidation of lipids, there is not 

enough evidence to draw solid conclusions on this topic, and especially on post-prandial oxidation of 

marine lipids. Therefore, in PAPER IV, oxidation of marine lipids in liposomes and emulsion in the 

presence of authentic human gastric juice is investigated, and the effect of several antioxidant rich 

beverages is evaluated. 
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3.5 Measurement of lipid oxidation 

As described in Section 3.2.2, lipid oxidation is a complex set of radical reactions which give an 

enormous variety of oxidation products, and where the essential reactant is oxygen (O2) 32 

(summarized in Figure 11). Numerous methods have been developed for the measurement of lipid 

oxidation – reviewed for example by Barriuos et al. 105 or Shahidi et al. 106. The majority of these 

methods is based on measurement of one specific or a set of lipid oxidation products. 

A drawback in the determination of lipid oxidation products is that these products are not stable 

and their concentrations vary with time. In classical autoxidation, the concentration of lipid 

hydroperoxides (LOOH) increases during the early phase of oxidation, but is decreased in later stages 

due to the decomposition of the LOOH into secondary oxidation products. On the contrary, 

secondary oxidation products (predominantly volatiles) are absent in the early stages of lipid 

oxidation and accumulate after the LOOH are broken down 29. Some of the secondary oxidation 

products may be further broken down or reacted into tertiary oxidation products. Because of their 

volatile nature, some of these products may even evade determination. Once prooxidants, 

antioxidants and reaction oxygen species are involved in the oxidation processes, the overall 

spectrum and ratios of the oxidation products may change significantly. In addition, oxidation of LC 

omega-3 PUFA gives a much broader spectrum of volatiles than less unsaturated fatty acids which 

further complicate their assessment 29, 32. 

 

 

Figure 11 Simplified overview on substrates, and primary and secondary products in lipid oxidation (adapted 

from 29) 
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Therefore, measuring a few selected oxidation products (lipid oxidation markers) may give 

incomplete or even misleading information about the lipid oxidation status. It has been suggested to 

use several methods simultaneously to characterize lipid oxidation status. The research focus should 

be on new and advanced techniques, such as electron paramagnetic resonance (EPR), nucleic 

magnetic resonance (NMR) or Raman spectroscopy 105. 

 

3.5.1 Oxygen uptake measurement in lipid oxidation studies 

The rate of oxygen consumption by unsaturated fatty acids directly reflects the rate of lipid 

oxidation 39, assuming that other (side) reactions consuming oxygen are eliminated or not present, 

and that the oxygen transport in the lipid system is not limited. Mozuraityte et al. 39 showed that the 

increase in peroxides (PV) and TBARS was directly correlated with consumption of dissolved oxygen 

in marine liposome dispersions (Figure 12) and that iron-mediated oxidation resulted in the 

formation of new lipid hydroperoxides, i.e. peroxidation. 

 
 

 
 

Figure 12 Changes in the concentration of dissolved oxygen [O

phospholipids. The oxidation was 2+ added to the dispersion at t = 0 min (figure from 39). 

 

Measurement of changes in the lipid oxidation substrate – oxygen – was therefore used to 

evaluate LMW iron- and methemoglobin-mediated lipid oxidation in marine emulsions and 

liposomes in this thesis. In comparison to the measurement of lipid oxidation products, this approach 
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has been distinctively less common in the reported lipid oxidation studies during the past 20 years. A 

brief overview on the use of the oxygen uptake method in relation to lipid oxidation studies is 

presented here: 

 Mozuraityte et al. studied free iron (Fe2+/Fe3+)-mediated oxidation in marine liposomes and the 

effect of phospholipid and iron concentration, temperature, pH and salts on free iron-mediated 

oxidation 39, 107. 

 Carvajal et al. measured oxygen uptake kinetics of cod and bovine hemoglobin in marine 

liposomes, and investigated the effect of pH, temperature, EDTA, -tocopherol  

on the prooxidant activity of the two hemoglobins 108. 

 Niki et al. investigated synergistic interactions between tocopherol and ascorbic acid in methyl 

linoleate solutions 109. 

 Zennaro et al. developed a method for determination of peroxyl radical trapping capacity and 

peroxyl radical trapping efficiency of water soluble and H-atom donor antioxidants in a micelle 

system, based on rigorous treatment of the oxygen uptake kinetic data 110. 

 Roginsky et al. measured the capability of metmyoglobin and hemin to catalyse lipid oxidation in 

methyl linoleate in micellar solutions. The authors determined the rates of free radical 

generation from the rates of oxygen consumption, and proposed a kinetic model for these 

processes. 111 

 Fukuzawa et al. studied peroxidation of egg yolk phosphatidylcholine liposomes induced by 

ascorbic acid and Fe2+ using amongst other methods oxygen consumption. The authors 

investigated interactions of ascorbic acid and Fe2+ with fatty acids and lipid hydroperoxides on 

the phospholipids 112. 

 Kristensen et al. evaluated the pro-oxidative activity of heat-denatured metmyoglobin in linoleic 

acid emulsions  using amongst other methods oxygen uptake 113. 

 Skibsted et al. studied radical scavenging abilities of carotenoids (astaxanthin, -carotene, 

canthaxanthin, and zeaxanthin) in peroxidising of methyl esters of unsaturated fatty acids 

mediated by metmyoglobin and a synthetic free-radical initiator in a homogenous chloroform 

solution 114. 

These diverse studies demonstrate that oxygen uptake method have a broad spectrum of use in 

lipid oxidation studies. The rare utilization of this method suggests that oxygen uptake is currently an 

underrated and neglected tool for investigation of rates, factors and mechanisms in lipid oxidation.
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4 Experimental work 

The experimental work in this thesis, including detailed descriptions of material and methods, 

was carried out as described in PAPER I – IV and in Section 5 (Additional data). 

Measurement of dissolved oxygen concentration (oxygen uptake) was used in this thesis as the 

principal method for assessment of lipid oxidation. The oxygen uptake method is therefore more 

closely described in Section 4.2. In addition to the measurement of the dissolved oxygen 

concentration a number of other analytical techniques were used in this work for 

 characterization of lipid composition and purity, 

 determination of oxidative status of lipids, 

  preparation and characterization of emulsions/liposomes, and 

 characterization of the aqueous phase. 

A comprehensive overview on the methods/techniques used in the thesis is given in Table 6. 

 

4.1 Work overview 

The experimental work is presented in four papers. In addition, previously unpublished research 

carried out in the frame of this thesis is presented (Section 5). A schematic overview on the work in 

this thesis and connections between the papers and the additional data is shown in Figure 13. 

PAPER I studies low molecular weight (LMW) iron-mediated lipid oxidation in marine emulsions 

and liposome dispersions, and characterizes the impact of different factors on the rate of LMW iron-

mediated oxidation in the two lipid systems. The outcomes, along with  a study on methemoglobin 

(metHb)-mediated lipid oxidation (presented in Additional data), are used in PAPER II and PAPER III, 

which evaluate the effects of different dietary antioxidants on LMW-iron and metHb-mediated 

oxidation in the emulsions and liposome dispersions. Finally, PAPER IV builds upon the contributions 

from PAPER I, II, and III and Additional data and evaluates oxidation of marine lipids in emulsions 

and liposomes in the environment of authentic human gastric juice. The effect of LMW iron, metHb 

and antioxidant rich beverages on lipid oxidation in the human gastric juice is also evaluated. 

A schematic overview summarizing the factors, antioxidants, and properties of lipid droplets 

studied in this thesis in relation to the prooxidant activity of LMW iron and methemoglobin in 

emulsions and liposome dispersion is shown in Figure 14. 
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Figure 13 A schematic overview and connections between the work curried out in this thesis (aox = 

antioxidants; metHb = methemoglobin) 

 

 

Figure 14 A schematic overview over the factors, antioxidants and properties of lipid droplets studied in this 

thesis in relation to free iron- and methemoglobin-mediated oxidation in emulsions and liposome dispersions 
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4.2 Measurement of dissolved oxygen concentration 

The concentration of dissolved oxygen in the liposome dispersions and emulsions was measured 

by the Clark type polarographic oxygen sensor (oxygen electrode) which is the pivotal component of 

the Oxygraph system (Hansatech Instruments Ltd., Norfolk, UK). 

The Oxygraph system (Figure 15) consists of a cell unit mounted on a control unit. The electrode 

disk forms the floor of the reaction chamber in the cell unit, into which liposome 

dispersion/emulsion (or any other liquid) is transferred – the reaction volume is optional in the range 

0.2 – 2.5 mL. A magnet inserted into the cell maintains an equal distribution of oxygen throughout 

the volume; the stirring rate can be set between 0 – 900 rpm (in % steps). A plunger is designed so 

that it minimises oxygen (O2) diffusion from the air. A capillary channel in the plunger enables 

injection of reactants during oxygen uptake measurements. The reaction cell is water jacketed and 

the jacket is connected to a circulating water bath. This enables performing experiments at a stable 

and optional temperature (the equipment tolerates 4 – 60 °C). 

 

 

Figure 15 A schematic figure of the Oxygraph unit with description of the unit's parts 

 

The oxygen electrode disc (Figure 16) consists of two electrodes – a platinum (Pt) cathode and a 

silver (Ag) anode – embedded in a resin. A bridge between the electrodes is established by a spacer 

paper saturated with an electrolyte solution (3 M KCl). The paper is held in place by a 

polytetrafluorethylene (PTFE/Teflon) membrane, which is permeable for O2, and by a rubber O-ring. 

Another O-ring located between the electrode disc and the cell unit is providing a waterproof 

connection, thus preventing leakage of the electrolyte solution. 
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Figure 16 Left: A schematic figure of the Clark polarographic oxygen sensor (oxygen electrode), including 

location of silver and platinum electrode, PTFE membrane, paper spacer, KCl solution, and rubber rings; Right: 

Clark polarographic electrode disc (figure retrieved from:  

http://hansatech-instruments.com/products/introduction-to-oxygen-measurements/oxygen-electrode-

discs/s1-oxygen-electrode-disc/) 

 

The red-ox reactions occurring on the oxygen electrode are depicted in Figure 17. When a stable 

polarizing voltage from the control unit is applied the Ag-electrode becomes positive (anode) and the 

Pt-electrode becomes negative (cathode) and polarised (i.e. it adopts the externally applied 

potential). When the potential is increased to 700 mV, O2 which diffuses through the membrane, is 

reduced at the Pt surface (initially to H2O2 which is then reduced to OH ) by electrons (e–) released 

from the oxidised Ag-electrode. Oxygen therefore acts as an electron acceptor in order to discharge 

the applied polarity. The current (e–) flows through the circuit which is completed by KCl solution, 

and silver chloride (AgCl) is deposited on the anode. The generated current bears a direct 

(stoichiometric) relationship to the reduced oxygen and is converted to a digital signal and recorded 

by the control unit. 

 

 

Figure 17 Principle of oxygen measurement by the Clark polarographic oxygen electrode 
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The digital signal is then processed by the software (Oxyg32) giving oxygen concentration, and 

the oxygen concentrations ( M dissolved O2) is plotted over time (min), giving oxygen consumption 

curves. Examples of such curves and the quantification of oxygen uptake rates (OUR) from the curves 

are given in PAPER I – IV. More details on the Oxygraph system and the measurement of dissolved 

oxygen in the aqueous phase can be found in the instrument's manuals and a technical specifications 

sheet 115-117. 

Prior to conducting a set of experiments, the chambers were thoroughly cleaned and the 

electrode discs were thoroughly polished to assure maximum and consistent sensitivity. The 

electrodes were calibrated against air saturated distilled water and air depleted distilled water at a 

specific temperature (most experiments were performed at 30 °C; the temperature was measured 

directly in the cells by a temperature sensor). The oxygen depletion was achieved by addition of 

sodium dithionite (Na2S2O4) directly to the volume of water in the cell. Sodium dithionite reacts with 

O2 dissolved in aqueous solutions (eq. 34). The electrodes were recalibrated after each set of 

experiments (typically 10 – 15 runs). Three oxygraphic cells were run simultaneously for each 

experiment. 

 

Na2S2O4  +  O2  +  H2O    NaHSO4  +  NaHSO3 (eq. 34)  

 

The measurement of oxygen concentration by the Clark type polarographic oxygen sensor has a 

resolution of 0.0003% 117. The repeatability of single oxygen concentration measurements was 

determined using distilled water saturated with air as a stable environment. The average value of 61 

consecutive measurements (1 min of oxygen concentration recording) gave a relative standard 

deviation of 0.07%. These data show a very low error in the determination of oxygen concentration. 

The repeatability of oxygen uptake measurements is highly dependent on the calibration of the 

electrodes and their sensitivity, oxidative stability of the lipid system which is being measured over 

time, and the skilfulness of the operator in terms of transfer of the reaction volumes, injection of 

reactants, and thorough cleaning of the cells in between runs. Nevertheless, ten randomly chosen 

repetitive measurements (n = 3 – 6) of the background OUR in freshly made liposome dispersions or 

emulsions, using the same electrode and performed within a 1 h period, gave relative standard 

deviations between 5 – 18 % with an average of 9.4%. 

To minimize oxidation of the emulsions and liposome dispersions over time, the dispersions 

were kept on ice. In case of longer periods in between runs (> 1 h), the liposome 

dispersions/emulsions were saturated with N2 to minimize the content of the dissolved oxygen, and 

kept in a closed flask on ice. 
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Pro- and antioxidants were added to the emulsions and liposome dispersions dissolved in 

ethanol, distilled water or MES solution. The addition of 5 – 100 L of these carriers into the 

liposome dispersions/emulsions did not have significant effects on the oxygen uptake rates. 

Addition of pro- and antioxidants into the carrier of liposome vesicles/emulsion droplets, i.e. 

MES solution or distilled water, did not lead to changes in the oxygen consumption either, which 

confirmed that oxygen uptake in the emulsions and liposomes was caused by the fatty acids (data 

not shown). 

Distilled water saturated with air contains 230 M O2 (at 30 °C) 115 and similar values were 

measured in liposome dispersions and emulsions saturated with air. After the addition of pro- and 

antioxidants, a fast depletion of the dissolved O2 was observed in the closed system, eventually 

leading to a complete depletion of O2. In some experiments, it was desired to follow oxidation 

longer, i.e. "beyond" the O2 depletion point, to investigate the maximum capacity of some pro- and 

antioxidants. To be able to follow the oxygen consumption further, one or several air re-saturation 

steps were performed without interruption of the recording of O2 concentration. The cell was 

opened when the concentration of the dissolved O2 reached almost zero, air was quickly infused into 

the system until the O2 concentration reached a saturated level, and the cell was closed again. After 

the curve was recorded, the periods with a rapid increase in O2 concentration due to the re-

saturation (usually lasting less than 1 min) were removed from the recordings and the remaining 

fragments of the curve were connected. The resulting "processed" curve represents a sum of M 

dissolved oxygen ( O2) (y-axis) consumed over time (x-axis). An example of the re-saturation steps in 

the oxygen uptake curve recording and the processed curve composed of the curve fragments is 

shown in Figure 18. Experiments in which the O2 recordings were prolonged this way were mainly 

performed with methemoglobin (shown in 5.1) and ascorbic acid. 

 

4.3 pH verification 

The pH of solutions, liposome dispersions and emulsions was measured by a TIM900 Titrator 

manager (TitraLab, Radiometer Analytical, Copenhagen, Denmark) coupled with a combination glass 

electrode (LIQ-GLASS 238000/08, Hamilton Co., Reno, USA), which was calibrated daily against 

standard buffer solutions, pH 4.0 and 7.0, at 22 °C. The pH in the liposome dispersions and emulsions 

was verified both before and after the oxygraphic experiments. 

 

4.4 Statistical analysis 

Microsoft Excel was used for calculations and data processing. The statistical program Minitab  

was used for statistical analyses. To assess significant differences, the data were subjected to analysis 
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of variance (one-way ANOVA), followed by a Tukey test. The level of significance was set to 95% 

(p = 0.05). 

 

 

Figure 18 An oxygen uptake curve recording with air re-saturation steps (upper plot) and a processed curve 

composed of the curve fragments after the removal of the re-saturation periods (lower plot). 
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5 Additional data 

The main results and outcomes of this thesis, including in-depth discussions, are reported in 

PAPER I – IV. Supportive data, such as characterization of the lipids, emulsions and liposomes, and 

preparation of the liposome and emulsion systems, are also reported in the papers. 

For a more comprehensive overview, the oxidative status (PV, TBARS, AV) and composition 

(fatty acid classes, lipid classes, carotenoid content) of all the lipids, i.e. phospholipids and fish oils, 

used in this thesis is given in Table 7. An overview over all the liposome dispersions and emulsions 

used in this thesis is given in Table 8. 

This section contains previously unpublished research. The additional data include studies on: 

 Methemoglobin-mediated lipid oxidation (Section 5.1) 

 Endogenous metals in liposomes/emulsions (Section 5.2) 

 Ion-exchange resin for removal of endogenous metals (Section 5.3) 

 Synthetic antioxidants as positive controls (Section 5.4) 

 Zeta-potential in liposomes containing iron (Section 5.5) 

 

5.1 Methemoglobin-mediated lipid oxidation 

A series of experiments addressing the prooxidant activity methemoglobin (metHb), including 

the effect of dietary antioxidants on metHb-mediated oxidation, was performed using the liposomal 

model system and the oxygen consumption method. For the convenience of the reader, the 

methodology for these experiments is first presented, followed by the results and a discussion on 

metHb-mediated oxidation (Sections 5.1.4, 5.1.5, and 5.1.6). 

 

5.1.1 Material 

Bovine methemoglobin (metHb) purchased from Sigma–Aldrich Chemie GmbH (Steinheim, 

Germany) was used for the experiments. An aqueous working solution (1 mg/mL = 15.5 M) was 

prepared fresh before each set of experiments, and the solution was kept at an ambient temperature 

( 22 °C) during the experiments. 

Marine phospholipids isolated from washed cod (Clupea harengus) roe, obtained from 

Grøntvedt pelagic (Uthaug, Norway), were used for the preparation of liposomes. Before isolation of 

the phospholipids, the roe was kept frozen at –40°C. Data on the oxidation status (PV, AV, TBARS), 

carotenoid content and composition (purity and fatty acid profile) of the isolated phospholipids are 

available in Table 7. 
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5.1.2 Methods 

Procedures for the isolation of phospholipids, preparation of liposomes and oxygen uptake 

measurements are described in detail in PAPER I – IV. Processing of oxygen uptake recordings is 

described in Section 4.2. All experiments were performed with 1.5% (w/v) liposomes in 5.5 mM MES 

solution, pH 5.5. The 1.5% liposome dispersion was prepared by dilution of 3% (w/v) liposome 

dispersion (30 mg PL/mL) with 5.5 mM MES solution (pH 5.5). Sonication of the 3% liposomes was 

done with a 6 s pulse repeated 25  (net sonication time = 2.5 min) at an amplitude 50% using a Vibra 

Cell sonication system with a 12 mm sonication rod (Sonics & Materials Inc., Newton, CT, USA) and 

a test tube ( 2.5 cm). Typically, 15 – 20 mL of liposome dispersion was prepared for a set of 

experiments. The temperature in the oxygraphic cells was kept at 30°C and the experimental volume 

of the liposome dispersion was 1 mL in each oxygraphic cell. All experiments were performed in 

triplicate using three simultaneous oxygraphic cells. 

An aliquot of 10 – 80 L of the metHb work solution was injected into the experimental volume. 

The concentrations of metHb in the final experimental volume are shown in Table 9. The final 

experimental volume consisted of a volume of liposome dispersion (1 mL) and the aliquot of added 

metHb work solution. Concentrations related to the amount of iron contained in methemoglobin 

(metHb-Fe) were used for expressing methemoglobin concentrations. 

For experiments where complete chelation of free metals was desired, 1.71 mM aqueous 

solution of ethylenediaminetetraacetic acid (EDTA) was injected into the experimental volume, so 

that 20 – 25-fold mol excess of EDTA in relation to the amount of iron contained in meHb was 

achieved (shown in Table 9). 

For experiments where complete depletion of pre-formed lipid hydroperoxides (LOOH) was 

desired, triphenylphosphine (TPP) dissolved in chloroform was added to the phospholipids before 

complete evaporation of chloroform and sonication, so that the concentration of TPP in the prepared 

liposome dispersion would be 200 M. The TPP was added in 50-fold molar excess than the 

peroxide content determined in the phospholipids (9.7 ± 0.8 mmol LOOH/kg). The excess of TPP used 

to also deplete any LOOH possibly formed during sonication of phospholipids. 
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Table 9 Methemoglobin concentrations in the final experimental volume of liposome dispersion, expressed as a 

molar concentration ( M) of methemoglobin (metHb) and as a molar concentration ( M) and molar quantity 

(nmol) of iron contained in methemoglobin (metHb-Fe); the last column shows the molar quantity of EDTA 

(nmol) added to the dispersion for each concentration of metHb where chelation of free metals was desired 

Aliquot of metHb work 
solution ( L) 

metHb ( M) metHb-Fe ( M) 
metHb-Fe 

(nmol) 
EDTA (nmol) 

10 0.15 0.60 0.60 12.0 

20 0.29 1.17 1.20 25.7 

40 0.55 2.21 2.28 51.3 

60 0.78 3.12 3.32 77.0 

80 0.98 3.94 4.24 102.6 

 

Table 10 Combinations of water and lipid soluble antioxidants and methemoglobin in the final experimental 

volume of liposome dispersion; lipid soluble antioxidants are expressed as a relative quantity (%) in the 

phospholipids 

Antioxidants Antioxidant concentration 
(μM or % (g/100 g PL)) 

Methemoglobin 
concentration (μM metHb-Fe) 

Water soluble 
(hydrophilic) 

Ascorbic acid 25 μM, 50 μM 2.21 

Caffeic acid 50 μM, 100 μM 2.21 

Lipid soluble 
(lipophilic) 

Astaxanthin 0.1% 
1.0% 

2.21, 3.12 
2.21, 3.12 

Ascorbyl palmitate 0.1% 
1.0% 

2.21, 3.12 
2.21, 3.12 

-Tocopherol 0.1% 
1.0% 

2.21 
2.21, 3.12 

-Tocopherol 0.1% 
1.0% 

2.21, 3.12 
2.21, 3.12 

 

5.1.3 Addition of antioxidants 

A stock solution of ascorbic acid (100 mM) was prepared in 5.5 mM MES solution, a stock 

solution of caffeic acid (100 mM) was prepared in 96% ethanol, and the solutions were kept at 4°C. 

Work solutions were prepared fresh before the experiments by diluting appropriate aliquots of the 

stock solutions with 5 mM MES solution (pH 5.5). An aliquot of the work solution was injected into 

the cell with the liposome dispersion to achieve the desired concentration in the reaction volume. 
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Stock solutions of lipid soluble antioxidants, namely astaxanthin (0.2 mM, 2 mM), -tocopherol 

(4.6 mM), -tocopherol (5.1 mM) and ascorbyl palmitate (4.8 mM), were prepared by dissolving the 

compounds in chloroform. An aliquot of the stock solution was added to the phospholipids before 

complete evaporation of chloroform and sonication, to achieve the desired quantity in the 

liposomes. Levels of 0.1% and 1.0% antioxidant (w/w, phospholipid base) were tested. 

The quantities of the antioxidants in the final experimental volume of the liposome dispersion 

and the concentration of methemoglobin tested with the antioxidants are given in Table 10. 

 

5.1.4 Prooxidant activity of methemoglobin in liposomes 

After the addition of metHb to the liposomes, fast consumption of the dissolved oxygen 

followed, as shown in Figure 19. The rate of oxygen consumption was fastest directly after the 

addition of metHb, and gradually decreased over time. The net initial OUR, i.e. OUR measured shortly 

after metHb addition, was linearly proportional to the metHb-Fe concentration (Figure 19). 

In LMW iron-mediated lipid oxidation the consumption of the dissolved oxygen followed a linear 

function (PAPER I). The consumption of the dissolved oxygen in metHb-mediated oxidation did not 

follow any of the basic mathematical functions, i.e. linear, exponential, quadratic or logarithmic 

function. For this reason, quantification of the oxygen uptake rates (OUR) became more complicated. 

Therefore, the results are presented as processed oxygen uptake curves or as the net initial OUR, 

characterizing the fastest phase in metHb-mediated oxidation. To evaluate the degree of metHb 

oxidation and the effect of different factors, including antioxidants, the oxygen uptake curves or the 

net initial OUR were directly compared. The latter approach was used in PAPER II and PAPER IV. 

 

 

Figure 19 Left: Oxygen uptake in 1.5% liposomes (pH 5.5) after addition of metHb (zero time point); Right: 

Relationship between the net initial OUR and metHb-Fe concentration. 
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A comparison of the UV-spectrum of the metHb work solution with UV-spectra of different 

forms of mammalian hemoglobin found in literature 150 confirmed the presence of metHb  in the 

work solution (Figure 20). It has been reported that hydration weakens the heme-protein linkages 151 

and that once the heme group of hemoglobin is converted to the met-form (Fe3+) the group is much 

more loosely bound to the protein. This favours dissociation of the group as hemin (protein-free 

analogue of metHb) and consequently hemin-mediated lipid oxidation 152. Further degradation of 

hemin would result in a release of free iron into the work solution. A product specification sheet for 

bovine hemoglobin (product no. H2625/Sigma-Aldrich) states that the methemoglobin powder 

contains 0.25 – 0.30% free iron. Therefore, traces of LMW iron were expected in the metHb work 

solution. 

However, a detailed composition in terms of intact metHb, hemin and free iron of the freshly 

prepared metHb work solution was not determined. A hypothetical situation, in which all iron would 

be released from the methemoglobin, would essentially lead to LMW iron-mediated oxidation. The 

highest metHb concentration (3.94 μM metHb-Fe) used in this study would give 4 M LMW iron in 

the final experimental volume of the liposome dispersion. Fe2+-mediated oxidation in 1.5% liposomes 

prepared from the same phospholipids as in these experiments was measured in PAPER I. Iron 

concentration of 4 M Fe2+ would give net OUR < 3.1 M O2/min, which is a relatively small 

contribution to the overall OUR. 

This also demonstrates that the prooxidant activity of metHb is much higher than the prooxidant 

activity of LMW iron. While the specific OUR 1-footnote for Fe2+-mediated oxidation in the 1.5% 

liposome dispersion was 0.29 ± 0.12 M O2/M Fe2+.min–1 (PAPER I), the specific OUR for metHb-

mediated oxidation was 7.5 ± 0.9 M O2/M metHb-Fe.min–1 (n = 18) (calculated from the data for the 

initial net OUR in Figure 19 – Right), which is a 26-fold higher specific OUR than the one for LMW 

iron, under the same experimental conditions. 

 

                                                           
1 specific OUR [M O2/M Fe2+.min–1 = net oxygen uptake rate (OUR) for a given concentration of the  

prooxidant, divided by the prooxidant concentration 
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Figure 20 Left: Absorption spectrum (450 – 650 nm) of bovine metHb work solution (15.5 M metHb) (upper 

curve) and the dissolution medium (5.5 mM MES solution, pH 5.5) (bottom curve); Right: Absorption spectra of 

different types of mammalian hemoglobin (figure from 150) used for comparison; metHb is marked     

 

A study by Richards et al. suggests that dissociation of the heme group has a primary role in the 

ability of different heme proteins to promote lipid oxidation processes 153. A comprehensive review 

by Schaich on heme-mediated lipid oxidation however concludes that an intact heme group inside a 

pocket formed by surrounding proteins, i.e. non-dissociated heme group, was an absolute 

requirement for the prooxidant activity of heme-proteins 32. 

If Richards' 153 hypothesis is correct, then the prooxidant activity of denatured metHb should 

remain the same or even increase in comparison to the native metHb, because denaturation would 

aid dissociation of the presumably more active hemin. A lower pro-oxidative activity of denatured 

metHb would, on the other hand, favour Schaich's 32 hypothesis. Temperatures above 75 °C lead to 

denaturation of heme-proteins 113. 

Therefore, the metHb work solution was boiled (100 °C) in a water bath for 10 min in order to 

thermally denature the protein and presumably aid dissociation of the heme group. It should be 

mentioned that some precipitation of protein occurred in the heated metHb solution, which was 

likely the denatured protein. The effect of the heat treatment on the oxygen uptake consumption in 

1.5% liposomes (pH 5.5) is shown in Figure 21. The initial net OUR was reduced by 41 % in the 

denatured metHb-mediated oxidation, as well as the subsequent OUR. Therefore, thermal treatment 

reduced the activity of metHb. The results are in agreement with Schaich's hypothesis that the 

protein part is important for the heme group to rapidly catalyse lipid oxidation. 

The activity of metHb was however not reduced completely by the heat treatment. The results 

suggest that the dissociated heme group still have some prooxidant activity. This activity however 

appears lower than when the group is embedded in the protein structure. 
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To see whether LMW iron was released from metHb during the thermal treatment and to what 

degree this affects the consumption of the dissolved oxygen, a strong chelator (EDTA) was added to 

the liposomes to deactivate any free iron. The effect of EDTA is shown in Figure 21. A presence of 

EDTA further reduced the activity of thermally denatured metHb. This suggests that release of free 

iron from metHb occurred during the heat treatment. These results imply that 1) the prooxidant 

activity of dissociated heme group (hemin) is lower than when the group is embedded in the protein 

structure, or 2) the heme-group is largely destroyed by the heat treatment leaving only LMW iron to 

be active as a prooxidant. 

These experiments show that heating of heme-proteins leads to a reduction of their prooxidant 

activity, and it could therefore be one of the strategies for reduction of heme-mediated lipid 

oxidation. In further experiments presented in this thesis, the native form of metHb is used. 

In a study by Kristensen et al. 113, temperatures above the denaturation point of metmyoglobin 

(metMb) (> 75°C) decreased the pro-oxidative activity of the resulting heat-modified metMb species 

compared to the native metMb. But even though the pro-oxidative activity of metMb decreased 

after the heat treatment, the catalytic activity of heat-denatured metMb still exceeded the pro-

oxidative activity of free Fe2+. The authors measured a minor loss of free iron from metMb after a 

short heat treatment but a larger loss during a longer heat treatment. These findings are in a good 

agreement with the results in this study. 

 

 

Figure 21 Oxygen consumption curves of lipid oxidation in 1.5% liposomes (pH 5.5) mediated by native metHb 

(red curve) and thermally treated metHb (10 min in a boiling bath) (blue curve) (left plot), and by thermally 

treaded metHb in the absence (blue curve) and the presence (purple curve) of EDTA (right plot). All metHb 

concentrations in the plots were 2.21 M metHb-Fe. 
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5.1.5 Oxygen uptake kinetics in methemoglobin-mediated oxidation 

In order to verify the occurrence of LMW iron-mediated oxidation alongside metHb-mediated 

oxidation and these, EDTA was added into the liposome dispersion to chelate any endogenous trace 

metals and all the iron which could be released from the native metHb. EDTA was added into the 

experimental volume either before addition of metHb or during ongoing metHb-mediated oxidation. 

The oxygen uptake curves are shown in Figure 23. 

The presence of EDTA had a dramatic effect on the course of the oxygen consumption. The initial net 

OUR was reduced by a factor 0.7 (shown in Figure 22) and the rate of oxygen consumption gradually 

decreased over time, eventually reaching values similar to the background OUR (Figure 23). The 

change in oxygen uptake kinetics was also clearly seen when EDTA was added into ongoing metHb-

mediated oxidation – after the addition of EDTA the subsequent curve resembled the curve for EDTA 

added prior to addition of metHb (shown in Figure 23). The specific OUR for metHb-mediated 

oxidation in the presence of EDTA was 4.7 ± 0.9 M O2/M metHb-Fe.min–1 (n = 30) (calculated from 

the data for the initial net OUR in Figure 21 – Left plot). The reduction in the specific OUR caused by 

the presence of EDTA is therefore 2.8 M O2/M metHb-Fe.min–1. This difference could be partially 

attributed to LMW iron potentially released from metHb and endogenous metals in the liposomes 

dispersion. However, the difference cannot be entirely attributed to free metal-mediated oxidation 

(both endogenous metals and LMW iron potentially released from metHb) because the specific OUR 

for LMW iron-mediated lipid oxidation was found to be 0.29 ± 0.12 M O2/M Fe2+.min–1 (PAPER I). A 

possible explanation for the difference could be that EDTA has an inhibition effect on the activity of 

metHb, reducing the activity by 33%. These experiments also indicate that LMW metal-mediated 

oxidation might occur alongside metHb-mediated oxidation. 

The effect of EDTA on the activity of hemoglobin (Hb) from Atlantic pollock was investigated by 

Maestre et al. 154 The authors did not find any significant influence of EDTA (up to 1 mM) on pollock 

Hb (3 M)-mediated lipid oxidation in a liposomal model (0.8% soy lecithin, pH 6.8, 30°C), measured 

as formation of TBARS and conjugated dienes (CD) over a 4.5 h period. This finding is in contrast to 

findings in this study. On the other hand, the authors measured an inhibition of TBARS, CD and a 

reduced loss of redness over a 4 day period at 4°C in washed fish muscle containing 3 M of 

pollock Hb/kg and 2 mmol EDTA/kg muscle, compared to a control lacking EDTA. These findings, on 

the other hand, support the outcomes of this work. The authors concluded that iron chelators 

showed lower antioxidant activity on Hb-mediated lipid oxidation than reductants, such as ascorbic 

acid and proanthocyanidins. 
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Figure 22 Left plot: Relationship between metHb concentration and net initial OUR when EDTA was absent or 

present in the liposome dispersion; Right plot: Net initial OUR in oxidation mediated by 2.21 μM metHb-Fe at 

ambient light or in the darkness. The data are average values with respective standard deviations of 3 – 6 

measurements in 1.5% liposome dispersion at pH 5.5. 

 

 

Figure 23 Oxygen uptake curves in 1.5% liposomes (pH 5.5) after addition of 2.21 M metHb-Fe (zero time 

point) when EDTA was absent (red curve), added prior to addition of metHb (blue curve), or added after 

metHb, i.e. during ongoing metHb-mediated oxidation (indicated by arrow). 

 

The effect of EDTA on metHb-mediated oxidation needs to be deeper investigated due to the 

inconsistencies in the reported data. Since it was of interest in this thesis to study metHb-mediated 
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oxidation only, EDTA was always added into the experimental volume of the liposome dispersion 

prior to addition of metHb in quantities given in Table 9 to primarily supress (filter out) oxidation 

mediated by LMW iron and by endogenous metals. The reducing effect of EDTA (by 33%) on the 

activity of metHb was considered throughout the study. Unless specified otherwise, all the following 

experiments were performed with liposomes dispersions containing EDTA. 

 

Heme-proteins are known to have photosensitising abilities, i.e. they are capable of converting 

energy of light into chemical energy (more details on the mechanism is given in Section 3.2.2.1). 

Type II photosensitizers convert atmospheric triplet oxygen (3O2) into reactive singlet oxygen (1O2) 

which is capable of direct reaction with double bonds in unsaturated fatty acids, forming lipid 

hydroperoxides (LOOH). Assuming that the highly reactive singlet oxygen is generated by the heme-

group in methemoglobin and that the generation is responsible for oxygen consumption, metHb-

mediated oxidation should have higher oxygen uptake rates in the light compared to in the dark, and 

peroxidation may even not occur in the dark. Oxygen uptake curves for 2.21 μM metHb-Fe measured 

in complete darkness were not significantly different from the curves measured at ambient daylight 

(expressed as initial net OUR in Figure 22 right plot). These results suggest that generation of singlet 

oxygen was not a dominant pathway in metHb-mediated oxidation in the liposome system. 

 

 

Figure 24 Oxygen consumption curves in 1.5% liposomes (pH 5.5, incl. EDTA) after addition of 3.94 M metHb-

Fe when the pre-formed lipid hydroperoxide (LOOH) content in the phospholipids was kept (red curve) or 

depleted by reaction with TPP (200 M) which was added to the phospholipids prior to preparation of 

liposomes. 
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Pre-formed lipid hydroperoxides (LOOH) have been proposed to play a key role for heme-

proteins to be active in mediating lipid oxidation 32. It is possible to chemically reduce the 

hydroperoxide group ( OOH) into an alcohol group ( OH) by triphenylphosphine (TPP). To verify the 

interactions of metHb with LOOH, TPP was added to the phospholipids in order to prepare LOOH-

free liposomes. The oxygen uptake in these liposomes after addition of 3.94 uM metHb-Fe is shown 

in Figure 24. The oxygen uptake was completely supressed by elimination of the pre-formed LOOH, 

which confirms that the presence of LOOH is essential for metHb to be prooxidatively active. 

 

When oxygen consumption after addition of metHb was followed for a longer period (1 – 3 h), 

the OUR eventually reached OUR similar to the OUR measured before the addition of metHb, i.e. the 

background OUR. Assuming that the background oxygen uptake rate is constant, it is possible to 

subtract the background oxygen consumption from the consumption measured for metHb, obtaining 

a net oxygen uptake curve for metHb. When approximating this net curve to zero along the x-axis, 

the curve was well fitted with a basic exponential function (y = Aex) (shown in Figure 25). 

The net oxygen consumption curve clearly shows that the oxygen uptake in metHb-mediated 

oxidation decreases exponentially, and after some time approaches zero. This result suggests that 

metHb loses its initial prooxidant activity while mediating lipid oxidation. At this moment, the cause 

for the decrease in the prooxidant activity of metHb is not clear. 

Grunwald and Richards 155, studying myoglobin (Mb)-mediated lipid oxidation in washed cod 

muscle, also observed a decreased activity of certain types of heme-proteins after dissolution in 

aqueous medium. The authors proposed a mechanism in which the pro-oxidation activity of Mb is 

reduced due to destruction of the hemin group by interaction with pre-formed lipid hydroperoxides 

(LOOH). A few years later, Meastre et al. 156 reported that different lipid oxidation by-products 

(hydroperoxides and aldehydes) accelerate both hemoglobin oxidation to metHb and hemin release 

and that fish hemoglobins with stronger prooxidant capacities are those with weaker resistance to 

undergo oxidation to metHb and hemin loss. These findings could also be interpreted as followed: 

Intact hemoglobin is a stronger prooxidant than when it is converted to metHb and further degraded. 

The proposed mechanism is summarised in Figure 26. This theory would explain the exponential 

decrease of oxygen uptake in metHb-mediated oxidation in this work. 
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Figure 25 Upper plot: The principle of obtaining a net oxygen uptake curve (red curve) for metHb-mediated 

oxidation (3.94 M metHb-Fe) by subtraction of the background linear oxygen uptake curve (green curve) from 

the measured curve for metHb (blue curve). A basic exponential function is fitted the net curve. Lower plot: 

Residual plot for the exponential fit expressed as % deviation of the curve from the exponential function. 

 

Roginsky et al. 111 also observed a decrease in the prooxidant activity of horse heart metMb with 

time during oxidation of methyl linoleate in Triton X-100 micellar solution at 37°C. This effect was 

shown to be caused by degradation of iron-heme complexes. The authors also showed that 

degradation of metMb occurs in the presence of oxidizing lipids and that molecular oxygen does not 

participate in the process of metHb/heme degradation but lipid hydroperoxides are involved in the 

process. In addition, the authors determined some kinetic parameters characterizing the catalytic 

activity of hemin and metMb in the experimental system. An oxygen uptake method, similar to that 

in this thesis, was used in their studies, and their findings are in very good agreement with the 

measurements in this study. 
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Figure 26 Proposed reaction pathway for decrease in the  prooxidant activity of methemoglobin (adapted from 
155) 

 

Concentrations ranging 0.60 – 3.94 M metHb-Fe were added to the liposomes dispersion 

containing EDTA and the oxygen consumption was recorded until the OUR reached background 

values. The net oxygen uptake curves were generated in the same way as the example in Figure 25, 

representative net curves for the concentration range are shown in Figure 27. An exponential 

decrease in oxygen consumption was observed for all measured concentrations. 

This consistency in the curves and the fact that it was possible to repeatedly re-saturate the 

liposome dispersion with air in order to obtain longer oxygen uptake recordings suggest that neither 

the dissolved oxygen concentration, nor the level of pre-formed LOOH, nor the amount of double 

bonds in the fatty acids were limiting factors for metHb-mediated oxidation, given that the latter two 

variables were in excess to metHb concentration for the duration of the experiment. 

The exponential fits provided data on the total consumption of the dissolved oxygen and the 

rate constant (k) of the oxygen consumption. Their relationship to metHb concentration is plotted in 

Figure 28. The total consumption of the dissolved oxygen was linearly proportional to the metHb 

concentration. The rate constant for the consumption appeared constant (k = 0.030 ± 0.005 min–1, 

n = 17) over the measured concentration range of metHb. 

The ability of metHb to rapidly mediate lipid oxidation can be clearly seen from the total amount 

of consumed oxygen per metHb molecule. Each mol of iron contained in the methemoglobin 

molecule (metHb-Fe) was responsible for the consumption of 242 ± 47 mol of dissolved O2 in the 

liposome dispersion (calculated from data in Figure 28 Left). In contrast, each mol of LMW iron was 

responsible for the consumption of 5.94 ± 0.26 mol O2 in the same system and under the same 

conditions (PAPER I), which is a 40-fold lower value. This again, demonstrates a much higher 

prooxidant activity of metHb compared to LMW iron. However, metHb is not a true catalyst, like 

LMW iron, since its activity decreases over time, as shown and discussed above. 
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Figure 27 Net oxygen uptake curves for metHb-mediated lipid oxidation in 1.5% liposome dispersion (pH 5.5, 

incl. EDTA) in the range 0.60 – 3.94 M metHb-Fe. The curves are fitted with basic exponential functions. 

 

 

Figure 28 The relationship between metHb-Fe concentration and the total consumption of the dissolved 

oxygen (left plot) and the rate constant (right plot), both determined by the exponential fits through net 

oxygen uptake curves for metHb-mediated oxidation in 1.5% liposomes (pH 5.5, incl. EDTA). Each data point in 

the plots represents one measurement. 
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5.1.6 Effects of antioxidants 

The activity of antioxidants is affected by interactions with LMW iron, which may turn some of 

the antioxidants into prooxidants, as shown in PAPER III. Caffeic acid was strongly pro-oxidative in 

the presence of LMW iron, but inhibited metHb-mediated lipid oxidation in the liposome dispersion 

(pH 5.5), which demonstrates that the activity of some antioxidants is also dependent on the type of 

prooxidant (shown in PAPER II). Therefore, the antioxidant activity of important dietary antioxidants 

(ascorbic acid, caffeic acid, astaxanthin, - and -tocopherol, and ascorbyl palmitate) was, in addition 

to LMW iron-mediated oxidation, also evaluated in metHb-mediated oxidation. To eliminate the 

interference of LMW iron (both endogenous and released from metHb), EDTA was added into the 

liposome dispersion in all experiments (according to Table 9). 

Representative oxygen consumption curves for metHb-mediated oxidation (2.21 and 3.12 M 

metHb-Fe) in 1.5% liposome dispersion (pH 5.5) containing EDTA and the antioxidants are shown in 

Figure 29 and Figure 30. Direct comparisons of the oxygen uptake curves clearly show that none of 

the antioxidants at the tested concentrations and ratios to metHb had a pro-oxidative effect. In 

LMW-iron mediated oxidation (PAPER III), caffeic acid and -tocopherol showed pro-oxidative 

behaviour due to the ability to reduce LMW ferric iron (Fe3+) to the more prooxidative ferrous state 

(Fe2+) and ascorbic acid was depleted by reactions with LMW iron. Iron in metHb is "complexed" by 

the porphyrin and protein structure. The absence of the prooxidant effect for these antioxidants 

shows that whether the iron atom is free or embedded in the heme group is crucial for the direct 

interactions between the iron and the antioxidants. An impaired access of the antioxidants to the 

iron in the heme-group, especially the lipophilic antioxidants, could play a role for the interactions 

between the iron in heme and antioxidants. 

The oxygen uptake kinetics was significantly affected in the presence of the antioxidants, 

especially at the higher concentrations of the antioxidants (1%, w/w, PL base). While for the control 

(no antioxidant), the oxygen consumption as a function of time followed an exponential curve, in the 

presence of antioxidants the oxygen consumption often was constant. 

The relative effect (%) on the inhibition of the net initial OUR for oxidation mediated by 2.21 M 

metHb-Fe and 3.12 M metHb-Fe is shown in Figure 31A and Figure 31B, respectively. Ascorbic acid 

had a stronger inhibition effect than caffeic acid (compared at 50 M). The relative efficiency of the 

lipophilic antioxidants had the following order: 

- -Tocopherol  Astaxanthin  Ascorbyl palmitate 

- -Tocopherol > Astaxanthin 
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These results clearly show that the effectiveness of these antioxidants against metHb-mediated 

oxidation is concentration dependent and may switch from inactivity at low concentration to a very 

high activity at higher concentrations (as seen for ascorbyl palmitate). 

The antioxidants may inhibit metHb-mediated oxidation by 1) direct interaction with metHb 

(presumably reducing hyper active ferryl-hemoglobin species back to metHb) and/or by b) 

scavenging of radicals generated during the mediated oxidation. Interactions of the antioxidants with 

LMW iron are not likely, since any LMW metals were deactivated by addition of EDTA into the 

liposome dispersion. 

Ascorbic acid and caffeic acid are water soluble antioxidants, but also reductants, as shown in 

PAPER II and PAPER III) and reported in the literature 67, 157. Both compounds had an inhibition effect 

on metHb-mediated oxidation; the effect was higher for ascorbic acid than for caffeic acid (compared 

at 50 M). Possible inhibition mechanisms of metHb-mediated oxidation by caffeic acid are discussed 

in PAPER II. Briefly, the literature survey in the paper suggests that reduction of the hyper active 

ferryl-hemoglobin species leads to inhibition of meHb-mediated oxidation. 

Inhibition of the formation of peroxide value, TBARS and volatiles by caffeic acid (200 ppm) in 

washed mince from bighead carp (pH 6) with added hemoglobin was measured by Thiansilakul et al. 
158. In a study of Maestre et al. ascorbic acid reduced to some extent formation of lipid 

hydroperoxides, but was not able to diminish generation of TBARS in liposomes during pollock Hb-

mediated oxidation 154. A significant correlation between the electron-donating capacity of different 

phenolic compounds (amongst them caffeic acid) and their ability to inhibit lipid oxidation in minced 

fish muscle containing catalytic amounts of hemoglobin was found in a study of Medina et al. 159 

In these studies and the present thesis, compounds with reducing abilities demonstrated a 

positive inhibition of hemoglobin-promoted lipid oxidation. These findings suggest that the reduction 

of ferrylHb species could be the antioxidant mechanism involved. To what degree these compounds 

are involved in radical scavenging in the phospholipid bilayer is not known. Given their primary 

location in the aqueous phase, the contribution to the scavenging of LOOH could be marginal. 

 

- and -tocopherol, astaxanthin and ascorbyl 

palmitate) is bound to the lipid phase, i.e. in the case of liposomes to the phospholipid bilayer due to 

their non-polar character. These compounds are primarily radical scavengers. Therefore, their 

efficiency observed in this study could be attributed mainly to scavenging lipid radicals generated 

during metHb-mediated peroxidation, rather than to direct interactions with metHb. The antioxidant 

mechanisms of these compounds are introduced in Sections 3.3.2.2, 3.3.3.1 and 3.3.2.3, therefore 

they will not be repeated here. 
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5.1.7 Summary of metHb-mediated oxidation 

In conclusion, the prooxidant activity of metHb in the liposome dispersion was confirmed to be 

crucially dependent on the presence of pre-formed lipid hydroperoxides within the fatty acids of the 

phospholipids and on the complete structure of the methemoglobin molecule. The activity of metHb 

was not affected by the lack of light. Heat treatment (thermal denaturation) reduced the activity of 

metHb as well as the presence of EDTA. The results imply that a partial release of iron occurs during 

thermal denaturation. The prooxidant activity of metHb was confirmed to be much higher than the 

prooxidant activity of LMW iron. 

The oxygen consumption in metHb-mediated oxidation followed a basic exponential function, 

and the consumption was not limited by the concentration of the dissolved oxygen, as long as the 

oxygen was present (as seen by the assembly of the curves after the oxygen uptake recordings). 

MetHb-mediated oxidation was also not limited by the quantity of the pre-formed LOOH and the 

double bonds in the fatty acid carbon chains, given their excess in the phospholipids in relation to the 

concentration of metHb. 

The exponentially decreasing oxygen consumption demonstrates that the prooxidant activity of 

metHb is not constant, as in the case of LMW iron. This suggests that meHb has the ability to rapidly 

promote lipid oxidation, but it is not a true catalyst, as LMW iron. Based on these measurements it is 

hypothesized that the metHb molecule is degraded when mediating lipid oxidation, which seems to 

lead to formation of degradation products of metHb with lower prooxidant activity than the activity 

of intact metHb. 

All tested antioxidants (caffeic acid, ascorbic acid, ascorbyl palmitate, astaxanthin, -tocopherol, 

and -tocopherol) showed an inhibition effect on metHb-mediated oxidation. The extent of inhibition 

was dependent on the concentration of the antioxidant and metHb-to-antioxidant ratio. Based on 

the results in this study, the antioxidant strategy for inhibition of metHb-mediated oxidation in 

multiphase systems could be as follows: a metal chelator should be present to deactivate any 

endogenous metals and iron released from metHb. A water soluble compound with reducing abilities 

should be present to attenuate the prooxidant activity of metHb before methemoglobin is destroyed 

by promoting lipid oxidation, while lipophilic radical scavengers should be present in the lipid phase 

to inhibit peroxidation caused by metHb during the active period of metHb. 
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Figure 29 Representative oxygen consumption curves in 1.5% liposome dispersion (pH 5.5, incl. EDTA) 

containing ascorbic acid (AsA, 25 and 50 M in the liposomes dispersion), caffeic acid (CaA, 100 and 50 M in 

the liposome dispersion), astaxanthin (Ast, 0.1 and 1.0% (w/w, PL base) or ascorbyl palmitate (AsP, 0.1 and 

1.0% (w/w, PL base) for metHb-mediated oxidation at 2.21 M or 3.12 M metHb-Fe. 
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Figure 30 Representative oxygen consumption curves in 1.5% liposome dispersion (pH 5.5, incl. EDTA) 

containing -tocopherol ( -Toc, 0.1 and 1% (w/w, PL base) or -tocopherol ( -Toc, 0.1 and 1.0% (w/w, PL base) 

for metHb-mediated oxidation at 2.21 M or 3.12 M metHb-Fe. The curve for 0.1% -Toc at 3.12 M metHb-

Fe was not available. 
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Figure 31 Inhibition (%) of the net initial OUR in oxidation mediated by 2.21 M metHb-Fe (plot A) and 3.12 M 

metHb-Fe (plot B) by different antioxidants. The concentration of hydrophilic antioxidants (ascorbic acid, 

caffeic acids) is given in mol/dm3 ( M) of the liposome dispersion, the concentration of lipophilic antioxidants 

(astaxanthin, ascorbyl palmitate, - and -tocopherol) is given as a relative quantity of the antioxidant in the 

phospholipids (%, w/w, PL base). The data are average values with respective standard deviations of 3 – 6 

measurements. Means that do not share the same letter are significantly different (p = 0.05). Data for 0.1% -

tocopherol at 3.12 M metHb-Fe were not available. 
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5.2 Endogenous metals in liposomes/emulsions 

Contamination by free metals (presumably iron) was expected in the isolated phospholipids and 

consequently in the liposomes and emulsions stabilized with the phospholipids. Several sources of 

iron contamination are possible: 

1) steel equipment used during isolation of phospholipids, 

2) traces of metals in chemicals, 

3) metals in the raw material (roe), 

4) where sonication was involved (liposomes), the steel sonication rod, and 

5) where homogenization was involved (emulsions), the steel homogenization blade. 

 

Phospholipid heads are zwitterions, i.e. they bear both positive and negative charge 35. It is 

therefore likely that positively charged metal atoms associate with the phospholipid molecules, and 

due to this they occur in the liposome dispersions and emulsions. Two types of experiments were 

performed to verify the presence of endogenous metals in the liposomes: the effect of 

ethylenediaminetetraacetic acid (EDTA) and the effect of ascorbic acid on background oxygen uptake 

rate (OUR) were tested. 

EDTA is a strong synthetic metal chelator. Endogenous metal-mediated oxidation should 

therefore be inhibited due to complexation of the metals which would be measurable as inhibition of 

the background oxygen uptake rate. Ascorbic acid, on the other hand, is a strong reducing agent 

capable of reducing ferric iron (Fe3+) to more active ferrous iron (Fe2+). Ascorbic acid may also act as 

an oxygen scavenger. Removal of oxygen from the system is facilitated by interactions with reduced 

metals 160 (PAPER III). Both cases would be measurable as increase in background OUR. 

The effect of EDTA (17.1 M) and ascorbic acid (50 M) (concentrations in the liposome 

dispersion) on the background OUR in liposomes made from cod roe phospholipids (PL) at pH 5.5 is 

shown in Figure 32. E the background OUR while ascorbic acid 

significantly increased (+51%) the background OUR. Based on these results, it is reasonable to 

assume that endogenous metals were present in the liposome dispersion. The effect of EDTA and 

ascorbic acid on the background OUR is also presented in PAPER III, in which emulsions stabilized 

with herring PL were used. 

Background OUR close to the base values, i.e. OUR in MES solution which occurs due to 

consumption of O2 by the electrode itself 115, would be expected after complete deactivation of iron. 

Such OUR was however not measured. Peroxidation of fatty acids not catalysed by iron 

(autoxidation) is expected to run alongside metal-mediated oxidation and/or a proportion of the 

endogenous iron might not be available for EDTA. Particularly, the iron ions associated with the 
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phospholipid heads facing the inner cavity of the liposome vesicles, which is separated by the double 

layer of phospholipids from the outer aqueous environment, could still catalyse oxidation of fatty 

acid despite addition of sufficient amounts of EDTA. 

 

 

Figure 32 The effect of ethylenediaminetetraacetic acid (EDTA) (17.1 M) and ascorbic acid (50 M) on the 

background oxygen uptake rate (OUR) in 1.5% liposomes (pH 5.5) prepared from cod roe phospholipids. The 

results are given as the mean values ± standard deviation of 3 – 12 parallels. 

Instruments for accurate determination of trace atomic metals in aqueous solutions were not 

available in the laboratories of SINTEF/NTNU. However, approximation by means of the oxygen 

uptake rate measurements gave at least a tentative quantification of the endogenous metals. The 

principle behind the approximation method is illustrated in Figure 33. OUR for different 

concentrations of added iron were measured and the relationship was plotted. The intersection of 

the linear trend line of this relation and the base line, i.e. OUR in the MES solution (typically 0.15 – 

0.35 M O2/min), was found, and the value represented an estimate of an endogenous iron level. 

The highest value determined by this method was found in raw herring roe phospholipids 

(17.3 mg/kg PL (ppm)). 

For the interpretation of data from the oxygraphic experiments the interference of the 

endogenous iron had to be considered. Added components, such as some antioxidants, might 

interact with the endogenous iron (as demonstrated on ascorbic acid) giving room for erroneous 

interpretation of results. 
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Figure 33 Illustration of estimating the endogenous metal concentration in liposomes by an approximation 

method, using Fe3+ as a standard, which was used for estimate of endogenous iron content in phospholipids 

 

5.3 Ion-exchange resin for removal of endogenous metals 

It was desirable to remove the endogenous iron/metals present in the liposome dispersions, 

because they could interact with added compounds and complicate the interpretation of results. Ion-

exchange resins can be used for purification of various liquids from contaminant/poisonous metals. 

Ion-exchange resins are insoluble organic polymers, typically in the form of beads ( 0.5 – 1 mm) 

which are highly porous providing a high surface area. The trapping of metal ions occurs with 

concomitant release of other ions (typically Na+, Ca2+, H+) 161. 

Beads of ion-exchange resin (Dowex 50 8, H-form, 20-50 mesh purchased from Sigma-Aldrich 

Chemie GmbH, Steinheim, Germany) were mixed with a 3% liposome dispersion (pH 5.5) in a 

concentration of 62.5 mg resin/mL of liposome dispersion. The mixture was incubated for 60 min at 

4°C with occasional stirring, followed by removal of the beads from the liposome dispersion by 

filtration through glass wool. The background oxygen uptake rate in the resin treated liposome 

dispersion was compared with the values for non-treated liposome dispersion (Figure 34). The 

background OUR was significantly reduced (by 33%) in the resin treated liposomes and the activity of 

added ascorbic acid was reduced (by 33%), indicating that 33% of iron was removed. Higher 

quantities or different types of resin and optimization of the incubation conditions could lead to 

estimate of 
endougenous iron 

concentration ( M) 
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better results, and, in the best scenario, even meet the performance of EDTA. On the other hand, if 

iron is firmly associated with phospholipid heads (as postulated in PAPER I), ion-exchange resin might 

not be capable of efficiently retrieving the iron ions from the phospholipid heads and a complete 

removal of iron would not be feasible. 

 

 

Figure 34 Effect of resin treatment on the background OUR and the net OUR for added ascorbic acid (AsA) 

(50 M) and added Fe2+ (10 M) in 3% liposome dispersion (pH 5.5) from cod roe phospholipids. For the OUR 

measurements, the dispersion was diluted to 1.5% with the MES solution, pH 5.5. The results are given as the 

mean values ± standard deviation of 3 parallels. 

 

A major drawback in using Dowex H-form resin was acidification of the liposome solution by 

released (exchanged) H+ from the resin. Quantities of the resin exceeding 200 mg/mL of liposome 

dispersion lowered the pH in the liposome dispersion by more than 1 pH unit. Thus, despite partial 

removal of metals from the liposome solution by the ion-exchange resin at 62.5 mg resin/mL, which 

was accompanied with a marginal degree of acidification, it was decided not to include the resin 

treatment into liposome preparation. 

 

5.4 Synthetic antioxidants as positive controls 

Synthetic antioxidants, such as butylated hydroxytoluen (BHT) and hydroxyanisol (BHA), tert-

butylhydroquinone (TBHQ), propyl and octyl gallate (PG, OG) and ethoxyquin (EQ), were designed for 

high efficiency in inhibition of lipid oxidation in different lipid systems and at variable conditions. 

These synthetic compounds provide excellent reference values (positive control) to natural 

antioxidants. 
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Propyl gallate was used as a positive control In PAPER II and PAPER III since it was found 

efficient in inhibiting both metHb- and LMW iron-mediated oxidation. In addition, in Fe-mediated 

oxidation propyl gallate did not affect the linearity of oxygen uptake curves after addition of iron (as 

BHT and TBHQ did – discussed below). 

The activity of propyl gallate was found dependent on the pH of the liposome dispersion 

(measured for pH range 2 – 6). Propyl gallate was effective in inhibition of LMW iron-mediated 

oxidation at pH > 3.5 (with a complete inhibition at pH 5 – 6), while at pH < 3.5 propyl gallate turned 

into a strong prooxidant, increasing the OUR rates by up to 400% (Figure 35). Since the pH of all the 

liposome dispersions and emulsions in this thesis was above 3.5 this phenomenon was not of 

concern. It might however be relevant for stomach conditions where pH decreases down to 1. 

 

 

Figure 35 A relative effect (% increase or % inhibition) of propyl gallate (50 M) on Fe2+-mediated lipid 

oxidation (10 M Fe2+) in 0.6% liposomes at different pH. Each point represents one measurement. 

 

The first choice as a positive control was however BHT due to its high antioxidant efficiency in 

bulk lipids and indifference to iron, since the BHT molecule does not have any functional groups for 

binding metals. The effect of BHT (5 – 50 M) on LMW iron-mediated oxidation is shown in Figure 36 

(experimental conditions are described in the figure caption). BHT inhibited both Fe2+- and Fe3+-

mediated oxidation, and did not affect the equilibrium drop in Fe2+-mediated oxidation. This 

confirmed that BHT did not interact with iron (such as caffeic acid, ascorbic acid or chelators), and 

only the radical scavenging abilities are involved in the inhibition mechanism.  
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The oxygen uptake consumption after the addition of LMW iron to the liposome dispersion 

containing BHT did not follow the expected linear function (as seen for controls). The oxygen uptake 

rate was gradually reduced giving non-linear oxygen concentration curves, which made 

quantification of the inhibition effects problematic. For this reason, BHT was discarded as a positive 

control. 

The non-linear decrease in oxygen consumption is unclear at the moment. One possible 

explanation could be that scavenging of lipid free radicals by BHT happens much faster than 

production of the radicals in the red-ox cycling of iron and autoxidation. 

 

 

Figure 36 Oxygen uptake curves for Fe2+-mediated oxidation (left plot) and Fe3+-mediated oxidation (right plot) 

in 0.6% liposomes (10 M Fe, pH 5.0, 37°C) and for different concentrations of butylated hydroxytoluen (BHT) 

(5, 10, 15 and 20 M) in the liposome dispersion. 

 

Another alternative for a reference compound was tert-butylhydroquinone (TBHQ). When Fe2+ 

was added to the liposome dispersion containing TBHQ, an increase rather than decrease in oxygen 

consumption was observed, i.e. TBHQ behaved as a prooxidant in combination with LMW iron. The 

oxygen consumption did not follow a linear function (similarly to BHT) which complicated 

quantification of the prooxidant effect (Figure 37). Therefore, TBHQ was discarded as a reference 

compound as well. 

The pro-oxidative behaviour of TBHQ could be attributed to a reduction of Fe3+ to Fe2+, assuming 

that more than one TBHQ molecule would participate in this conversion, since TBHQ does not have a 

chelation site for metals (as caffeic acid and ascorbic acid have). The prooxidant mechanism of TBHQ 

was not investigated further in this study since synthetic antioxidants were not of primary interest. 
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Figure 37 Representative oxygen uptake curves for Fe2+-mediated oxidation in 0.6% liposomes (15 M Fe2+, pH 

5.2, 37°C) containing, 0, 10 and 20 M TBHQ (right plot) and relative increase (%) of the Fe2+-mediated 

oxidation caused by TBHQ (5, 10, 25 and 30 M) in the liposomes. The values are average values ± standard 

deviation of 2 to 6 parallels (left plot). 

 

5.5 Zeta-potential in liposomes containing iron 

In relation to the association of LMW iron with the negatively charged heads of phospholipids 

(proposed in PAPER I), a series of zeta-potential measurements in liposomes was performed to 

evaluate whether this association could be seen on the changes of zeta-potential, which to a certain 

degree reflects the surface charge of lipid droplets. It was hypothesized that LMW iron attached to 

the phospholipid interface would decrease the negative zeta-potential of the liposome vesicles. 

Zeta-potentials were measured in fresh 1.5% liposomes at three different pH values (3.5, 5.5, 

and 7.0). The effect of Fe2+ on the zeta-potential was evaluated by comparisons of zeta-potentials in 

liposomes with and without Fe2+. For liposomes without Fe2+ only the carrier of Fe2+ was added, i.e. 

diluted HCl solution (blank). The results are given in Figure 38. 

The results however differ with the pH: at pH 3.5 the presence of Fe2+ significantly decreased the 

zeta-potential, the opposite effect was observed at pH 5.5, and no effect was observed at pH 7.5. It is 

an open question whether the measurement of zeta-potential is a good enough technique for 

proving/disproving the hypothesis, since the technique measures the charge near the surface of lipid 

particles, but not directly at the surface. 

Nevertheless, low pH favours iron dissolution in aqueous media which would improve the total 

iron content, and reduced the negative charge of the liposomes. This would inhibit the electrostatic 

attraction between iron and the liposome surface, but could also favour penetration of iron ions 

deeper into the phospholipids heads, which could decrease the overall zeta-potential.  
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The highest iron activity was observed at pH 4.5 – 5.5 (PAPER I). Therefore it was expected that 

the change in zeta-potential would be highest at pH 5.5. An even more negative zeta-potential 

(by 3.4 units) was measured in the liposome dispersion containing Fe2+ in comparison to dispersion 

to dispersion without Fe2+. At the moment, we do not a clear explanation for this phenomenon. No 

change in the zeta-potential was observed at pH 7.0. Iron tends to precipitate at pH > 5.5 due to 

instability in neutral and basic environment. This could explain the stable zeta-potential since only a 

fraction of the added iron would interact with the particle surface. 

 

 

Figure 38 Zeta-potential values in 1.5% liposomes containing LMW iron (10 M Fe2+) at different pH of the 

liposomes. The values are average values ± standard deviation of three subsequent determinations performed 

at 30°C. 
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6 Results and discussion 

Low molecular weight (LMW) iron- and methemoglobin (metHb)-mediated peroxidation of 

marine lipids in emulsions stabilized with phospholipids and in liposomes was the main focus of this 

thesis. The impacts of several physicochemical and chemical factors, including dietary antioxidants 

and gastric juice, on LMW iron- and metHb-mediated oxidation were determined. 

The key results and outcomes are highlighted in the following sections. 

 

6.1 Iron- vs methemoglobin-mediated oxidation 

Continuous recordings of dissolved oxygen consumption in the liposome dispersions and 

quantification of the oxygen uptake rates revealed major differences in the prooxidant activity of 

LMW iron and methemoglobin (metHb). 

LMW iron behaved as a lipid oxidation catalyst (PAPER I), while the prooxidant activity of metHb 

decreased over time eventually reaching near zero-activity, which was manifested as an exponential 

decrease in the dissolved oxygen concentration (Additional data). The activity of a freshly introduced 

prooxidant into the liposome dispersion was shown to be much higher for methemoglobin than for 

an equimolar level of LMW iron. In this view, metHb is a potent mediator of lipid-oxidation but is not 

a true catalyst. 

The decrease in the prooxidant activity of metHb over time observed in this study correlates 

well with findings of Grunwald et al. 155 The authors proposed that destruction of the heme-group by 

lipid hydroperoxides during lipid oxidation, which might in addition release free iron into the system, 

decreased the activity of metHb. 

In order to hinder metHb mediated oxidation, the antioxidant strategies should aim at i) 

deactivation of released LMW iron by chelators, and ii) inhibition of metHb activity by reducing 

compounds, such as ascorbic acid, and iii) scavenging of lipid radicals generated by metHb-mediated 

oxidation during the active period of metHb (Additional data). 

 

6.2 Properties of emulsifier 

An emulsion is composed of three distinct phases: 1) aqueous phase, 2) interphase, and 3) lipid 

phase (core of the droplet). The majority of emulsions in this thesis had the interphase composed of 

phospholipids (PL) – these were both of marine (cod, herring) and non-marine (soy, bacteria) origin. 

Some emulsions were prepared with Tween 20 (PAPER I). The droplet core contained fish oil. 

The nature of the interphase is considered one of the key factors for the oxidative stability of 

emulsions 53, 54. Phospholipids are categorised as an anionic emulsifier, while Tween 20 is a neutral 
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emulsifier. Both substances are likely to contain some level of pre-formed (endogenous) lipid 

hydroperoxides (LOOH) 57. In the phospholipids used in this thesis various levels of pre-formed LOOH 

were determined, ranging from 1.6 ± 0.2 mmol LOOH/kg (bacterial PL) to 37.6 ± 1.1 mmol LOOH/kg 

(herring PL) (Table 7). 

The presence of pre-formed LOOH in the phospholipids was shown to be of crucial importance 

for the prooxidant activity of both LMW iron (PAPER I) and methemoglobin (Additional data), which 

verified the pro-oxidative mechanisms, i.e. decomposition of lipid hydroperoxides by free iron and 

heme-iron, respectively. These pre-formed LOOH were not a limiting factor for the decomposition, 

given their abundance in relation to LMW iron and metHb concentration, and given the abundance 

of unsaturated lipids to sustain the red-ox cycling of iron and activity of metHb. 

Tween 20 was shown to be a protective emulsifier in 1.5% cod liver oil emulsions. After the 

endogenous LOOH in Tween 20 were broken down by Fe2+, the oxygen uptake rates were not 

significantly increased as a result of iron-mediated oxidation of the oil in the core of the droplets. 

This was consistent for different concentrations of Tween 20 (2.5 – 15.0% w/w) in the emulsion 

(Figure 7 in PAPER I). 

Phospholipids in emulsions and liposomes are shown to attract both LMW iron and 

methemoglobin, which leads to acceleration of lipid oxidation (PAPER I – III, Additional data) by 

facilitation of the pro-oxidative mechanisms of the two prooxidants. 

The degree of unsaturation of the fatty acids in the phospholipids is shown to have an impact on 

the rate of iron-mediated oxidation. The use of soy and bacterial phospholipids, which contain much 

lower levels of PUFA than the marine phospholipids (Table 7), lead to lower oxygen uptake in iron-

mediated oxidation (Figure 4C in PAPER I). This was attributed to the lower proportion of oxidisable 

substrate (double bonds) after the pre-formed LOOH were decomposed. 

 The amount of the phospholipid emulsifier (0.5 – 15.0% w/w) influenced the oxidation rates in 

iron-mediated oxidation both positively and negatively. It is shown that 5 – 10% (w/w lipid base) of 

emulsifier results in the highest oxygen uptake rates in iron-mediated oxidation (Figure 7 in PAPER I). 

This was found due to a formation of smaller droplets with increasing amount of the emulsifier. 

The attraction between phospholipids and iron ions is discussed in PAPER I. It is proposed that 

iron ions are, at least partially, retained by the phosphate groups of the phospholipid heads. Such 

location may enable necessary contact between pre-formed LOOH on PUFA which are situated 

deeper in the phospholipid interphase. The location can also create competition reactions for iron 

precipitation at pH > 5 and iron chelation by various compounds dissolved in the aqueous phase, as 

demonstrated with xanthan gum (further commented in Section 6.5). A 3D-illustration of a 

peroxidesed and coiled DHA within a choline molecule and iron atom embedded in the phospholipid 

plane is shown in Figure 39. 
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Figure 39 Left: A front view of phosphatidyl choline bearing oleic acid and coiled docosahexaenoic acid (DHA), 

with a pre-formed hydroperoxide group ( OOH) located at C20 on the DHA chain, and an iron atom (to scale). 

Right: A top view of four phosphatidyl choline molecules assembled in a plane, with a positively charged iron 

atom embedded in between the negatively charged phosphate groups of the phospholipid heads. The atom 

sizes are to scale (created with ACD/ChemScatch). 

 

6.3 Droplet particle size 

The total surface area of the droplets was found of importance for LMW iron-mediated lipid 

oxidation (PAPER I). It was demonstrated that smaller droplets (liposome vesicles made of 

phospholipids) were more prone to oxidaiton than 100-fold larger droplets (emulsion droplets 

stabilised with phospholipids). Since iron-mediated peroxidation is facilitated by encounters between 

the iron ions and the pre-formed LOOH, larger overall areas, i.e. smaller droplets, give higher 

likelihood of these encounters. 

In this view, LMW iron-mediated oxidation can be seen as a phenomenon occurring on the 

droplet surface as both the LMW iron and LOOH are associated with the phospholipid interface. 

Therefore, the rates in LMW-iron mediated oxidation will be proportional to the surface area, given a 

large excess of pre-formed LOOH in the interphase, and the rates will be dependent on the total 

surface area, which is given by number of droplets and their size. 
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6.4 pH of the aqueous phase 

The acidity (pH) of the aqueous phase affects the charge of the droplets and the level of Fe2+ and 

Fe3+ dissolution 12. It was shown that the most favourable pH for LMW iron activity lies in the interval 

4.5 – 5.5 (Figure 40) where the balance between iron attraction by the droplets and iron precipitation 

is most optimal (PAPER I). 

LMW iron was to some degree catalytically active in the pH range 5.5 – 7.0 where precipitation 

of Fe3+ was expected, which would completely prevent LMW-iron mediated oxidation, due to low 

stability of iron at neutral pH. Therefore, it was suggested that iron ions retained by the phospholipid 

heads become unavailable for the precipitation reactions, and the association of iron with the 

phospholipid heads enables iron-mediated oxidation even at more neutral pH. 

 

 

Figure 40 Influence of pH on Fe2+-mediated oxidation in different emulsions and liposomes. Each point 

represents a single measurement (figure retrieved from PAPER I). 
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6.5 Dissolved compounds 

A positive correlation between the content of endogenous chloride anions (Cl–) and i) a decrease 

in oxygen uptake rates and ii) a tendency to neutralize the negatively charged liposome vesicles and 

emulsion droplets was found (PAPER I). These effects were however attributed to the counter ions 

accompanying Cl– (e.g. Na+, K+, Mg2+) rather than to the chloride anions. The cations may favourably 

modify the droplet charge making it less electrostatically attractive for iron ions. Nevertheless, 

sodium chloride (NaCl) added to an emulsion was demonstrated to inhibit iron-mediated oxidation in 

a concentration dependent manner (Figure 9 in PAPER I). 

A thickener, xanthan gum (0.2%), dissolved in the aqueous phase of 10% emulsions inhibited 

iron-mediated oxidation (Figure 8 in PAPER I). This was attributed to the chelating abilities of 

xanthan gum 162. The quantity of xanthan gum added to the emulsion was however expected to 

chelate all the added iron which would inhibit iron-mediated oxidation completely. Since only partial 

inhibition was observed, it was concluded that there might be competition reactions between 

retention of LMW iron by phospholipid heads and by xanthan gum. 

 

6.6 Antioxidants 

An addition of antioxidants into food containing marine LC omega-3 PUFA is one of the most 

common approaches to protect the healthy omega-3 lipids from oxidation and to increase the 

oxidative stability of the food. Therefore, several dietary antioxidants were used in this thesis and 

their effect on LMW iron- and meHb-mediated oxidation was evaluated (PAPER II, PAPER III and 

Additional data). 

 

6.6.1 Phenolic acids 

The effect of phenolic acids (caffeic acid, ferulic acid, and p-coumaric acid) on oxidation of 1.5% 

(w/v) liposomes (pH 5.5) mediated by LMW iron and metHb was evaluated (PAPER II).  

The activity of phenolic acids was shown to be dependent not only upon the chemical structures 

of the molecules, but also upon the type of prooxidant in the system. Caffeic acid showed a strong 

pro-oxidative behaviour in the presence of iron ions, but behaved as an antioxidant in the presence 

of methemoglobin. The ability to reduce free Fe3+ to the more catalytically active Fe2+, i.e. to enhance 

the rate limiting reaction in LMW iron-mediated oxidation, was attributed to the pro-oxidative 

behaviour of caffeic acid (depicted in Figure 41). The magnitude of the pro-oxidative activity of 

caffeic acid was shown to be both concentration and pH dependent. 
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Since caffeic acid showed a dual effect, depending on the type of prooxidant in the system, the 

activity of caffeic acid was also evaluated in iron-mediated peroxidation in emulsion (PAPER III) and 

in metHb-mediated oxidation in a liposome dispersion (Additional data). The same dual effects as in 

PAPER II were observed. Therefore, reducing abilities of caffeic acids seems to be responsible not 

only for the prooxidative effects, due to reduction of LMW Fe3+ to the more prooxidatively active 

Fe2+, but also for antioxidant effects, due to reduction of hyper active ferryl-Hb species. Further 

investigation is needed to elucidate the interactions of caffeic acid with heme-proteins and the 

antioxidant mechanism causing the inhibition effect. 

 

6.6.2 Propyl gallate 

Propyl gallate showed excellent inhibition effects in both iron- and metHb-mediated oxidation in 

1.5% lipoosmes (pH 5.5) (Figure 3 and Figure 7 in PAPER II) and exceeded the performance of 

phenolic acids. Good inhibition effects of propyl gallate on iron-mediated oxidation were also 

observed in 10% emulsion (PAPER III). Propyl gallate inhibited both the net oxygen uptake rates and 

the equilibrium drop in Fe2+-mediated oxidation. Both iron chelation along with scavenging of lipid 

free radicals in the phospholipid interphase were attributed to these effects. 

However, caution should be taken when adding propyl gallate to lipid systems with a low pH 

(pH < 3.5). At these conditions propyl gallate was shown to be prooxidative in the presence of LMW 

iron (Additional data), showing that the activity of propyl gallate is also dependent on the pH of the 

aqueous phase. 

 

6.6.3 Chelators: EDTA and citric acid 

The effects of metal chelators – EDTA (synthetic origin) and citric acid (natural origin) – on LMW 

iron-mediated oxidation in 10% (w/v) herring oil emulsions stabilized with herring phospholipids at 

pH 3.5 – 5.5 are shown in PAPER III. EDTA and citric acid completely inhibited iron-mediated 

oxidation when they were added in twice the molar ratio to iron. The activity of the chelators was in 

accordance with ionization of –OH group (given by pKa values) showing that as long the groups were 

partially or fully ionised (pH > 3.5) the compounds showed chelating abilities. 

EDTA was used for deactivating endogenous metals and iron released from methemoglobin in 

the research on the activity of meHb. The data in this thesis indicate that EDTA was capable of slight 

inhibition of metHb-mediated oxidation (by 33%) (Additional data). At this point, the mechanism by 

which EDTA affects the activity of methemoglobin is not clear. 
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Figure 41 The intramolecular electron transfer of Fe3+ to Fe2+ by caffeic acid and the linkage to iron-mediated 

lipid peroxidation (figure adapted from PAPER II) 
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6.6.4 Tocopherols 

-Tocopherol enhanced lipid oxidation catalysed by LMW iron in emulsions (PAPER III), but it 

inhibited metHb-mediated oxidation in liposome dispersion (Additional data). It was shown that 

deactivation of LMW iron by EDTA prevented the prooxidant effect of -tocopherol. Therefore the 

-tocopherol as a prooxidative synergist, acting by reduction of Fe3+ to the more active Fe2+, 

was confirmed. 

-  -tocopherol were efficient in inhibition of metHb-mediated oxidation. 

The inhibition effect was slightly h -tocopherol than for -tocopherol (Additional data). The 

inhibition of metHb-mediated oxidation is believed to be due to scavenging of lipid radicals in the 

phospholipid interface. 

-tocopherol is determined not only by the 

concentration of tocopherol, but also by the extent of reactions with LMW iron and with lipid radicals 

– reactions which may run simultaneously. 

 

6.6.5 Ascorbic acid and ascorbyl palmitate 

Oxygen uptake curves in LMW iron-mediated oxidation in emulsions containing ascorbic acid 

revealed that ascorbic acid was depleted by interactions with iron. Unfortunately, it was not possible 

to determine from the oxygen uptake curves whether reducing abilities of ascorbic acid were 

responsible for removal of dissolved oxygen in co-operation with Fe2+ or for reduction of Fe3+ to Fe2+, 

i.e. acceleration of iron-mediated oxidation (PAPER III). 

Ascorbic acid was capable of decreasing -tocopherol despite the 

presence of LMW iron (PAPER III). It was concluded that the mutual reactions between LMW iron, 

-tocopherol will determine the final effect and final rates of lipid peroxidation. 

Ascorbic acid was efficient in inhibiting metHb-mediated oxidation in liposome dispersions in a 

concentration dependent manner (Additional data). A lipid soluble analogue of ascorbic acid, 

ascorbyl palmitate, was also efficient in inhibiting metHb-mediated oxidation in dependence on its 

concentration (Additional data). 

Due to the interactions with iron leading to increased consumption of dissolved oxygen, ascorbic 

acid was a useful tool for indirect evaluation of whether the liposome/emulsion system contains 

endogenous metals (Additional data). 
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6.6.6 Carotenoids: Astaxanthin and -carotene 

Lipid soluble carotenoids, a -carotene, showed only minor effects on LMW iron-

mediated lipid oxidation in emulsions (PAPER III) which could be due to low concentrations or low 

proportion in the emulsion interphase. Nevertheless, these results suggest that the two compounds 

were indifferent to LMW iron itself. Astaxanthin inhibited metHb-mediated oxidation in liposomes in 

a concentration dependent manner (Additional data), showing the ability to scavenge lipid free 

radicals in the phospholipid interface. 

 

6.6.7 Effects of antioxidants: Conclusion 

The results in this thesis shows that interactions between LMW iron and selected antioxidants 

(caffe -tocopherol, ascorbic acid) negatively affects the rates of lipid peroxidation in fish oil 

emulsions stabilized with phospholipids rich in LC omega-3 PUFA. These interactions lead to 

reduction of Fe3+ to the more catalytically active Fe2+, and therefore these antioxidants show 

prooxidative effects in the presence of LMW iron. This is manifested by increased oxygen uptake 

consumption (Figure 42, and PAPER II, III). Not only these interactions enhance lipid oxidation, but 

they also deplete the antioxidants, since the antioxidants act as reactants in the reduction processes. 

The final oxidation rate in the system is therefore determined by the mutual reactions between 

antioxidants-iron, iron-lipids, and lipids-antioxidants, and the concentration of each substance. Such 

a triangle of dependency was observed for the combination of ascorbic -

tocopherol/LMW iron/phospholipids (PAPER III). The interactions of antioxidants with LMW metals 

must therefore be considered when interpreting the activity/behaviour of antioxidants in multiphase 

systems. 

On the other hand, no prooxidant effect of the tested antioxidants (caffeic acid, ascorbic acid, 

- -tocopherol) was detected in metHb-mediated 

oxidation. The antioxidants inhibited metHb-mediated oxidation by various degrees and, in addition, 

in dependence on the concentration and ratio to metHb. 

In conclusion, the type and quantities of prooxidants in lipid systems should be known to 

develop effective protective strategies against lipid oxidation for the system, using antioxidants. 
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Figure 42 Direct comparison of representative oxygen consumption curves in 10% herring oil emulsion 

stabilized with herring phospholipids and containing -tocopherol, -carotene, astaxanthin, propyl gallate, 

caffeic acid (each at 100 M), EDTA or citric acid (each at 50 M), and no antioxidant (control) in Fe2+ (25 M)-

mediated oxidation, illustrating the effects of the antioxidants on LMW-iron mediated oxidation (figure 

retrieved from PAPER III). 

 

6.7 System properties as oxidation hurdles 

The outcomes on the impact of individual factors on lipid oxidation in emulsions and liposome 

dispersions rich in LC omega-3 PUFA clearly show that multiple factors affect the oxidation rates (the 

factors which were studied in this thesis are schematically illustrated in Figure 14). It is clear that all 

these factors operate simultaneously. By careful manipulation of the system properties and choice of 

antioxidants, it could be, to a certain degree, possible to use the individual factors, as hurdles for 

LMW iron- and metHb-mediated lipid oxidation in emulsified systems. 

The acidity of the aqueous phase (pH) is shown to be a significant modulator of lipid oxidation 

rates, since it affects several factors: solubility of ionic iron, ionisation of metal chelators, charge of 

emulsion droplets' surface, i.e. the electrostatic attraction towards positively charged iron ions, and 

the radical scavenging and reducing abilities of phenolic antioxidants. Therefore, alterations in pH 

could improve oxidative stability of more complex emulsions. 

The unsaturation level of phospholipids located in the interphase of an emulsion is shown to 

reduce the oxidation rates in LMW iron-mediated oxidation. Therefore, the choice of less 
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unsaturated phospholipids as en emulsifier may help to decrease the rate of lipid oxidation in the 

core of the emulsion droplet which, on the other hand, may have a high unsaturation level. 

 

6.8 Antioxidant activity assays 

The antioxidant activity assays (Folin-Ciocalteu, FRAP, DPPH, ABTS) used in PAPER II for 

evaluation of the antioxidant efficiency of phenolic acids and propyl gallate predicted propyl gallate 

and caffeic acid to be the most active antioxidants from the group. The assays however reflected 

mainly the reducing power of the compounds. This results in a misleading interpretation of the 

antioxidant abilities and does not predict the behaviour in lipid systems. As demonstrated on caffeic 

acid, the antioxidant activity assays did not reveal the prooxidative interactions with iron which 

turned the compound into a prooxidant.  

Therefore, application of the predications from the antioxidant capacity assays on lipid systems, 

and systems where prooxidants are presents, may not reflect the real behaviour of the antioxidants 

in the lipid system. 

 

6.9 Post-prandial lipid oxidation 

The stomach is an entry organ for marine lipids in food and can be seen as an intermediate 

station, before the food is further metabolised in the gastrointestinal tract. Therefore, PAPER IV 

evaluates whether emulsified marine lipids can get oxidised in acidic stomach environment, i.e. while 

they are retained in the stomach, and whether authentic gastric juice has the potential to act as a 

pro- or anti-oxidative medium. In addition, iron and methemoglobin were added to the system to 

characterize the effect of the acidic environment on their prooxidative activity. Beverages containing 

antioxidants were added to assess their effect on lipid oxidation in the acidic environment. 

Oxidation of emulsions stabilized with phospholipids and liposomes, both containing marine 

lipids, was followed in in vitro digestion models containing authentic human gastric juice, and 

compared to models containing hydrochloric acid solution (HCl). The oxidation was followed by 

measuring peroxide value (PV), concentration of thiobarbituric acid reactive substances (TBARS) and 

oxygen uptake rate (OUR) in the model systems during 2.5 h incubation at pH 4 and 37 °C in 

darkness. 

No difference between oxidation in gastric juice and HCl solution was found in both liposomes 

and emulsion, which suggests that it is lipid system properties rather than gastric juice itself that 

determine the degree of oxidation. PV, TBARS and OUR increased during the incubation which 

suggests that acidic environment of stomach is not preventive in respect to lipid oxidation. However, 
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gastric juice reduced the prooxidant activity of added LMW iron, but did not reduce the activity of 

added methemoglobin (measured by the oxygen uptake method). 

Berry juice, green tea, red wine, and caffeic acid reduced the OUR in the acidic environments 

while coffee, ascorbic acid and orange juice increased the rates. The study concludes that beverages 

accompanying foods containing marine lipids will affect the course of post-prandial lipid oxidation. 

 

6.10 Activity of caffeic acid in different fish lipid matrices: A review (PAPER V) 

PAPER V (additional contribution) is a review paper on the effect of caffeic acid on lipid 

oxidation in different systems containing fish lipids (bulk fish oils, liposomes from cod roe 

phospholipids, fish oil emulsions, washed cod mince, regular horse mackerel mince and fish oil 

fortified fitness bars). The review discusses mechanisms involved in the antioxidative and 

prooxidative effects of caffeic acid found in the different systems. The paper includes outcomes 

reported in PAPER II. 

The data from the different systems show that the antioxidant activity of caffeic acid is 

dependent on the physical state of the lipids and the composition of the intrinsic matrix in which the 

lipids are situated. 

Caffeic acid prevented rancidity in both unwashed and washed fish mince, the latter system 

fortified with hemoglobin. In unwashed minces, the activity was however clearly dependent on the 

lipid to antioxidant ratio. In these systems, a redox cycle between caffeic acid and the endogenous 

reducing agents, such as ascorbic acid and tocopherols, were further thought to play an important 

role for the antioxidant effects. The effect of caffeic acid was also highly dependent on the storage 

temperature, showing higher effectiveness above rather than below 0°C. Caffeic acid was not able to 

inhibit oxidation in the bulk fish oils, fish oil-in-water emulsions and fish-oil enriched fitness bar. In 

the liposome system, caffeic acid inhibited hemoglobin-mediated oxidation but strongly promoted 

Fe2+-mediated oxidation. 

The review concludes that caffeic acid can significantly prevent hemoglobin-mediated oxidation 

in fish muscle foods but its activity in food emulsions and liposomes is highly dependent on the pH, 

the type of emulsifier, and the prooxidants present. 

 

6.11 Evaluation of oxygen uptake measurements 

Oxidation of LC omega-3 fatty acids in emulsions stabilised with phospholipids and in liposome 

dispersions was followed by recording the dissolved oxygen concentration in the systems, which is a 

less common approach in studies on lipid oxidation. 
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The measurement of dissolved oxygen consumption is shown to be a robust tool for monitoring 

lipid peroxidation in the two systems. As shown in PAPER IV, it may also serve as a complimentary 

method to the conventional determinations of primary and secondary oxidation products. 

By quantification of the rates of consumption of the dissolved oxygen, it was possible to screen 

the impact of different factors on both LMW iron and metHb lipid oxidation individually and in a 

controlled way. Large collections of data are necessary for the development of mathematical models 

which predict lipid oxidation. Since the oxygen uptake measurement is relatively quick to prepare 

and perform, it has the potential for screening and modelling of lipid oxidation in systems rich in LC 

omega-3 PUFA, including the effects of physicochemical and chemical variables and the presence of 

pro- and antioxidants. 

The oxygen uptake method is especially useful for monitoring of the oxygen consumption 

kinetics and how the kinetics is affected by the different factors. This approach is very useful for 

testing the effects of different antioxidants on the prooxidant activity of LMW iron and metHb and 

for evaluation of the interactions between LMW iron and the antioxidants. 

As shown in PAPER IV, the method may also be beneficial for a quick assessment of the effects 

of different substances (in this case, antioxidant rich beverages) on oxidation in a specific system (in 

this case, a digestion mixture of lipids and gastric juice). This example may further broaden the 

spectrum of applications for the oxygen uptake methodology. 

Continuous recordings of oxygen uptake have however limitations when it comes to adequate 

quantification of the oxygen uptake rates, as the oxygen consumption rate may not be constant 

during a measurement (as shown in metHb-mediated lipid oxidation). This was the main limitation in 

the method, which could be overcome by better and more advanced mathematical processing of the 

oxygen uptake curves. 
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7 Concluding remarks 

This thesis investigates low molecular weight (LMW) iron- and methemoglobin (metHb)-mediated 

peroxidation of marine long chain omega-3 polyunsaturated fatty acids in emulsions stabilized with 

phospholipids and in liposome dispersions, representing food-related lipid systems. The impacts of 

several physicochemical and chemical factors, including dietary antioxidants and gastric juice, on 

LMW iron- and metHb-mediated oxidation were determined. 

This study shows that the overall rate of LMW iron-mediated oxidation in the two systems is given by 

a combination of multiple factors. The following factors were investigated in this thesis: pH of the 

aqueous phase and pH dependent droplet charge, saturation level and concentration of the 

phospholipid emulsifier, emulsifier concentration dependent droplet size, and concentration of 

water soluble components, namely sodium chloride (salt) and xanthan gum. When optimally set, 

each of these factors may represent a system specific hurdle for LMW iron-mediated lipid oxidation 

in emulsified systems. 

Methemoglobin was shown to be a stronger promoter of lipid oxidation in comparison to LMW iron 

but not a true catalyst, in contrast to LMW iron which behaved as a lipid oxidation catalyst. The 

activity of a freshly introduced prooxidant was shown to be much higher for methemoglobin than for 

LMW iron, but the activity of methemoglobin decreased over time. These findings suggest that 

metHb-mediated oxidation might be relevant for early oxidation of emulsified systems (such as 

production phase). In later stages (such as storage), meHb-mediated oxidation is likely to be replaced 

by slower but persistent oxidation mediated by LMW iron – both endogenous iron and iron released 

from methemoglobin. Antioxidant strategies should therefore aim on deactivation of both 

methemoglobin and LMW iron simultaneously. 

This study further demonstrates that the effects of dietary antioxidants are dependent on the type of 

prooxidant in the system. Caffeic acid and -tocopherol interacted with LMW iron, which resulted in 

acceleration of peroxidation. None of the tested antioxidants turned into a prooxidant in metHb-

mediated oxidation. EDTA (metal chelator) was highly efficient in chelating LMW iron but had a low 

effect on the prooxidant activity of metHb. Therefore, direct interactions of antioxidants with LMW 

iron, which do not result in metal chelation, should be prevented to assure that antioxidants will not 

aid prooxidative effects. The outcomes of this thesis underline that for correct assessments of the 

effects of antioxidants in emulsified systems, the type and concentration of the prooxidant in the 

system must be known. 

Finally, this study shows that the authentic human gastric juice neither prevents nor promotes 

oxidation of emulsified marine lipids, in comparison to hydrochloric acid solution. No effect of gastric 
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juice on the activity of methemoglobin was found, but gastric juice lowered the prooxidant activity of 

LMW iron to a certain degree. It is also shown that post-prandial oxidation of marine lipids may be 

altered both positively and negatively by antioxidant rich beverages. Based on the research in this 

thesis, consumption of LC omgeag-3 PUFA supplements (e.g. fish oil capsules, bulk fish oil) together 

with iron and multivitamin supplements, the latter usually containing reducing agents (namely, 

ascorbic acid), is not recommended, due to prooxidant behaviour of free iron alone and in 

combination with ascorbic acid, and a limited ability of acidic stomach environment to reduce the 

prooxidative effects. 

Lipid oxidation in the lipid model systems was followed by continuous monitoring of consumption of 

the dissolved oxygen by unsaturated fatty acids. In other words, the essential lipid oxidation 

substrate – oxygen – was in the focus of the measurements. This is a different approach than in the 

majority of published studies on lipid oxidation in which mainly lipid oxidation products are 

determined.   

This thesis shows that the method is useful for the assessment of oxygen consumption kinetics and 

oxygen uptake rates in liposome dispersions and emulsions stabilized with phospholipids. Both the 

inherent oxygen uptake in the systems and the oxygen consumption after addition of prooxidants 

can be measured in the frame of one experiment and in a relatively short time, which makes the 

method advantageous for studying lipid oxidation. 

Oxygen uptake kinetics in LMW iron- and metHb-mediated oxidation in liposomes and emulsions is 

presented in this thesis. Alterations in the oxygen uptake caused by the added antioxidants and 

variations in the physicochemical and chemical factors were directly reflected in both the oxygen 

consumption kinetics and the net oxygen uptake rates calculated from the oxygen consumption 

curves. The method is shown to be robust with respect to the lipid system. 

Therefore, the oxygen uptake method has the potential to be used as a tool for screening, modelling 

and verification of system conditions and factors affecting lipid oxidation in emulsion-like systems 

containing unsaturated lipids. The method can give additional information on the oxidation 

processes in these systems and serve as a complimentary tool for assessment of lipid oxidation by 

the conventional methods determining lipid oxidation products. 
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8 Recommendations for future work 

The field of oxidation of marine lipids is enormous and many aspects remain to be clarified. In 

relation to the prevention of lipid oxidation in food emulsions enriched with long chain omega-3 

polyunsaturated fatty acids, the following aspects could be investigated by means of the oxygen 

uptake method: 

Measurements of the dissolved oxygen consumption in real food emulsions (e.g. dairy products, 

beverages, minces and homogenates, etc.) could bring new insights into the autoxidation, as well as 

into oxidation mediated by different prooxidants in these systems, and especially into the kinetics of 

the oxygen consumption in these systems. A systematic investigation of the systems’ conditions 

could uncover key hurdles for inhibiting lipid oxidation in a particular system, and effective 

combinations of antioxidants for each system could be found. 

The prooxidant activity of methemoglobin needs to be further investigated – for instance with 

respect to the release of hemin and free iron, pH of the environment, dissolved compounds, and 

physicochemical properties of the system. The prooxidant activity of different methemoglobins (e.g. 

from fish and aquatic animals vs mammals) as well as other prooxidative metals (such as copper) 

could be evaluated by means of the oxygen uptake measurements to elucidate their pro-oxidative 

mechanisms. 

Different natural antioxidants individually and in mixtures, plant/herbs/algal extracts rich in natural 

antioxidants and novel antioxidants (such as peptides and phenolipids) should be tested against 

autoxidation and both iron- and methemoglobin-mediated oxidation. Using the model systems of 

liposome dispersions and emulsions and food emulsions, combined with oxygen uptake 

measurements would be a more realistic approach, rather than using lipid-free antioxidant capacity 

assays. This would help to assess the antioxidant potential and antioxidant power of these 

substances more correctly. Synergistic or antagonistic relations could be discovered, as well as 

interactions with prooxidants. Optimal conditions for the activity of the antioxidants in specific 

emulsified system, e.g. in relation to the pH of the environment, could be investigated by the oxygen 

uptake method. 

In addition to testing different antioxidants, different emulsifiers (SDS, Tweens, Citrems, proteins, 

Brijs and others) should be investigated in iron- and methemoglobin-mediated oxidation in fish oil 

emulsions. Characterization of the effects of the different emulsifiers on the activity of the two 

prooxidants by the oxygen uptake method could help to increase the knowledge on the impact of 

emulsifiers on iron- and methemoglobin-mediation and on oxidative stability of emulsions. 
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Systematic studies and large data sets are necessary for thorough understanding, predicting and 

modelling of lipid oxidation. The oxygen uptake method could be used for a systematic investigation 

of factors affecting lipid oxidation, including antioxidants, in different lipid systems rich in LC omega-

3 fatty acids. Data from such measurements could be used to establish lipid oxidation prediction 

models. 

The quantification of the oxygen uptake rates in non-linear oxygen uptake curves and the verification 

of oxygen consumption kinetics need to be improved and more accurate, which could be achieved by 

mathematical processing of the recorded oxygen uptake curves. 

The association of iron atoms and methemoglobin with the phospholipid interphase is an area which 

has not yet been thoroughly investigated. Clarification of the type and strength of this association 

and specification of the exact location of the iron atoms and methemoglobin in relation to the 

phospholipid interphase would help to better understand iron- and methemoglobin-mediated 

oxidation in emulsified systems stabilized with phospholipids. This would allow designing highly 

effective strategies for the deactivation of the two prooxidants. 

It would be interesting to determine the lipolytic activity and iron-binding capacity of the authentic 

human gastric juice. A static stomach model, used in the present study, could be replaced by a 

dynamic model which would better simulate the processes and conditions in the stomach. The 

extent of post-prandial lipid oxidation in the stomach could be described for a range of marine lipids 

and products rich in LC omega-3 PUFA, and the effect on lipid oxidation of many more beverages 

could be investigated (for example white wine, milk, beer and exotic juices). It would be very exciting 

to study post-prandial oxidation of marine lipids in vivo, using human subjects. 
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Iron‐mediated peroxidation inmarine emulsions and liposomes
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Lowmolecular weight (LMW) iron is present inmost food in traces or significant amounts. Upon contact
with unsaturated lipids LMW iron acts as a prooxidant. This creates oxidative stability problems for
products containing marine polyunsaturated lipids. In this work, LMW iron‐mediated oxidation in fish
oil emulsions stabilized with phospholipids and Tween and in liposomes made from phospholipids was
studied. Marine and non‐marine sources of phospholipids were used. The aim was to evaluate how
physicochemical factors and lipid properties affect the prooxidant activity of LMW iron. The oxidation
was followed by measuring the rate of the dissolved oxygen consumption by fatty acids. Red‐ox cycling of
iron (Fe3þ/Fe2þ) aided by decomposition of the pre‐formed lipid hydroperoxides was the major
prooxidation mechanism in both emulsions and liposomes. The elimination of the pre‐formed lipid
hydroperoxides prevented LMW iron‐mediated oxidation. The oxygen uptake rates were highest for
various liposomes/emulsions at pH 4–5 making this an optimum pH for iron activity. The pro‐oxidant
effect of iron was reduced by using less unsaturated phospholipids, specific amounts of emulsifiers, a
presence of chloride anions, or xanthan gum. This work suggests that the iron ions are tightly associated
with the phosphate groups within the phospholipids heads. Themeasurement of oxygen consumption is a
good tool for systematic oxidation studies in emulsions and liposomes, and may be useful for assessment
of optimal conditions for reduction of LMW iron‐mediated oxidation in emulsion‐like systems.

Practical applications: For a successful addition of marine polyunsaturated lipids into processed food,
it is important to understand the pro‐oxidation mechanisms of ubiquitous LMW iron, as well as how
physicochemical conditions affect the pro‐oxidative activity or LMW iron. This work addresses these
issues in emulsions and liposomes and the knowledge may help to characterize effective hurdles for pro‐
oxidant activity of LMW iron. There is a need for quick and inexpensive oxidation assays in order to be
able to screen and model the effects of different factors on the oxidative stability of lipids. The
measurement of dissolved oxygen in emulsions and liposomes has been used in this study for evaluating
the effect of the different psychochemical and chemical factors on iron‐mediated oxidation. This method
has a potential as a tool for assessment of optimal conditions for prevention of LMW iron‐mediated lipid
oxidation in emulsion type systems and understanding the possible mechanisms.

Keywords: Emulsion / Iron / Lipid oxidation / Liposomes / Oxygen uptake
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1 Introduction

Long chain omega‐3 polyunsaturated fatty acids (LC PUFA)
from marine organisms have a series of important physiologi-
cal roles in the human body: DHA is mainly incorporated into
the phospholipids of cell membranes of for instance the brain
and retina [1], eicosapentaenoic acid (EPA) is mainly involved
in regulatory functions, such as gene expression or eicosanoid
production [2]. LC PUFA are also widely accepted as a part
of a healthy diet and in medical treatments [3].
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Ltd., P.O. Box 4762 Sluppen, NO‐7465 Trondheim, Norway
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Abbreviations: AV, p‐Anisidine value; FID, flame‐ionisation detector; LC
PUFA, long chain polyunsaturated fatty acids; LMW, lowmolecular weight;
LOOH, lipid hydroperoxides;OUR, oxygen uptake rate; PL, phospholipids;
PV, peroxide value; SD, standard deviation; SE, standard error; TBARS,
thiobarbituric acid reactive substances; TLC, thin layer chromatography
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Despite recommendations issued by a number of
authorities, the intake of marine lipids by the modern
societies is currently far below the recommended levels [4]. A
variety of food products, such as bakery, dairy, and egg
products, spreadable fats, meat, infant formulas, and a variety
of beverages have therefore been enriched with PUFA and
marketed as a way to comply with the recommended intake
levels. However, enrichment with marine lipids may lead to
changes in flavor, aroma, texture, appearance, decrease the
nutritional value, and cause stability and shelf‐life problems
due to oxidation of the LC PUFA [5].

Lipid oxidation is greatly enhanced by prooxidative
compounds, which are ubiquitous in food, either as traces
or in significant amounts [6]. The major dietary prooxidants
are transition metals, mainly iron (Fe2þ/Fe3þ) and copper
(Cuþ/Cu2þ), both existing elemental or associated with
proteins, such as in hem groups of myoglobin, hemoglobin,
enzymes, and pigments [7]. The abundance of iron in food
makes its prooxidant activity of particular interest. Heme iron
is considered the main prooxidant in red meat and dark
muscle fish, while low molecular weight (LMW) iron is the
main prooxidant in white muscle fish, and can be found in
drinking water, ingredients or packaging materials. LMW
iron can be released from the hem groups during food
processing, cooking and storage [8].

The pro‐oxidant mechanism of LMW iron has been well
described in literature [9]. The major pathway is decomposi-
tion of preformed lipid hydroperoxides (LOOH) into lipid
radicals through red‐ox cycling, as shown in Fig. 1. Both ionic

forms of iron, ferric (Fe2þ) and ferrous (Fe3þ), are active in
the LOOH decomposition. The rate of Fe3þ reduction upon
reaction with LOOH has been shown to be much lower than
the rate of Fe2þ oxidation upon reaction with LOOH [8–10].
However, strong reductants, such as ascorbate and glutathi-
one, can reduce Fe3þ at relatively high rates back to the
catalytically strong Fe2þ [11]. Compounds with chelating
properties, such as ethylenediaminetetraacetic acid (EDTA),
phosphates, and citric acid, on the other hand, form
thermodynamically stable complexes with iron and block
the redox cycling activity by occupying all the coordination
sites of iron [8].

Lipids are usually dispersed in a complex food matrix,
which is often in liquid or semi‐liquid state, forming
emulsions. Transition metals, iron in particular, are believed
to be the major prooxidants in oil‐in‐water emulsions [12].
Emulsifiers creating a physical barrier around the oil droplets,
such as milk and whey protein isolates, may provide adequate
protection against iron‐mediated oxidation. It is of great
advantage when these emulsifiers have also chelating abilities,
such as caseinates, transferrin, and lactoferrin. However,
some properties of protein emulsifiers may limit their
applications. For example, they precipitate close to the
isoelectric point and at high ionic strengths, or may increase
the viscosity of the emulsion [13]. Phospholipids (PL), on
the other hand, are relatively small amphiphilic molecules
tolerating environmental changes. The use of marine
phospholipids may in addition increase the nutritional
value of the products due to the content of LC PUFA.
The downside of phospholipids is their zwitterionic character.
They may electrostatically attract positively charged iron
atoms [14, 15]. This is a problem especially for marine
phospholipids, which are prone to oxidation. Food emulsions
typically contain a variety of substances dissolved in the
aqueous phase, such as salts, proteins/peptides, and carbo-
hydrates. The influence of these components on iron‐
mediated lipid oxidation in emulsions has rarely been studied.

For a successful addition of marine lipids into food, it is
important to understand the pro‐oxidation mechanisms of
LMW iron as well as how various physicochemical factors and
chemical composition affect the pro‐oxidative activity.
The knowledge may help to develop effective hurdles for
minimizing the pro‐oxidant activity of ubiquitous LMW iron.

In this work, LMW iron‐mediated oxidation in multi-
phase model systems – liposomes and emulsions – has
been studied. Tween 20 and phospholipids of marine and
non‐marine origin have been used as emulsifiers in cod
and herring oil emulsions and for preparation of liposomes.
These model systems enable variability and control over
multiple parameters – the focus in this study was on iron
concentration, pH of the aqueous phase, emulsifier concen-
tration, droplet size and surface charge, lipid characteristics
and added salt (sodium chloride) and thickener (xanthan
gum). The impact of these factors is discussed in relation to
the pro‐oxidant activity of LMW iron; mechanistic aspects of
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Figure 1. Mechanism for LMW iron‐mediated peroxidation of lipids;
adapted from [10]. LOOH¼ lipid hydroperoxide, LOO*¼ lipid
peroxyl radical, LO*¼ lipid alkoxyl radical, L*¼ lipid alkyl radical,
LH¼ fatty acid, LOOL, and LOH¼ lipid oxidation products.
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these interactions are discussed as well. The rate of oxygen
disappearance from the systems directly relates to the rate of
lipid oxidation, since oxygen is the main substrate for lipid
peroxidation. Therefore, measurement of dissolved oxygen in
the emulsions/liposomes was used as the principal method to
study the LMW iron‐mediated oxidation.

2 Materials and methods

2.1 Materials

Herring oil was produced by SINTEF Mobile processing
plant in January 2012 from ultra fresh rest raw material from
Norwegian spring spawning herring (Clupea harengus)
obtained from Grøntvedt Pelagic (Uthaug, Norway). The
crude herring oil was kept frozen at �30°C until further
processing (described in Section 2.3).

Refined cod (Gadus morhua) liver oil without added
antioxidants was donated byMaritex AS (Sortland, Norway).
After opening the bottle, the oil was kept frozen at �20°C
under nitrogen.

Mature roe was used for extraction of marine phospho-
lipids. The roe originated from Norwegian spring spawning
herring (Clupea harengus) and Atlantic cod (Gadus morhua).
Two types of each roe were obtained: roe within intact roe
glands (raw roe) and separated roe grains washed with sea
water (washed roe). Herring roe was obtained from
Grøntvedt Pelagic (Uthaug, Norway); cod roe was obtained
from Hopen Fisk AS (Kabelvåg, Norway). Before extraction
(described in Section 2.4) the material was kept frozen at
�40°C.

Bacterial phospholipids were isolated from a dried culture
of Methylococcus capsulatus obtained from Statoil AS –

Tjeldbergodden industrial complex (Nordmøre, Norway).
Soy phospholipids (Type II‐S from soy bean) were purchased
from Sigma–Aldrich Chemie GmbH (Steinheim, Germany).

2.2 Chemicals

Tween 20, 2‐(N‐morpholino)ethanesulfonic acid (MES),
triphenylphosphine (TPP), butylated hydroxytoluene
(BHT), 2‐thiobarbituric acid, sodium dithionite (Na2S2O4),
sodium chloride (NaCl), 1,1,3,3‐tetraethoxypropane,
0.1mol sodium thiosulfate (Na2S2O3) aqueous solution,
potassium iodide, potassium iodate, sodium sulfite, trichloro-
acetic acid, p‐anisidine, boron trifluoride (BF3), iron (Fe3þ)
standard (Titrisol), EDTA, xanthan gum, and standards of
individual lipid classes were purchased from Sigma–Aldrich
Chemie GmbH (Steinheim, Germany). Hydrochloric acid
(HCl), potassium chloride, ammonium thiocyanate
(NH4SCN), ferrous sulfate (FeSO4 · 7H2O) and all solvents
were supplied by Merck KGaA (Darmstadt, Germany).
Anhydrous ferric chloride (FeCl3) was purchased at Riedel de
Haën (Seelze, Germany). Sodium hydroxide (NaOH) and

ferrous chloride (FeCl2 · 4H2O) were obtained from Fluka
Chemie (Buchs, Germany). Nitrogen (99.99%N2), hydro-
gen (99.99%H2) and helium gas (99.99%He) were provided
by AGA AS, Oslo. Standards of FAMEs and lipid classes
standard mixes were purchased at Nu‐Check Prep Inc.
(Elysian, MN, USA). Phospholipid standards were pur-
chased at Avanti Polar Lipids Inc. (Alabama, USA). All
chemicals and solvents were of analytical grade, except for
solvents used in TLC–FID and GC–FID analyses, which
were of chromatography grade. Distilled water was used for
preparing aqueous solutions.

2.3 Polishing of crude herring oil

To remove impurities in the crude herring oil, 10%w/w of
boiling water (in relation to the oil mass) was added to the
crude oil and the mixture was stirred manually by a glass
rod for 10min. The warm mixture was then centrifuged
(7000 rpm for 10min at 40°C), and the clear oil phase was
collected, divided into 25mL portions, and kept frozen at
�20°C until needed [16].

2.4 Isolation of phospholipids

The frozen roe was allowed to thaw overnight at 4°C. The
extraction of total lipids from the roe was performed
according to the method of Bligh and Dyer [17]. The
phospholipids (PL) were isolated from the total lipids by
precipitation in cold acetone, as described by Kates [18] and
modified by Mozuraityte et al. [19]. The precipitation step
was performed twice to increase the purity of the isolated PL.
The final precipitate was dissolved in chloroform and
stored at �20°C until needed. Extraction of PL from the
dried bacterial culture followed the same procedure.

2.5 Peroxide value

Pre‐formed lipid hydroperoxides (LOOH) were quantified by
determination of peroxide value (PV). For the crude and
polished herring oil and the soy phospholipids, the iodometric
titrationmethod described in AOCS official methods (Cd 8b‐
90) applied in a titration application issued by Radiometer
Analytical SAS [20] was used. The titration end point was
assessed potentiometrically using an automatic titrator
(TitraLab980) coupled with a single platinum electrode
(M21Pt) and a reference electrode (REF 921) (all equipment
produced by Radiometer Analytical ASA, Copenhagen,
Denmark). The minimum and maximum speed of a
standardized titrant (0.01M Na2S2O3) [21] addition was
changed to 0.20 and 3.0mL/min, respectively; the smoothing
parameter was set to 1. The PV calculation is described in
Eq. (1). The analysis was performed with three parallels, and
the results are expressed in mmol LOOH/kg oil as a mean
value�SD. The maximum coefficient of variation (CV) for
this method was found 9.1% and the limit of quantification
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(LOQ) was found 1.1mmol LOOH/kg.

PVðmmol=kgÞ ¼ C � ðV s � V bÞ � 2
G

� 1000 ð1Þ

C is the titrant concentration (average value, n¼ 3) (mol/L),
Vs is the titrant consumption for sample (mL), Vb is the
titrant consumption for blank (mL), G is the mass of
lipids (g), 1000 is a conversion factor for units, and 2 is the
stoichiometricmolar ratio between LOOHandNa2S2O3 [22].

Due to limited quantities, the PV in all the phospholipids
and the cod liver oil was determined by the spectrophoto-
metric ferro‐thiocyanate assay initially described by Stine
et al. [23] and modified as described bellow.

A 100mL aliquot of PL dissolved in 5‐methylpentane was
added to a mixture consisting of 5mL of 96% ethanol and
200mL of 4% ethanolic BHT solution. Afterwards, 200mL of
a reagent solution prepared bymixing equal volumes of 0.4M
ethanolic NH4SCN and 4.5mM FeSO4 · 7H2O in 2M HCl
was added. All solutions were deaerated by N2 gas. The
absorbance was read at 500 nm against ethanol exactly 10min
after addition of the reagent solution and the PV was
quantified using a linear standard curve prepared with Fe3þ

standard (0–10mg). The spectrophotometric mixtures and
the reagent solution were kept on ice during analysis. The
analysis was performed with 3–12 parallels and the results are
expressed in mmol LOOH/kg PL as a mean value�SE.
The calculation of PV is described in Eq. (2).

PVðmmol=kgÞ ¼ ðAbs� AbsblÞ � V
S � 55:845� 100�G

� 1000 ð2Þ

Abs is the absorbance of the sample, Absbl is the
absorbance of the blank (average value, n¼3), V is the total
volume of 5‐methylpentane in which the lipids were dissolved
(mL), S is the slope of the standard curve (1/mg), G is
the mass of lipids dissolved in 5‐methylpentane (g), 55.845
is the molar weight of iron (g/mol), 100 is the aliquot of
5‐methylpentane‐lipid solution (mL), 1000 is a conversion
factor for units.

2.6 p‐Anisidine value

p‐Anisidine value (AV) in the lipids was determined
according to the AOCS Official Method [24] using an
Ultrospec 2000 UV/Visible spectrophotometer (Pharmacia
Biotech, Uppsala, Sweden). The analysis was performed with
three parallels and the results are expressed in AV units as a
mean value�SD.

2.7 Thiobarbituric acid reactive substances

The concentrations of thiobarbituric acid reactive substances
(TBARS) in the lipids were determined by a spectrophoto-
metric method described by Ke and Woyewoda [25]. All
amounts were reduced to one half relative to the given

procedure. The analysis was performed with three parallels
for oils and five parallels for PL and the results are expressed
in mmol TBARS/kg lipids as a mean value�SD.

2.8 Total carotenoids

The content of carotenoids in the lipids was determined
spectrophotometrically [26]. A portion of lipids was dissolved
in n‐hexane and the absorbance was measured at 472 nm
against pure solvent with an Ultrospec 2000 UV/Visible
spectrophotometer (Pharmacia Biotech, Uppsala, Sweden).
The carotenoid content was calculated using an absorption
coefficient E¼ 2100L/mol cm, which is the standard absor-
bance of 1%v/w astaxanthin in n‐hexane measured at
470 nm. Each sample was analyzed in triplicate and the
results are expressed in mg carotenoids/kg lipids as a mean
value�SD.

2.9 Chloride anion content

The content of chloride anions (Cl�) in the roes and
liposomes was measured by titration of halides according to
a titration application issued by Radiometer Analytical
SAS [27]. The titration end point was assessed potentio-
metrically using an automatic titrator (TitraLab 980) coupled
with a silver electrode (M295Ag) and a reference electrode
(REF 921) (all equipment from Radiometer Analytical ASA,
Copenhagen, Denmark). The sensitivity and accuracy of the
measurements were verified against a standard 0.1M NaCl
solution. The results are given as a mean value�SD of 3–12
parallels and expressed in mmolCl�/g wet roe andmmolCl�/g
PL for roes and liposomes, respectively.

2.10 Lipid classes

Lipid classes were analyzed by TLC with FID (Iatroscan
TLC–FID analyzer MK‐6, Mitsubishi Kagaku Iatron
Inc., Tokyo, Japan). Briefly, lipids dissolved in chloroform
(10mg/mL) were injected (3mL) on silica coated quartz rods
(Chromarod‐SIII, Mitsubishi Chemical Medience, Tokyo,
Japan). The rods were placed into a closed tank containing
saturated NaCl solution for 8min, and afterwards into a
development tank containing n‐hexane/diethyl ether/formic
acid (85:15:0.04, v/v/v) for 27min. The solvent was
evaporated from the rods and the rods were scanned. Lipid
classes were identified by comparison to the retention times of
commercial standards run at the same conditions. Three to
five parallels were analyzed for each sample and the results
are expressed in % of total peak area as a mean value with
maximum CV 4.9%; peak areas <0.8% were uncertain.

2.11 Fatty acid profile

Methylation of the fatty acids was preformed prior to analysis:
10mg of lipids in a stoppered glass centrifuge tube were
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dissolved in chloroform containing 10% (in relation to
mass of lipids) of internal standard (21:0 fatty acid). The
chloroform was completely evaporated by N2 gas and the
lipids were redissolved in 1mL of 0.5M NaOH in methanol.
The lipids were hydrolyzed for 15min at 100°C, and cooled.
Two milliliter of 10% BF3 in methanol was added and
the mixture was boiled for 5min at 100°C, and cooled.
Afterwards, 1mL of hexane was added and the mixture was
incubated for 1min at 100°C, and cooled. Finally, 0.5mL of
hexane and 2mL of saturated NaCl solution was added, the
mixture was vortexed and centrifuged at 2000 rpm for 3min.
The hexane phase containing FAMEs was collected, diluted
with 0.5mL hexane, and centrifuged again. The latter step
was repeated once more with the collected hexane phase.

The fatty acids in the methylated samples were analyzed
according to Dauksas et al. [28] with the following
modifications: Agilent Technologies 7890A gas chromato-
graph with FID (GC–FID) equipped with 7693 autosampler
(Agilent Technologies, Palo Alto, CA, USA) was used. The
detector temperature was held at 270°C, and the flame was
maintained with 25mL/min H2 gas and 400mL/min filtered
air. Chromatography was carried out using a Cp‐wax 52CB,
25m� 0.25mm with id¼ 0.2mm column (part no. CP7713,
Agilent Technologies). Heliumwas used as the carrier gas at a
flow rate 1.5mL/min. GC inlets were held at 250°C. The
initial oven temperature was held at 80°C and increased to
180°C at 25°C/min, followed by a 2min hold, after which the
temperature was increased to 205°C at 2.5°C/min, followed
by a 6min hold, after which the temperature was increased to
215°C at 2.5°C/min, followed by a 4min final hold. Fatty
acids were characterized by comparison to the retention times
of commercial standards and quantified by internal standard.
The accuracy of the method was verified by comparison of FA
profiles of selected marine oils against profiles assessed by
accredited laboratories. Each sample was analyzed in
duplicate and % of total peak area was calculated for each
fatty acid; peak areas<0.23% were uncertain. The results are
expressed in % of total peak area as a mean value with
maximum CV 9.6%.

2.12 Preparation of emulsions

All emulsions were oil‐in‐water type of emulsions. A compre-
hensive overview on the types of emulsions and liposomes used
in the oxygraphic experiments is given in Table 1.

Ten percent w/v herring oil emulsions stabilized with PL
were prepared with polished herring oil pre‐mixed with PL,
and distilled water. The PL originated from either raw herring
roe or soy (9%, w/w lipid base). Emulsification was performed
with an Ultra Turrax T10 Basic Disperser with 10mm
(diameter) blade (Janke & Kunkel, IKA, Staufen, Germany)
applying a gradual increase in the emulsification speed from
8000 to 30 000 rpm. Water phase was slowly poured into the
oil during first 5 s of homogenization. Emulsification times of
15 and 30 s, and 1, 2, 3, 4, and 8min were tested with regard Ta
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to the droplet size distribution (discussed in Section 3.2).
Emulsification time of 30 s, which gave the narrowest droplet
size distribution, was chosen. For emulsions containing
xanthan gum in the mobile phase, 0.2%w/v aqueous
solutions of xanthan gum was used instead of distilled water.
Emulsification time of 4min was used due to a higher
viscosity of the aqueous phase.

Five percent w/v herring oil emulsions stabilized with
herring roe PL were prepared by dilution of the 10%w/v
emulsion (described above). Diluted HCl or NaOH (0.01–
0.1M) solutions were used to obtain the desired pH.

0.5% and 0.6%w/v cod liver emulsions stabilized with
bacterial or soy PL were prepared by dilution of a 3.0%w/v
emulsion prepared with cod liver oil containing 3% PL (w/w
lipid base), and 5mMMES solution, pH 5.5. Emulsification
was performed by probe sonication using a 12mm (diameter)
sonication rod (Sonics & Materials Inc., Newtown, CT,
USA) under the following conditions: pulse: 6 s repeated 15�
(net sonication time: 1.5min), amplitude: 40%. 5mM MES
solution with pH 3–7 was used for the dilution to obtain the
desired pH. For experiments with various % of soy or
bacterial PL in the emulsions, the oil contained 0.5–15.0%
PL (w/w). For emulsions with 0.0–0.1M NaCl in the
aqueous phase, aliquots of 1.7M NaCl combined with MES
solution were used for dilution of the liposomes to obtain the
desired NaCl concentrations.

The PL–oil mixtures were prepared by mixing an aliquot
of the oil with an aliquot of phospholipids dissolved in
chloroform to a desired concentration. Chloroform was
evaporated from the mixtures by a vacuum rotavapor
(Heidolph Instruments GmbH & Co. KG, Schwabach,
Germany) (1 h, 30°C, 30mbar) and the mixtures were kept
frozen at �20°C until needed.

1.5%w/v cod liver oil emulsions stabilized by Tween 20
were prepared by dilution of 3%w/v emulsion prepared with
cod liver oil containing 5% (w/w lipid base) Tween 20, and
5mM MES solution, pH 5.5. Emulsification was performed
by probe sonication using a 12mm (diameter) sonication
rod (Sonics &Materials Inc., Newtown, CT, USA) under the
following conditions: pulse: 6 s repeated 30� (net sonication
time: 3.0min), amplitude: 40%. 5mMMES solution, pH 5.5
was used for the dilution. For experiments with various % of
Tween 20 in the emulsions, the oil contained 2.5–15.0%
Tween 20 (w/w).

For emulsions with depleted lipid hydroperoxides, an
aliquot of 0.5M TPP in chloroform was added to the oil–
Tween mixture to obtain concentration 200mM TPP in the
lipid phase. Chloroformwas evaporated from themixture by a
vacuum rotavapor (Heidolph Instruments GmbH&Co. KG,
Schwabach, Germany) (1 h, 30°C, 30mbar).

2.13 Preparation of liposomes

Liposome dispersion was prepared fresh before each set of
experiments, as described byMozuraityte et al. [19]. Briefly, a

chloroform solution of PL was evaporated to dryness with a
stream of nitrogen gas and the residual solvent was completely
evaporated under vacuum (2 h). The dried mass of PL was
dissolved in a 5mMMES solution pH 5.5, to a concentration
of 30mg/mL (3.0%, w/v), and the solution (typically
15–20mL) was sonicated in a test tube (diameter 2.5 cm)
with a Vibra Cell system (Sonics & Materials Inc., Newton,
CT, USA) under the following conditions: pulse: 6 s repeated
25� (net sonication time: 2.5min), amplitude: 50%.
The solution was kept on ice both during and after the
sonication to minimize oxidation of the lipids. 1.5 and
0.6% liposomes were prepared by dilution of the 3%
liposomes with 5mM MES solution with pH 2–7 to obtain
the desired pH.

For liposomes with depleted lipid hydroperoxides, an
aliquot of triphenylphosphine (TPP) dissolved in chloroform
was added to the phospholipids prior to evaporation of
chloroform to obtain 200mM TPP in the PL phase. For
liposomes with 0.1M NaCl in the aqueous phase, 5mM
MES solution, pH 5.5, containing 0.1M NaCl was used for
sonication of the phospholipids.

2.14 Droplet size distribution

The droplet sizes in 10% herring oil emulsions were
measured with a Mastersizer 3000 (Malvern Instruments
Ltd., UK). The measurements were performed by adding a
few drops of emulsion to a circulating water bath until an
obscuration of 6–12% was reached. The emulsions were
gently shaken before sampling to eliminate the influence of
creaming and flocculation. The refractive indices of cod liver
oil (1.481) and water (1.330) were used for particle and
dispersant index, respectively. Five parallels were measured
and the volume based average droplet diameter (ADD;Dv50)
is expressed in mm as a mean value�SE.

To verify that the droplet size distribution did not change
significantly during the time it took to carry out oxidation
experiments, the droplet size distribution obtained
shortly after the emulsion was made was compared to the
distribution determined 4 h after the preparation of the
emulsion. The measurements revealed only minimal changes
in the droplet size distribution (data not shown), which were
neglected.

2.15 Zeta potential and average droplet diameter

The zeta potential measurements in 10% herring oil emulsion
and liposomes were performed with a Zetasizer Nano ZS
(Malvern Instrument Ltd., UK). The analyses were per-
formed at 25°C. Samples were prepared in two or three
parallels, each parallel was measured three times, and the
results were pooled. The results are expressed in mV as a
mean value�SD.

The ADD in 0.6% cod liver oil emulsion stabilized with
bacterial PL was measured using the same equipment. The

212 V. Kristinova et al. Eur. J. Lipid Sci. Technol. 2014, 116, 207–225

� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ejlst.com



measurements were performed at 30°C with liposomes
diluted to 0.1% with MES solution, pH 5.5. Samples were
prepared in three replicates and the results are expressed
in nm as a mean value.

2.16 Preparation of iron solutions

Stock solutions of Fe2þ and Fe3þ (20mM) were prepared
by dissolution of FeSO4 · 7H2O and FeCl3, respectively,
in 0.5M HCl to minimize precipitation of iron. Working
solutions of Fe2þ and Fe3þ were prepared daily by diluting an
aliquot of the stock solutions with distilled water to a desired
concentration. For addition of different concentrations of
iron into the emulsions and liposomes, the volume of the dose
(mL) was kept constant while the concentration of the
working solution was varied.

2.17 Oxygen uptake measurement

Oxidation of fatty acids in emulsions/liposomes was followed
by measuring dissolved oxygen consumption using an
Oxygraph system (Hansatech Instruments Ltd., Norfolk,
UK) as described in earlier studies [10, 19, 29, 30]. Briefly,
1mL of liposomes/emulsion was transferred into an oxy-
graphic cell surrounded by a water jacket to maintain a
constant temperature. The concentration of the dissolved
oxygen was measured by a Clark polarographic oxygen
electrode placed inside the cell. The electrode was calibrated
with oxygen saturated and oxygen depleted distilled water;
oxygen was depleted by adding Na2S2O4. The cell was
equipped with a magnetic stirrer and closed with a plunger
with a capillary opening preventing access of air oxygen
and at the same time allowing injection of solutions. The
concentration of the dissolved oxygen (mM) was continuously
recorded as a function of time (min), giving continuous
oxygen concentration curves. In order to re‐establish
saturation conditions, infusion of oxygen was performed
when the concentration of the dissolved oxygen in the cell
reached almost zero. As ameasure of oxidation, oxygen uptake
rates (OUR) were calculated from the recorded curves.
Three cells were run simultaneously for each experiment
and the OUR were expressed in mMO2/min as a mean
value�SD.

2.18 Oxidation experiments

The majority of the oxidation experiments were performed at
30°C and at ambient light conditions. Some experiments
were performed at 35 and 37°C (indicated in the text).
The pH of liposomes/emulsions was measured after the
preparation (pH of the batch) and again after each oxidation
experiment (pH for the experiment), because addition of
acidic iron solutions slightly lowered the initial pH.

A representative curve of oxygen consumption in
emulsion/liposomes and the principle of OUR calculations

are shown in Fig. 2. Linear background oxygen consumption
was recorded for 5–10min before addition of a prooxidant,
a background OUR was measured at this stage (r0). The
prooxidant was added to initiate oxidation and the oxygen
concentration was followed for 10–30min depending on the
progress of the oxidation, total OUR was measured at this
stage (r1). The net OUR was found by subtracting the total
OUR from the background OUR (r¼ r1� r0). In experiments
with Fe2þ, the magnitude D (mM) of the drop in the oxygen
concentration, which occurs immediately after addition of
Fe2þ, was quantified as well. This drop is referred to as “the
initial drop” in the text (discussed in Section 3.4). The
recordings of oxygen uptake curves, quantification of OURs
and determination of oxygen concentrations at any time point
on the curve were done by means of Oxyg32 software.
Specific OUR was calculated as net OUR divided by Fe2þ

concentration (MO2/MFe2þ/min).

2.19 pH verification

The pH of solutions, liposomes and emulsions was measured
by a TIM900 Titrator manager (TitraLab, Radiometer
Analytical, Copenhagen, Denmark) coupled with a combi-
nation glass electrode (LIQ‐GLASS 238000/08, Hamilton
Co., Reno, USA), which was calibrated daily against standard
buffer solutions, pH 4.0 and 7.0, at 22°C.

2.20 Statistical analysis

Microsoft Excel 2010 was used for calculations and data
processing. A statistical program Minitab (version 16.2.3)
was used for statistical analyses. To assess significant
differences, the data were subjected to analysis of variance
(one‐way ANOVA), followed by a Tuckey test.

Figure 2. A representative oxygen concentration curve for
emulsion/liposomes with addition of a prooxidant (Fe2þ). OUR
measurement and quantification of the initial drop in oxygen
concentration after addition of Fe2þ is indicated in the figure.

Eur. J. Lipid Sci. Technol. 2014, 116, 207–225 Iron‐mediated peroxidation in marine emulsions and liposomes 213

� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ejlst.com



3 Results and discussion

3.1 Characterization of lipids

The crude oil from herring was expected to contain impurities
commonly present in crude oils, such as proteins, free fatty
acids, phospholipids, minerals, antioxidants, pigments, sterols,
and insoluble particles [31]. To remove these impurities, the
oil was polished by hot water. The impact of the polishing step
on the oil characteristics – oxidation status, fatty acid profile
and the content of carotenoids – was measured (Table 2).

The values for PV, AV, andTBARSwere slightly higher for
the polished oil than for the crude oil indicating that minor
oxidation of the lipids had taken place during the polishing
treatment. There was a significant decrease (p< 0.05) in the
carotenoid content (56%), clearly showing that a proportion of
carotenoids was removed or depleted by the polishing step. The
polishing step improved clarity of the oil (not shown), but did
not have any effect on the lipid classes composition (Table 2),
which indicates that mainly non‐lipid material was removed.

The oxidation status of the different PL is given in
Table 2. PV in the herring roe PL were more than two‐fold
higher compared to PV in the cod roe PL, and also AV and
TBARS were higher for the herring roe PL than for the cod
roe PL. The lowest PV values were found in soy and bacterial
PL. The purity of all the phospholipids was found to be
>99.5%.

Fatty acid (FA) profiles revealed large differences in the
proportions of mono‐, di‐ and poly‐unsaturated fatty acids
(double bond >3, C �18) and the levels of EPA and DHA in
the different lipids (Table 2). The content of PUFAdecreased
in order: herring roe PL>cod roe PL>cod liver oil>herring
oil>soy PL>>bacterial PL.

3.2 Preparation and characterization of herring oil
emulsions

Herring oil emulsions (10%, w/w) stabilized by herring PL
were prepared by homogenization of an oil‐PL mixture with
distilled water. It was desirable to obtain emulsions with small
droplets and narrow droplet size distributions, which would
not change their physicochemical properties over at least a 4 h
period required for conducting a set of oxygraphic experi-
ments. Emulsions with small droplets are almost always more
stable against creaming, coalescence and often also floccula-
tion [32] and a narrow size distribution is important from the
oxidation point of view, since variation in the size of the
droplets, i.e. total surface area, may influence the rate of lipid
oxidation [33]. The effect of droplet size on oxidation rates is
discussed in Section 3.6. Emulsification time is one of the
parameters influencing the droplet size distribution.

Emulsification times ranging from 15 s to 8min were
tested. A shorter emulsification time (�2min) resulted in
smaller droplets and a narrower droplet size distribution,
except for the shortest emulsification time (15 s), which gave

larger droplets than 30 s (Fig. 3). This could be due to
insufficient energy supply to break up the droplets [32].
Longer emulsification times (>2min) gave asymmetrical
distributions and larger droplets occurred in the distribution.
The longer homogenization may support coalescence of
droplets, which could explain the latter phenomenon.
Independent of the emulsification time, all the emulsions
had a tendency to cream shortly after preparation.

During the oxidation experiments employing the oxy-
graphic system, the size of the droplets in emulsions might
influence the rate of lipid oxidation, but creaming would not
be of great importance as the emulsions are continuously
and evenly stirred inside the oxygraphic cells. Therefore the
emulsification time of 30 s giving the narrowest droplet
size distribution was chosen for preparation of herring oil
emulsions.

Average droplet size and size distribution curves of
these emulsions prepared at five different occasions differed
marginally (data not shown). The pooled Dv 50¼ 10.9� 0.1
(SE) mm (n¼ 25). Zeta potential, which reflects the surface
charge of the particles, was �13� 3 (SD) mV (n¼ 5) at pH
5.5� 0.2.

3.3 Characterization of liposomes

Marine liposomes were prepared from phospholipids isolated
from raw roes and roes that were separated and washed with
seawater. Measurements of chloride anions (Cl�) revealed
that the separated washed roes contained significantly higher
levels of Cl� than the raw roes and the same situation was
found for liposomes prepared from the corresponding PL
(Table 3).

It is clear that the extraction and isolation techniques did
not eliminate Cl� from the PL fraction. The data indicate that
Cl� (and possibly also the counter ions, such as Naþ, Kþ)
were strongly associated with the phospholipids and with-
stood the isolation conditions. Phospholipid heads are
zwitterions bearing both positive and negative charge, and
may electrostatically bind both cations and anions [14, 15],
which could explain the presence of chlorides.

At pH 5.5, the zeta potential of the different liposomes
(1.5%) was found to be negative but with varying values
(Table 3). The highest zeta potential was found for liposomes
containing the highest concentration of Cl�. The impact of
the inherent Cl� as well as exogenously added Cl� as NaCl on
iron‐mediated lipid oxidation is discussed in Section 3.9.

3.4 Iron‐mediated lipid oxidation in liposomes and
emulsions

LMW iron‐mediated lipid oxidation in different emulsions
and liposomes containing marine lipids (overview in Table 1)
was followed by recording dissolved oxygen consumption
over time, as shown in Fig. 4A–D. Oxygen consumption
curves for both the emulsions and liposomes were
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characterized by a linear background OUR varying between
0.2 and 5.0mMO2/min.

Addition of ferric (Fe2þ) ions to both the emulsions and
liposomes resulted in a rapid drop in the oxygen concentra-
tion immediately after the addition of Fe2þ (referred to as “the
initial drop”), which was followed by a linear decrease in the
oxygen concentration. When ferrous (Fe3þ) ions were added,
no initial drop but only the linear decrease in oxygen
concentration was observed (Fig. 4A).

Mozuraityte et al. [10] explained that the initial drop in
LMW iron‐mediated oxidation in cod liposomes was due to
establishment of a concentration equilibrium between Fe2þ

and Fe3þ via rapid oxidation of Fe2þ to Fe3þ by pre‐formed
lipid hydroperoxides (LOOH). It is known that Fe2þ

decomposes LOOH by a rate an order of magnitude higher
than the rate for Fe3þ [34, 35]. The rapid conversion of Fe2þ

into Fe3þ generates alkoxyl radicals (LO�) which rapidly
abstract hydrogen from adjacent fatty acids producing lipid
alkyl radicals (L�) which than rapidly react with dissolved
oxygen, causing the initial drop in dissolved oxygen
concentration. The linear decrease in the oxygen concentra-
tion takes place once the equilibrium between Fe2þ and Fe3þ

is established and a slower reaction between Fe3þ and LOOH
becomes rate limiting. As a consequence, the concentration
of Fe2þ and Fe3þ becomes equal regardless of the original
ions, and each iron atom oscillates between both forms. The
reaction scheme for iron‐catalyzed lipid oxidation is depicted
in Fig. 1. Since the magnitude of the initial drop can give
additional information on iron‐mediated oxidation, for
example, whether added compounds interact with Fe2þ,
most experiments in this study were performed using Fe2þ.

The oxygraphic curves in Fig. 4A and B clearly show the
establishment of the equilibrium between Fe2þ and Fe3þ, i.e.
the initial drop, not only in marine liposomes, but also in
emulsions stabilized with either marine PL or Tween 20. This
was expected since the mechanism by which LMW iron acts
as a pro‐oxidant, i.e. red‐ox cycling of iron upon decomposi-
tion of hydroperoxides, should not be dependent upon the
type of lipid system.

The concentration of pre‐formed LOOH in the different
phospholipids and oils varied (Table 2). From a purely
mechanistic point of view, the higher the number of pre‐
formed LOOH (related primarily to the emulsifier interface),
the higher the number of potential locations for initiation of
iron‐mediated oxidation. Therefore, for emulsifiers with
higher PV levels, such as the marine PL, higher rates of
oxygen consumption and also larger initial drops could be
expected. This would however only be valid if iron were in
excess of the pre‐formed LOOH (on a molar basis). In all
types of liposomes and emulsions the concentrations of pre‐
formed LOOH in the interfaces were found to be higher
(based on PV determined in pure PL; Table 1) than the
amount of added iron. Therefore, the concentration of pre‐
formed LOOH was not the major limiting factor for iron‐
mediated oxidation. Differences in oxidation rates, the
magnitudes of the initial drop and susceptibility to oxidation
for liposomes and emulsions in this study should therefore be
attributed to other factors than endogenous LOOH content.
A number of factors is discussed in the sections below.

The initial drops in the emulsions indicate that both
marine PL and Tween molecules were peroxidized to some
degree. Pre‐formed lipid hydroperoxides in the marine PL

Table 3. Chloride content in different roe types and 1.5% liposomes prepared from PL isolated from the roes, and zeta potential in the
liposomes at pH 5.5 and 3.5, and in liposomes containing 0.1M NaCl

Roe 1.5% liposomes 1.5% liposomes 1.5% liposomes 0.1M NaCl

Type or roe
Chloride content
(mmol/g wet roe)

Chloride
content

(mmol/g PL)
Zeta potential (mV)
at pH 5.50� 0.05

Zeta potential (mV)
at pH 3.5� 0.1

Zeta potential (mV)
at pH 5.50� 0.05

Raw herring roe 10.7�0.1 <LOD �26.2� 4.7 �5.3� 0.3 �5.7� 0.3
Washed herring roe 52.8�1.2 35� 2 �50.4� 1.7 �28.8� 1.5 �12.1� 0.3
Raw cod roe NA <LOD �37.2� 0.5 �19.1� 0.9 �6.0� 0.2
Washed cod roe NA 152�2 �8.1� 0.6 þ4.6� 0.4 0.0� 0.1

NA, not analyzed; LOD, limit of detection.

Figure 3. Particle size distributions in 10% (w/w) herring oil
emulsions stabilized by raw herring phospholipids prepared with
different emulsification times.
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were indeed determined (Table 2); the PV in Tween 20 was
not measured. Nevertheless, a study of Mancuso et al. [36]
showed that Tween 20 molecules contain various levels of
hydroperoxides, depending on the age of the chemical. These
hydroperoxides were decomposed upon contact with Fe2þ

ions added into Tween 20 micellar dispersions, which agrees
very well with the oxygraphic curves recorded in this study.

Alternatively, peroxidized TAGs in the core of the lipid
droplets could be responsible for oxidation of Fe2þ to Fe3þ.

However, the net OUR in Tween emulsions did not increase
to any larger degree for 15mM Fe2þ nor for 27‐fold higher
Fe2þ concentration (400mM), nor for different concentra-
tions of Tween (Fig. 7). These experiments indicate that the
lipids in the core of the droplets were only marginally involved
in iron‐mediated oxidation. In other words, after the
hydroperoxide groups (–OOH) in Tween molecules were
broken, the resulting radicals did not propagate oxidation
of fatty acids located in the core of the droplets to any

Figure 4. Oxygen consumption curves for different emulsions/liposomes with addition of iron ions (indicated by arrows). (A) Herring oil
emulsion stabilized with raw herring roe phospholipids (PL) versus liposomes made from raw herring roe PL; (B) cod liver oil emulsion
stabilized with Tween with and without endogenous hydroperoxides depletion by triphenylphosphine (TPP); (C) liposomes made from
bacterial PL and herring oil emulsion stabilized with soy PL; (D) 10% herring oil emulsion stabilized with raw herring roe PL with or
without xanthan gum dissolved in the aqueous phase.
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significant levels, and most likely reacted with adjacent water
molecules. The overall effect could also be interpreted as
following: once the hydroperoxides in Tween were broken
down, iron‐mediated oxidation was prevented. In this view,
Tween molecules formed a barrier around the lipid droplet
preventing interactions between iron atoms and core lipids.
These outcomes are in contrast to a study by Nuchi et al. [37]
in which it was proposed that Tween‐OOH can stimulate the
oxidation of the core lipids in emulsions when LMW iron is
added into the aqueous phase as a pro‐oxidant.

As shown in Fig. 1, the red‐ox cycling of iron is triggered
by pre‐formed lipid hydroperoxides (LOOH) and at the same
time the cycle facilitates formation of new LOOH, which will
be further decomposed by iron. Thus, the red‐ox cycling is
sustained as long as there are enough available oxidizable fatty
acids in the system. If pre‐formed LOOH are not present,
peroxidation should not be initiated after addition of iron.
It is possible to chemically break down themajority of the pre‐
formed lipid LOOH by an excess of triphenylphosphine
(TPP), which reduces the hydroperoxide group (–OOH) into
an alcohol group (–OH) [10].

In 1.5% cod liver oil emulsion stabilized by Tween,
depletion of pre‐formed lipid hydroperoxides (both in the
emulsifier and the oil) by TPP prevented the rapid oxidation
of Fe3þ to Fe2þ (Fig. 4B). Similarly, addition of Fe2þ

and Fe3þ to peroxide depleted marine liposomes did not
increase OURs to any significant levels (data not shown).
These oxygraphic experiments show a crucial dependency of
the pro‐oxidant activity of iron on pre‐formed lipid hydro-
peroxides, and the outcome is in agreement with other
studies [11, 38].

In experiments with 0.9% liposomes made from bacterial
PL, addition of Fe2þ (15–45mM) did not give the initial drop,
and the OUR was only marginally increased with increasing
iron concentration (Fig. 4C). The bacterial PL had a low PV
level and contained 97% saturatedþmono‐unsaturated fatty
acids (Table 2). Abstraction of a hydrogen atom from a
saturated and mono‐unsaturated fatty acid by alkoxyl lipid
radical is energetically demanding [9], which could explain
the low susceptibility of bacterial PL in liposomes to
oxidation. The impact of unsaturation level of the lipids on
iron‐mediated oxidation is discussed in Section 3.7.

On the other hand, in experiments with 0.6% cod liver oil
emulsions stabilized by bacterial PL, addition of iron did
have a significant pro‐oxidant effect (data in Fig. 7). Since
the interfacial layer in the emulsions was composed of
bacterial PL, which showed a high resistance to iron‐
mediated oxidation in liposomes, it is reasonable to assume
that pre‐formed LOOH in the core of the emulsion droplets,
i.e. in the cod liver oil, were responsible for the oxidation. The
question is how hydroperoxide groups (–OOH) associated
with the hydrophobic fatty acid chains in TAG molecules,
which are located in the core of the emulsion droplet, come
into contact and interact with iron atoms dissolved in the
aqueous phase.

In order to facilitate the reaction, the –OOH group has to
come in direct contact with the iron atom. The surface
potential of the aqueous phase adjacent to the phospholipid
heads has been found negative [39]. It has been generally
accepted that the interaction between –OOH and iron atoms
is aided by an electrostatic attraction between the negative
surface charge of the phospholipid interphase and the positive
charge on the iron atom [14].

Peitzsch et al. [39] proposed that hydration of the
phospholipid heads forms a water shell around the heads,
which is impenetrable for ions dissolved in the aqueous phase.
On the other hand, other studies suggest that ions can
penetrate this water shell and that water molecules are
involved in the association (affinity) between the ions and the
phospholipid heads [8, 15].

The phosphate group within the phospholipid head (PL‐

phosphate) has been proposed as the binding site for a metal
ion [15]. To retain the pro‐oxidant activity, the iron atom
needs to be capable of red‐ox cycling once associated with the
PL‐phosphate. This means that at least two co‐ordination
sites on the iron atom must be unoccupied. Several (possibly
four) PL‐phosphates could be involved in “trapping” the iron
atom in a plane and still allowing the red‐ox cycling. Similar
type of “complexation” can be seen for example in heme‐
groups, where the iron atom is immobilized within a
porphyrin ring by four bonds while it retains its valence
status and pro‐oxidant activity [40]. Once iron atoms are
associated with the phospholipids, they should be less
available for competing reactions, such as precipitation or
complexation by chelators. Indirect evidence for the latter two
reactions is further discussed in Sections 3.5 and 3.8. It is
likely that iron atoms bound to the phosphate groups affect
the fluidity of the membrane. Borst et al. found that
membrane fluidity was reduced when Fe3þ was added to
microsomal membranes and the reduction was iron concen-
tration dependent [41].

Due to six double bonds, the carbon chain of DHA
molecule can assume hundreds of bent conformations
resembling coils [1]. Hydroperoxide groups are preferably
formed on C20 atom of DHA chain [9, 42], i.e. near the free
end of the chain. The –OOHgroup has been reported to have a
large dipole moment giving the group a hydrophilic charac-
ter [43]. This might draw the part of the molecule bearing the
–OOH group towards the phospholipid head and the aqueous
phase. The coiled carbon chain, the C20 location and the polar
character of the –OOH group might allow the group to
protrude into the interfacial regions and thus come into contact
with the iron atom located within the phospholipid heads.

Fukuzawa et al. [11] proposed a site‐specific mechanism
of lipid peroxidation in PL membranes, where the –OOH
group is cleaved by iron near the interface and the resulting
lipid radicals then penetrate back into the hydrophobic region
propagating oxidation upon generation of new –OOHgroups,
which then move towards the surface again to be cleaved by
iron. Packing of PL molecules, which contain unsaturated
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fatty acids is less tight and the membrane fluidity therefore
increases [44]. This may allow the entire TAG to be drawn
into the emulsifier interface. Assuming that the peroxidized
TAG are dynamically exchanged with un‐oxidized TAG
deeper in the core of the emulsion droplets, the supply of
–OOH to iron atoms can then be facilitated even from the
core of the emulsion droplet.

In 10% herring oil emulsions stabilized by soy PL, an
increase in oxygen consumption due to addition of Fe2þ was
not observed (Fig. 4C). This is opposite to the 0.6% cod liver
oil emulsions stabilized by bacterial PL, but similar to the cod
liver oil emulsions stabilized by Tween. The data suggest that
soy PL prevented the pre‐formed LOOH in TAG from
reaching iron ions and were not readily oxidized themselves,
even though soy PL contain PUFA (8.7%) and di‐
unsaturated FA (76.2%; Table 2).

It should be noted that the characteristics of the fish oils
were different, which could have an impact on the overall
susceptibility to iron‐mediated oxidation. Cod liver oil was
refined and contained 29.2% PUFA, while herring oil was
crude and purified by polishing, containing only 16.8%
PUFA. Crude oils have been known to display better
oxidative stability than refined oils due to content of natural
antioxidants [45] and the levels of endogenous tocopherols
were not quantified in any of the lipids.

The latter examples indicate that interactions between
iron and peroxidized fatty acids may be affected by overall
composition of lipid droplets, such as the exact type of
emulsifier and its concentration, in addition to the type and
amount of fish oil. The influence of the emulsifier quantity
in emulsions on Fe2þ‐mediated lipid oxidation is further
discussed in Section 3.6.

The relationship between Fe2þ concentration (7.5–
30.0mM) and the net OUR and the magnitude of the initial
drop was plotted for herring oil emulsions and marine
liposomes (Fig. 5). In all the systems, the net OUR was
linearly correlated (p<0.05) with Fe2þ concentration and a
significant linear correlation (p< 0.05) was also found
between the amount of oxygen consumed within the initial
drop and the concentration of Fe2þ. The specific OUR
calculated from the data in the graphs and the slopes of the
linear dependencies between the initial drop and iron
concentration for all the systems are given in Table 4. Since
the level of pre‐formed LOOH is not a limiting factor for iron‐
mediated oxidation, as explained above, the linear depen-
dencies indicate that the added iron is mainly responsible for
mediating the oxidation.

The specific OUR calculated for Fe2þ‐mediated oxidation
(Table 4) show that iron activity significantly differs between
the different types of liposomes and emulsions. Nevertheless,
the mechanism of iron‐mediated oxidation appears to be the
same. Increase in iron concentration leads to a proportional
increase in oxidation, given the presence of endogenous
LOOH to trigger the oxidation and the excess of double
bonds to sustain it.

For the herring oil emulsion (1% PL), the initial drop in
oxygen concentration was 5.00� 0.29 fold larger than the
concentration of Fe2þ. This means that in this particular
system, one Fe2þ ion was responsible for consumption of
five O2 molecules within the red‐ox cycle. A similar number
(4.57�0.25) was found for liposomes prepared from the
same phospholipids (1.5%) as those in the emulsion. Other
systems showed significantly different numbers (Table 4).
The number of O2 molecules consumed within one red‐ox
cycle is therefore not constant, but seems dependent on the
environmental conditions and the characteristics of the lipids.
The effect of pH, Cl�, NaCl, lipid characteristics, and
emulsifier quantity on iron‐mediated oxidation will be
discussed in the following sections.

3.5 Effect of pH

The acidity (pH) of the aqueous phase plays an important role
in oxidation of lipids in multiphase systems because of the
impact on the emulsifier charge and solubility of iron [12].
The primary location of the added iron was the aqueous
continuous phase. The effect of pH on iron‐mediated
oxidation was measured in the pH range 2–7 for different
liposomes and emulsions; the pH curves are shown in Fig. 6.

The optimal pH for iron‐mediated oxidation was found
in the pH range 4.5–5.5. This range was consistent for all
the systems, which varied in the origin of lipids, lipid
concentration, temperature and complexity (i.e. liposomes
vs. emulsions).

Mozuraityte et al. [19] found a bell shaped pH‐curve for
LMW iron‐mediated oxidation of cod roe PL in liposomes,
with the highest oxidation rates at pH 4–5. The peak was
explained by increasing electrostatic attraction between iron
ions and liposome droplets with decreasing pH and by
impaired solubility of iron at pH> 5. Sørensen et al. [46]
found that lipids in Tween emulsions oxidized faster at pH 3
than at pH 6. The latter observation was explained by
increased solubility of iron at low pH. Emulsions stabilized
with anionic emulsifiers have been found to be more
oxidatively stable at low pH (0–3) due to neutralization of
the negative surface charge of the droplets by hydrogen
protons (Hþ) which causes weaker attraction or even
repulsion of positively charged iron ions. [12] The pH curves
in this study are largely in accordance with these studies.

The zeta potential near the surface of the oil droplets in the
herring emulsions stabilized by herring PL was found to be
�13� 3mV at pH 5.5�0.2. The zeta potential typically
becomes less negative or even positive when the pH is
decreased. Therefore, it can be expected that the zeta
potential in the emulsion became less negative after addition
of the acidic iron solution. This trend was observed in
liposomes – the zeta potential was less negative or even
positive at pH 3.5 compared to pH 5.5 (Table 3). The
inhibition of iron‐mediated oxidation at low pH (<4.5) is
therefore most likely caused by the less negative zeta potential
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of the oil droplets causing weaker electrostatic attraction
between iron ions and the oil droplets.

Iron solubility is another parameter governed by pH.
Fe3þ precipitates as iron(III) hydroxide (Fe(OH)3) at
neutral pH, while Fe2þ is more tolerable to neutral pH
than Fe3þ, as seen on solubility product constants (Ksp

Fe(OH)2¼ 4.87�10�17; Ksp Fe(OH)3¼ 2.79� 10�39) [47].
This means that solubility of Fe2þ and Fe3þ in water (pH¼ 7)
is 2.3mM and 0.10 nM, respectively. At acidic conditions
(pH< 7) the solubility of Fe2þ is greatly improved, allowing
high concentrations (M) already at pH 5.0; the solubility of
Fe3þ however remains very low (nM). Upon red‐ox cycling of
free iron, iron atoms at Fe3þ state should therefore largely
precipitate, which would slow down the oxidation of fatty

acids considerably. This is not observed in the oxygraphic
measurements, because iron is more or less active in the
whole acidic pH range.

In Section 3.4, it is postulated that iron atoms are bound
by the PL‐phosphate groups, which could explain the
oxidation activity of iron at pH from 5 to 7. However,
the proportion of iron, which is bound to PL‐phosphates is
not known and may vary. The binding constant for iron
and PL‐phosphates is not known either. The decrease in
oxidation at pH> 5.5 could therefore be attributed to a
partial precipitation of iron as Fe(OH)3 rather than to
interactions between iron and the droplets, as zeta potential is
more negative at increasing pH and iron ions should therefore
be strongly attracted to the surface of the particles.
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Figure 5. Net OUR and magnitude of the initial drop in Fe2þ‐mediated oxidation (7.5–30mM) in 1.5% liposomes made from different marine
phospholipids (PL) (A) and (B), and in 10% herring oil emulsions stabilized with herring PL (C) or soy PL (D). The results are mean values
of three (except for 25mM Fe2þ in C and D where n¼ 15) parallels�SD.
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3.6 Impact of emulsifier concentration and particle
size

The concentration of emulsifier in emulsions affects the
droplet size, total surface area, and the physical stability of the
emulsions [32]. Fe2þ‐mediated oxidation in 0.6% cod liver
oil emulsions with different levels of soy PL (1.75–15%, w/w
oil basis) or bacterial PL (0.5–10%, w/w oil basis) and
Tween 20 (2.5–15%, w/w oil basis) was measured. The
relationship between % of emulsifier and the net OUR
for Fe2þ‐mediated oxidation is shown in Fig. 7. The pro‐
oxidant activity of Fe2þ varied for different levels of PL,
being highest at PL levels 5–10%. On the other hand, in
emulsions stabilized by Tween 20 (2.5–15.0%, w/w oil basis)
the amount of emulsifier did not affect the activity of iron.

It should be noted that the concentration of iron
in the emulsions stabilized by soy PL and Tween 20 was
increased to 400mM in order to see any effect. At
lower iron concentrations, which were effective in all
other experiments (10–30mM), the specific OUR was
<0.01MO2/MFe2þmin�1, giving inconclusive results.

Investigation of droplet sizes in the emulsions revealed
that higher PL concentrations resulted in formation of smaller
droplets (inset in Fig. 7), thus creating a larger total surface
area. Some studies have proposed that oxidation rates do not
change dramatically with large variations in surface area, since
the surface in most cases is large enough not to limit the
reaction rates [12]. However, as explained in Section 3.4,
the pro‐oxidant activity of iron is dependent on the
encounters of iron atoms with pre‐formed LOOH. The
larger the area, the higher the likelihood of these encounters.
This could explain the increase in iron activity for higher
PL concentrations, since the encounter of the pre‐formed
LOOH with iron atoms is likely to be higher due to smaller
droplets.

The decrease in the activity of iron at PL concentrations
>10% could be attributed to micelle formation which may
take place once the emulsifier no longer contributes to droplet
formation and the PL molecules in the aqueous phase reach
the critical micelle concentration [8]. A proportion of iron
ions may be associated with the micelles, thus not involved
in oxidation of fatty acids in the lipid droplets [48].

Liposomes from raw herring roe PL were much more
susceptible to iron‐mediated oxidation than emulsions
containing the same PL as emulsifier (Table 4), despite the
fact that the total quantity of omega‐3 fatty acids was higher in
the emulsions. Liposomes are hollow spherical particles
consisting of a continuous phospholipid bilayer only. The
emulsion differs from the liposomes by having the inner
space of the spherical droplet filled with marine TAG and
the emulsifier, i.e. PL in this case, forms a monolayer.

Assuming that the primary site for iron‐mediated
oxidation is the PL interphase, the size and character of
the interphase is likely to affect the OURs. In liposomes,
basically all the PL molecules, i.e. including the ones facing
the cavity, are exposed to the aqueous phase, which supplies
dissolved oxygen. In addition, the average droplet size in the
herring oil emulsions was 10.9� 0.1mm, which is 100 orders
of magnitude higher than a typical size of liposomes
(0.1mm) [19]. This means that the total surface area was
100‐fold larger for liposomes. This gives the iron atoms a

Table 4. Susceptibility to Fe2þ‐mediated oxidation in different emulsions and liposomes expressed as specific OUR and the slope of the
linear dependences between Fe2þ concentration and the magnitude of the initial drop

Specific OUR Iron conc. versus magnitude of the initial drop

(M O2/MFe2þmin�1) Slope (DMO2/MFe2þmin�1)

1.5% liposomes (pH 5.5) with PL from
Raw herring roe 1.06� 0.23 4.57� 0.25
Washed herring roe 0.84� 0.20 3.57� 0.18
Raw cod roe 0.36� 0.04 3.31� 0.09
Washed cod roe 0.29� 0.12 5.94� 0.26

10% herring oil emulsion stabilized with
Raw herring roe PL 0.28� 03 5.00� 0.29
Soy PL �0.02� 0.02 0.58� 0.03

Figure 6. Influence of pH on Fe2þ‐mediated oxidation in different
emulsions and liposomes. Each point represents a single oxy-
graphic measurement.
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larger area for encounters with LOOH. In addition, the
peroxidation is propagated only within the PL bilayer,
meaning the radicals and dissolved oxygen molecules do
not need to diffuse deeper into the droplet core, as in case of
emulsions, in order to propagate oxidation. These factors
could explain higher OUR in the liposomes than in the
emulsions.

3.7 Unsaturation of the emulsifier

Experiments where herring roe PL were replaced with soy PL
in the 10% herring oil emulsions were performed. The
specific OUR rate and the relationship between the different
concentrations of Fe2þ and the initial drop are given in
Table 4.

Iron‐mediated oxidation was greatly suppressed in
emulsions stabilized by soy PL – the magnitude of the initial
drop only slightly increased with increasing concentration of
iron and the following linear oxygen consumption was
completely inhibited for all the tested Fe2þ concentrations
(Fig. 5C andD), clearly demonstrated by the negative specific
OUR (Table 4).

As discussed in Section 3.5, the pH of the continuous
phase has a great impact on iron‐mediated oxidation.
The pH of the emulsions with herring PL ranged from
3.5 to 4.0 after addition of iron, while the pH of the
emulsions with soy PL was initially between 6.1–6.2 and
decreased to 5.1–5.7 after addition of iron. In this view, the
higher pH in emulsions with soy lecithin would suggest
higher susceptibility to iron‐mediated oxidation due to
better attraction between iron and the surface of the
droplets. However, the opposite situation was observed.

Therefore, pH can be eliminated as the main influencing
factor for this case.

Soy PL contained six times less PUFA than herring roe
PL. Unsaturation of the fatty acids has an influence on the
structure and permeability of the phospholipid bilayer [8].
Phospholipid membranes containing less unsaturated fatty
acids are more rigid andmore tightly packed thanmembranes
containing LC PUFA [44], hence possibly more stable
against –OOH penetrations into the region of PL heads to
come into contact with the iron ions.

Iron was also inactive in 0.9% liposomes from bacterial
PL (Fig. 3C). Low degree of unsaturation in bacterial
phospholipids could be entirely responsible for the
effect, since the majority of fatty acids were saturated
and mono‐unsaturated (Table 2). The susceptibility to
oxidation is greatly reduced in these fatty acids due to the
high energy input which is required to abstract a
hydrogen atom from carbon atoms on bisallylic methylene
positions [9].

However, 0.6% cod liver oil emulsion stabilized with
bacterial PL was oxidized by Fe2þ (discussed in Sections 3.4–
3.6). The net OUR was found to depend on the amount of
emulsifier, as shown in Fig. 7, which affected droplet sizes,
and that had an impact on iron activity. Therefore, in addition
to the unsaturation level of the emulsifier, the ratio between
PL (emulsifier), TAG (lipids in the core of the droplets),
and the continuous phase (water) in emulsions seems to be
important for iron‐mediated oxidation.

The outcomes obtained by measurement of dissolved
oxygen concentration are in agreement with other studies
concluding that the nature and properties of the emulsifier
influence lipid oxidation in multiphase systems [8]. In

Figure 7. Influence of emulsifier concentration
on Fe2þ‐mediated oxidation in different emul-
sions, and on the ADD in 0.6% cod liver oil
emulsion stabilized with bacterial PL. Inset:
Relationship between OUR and ADD in 0.6%
cod liver oil emulsion stabilized with bacterial
PL.
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emulsions stabilized by PL, the degree of unsaturation of the
fatty acids is one of the key parameters for formation of
LOOH and thus iron‐mediated oxidation.

3.8 Effect of xanthan gum

Oxidation experiments with herring oil emulsions stabilized
with herring PL, and with and without xanthan gum, a
commercial food thickener, dissolved in the aqueous phase
(0.2%) were performed with Fe2þ (15 and 30mM) as a
prooxidant.

The initial drop in oxygen concentration as well as the
net OUR for Fe2þ‐mediated oxidation was significantly
reduced in the emulsions containing xanthan gum (Fig. 4D
and Fig. 8). This could be attributed to the ability of xanthan
gum to bind Fe2þ, with a reported binding capacity
0.6mol Fe2þ/kg xanthan [49]. The reduction in the initial
drop indicates that the binding preference is for Fe2þ ions,
which is in accordance with a study of Shimada et al. [49].
Xanthan gum therefore acted as an antioxidant/chelator
in iron‐mediated oxidation and this ability may be advanta-
geous in food.

Based on the value for binding capacity, all the added iron
should be chelated, as the xanthan gumwas in 40‐ and 20‐fold
excess (on a molar basis) of added iron – 15 and 30mM,
respectively. This was however not observed. The activity of
iron was reduced by 30 and 59% for the two concentrations,
respectively (Fig. 8). The binding capacity may be lowered
due to some physicochemical properties of the system – for
example pH and ionic strength may interfere [50]. In
Section 3.4, it was postulated that iron is bound by phosphate
groups within PL heads. Assuming that there is a competition
between iron being held by the PL‐phosphates and being
complexed by the xanthan gum the iron might not be entirely
chelated by the xanthan gum.

3.9 Effect of chloride content

Chloride anions originating from inorganic salts are common
elements in food. In liposomes made from PL from the same
species (i.e. either cod or herring), the susceptibility to Fe2þ‐
mediated oxidation was significantly higher for the liposomes
lacking chloride anions (Table 4).

Liposomes prepared from PL isolated from the roes pre‐
washed with sea water showed substantially higher zeta
potentials than liposomes prepared from PL isolated from the
raw roes. The least negative zeta potential value was found for
liposomes containing the highest concentration of chloride
anions. Addition of 0.1M NaCl into the aqueous phase
(tested at pH 5.5) resulted in an increase in zeta potential for
all the liposomes (Table 3). Clearly, the susceptibility to Fe2þ‐
mediated oxidation and the zeta potential values are affected
by the presence of chlorides and their concentration.

These data are in accordance with the trend observed in
0.5% cod liver oil emulsions stabilized with bacterial PL.
Addition of NaCl (0.0–0.1M) into the aqueous phase
resulted in decreased OUR and increased zeta potential
values, as shown in Fig. 9.

In the study of Mozuraityte et al. [30] the following ions
added into the aqueous phase of cod roe liposomes did not
influence the rate of ironmediated oxidation: Naþ, Kþ, Ca2þ,
Mg2þ, SO4

2�, and NO3
�. On the other hand, chlorides (Cl�)

and dihydrogen phosphate (H2PO4
�) had a reducing effect

on the OUR. The zeta potential was affected conversely: Cl�

did not affect the zeta potential, while the cations had an effect
on the surface charge.

It is therefore reasonable to assume that the liposomes in
this study did not contain only chlorides, but also the counter
cations, analysis of which was not performed, otherwise the
zeta potentials would not differ with varying endogenous
content of chloride anions.

Figure 8. Effect of xanthan gum dissolved in the aqueous phase
(0.2%) on OUR in Fe2þ‐mediated oxidation in 10% herring oil
emulsions stabilized with herring PL.

Figure 9. Relationship between the net OURs (empty symbols,
mMO2/min) and zeta potential (full symbols, mV) and different NaCl
concentrations (0.0–0.1M) in 0.5% cod liver oil emulsion stabilized
by bacterial PL in oxidation mediated by 7.5mM Fe2þ. The
results are mean values of 2–4 parallels �SD.
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The increase in the zeta potential could be attributed to a
tighter compaction of the Naþ and Kþ ions near the surface of
the droplets, resulting in a greater shielding of the negative
surface [19]. In this respect, monovalent cations modify the
charge due to a shielding effect, making the liposome particles
more positive, i.e. more repulsive with respect to iron cations.

While Naþ ions modified the surface charge of the
particles but not the OUR, the Cl� affected the OUR but not
the surface charge. The latter phenomenon remains to be
satisfactorily explained. The data suggest that chloride anions
interact with iron in the aqueous phase. Nevertheless,
both Cl� and the counter ions play an important role in
the decreased susceptibility of liposomes to iron‐mediated
oxidation in the presence of chloride salts.

In conclusion, the red‐ox cycling of iron (Fe2þ/Fe3þ)
upon reaction with pre‐formed lipid hydroperoxides (LOOH)
located primarily in the emulsifier interface and secondarily
in the core of emulsion droplets was the major mechanism
in the emulsions and liposomes containing oxidatively
sensitive marine lipids. Strong dependency of the pro‐oxidant
activity of iron on pre‐formed LOOH was demonstrated.
It is also argued that iron atoms are located within the
phospholipid heads, at the level of phosphorous atom,
being electrostatically held by negative oxygen atoms on
the phosphate groups.

The pH of the continuous aqueous phase affects the
surface charge of the lipid droplets stabilized by phospho-
lipids. The highest oxidation rates appeared in various
liposomes/emulsions at the pH range 4.5–5.5, making
this pH range optimal for iron activity. The low acidity or
neutral character of the environment however does not
prevent Fe2þ from mediating lipid oxidation entirely,
presumably due to the association of iron atoms with PL‐

phosphates.
The pro‐oxidant effect of iron was reduced by using less

unsaturated emulsifiers (bacterial and soy PL, and Tween
20). The results support a theory that these molecules form a
less oxidizable interfacial layer around the oil droplets, due to
the low unsaturation level in the fatty acids. In case of Tween,
the interface had a character of a barrier between iron and
lipid hydroperoxides in the core of the emulsion droplet. The
protection by unsaturation of the emulsifier was shown to be
dependent on the optimal amount of the emulsifier. The pro‐
oxidant effect of iron was also reduced by the presence of
endogenous chloride anions, and by addition of NaCl or
xanthan gum into the systems.

The outcomes of this study obtained by quantification of
OURs from dissolved oxygen concentration curves agree or
are complimentary with a number of studies where measure-
ments of primary and secondary oxidation products were
employed whichmakes the oxygen uptake method a valid and
complementary tool for oxidation studies. The method may
be useful for studies on reduction of oxidation ofmarine lipids
in emulsion‐based products and screening or optimization of
psychochemical and chemical conditions.
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The antioxidant activity of three naturally occurring phenolic acids, caffeic (CaA), ferulic (FeA), and

p-coumaric acid (CoA), and a synthetic compound, propyl gallate (PG), was evaluated in a food-

related model system, a liposome dispersion of marine polyunsaturated fatty acids. Oxidation was

induced by two different prooxidants, free iron ions and bovine hemoglobin (Hb). Continuous

measurement of oxygen uptake was used to quantify the rate of lipid oxidation at steady state.

Free iron-induced oxidation was reduced in the following order: PG > FeA > CoA. Caffeic acid

worked as a prooxidant and increased the oxidation rate by a factor of 9. For Hb-induced oxidation,

the relative efficiency was PG > CaA ∼ FeA . CoA. The antioxidant activity was also evaluated by

four antioxidant capacity assays. In the Folin-Ciocalteu, ferric reducing/antioxidant power, and 2,2-

diphenyl-1-picrylhydrazyl radical scavenging assays, the antioxidant activity followed the sequence

PG > CaA > FeA > CoA. The order for the 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)

assay was found to be PG > CoA ∼ FeA > CaA. The assays mainly reflected reducing abilities

of the compounds. This work reports that in addition to the differences in the chemical structure of

antioxidants, the antioxidant activity of phenolic compounds depends also upon the type of

prooxidant.

KEYWORDS: Phenolic antioxidants; lipid oxidation; iron; hemoglobin; oxygen uptake

INTRODUCTION

Foods containing long-chain n-3 polyunsaturated fatty acids
(LC-PUFA) are especially labile with respect to oxidation, which
causes formation of undesirable flavors and rancid odors, pro-
duction of potentially toxic compounds, and loss of the health
beneficial and essential fatty acids. Prooxidative agents, such as
transition metals (iron, copper) or heme pigments (hemoglobin,
myoglobin), significantly promote quality loss and reduce the
shelf life of PUFA-rich foods. Iron ions and hemoglobin can be
found as endogenous constituents in both raw fishmaterials and a
wide variety of seafood products.

One industrially acceptable technique to control oxidative
instability of fatty products is the application of antioxidative
compounds with different mechanisms of action, including radi-
cal scavengers, singlet oxygen quenchers, photosensitizer inacti-
vators, and metal chelators. Conventionally used antioxidants
include synthetics, such as propyl gallate (PG), butylated hydro-
xytoluene (BHT), butylated hydroxyanisole (BHA), tert-butyl-
hydroquinone (TBHQ), or ethylenediaminetetraacetic acid
(EDTA), and nature-identical compounds, such as L-ascorbic,
citric, and tartaric acids; natural antioxidants found in rosemary
and tocopherol extracts are also commercially available (1).

There has been a growing trend among consumers to prefer
foods without synthetic additives, which has resulted in consider-
able worldwide attention to replacement of fully synthetic food
antioxidants with naturally occurring ones. Unfortunately, the
number of antioxidative compounds of natural origin approved
by authorities is very small. It is therefore challenging as well as
necessary to investigate the potential usefulness of other natural
compounds, both individually and in mixtures. (2) During the
past two decades, there has been intensive research on plant
phenolics as suitable protectants against oxidation. Hydroxycin-
namic acid derivatives have gained special attention owing to
their abundant occurrence in a wide variety of fruits, vegetables,
cereals, and cocoa and coffee beans (3, 4).

The evaluation of the antioxidant activity of the different
phenolic compounds has lately become an important research
issue, and two general approaches have been applied: (i) an
indirect approach by means of so-called antioxidant capacity
(AOC) assays and (ii) a direct approach by use of lipid model
systems (5).

The direct approach utilizes a multiplicity of lipid model
systems: bulk oils, biphasic systems, emulsions, membrane
structures [liposomes, microsomes, low-density-lipoproteins
(LDL), intact cells], as well as a variety of PUFA-rich foods. A
large number of these studies have shown that phenolics can act
both antioxidatively and prooxidatively depending upon the

*Corresponding author (telephone þ4773594066; fax þ4773593337;
e-mail turid.rustad@biotech.ntnu.no).
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physicochemical nature and the composition of the lipid system
as well as antioxidant structure and concentration (3, 6-12).

To select the right antioxidant for a given application, under-
standing the basic factors that affect the activity of phenolics in
lipid oxidation is therefore beneficial. The choice of a food-related
model system for investigative purposes is somewhat proble-
matic. Real foods and isolated membranes (microsomes, LDL)
mostly contain a variety of endogenous components, which may
be difficult to control and which may interfere with the effects of
added antioxidants. On the other hand, the model system should
not be oversimplified. It should be transparent with respect to its
compositional characterization and devoid of any interfering
reactions that can complicate interpretation of the experimental
results and drawing conclusions (13).

Lipid oxidation is conventionally studied by determination of
peroxide value (PV), thiobarbituric acid reactive substances
(TBARS), conjugated dienes, or anisidine value (AV) or by
assessing volatile compounds. Peroxides are primary products
in the oxidative breakdown of lipids, and their formation is the
net result of the production rate and the decomposition rate (1).
As the decomposition rate of peroxides is a function of at least pH
and temperature, the production rate is difficult to quantify. The
end products of lipid oxidation are the result of several reaction
pathways from peroxides; these reactions do not follow one line,
but several breakdown lines are possible, giving different end
products from the sameperoxidemolecule.Analyzing only one or
a few final oxidation compounds might therefore be misleading.
An alternative approach is to focus on measurements of changes
in oxygen, one of the lipid oxidation substrates, which has been
employed in several studies, including earlier studies in our
laboratory (14-16).

An increased interest in antioxidant activity has led to the
development of a wide array of indirect methods to measure the
antioxidant capacity (5,17). Different results have been obtained
both between individual methods and within a method itself.
Moreover, many inherent drawbacks in these assays have been
found and discussed in a number of works (5, 17-20). Despite
these criticisms, AOC assays are still being routinely used for the
evaluation of antioxidant capacity by food laboratories (21),
although there have been efforts to improve procedure protocols
of the existing methods (22), as well as efforts to develop new
assays utilizing and combining different approaches (23-26).

The objective of this study was to evaluate the antioxidant
activity of three naturally occurring phenolic acids that have
potential as food antioxidants, caffeic acid (CaA), ferulic acid
(FeA), and p-coumaric acid (CoA), and one synthetic phenolic
antioxidant, propyl gallate (PG). A food-related lipid model
system, liposome dispersion of long-chain PUFAs in marine
phospholipids, was chosen to avoid the complexity of real food
matrices. Lipid oxidation was induced by two different dietary
prooxidants, free iron (Fe2þ, Fe3þ) and bovine hemoglobin (Hb),
as these prooxidants differ substantially in prooxidative mechan-
ism (1, 27). Continuous measurement of oxygen uptake was used
to quantify the rate of lipid oxidation. In addition, four com-
monly used spectrophotometric antioxidant capacity assays were
used for comparison and additional information on the anti-
oxidant capacity of the studied compounds.

MATERIALS AND METHODS

Materials. Cod roe from Pacific cod (Gadus macrocephalus) caught in
theNorth Pacific Oceanwas used for extraction of phospholipids. The cod
roe was frozen at -40 �C until needed.

Propyl gallate, caffeic acid, ferulic acid, p-coumaric acid, 2.0 M
Folin-Ciocalteu phenol reagent, 2-(N-morpholino)ethanesulfonic acid
(MES), 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ), 2,2-diphenyl-1-picryl-

hydrazyl (DPPH), 2-thiobarbituric acid (TBA), 2-methylpentane, 2,20-
azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), sodium carbo-
nate, sodium acetate, bovine hemoglobin, sodium sulfite, trichloroacetic
acid (TCA), 1,1,3,3-tetraethoxypropane (TEP), potassium persulfate, and
catalase from bovine liver were obtained from Sigma-Aldrich Chemie
GmbH (Steinheim, Germany). Hydrochloric acid, acetic acid, potassium
chloride, formic acid, ferric chloride tetrahydrate, ammonium thiocya-
nate, titrisol [(NH4)2Fe(SO4)2], ferrous sulfate heptahydrate, and all of
the solvents used were supplied by Merck KGaA (Darmstadt, Germany).
Anhydrous ferric chloride and IDRANAL II (ethylenediaminetetra-
acetic acid) was purchased at Riedel de Ha€en (Seelze, Germany). Sodium
hydroxide and ferrous chloride tetrahydrate were obtained from Fluka
Chemie (Buchs, Switzerland).Nitrogen (N2) gas (99.999%) was provided by
AGAAS,Oslo,Norway.All chemicals and solventswereof analytical grade.

Isolation of Phospholipids. The cod roe was allowed to thaw over-
night at 4 �C. The extraction of total lipids from cod roe was performed
according to the method of Bligh and Dyer (28). The phospholipids (PL)
were isolated from the total lipids using the acetone precipitation method,
as described by Kates (29) and modified by Mozuraityte et al. (14). The
phospholipids dissolved in chloroform were stored in the dark at -20 �C
until needed.

Purity of Phospholipids. The composition of isolated phospholipids
was determined by thin layer chromatography (30) and detected by a
Iatroscan thin layer chromatography-flame ionization detector system
(TLC-FID analyzer TH-10 MK-IV, Iatron Laboratories, Inc., Tokyo,
Japan) as described by Mozuraityte et al. (14). Three analyses were
performed, and the results were expressed in area percentage as the mean
value ( standard deviation (SD).

Phospholipid Classes. The classes of isolated PL were analyzed by
P-31 NMR. Fifty milligrams of dried mass of phospholipids was dissolved
in a 0.6 mL solution of chloroform-d/methanol-d (2:1, v/v) containing the
internal standard (triethylphosphate) in 5 mmNMR tubes. NMR spectra
were recorded on a Bruker Avance DPX 300 spectrometer with QNP
probe operating at a P-31 frequency of 121.49 MHz at ambient tempera-
ture (25 �C). The acquisition parameters used were as follows: spectral
width, 30 ppm; 20K time domain data points; zero-filled to 64L; acquisi-
tion time, 2.8 s; relaxation delay, 50 s; 90� acquisition pulse. Chemical
shifts were referred to triethylphosphate (δ = 0 ppm).

Fatty Acid Composition. The fatty acid composition of the phos-
pholipids was determined by gas chromatography (GC) of their fatty acid
methyl esters as described by Dauksas et al. (31) The lipids were
transesterified and extracted into hexane according to AOCS method Ce
2-66 (32). Free fatty acid methyl esters were identified by comparison of
their retention times with those of the reference solution (GLS-68D;
Nu-Chek-Prep) chromatographed under identical GC conditions. Two
replicate analyses were performed and the results were expressed in GC
area percent as a mean value ( SD (standard deviation).

Peroxide Value (PV). PV was analyzed by the ferric thiocyanate
method as described by the International Dairy Federation (33) and
modified by Ueda et al. (34) and Undeland et al. (35). The analysis was
performed in triplicate.

Analysis of Thiobarbituric Acid Reactive Substances (TBARS).
TBARS values were determined according to the spectrophotometric
method described byKe et al. (36). The absorbance values of samples were
compared to a standard curve prepared with 1,1,3,3-tetraethoxypropane
for the calculation of TBARS concentrations (μM/g of fat). The analysis
was performed with five parallels.

Preparation of Liposomes. The liposome dispersion was prepared
according to the method of Mozuraityte et al. (14) fresh before experi-
ments. A chloroform solution of phospholipids was evaporated to dryness
with a stream of nitrogen gas (99.99%), and the residual solvent was
completely evaporated under vacuum (2 h). The dried mass of phospho-
lipids was dissolved in a 5 mM MES buffer, pH 5.5 or 3.0, to a
concentration of 30 mg/mL, and the solution was sonicated with Vibra
Cell (Sonics & Materials Inc.). MES buffer was used because it does not
bind iron into complexes, has a very low solubility in nonpolar solvents,
and has pKa=6.1, which is suitable for our oxidation experiments, as
most of them were performed at pH ∼5.5. At higher concentrations of
MES buffer, a higher rate of Fe2þ autoxidation was observed. During and
after the sonication the phospholipids were kept on ice. For all of the
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experiments, the liposome solution was further diluted with aMES buffer
to a concentration of 15 mg/mL.

Oxidation Experiments. The rate of oxidation was quantified from
the rate of disappearance of the dissolved oxygen in the reaction mixture
(1 mL). A polarographic oxygen electrode (Oxygraph system, Hansatech
Instruments Ltd., Norfolk, U.K.) was used to continuously measure the
dissolved oxygen concentration. Each oxygraphic cell was closed with a
plunger with a capillary opening, equipped with a magnetic stirrer, and
thermostated at 30 �C.

Stock solutions of PG, CaA, FeA, and CoA were prepared in 96%
ethanol and stored in the dark at 4 �C for amaximumof 14 days.Working
solutions were prepared daily by diluting an appropriate aliquot of the
stock solution with ethanol. Stock solutions of Fe2þ (FeSO4 3 7H2O) and
Fe3þ (FeCl3) in 0.5 M HCl were prepared monthly. Working solutions of
Fe2þ and Fe3þ were prepared daily by diluting an appropriate aliquot of
the stock solution with MES buffer; the pH was kept at 2.0 to maintain
iron solubility. Working solution of bovine hemoglobin (Hb) was pre-
pared fresh before experiments by dissolving Hb in 5 mM MES buffer
(pH 5.5). The concentrations of prooxidants in the reaction mixture were
10 μM Fe2þ, 10 μM Fe3þ, and 20 μg/mL Hb, the latter corresponding to
1.24 μM iron donated via Hb.

The curves of dissolved oxygen concentration as a function of timewere
recorded. A background oxygen uptake rate (OUR) was measured for
2-5 min before the addition of a sample (antioxidant or ethanol). After
sample addition, a background OUR (r2) was observed again, usually for
5-10 min. When a steady background OUR was reached, a prooxidant
(Fe2þ, Fe3þ, orHb) was added into the dispersion to initiate oxidation and
the initial OUR of oxidation (r1) was measured, that is, the oxygen
consumption rate between the second and fourth minutes after addition
of a prooxidant. The rate of oxidation (r) was found by subtracting the
initial OUR from the background OUR (r= r1- r2), as illustrated on the
Hb curve in Figure 1. Inhibition (%) in relation to the respective
noninhibited oxidation (added ethanol) was calculated to evaluate the
antioxidant effects: I (%)=100- [(rinh/rnon)� 100]. Two or three parallel
cells were run for each experiment. The pH of the liposome solutions was
verified after each experiment by a Philips pHmeter (model PW9420, Pye
Unicam, Cambridge, U.K.) coupled with a glass electrode (LIQ-GLASS
238000/08, Hamilton Co., Reno, NV).

The presence of ethanol (maximum 2% in a reaction volume) that was
used to dissolve the phenolics did not have any significant influence on the
oxygen uptake by liposomes themselves (data not shown) or on the
prooxidative activity of Fe2þ and Fe3þ ions (6.0 ( 0.4 and 7.0 ( 0.6 μM
O2/min, respectively) and Hb (presence of ethanol, 20.8( 1.1; absence of
ethanol, 19.4 ( 0.8 μM O2/min).

Oxygraph software “oxyg32” and MS Excel was used for data proces-
singand statistical analysis. The significance levelwas set at 95%(p=0.05).

For the antioxidant capacity assays, a 10mMmethanolic stock solution
of each compound was prepared and stored in the dark at 4 �C for a
maximum of 14 days. Working solutions were prepared daily by dilution
of suitable aliquots of a stock solution with methanol.

Folin-Ciocalteu (FC) Assay. The FC assay was performed as
described by Singleton et al. (37) with somemodifications (38,39). Briefly,
a series of 0-3 mMworking solutions of PG and CaA and 0-5 mMFeA
and CoA were prepared. Deionized water (10 mL), antioxidant solution
(1 mL), and 2.0 M Folin-Ciocalteu phenol reagent (1 mL) were
transferred to a 20 mL volumetric flask, the reaction mixture was mixed
by shaking, and after 3 min, 2 mL of 25% Na2CO3 solution (75 g/L) was
added. The volume was brought up with deionized water. The absorption
at 725 nmwas read after 1 h of incubation at room temperature.Waterwas
used as a blank. Five point graphs of antioxidant concentration versus
absorbance values were constructed, and the FC value was taken as the
slope of the linear curve derived from the constructed graphs. The assay
was carried out three times with each compound, and the average slope
value ( standard deviation (SD) was calculated.

FRAPAssay. The FRAP assay was performed as described by Benzie
et al. (40) and adapted by Nenadis et al. (38). For the analysis, a series of
0-150 μM working solutions of PG and CaA, 0-200 μM FeA, and
0-2700 μM CoA were prepared (final dilution in the reaction mixture
1:15). Five point graphs of antioxidant concentration in the reaction
mixture versus ΔA (ΔA = AAH - Acont) were constructed. The FRAP
value was taken as the slope of the linear curve derived from the
constructed graphs. The assay was performed three times with each
compound, and the average slope value ( SD was calculated.

DPPH Assay. The DPPH assay was performed as described by
Brand-Williams et al. (41) with some modifications (19, 38, 42). Briefly,
the day before analysis, 0.1 mMmethanolic DPPH• working solution was
prepared and kept on a magnetic stirrer overnight at 4 �C. A series of
0-750 μM methanolic working solutions of PG, 0-1200 μM CaA, and
0-2400 μM FeA were prepared fresh from stock solutions (final dilution
in the reaction mixture 1:30). An aliquot of DPPH• solution (2.9 mL) was
mixed with 0.1 mL of a sample or methanol (blank) and vortexed well.
After 20min of incubation at room temperature, the absorbance at 515 nm
was recorded. Water was used as a blank. Five point graphs of inhibition
(%) of initial absorbance of the DPPH• solution [I (%) = (1 - Asample/
Ablank) � 100] versus antioxidant concentration in the reaction mixture
were constructed, and EC50 values were calculated from the linear curves
derived from the constructed graphs. The assay was performed two times
with each compound, and the average EC50 value ( SD was calculated.

Figure 1. Representative oxygen uptake curves of oxidation of polyunsaturated fatty acids in liposomes (1.5%, pH 5.5, 30 �C) recorded before and after
addition of different prooxidants (noninhibited oxidation): ([) 10 μM Fe2þ; (0) 10 μM Fe3þ; (b) 1.24 μM Hb. Calculation of oxygen uptake rate (OUR) is
schematically depicted in the curve for Hb.
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ABTS Assay. The ABTS assay was performed as described by
Nenadis et al. (43) with a few modifications: ethanol was replaced with
methanol, and the amount of sample added to the ABTS•þ solution was
200 μL.For the analysis, a series of 0-55 μMworking solutions of PGand
0-110 μMCaA, FeA, and CoA were prepared fresh from stock solutions
(final dilution in the reactionmixture 1:11). Five point graphs of inhibition
(%) of initial absorbance of the ABTS•þ solution [I (%) = (1 - Asample/
Ablank) � 100] vs antioxidant concentration in the reaction mixture were
constructed, and EC50 values were calculated from the linear curves
derived from the constructed graphs. The assay was performed twice with
each compound, and the average EC50 value ( SD was calculated.

To compare the antioxidant activities, the absolute values for each
antioxidant and each assay were recalculated into propyl gallate equi-
valents, the absolute value for PG being equal to 1.

RESULTS AND DISCUSSION

Characterization of Cod Roe Phospholipids. The phospholipid
classes, lipid classes, and fatty acid profile of the phospholipids
(PL) isolated from cod roe, which were used for preparation of
liposomes, are presented in Table 1. To evaluate the oxidation
level of the material, PV and TBARS were measured after
isolation (Table 1). Both PV and TBARS values indicated a
low degree of oxidation; the PV value was consistent with the PV
values for our previous isolations (14, 44).

Inhibition of Iron-Catalyzed Oxidation. Both Fe2þ and Fe3þ

were used as promoters of lipid oxidation. The time curves of
oxygen uptake after addition of each prooxidant into liposomes
(referred to as noninhibited oxidation) are shown in Figure 1. In
our previous paper it has been explained that the initial fast
consumption of dissolved oxygen after the addition of Fe2þ is due
to oxidation of Fe2þ to Fe3þ by pre-existing peroxides. This
process generates alkoxy and peroxy lipid radicals, which rapidly
deplete dissolved oxygen by forming lipid hydroperoxides. Once
the equilibrium between Fe2þ and Fe3þ is achieved, redox cycling
of iron takes place, resulting in a constant rate of oxygen
consumption observed after the initial drop, where Fe3þ reduc-
tion is the rate-limiting factor (15).

The relative efficiency of the tested phenolics (Figure 2),
compared at 200 μM concentration, had the same trend regard-
less of the state of iron: PG was the most powerful compound,
followed by FeA; CoA did not show any significant inhibitory
effects. The inhibition (%) of oxidation as a function of PG, FeA,
and CoA concentration is shown in Figure 3. Conversely, CaA
strongly enhanced oxidation. The increase (%) in oxidation for
different concentrations of CaA is shown in Figure 4. The similar

values for Fe2þ and Fe3 for both inhibited and promoted
oxidation clearly show that behavior of the tested phenolics is
not dependent upon the initial state of iron, which supports the
theory of redox cycling of iron (15).

In the tested concentration range of PG (1-200 μM), only the
concentrations above 10 μM (PG/Fe g 1) were efficient in
inhibiting the oxidation rate. The concentration of 200 μM

Table 1. Characterization of Phospholipids Isolated from Cod Roe

phospholipid classes (%) phosphatidylcholine (PC) 69

phosphatidylethanolamine (PE) 23

lyso-PC 5

lyso-PE 3

lipid classes (%) phospholipids 97.9 ( 1.2

free fatty acids 0.4 ( 0.1

cholesterol 1.0 ( 0.5

monoacylglycerol 1.0 ( 0.7

unknown <1.0

fatty acids (%) saturated 28.2 ( 0.8

monounsaturated 25.8 ( 0.3

polyunsaturated 46.0 ( 0.5

20:5 n-3 (EPA) 14.2 ( 0.2

20:6 n-3 (DHA) 29.8 ( 0.3

other PUFA 2.0 ( 0.0

PV (mequiv of peroxide/kg of fat) 6.6 ( 1.3

TBARS (μM/g of fat) 2.4 ( 0.2

Figure 2. Molecular structures of three naturally occurring phenolic anti-
oxidants, caffeic acid, ferulic acid, and p-coumaric acid, and a synthetic
phenolic compound, propyl gallate.

Figure 3. Inhibition (%) of Fe2þ (10 μM) and Fe3þ (10 μM) catalyzed
oxidation of polyunsaturated fatty acids in liposomes (1.5%, pH 5.5, 30 �C)
by different concentrations of propyl gallate (PG), ferulic acid (FeA), and p-
coumaric acid (CoA). The values are given as the means of two to five
parallel experiments( standard error (SE). Positive values represent
inhibition of oxidation, whereas negative values represent an increase in
oxidation.

Figure 4. Increase (%) in Fe2þ (10 μM) and Fe3þ (10 μM) catalyzed
oxidation of fatty acids in liposomes (1.5%, 30 �C) at pH 5.5 and 3.0 by
different concentrations of caffeic acid (CaA). The values are given as the
means of two to five parallel experiments ( standard error (SE).
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completely inhibited oxidation. When 1 μM PG concentration
was tested (PG/Fe = 0.1), an increase in oxidation rate both in
Fe2þ and in Fe3þ catalyzed oxidation (20 ( 8 and 17 ( 7%,
respectively) was observed.

CaA strongly enhanced oxidation at all tested concentrations
except for the lower concentration (0.1 μM), at which CaA did
not have any significant effect on the oxidation rate. The
prooxidant effect of CaA showed a maximum at 50 μM (CaA/
Fe g 5) at pH 5.5 and at 200 μM (CaA/Fe g 20) at pH 3.0. At
higher CaA concentrations the prooxidant effect decreased. The
time course of oxygen consumption for selected concentrations of
PG and CaA after addition of Fe3þ is shown in Figure 5.

FeA (50-400 μM) was capable of inhibiting free iron pro-
moted oxidation at all levels of addition. The degree of inhibition
did not markedly increase with increasing concentration as was
observedwith PG. FeAwas found to be a better antioxidant than
p-coumaric acid; however, among the tested compounds FeA
could be characterized as a less potent antioxidant.

All of our oxidation experiments were performed in the same
way to observe the inhibition of the very onset of iron-induced
oxidation, with the antioxidant already present in the liposome
solution (Figure 5). However, when the order of addition of an
antioxidant and a prooxidant was reversed, that is, antioxidant
was added into already initiated oxidation, a significant decrease
(or increase for CaA) in oxygen consumption was observed as
well (data not shown). In our earlier study it was proposed that
one redox cycle of iron generates a constant number of lipid
alkoxy and peroxy radicals as a result of decomposing lipid
hydroperoxides, which leads to a constant rate of oxygen con-
sumption (15); thus, the system reaches a steady state. The
experiments show that it is possible to reduce the rate of iron-
catalyzed oxidation from the very beginning as well as at the later
stages by eliminating the generated radicals by means of the
addition of antioxidants.

Caffeic Acid and Iron-Catalyzed Oxidation. The prooxidative
behavior ofCaA in the free iron catalyzed oxidation ismost likely
the result of its ability to reduce Fe3þ, which was verified by the
FRAP assay (shown below).

An intramolecular electron transfer (IET) within a temporary
CaA-Fe3þ complex has been reported to be responsible for the
reduction of ferrous ions (Fe3þ) by CaA (45). The reaction
releases Fe2þ and produces o-semiquinone radical and possibly
o-quinone (Figure 6). Superoxide anion (O2

•-) has been proposed
to be generated from triplet oxygen during the IET reaction (46).

There are several possible pathways for its further reactions.
In an aqueous medium, O2

•- is capable of Fe3þ reduction,
forming hydrogen peroxide (H2O2) or triplet oxygen (3O2) (1).
Measurable amounts of hydrogen peroxide were not found when
catalase (40 μM), an enzyme decomposing hydrogen peroxide
into water and oxygen molecules, was added into liposomes
containing iron and CaA, as dissolved oxygen concentra-
tion did not increase significantly after the addition of catalase
(data not shown).

In experiments with a ratio of CaA/Fe e 1, the reaction
pathways of CaA-Fe complex formation and decomposition
may differ. When iron is present in great abundance, a total
breakdown of CaA rather than formation of quinones was
reported to follow complex formation (45). This could explain
the markedly lower prooxidative activity at 1 μM CaA concen-
tration and no effect at 0.1 μM CaA concentration.

Interestingly, the prooxidative activity of CaA was signifi-
cantly lowered also at 1000 μM CaA concentration, at both pH
5.5 and 3.0. This could be attributed to the radical scavenging
abilities of the proportion of CaA that was associated with the
phospholipid bilayers or to a low solubility of CaA in aqueous
phase.

In an aqueous dispersion of liposome, the stability of hydrated
iron ions is sensitive to the pHof the surrounding environment. In
aqueous solutions the solubility of iron is maintained by low pH
(e2.0); an increase in pH leads to precipitation of iron as iron

Figure 5. Time curves of oxygen consumption in Fe3þ-induced oxidation
(line a), and Fe3þ-induced oxidation inhibited by propyl gallate (line b) or
promoted by caffeic acid (line c).

Figure 6. Reduction of ferric (Fe3þ) iron to ferrous (Fe2þ) iron by
intramolecular electron transfer within a caffeic acid molecule (modified
from ref 46). (Inset) Low molecular weight (free) iron catalyzed lipid
oxidation (modified from ref 14).
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hydroxides (47). The solubility product constants for Fe2þ and
Fe3þ hydroxides are 5 � 10-17 and 3 � 10-39, respectively (15).
Observations in our earlier study (15) indicate that in working
solutions of iron with a higher pH, formation of iron hydroxides
leads to changes in concentration of active iron resulting in
somewhat lowered and different OURs between Fe2þ and Fe3þ

mediated oxidation. Thus, both the Fe2þ and Fe3þ working
solutionswere preparedat pH2.0 toprevent hydroxide formation
prior to the addition of iron into the liposome solution. We
cannot exclude that precipitation of iron occurs in the liposome
solution.However, the low concentration of iron (10μM)andnot
significantly different OUR values measured in Fe2þ and Fe3þ

initiated oxidation, (7.2 ( 0.4 and 7.0 ( 0.4 μM O2/min,
respectively) suggest that phospholipids attract iron in the way
that prevents hydroxide precipitation, as the proportion of active
iron remains equal for both Fe2þ and Fe3þ after redox cycle
equilibrium is achieved. The addition of an acidic working
solution of iron (10 μL) into liposomes had only a minor effect
on the pH value of the resulting reaction mixture, being in the
range of 5.3-5.5.

Inhibition of Hb-Induced Oxidation. Except for CoA, all of the
tested phenolics inhibited Hb-induced oxidation (Figure 7). The
relative efficacy, compared at 100μMconcentration, followed the
sequence PG>CaA ∼ FeA.

The inhibitory effect of PG (1-200 μM) increased strongly
with increasing concentration. Contrary to free iron catalyzed
oxidation, CaA did not show any prooxidant activity and
was able to inhibit oxidation at concentrations above 0.1 μM to
1000 μM; at 0.1 μM CaA was inactive. Slightly increasing
inhibitory effect was observed with increasing concentration.
FeA was tested in the concentration range from 50 to 400 μM.

The degree of inhibition did not markedly increase with increas-
ing concentration, and the inhibitory effect was approximately
equal to that of CaA. CoA was inactive toward Hb-induced
oxidation at all tested concentrations (50-300 μM) as well as
being inactive toward free iron induced oxidation.

Both prooxidants, free iron and Hb, are dispersed in the
aqueous phase of the liposome solution. This shows that there
has to be attractive interactions between the prooxidants and
charged liposome particles, which locate the prooxidants to the
very proximity of the phospholipid bilayers. The aqueous envi-
ronment also allows the prooxidants to be in direct contact with
the phenolic molecules distributed in the water phase.

In most of our experiments the molar concentrations of
phenolics were >10 times higher than the concentration of iron
in Hb (1.24 μM). However, at molar PG-to-Hb ratio close to 1,
PG was efficient in inhibiting oxidation (the inhibition reached
20 ( 4%) (Figure 7), which is in contrast with Fe-induced
oxidation, for which at the same ratio a prooxidative tendency
of PG was observed (Figure 3).

So far, the mechanism for Hb-initiated peroxidation has not
been fully clarified. Forms of heme-proteins (Hb,Mb) containing
the oxoferyll complex (Fe4þdO) are believed to be the main
driving force of heme-iron-initiated lipid oxidation (27, 48). The
mechanism of phenolics for inhibiting lipid oxidation promoted
by Hb has not been elucidated either. Pazos et al. suggested that
the mechanism did not seem to be related to a direct effect of
phenolics on Hb autoxidation (Hb-Fe2þ S Hb-Fe3þ) (8).

The studied phenolics are capable of noncovalent binding to
proteins (49). Binding of chlorogenate to ferrylmyoglobin
(Mb-Fe4þ) led to reduction of the oxoferryl moiety to a less
prooxidative metmyoglobin (Mb-Fe3þ) (50). Metmyoglobin/
H2O2-dependent oxidation of LDL also resulted in reduction of
ferrylmyoglobin to metmyoglobin by phenolic acids (51).

It could be assumed that in the aqueous phase of the liposome
solution the phenolic acids can easily enter the heme crevice ofHb
and/or bind to ferrylhemoglobin (Hb-Fe4þ), where they can
quickly reduce the oxoferryl moiety, which is observed as the
inhibition of Hb-catalyzed oxidation. Indeed, the studied phe-
nolics with a higher reduction potential inhibited the oxidation
more strongly that those with a lower reduction potential.

Due to low polarity and relatively high affinity of PG toward
phospholipid membranes (discussed below), PG probably func-
tions both as an efficient free lipid radical scavenger and as a
powerful reductant of ferrylhemoglobin, providing the highest
inhibitory effects. The inhibitory effect of FeA on Hb-promoted
oxidation was approximately equal to that of CaA, although the
standard reduction potential of FeA has been reported to be half
that of CaA (52). Apart from the ability of phenolics to reduce the
prooxidative initiator, the accessibility of antioxidant molecules
to the heme crevice or the strength of noncovalent bonds between
proteins and the phenolics may play an important role.

Antioxidant Capacity Assays. The results from the antioxidant
capacity assays are summarized inTable 2. In the FC, FRAP, and

Table 2. Antioxidant Activities of the Studied Phenolic Compounds Tested with Different Antioxidant Capacity Assays Expressed in Propyl Gallate Equivalentsa

antioxidant FC assay (slope ( SD) FRAP (slope ( SD) DPPH (EC50 ( SD) ABTS (EC50 ( SD)

propyl gallate absolute values 0.34( 0.02 0.119( 0.005 10.6( 0.3 20.0( 0.4

propyl gallate 1.00 a 1.00 a 1.00 a 1.00 a

caffeic acid 0.96 a 0.65 b 0.47 b 0.32 b

ferulic acid 0.30 b 0.54 c 0.22 c 0.43 c

p-coumaric acid 0.11 c 0.04 d < 0.02 d 0.44 c

a Folin-Ciocalteu (FC) assay; ferric reducing/antioxidant power (FRAP) assay; 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH) assay; 2,20-azinobis(3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The absolute values are given as means ( SD (standard deviation) of two (DPPH and ABTS) or three (FC and FRAP)
parallel measurements; slope = slope value of a linear curve derived from the dependence absorbance = f(antioxidant concentration in the reaction mixture); EC50 = efficient
antioxidant concentration (μM) for scavenging 50% of the radical. Values within the same column with different letters are significantly different at p < 0.05.

Figure 7. Inhibition (%) of Hb (1.24 μM) catalyzed oxidation of liposomes
(1.5%, pH 5.5, 30 �C) by different concentrations of the tested phenolics.
The values are given as the means of two to five parallel experiments (
standard error (SE).
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DPPH assays, PG showed the highest antioxidant activity fol-
lowed by CaA, FeA, and CoA. In the ABTS assay, PG was also
found to have the highest activity, followed by CoA and FeA,
whereas CaA was found to have the lowest antioxidant activity.
The obtained orders are in agreement with data reported in the
literature (10-12,19,43,53,54). Although the orders determined
by theFC,FRAP, andDPPHassays are almost identical, indirect
expression by means of propyl gallate equivalents revealed
considerable differences in the degree of activity.

The inconsistencies in the orders and degrees could be attrib-
uted to a number of factors, involving some specific reactions
between the different assay reagents and the antioxidants, un-
related reactions of phenolics (dimerization, polymerization) that
probably occur in the reaction mixtures, and drawbacks and
limitations in the chemistry and methodology of the assays
(5, 17-20).

Good correlations were found between the orders established
in FC, FRAP, andDPPH assays and the order established inHb-
induced oxidation. The order found in the ABTS assay correlated
neither with free iron catalyzed oxidation nor with Hb-catalyzed
oxidation.

Results from the FC and FRAP assays show that PG andCaA
possess a high ability to donate an electron. When related to the
catalytic role of metals in lipid oxidation, a positive reducing
capacity signals possible redox reactions with transition metals
(Fe, Cu) and their reduction into a more prooxidative valence
status. The FRAP assays also showed that all of the compounds
possess an electron-donating ability in an acidic (pH 3.6) aqueous
solution. The oxidative potentials (Epa) for CaA, FeA, and CoA
were reported to be 0.212, 0.430, and 0.583 (V vs Ag/AgCl),
respectively (52), which is in agreement with the orders found in
the two assays.

The results support the concepts of other authors that theAOC
determined by these assays cannot universally predict the anti-
oxidant activity and should, therefore, serve as a tentative or
preliminary estimation of antioxidant capacity; any predictions
regarding protection of lipid systems (foods) are uncertain or
could even be misleading (17). From the reaction mechanism
point of view, the assays only provided information on the
reducing potentials (ability to donate an electron) of the com-
pounds or the ability to scavenge synthetic free radicals in an
aqueous environment via single electron transfer.

Factors Affecting the Antioxidant Activity. The polarity of
phenolic molecules has a strong influence on their location in
lipid systems (1). In emulsion type systems, the affinity of
antioxidants toward the interface, represented by phospholipids
in our system, is a key parameter, as well.

WhenPGwas added to the liposome dispersion not containing
a prooxidant, a total inhibition of the background oxygen uptake
by liposomes was observed (data not shown), which clearly
indicated that PG was active in the phospholipid bilayers. It
should be noted that none of the tested phenolic acids reduced the
background oxygen uptake after addition. Another laboratory
reported high partitioning of PG in the emulsion interface
consisting of egg yolk phospholipids (55); microsomal phospho-
lipid membranes incorporated 52.1% of added PG (8), whereas
10% of PG was found in liposome bilayers (56). On the basis of
our observations and these studies, it could be assumed that a
substantial amount of PG would be located within the phospho-
lipid bilayers, where it can act as a potent radical scavenger.

On the contrary, partitioning of polar compounds in the oil
phase of both biphasic systems and emulsions has been reported
to be low in general (12,55,57). According toMedina et al. (11),
the polarity of the phenolic acids determined by their partitioning
in the oil phase of anoil-watermixture (1:1,w/w) decreases in the

following sequence (values in the parentheses give percent in the
oil phase): FeA (49.6) ∼ PG (49.4) > CoA (22.6) > CaA (0.30).
The affinity of FeA for incorporation into microsomal mem-
branes was reported to be 5% (9). In these works, the pH of the
systems could affect both the partitioning pattern and the proper-
ties of the antioxidants. Nevertheless, on the basis of these
reports, distribution of CaA, CoA, and FeA in the phospholipid
bilayers at pH above the pKa of the acidic group of the
antioxidant molecules is expected to be lower than in the aqueous
phase. Consequently, the radical scavenging abilities of these
compounds are likely to be less involved in the inhibition of
oxidation.

However, in free iron catalyzed oxidation a prooxidative effect
was observed at 1 μM PG concentration (PG/Fe = 0.1). At low
concentrations and in an abundance of iron, the capacity of PG to
scavenge free radicals seems to be insufficient. Moreover, PG
possesses a strong metal reducing power as verified in this study
by the FRAP assay. The proportion of PG that is active as a free
radical scavenger may be rapidly depleted and, at the same time,
the proportion remaining in the aqueous phase may reduce ferric
iron, resulting in an overall promotion of lipid oxidation.

Liposomes are charged particles (13). The charge of the
particles may significantly affect the oxidation processes (2).
The zeta potential, characterizing the electric potential difference
between the particle surface and the surrounding aqueous phase,
of cod roe phospholipid liposomes at pH 5.5 is strongly negative
(∼-20 mV) (14). At pH 5.5, the molecules of CaA, FeA, and
CoA exist mostly as anions because of the ionized acidic group
[pKa ∼ 4.4 (58)]. Due to this, the accessibility of the negatively
charged molecules toward the phospholipid interface may be
hinderedbecause of electrostatic repulsion into the aqueous phase
by the negatively charged outer surface of liposomes. This may
decrease the amount of molecules that can act as radical scaven-
gers in the phospholipid interface and increase the proportion
available for interactions with iron in the aqueous phase.

In additional experiments at pH 3.0, the prooxidative maxi-
mum of CaA was shifted to higher concentrations (∼300 μM)
and the maximum of oxidation was significantly lower compared
to pH 5.5 (Figure 4), indicating the importance of pH. At pH
below the pKa value of the acidic group, the CaA molecules are
mostly uncharged as the acidic group is protonated (58). Due to
this, the polarity of the molecules and consequently the solubility
of CaA in the water phase should decrease. Moreover, at pH 3.0
the zeta potential of liposomes is approximately zero, and a
weaker catalytic activity of iron relative to pH5.5was observed in
our earlier studies (14, 15). A combination of these factors might
facilitate a better accessibility of CaA molecules into the phos-
pholipid bilayers, where they could act as radical scavengers.
Both the shift in maximum and the overall lower degree of
prooxidative activity at pH 3.0 could be attributed to these
aspects because higher concentrations of CaA were needed to
reach the maximum prooxidative effect.

A number of studies reported on the chelating properties of
phenolics bearing catechol or pyrogallol moieties (8, 38, 45,
46, 59, 60) as a mechanism that inactivates the redox cycling of
metals by the formation of stable metal-antioxidant com-
plexes (1). These studies are rather inconsistent regarding the
degree of chelation; moreover, environmental conditions may
also play a significant role.

Due to the strong pro-oxidative behavior of CaA, we observed
that interactions between CaA and low molecular (free) iron are
clear and apparently donot seem toproduce any stable complexes
which would reduce the concentration of free iron. In other
words, the complex between iron and CaA would have reduced
the concentration of free iron in solution, thereby shifting the
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equilibrium between free iron and iron bound to phospholipids,
reducing the iron concentrationon the lipid/water interphase, and
finally reducing the rate of lipid oxidation. In this way, CaA
would have shown an antioxidative effect. If there is such a
complex binding between iron and CaA, the effect is clearly
overshadowed by another reaction, intramolecular electron
transfer, that increases the oxidation rate (Figure 6).

A schematic comparison between the experimental results and
a correlation between the results and the antioxidants’ properties
that are discussed above is shown inTable 3.Goodagreementwas
found between inhibition of Hb-catalyzed oxidation and the
redox potential of the phenolics. The antioxidant capacity assays
based on single electron transfer, that is, the FC and FRAP
assays, also correlatedwell with the redox potentials. The findings
of other laboratories on positive chelating ability of CaA toward
iron were in great contrast to our observations in the iron-
mediated oxidation.

In conclusion, the present study proves that the type of
prooxidant, free iron versus hemoglobin, and the antioxidant-to-
prooxidant ratio are factors of high importance for the efficiency
of the studied phenolics in the inhibition of catalyzed oxidation of
LC-PUFAs in liposomes. Therefore, when a particular phenolic
compound is selected for an application in LC-PUFA-rich food
emulsions, the type and content of different prooxidative agents
should be known. Caffeic acid acted as a good antioxidant in Hb-
promoted oxidation, whereas in free iron induced oxidation it was
found to be a potent prooxidant, which indicates that different
reactions are involved in interactions between free iron, Hb, and
phenolic compounds. We assume reducing abilities of caffeic acid
are responsible both for the promotion of free iron catalyzed
oxidation and for the inhibition of Hb-catalyzed oxidation.
Among the tested phenolics, only propyl gallate, a synthetic
antioxidant, fulfilled the requirement for high efficacy both in free
iron catalyzed and in Hb-catalyzed oxidation.
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The effect of dietary antioxidants on iron‐mediated lipid
peroxidation in marine emulsions studied by measurement
of dissolved oxygen consumption

Vera Kristinova1, 2, Jorunn Aaneby1, Revilija Mozuraityte2, Ivar Storrø2 and Turid Rustad1

1 Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
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Addition of antioxidants into food containing fish omega‐3 PUFA is an approach to protect the healthy
omega‐3 lipids from oxidation and to increase the oxidative stability of the food. Low molecular weight
(LMW) iron (Fe2þ/Fe3þ) is a ubiquitous component in emulsified food and a mediator of lipid
peroxidation even at trace levels. In this work, the effects of EDTA, citric acid, caffeic acid, propyl
gallate, a‐tocopherol, ascorbic acid, b‐carotene, and astaxanthin on iron‐mediated lipid peroxidation
in 10% w/v herring oil emulsions stabilized with herring phospholipids (pH 3.5–5.5) were studied
by measurement of the dissolved oxygen consumption by unsaturated fatty acids. EDTA and citric acid
completely inhibited iron‐mediated oxidation when they were added in twice the ratio to iron at
pH>3.5. Caffeic acid, ascorbic acid, and a‐tocopherol enhanced the oxidation by reducing Fe3þ to
the more prooxidatively active Fe2þ, while propyl gallate reduced the oxidation by iron chelation.
Ascorbic acid was depleted by interactions with iron and decreased the prooxidative activity of
a‐tocopherol. Astaxanthin and b‐carotene showed minor effects on iron‐mediated lipid oxidation. This
study shows that the interactions between LMW iron and antioxidants have an impact on lipid
peroxidation in emulsions in concentration dependent manners. Interactions with metals must therefore
be considered when interpreting the activity/behavior of antioxidants in emulsions rich in omega‐3 fatty
acids. This study also shows that it is possible to screen these interactions by quantification of the
dissolved oxygen consumption.

Practical applications: This work investigates the behavior of several food antioxidants in the presence
of LMW iron in fish oil emulsions stabilized with marine phospholipids, and shows that interactions with
iron can convert some of the anticipated antioxidants into pro‐oxidants. Measurements of dissolved
oxygen concentration have been used in this study to follow iron‐mediated lipid peroxidation in the
emulsions. It is shown that by quantification of the dissolved oxygen consumption it is possible to screen
and evaluate the interactions between LMW iron and antioxidants in emulsion‐type systems.
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1 Introduction

Incorporation of the healthy and physiologically important
omega‐3 lipids of marine origin into everyday food has
become an increasing trend in the past 10 years. Typical
examples of food fortified with omega‐3 lipids are yoghurts,
dairy and soft drinks, spreadable fats, and bread. One aspect
of the fortification is to improve the insufficient intake of
marine omega‐3 fatty acids in modern societies and meet the
recommended daily intake levels for eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) [1]. Other aspects
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are to increase the nutritional and marketing value of the
products. Marine lipids are susceptible to oxidative spoilage
which complicates maintaining the original taste and odor,
and the shelf‐life of the fortified products [2]. In addition,
oxidation of lipids produces reactive and toxic compounds
which are believed to be harmful for the human body [3].

Lowmolecular weight (LMW) iron (Fe2þ/Fe3þ) is a potent
mediator of lipid peroxidation even at trace (nanomolar)
concentrations [4]. Degradation of enzymes, pigments, and
metalloproteins during processing of raw materials, as well as
ingredients, tap water (containing �200mg Fe/L) and well/
mineral water (containing >680mg Fe/L) [5], steel processing
equipment and packing materials, may deliver ionic iron
into the food matrices. Therefore, LMW iron represents an
important and ubiquitous element in food. LMW iron is found
endogenously in food but may also be added exogenously to
increase the nutritional value of the food. Products such as,
yoghurts, milk, cheese, infant formulas, bakery products,
cereals, and ingredients (salt, sugar, flour) may be fortified
with up to 500mg Fe/kg [6].

Addition of antioxidants to food is an approach to retard
oxidation of sensitive marine lipids. Antioxidants can exhibit
the antioxidant activity via a series of mechanisms, such as
inhibition of radical oxygen species, quenching free lipid
radicals, singlet oxygen, and photosensitizers, chelation of
metals, inhibition of pro‐oxidative enzymes, synergism with
other antioxidants, and scavenging triplet oxygen [4].

Oil‐in‐water emulsions display similarities with liquid
foods and have been widely used for investigation of the
activity of both prooxidants and antioxidants, and the impact
of environmental factors on oxidation of emulsified lipids [7–
10]. The activity of antioxidants depends on their physical
location in the emulsions and molecular structure, as well as
on the chemical interactions with other compounds in the
environment, the physical characteristics of the emulsion
droplets and the overall system [11]. It is therefore desirable to
understand the behavior of different antioxidants in variously
complex emulsions to make it easier to develop oxidative
stable products enriched with omega‐3 fatty acids [12].

Sørensen et al. [8] reported that certain phenolic com-
pounds in emulsions worked as prooxidants in the presence of
iron, but they inhibited oxidation when the iron was not added.
Osborn and Akoh [13] also reported prooxidant effects of some
phenolic antioxidants in oxidation of structured lipid‐based
emulsions catalysed by iron. The same antioxidant added to
different fish oil enriched food emulsions displayed different
effects in the emulsions [12]. The knowledge on the influence of
the ubiquitous iron on the activity of dietary antioxidants and the
interactions between the iron and the antioxidants in emulsions
may elucidate some of the variable behavior of antioxidants
reported for the more complex emulsion‐type systems.

Currently, there are not any fast and simple techniques for
direct measurement of lipid oxidation in emulsions. To
determine the oxidation status of the emulsified lipids, it is
usually necessary to extract the oil phase from the emulsions

before specific markers of lipid oxidation can be measured, or
to evoke liberation of accumulated volatiles from the
emulsion and determine the volatile content [14, 15]. An
alternative approach is to monitor the concentration of the
dissolved oxygen during lipid peroxidation, thus focusing on
the loss of an essential lipid oxidation substrate. Mozuraityte
et al. [16] showed that a decrease in the dissolved oxygen
consumption was proportional to the increase of concentra-
tion of lipid peroxides and thiobarbituric acid reactive
substance (TBARS) during oxidation of cod roe phospho-
lipids in liposomes mediated by free iron. Therefore, oxygen
uptake reflects the rate of lipid oxidation, if side reactions
consuming oxygen are eliminated or not present.

The reaction mechanisms and the impact of a series of
factors on LMW iron‐mediated lipid peroxidation in marine
emulsions and liposomes have been studied by means of the
dissolved oxygen consumption by Mozuraityte et al. [16] and
Kristinova et al. [7]. The present paper utilizes the oxygen
uptake method to study the influence of several food
antioxidants, namely ethylenediaminetetraacetic acid (EDTA),
citric acid, caffeic acid, propyl gallate, a‐tocopherol, ascorbic
acid, b‐carotene, astaxanthin, and combinations of a‐toco-
pherol with ascorbic acid and EDTA, on LMW iron‐mediated
lipid peroxidation in 10% herring oil emulsions (pH 3.5–5.5)
stabilized with herring phospholipids, and characterizes the
mutual interactions between iron and antioxidants.

2 Materials and methods

2.1 Materials

Mature roe fromNorwegian spring spawning herring (Clupea
harengus), obtained from Grøntvedt Pelagic (Uthaug,
Norway), was used for isolation of marine phospholipids.
Before isolation the intact roe glands were kept frozen at
�40°C. Herring (Clupea harengus) oil was produced by
SINTEF Mobile Plant from an assortment of ultra‐fresh
herring rest raw material, consisting of heads, guts, and
muscle trimmings including bones and skin, obtained from
Grøntvedt Pelagic (Uthaug, Norway). Thermal processing
(70°C) of the rest raw material was used to separate the oil.
More information on the production of crude herring oil is
available in the work of Carvajal [17]. The crude herring oil
was kept at �30°C until further processing.

2.2 Chemicals and reagents

All chemicals and solvents used in this study were of analytical
or synthetic grade, and were purchased from Sigma–Aldrich
Chemie GmbH (Steinheim, Germany), Merck KGaA
(Darmstadt, Germany), or Fluka Chemie (Buchs, Germany).
Nitrogen (99.99% N2), hydrogen (99.99% H2), and helium
gas (99.99%He) were provided by AGAAS, Oslo. Analytical
standards of FAME and lipid classes standard mixes were
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purchased at Nu‐Check Prep, Inc. (Elysian, MN, USA).
Phospholipid standards were purchased at Avanti Polar
Lipids, Inc. (Alabama, USA), and standards of individual
lipid classes were purchased from Sigma–Aldrich Chemie
GmbH (Steinheim, Germany). Solvents used in TLC‐FID,
GC‐FID, and HPLC‐CAD analyses were of chromatography
grade. Distilled water was used for preparing aqueous
solutions, and deionised water (0.056mS/cm) was used in
TLC‐FID, GC‐FID, and HPLC‐CAD analyses.

2.3 Polishing of crude herring oil

To remove impurities in the crude oil, 10% w/w of boiling
water (in relation to the oil quantity) was added to the oil and the
liquid was stirred manually for 10min. The warm mixture was
centrifuged (7000 rpm for 10min at 40°C) and the clear oil
phase was collected, divided into �25mL portions, and kept
at �20°C in closed plastic flasks in darkness until needed
[18]. The polishing step was expected to reduce impurities
commonly present in crude oils, such as proteins, free fatty
acids, phospholipids,minerals (including pro‐oxidativemetals),
antioxidants, pigments, sterols, and insoluble particles [19].

2.4 Isolation of phospholipids

The frozen roe glands were allowed to thaw overnight at 4°C.
The extraction of total lipids from the roe was performed
according to the method of Bligh and Dyer [20]. The
phospholipids were isolated from the total lipids by
precipitation in cold (�20°C) acetone, as initially described
by Kates [21] and modified by Mozuraityte et al. [22]. The
isolated phospholipids dissolved in chloroform were stored at
�20°C in closed flasks. An aliquot necessary for analyses/
experiments was pipetted out when needed.

2.5 Peroxide value

The level of lipid hydroperoxides in the polished herring oil
was assessed by determination of peroxide value (PV)
employing iodometric titration with potentiometric titration
end‐point determination, as described byKristinova et al. [7].
The maximum coefficient of variation for this method was
found 9.1% and the limit of quantification (LOQ) was found
1.1mmol LOOH/kg. Due to a limited quantity, PV in the
isolated phospholipids was analyzed by a spectrophotometric
ferro‐thiocyanate assay described with modifications by
Kristinova et al. [7]. The maximum coefficient of variation
for this method was found 22.7% and the LOQ was found
2mmol LOOH/kg. Three to five replicates were analyzed and
the results are expressed as a mean value�SD.

2.6 p‐Anisidine value

p‐Anisidine value (AV) in the lipids was determined
according to the AOCS Official Method [23] using an

Ultrospec 2000 UV/VIS spectrophotometer (Pharmacia
Biotech, Uppsala, Sweden). Three replicates were analyzed
and the results are expressed as a mean value�SD.

2.7 Thiobarbituric acid reactive substances

The concentration of TBARS in the lipids was determined
by a spectrophotometric method described by Ke and
Woyewoda [24]. All amounts were reduced to one half
relative to the given procedure. The analysis was performed
with three parallels for the oil and five parallels for the PL.
The results were expressed in mmol TBARS/kg lipids as a
mean value�SD.

2.8 Total carotenoids

The content of carotenoids (mainly astaxanthin) in the lipids
was determined spectrophotometrically [25]. Briefly, the
lipids were dissolved in n‐hexane to a known concentration,
and the absorbance of the solution was measured at 472 nm
against pure n‐hexane using an Ultrospec 2000 UV/VIS
spectrophotometer (Pharmacia Biotech, Uppsala, Sweden).
The carotenoid content was calculated using a standard
absorbance for all‐E‐astaxanthin, E¼ 2100 (g/100mL)�1

cm�1 [standard absorbance of 1% v/w astaxanthin solution in
a cuvette with an optical path 1 cm in n‐hexane at 470 nm].
The samples were analyzed in triplicate and the results are
expressed in mg carotenoids/kg lipids as a mean value�SD.

2.9 Lipid classes

Lipid classes in the lipids were analyzed by a TLC with FID
system (Iatroscan TLC‐FID analyzer MK‐6, Mitsubishi
Kagaku Iatron Inc., Tokyo, Japan). The procedure described
by Fraser et al. [26] was followed.

2.10 Fatty acid profile

Methylation of fatty acids (FA) was performed as follows:
10mg of oil in a stoppered glass centrifuge tube were
dissolved in chloroform containing 10% (in relation to the
mass of oil) of internal standard (heneicosanoic acid, 21:0).
Chloroform was completely evaporated by N2 gas and the
oil was redissolved in 1mL of 0.5M NaOH in methanol.
The lipids were hydrolyzed for 15min at 100°C, and
cooled. Two milliliters of 10% BF3 in methanol was added
and the mixture was incubated for 5min at 100°C,
and cooled. Afterwards, 1mL of hexane was added and
the mixture was incubated for 1min at 100°C, and cooled.
Finally, 0.5mL of hexane and 2mL of saturated NaCl
solution was added, the mixture was vortexed and
centrifuged at 2000 rpm for 3min. The hexane phase
containing FAME was collected, diluted with 0.5mL
hexane, and centrifuged again. The latter step was repeated
once more with the collected hexane phase.
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Fatty acid composition in the methylated samples was
analyzed by an Agilent Technologies 7890A gas chromato-
graph with flame ionization detection (GC‐FID) system
equipped with 7693 autosampler (Agilent Technologies, Palo
Alto, CA, USA) according to Dauksas et al. [27] with the
following modifications: The detector temperature was held
at 270°C, and the flame was maintained with 25mL/min H2

gas and 400mL/min filtered air. Chromatography was carried
out using a Cp‐wax 52CB, 25m� 0.25mm with id¼ 0.2mm
column (part no. CP7713, Agilent Technologies). Helium
was used as the carrier gas at a flow rate of 1.5mL/min. The
GC inlets were held at 250°C. The initial oven temperature
was 80°C and it was increased to 180°C at 25°C/min with a
2min hold, followed by an increase to 205°C at 2.5°C/min
with a 6min hold, followed by a final increase to 215°C at
2.5°C/min with a 4min hold. Fatty acids were identified by
comparison to the retention times of commercial standards
and quantified by the internal standard as FA/g oil. The
accuracy of the method was verified by comparison of FA
profiles of selected marine oils against profiles assessed by
accredited laboratories. The results are expressed as average
% of each FA to a total FA amount of two replicates with a
maximum coefficient of variation (CV) 9.6%. Quantities
<0.23% were uncertain.

2.11 Phospholipid classes

The phospholipid classes in the isolated PL were analyzed
by the Agilent 1260 Infinity HPLC system (Agilent
Technologies, Germany) coupled to the Corona Ultra
Charged Aerosol Detector (CAD) (ESA/Thermo Scientific/
Dionex, USA). The PL were dissolved in isopropanol
(1mg/mL) and separated on Agilent Prep‐SIL Scalar
10mm column, 4.6� 150mm (packed by Agilent Technolo-
gies, Santa Clara, CA, USA) kept at a constant temperature
(22.0�0.8°C). For the isocratic elution a ternary gradient
having a constant flow rate of 1.25mL/min and consisting of
A¼ n‐hexane, B¼ 2‐propanol, and C¼deionized water
was used with the following timetable: at 0.00min 40:59:1
(%A/%B/%C); at 3min 40:54:6; at 18.00min 40:50:10; at
18.01min 40:59:1; and at 23min 40:59:1. The sample
temperature was 4°C and the injected volume was 10mL.
Retention times of PL standards were used for peak
identification and standard curves of the same standards
were used for quantification of the PL classes. Duplicate
analysis was performed and the results are average values with
maximum coefficient of variation 3.5%.

2.12 Preparation of emulsions

A PL‐oil mixture was prepared first by mixing an aliquot of
the oil with an aliquot of the PL dissolved in chloroform so
that the net PL formed 9% w/w in the oil. Mixing was
performed in a round bottom flask attached to a vacuum
rotavapor during simultaneous evaporation of the chloroform

from the mixture by a rotavapor (Heidolph Instruments
GmbH & Co. KG, Schwabach, Germany) (1 h, 30°C,
30mbar). The mixture was kept at �20°C.

Ten percent w/v oil‐in‐water emulsions stabilized with PL
were prepared by emulsifying distilled water with polished
herring oil pre‐mixed with herring roe PL (9% w/w lipid
base). The emulsification was performed with an Ultra
Turrax T10 Basic Disperser with 10mm (diameter) blade
(Janke & Kunkel, IKA, Staufen, Germany). The water was
poured to the lipids during the first 5 s of emulsification, and
emulsification time of 30 s with gradual increase of the
blade rotation from 8000 to 30 000 rpm was applied.
These conditions gave a stable and also the narrowest droplet
size distribution (published in [7]).

2.13 Droplet size

The droplet size distribution was determined using a
Mastersizer 3000 (Malvern Instruments Ltd., UK). Briefly,
a few drops of the emulsion were added to a circulating water
bath until an obscuration of 6–12% was reached. The
emulsion was gently shaken before the drops were taken to
eliminate the influence of creaming and flocculation. The
refractive indices of cod liver oil (1.481) and water (1.330)
were used for particle and dispersant index, respectively. The
average droplet diameter (volume based, Dv50) is expressed
in mm as amean value� standard error (SE) of five replicates.

2.14 Zeta potential

The zeta potential of emulsion droplets (at pH 5.5) was
determined from electrophoretic mobility measurements at
25°C using a Zetasizer Nano ZS (Malvern Instrument Ltd.,
UK). The emulsions were prepared in three replicates, each
replicate was measured three times consecutively, and the
results were pooled. The pooled result is expressed in mV as a
mean value�SD.

2.15 Preparation of pro‐ and antioxidant solutions

Stock solutions of Fe2þ and Fe3þ (20mM) were prepared by
dissolution of FeSO4 · 7H2O and FeCl3, respectively, in
0.5MHCl to minimize iron precipitation. Working solutions
of Fe2þ and Fe3þ were prepared daily by diluting an aliquot
of the stock solutions with distilled water to a desired
concentration. For addition of different concentrations of
iron into the emulsion, the volume of the work solution was
kept constant (10mL) while the concentration of the working
solution was varied.

Stock solutions (100mM) of propyl gallate (PG), ascorbic
acid (AsA), and caffeic acid (CaA) were prepared in 96%
ethanol due to a limited solubility in water. Citric acid (CA)
and EDTA were dissolved in distilled water to a concentra-
tion of 50 and 0.75mM, respectively. Working solutions
(2.5–20mM) were prepared daily by dilution of the stock
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solutions with distilled water with the exception of EDTA for
which the stock solution was used directly.

Stock solutions of a‐tocopherol, b‐carotene, and astax-
anthin were prepared in chloroform to a concentration of
5mM. To obtain a desired concentration and a thorough
immixture of the antioxidant in the emulsion, specific
aliquots of the stock solution were added to the oil‐emulsifier
mixture prior to evaporation of the chloroform and emulsion
preparation (described in Section 2.12).

2.16 Oxygen uptake measurements

Oxidation of fatty acids in the emulsions was followed by
measuring dissolved oxygen consumption using theOxygraph
system (Hansatech Instruments Ltd., Norfolk, UK) as
described in earlier studies by the authors [7, 28]. Briefly,
1mL of emulsion was transferred into an oxygraphic cell
surrounded by a water jacket maintaining a constant
temperature. The concentration of the dissolved oxygen
was measured by a Clark polarographic oxygen electrode
which formed the floor of the reaction cell. The electrode was
calibrated with oxygen saturated and oxygen depleted distilled
water; oxygen was depleted by adding Na2S2O4. The cell was
equipped with a magnetic stirrer and closed with a plunger
with a capillary opening preventing access of air oxygen and at
the same time allowing injection of solutions. The concentra-
tion of the dissolved oxygen (mM) was continuously recorded
as a function of time (min), giving continuous oxygen
concentration curves. In order to re‐establish saturation
conditions, infusion of air was performed when the concen-
tration of the dissolved oxygen in the cell reached almost zero.
As a measure of oxidation, oxygen uptake rates (OUR) were
calculated from the recorded curves. Three cells were run
simultaneously for each experiment and the OUR were
expressed in mM O2/min as a mean value�SD.

2.17 Oxidation experiments

All the oxidation experiments were performed at 30°C.
The pH of freshly made emulsions varied between 5 and 6
(average pH¼ 5.6� 0.4 (SD), n¼ 82). The pH in the
emulsions was re‐measured after each oxidation experiment
(pH of experiment), because addition of the antioxidant
solutions and the acidic iron solutions lowered the
original pH to pH 3.5–4.5. The concentrations and
combinations of pro‐ and antioxidants that were investigated
are listed in Table 1; the chemical structures of the
antioxidants are given in Fig. 1.

The calculations of the inhibitory effects of the anti-
oxidants in the emulsions are schematically shown on a
representative oxygen consumption curve depicting the
addition of an antioxidant and thereafter a prooxidant
(Fe2þ, Fig. 2). The background oxygen consumption (R0)
was recorded for 5–10min before addition of the antioxidant
solution. Afterwards, a secondary background oxygen

consumption (RB) was recorded for 5–10min before addition
of the Fe2þ working solution. The oxygen consumption after
the iron addition was recorded for 10–30min and the total
OUR was quantified (RT). The net OUR was found by
subtracting RB from RT. In control experiments (no
antioxidants), a blank antioxidant solution was added instead,
and the calculations were done analogically. In emulsions
containing a‐tocopherol, astaxanthin or b‐carotene, RB was
recorded from the start. Immediately after addition of Fe2þ, a
drop in the oxygen concentration (DO2) occurs. This drop is
referred to as “the equilibrium drop” in the text (more details
in Section 3.2). The magnitude of the drop and the inhibition

Table 1. Concentrations and combinations of Fe2þ/Fe3þ and
antioxidants added to the emulsions

Pro‐oxidant Antioxidant

Iron
Concentration

(mM) Compound
concentration
(mM)

Fe2þ 25 – –

Fe3þ 25 – –

Fe2þ 25 EDTA 7.5, 15, 25, 50
Fe3þ 25 EDTA 25
Fe2þ 25 Citric acid 7.5, 12.5, 25, 50
Fe3þ 25 Citric acid 25
Fe2þ 25 Caffeic acid 10, 25, 50, 100,

200, 500
Fe3þ 25 Caffeic acid 25
Fe2þ 25 Propyl gallate 25, 100, 200, 500
Fe3þ 25 Propyl gallate 100
Fe2þ 25 Ascorbic acid 25, 50, 100, 200
Fe2þ 25 a‐Tocopherol 100, 200, 300
Fe2þ 25 b‐Carotene 100, 200, 300
Fe2þ 25 Astaxanthin 100, 200, 300
Fe3þ 25 Astaxanthin 100, 200, 300
Fe2þ 25 Ascorbic acidþ 50

EDTA 50
Fe2þ 25 a‐Tocopherolþ 100

Ascorbic acid 50, 100, 200
Fe2þ 25 a‐Tocopherolþ 100, 200, 300

Ascorbic acid 50
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Figure 1. Chemical structures of antioxidants in this study.
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of the drop by antioxidants were quantified as well (Fig. 2).
Oxyg32 software was used for the recordings of the oxygen
consumption curves and quantifying the OUR and the
magnitudes of the equilibrium drops.

The carriers for propyl gallate, ascorbic acid, and caffeic
acid were water–ethanol solutions. Injecting 96% ethanol
or distilled water (50mL) to the emulsion had no or only
marginal influence on the background OUR and on iron‐
mediated lipid oxidation in the emulsions (data not shown).

2.18 pH determination

The pH of the solutions and emulsions was measured by a
TIM900 Titrator manager (TitraLab, Radiometer Analytical
ASA, Copenhagen, Denmark) coupled with a combination
glass electrode (LIQ‐GLASS 238000/08, Hamilton Co.,
Reno, USA), which was calibrated daily against standard
buffer solutions, pH 4.0 and 7.0, at 22°C.

2.19 Statistical analyses

Microsoft Excel 2010 was used for calculations and data
processing. A statistical program Minitab1 (version 16.2.3)
was used for statistical analyses. To assess significant
differences, the data were subjected to analysis of variance
(one‐way ANOVA), followed by a Tukey test. The level of
significance was set to 95% (p¼ 0.05).

3 Results and discussion

3.1 Characterization of lipid substrates and emulsion

The oxidation status characterized by PV, AV and TBARS,
the carotenoid content, fatty acid composition and profile of

lipid classes in the lipids used for preparation of the emulsions
are given in Table 2.

Based on the lipid hydroperoxide (LOOH) content
determined in the individual lipid substrates, the 10% oil‐
in‐water emulsions with phospholipids (PL) as emulsifier
theoretically contained 10.2mmol LOOH/kg lipid base,
out of which 3.4mmol LOOH/kg were in the PL fraction
(emulsifier), and 6.8mmol/kg were in the core of the
emulsion droplets, i.e., in the TAG fraction. The values
(lipid base) for AV, TBARS and total carotenoids were
calculated analogically and are given in Table 2.

The pre‐existing LOOH in the emulsion, especially in the
phospholipid interphase, are of crucial importance for iron‐
mediated lipid oxidation [7], and the endogenous carotenoids
may affect the rate of lipid peroxidation due to the ability of
astaxanthin to scavenge lipid free radicals [29, 30]. Prior to
emulsification, the PL and TAG were thoroughly blended
under vacuum in a desired ratio. The subsequent emulsifi-
cation, which was carried out at air atmosphere, might have
aided a partial decomposition of the pre‐existing LOOH
and/or more likely a formation of new LOOH. Therefore, the
calculated PV in the PL and TAG fractions may represent
the minimum levels in the freshly made emulsions.

During the preparation of the emulsion, a depletion of
the endogenous astaxanthin in both the PL and TAG phase
may have occurred. In addition, astaxanthin might have
become evenly distributed in the PL‐TAG mixture and
consequently also in the emulsion droplet, which would
significantly decrease the astaxanthin content in the PL
interface. Therefore, the total calculated value for carotenoids
(2.6mg/kg lipid base) may reflect the maximum level in both
fractions.

The crude herring oil was polished in order to remove
impurities. More details on the effect of the polishing step
on the herring oil characteristics are available in Kristinova
et al. [7]. The paper also reports the influence of the
emulsification time on the particle size distribution and
physical stability. The average droplet size (volume based) in
the emulsions was Dv50¼ 10.9� 0.1 (SE) mm (n¼ 25) and
the zeta potential of the droplets reflecting the surface charge,
was �13� 3 (SD) mV (n¼ 5) at pH 5.5� 0.2.

The fatty acid profile of the PL and TAG revealed large
differences in the proportions of mono‐, di‐, and poly‐
unsaturated fatty acids (double bond� 3, C� 18) and the
ratio between EPA and DHA (Table 2). Because the PL and
TAG form two distinct phases in the lipid droplet, i.e., the
interphase and the core of the droplet, the fatty acid profiles
determined for PL and TAG unequivocally characterize the
profiles in the interphase and the core of the droplet,
respectively.

3.2 Iron‐catalyzed lipid oxidation in emulsions

Lipid oxidation in the 10% herring oil emulsion was followed
by a continuous recording of the dissolved oxygen

Figure 2. A representative oxygen concentration curve in emulsion
with addition of an antioxidant and thereafter a prooxidant (Fe2þ).
The figure illustrates the description of the OUR and the equlibrium
drop in oxygen concentration after addition of Fe2þ.
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consumption by fatty acids. Iron ions, ferrous (Fe2þ) and
ferric (Fe3þ), were added to the emulsion (25mM) to catalyze
lipid oxidation. The concentration of iron added to the
emulsions is relevant for food rich or enriched with iron [6].
Iron‐mediated oxidation and the oxygen uptake measure-
ments in marine emulsions and liposomes have been
thoroughly described in the earlier papers of the authors [7,
16], therefore only the key aspects will be repeated here for the
convenience of the reader.

The addition of Fe2þ to the emulsion resulted in a rapid
drop in the dissolved oxygen concentration immediately
after the addition (this phenomenon is referred to as “the
equilibrium drop”) followed by a linear decrease in the
oxygen concentration (illustrated in Fig. 2). When Fe3þ was
added, no drop occurred and only the linear decrease in
oxygen concentration was observed (not shown). Since the
magnitude of the drop can give additional information on

interactions between the LMW iron and antioxidants, most
experiments in this study were performed using Fe2þ.

The drop in Fe2þ‐mediated oxidation occurs due to
establishment of concentration equilibrium between Fe2þ

and Fe3þ. The equilibrium is established via rapid oxidation
of Fe2þ to Fe3þ by pre‐formed LOOH. Fe2þ decomposes
LOOH by a rate which is several orders of magnitude higher
than the rate for Fe3þ [4, 31, 32]. This rapid decomposition
of LOOH generates alkoxyl radicals (LO.) which rapidly
abstract hydrogen from adjacent fatty acids producing lipid
alkyl radicals (L.) which then rapidly react with the dissolved
oxygen. This rapid cascade of reactions is manifested as the
drop in the dissolved oxygen concentration after Fe2þ

addition. The linear decrease in the OUR takes place once
the equilibrium between Fe2þ and Fe3þ is established and a
slower reaction between Fe3þ and LOOH becomes rate
limiting. As a consequence, the concentration ratio between

Table 2. Oxidation status characterized by PV, AV and TBARS, carotenoid content and lilpid composition of the isolated herring roe
phospholipids and the polished herring oil

Characteristics (lipid base)
Herring roe

phospholipids (PL)
Polished herring

oil (TAG)
10% emulsion

PLþTAG¼ totala)

PV (mmol LOOH/kg) 37.6� 1.1 7.47� 0.09 3.4þ 6.8¼10.2
AV 16.5� 0.8 1.61� 0.12 1.5þ 1.5¼ 3.0
TBARS (mmol/kg) 1.1�0.3 0.47� 0.03 0.1þ 0.4¼ 0.5
Total carotenoids (mg/kg) 10.8� 0.7 1.80� 0.09 1.0þ 1.6¼ 2.6
Lipid classes (%) Not calculated

TAG <LOD 98.9
Cholesterol <0.8 <0.8
Unspecified <0.8 <0.8
PL, of which 99.5 <0.8
PC 84.4 NA
lysoPC 0.5 NA
PE 14.1 NA
lysoPE 0.6 NA
Unspecified 0.3 NA

Fatty acid profile (%) Not calculated
Saturated 27.8 22.4
Mono‐unsaturated of which 16.7 59.1
CET 2.9 38.1
ERU 0.5 2.2
GAD 9.2 25.8
OLE 35.2 19.7

Di‐unsaturatedb) 1.0 1.7
Poly‐unsaturated (db� 3) of which 54.5 16.8
EPA 23.4 40.5
DHA 69.0 40.0
DPA 2.0 4.3

a)Theoretical values calculated from the values determined for oil (TAG) and phospholipids (PL), the total value is a summation of the
contributions from PL and TAG;
b)Predominant di‐unsaturated fatty acid was linoleic acid (C18:2 n6, all‐cis).
NA, not analyzed; LOD, limit of detection; db, double bond; the values are given as amean value� standard error or SD or with a coefficient of
variation (specified in Section 2 under each analysis); CET, cetoleic acid; ERU, erucic acid; GAD, gadoleic acid; OLE, oleic acid; DPA,
docosapentaenoic acid.
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Fe2þ and Fe3þ becomes equal regardless of the original ions,
and each iron atom oscillates between the oxidized and
reduced form. Phosphate groups within the phospholipid
heads (PL‐phosphates) were proposed to be the binding sites
for iron ions in the phospholipid interfaces in emulsions
stabilised by PL and liposomes [7].

3.3 Chelators: Citric acid and EDTA

The effect of different concentrations (0–50mM) of two
chelators, citric acid and EDTA, on the OUR and the
equilibrium drop in Fe2þ‐mediated oxidation (25mM) is
shown in Fig. 3A.

Both EDTA and citric acid reduced the OUR in iron‐
mediated oxidation as a result of iron chelation, but only
EDTA reduced the equilibrium drop. Increased concen-
trations of the chelators lead to a greater inhibition until the
molar chelator‐to‐Fe2þ ratio was 2:1 at which a complete
inhibition was achieved. At molar ratios� 1:1 (excess of iron)
citric acid inhibited the oxidation rates to a larger extent
than EDTA.

The pH of the environment affects the metal binding
abilities of chelators, since the COOH groups need to be
partially or fully deprotonated in order to be able to chelate
metals [32]. The pH in the emulsions after addition of
the acidic iron solution dropped to 3.5� 0.5. At this pH
one out of three OH� groups in the citric acid molecule
(pK1¼ 3.12, pK2¼ 4.76, pK3¼ 6.41 [33]), and two out of
four OH� groups in the EDTA molecule (pK1¼ 1.99,
pK2¼ 2.67, pK3¼ 6.16, and pK4¼ 10.26 [34]) are
dissociated.

Citric acid did not have any impact on the equilibrium
drop at the tested Fe2þ concentrations which indicates that
citric acid did not form a complex with Fe2þ. Francis and
Dodge [35] reported that at pH 3.5 citric acid formed a
tridentate complex with Fe3þ, [Fe3þ(OH)Cit]�, while a

tridentate complex between Fe2þ and citric acid, [Fe2þCit]�,
was not formed until pH 5. Since the pH of the emulsion was
around 3.5, this may explain why citric acid was not able to
reduce the equilibrium drop. Nevertheless, inhibition of
OUR initiated by Fe2þ was still observed, presumably due to
binding of Fe3þ formed during the red‐ox cycling of iron.
Citric acid has an ability to bind more than one Fe3þ ion [36],
which may explain why citric acid was more efficient than
EDTA when iron was in molar excess.

Increasing concentrations of EDTA resulted in reduction
of the equilibrium drop demonstrating the ability of EDTA to
bindFe2þ. The inhibitory effect of EDTAwas greatly improved
when the concentration of EDTA was higher than that of iron,
which is similar to the results found by Hu et al. [37].

The inhibitory effects of citric acid and EDTA on Fe2þ‐
and Fe3þ‐mediated oxidation at the chelator‐to‐iron molar
ratio 1:1 were compared (Fig. 3A). Once the equilibrium
between Fe2þ and Fe3þ is established, an equal effect of each
chelator on both Fe2þ and Fe3þ was expected, but not
observed. Fe3þ‐mediated oxidation was inhibited completely
by both EDTA and citric acid, while Fe2þ‐mediated
oxidation was inhibited by 78 and 92% by EDTA and citric
acid, respectively.

Kristinova et al. [7] suggested that iron ions are associated
with the phosphate groups within the phospholipid heads
(PL‐phosphates) in PL stabilized emulsions and liposomes,
which facilitates contact with hydroperoxide groups on fatty
acids. A competition between EDTA or citric acid and the
PL‐phosphates for binding of iron may have an impact on
the chelation efficacy of the two chelators. Nevertheless, the
total inhibition of OUR at the excess of the chelators
demonstrates the efficiency of both EDTA and citric acid to
retrieve the iron ions from the droplet interface.

3.4 Caffeic acid

The effect of different concentrations of caffeic acid (10–
500mM) on Fe2þ‐mediated oxidation (25mM) was studied.
Addition of caffeic acid resulted in a significant increase in the
OUR; in other words, caffeic acid behaved as a pro‐oxidant.
The increase (%) in the net OUR and the reduction (%) of the
equilibrium drop as a function of caffeic acid concentration
are plotted in Fig. 4.

Caffeic acid enhanced the OUR over the whole tested
concentration range with a maximum prooxidative effect at a
caffeic acid‐to‐iron molar ratio¼1:1 (25mM). The OUR
decreased with the excess of caffeic acid, but even the highest
concentration (500mM, caffeic acid‐to‐iron ratio¼ 20:1) did
not suppress the prooxidative behavior. The prooxidative
behavior of caffeic acid was also observed in oil‐in‐water
emulsions [8] and in liposomes [38], where the prooxidative
effect was explained by the ability of caffeic acid to reduce
Fe3þ to themore catalytically active Fe2þ. In the latter study, a
maximum prooxidative activity of caffeic acid at pH 3.0 was
observed at a caffeic acid‐to‐iron ratio about 20:1. This might
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be attributed to structural and compositional differences
between emulsion droplets and liposome vesicles – e.g., the
total surface area, which is 100‐fold larger for emulsions than
for liposomes, and different fatty acids composition of the
phospholipids forming the interphase [7].

The decreasing prooxidative effect of caffeic acid at the
caffeic acid‐to‐iron ratios greater than 1:1 (excess of caffeic
acid) could be attributed to the radical scavenging abilities of
caffeic acid [39]. To function as a chain‐breaking antioxidant
caffeic acid needs to be in the vicinity of the lipid phase.
Caffeic acid has a polar character which could allow its
location or association with the phospholipid interface,
specifically the phospholipid heads of the emulsions droplets,
which are in contact with the surrounding aqueous phase.

Alternatively, caffeic acid could chelate iron ions to
some degree. Several papers reported chelating abilities of
phenolic acids [40–42]. The binding constant for caffeic acid‐
Fe complexes was however reported to be much lower
(8.12M�1) in comparison to strong chelators, such as
EDTA (4.9� 108M�1), indicating that caffeic acid is a weak
chelator. Even at the highest caffeic acid concentration
(500mM) the prooxidant effect was not suppressed, showing
that reduction of iron is still prevailing at these conditions.

Caffeic acid reduced the amount of oxygen consumed
within the equlibrium drop when it was in excess to iron – the
higher the concentration of caffeic acid, the higher the
reduction of the drop, although this effect was not
proportional. The reduction in the equilibrium drop could
be a consequence of a partial iron chelation combined with
radical scavenging, as mentioned above.

The effect of caffeic acid (25mM) on Fe2þ‐mediated
oxidation was compared to oxidation mediated by Fe3þ (both
iron ions at 25mM). The OUR were somewhat higher when
the oxidation was induced by Fe2þ (43� 7mM O2/min)

compared to Fe3þ (34� 3mM O2/min), but the values were
not significantly different. Once caffeic acid is in excess to
iron, there seems to be a competition between iron reduction,
scavenging lipid radicals and metal chelation. This may result
in decreased pro‐oxidative activity with increasing caffeic acid
concentration in relation to iron. Eventually the anti‐oxidative
abilities may prevail. In this respect, the final behavior of
caffeic acid is both caffeic acid and iron concentration
dependent. This could at least partially explain different
effects of caffeic acid reported in various studies [43].

3.5 Propyl gallate

The effect of different concentrations of propyl gallate (10–
500mM) on the net OUR and the equilibrium drop in Fe2þ

(25mM)‐mediated oxidation is shown in Fig. 5. All the
tested concentrations inhibited both the net OUR and the
drop. The degree of inhibition increased with increasing
concentration of propyl gallate, although complete inhibition
was not obtained.

The antioxidant activity of propyl gallate is related to its
ability to donate hydrogen to lipid radicals, thus terminating
the propagation of lipid oxidation. Propyl gallate may
scavenge lipid radicals formed during the reaction between
Fe2þ and pre‐formed LOOH, i.e., during the equilibrium
drop, thus eliminating the radicals which would otherwise
react with oxygen. As a consequence both the equilibrium
drop and the OUR are reduced. The less polar character of
propyl gallate enables it to up‐concentrate at the interface in
the emulsion where lipid oxidation primarily takes place.
Propyl gallate also has the ability to chelate iron at acidic pH,
which could also explain the antioxidant effect [42].

The net OUR were significantly lower when the oxidation
was induced by Fe3þ (1.9�0.6mmol O2/min) than Fe2þ

(5.30�0.11mmol O2/min) in emulsions containing propyl
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gallate (100mM), which indicates that propyl gallate was
more efficient regarding the inhibition of Fe3þ‐catalyzed
oxidation. In the study by Kristinova et al. [38], no difference
between the ability of propyl gallate to inhibit Fe2þ‐ and
Fe3þ‐catalyzed lipid oxidation in liposomes was observed.
It is not clear at the moment why the oxidation induced by
Fe3þ was inhibited better in the emulsions. It could be
argued that chelation/retrieval of Fe3þ by propyl gallate from
the phospholipid interphase can be more efficient than of
Fe2þ under the given conditions.

3.6 Ascorbic acid

The addition of Fe2þ (25mM) to emulsions containing
ascorbic acid (25–200mM) resulted in large equilibrium
drops, which were larger than for the control, i.e., Fe2þ‐
mediated oxidation without any antioxidant. The magnitude
of the drops dramatically increased with increasing concen-
tration of ascorbic acid (e.g., 25mM ascorbic acid is shown
in Fig. 6A) which made quantification of the drop as well as
the following slower oxygen consumption in many cases
impossible, because the oxygen was rapidly and entirely
depleted in the emulsion.

In aqueous systems, ascorbic acid is known to interact
with LMW transition metals dissolved in the aqueous
phase [44, 45]. Reduced metals (Fe2þ) aid ascorbic acid
oxidation through the formation of a ternary complex of
ascorbate monoanion‐O2‐Fe

2þ, yielding dehydroascorbic
acid and H2O. This mechanism is accompanied by oxygen
consumption and can prevent lipid oxidation due to removal
of dissolved triplet oxygen from the system. Oxidized metals
(Fe3þ) can be converted by ascorbic acid into the reduced
states (Fe2þ), yielding dehydroascobic acid as well. This
mechanism is not accompanied by oxygen consumption, but
yields reduced metals which are more active in lipid
oxidation. In the latter mechanism ascorbic acid behaves as
a reductant. In both cases ascorbic acid eventually gets
depleted (both mechanisms are depicted in Fig. 7).

As explained in Section 3.2, the establishment of the
equilibrium between Fe2þ and Fe3þ via reactions with pre‐
formed LOOH gives a rapid drop in the oxygen concentra-
tion. It is not clear which mechanism is responsible for
the large drops in the oxygraphic measurements, as both
ascorbic acid oxidation by Fe2þ and lipid oxidation mediated
by Fe2þ which is generated by ascorbic acid lead to rapid
oxygen consumption. There is a likely possibility that both
mechanisms run simultaneously. Measurement of primary
and secondary oxidation products after the reaction could
give an insight into which mechanism is prevailing; such
measurements were however not performed in the frame of
this study. Once ascorbic acid was depleted by interactions
with the added iron, the rapid oxygen consumption stopped
and the subsequent oxygen uptake was comparable to the
control (demonstrated in Fig. 6A). This is in accordance with
the above mentioned mechanisms.

In the study of Fukuzawa et al., peroxidation of liposomes
made from egg yolk phosphatidylcholine (PC) induced by
addition of ascorbate‐Fe2þ complex was studied. Ascorbic
acid was only slightly oxidized in liposomes from which pre‐
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existing lipid hydroperoxides (LOOH) were removed by
treatment with triphenylphosphine (TPP), but was oxidized
extensively in liposomes not depleted of LOOH [46]. Lipid
oxidation mediated by decomposition of LOOH by Fe2þ

which was re‐generated by ascorbic acid was attributed to this
behavior. In the study of Yamamoto et al. the rate of oxidation
of methyl linoleate micelles decreased as the oxidation
proceeded and Fe2þ was oxidized to Fe2þ due to establish-
ment of the equilibrium between Fe2þ and Fe3þ. Addition of
ascorbic acid again accelerated the oxidation which was also
explained by re‐establishment of Fe2þ by ascorbic acid [47].
These findings are in favor of the pro‐oxidant effect of
ascorbic acid coupled to the reduction of Fe3þ rather than
ascorbic acid oxidation by iron without involvement of lipids.

It should be mentioned that when ascorbic acid was added
to the emulsion, an increase in the background OUR was
observed (Fig. 6A), and the increase was proportional to the
ascorbic acid concentration (Fig. 6B). One plausible explana-
tion for this phenomenon could be a contamination of the
emulsion by transition metals, which interacted with the
added ascorbic acid, as described above. When EDTA
(50mM)was added prior to ascorbic acid, i.e., the endogenous
metals were chelated, the increase in the background OUR
after addition of ascorbic acid was no longer observed and the
OUR remained the same as the one for only EDTA (Fig. 6B).
The EDTA alone reduced the backgroundOUR (by 30–70%)
which also indicated involvement of endogenous metals in the
peroxidation of the emulsion. The endogenous metals were
not quantified, but their presence needs to be kept in mind
when evaluating the effects of the added antioxidants.
Ascorbic acid was not the only antioxidant which significantly
affected the background OUR (RB). The same phenomenon
was observed for a‐Tocopherol (discussed in Section 3.8).

3.7 b‐Carotene and astaxanthin

Carotenoids are known to reduce photo‐induced lipid
oxidation by quenching reactive singlet oxygen, and to
inhibit autoxidation of lipids by scavenging lipid free
radicals [30, 48]. The effects of three different concentrations
of b‐carotene and astaxanthin (100, 200, and 300mM
(lipid based)) on the OUR and the equilibrium drop in the
emulsions are shown in Fig. 8A (b‐carotene) and Fig. 8B
(astaxanthin). Astaxanthin slightly reduced the OUR,
whereas b‐Carotene slightly increased the OUR at all
concentrations, but the effects were not significantly
different from the control. Astaxanthin slightly reduced
the equilibrium drop at all concentrations, while the drop was
not significantly affected by b‐carotene. In addition, no
difference was found between the effect of astaxanthin on
Fe2þ‐ and Fe3þ‐mediated oxidation (Fig. 8B). Even though
astaxanthin was found slightly better as an antioxidant in the
emulsions than b‐carotene, altogether, the two carotenoids
had a marginal effect on iron‐mediated oxidation in
the emulsions.

The main difference between the two compounds is the
presence of a keto‐group and a hydroxyl group on the two
b‐ionone rings (Fig. 1) in the molecule of astaxanthin, which
makes it more polar than b‐carotene. This may have an
influence on the location of the carotenoids in the emulsion.
Shibata et al. found considerable differences between b‐

carotene and astaxanthin regarding their molecular packing
and orientation in phospholipid layers. Astaxanthin showed a
greater miscibility in phospholipid layers than b‐carotene [49]. A
tighter packing of astaxanthin in the phospholipid interface
could give it an advantage in respect to radical scavenging
abilities due to a better proximity to lipid radicals generated in
the interphase. Astaxanthin also reduced the magnitude of the
equilibrium drop. This could be attributed to scavenging of
lipid radicals formed during the drop after addition of Fe2þ.

Carotenoids are efficient singlet oxygen scavengers.
This mechanism is probably not of major importance in
the emulsions since singlet oxygen is usually formed in the
presence of photosensitizers, such as chlorophyll [4], which
were unlikely to be present in the emulsions. To verify this,
a series of experiments were performed in the dark. No
difference was observed between the OUR measured in
the ambient light and the dark (data not shown).

3.8 a‐Tocopherol alone and with EDTA

The effect of different concentrations of a‐tocopherol (100,
200, and 300mM (lipid based)) on the net OUR and the
equilibrium drop in Fe2þ(25mM)‐mediated oxidation are
shown in Fig. 9A. Increasing concentrations of a‐tocopherol in
the emulsions increased the net OUR. There was a significant
linear correlation between the concentration of a‐tocopherol
and the increase in the oxidation rates (shown in Fig. 9A).
On the other hand, the drop was significantly reduced and
the reduction increased with increasing concentrations of
a‐tocopherol, from 69% at 100mm to 82% at 300mM.
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The antioxidant activity of tocopherols is related to their
ability to donate hydrogen to the lipid peroxyl radicals (LOO.)
leading to the formation of a lipid hydroperoxide and several
resonance stabilized structures of tocopheroxyl radicals.
Tocopheroxyl radicals are very reactive toward other radicals
and in the presence of sufficient amounts of lipid alkoxyl,
peroxyl, and alkyl radicals adducts with these radicals will be
formed. The tocopheroxyl radicals can sometimes also take
part in prooxidative reactions [50].

Tocopherols and tocopheroxyl radicals have the ability
to reduce transition metals to the more catalytically active
states [19]. Yamamoto et al. found that a‐tocopherol
enhanced oxidation in aqueous lipid dispersions when the
oxidation was induced by Fe3þ. The authors observed the
disappearance of a‐tocopherol together with the formation
of Fe2þ [51]. The red‐ox cycling between Fe2þ and Fe3þ

aided by LOOH results in continuous formation of Fe3þ

which then can be reduced back to Fe2þ by a‐tocopherol and
the tocopheroxyl radicals. This agrees well with the OUR
measurements. The prooxidative behavior of a‐tocopherol
observed in the emulsions was therefore hypothesized to be
caused by reduction of Fe3þ to Fe2þ by a‐tocopherol.

To verify this, EDTA was added to the emulsions
containing a‐tocopherol to deactivate both the endogenous
metals and the added iron. The pro‐oxidant activity of
a‐tocopherol was no longer observed when the metals were
deactivated (Fig. 9B) which strongly suggest that iron
reduction by tocopherol occurred in the emulsion. Another
indication of interactions of a‐Tocopherol with metals was an
increased background OUR observed in the emulsions
containing a‐Tocopherol, compared to a control without
antioxidants (shown in Fig. 10). The increased background

OUR could be a result of a‐Tocopherol reducing endogenous
metals, which were expected to be present, as discussed in
Section 3.6.

a‐Tocopherol is considered to be an efficient lipid radical
scavenger. Therefore chain‐breaking reactions may have taken
place alongside, even though the oxidation rates were increased
due to red‐ox cycling of iron. The reduction of the equilibrium
drop favors this hypothesis. a‐Tocopherol may scavenge the
radicals formed during the initial reaction between Fe2þ and
LOOHafter the addition of Fe2þ. Elimination of these radicals
would diminish the drop producing tocopheroxyl radicals,
while the intact tocopherol could still be involved in the
reduction of Fe3þ to Fe2þ after the drop.

3.9 a‐Tocopherol with ascorbic acid

The antioxidant activity of tocopherols has been shown in
several studies to increase when tocopherols and ascorbic acid
were used together. This synergistic effect has been explained
by the reducing abilities of ascorbic acid, which enable
regeneration of tocopherols from the tocopheroxyl radicals.
The interaction between the two compounds is believed to
take place at the surface of the emulsion droplets since
ascorbic acid resides in the aqueous phase while tocopherol is
located within the lipid phase [52, 53]. The influence of pro‐
oxidants on this co‐operation is often neglected.

The effect of ascorbic acid (50mM) on the OUR in the
emulsions with different concentrations of a‐tocopherol as
well as the effect of a‐tocopherol alone in Fe2þ (25mM)‐
mediated oxidation is shown in Fig. 9A. Addition of Fe2þ to
the emulsions with ascorbic acid and a‐tocopherol resulted in
large equilibrium drops (curves not shown), similar to those
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observed in emulsions with only ascorbic acid (described in
Section 3.6). The net OUR which followed after the drops
were however reduced in respect to the OUR measured for
tocopherol alone. A marginal inhibition (12�8%) of the
net OUR occurred at 50mM ascorbic acid and 100mM
a‐tocopherol. When the concentration of ascorbic acid was
increased to 200mM the inhibition was improved to 28� 6%
(Fig. 9A). Interactions between ascorbic acid and iron,
tocopherol and iron, and tocopherol and ascorbic acid
simultaneously seem to determine the final OUR. The
experiments suggest that ascorbic acid may be advantageous
for regeneration of tocopherol radicals when it is present in
excess to both iron and a‐tocopherol.

In Section 3.8, it is hypothesized that the prooxidative
and antioxidative mechanisms of a‐tocopherol take place
simultaneously, since the equilibrium drop in the oxygen
concentration was reduced while the net oxidation rates were
increased in the emulsions containing a‐tocopherol. The
lower net oxidation rates found when ascorbic acid was added
to the emulsions with a‐tocopherol agrees well with this
hypothesis, as ascorbic acid is known to prolong the free
radical scavenging activity of a‐tocopherol via regeneration of
a‐tocopherol [50, 52]. This effect seems however valid only
at some favorable ratios between ascorbic acid, iron, and
tocopherol, as shown in Fig. 9A. The dual character of
ascorbic acid in the presence of metals needs to be kept in
mind when evaluating the effects of ascorbic acid and its
activity coupled to the regeneration of tocopherols.

The study shows that interactions between LMW iron and
antioxidants have a significant impact on lipid oxidation in
marine emulsions stabilized with phospholipids. The location
of the antioxidants in multiphase systems is of importance
when considering their antioxidative activities. According to
the much disputed polar paradox [54], the most efficient
antioxidants in oil‐in‐water emulsions should be the non‐
polar antioxidants, i.e., tocopherols and carotenoids, and the
least activity should be observed for propyl gallate and caffeic
acid. Propyl gallate was shown to be the best antioxidant for
emulsions containing LMW iron in this study while caffeic
acid showed prooxidative behavior. The outcomes therefore
show clearly that the postulations in the polar paradox are
too simple and among other aspects do not take into account
the interactions between the antioxidants and prooxidants,
such as iron.

This study also shows, that the interactions between
LMWiron (and possibly othermetals or types of pro‐oxidants,
such as heme‐proteins) and various dietary antioxidants
(possibly also natural extracts, novel antioxidants, such
as phenolipids) and their impact on lipid oxidation in
emulsified systems may be screened by the means of the
oxygen uptake method. This approach could be useful for
designing effective antioxidant strategies for specific lipid‐rich
systems and for systematic investigation of anti‐ and pro‐
oxidant mechanisms, as demonstrated in a study by Roginsky
et al. [55].

Caffeic acid, ascorbic acid, and a‐tocopherol exhibited
prooxidative behavior in the emulsions at the tested
concentrations and ratios to Fe2þ. The prooxidative effects
were attributed to their ability to reduce Fe3þ to Fe2þ. The
prooxidative effect of caffeic acid was greater than that of
a‐tocopherol which could be due to a greater reducing power
of caffeic acid. Both caffeic acid and a‐tocopherol had an
inhibitory effect on the equilibrium drop in the dissolved
oxygen concentration, which could be a result of the
combination of scavenging of free radicals generated during
the drop and of iron chelation since both caffeic acid and
propyl gallate have been reported to have metal chelating
properties. These have been attributed to their catechol and
galloyl groups, respectively. To illustrate the effects of
antioxidants in LMW iron‐mediated oxidation, a direct
comparison of the oxygen concentration curves in emulsions
containing the antioxidants is shown in Fig. 10. Even though
the antioxidant mechanismsmight be present to some degree,
they are eventually suppressed by the reducing abilities of the
compounds which favor iron reduction, i.e., the prooxidant
effects. The results also underline that which mechanism
prevails is dependent on the concentration of both the
antioxidants and pro‐oxidants.

By recording the dissolved oxygen concentration in
the emulsions and quantification of the rates of dissolved
oxygen consumption, it was verified that the interactions
between iron and antioxidants had a significant impact on
the lipid oxidation in the 10% oil‐in‐water marine emulsions
stabilised with phospholipids. The interactions of iron ions,
which may be added or present endogenously, with
antioxidants must therefore be considered when interpreting
the effects of different antioxidants on lipid oxidation. This
study shows that it is possible to screen these interactions by
quantification of the dissolved oxygen consumption.
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a b s t r a c t

This study evaluates whether marine lipids can oxidise in acidic stomach environment and whether
authentic gastric juice has the potential to act as a pro- or anti-oxidative medium. Oxidation of herring
lipids in emulsions and liposomes was followed in in vitro digestion models containing authentic human
gastric juice, and compared to models containing hydrochloric acid solution. Peroxide value, concentra-
tion of thiobarbituric acid reactive substances and oxygen uptake rate increased in all the models during
2.5 h incubation at pH 4 and 37 �C in darkness. The markers showed no difference between oxidation in
gastric juice and hydrochloric acid solution. Gastric juice reduced the prooxidant activity of iron ions
measured as oxygen uptake rate, but did not reduce the activity of methemoglobin. Berry juice, green
tea, red wine, and caffeic acid reduced oxygen uptake in the acidic environments while coffee, ascorbic
acid and orange juice increased oxidation. Beverages accompanying foods containing marine lipids will
therefore affect the course of post-prandial lipid oxidation.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of marine long-chain omega-3 polyunsaturated
fatty acids (LCPUFA) in the diet, especially eicosapentaenoic (EPA,
C20:5 n3) and docosahexaenoic acid (DHA, C22:6 n3), has been
well established during the past two decades. Positive physiologi-
cal effects in areas of body development and function, immunity
and health maintenance, as well as therapeutical benefits, such
as preventing heart, coronary, mental and chronic diseases, have
been reported in a number of studies and extensively reviewed
(Eduardo, 2010; Gorjão et al., 2009; Narayan, Miyashita, & Hosak-
awa, 2006).

On the other hand, lipid radicals and oxidised derivatives of
omega-3 fatty acids (e.g. hydroperoxides, hydroperoxy epidioxides,
core aldehydes, and epoxy compounds) and other products of oxi-
dative degradation (e.g. low molecular weight aldehydes and hy-
droxyl alkanals) are believed to be cytotoxic and linked to
development of cancer, atherosclerosis, thrombosis, inflammation
and neurodegenerative and other diseases (Breivik, 2007; Gerhard,
2006; Guillen & Goicoechea, 2008; Kanner, 2007; Spickett & Dever,

2005; Turner, McLean, & Silvers, 2006). These compounds can be
transferred from oxidised lipids into the bloodstream (Staprans,
Rapp, Pan, Kim, & Feingold, 1994). The oxidative state of omega-
3 fatty acids entering the blood stream therefore appears crucial
for the overall impact of marine lipids on health (Turner et al.,
2006).

The risk of consuming deteriorated marine lipids is justified
considering the high susceptibility of LCPUFA to oxidation (Breivik,
2007). Oxidation occurring in the food matrix itself is however not
the only health threat. Several studies have proposed that the gas-
trointestinal (GI) tract could be an excellent environment for
enhancing oxidation of lipids and other food constituents before
they are metabolised, in other words undergoing post-prandial
oxidation (Halliwell, Zhao, & Whiteman, 2000; Kanner, 2007; Kan-
ner & Lapidot, 2001). During post-prandial oxidation, the cells of
the GI tract are likely to be exposed to the cytotoxic molecules,
reactive lipid radicals and reactive oxygen species accompanying
oxidation (Halliwell et al., 2000), which may aid development of
cancers in the GI tract. Preventing lipid oxidation during the time
the lipids are retained in the stomach may therefore reduce the
overall amount of oxidised lipids entering the bloodstream and
prevent processes damaging the cells of the GI tract.

Assessing the degree of lipid oxidation is not straightforward
when it comes to the GI tract, as extensively reviewed by Hur,
Lim, Decker, & McClements, 2011. In most published studies,
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simulated GI conditions have been employed, with respect to the
composition and concentrations of acids, enzymes and salts. Hu-
man gastric juice contains a wider spectrum of components than
simulated formulations, including mucous and saliva. The use of
authentic human gastric juice has therefore been recommended
to establish more accurate conditions for in vitro digestion studies
(Ulleberg et al., 2011), since the occurrence and extent of post-
prandial oxidation might be at least partially governed by the
authenticity of the gastric juice.

To the best of our knowledge, the influence of authentic human
gastric juice on oxidation of vulnerable marine lipids has not been
investigated. Lipid hydroperoxide formation in heated muscle tis-
sue and linoleic acid emulsions in simulated gastric juice was
found to be higher at pH 3.0 than at pH 5.0 in a study of Lapidot,
Granit, & Kanner, 2005a. Protection of lipids from oxidation by var-
ious dietary antioxidants in in vitro GI models had largely positive
results in a number of studies, suggesting consumption of antiox-
idant rich food alongside food rich in lipids (Gorelik et al., 2005;
Gorelik, Ligumsky, Kohen, & Kanner, 2008b; Kerem, Chetrit, Sho-
seyov, & Regev-Shoshani, 2006; Tagliazucchi, Verzelloni, & Conte,
2010).

Directly after the food intake and during prolonged eating, the
gastric juice is diluted by mucous, saliva and liquids from food.
The pH is increased from its basal value (1–2) and can reach value
up to 6 before resuming its initial value under complete stomach
emptying and fasting (Kalantzi et al., 2006). This stage may last
for up to 2.5 h, depending on the meal composition, proportion
of liquids in the food, and the time span of eating (Hur et al., 2011).

Lipid oxidation is facilitated by oxygen which needs to be avail-
able in a closed stomach system. It has been proposed that saliva,
masticated food, liquids and swallowed air bring enough oxygen
into the stomach, which can then facilitate post-prandial oxidation
(Kanner & Lapidot, 2001).

In the present study oxidation of herring lipids in liposomes and
emulsions was followed in in vitro digestion models at pH 4.0 con-
taining authentic human gastric juice, and compared to models
lacking gastric juice components apart from hydrochloric acid.
The aim was to evaluate whether marine lipids are prone to oxida-
tion in the acidic gastric juice environment and whether gastric
juice itself has the potential to act as a pro- or anti-oxidative med-
ium. The effect of dietary pro- and antioxidants, involving several
beverages rich in antioxidants, on oxidation under the stomach
conditions was also investigated.

2. Materials and methods

2.1. Materials

Authentic human gastric juice (GJ) was kindly donated by Gas-
troLab in St. Olavs Hospital (Trondheim, Norway), after it was col-
lected from a healthy adult undergoing a pentagastrin test in
January 2011 (ca. 200 ml, pH �1). The fresh gastric juice was fil-
tered (589/1 filter paper, Whatman GmbH, Dassel, Germany) to re-
move thick mucous and remnants of dispersed food, mixed and
divided into ca. 20 ml portions which were stored at �80 �C until
needed. Before experiments, a necessary amount was allowed to
thaw at ambient temperature.

Mature roe from Norwegian spring spawning herring (Clupea
harengus) obtained from Grøntvedt Pelagic (Uthaug, Norway),
was used for extraction of marine phospholipids. Before extraction
(described in Section 2.6), the roe glands were kept frozen at
�40 �C. Herring (Clupea harengus) oil was produced by SINTEF
Mobile processing plant in November 2010 from ultra fresh herring
rest raw material obtained from Grøntvedt Pelagic (Uthaug,

Norway). The crude herring oil was kept frozen at –30 �C until fur-
ther processing (described in Section 2.3).

Green tea (Camellia sinensis) in bags (Ecologic Green Ceylon Tea,
Confecta AS, Oslo, Norway), ground black coffee (Friele Frokost Kaf-
fe, Oslo, Norway), red wine (Marqués de Schivé, Tempranillo Cri-
anza, 2007, produced by Vicente Gandía Plá SA, Valencia, Spain),
100% orange juice from concentrate (Nora Familiens beste appel-
sinjuice, Stabburet AS, Kolbotn, Norway) and a composite berry
juice from concentrate (Nora Familiens beste skogsbærjuice med
drue og eple, containing 50% grapes, 25% apple, 8% blueberry, 7%
blackberry, 5% raspberry and 5% pomegranate, and 300 mg/l ascor-
bic acid, Stabburet AS, Kolbotn, Norway) were purchased at a local
market.

2.2. Chemicals and reagents

Caffeic acid, ascorbic acid, 2-(N-morpholino)ethanesulfonic acid
(MES), bovine methemoglobin (metHb), butylated hydroxytoluene
(BHT), 2-thiobarbituric acid (TBA), trichloracetic acid (TCA), so-
dium dithionite (Na2S2O4), sodium chloride, 1,1,3,3-tetraethoxy-
propane, 0.1 mol sodium thiosulphate (Na2S2O3) aqueous
solution, potassium iodide, potassium iodate, boron trifluoride
(BF3), iron standard (Titrisol), ethylenediaminetetraacetic acid
(EDTA), and lipid classes standards were purchased from Sigma–
Aldrich Chemie GmbH (Steinheim, Germany). Hydrochloric acid
(HCl), potassium chloride, ammonium thiocyanate (NH4SCN), fer-
rous sulphate (FeSO4	7H2O) and all solvents were supplied by
Merck KGaA (Darmstadt, Germany). Anhydrous ferric chloride
(FeCl3) was purchased at Riedel de Haën (Seelze, Germany). So-
dium hydroxide (NaOH), ferrous chloride (FeCl2	4H2O) and all
HYDRANAL products (Karl-Fisher reagent – Composite 2, dry
methanol, dry chloroform, and water-in-methanol standard:
5 mg H2O/ml) were obtained from Fluka Chemie (Buchs, Germany).
Nitrogen (99.99% N2) and helium gas (99.99% He) were provided by
AGA AS, Oslo. Standards of fatty acid methyl esters and lipid classes
were purchased at Nu-Check Prep Inc. (Elysian, MN, USA).
Phospholipid standards were purchased at Avanti Polar Lipids
Inc. (Alabama, USA). All chemicals and solvents were of analytical
grade, except for solvents used in TLC–FID, GC–FID and HPLC–CAD
analyses, which were of chromatography grade. Distilled water
was used for preparing aqueous solutions.

2.3. Polishing of crude herring oil

Crude herring oil was allowed to thaw in a warmwater bath (ca.
40 �C) before washing with distilled water. Briefly, 10% (w/w) of
boiling water was added to the crude oil (in relation to the oil
mass), and thoroughly mixed for 10 min in a water bath held at
70 �C (Crexi, Monte, Soares, & Pinto, 2010). The warm mixture
was then centrifuged (7000 g, 10 min, 40 �C) and the oil phase
was collected, divided into 50 ml portions and stored at �20 �C un-
til needed. The impact of the polishing step on the oxidation status
and moisture content in the oil is discussed in Section 3.1.

2.4. Peroxide value in herring oil

Peroxide value (PV) in raw and polished herring oil was deter-
mined by the iodometric titration method according to a titration
application issued by Radiometer Analytical (TTIP02-01AFD/
2002-06A, 2002). The application is based on the AOCS official
method for PV determination in edible oils (Cd 8b-90). The titra-
tion end point was assessed potentiometrically, using an automatic
titrator (TitraLab980) coupled with a single platinum electrode
(M21Pt) and a reference electrode (REF 921) (all equipment pro-
duced by Radiometer Analytical ASA, Copenhagen, Denmark). The
minimum and maximum speed of a standardised titrant (0.01 M
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Na2S2O3) (TTEP01-08MIN/2001-05A, 2002) addition was 0.2 ml/
min and 3.0 ml/min, respectively; the smoothing parameter was
set to 1. The analysis was performed with five parallels, and the re-
sults are expressed in mmol LOOH/kg as a mean value + standard
error (SE). The calculation is shown in Eq. (1)

PV
mmol
kg

� �
¼ c � ðVs � VbÞ � 2

G
� 1000 ð1Þ

C is the concentration of titrant (average value, n = 3) (mol/L), Vs

is the titrant consumption for sample (ml), Vb is the titrant con-
sumption for blank (ml), G is the amount of lipids for analysis
(g), 1000 is a conversion factor for units, and 2 is the stoichiometric
molar ratio between LOOH and Na2S2O3.

2.5. Moisture content in herring oil

Moisture level in the crude and polished herring oil was deter-
mined by Karl-Fisher titration according to a titration application
issued by Radiometer Analytical (T550VKF041, 2002) using
HYDRANAL chemicals. The titration end point was assessed poten-
tiometrically by an automatic titrator (TitraLab980) coupled with a
double platinum electrode (M231Pt2) (all equipment produced by
Radiometer Analytical ASA, Copenhagen, Denmark). Water-in-
methanol standard (5 mg H2O/ml) was used for standardisation
of the commercial Karl-Fisher reagent. The accuracy of the method
was verified by measuring fish oil with a known moisture level.
The analysis was performed with five parallels and the results
are expressed in % (w/w) of water in the oil ± SE.

2.6. Isolation of phospholipids from roe

The herring roe was allowed to thaw overnight at 4 �C. The
extraction of total lipids from the roe was performed according
to the method of Bligh & Dyer, 1959. The phospholipids (PL) were
isolated from the total lipids by precipitation in cold acetone, as
described by Kates, 2010 and modified by Mozuraityte, Rustad, &
Storro, 2006. The precipitation was performed two times in order
to increase purity. The final precipitate was stored at �20 �C as
PL–chloroform solution and used for experiments.

2.7. Purity of oil and isolated phospholipids

The lipid classes in the lipids were determined by a thin layer
chromatography with flame ionisation detector system (Iatroscan
TLC-FID analyzer MK-6, Mitsubishi Kagaku Iatron Inc., Tokyo,
Japan). Briefly, lipids dissolved in chloroform (10 mg/ml) were in-
jected (3 ll) on silica coated quartz rods (Chromarod-SIII, Mitsubi-
shi Chemical Medience, Tokyo, Japan). The rods were placed into a
tank with vapours of saturated NaCl solution for 8 min. Afterwards
the tips of the rods were dipped into n-hexane/diethyl ether/formic
acid (85:15:0.04, v/v/v) for 27 min inside a development tank. The
solvent was evaporated from the rods and the rods were scanned.
Lipid classes were characterised by comparison to the retention
times of commercial standards run at the same conditions. The
accuracy of the method was verified by measuring commercial
standards of lipid classes. Each sample was analysed in duplicate
and % of total peak area was calculated for each class. The results
are average values with maximum coefficient of variation 13%.

2.8. Fatty acid profile

Ten mg of lipids were dissolved in chloroform containing a
known amount of internal standard (21:0). The chloroform was
completely evaporated by N2 gas and the oil was redissolved in
1 ml of 0.5 M methanolic NaOH, hydrolysed for 15 min at 100 �C,

and cooled. Two millilitres of 10% BF3 in methanol was added
and the mixture was incubated for 5 min at 100 �C, and cooled.
Afterwards, 1 ml of hexane was added and the mixture was incu-
bated for 1 min at 100 �C, and cooled. Finally, 0.5 ml of hexane
and 2 ml of saturated NaCl solution was added, the mixture was
vortexed and centrifuged at 2000 rpm for 3 min (Universal 16A
centrifuge, Hettich Zentrifugen, Tuttlingen, Germany). The organic
phase containing fatty acid methyl esters (FAME) was collected
and washed two times with 0.5 ml of hexane.

The fatty acid composition in the methylated samples was ana-
lysed by an Agilent Technologies 7890A gas chromatograph with
flame ionisation detection (GC–FID) system equipped with 7693
autosampler (Agilent Technologies, Palo Alto, CA, USA). The detec-
tor temperature was held at 270 �C, and the flame was maintained
with 25 ml/min hydrogen gas and 400 ml/min air. Chromatogra-
phy was carried out using a Cp-wax 52CB, 25 m � 0.25 mm with
id = 0.2 lm column (part no. CP7713, Agilent Technologies). He-
lium was used as the carrier gas at a flow rate 1.5 ml/min. GC inlets
were held at 250 �C. The initial oven temperature was held at 80 �C
and gradually increased by 25 �C/min until it reached 180 �C, fol-
lowed by a 2 min hold. Then the temperature was increased by
2.5 �C/min to 205 �C, followed by a 6 min hold, after which the
temperature was increased by 2.5 �C/min to 215 �C, followed by a
final hold of 4 min. The total analysis time was 31 min. Fatty acids
were characterised by comparison to the retention times of com-
mercial standards and quantified by internal standard. The accu-
racy of the method was verified by comparison of FA profiles of
selected marine oils against profiles assessed by accredited labora-
tories. Each sample was analysed in duplicate and % of total peak
area was calculated for each fatty acid. The results are average val-
ues with maximum coefficient of variation 3%.

2.9. Analysis of phospholipid classes by reverse phase HPLC–CAD

The composition of the isolated PL was analysed by the Agilent
1260 Infinity HPLC system (Agilent Technologies, Germany) cou-
pled to the ESA Corona Charged Aerosol Detector (CAD) (Thermo
Scientific/Dionex, USA). The PL were dissolved in isopropanol
(1 mg/ml) and separated on Agilent Prep-SIL Scalar 10 lm column,
4.6 � 150 mm (Agilent Technologies, Santa Clara, CA, USA) kept at
a constant temperature (22.0 ± 0.8 �C). For the isocratic elution a
ternary gradient having a constant flow rate of 1.25 ml/min and
consisting of degassed solvents A = n-hexane, B = 2-propanol, and
C = deionised water (MiliQ) was used with the following timetable:
at 0.00 min 40:59:1 (%A:%B:%C); at 3 min 40:54:6; at 18.00 min
40:50:10; at 18.01 min 40:59:1; and at 23 min 40:59:1. The sam-
ple temperature was 4 �C and the injected volume was 10 ll. The
phospholipid classes were identified by comparison to the reten-
tion times of commercial standards and quantified from standard
curves measured at the same conditions. Each sample was ana-
lysed in duplicate and % amount (w/w) was calculated for each
PL class. The results are average values with maximum coefficient
of variation 3%.

2.10. Preparation of liposomes

Liposomes were prepared fresh before each set of experiments
as described in our earlier papers (Kristinova, Mozuraityte, Storro,
& Rustad, 2009; Mozuraityte et al., 2006). Briefly, an aliquot of
chloroform solution of marine PL was evaporated to dryness with
a stream of N2 gas; the residual solvent was completely evaporated
under vacuum (2 h). The dried mass of PL was then dissolved in a
5 mM MES solution (pH 7.5), to a concentration of 60 mg/ml (6.0%
lipids, w/v), and the solution was sonicated in a 25 mm (diameter)
glass tube using a 12 mm (diameter) sonication probe (Vibra Cell,
Sonics & Materials Inc., Newtown, CT, USA) under the following
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conditions: pulse: 6 s, amplitude: 50%, total sonication time:
4.0 min. The liposome dispersion was kept on ice both during
and after the sonication.

2.11. Preparation of oil-in-water emulsion

Herring roe PL were dissolved in the polished herring oil to a
concentration 91 mg/g, by blending the oil with the PL–chloroform
solution. Chloroformwas evaporated from the mixture by a rotava-
por (Heidolph Instruments GmbH & Co. KG, Schwabach, Germany)
(1 h, 30 �C, 30 mbar) and the mixture was kept frozen at �20 �C
until needed. 22% oil-in-water emulsion (w/v) was prepared fresh
before each set of experiment by homogenising (Ultra-Turrax T25
with 10 mm (diameter) dispersing rod, IKA-Werke GmbH & Co. KG,
Stafen, Germany) 5.5 g of the PL–oil mixture with 19.5 ml of 5 mM
MES solution, pH 7.5. The homogenisation lasted 4 min with grad-
ual increase of blade rotation, from 8,000 to 20,500 rpm. The emul-
sion was kept in dark at 4 �C until needed.

2.12. Acidity of gastric juice

Gastric juice acidity was determined by potentiometric titration
against standardised 0.1 M NaOH, using an automatic titrator
(TitraLab980, Radiometer Analytical ASA, Copenhagen, Denmark),
and a combination glass electrode (LIQ-GLASS 238000/08, Hamil-
ton Co., Reno, USA), which was calibrated against standard buffer
solutions with pH 4.0 and 7.0. A titration application was followed
(TTEP01-01PHR/2001-10A, 2002). The analysis was performed
with five parallels and the results were expressed in M HCl as a
mean value ± SE.

2.13. pH verification

The pH of solutions, liposomes and emulsions, drinks and
experimental mixtures was measured by a TIM900 Titrator man-
ager (TitraLab, Radiometer Analytical AS, Copenhagen, Denmark)
coupled with a combination glass electrode (LIQ-GLASS 238000/
08, Hamilton Co., Reno, USA), which was calibrated daily against
standard buffer solutions at pH 4.0 and 7.0 at 22 �C.

2.14. Preparation of gastric juice (GJ)–lipid models

GJ–liposome model: an aliquot of 6% liposomes was mixed with
an aliquot of gastric juice and aliquots of NaOH solutions (0.01–
1.5 M), making up a final mixture having pH 4.00 ± 0.05 and con-
sisting of 2.5% PL as liposomes (w/v) and 50% gastric juice (v/v).

GJ–emulsion model: an aliquot of 22% oil-in-water emulsion
was mixed with an aliquot of gastric juice and aliquots of NaOH
solutions (0.01–1.5 M) making up a final mixture having pH
4.00 ± 0.05 and consisting of 10% emulsified lipids (w/v) and 50%
gastric juice (v/v). The mixtures were kept on ice and gently stirred
during and after preparation. Twelve millilitres and 35 ml final vol-
umes were prepared.

Each GJ–lipid model had two control models: Control 1 in
which the gastric juice was substituted with 0.11 M HCl solution,
and Control 2 in which the lipids were substituted with 5 mM
MES buffer, pH 7.5. The concentration of HCl in Control 1 matched
the acid concentration in the gastric juice. The Controls 2 were
introduced in order to verify the contribution of GJ components
to the colour formation in the PV and TBARS assays (Sections
2.16 and 2.17).

2.15. Oxidation experiments

For PV and TBARS measurements and to simulate stomach envi-
ronment, 12 ml of each model was transferred into a plastic syr-

inge equipped with a few glass beads to facilitate even mixing
and tightly closed with a plunger and a cannula. Five millilitres
and 10 ml of ambient air headspace were left in the syringes for
liposomes and emulsions, respectively. The headspace volumes
were chosen to establish conditions where O2 availability from
air was not a limiting factor for peroxidation during the whole
incubation period. The syringes were mounted onto a carousel
rotating at 10 rpm (Stuart rotator SB3, Barloworld Scientific Ltd.,
Stone UK) and placed into a dark laboratory incubator pre-heated
at 37.0 ± 0.1 �C. One ml aliquots were taken from the syringes each
30 min for a period of 2.5 h and immediately analysed for either PV
or TBARS. New batches were prepared for each method. A sche-
matic figure of the experimental setup is shown in Fig. 1A.

2.16. Peroxide value in isolated phospholipids and emulsified lipids

Peroxide value (PV) in the isolated phospholipids and emulsi-
fied lipids was analysed by the ferric thiocyanate assay described
by the International Dairy Federation (Standard_74A, 1991), and
modified by Ueda, Hayashi, & Namiki, 1986 and Undeland, Stading,
& Lingnert, 1998, with further modifications according to Mihaljev-
ić, Katušin-Ražem, & Ražem, 1996. The method was chosen be-
cause it requires small amounts of samples (mg).

Briefly, a 100 ll aliquot of liposomes/emulsion or lipids dis-
solved in 5-methylpentane was added to a mixture consisting of
5 ml 96% ethanol and 200 ll 4% BHT dissolved in ethanol. After-
wards, 200 ll of a reagent solution prepared by mixing equal vol-
umes of 0.4 M ethanolic NH4SCN and 4.5 mM FeSO4	7H2O in 2 M
HCl was added. All solutions were deaerated by nitrogen gas. The
absorbance was read at 500 nm against ethanol exactly 10 min
after addition of the reagent solution. During the analysis, samples,
the spectrophotometric mixtures and the reagent solution were
kept on ice. A standard curve prepared with FeCl2	4H2O was used
for quantification of results. Nine parallels were measured for iso-
lated phospholipids. For emulsions/liposomes, five consecutive
parallels were taken from the 1 ml aliquot sampled at each time
point. No contribution of GJ to the colour formation was found
(data not shown). The results were expressed in mmol LOOH/kg
fat as a mean value SE. Eq. (2) shows the PV calculation:

PV
mmol
kg

� �
¼ ðAbs� AbsblÞ � V

S� 55:845� 100� G
� 1000� 2 ð2Þ

Abs is the absorbance of the sample, Absbl is the absorbance of
the blank (average value, n = 3), V is the total volume of lipo-
somes/emulsion (ml) or volume of 5-methylpentane in which the
PL were dissolved, S is the slope of the standard curve (lg), G is
the amount of PL used for preparing liposomes or the amount of
PL dissolved in 5-methylpentane (g), 55.845 is the molar weight
of iron (g/mol), 100 is the aliquot of liposomes or 5-methylpen-
tane-PL solution used for analysis (ll), 1000 is the conversion fac-
tor for units, and 2 is the correction factor (Mihaljević et al., 1996).

2.17. Analysis of thiobarbituric acid reactive substances (TBARS)

TBARS values in the isolated phospholipids and herring oil were
determined by the spectrophotometric method described by Ke
and Woyewoda (1979). All amounts were reduced to one half rel-
ative to the given procedure. The analysis was performed with five
parallels for oils and nine parallels for PL. The results are expressed
in mmol TBARS/kg lipids as a mean value ± SE.

TBARS values in liposomes/emulsions were determined accord-
ing to the method of McDonald & Hultin, 1987. The analysis was
performed with five consecutive parallels taken from the 1 ml ali-
quot sampled at each time point. The TBARS measurements were
increased by 6% (relative to MES solution) by gastric juice (data
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not shown). Therefore the TBARS values in the GJ–lipid mixtures
were corrected for the colour development caused by the gastric
juice itself. The results were expressed in mmol TBARS/kg fat as
a mean value ± SE. Eq. (3) shows the calculation:

TBARS
mmol
kg

� �
¼ Abs� f

e� L
� V

G
ð3Þ

Abs is the absorbance of the spectrophotometric mixture, f is the
dilution factor of the sample in the spectrophotometric mixture,
e is the absorption coefficient (156,000 l/mol cm), L is the length
of the optical path (1 cm), V is the total volume of liposomes/
emulsion (ml) and G is the mass of lipids in the total volume (kg).

2.18. Preparation of added compounds

Stock solutions of Fe2+ (FeSO4	7H2O) and Fe3+ (FeCl3) in 0.5 M
HCl were prepared monthly and kept in dark; the pH of the solu-
tion was kept at 0.5 in order to maintain iron solubility and prevent
iron precipitation. Work solutions were prepared fresh before

experiments by diluting an aliquot of the stock solutions with
5 mM MES solution, pH 5.5. A work solution of bovine methemo-
globin (metHb) was prepared fresh before experiments by dissolv-
ing metHb in 5 mM MES solution, pH 5.5. Stock solutions of
antioxidants (caffeic acid, ascorbic acid) were prepared in 96% eth-
anol and stored at 4 �C. Work solutions were prepared daily by
diluting an aliquot of the stock solutions with distilled water. Eth-
anol in these work solutions made up 2%. The work solutions
(50 ll) were injected into the oxygraphic cells (described in Sec-
tion 2.20). The final concentrations of the added compounds in
the reaction mixtures were: 100 lM caffeic and ascorbic acid,
10 lM iron ions, and 10 lg/ml (0.16 lM) metHb.

2.19. Preparation and treatment of beverages

Black coffee was prepared by pressing 1.5 l of boiling water
through 90 g of ground coffee beans using a kitchen coffee machine
(Matic Twin, Bravilor Bonamat). Green tea was prepared by pour-
ing one tea bag (2.2 g green tea) with 200 ml of 90 �C distilled

Incubation conditons: 37°C, darkness, gentle mixing
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water and extracting the bag for exactly 3 min. Coffee and tea were
prepared fresh before each set of measurements from the same
batch of material. Red wine, berry juice and orange juice were
mildly shaken before opening the bottle/cartons. New cartons/bot-
tles were opened for experiments with liposomes, and new car-
tons/bottles from the same batch were opened for experiments
with emulsions to assure freshness of the beverages. After opening,
the bottles/cartons were stored in a fridge. 50 ll of the beverages
were injected into the experimental mixtures. Dose-to-test volume
ratio was 1:20 (v/v) for all the measurements, which represents a
small glass (75 ml) diluted in 1.5 l stomach content; for red wine,
the ratio was increased to 1:10 (v/v) to simulate one glass of wine
(150 ml).

2.20. Oxygen uptake rate measurements

One millilitre of the liposomes/emulsion was transferred into a
water-jacketed oxygraphic cell, in which the concentration of the
dissolved oxygen was measured by the Clark polarographic oxygen
electrode (Oxygraph system, Hansatech Instruments Ltd., Norfolk,
UK) calibrated against O2 saturated and O2 depleted distilled water
(Na2S2O4 was used for depletion). The cell was equipped with a
magnetic stirrer, wrapped by aluminium foil to block ambient light
and closed with a plunger with a capillary opening preventing ac-
cess of air oxygen and allowing injection of solutions. The concen-
tration of the dissolved O2 (lM) was continuously recorded as a
function of time (min), giving oxygen concentration curves. As a
measure of oxidation, oxygen uptake rates (OUR, lM O2/min) were
calculated from the curves using Oxyg32 software. In relation to
OUR measurements, the following terminology is used throughout
the text: background OUR = rate measured in the pure model, i.e.
prior to injection of any exogenous liquid, total OUR = rate mea-
sured after the injection, net OUR = total OUR subtracted from
background OUR.

In the experiments without addition of any external compound/
beverage, the background OUR was measured at 10–20 min inter-

vals for a period of 160 min. At OUR > 2 lM O2/min, the dissolved
oxygen in the experimental volume (1 ml) was completely con-
sumed before the end of the incubation period. To be able to follow
the oxygen uptake for the whole incubation period, the cell was
opened when the concentration of the dissolved O2 reached almost
zero, and air was quickly infused into the liposomes/emulsions un-
til O2 concentration reached the saturation level. Afterwards, the
cell was closed again without interruption of the oxygen uptake
recording; this was performed before each complete O2 depletion
for as long as necessary.

The effect of added compounds/beverages was evaluated as %
inhibition or increase of the background OUR. The duration of
one experiment was ca. 30 min, and the compounds/beverages
were added by after 10–15 min of background oxygen uptake
recording. Freshly made liposomes were used for all experiments
with added compounds. Due to a low background OUR in the
emulsions, the emulsions were allowed to stand at room tempera-
ture for 24 h in order to increase the background OUR and better
assess the effect of added compounds/beverages. Three cells were
run simultaneously for each experiment and the result is given as a
mean value ± SD. A schematic figure of an oxygen uptake recording
is shown in Fig. 1B.

2.21. Statistical analysis

For assessment of significant difference between two values a
two sided Student’s t-distribution was used, employing MiniTab
software. The level of significance was set at p < 0.05 (95%).

3. Results and discussion

3.1. Characterisation of lipids and human gastric juice

The lipids in this study originated from Norwegian spring
spawning herring (Clupea harengus). Phospholipids (PL) were iso-
lated from mature herring roe and crude oil was pressed from an

Table 1
Characterisation of lipids used for preparation of the emulsion and liposome systems.

Crude herring oil Polished herring oil Herring roe phospholipids

PV (mmol LOOH/kg) 5.0 ± 0.1 4.3 ± 0.1 42.7 + 2.1
TBARS (mmol/kg) 0.38 ± 0.02 0.46 ± 0.02 1.08 ± 0.13
Water content (%) 0.351 ± 0.006 0.098 ± 0.003 NA

Lipid classes (%)
Triacylglycerols NA 97.6 nd
Cholesterol NA 0.2 2.1
Unspecified NA 0.8 0.03
Phospholipids NA 1.4 97.9
of which PC NA NA 84.4
Lyso PC NA NA 0.5
PE NA NA 14.1
Lyso PE NA NA 0.6
Unspecified NA NA 0.4

Fatty acid profile (%)
Saturated NA 22.4 27.8
Mono-unsaturated NA 58.8 16.1
of which CET NA 38.3 3.0
ERU NA 2.2 0.5
GAD NA 25.9 9.5

OLA NA 19.8 36.6
Di-unsaturated NA 1.7 1.0
Poly-unsaturateda NA 16.0 54.5
of which EPA NA 40.5 23.4
DHA NA 40.0 69.0
DPA NA 4.3 2.0

NA = not analysed; nd = not detected; PC = phosphatidylcholine; PE = phosphatidylethanolamine; CET = cetoleic aid; ERU = erucic acid; GAD = gadoleic acid; OLA = oleic acid;
EPA = eicosapentaenoic acid; DHA = docosahexaenoic acid; DPA, docosapentaenoic acid.

a C > 18, double bondP 3; the values are given as mean values ± standard error of n measurements or as mean values with maximum coefficient of variation (specified in
Section 2 for respective analyses).
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assortment of ultra fresh rest raw material consisting of heads,
guts, and muscle trimmings including bones and skins. The crude
oil was further polished in order to remove water soluble and polar
compounds, inherent moisture, and insoluble impurities which re-
mained in the oil after the production. The compositional charac-
teristics of the lipid substrates are summarised in Table 1.

The peroxide value of the crude oil decreased significantly after
washing, from initial 5.0 ± 0.1 mmol LOOH/kg to 4.3 ± 0.1 mmol
LOOH/kg, which may be due to a partial removal of peroxidised po-
lar lipids (phospholipids, free fatty acids,mono- anddiacylglycerols)
or decomposition of lipid hydroperoxides during the polishing pro-
cedure. The inherent moisture content was reduced by 72% by pol-
ishing. The TBARS values were slightly increased in the polished oil.
The polishing step did not have any dramatic deteriorating effect on
the oil and, besides improving the PV status, also improved some vi-
sual characteristics, such as colour and clarity (figures not shown).
The isolated phospholipids were found to be oxidised to a much
higher degree than the oil (Table 1). The presence of pre-formed li-
pid hydroperoxides at various levels is a situation likely to occur in
food matrices containing vulnerable marine lipids, therefore the
phospholipids were not excluded from the experiments.

The hydrochloric acid (HCl) concentration in the gastric juice
(GJ) was found to be 0.109 ± 0.002 M, which is a normal value for
healthy humans during fasting (Ulleberg et al., 2011). This value
corresponds to pH 1.0, which was verified by a pH-electrode.

3.2. Lipid oxidation in the gastric juice–emulsion model

The most common form of lipids in foods is emulsions or micel-
lar structures (Waraho, McClements, & Decker, 2011). 10% (w/v)

herring oil emulsion stabilised by herring phospholipids was cho-
sen for studying oxidation in the gastric juice environment. This
is a multiphase food-related system containing marine lipids,
which is simple enough to enable interpretation of the measured
data. Three different lipid oxidation markers, PV, TBARS and oxy-
gen uptake, were measured to characterise the development of li-
pid oxidation (Fig. 1A).

The development of peroxide value in the GJ-emulsion system
during a 2.5 h incubation period is shown in Fig. 2A. Regardless
whether gastric juice was present (Mixture) or substituted with
HCl solution (Control 1), the initial peroxide values were doubled
and were significantly higher at the end of the incubation period;
the trend was consistent for both the Mixture and Control 1. The
peroxide level remained unchanged for the first 30 min of incuba-
tion, and from 60 min to 150 min showed a linear increase. The ini-
tial PV for the Mixture (9.4 ± 0.6 mmol LOOH/kg) was slightly
higher than the theoretically expected value (7.8 mmol LOOH/kg
– calculated from the PVs determined in the lipid substrates (Ta-
ble 1)) while the initial PV for Control 1 was consistent with the
theoretical value. Preparation of the final experimental mixture
might have caused this increase in inherent PV level. The signifi-
cant increase in PV during the incubation period clearly shows that
oxidation of marine lipids in emulsion does occur both in the HCl
solution and the authentic human gastric juice. The data did not
show a difference between the two environments, and gastric juice
therefore seems a prooxidative medium in respect to its acidity
rather than its composition.

An initial half an hour ‘‘lag’’ phase during the incubation of the
emulsions was apparent, after which the PV steadily increased. The
rate of peroxidation in the emulsion during the initial half an hour
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might not have been developed to such a degree that an increase in
peroxide value could be immediately measured, at least not by the
method which was used.

The increase in PV agrees with findings of Lapidot, Granit, &
Kanner, 2005b who observed a linear increase in peroxide forma-
tion in grilled red turkey muscle during 180 min incubation at
37 �C in simulated gastric juice.

The development of TBARS in the GJ–emulsion system is shown
in Fig. 2C. In both theMixture and Control 1 consistently, the TBARS
concentrations remained constant for the first 30 min of the incu-
bation period, followed by a linear increase until the end of the
incubation period. The values were significantly higher at the end
of the incubation period than at t = 0 min, showing occurrence of li-
pid oxidation in acidic environment. The trend in the TBARS devel-
opment was the same as the trend in the PV development.

The measured initial values (0.15 ± 0.01 mmol/kg for the
Mixture and 0.11 ± 0.02 mmol/kg for the Control 1) substantially
deviate from the theoretically expected value (0.52 mmol/kg –
calculated based on TBARS determined in the lipid substrates
(Table 1)). This discrepancy cannot be satisfactorily explained at
this moment. One possible explanation could lie in the methodol-
ogy. The isolated phospholipids and the polished oil (bulk lipids)
were measured with a method which uses a TEP-standard curve
for TBARS quantification (Ke & Woyewoda, 1979), while the con-
centration of TBARS in emulsion/liposomes (multiphase systems)
were calculated using a given extinction coefficient (McDonald &
Hultin, 1987).

Shortly after diluting the freshly made emulsion with gastric
juice or HCl solution, creaming of the emulsions occurred, which
could be attributed to a rapid drop in pH which affects the droplet
surface charge. The droplets become less negative and therefore
less repellent towards each other. Taking representative aliquots
from the samples was problematic, which can be seen on the rela-
tively large standard errors. In the study of Hur, Decker, & McCle-
ments, 2009 creaming of oil-in-water emulsions was observed
after the emulsions passed an in vitro digestion model, which
was explained by the activity of gastric lipases and by a gradual
dilution of the emulsion. Creaming was also observed in the Con-
trol 1 measurement with HCl solution. This suggests that creaming
was caused mainly by the physicochemical properties of the sys-
tems and marginally by the components in the gastric juice,
although lipases were expected to be active in the GJ models.

In earlier studies, it was shown that uptake of dissolved oxygen
relates to lipid peroxidation in multiphase systems and that oxy-
gen uptake rate (OUR) relates to the rate of lipid oxidation (Kristi-
nova et al., 2009; Mozuraityte, Rustad, & Storro, 2008; Mozuraityte
et al., 2006). The OUR development in the GJ–emulsion system is
shown in Fig. 2E. The initial oxygen uptake remained unchanged
for the first 90 min of the incubation period, followed by a gradual
increase reaching double the initial values both in the Mixture and
Control 1 at the end of the incubation period.

To verify whether the oxidation is mediated by endogenous
metals, presumably iron ions, a strong metal chelator (25 ll of
1 mM EDTA) was added to the Control 1 in the liposome system
at the end of the experiment. The background OUR was instantly
reduced by 56 ± 2%, indicating presence of endogenous iron in
the system. The concentration of the endogenous iron ions was
then estimated by approximation from oxygen uptake rates mea-
sured for different Fe2+ concentrations (data not shown). The level
was estimated 17 mg/kg PL (ppm). Since the isolated phospholip-
ids were used as an emulsifier in the emulsions, endogenous iron
is inevitably expected also in the emulsions. It is reasonable to as-
sume that oxidation in the liposomes and emulsions was mediated
by the endogenous iron. The source of iron contamination could
have been steel equipment used during isolation of PL and prepa-
ration of liposomes/emulsions.

Although the trend in OUR development correlates well with
the PV and TBARS measurements, a constant OUR in the period
where PV increased linearly was expected, assuming that lipid oxi-
dation is entirely facilitated by red-ox cycling of iron ions with a
steady consumption of oxygen in the red-ox cycle (Mozuraityte
et al., 2008). Increasing OUR alongside the linear increase in PV
concentration (Fig. 2) suggests partial decomposition of formed li-
pid hydroperoxides into secondary oxidation products other than
TBARS, or non-iron-catalysed peroxidation occurring alongside
the iron-mediated oxidation.

Consistently with the outcomes from the PV and TBARS deter-
minations, also the oxygen uptake assay shows that the acidic gas-
tric juice environment does not prevent fatty acids from being
oxidised.

3.3. Lipid oxidation in the gastric juice–liposome model

Liposomes are a convenient model system for oxidation studies
due to their compositional and structural simplicity, homogeneity
and physical stability (Henna Lu, Nielsen, Timm-Heinrich, & Jacob-
sen, 2011; Mozuraityte et al., 2008). Liposomes are scarce in food
matrices and their potential lies mainly in pharmacology as a drug
delivery system. Nevertheless, liposomes composed of phospholip-
ids can be related to cell membranes in lean mammal and fish
muscles. Therefore the oxidation was followed in 2.5% marine lip-
osomes as well.

The development of the peroxide value in the GJ–liposome sys-
tem is shown in Fig. 2B. The concentration of peroxides in the lipo-
some system increased linearly during the whole incubation
period, at the end of which the initial values were doubled. This
linear trend in peroxides formation was consistent and clear for
both the Mixture and Control 1 with slopes 0.15 ± 0.01 mmol
LOOH/kg min and 0.14 ± 0.01 mmol LOOH/kg min, respectively.
No significant difference in the slopes was found between the
two systems. No initial lag phase, but a steady increase in PV from
t = 0 min was observed, showing instant susceptibility of lipo-
somes to oxidation. Liposomes are hollow nm-sized particles with
a relatively large total surface area, the cavity is filled with the sur-
rounding aqueous medium containing dissolved oxygen. Oxidation
of fatty acids takes place entirely in the interphase, which is
formed by a bilayer of phospholipids, where both the outer and in-
ner layer is exposed to the aqueous surroundings. This could ex-
plain the high susceptibility to oxidation and absence of a lag
phase. In addition, the concentration of endogenous iron coming
from PL is higher in the liposomes than in the emulsion due to a
higher proportion of PL in liposomes. The initial PV in the Mixture
and Control 1 were half the value determined in the isolated PL.
One scenario explaining this discrepancy could be that a propor-
tion of existing lipid hydroperoxides was reacted into a variety of
secondary oxidation products during preparation of the liposomes,
possibly during the sonication step which involves a high energy
input.

The development of TBARS in the GJ–liposome system is shown
in Fig. 2D. The TBARS concentrations increased both in the gastric
juice Mixture and the Control 1. The fastest increase occurred
during the first 90 min, followed by a stable phase lasting until
the end of the incubation period. The initial TBARS values were
doubled at the end of the incubation period for both the Mixture
and Control 1. The initial values (t = 0 min) for both the Mixture
and Control 1 were not significantly different from the TBARS
determined in the isolated phospholipids.

Neither PV nor TBARS showed any difference between oxidation
in the liposome system containing genuine gastric juice and a sys-
tem containing simple HCl solution. No difference between GJ and
HCl environment was also found for the emulsion system. Lipid

3866 V. Kristinova et al. / Food Chemistry 141 (2013) 3859–3871



oxidation in the acidic environment seems therefore mainly gov-
erned by the acidity of the gastric juice.

The course of oxygen uptake rate during the 2.5 h incubation
period in the liposome system is shown in Fig. 2F. At the end of
the incubation period the OUR reached double the initial values.
The development in the OUR showed no difference between the
system with gastric juice and the system lacking gastric juice com-
ponents apart from HCl. A presence of endogenous iron was found
positive in liposomes (explained in Section 3.2). Due to a linear
trend in PV formation (Fig 2B) resulting from red-ox cycling of
endogenous iron in lipid peroxidation, a constant OUR was ex-
pected for the whole oxidation period. The data measured for lip-
osomes also suggest that not all the radicals responsible for
binding O2, i.e. its consumption, might be coming from the steady
red-ox cycling of iron, but radicals generated in additional
reactions, such as autoxidation, which might be occurring simulta-
neously, could be involved as well and increase the rate of oxygen
uptake.

The initial background OUR in the liposomes was relatively high
which required re-saturation steps during oxygen uptake record-
ing (described in Section 2.20). A supply of oxygen into the stom-
ach content is likely to be facilitated by food, drinks and swallowed
air during eating (Kanner & Lapidot, 2001). Therefore the PV and
TBARS experiments were designed not to be limited by supply of
oxygen and the re-saturation steps could be included into the
recordings of oxygen uptake.

Consistently with the PV and TBARS measurements, the record-
ings of oxygen uptake in the liposomes showed occurrence of lipid
oxidation in the gastric juice/acidic environment.

3.4. Relation between PV, TBARS and OUR

In liposomes a steadily developing oxidation from the begin-
ning of the incubation period was apparent, while in the emulsions

a lag phase during the first 30 min occurred followed by an in-
crease in oxidation (Fig. 2). The data show that in the acidic envi-
ronment liposomes oxidised more readily and faster than
emulsions. Liposome spheres made of phospholipids have smaller
diameter (nm-scale) than emulsion particles (lm-scale), which
makes the interfacial area larger for liposomes. In addition, the in-
ner cavity of liposomes is filled up with aqueous solution exposing
basically all the phospholipids to the aqueous phase containing
dissolved oxygen and even enlarging the interfacial area of lipo-
somes. The amount of phospholipids creating the overall interface
was slightly higher for liposomes than for emulsions in 12 ml
experimental volumes and the concentration of endogenous iron
associated with PL was therefore also higher in liposomes. This
can explain the higher susceptibility to oxidation of liposomes
comported to fat droplets in emulsions.

These findings could have implication for development of deliv-
ery systems of marine lipids. Phospholipids are believed to be eas-
ier absorbed by the gastrointestinal tract than triacylglycerols
(Ramı́rez, Amate, & Gil, 2001) and are therefore an attractive form
of omega-3, and at the same time liposomes are a convenient form
for oral supplementation. As shown in this study, marine phospho-
lipids organised as liposomes have the tendency to oxidise under
the stomach conditions, which may compromise the positive sides
of this delivery system.

The increase in PV during the 2.5 h incubation period was
7 mmol LOOH/kg in the emulsion model and 25 mmol LOOH/kg
in the liposome model. The extent of oxidation (under the condi-
tions in this study) therefore is relatively low. Nevertheless, the
measurements indicate that PV levels might increase during
post-prandial oxidation reaching levels associated with rancidity.

Since primary oxidation products – lipid hydroperoxides
(LOOH) – are formed during the incubation period (Fig. 2AB), for-
mation of secondary oxidation product is then expected, assuming
that decomposition of the freshly formed lipid hydroperoxides oc-
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curs to a certain degree simultaneously. To see how TBARS levels
relate to the concentrations of LOOH, a ratio between PV and
TBARS levels was plotted for the whole incubation period (Fig. 3).
In the emulsion models the concentration of peroxides was
60 ± 3 (Mixture) and 60 ± 11 (Control 1) times higher than the con-
centration of TBARS throughout the incubation period. In both
cases, the production of PV and TBARS appeared simultaneous
and was somewhat balanced during the duration of the experi-
ments. The TBARS however represent only a small fraction of sec-
ondary oxidation products generated by decomposition of lipid
hydroperoxides, therefore this relationship does not apply gener-
ally on secondary oxidation products.

The formation of primary and secondary oxidation products
during incubation of lipids in the gastric juice is in agreement with
outcomes of a number of studies addressing post-prandial
oxidation of lipids in a simulated gastrointestinal tract (Kanner &
Lapidot, 2001; Lapidot et al., 2005a; Lorrain, Dangles, Genot, &
Dufour, 2009). In the study of Staprans et al., 1994 the formation
of both lipid hydroperoxides and TBARS in cooked meat increased
15-fold and 7-fold, respectively, during a 3 h incubation in a simu-
lated gastric fluid at 37 �C and pH 3.0. The oxidation was com-
pletely inhibited by adding BHT (0.2% lipid weight) and grape
seed extract (1% meat weight).

Measurement of oxygen uptake rate gave complementary data
to PV and TBARS for both the liposome and the emulsion system –
an increasing trend in the rate of oxygen consumption was ob-
served during the 2.5 h incubation period. The increase was more
clearly seen in the liposome system, which had relatively high ini-
tial OUR and higher concentrations of inherent peroxides and
TBARS. A presence of endogenous iron was verified in liposomes.
According to theory, formation of one hydroperoxide molecule in
the propagation step of iron-mediated oxidation is accompanied
by binding one O2 molecule to an unsaturated fatty acid (Kamal-El-
din, 2003). Such progress then leads to a linear increase in peroxide
formation and constant OUR. Assuming that decomposition of the
formed peroxides would be in a balance with peroxide formation,
but occurring to a lower degree, still a constant rate of oxygen con-
sumption would be expected. No constant OUR was measured for
the periods where PV showed a linear increase. Instead, the OUR
trend was the same as the trends in PV and TBARS measurements.
Decomposition of lipid hydroperoxides into other secondary prod-
ucts than TBARS and additional radical reactions not connected to
red-ox cycling of iron could explain the increasing trend in OUR.

3.5. Effect of added compounds

Food ingredients frequently and almost inevitably contain pro-
moters of lipid oxidation in trace or significant concentrations –
transition metals (iron, copper) in particular (Martı́nez-Navarrete,
Camacho, Martı́nez-Lahuerta, Martı́nez-Monzó, & Fito, 2002),
which was also demonstrated on isolated phospholipids. Iron can
be present as elemental, ferrous and ferric, or bound within various

proteins and pigments, such as myoglobin, hemoglobin and
enzymes.

In this study, iron ions (Fe2+ and Fe3+) and bovine methemoglo-
bin (metHb) were tested in the gastric juice-lipid systems in order
to characterise their effect on lipid oxidation in the in vitro gastric
juice environment. The oxygen uptake method was chosen for
evaluation of the effects of these compounds, because the impact
of the compounds can be directly seen on changes in the oxygen
uptake curves.

The net OUR in the lipid systems with addition of 10 lM Fe2+,
10 lM Fe3+ and 0.15 lM metHb is shown in Table 2. Iron activity
in both the liposome and emulsion system was significantly re-
duced, by a factor two, in the gastric juice environment compared
to the HCl environment. Thus gastric juice acted as an antioxidant
in Fe-mediated oxidation. According to Davis, Multani, Cepurneek,
and Saltman (1969), gastric juice has the ability to chelate dietary
iron by gastroferrin – a high molecular weight protein secreted
into the gastric juice regulating the extent of gastrointestinal iron
absorption. This protein has capacity to bind up to 15 mg of iron
present in a typical daily diet (Davis et al., 1969). The reduction
of the iron-mediated lipid oxidation could be attributed to chelat-
ing abilities of inherent gastroferrin. Its concentration and binding
constant at pH 4 was not known. It is confusing why endogenous
iron coming from phospholipids was not totally chelated by the
gastric juice. No clear explanation has been found for this phenom-
enon. The positively charged endogenous iron ions could be
strongly attracted and somewhat associated with the negative po-
lar heads of phospholipids and in competition to chelation by
gastroferrin.

MetHb addition to the lipid systems instantly triggered peroxi-
dation. No significant differences between metHb-mediated lipid
oxidation in the presence or absence of GJ components apart from
HCl suggest that gastric juice does not have the potential to deac-
tivate prooxidative properties of metHb and that heme–iron is ac-
tive in an acidic environment. When the same concentrations of
iron (10 lM) and metHb (0.16 lM) were added to the liposomes
and emulsions, the magnitude of the pro-oxidant effects was dif-
ferent in the two systems (Table 2). This could be attributed to dif-
ferent properties of the systems, such as surface area, droplet
structure, and the initial levels of lipid hydroperoxides. The data
also show that iron embedded in the hem-structure of metHb is
a stronger prooxidant than low molecular weight iron. The differ-
ent nature of the pro-oxidants was also seen on oxygen uptake
curves. MetHb-mediated oxidation gave an exponentially decreas-
ing curve while Fe-mediated oxidation proceeded linearly. Linear
oxygen uptake in iron-mediated lipid oxidation was explained in
the study of Mozuraityte et al., 2008 by red-ox cycling of iron upon
production of lipid hydroperoxides.

Beverages, such as wine and tea, show good antioxidant activi-
ties in vitro due to content of hydroxylated phenolic and polyphe-
nolic compounds (Ghiselli, Nardini, Baldi, & Scaccini, 1998; Ho,
Chen, Shi, Zhang, & Rosen, 1992). Therefore selection of five com-
mon beverages – orange and berry juice, black coffee, green tea
and read wine – caffeic acid (a hydroxylated phenolic compound)
and ascorbic acid (Vitamin C) were added individually to the
GJ–lipid models in order to evaluate their effect on lipid oxidation
in gastric juice. Ascorbic acid was included due to its abundance in
fruit beverages. The main interest was to see if the beverages/com-
pounds have the potential to inhibit post-prandial oxidation and
therefore only a selected dose corresponding to a small glass
(75 ml) was tested.

A group of beverages/compounds showing a pro-oxidative ten-
dency and a group showing antioxidative tendency was distin-
guished. The % increase of background OUR by the prooxidative
group (iron, metHb, ascorbic acid, orange juice and black coffee)
in the emulsions and liposomes is shown in Fig. 4A and B, respec-

Table 2
Net oxygen uptake rates (OUR) for lipid oxidation mediated by iron ions and
methemoglobin (metHb) in the gastric juice (GJ)–liposome system and the GJ–
emulsion system (Mixtures) and their corresponding controls (Control 1), in which
gastric juice was substituted with 0.11 M hydrochloric acid (HCl) solution.

Liposomes Emulsion

Mixture Control 1 Mixture Control 1
OUR (lM O2/min)a OUR (lM O2/min)a

10 lM Fe2+ 6.9 ± 0.4 14.8 ± 1.8 2.3 ± 0.3 4.4 ± 0.5
10 lM Fe3+ NA NA 1.0 ± 0.1 3.5 ± 0.4
0.15 lM metHb 10.3 ± 4.4 10.2 ± 1.0 3.5 ± 0.5 4.4 ± 0.9

a Average value ± standard deviation (n = 3); NA = not analysed.
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tively. The % inhibition of background OUR by the antioxidative
group (caffeic acid, berry juice, red wine and green tea) in the
two systems is shown in Fig. 4C and D. Inhibition of the back-
ground OUR in the freshly made emulsions was uncertain due to
a low background OUR (<3 lM O2/min). In order to increase the
background OUR, the emulsions were allowed to stand for 24 h
at room temperature. The lipid phase in the emulsions containing
gastric juice however separated from the aqueous phase during the
prolonged storage, which made representative oxygen uptake
recordings not feasible. Therefore the dataset for GJ–emulsion sys-
tem (Mixture) is not given in Fig. 4D. In the GJ–HCl system (Control
1) only creaming occurred and the emulsion could be restored by
gentle mixing. Enzymes in the gastric juice, such as lipases, could
aid phase separation and degradation of the emulsion under the
prolonged storage period. No phase separation was observed dur-
ing the incubation period, but the activity of lipases was expected
to some degree in the systems with authentic GJ. The same tenden-
cies in the development of oxidation markers for GJ and HCl
systems however indicate that lipid hydrolysis did not have an im-
pact on oxidation of fatty acids during the incubation period.

In both the liposomes (fresh) and the emulsions (aged), the
composite berry juice exhibited the best inhibitory effect, followed
by green tea, red wine, and caffeic acid, while black coffee, orange
juice and ascorbic acid were strongly pro-oxidative and increased
the consumption of oxygen by up to 700%.

Increasing the dose of the red wine (1:10, v/v) corresponding to
one glass of wine (150 ml) led to an improved antioxidant effect
(Fig. 5). A range of flavonoids and phenolic acids are responsible
for antioxidative properties of red wine (Ghiselli et al., 1998). Other

studies also reported a positive effect of red wine on post-prandial
oxidation: red wine has shown an inhibition of lipid oxidation of
cooked dark turkey meat in a simulated stomach model system
(Kanner & Lapidot, 2001), and drinking red wine with three meals
of cooked turkey cutlets (compared to drinking water) suppressed
malondialdehyde formation in human plasma by 75% (Gorelik,
Ligumsky, Kohen, & Kanner, 2008a). According to Argyri, Komaitis,
& Kapsokefalou, 2006, interactions of red wine with dietary iron in
the stomach may decrease the antioxidant activity of red wine.

0

10

20

30

40

50

60

In
hi

bi
tio

n 
of

 b
ac

kg
ro

un
d 

O
U

R
 (%

)

Emulsions

caffeic acid
(100 uM)

berry juice
(50 uL)

red wine
(50 uL)

green tea
(50 uL)

0

10

20

30

40

50

60

In
hi

bi
tio

n 
of

 b
ac

kg
ro

un
d 

O
U

R
 (%

)

Liposomes

caffeic acid
(100 uM)

berry juice
(50 uL)

red wine
(50 uL)

green tea
(50 uL)

−700

−600

−500

−400

−300

−200

−100

0

In
cr

ea
se

 o
f b

ac
kg

ro
un

d 
O

U
R

 (%
)

iron Fe2+
(10 uM)

metHb
(0.16 uM)

ascorbic acid
(100 uM)

orange juice
(50 uL)

black coffee
(50 uL)

−800

−700

−600

−500

−400

−300

−200

−100

0
In

cr
ea

se
 o

f b
ac

kg
ro

un
d 

O
U

R
 (%

)

iron Fe2+
(10 uM)

metHb
(0.16 uM)

ascorbic acid
(100 uM)

orange juice
(50 uL)

black coffee
(50 uL)

Mixture
Control 1

Mixture
Control 1

C

A B

D

Fig. 4. Acceleration of the background oxygen uptake rate (%) by beverages/compounds in the (A) liposome and (B) emulsion system, and inhibition of the background
oxygen uptake rate (%) by beverages/compounds in the (C) liposome and (D) emulsion system. Bars for GJ–lipid blends (Mixture) have dark colour and bars for blends, in
which gastric juice was substituted with 0.11 M HCl (Control 1), have light colour. The values are given as average values ± standard error (n = 3).

4.8 7.0 9.1
0

10

20

30

40

50

60

In
hi

bi
tio

n 
of

 b
ac

kg
ro

un
d 

O
U

R
 (%

)

% drink (v/v)

Fig. 5. Inhibition of the background oxygen uptake rate (OUR) (%) by red wine in
the HCl–emulsion system. The values are given as average values ± standard error
(n = 3).

V. Kristinova et al. / Food Chemistry 141 (2013) 3859–3871 3869



Green tea showed a similar antioxidant effect to red wine
(Fig. 4). Catechins are the principal antioxidants in green tea (Ho
et al., 1992). The outcomes are in agreement with other studies
which reported largely positive effects of green tea in in vitro mul-
tiphase systems: in low density lipoproteins (LDL) antioxidants in
green tea hindered peroxidation by radical scavenging mechanism
(Salah et al., 1995); green tea extracts showed an antioxidant activ-
ity in emulsions and liposomes, unless copper was added into the
aqueous phase (Frankel, Huang, & Aeschbach, 1997) and in a study
of Serafini, Laranjinha, Almeida, & Maiani, 2000, red wine and
green tea were efficient in protecting LDL from oxidation driven
by peroxyl and ferryl radicals.

Caffeic acid showed an antioxidant effect in this study. In the
study of Kristinova et al., 2009, caffeic acid was found to be
strongly prooxidative in liposomes in the presence of iron ions
at acidic pH. The prooxidant effect was however observed only
for excess of iron in relation to concentration of caffeic acid.
This is not the case in the gastric juice models, where caffeic
acid was added in excess relative to the endogenous iron
concentration.

The principal antioxidants in berry juice are anthocyanins (Za-
fra-Stone et al., 2007), and in black coffee phenolic acids in cooper-
ation with melanoidins – products of Maillard reactions (Delgado-
Andrade & Morales, 2005). Since the concentration of phenolics
was reported to be much higher in food than in plasma, post-pran-
dial oxidation in the gastrointestinal tract is believed to be the
in vivo event where phenolics coming with the food and beverages
could protect the unsaturated lipids from oxidation, closely before
the lipids are absorbed. These dietary antioxidants can act both as
lipid radical scavengers and metal chelators, breaking the propaga-
tion of lipid peroxides, and thus enabling the PUFA to exert health
benefits (Kerem et al., 2006).

Orange juice and ascorbic acid showed pro-oxidant effects in
the GJ–lipid models. Ascorbic acid was abundant in the orange
juice (approx. 300 mg/l according to a content list on the packag-
ing). Ascorbate is known to promote lipid oxidation in multiphase
systems by the ability to reduce ferric (Fe3+) ions to ferrous (Fe2+)
ions (Kanner, Mendel, & Budowski, 1977). Fe2+ readily reacts with
lipid hydroperoxides being reduced to Fe3+, which is then con-
verted back to Fe2+ by another LOOHmolecule or ascorbate. Endog-
enous iron was verified in the phospholipids, which could explain
the rapid acceleration of oxidation after addition of both ascorbic
acid and orange juice.

The awareness of prooxidative cooperation between ascorbate
and low molecular weight iron might be useful for guidance on
consumption of vitamin/mineral supplements and marine ome-
ga-3 supplements alongside.

In the present study, marine fatty acids in liposomes and emul-
sions oxidised during 2.5 h incubation at pH 4.0 at 37 �C, regardless
whether the environment contained genuine and compositionally
complex authentic human gastric juice or simple aqueous HCl
solution. No difference in oxidation markers was observed be-
tween the same system, which either contained gastric juice or
contained HCl solution. Therefore oxidation of emulsified lipids
seems to be not aided by the gastric juice components, and the
low pH in the stomach appears a favourable medium for oxidation
processes. Oxygen uptake rate measurements gave deeper insight
into the antioxidative properties of authentic gastric juice. At the
experimental conditions, gastric juice was able to partially hinder
low molecular weight iron from mediating oxidation and in this
way gastric juice acted as an antioxidant. No antioxidant effect
on met-hemoglobin mediated oxidation was found. Beverages rich
in antioxidants – composite berry juice, green tea, black coffee, and
red wine – and caffeic acid significantly reduced oxidation in acidic
environment while orange juice and ascorbic acid increased lipid
oxidation. The results show that beverages accompanying marine

dish have the potential to influence the development of post-pran-
dial lipid oxidation.
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a b s t r a c t

Caffeic acid, a hydroxycinnamic acid common in different vegetable sources, has been employed as a nat-
ural antioxidant for inhibiting oxidation of fish lipids present in different food matrices. The aim of this
review is to discuss the mechanisms involved in the antioxidative and prooxidative effects of caffeic acid
found in different model systems containing fish lipids. These model systems include bulk fish oils, lipo-
somes from cod roe phospholipids, fish oil emulsions, washed cod mince, regular horse mackerel mince
and a fish oil fortified fitness bar. The data reported show that the antioxidant activity depends on the
physical state of the lipids and the composition of the intrinsic matrix in which they are situated. Caffeic
acid significantly prevented rancidity in both unwashed and washed fish mince, the latter which was for-
tified with haemoglobin. In the unwashed mince, the activity was however clearly dependent on the lipid
to antioxidant ratio. In these systems, an important redox cycle between caffeic acid and the endogenous
reducing agents ascorbic acid and tocopherol were further thought to play an important role for the pro-
tective effects. The effect of caffeic acid was also highly dependent on the storage temperature, showing
higher effectiveness above than below 0 �C. Caffeic acid was not able to inhibit oxidation of bulk fish oils,
fish oil in water emulsions and the fish-oil enriched fitness bar. In the liposome system, caffeic acid inhib-
ited haemoglobin (Hb)-promoted oxidation but strongly mediated Fe2+ mediated oxidation. In conclusion,
caffeic acid can significantly prevent Hb-mediated oxidation in fish muscle foods but its activity in food
emulsions and liposomes is highly dependent on the pH, the emulsifier used and the prooxidants present.

Published by Elsevier Ltd.
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1. Introduction

During the last two decades, seafood products and products rich
in n � 3 polyunsaturated fatty acids (PUFA) have received increas-
ing attention due to their beneficial effects on human health, which
can be attributed to the biological properties of eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA) (Lee & Lip, 2003). These
findings have influenced the increasing demand for n � 3 PUFA rich
fish oils and foods enriched by these oils. However, the storage and
processing of fish muscle-based foods or fish oil-containing prod-
ucts are still challenging due to the high susceptibility of PUFA to
lipid oxidation (Hultin, 1994). Some studies published during the
later years have demonstrated the efficacy of single and combined
treatments with natural antioxidants in the inhibition of lipid oxi-
dation of fish oils and fishmuscle (Fagbenro & Jauncey, 1994; Pazos,
Alonso, Fernández-Bolaños, Torres, & Medina, 2006; Pérez-Mateos,
Lanier, & Boyd, 2005; Shahidi & Naczk, 1995; Tang, Sheehan, Buck-
ley, Morrissey, & Kerry, 2001). Together with the ongoing debate
about the use of synthetic food additives, such results have lead
to the inclusion of plant extracts as antioxidants in fish-oil contain-
ing food, and this has became a common practice in the last years.

The natural antioxidants that have gained particular interest as
food antioxidants are hydroxycinnamic acids, which are widely
distributed and common in seeds, fruits, tubers and the herbaceous
parts of many vegetable species (Bravo, 1998). They occur natu-
rally in combination with other compounds usually in the form
of esters. Like other phenolic compounds, they can directly trap
free radicals or scavenge them through a series of coupled reac-
tions with antioxidant enzymes, and thus delay the onset of lipid
oxidation via the decomposition of hydroperoxides (Lewis, 1993).
The molecular structure of hydroxycinnamic acids is a key deter-
minant for their radical scavenging and metal chelating properties.

It has been proposed that phenolic compounds that are able to
inhibit different prooxidants, cooperate with endogenous antioxi-
dants, and are located on the active oxidation sites will be the most
efficient in foods (Frankel, 1998). This implies that identifying how
phenolic antioxidants interact with different prooxidants, lipids
and antioxidants in fish oil containing foods will be highly valuable
in order to protect such foods from rancidity according to natural
strategies.

The aim of this work was to review a series of papers where the
antioxidant activity exhibited by one of the most active hydroxy-
cinnamic acids, caffeic acid (CaA), have been studied in different
marine lipid systems. The large difference between these lipid sys-
tems, gives the possibility to discuss the different mechanisms by
which caffeic acid can operate as an anti- or prooxidant, in marine
foods.

2. Caffeic acid

3,4-Dihydroxycinnamic acid, CaA is a widespread phenolic com-
pound from the group of hydroxycinnamates that is derived biosyn-
thetically from phenylalanine in plants. It occurs naturally in many

agricultural products such as fruits, vegetables, wine, olive oil, and
coffee (Clifford, 1999). Moreover, the processing of plant foods
results in the production of by-products that are rich sources of
phenolic compounds (Moure et al., 2001). CaA is present in high
proportions in artichoke blanching waters (Llorach, Espín,
Tomás-Barberán, & Ferreres, 2002). It is also present in olive mill
wastes, which are a major potential source of phenolics considering
that the annual production exceeds 7 million tonnes and the med-
ium content of phenolics is approx 1.0–1.8% (Visioli & Galli, 2003).

During the most recent years, CaA and its derivatives have at-
tracted considerable attention due to its various biological and
pharmacological activities, including antioxidative activities (Mari-
nova, Yanishlieva, & Toneva, 2006; Nardini et al., 1995; Taubert et
al., 2003; Wu et al., 2007). The evaluation of antioxidant capacities
requires information on thermodynamics (redox potentials) and
kinetic rate constants with different types of radicals, stability of
the antioxidant-derived radical, and stoichiometry properties.
The molecular structure of CaA (Fig. 1) containing a catechol group
with an a,b,-unsaturated carboxylic acid chain is responsible for its
efficient interaction with several types of oxidant radicals (Bors,
Michel, & Schikora, 1995). The o-dihydroxy structure is the natural
radical site, producing the o-semiquinone after one-electron dona-
tion. The lateral double bond conjugated with the catechol group
leads to an extensive electron delocalisation, increasing the stabil-
ity of the o-semiquinone radical and, the antioxidant activity
(Laranjinha & Lester, 2001). The catechol group also acts as the pre-
ferred binding site for trace metals leading to significant chelating
activity (Pietta, 2000).

The antioxidant activity of the hydroxycinnamic compounds sig-
nificantly depends on the structure of the molecules and the micro-
environment of the reactionmedium (Radtke, Linseisen, &Wolfram,
1998). Different studies comparing the antioxidant effectiveness of
hydroxycinnamic and benzoic acids in homogeneous and heteroge-
neous lipid systems have been carried out, and in these studies CaA
has shown a high antioxidant activity (De Leonardis & Macciola,
2003; Gülçin, 2006). CaA is a polar compound with a strong ability
for chelating metals (Medina, Gallardo, González, Lois, & Hedges,
2007).

3. Marine lipid oxidation

Lipid oxidation is a rather complex set of reactions where unsat-
urated fatty acids react with molecular oxygen via a free radical
chain mechanism, forming fatty acyl hydroperoxides and non-vol-
atile and volatile hydroperoxide breakdown products. Many of the
products, especially the volatile fraction, create undesirable off-fla-
vours known as rancidity resulting in a reduction of the commer-
cial shelf-life of foodstuffs. The lower oxidative stability of
unsaturated fatty acids compared to saturated fatty acids is attrib-
uted to a lower energy of biallylic and allylic hydrogens compared
to that of methylenic hydrogen atoms, and to the high resonance
stabilization of the formed radicals (Erikson, 2002). The high pro-
portion of PUFA together with the presence of prooxidants, mainly
those containg heme groups are critical factors for development of
rancidity in fish muscle and fish oils (Ackman, 1989; Richards &
Hultin, 2002). Once the reaction has been initiated, the hydroper-
oxides formed are converted to free radicals and volatiles. The lat-
ter are responsible for the development of rancid off-flavours. The
rate and the degree of lipid degradation in fish has been shown to
be dependent upon the lipid composition, the presence of prooxi-
dants (e.g. heme, metal ions, pro-oxidative enzymes), the presence
of inhibitors (e.g. carotenoids, tocopherol, ascorbate), pH and oxy-
gen concentration, which are all factors which vary throughout the
fish/fillet (Undeland, Hall, & Lingnert, 1999). The type and rate of
formation of peroxides, saturated and unsaturated aldehydes such

OH

CH=CHCOOH

OH

Fig. 1. Molecular structure of caffeic acid.
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2-pentenal, 2-hexenal, 2,4-heptadienal and 2,4-decadienal, and
interaction products resulting from the reaction between carbon-
yls and proteins as well as amino acids, have been widely
reported during oxidative deterioration of species as herring,
mackerel, sardines or horse mackerel (Fujimoto, 1993). In addi-
tion to PUFA, cholesterol is also modified to oxides and hydroxy
derivatives (Saldanha & Bragagnolo, 2007). Lipid peroxidation is
not only a quality problem in the edible oil and food industries,
but products from lipid oxidation may also have negative health
effects. Lipid peroxides increase the tendency of blood to clot by
stimulating thrombin generation (Desrumaux et al., 2010) and
they may be involved in atherogenesis (Esterbauer, Wäg, & Puhl,
1993). Oxidised cholesterol may be carcinogenic or promote
tumour growth (Alexander, 1986). In humans and animals, an
inability to control free radical reactions is also associated with
premature ageing (Negre-Salvayre, Coatrieux, Ingueneau, &
Salvayre, 2006).

Studies from the last ten years have demonstrated that CAa can
act as an inhibitor of marine lipid oxidation. The early papers by
Banerjee (2006) and Chung, Walker, and Hogstrand (2006) showed
the first applications of CAa as antioxidant for marine lipids and
proteins. The authors have shown effectiveness for inhibiting the
lipoxygenase activity of mackerel muscle when CaA was employed
in concentrations ranging 10–100 lM (Banerjee, 2006). Chung
et al. (2006) suggested that CAa may protect cultured fish cells
against oxidative stress through expression of zinc-induced antiox-
idant proteins Its activity in fish lipid systems will be discussed in
more detail later.

3.1. Effect of lipid oxidation on proteins

Lipid oxidation occurring in fish muscle has an important role in
the loss of rheological properties. Lipid and protein interactions can
play an important role in the stability and function of muscle pro-
teins. Lipid oxidation products have been demonstrated to affect
proteins through the formation of crosslinkages and provoking
toughening in late stages of frozen storage of lean species (Soyer
& Hultin, 2000). Changes in the protein structures induced by lipid
oxidation products and e.g. reactive oxygen species, may thus influ-
ence both the texture and thewater holding capacity of fishmuscle.
It is hypothesised that proteins actually oxidise before lipids in
muscle tissue since they are in contact with the aqueous phase
where radicals like hydroxyl radical are formed (Srinivasan &
Hultin, 1995). It could then be the less reactive and long-life protein
radicals that mediate the oxidative attack into the hydrophobic
interior of membranes. Despite an increasing interest in protein
oxidation within the scientific community, it is unclear whether
lipid oxidation induces protein oxidation or vice versa. Oxidised
proteins with changes in their sulfhydryl groups may be more la-
bile, forming crosslinkages much more rapidly than un-oxidised
proteins when subjected to freezing, thawing or a low pH. This
may then seriously affect the texture properties of fish muscle.

4. Activity of caffeic acid in different fish lipid containing
systems. Main features influencing antioxidant activity

Inhibition of lipid oxidation is important to increase the shelf-
life of fish muscle, fish oils and fish oil-containing products during
storage and processing. Several factors should be taken into
account in the design of antioxidant strategies aimed to minimise
rancidity. The nature and characteristics of the lipids, the physical
state of the lipids, the food composition and the microenvironment
are all well-known factors influencing antioxidant effectiveness.

This work reviews the activity of CaA in different fish lipid sys-
tems with increasing complexity: bulk fish oils, liposomes from

cod roe phospholipids, fish oil-in water emulsions, washed cod
mince and crude horse mackerel mince. The discussion also in-
cludes the use of CaA in a commercial fitness bar enriched with fish
oil. Table 1 shows the characteristics of the different systems de-
scribed in this manuscript. The activity of CaA in the different sys-
tems has been compared with a less effective hydroxycinnamic
acid, coumaric acid, which lacks the second hydroxyl group in
the phenol ring (Shahidi & Naczk, 2004). To quantify the effect of
CaA in the different systems, the prolongation of the lag phase,
the effect on the maximum level of oxidation by-products formed,
the effect on the rate of oxidation and the percent of inhibition on
the formation of oxidation by-products are described (Figs. 2 and
3). Percent of inhibition was calculated during the propagation per-
iod as follows:

%Inhibition ¼ ½ðC � SÞ=C
 � 100;

where C = oxidation product formed in control samples and S = oxi-
dation product formed in sample according to Frankel (1998).

4.1. Activity of caffeic acid in bulk fish oil

Bulk fish oils are homogeneous systems in which the affinities of
antioxidants towards the air–oil interfaces are determining their
effectiveness against lipid oxidation. Hydrophilic antioxidants have
been suggested to be more effective against oxidation in bulk oils
by being oriented in the air–oil interface whereas in water emul-
sions they are found in thewater phase (Frankel, 1998). Recent data
also suggest that the increased efficacy of hydrophilic components
in bulk oils could be attributed to their localisation in micellar
structures formed by minor components, such as phospholipids,
free fatty acids or monoglycerides present in the oil (Chaiyasit,
Elias, McClements, & Decker, 2007). Polar antioxidants, which are
more readily concentrated at the interface of association colloids
than at the oil–air interface, could be more active in bulk oils than
non-polar antioxidants (Chaiyasit et al., 2007).

However, CaA showed a low inhibition of oxidation in bulk cod
liver oils (Sanchez Alonso, 2002). It was not able to inhibit the for-
mation of conjugated diene and triene hydroperoxides. There was
no effect on the prolongation of the lag phase nor on the rate of
oxidation. Its activity was lower than the synthetic antioxidants
propyl gallate and hydroxytyrosol, the latter, a single o-dihydroxy
phenol derived from oleuropeine, has been a well recognised anti-
oxidant in bulk oils with similar molecular structure (Pazos, Alon-
so, Sanchez, & Medina, 2008). The low activity of CaA could be
attributed to its limited solubility in the oily oil phase. The parti-
tioning coefficient of CaA expressed as% oil was 0.30 (Medina
et al., 2007) and the CaA remained relatively insoluble in the fish
oil. Coumaric acid also did not show any efficiency in inhibiting
oxidation of fish oils. Marinova, Toneva, and Yanishlieva (2009)
have described CaA antioxidant effectiveness during autoxidation
of sunflower oil at 100 �C, where the triacylglycerols are more sat-
urated lipids than in fish oils. In addition, the antioxidant carrier
can play an important role for determining antioxidant effective-
ness of phenolic acids. The use of acetone as solvent for CaA has
lead to a significant inhibition of lipid oxidation in cod liver oil sub-
jected to high oxidative conditions, 100 �C and air flow of 20 L/h
(De Leonardis & Macciola, 2003). However, most organic solvents
are not food grade and therefore the choice of a carrier should be
done carefully.

4.2. Heterogeneous fish lipid systems

Lipid oxidation in multicomponent foods is an interfacial phe-
nomenon affecting pro-oxidant and antioxidant constituents
depending on the rate of oxygen diffusion and interactions between
unsaturated lipids, metal initiators, radical generators and
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terminators (Frankel, 1998). This interfacial oxidation affects a large
number of foods, which exist partially or entirely in the form of
emulsions. Phospholipids dispersed in water spontaneously form
multi-layers consisting of bilayers between the water phase and
the oil phase (Frankel, 1998). They have commonly been used to
serve as simple models of muscle membranes. There is some
evidence that membrane lipids are primary substrates of lipid

oxidation, and the interactions of phenolic antioxidants with cell
membrane lipid bilayers have lately been used for establishing dif-
ferent interaction mechanisms and different biological activities of
antioxidants (Perez-Fons, Aranda, Guillen, Villalain, & Micol, 2006).

A wide range of foods such as mayonnaise, salad dressing and
milk are oil-in-water emulsions where oil droplets are dispersed
in an aqueous phase. Butter and margarine are examples of

Table 1
Description of the marine lipid systems employed in this work for illustrating the activity of CaA.

Marine lipid
system

Reference Caffeic acid
concentration

pH Percent
of fat
and
moisture

Addition
of
prooxidant

Storage
conditions
(±light,
temperature)

Methods used to
determine oxidation

Other information

Cod liver oil 100 mg/kg Fat:100 No Darkness,
40 �C

Conjugated dienes and
trienesWater: 0

Liposomes from
cod roe

phospholipids Kristinová et al. (2009)
0.018–
180 mg/kg

5.5 Fat: 1.5 Fe3+ Hb Darkness,
30 �C

Oxygen consumption
Liposomes

made from
marine (cod
roe)

phospholipids
Water: 98.5

Cod liver oil in
water
emulsions

Sørensen
et al. (2008)

100 mg/kg 3
or
6

Fat: 10 FeSO4 Darkness,
20 �C

ESR, PV, volatiles Emulsions made with Tween or
Citrem as emulsifiers Buffer:Water:

90
Washed cod

mince
Larsson and
Undeland
(2010)

Ice storage:
10–1000 mg/
kg

6.3 Fat: 0.6 Hb Darkness. Ice
and frozen
(�20 �C)

PV, rancid odour, loss of
redness, carbonyls,
protein salt solubility,
vitamin EFrozen

storage: 10
and 100 mg/
kg

Water:
87

Horse mackerel
mince

Medina et al.
(2007),
Medina et al.
(2009)

Ice storage:
10–100 mg/
kg

6.7 Fat: 2 No Darkness,
4 �C, �10 �C
and �18 �C

PV, TBARS, volatiles
rancid odour, vitamin E

Frozen
storage:
100 mg/kg

Water:
80

Fitness bar with
fish oil
(Maritex 43–
01) emulsion

Horn et al.
(2009)

75, 150,
300 mg/kg

Fat: 5 No Darkness,
room
temperature

PV, volatiles, sensory,
FAME, vitamin E

Ingredient: brown sugar syrup honey
fig-date mix, wheat flour, rolled oats,
Kelloggs rice krispies raisins and
apricots

Water
added:
2.1

Fish oil emulsion made with sodium
caseinate

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10
Storage time

Max level of oxidation product

Induction period

Rate of oxidation

Fig. 2. Graph illustrating formation of oxidation products such as peroxides, TBARS
or volatiles in a fish lipid matrix. The calculation of the induction period of
oxidation, the rate of oxidation and the maximum level of peroxides, TBARS or
volatiles formed are indicated on the graph.
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Fig. 3. Representative kinetics of the loss of redness and endogenous a-tocopherol
in a fish lipid matrix. The calculation of the induction period of oxidation, the rate of
oxidation and the maximum loss of redness or a-tocopherol are indicated on the
graph.
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water-in-oil emulsions, where water droplets are dispersed in the
continuous oil phase. Emulsification leads to a large increase in the
interfacial area and therefore lipid oxidation is a severe problem in
emulsions. Lipid oxidation mechanisms in emulsions are quite
complex. Hence, lipid oxidation has been shown to be affected by
several factors, amongst which the nature of emulsifiers, the pH
and the partitioning of antioxidants into the different phases are
key factors affecting the reaction rate (Frankel, 1998). Moreover,
interactions between the emulsifier, the antioxidant and metal
ions present in the emulsion have been suggested to affect the effi-
cacy of antioxidants (Sørensen et al., 2008).

Several antioxidants have been proposed for stabilizing oil
emulsions (Frankel, 1998). The hydrophilic and lipophilic charac-
teristics of these compounds largely influence their antioxidant
activity. The capacity to establish hydrophobic and/or hydrophilic
interactions depending on the environment has also been sug-
gested as a key factor for effectiveness in multicomponent foods.
Antioxidants having hydrophobic cores with hydrophilic hydroxyl
groups may be exposed to both or any of the two regions, resulting
in surfactant-like accumulation and activity in water–oil interfaces
(Pazos, Gallardo, Torres, & Medina, 2005).

4.2.1. Activity of caffeic acid in liposomes
Liposomes supplemented with CaA and coumaric acid in the

presence of iron or haemoglobin as prooxidants were subjected
to oxidation during storage at 30 �C for up to 30 min. Oxidative
reaction was followed studying the oxygen uptake rate (Kristinová,
Mozuraityte, Storrø, & Rustad, 2009). Results indicated that CaA
inhibited haemoglobin-induced oxidation at concentrations from
above 0.1 to 1000 lM and was inactive at 0.1 lM CaA. The effi-
ciency had an increasing tendency with increasing CaA concentra-
tion. The percent of inhibition ranged between 30% at 1 lM and
50–57% at 300–1000 lM. Coumaric acid did not exhibit any pro-
tective activity at the tested concentrations. CaA strongly enhanced
iron-induced oxidation at all tested concentrations except for the
lowest concentration (0.1 lM), at which it did not have any signif-
icant effect on the oxidation rate. The prooxidant effect decreased
by using CaA concentrations higher than 200 lM. This prooxidant
activity is the result of the ability of CaA to reduce Fe3+ via the so
called intra-molecular electron transfer at molar ratio P0.1 as dis-
cussed by Kristinová et al., 2009. The reaction releases Fe2+ contrib-
uting to the enhanced lipid oxidation in liposomes. However, CaA
did not exhibit any significant effect when iron was in excess.

When iron is present in great abundance, a total breakdown of
CaA was reported to follow complex formation (Hynes & O’Coince-
anainn, 2004). This could explain the markedly lower prooxidative
activity at 1 lM CaA concentration.

Antioxidative properties of CaA on Hb-mediated oxidation
could be explained by the capability of CaA to form noncovalent
bonds to proteins (Rawel, Meidtner, & Kroll, 2005). It could be as-
sumed that CaA in the aqueous phase of the liposome solution can
enter the heme crevice of Hb and/or bind to ferrylhemoglobin
reducing the oxoferyll moiety to less prooxidative metmyoglobin.

4.2.2. Activity of caffeic acid in emulsions
Table 2 summarises the results obtained by Sørensen et al.

(2008) on the supplementation of CaA to fish oil emulsions pre-
pared with two different emulsifiers, Citrem and Tween at two dif-
ferent pH: 3 and 6. Apart from oxidation assessment, interactions
between the antioxidant and iron were evaluated by UV-spectro-
photometry measurements and by observations of formed nano-
particles by Cryo-TEM. The adsorption of the antioxidant on the
emulsifier surface was also determined.

Oxidation in emulsions was found to increase with decreasing
pH and in the presence of iron. Tween resulted in faster oxidation
than Citrem, despite negative droplet charge of Citrem, which
could be expected to attract iron to the surface and thereby in-
crease oxidation. No significant antioxidant activity of CaA was ob-
served in any of the two types of emulsion. Using Citrem as
emulsifier, CaA showed strong prooxidant activity at pH 3, and
no interactions between CaA and iron were observed. In these
emulsions, iron ions are expected to be localised at the negatively
charged droplet surface. Thus, iron is expected to exist as free me-
tal ions capable of reacting with the hydroperoxides to propagate
oxidation. Results obtained by Deiana, Gessa, Pilo, Premoli, and
Solinas (1995) and Gülçin (2006) showed that CaA was capable
of reducing Fe3+ to Fe2+, thereby propagating lipid oxidation. More-
over, results obtained by Brenes-Balbuena, Garcia-Garcia, and
Garrido-Fernandez (1992) have showed that CaA oxidised in the
presence of iron. This might explain the increased lipid oxidation
in the presence of CaA when iron was present.

Additionally, in emulsions without iron at pH 3, CaA gave lower
levels of peroxides and a significant prooxidative effect on volatiles
formation. This finding suggests that CaA may also reduce low lev-
els of endogeneous Fe3+ iron present in the fish oil or emulsifier
and that endogenous iron in the reduced state (Fe2+) was responsi-

Table 2
Effect of CaA or coumaric acid (100 mg/kg) on lipid oxidation in oil-in-water emulsions with iron added as prooxidant (100 uM) during storage at 20 �C for up to 7 days. The data
are related to controls with no addition of phenolic acids. Adapted from Sørensen et al. (2008).

Measure of lipid
oxidation

Prolongs lag phase Effect on the max level of oxidation by-
products

Effect on rate of oxidation Inhibition at day 5 and 7 (%)

Caffeic acid, Citrem as emulsifier, pH 3
PV No Yes, increased max level Yes, after 2 days rate

increased,
�125

Total volatiles No Yes increased max level Yes, rate increased from day 0 �667
Caffeic acid, Citrem as emulsifier, pH 6
PV Yes, from 0 to ca. 2 days Yes, 80% reduction. Yes, 89% reduction 77
Total volatiles No No No 0

Caffeic acid, Tween as emulsifier, pH 6
PV Yes, from 0 to 2 days Yes, 78% reduction Yes, 86% reduction 78
Total volatiles No Yes, increased max level Yes, increased max level �40
Coumaric acid, Citrem as emulsifier, pH 6
PV No No No 4.5
Total volatiles No No No 16

Coumaric acid, Tween as emulsifier, pH 6
PV No No No �2.8
Total volatiles No No No 6
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ble for promoting formation of volatiles. CaA could also accelerate
the decomposition of hydroperoxides due to its lower redox poten-
tial (E�ROO ¼ 1000 mV;E�CaA ¼ 540 mV). (Choe & Min, 2005; Hotta
et al., 2002).

At pH 6, CaA was able to reduce the amount of peroxides
formed in emulsions containing Tween, but increased the forma-
tion of volatiles. In Citrem emulsions, CaA reduced the formation
of peroxides but had no effect on volatiles. It has been described
that at acidic pHs, iron solubility is higher (Aslamkhan, Aslamkhan,
& Ahearn, 2002), and therefore iron promoted oxidation is ex-
pected to be higher at pH 3 than at pH 6. The latter was observed
in the study by Sørensen et al. (2008).

Coumaric acid had no effect on the formation of peroxides and
volatiles neither in emulsions using Tween nor Citrem. Zeta poten-
tial and UV-measurements did not indicate interactions between
iron and phenolic compounds at pH 3. However, at pH 6, both
CaA and coumaric acid interacted with iron and this interaction
may have resulted in the formation of an iron-polyphenol complex
and nanoparticles. It may be speculated that the interaction be-
tween iron and the phenols may prevent them from acting as free
radical scavengers. However, the finding that the phenolic com-
pounds generally reduced the formation of peroxides and free rad-
icals compared to the control at pH 6 in both Citrem and Tween
emulsions fortified with iron suggests that the phenolic com-
pounds still had free radical scavenging activities, despite the ob-
served interaction with iron. In emulsions where iron catalyses
peroxide decomposition and thereby decreases peroxide value
(PV), a simultaneous increase in volatiles may be expected.

Addition of CaA or coumaric acid decreased peroxide value (PV)
without increasing the formation of volatiles in the Citrem emul-
sions irrespective of the type of phenolic compound, but not in
the Tween emulsions in the presence of CaA. Taken together, these
findings may suggest that the combined ability of both Citrem and
the polyphenols to form complexes with iron prevented iron from
decomposing peroxides. Moreover, it also seemed that CaA lost its
ability to reduce Fe3+ to Fe2+ when Citrem was used, but not when
Tween was used. This might be due to the metal chelating proper-
ties of Citrem.

It was found that neither CaA nor coumaric acid were adsorbed
at the oil–water interface (Sørensen et al. (2008). Both are polar
compounds which remain mainly in the aqueous phase.

4.2.3. Activity of caffeic acid in fish muscle based food
Fish muscle is a complex material where lipid oxidation de-

pends on several factors. In live fish, the oxidative stability is con-
trolled by the balance between prooxidants and antioxidants
(Decker, Livisay, & Zhou, 2000) and by enzymes controlling the
reactive oxygen species. However, after death, a chain of post-mor-
tem reactions changes the prooxidant/antioxidant balance of fish
muscle. These dynamic conditions render procedures aimed to
minimise lipid oxidation difficult since both concentrations and
activities of endogenous oxidants can change significantly. Exoge-
nous antioxidants can interact with the endogenous prooxidants
and antioxidants, provoking changes in their scavenging or reduc-
ing activities.

Amongst the different lipid classes of fish muscle, phospholipids
(membrane lipids) which usually represent �1% of the total lipids
are believed to be the primary subtractes of lipid oxidation leading
to rancidity (Gandemer & Meynier, 1995). This is because of their
high degree of unsaturation, large surface area and the proximity
to oxidation catalysts located in the aqueous cell phases. Recent
studies have revealed that the presence of an exogenous antioxi-
dant at the location where oxidation is initiated or propagated
could be essential for antioxidant efficacy (Caturla, Vera-Samper,
Villalain, Mateo, & Micol, 2003). Therefore, it is suggested to direct
the antioxidant towards membrane lipids instead of triglycerides

for decreasing muscle oxidation. Such directionality seems to be
defined by the antioxidant concentration and the polarity of the
antioxidant carrier solvent (Raghavan & Hultin, 2005).

4.2.4. Activity of caffeic acid in washed cod mince and minced horse
mackerel muscle

Washed fish muscle mince has become a common model for
studying lipid oxidation of fish muscle. It has the structure of mus-
cle, i.e., with intact myofibrillar proteins and membranes, but is
free of most endogenous triacylglycerols, pro- and antioxidants.
An exception is a-tocopherol, which is bound to the cellular mem-
branes. Washed fish mince thus provides an opportunity to study
lipid oxidation as a function of controlled physiological levels of
prooxidants, antioxidants and lipids at different conditions of pH
and moisture (Undeland, Kristinsson, & Hultin, 2004). Table 3 sum-
marises the results found by Larsson and Undeland (2010) follow-
ing the addition of CaA to Hb-fortified washed cod minced muscle.
During ice storage, CaA was found to be an efficient inhibitor of
oxidation. CaA inhibited the formation of peroxides, rancid odour
and loss of redness completely at a concentration of 50 ppm or
more. The threshold was between 15 and 50 ppm. CaA
(P100 ppm) also inhibited the formation of protein carbonyls
and loss of protein salt solubility. No protective effect was ob-
served by 10 ppm CaA on these parameters. Endogenous a-tocoph-
erol was fully protected by 1000 ppm caffeic acid throughout the
storage period, while 10 ppm could only decrease initial degrada-
tion compared to control.

Coumaric acid (50–200 ppm) was not effective for inhibiting li-
pid oxidation. There was a trend that increased concentration of
coumaric acid decreased the rate of PV formation and also slightly
lowered the maximum PV level. The same trend was seen for ran-
cid odour. There was no observed effect on loss of redness by addi-
tion of coumaric acid (50–200 ppm) compared to control.

Regarding storage at �20 �C, CaA (10–100 ppm) could not inhi-
bit formation of peroxides, although the maximum level was de-
creased by �30% compared to control. It was difficult to find
differences in protein carbonyls since there were only quite small
increases in these products in all samples with storage time. There
was no apparent effect of CaA on protein salt solubility where the
effect of freezing overshadowed all possible differences. Further,
CaA could not protect endogenous a-tocopherol during storage.

In minced fish muscle the decrease in particle size, the incorpo-
ration of oxygen and the loss of decompartmentation can acceler-
ate lipid oxidation. Fish mince is thus an excellent model system to
study processing and storage conditions for short storage times.
Table 4 shows the effect of CaA and coumaric acid in chilled and
frozen horse mackerel mince (Medina, González, Iglesias, &
Hedges, 2009; Medina et al., 2007). CaA was highly effective for
preventing oxidation of chilled horse mackerel in a concentration
dependant manner between 10 and 100 ppm (Medina et al.,
2007). CaA P100 ppm, completely inhibited lipid oxidation. CaA
>50 ppm also inhibited the loss of endogenous a-tocopherol in a
concentration dependant manner. Surprisingly, ascorbic acid, a
water soluble endogenous antioxidant present in fish muscle,
was rapidly consumed in presence of increasing amounts of CaA
(Iglesias, Pazos, Andersen, Skibsted, & Medina, 2009). This con-
sumption did not affect the inhibition of lipid oxidation achieved
through the addition of CaA. Coumaric acid was also able to inhibit
oxidation in chilled horse mackerel mince but its effect was lower
than that of CaA (Medina et al., 2007).

Regarding the effectiveness in frozen fish, the antioxidant effi-
cacy of CaA in chilled samples showed higher inhibition of oxida-
tion than in frozen samples. The effectiveness of CaA measured
by the percent of inhibition on the formation of lipid oxidation
products formed did not differ largely between storage at �10
and �18 �C.
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These results indicated that CaA was a very active antioxidant
for horse mackerel mince and retarded both degradation of endog-
enous a-TOH and propagation of lipid oxidation measured as
hydroperoxides, volatiles and TBARS. Its efficacy was highly related
to its capacity for donating 12.2 lmol electrons/mg antioxidant
and showed increasing effect with increasing CaA addition (10–
100 ppm). The effect of CaA on the endogenous reducing agents

present in fish muscle provoked a significant protection of the fish
muscle stability. A redox recycling reaction amongst CaA, ascor-
bate and tocopherol has been demonstrated (Iglesias et al., 2009).
Degradation of endogenous ascorbate (AscH�) was accelerated at
higher concentration of CaA in fish tissue, suggesting a role of AscH�
in regeneration of CaA analogous to the observed regeneration of
a-TOH by AscH� in biological systems. Such reaction is thermody-

Table 3
Ice/Frozen storage. Effect of CaA or coumaric acid on lipid oxidation in washed cod mince with haemoglobin (Hb) added as prooxidant (20 lM) during storage at 0�C for up to
10 days in chilled samples and during storage at �20 �C for up to 14 weeks in frozen samples. The data are related to controls with no addition of phenolic acids. Adapted from
Larsson and Undeland (2010).

Measure of lipid oxidation Prolongs lag phase Effect on max level Effect on rate Effect of AUC (area under the curve)

Caffeic acid, 10 ppm, chilled
PV Yes, 0,06 days No No 9% Reduction
Rancid odour Yes, 0.5 days Yes, 12% reduction No 7% Reduction
Carbonyls No No No
Solubility No No No
Redness Yes, 0.7 days No No
a-Tocopherol No No Yes, 43% reduction 3% Reduction

Caffeic acid, 15 ppm, chilled
PV Yes, 1.5 days Yes, 41% reduction Yes, 74% reduction 72% Reduction
Rancid odour Yes, 1.6 days Yes, 18% reduction Yes, 25% reduction 20% Reduction
Redness 1.1 days No Yes, 69% reduction

Caffeic acid, 50 ppm, chilled
PV Yes, no oxidation Yes, 99% reduction Yes, no oxidation 99% Reduction
Rancid odour Yes, no oxidation Yes, 98% reduction Yes, no oxidation 98% Reduction
Redness Yes, no oxidation Yes, no oxidation Yes, no oxidation

Caffeic acid, 100 ppm, chilled
PV Yes, no oxidation Yes, 99% reduction Yes, no oxidation 99% Reduction
Rancid odour Yes, no oxidation Yes, no oxidation Yes, no oxidation 99% Reduction
Carbonyls Yes, no oxidation Yes, no oxidation Yes, no oxidation
Solubility Yes, no oxidation Yes, no oxidation Yes, no oxidation
Redness Yes, no oxidation Yes, no oxidation Yes, no oxidation
a-Tocopherol

Caffeic acid, 200 ppm, chilled
PV Yes, no oxidation Yes, 99% reduction Yes, no oxidation 99% Reduction
Rancid odour Yes, no oxidation Yes, no oxidation Yes, no oxidation 96% Reduction
Redness Yes, no oxidation Yes, no oxidation Yes, no oxidation
a-Tocopherol Yes, no oxidation Yes, no oxidation Yes, no oxidation

Caffeic acid, 1000 ppm, chilled
PV Yes, no oxidation Yes, 99% reduction Yes, no oxidation 100% Reduction
Rancid odour Yes, no oxidation Yes, no oxidation Yes, no oxidation 100% Reduction
Carbonyls Yes, no oxidation Yes, no oxidation Yes, no oxidation
Solubility Yes, no oxidation Yes, no oxidation Yes, no oxidation
Redness Yes, no oxidation Yes, no oxidation Yes, no oxidation
a-Tocopherol Yes, no oxidation Yes, no oxidation Yes, no oxidation 100% reduction

Coumaric acid, 50 ppm, chilled
PV Yes, 0.02 days Yes, 11% reduction Yes, 13% reduction 12% Reduction
Rancid odour Yes, 0.07 Yes, 16% reduction Yes, 30% reduction 12% Reduction
Redness No No No

Coumaric acid, 100 ppm, chilled
PV Yes, 0.03 days Yes 17% reduction Yes, 23% reduction 19% reduction
Rancid odour Yes, 0.10 Yes, 28% reduction Yes, 39% reduction 25% reduction
Redness No No No

Coumaric acid, 200 ppm, chilled
PV Yes, 0.11 days Yes 17% reduction Yes, 74% reduction 37% Reduction
Rancid odour Yes, 0.20 Yes, 25% reduction Yes, 56% reduction 25% Reduction
Redness No No No

Caffeic acid, 10 ppm, Frozen
PV Yes, 0.37 weeks Yes, 28% reduction No 25% Reduction
Carbonyls No No No
Solubility No No No
Redness Yes, not measured Yes, 19% reduction Missing
a-tocopherol No No Yes, 42% reduction 1% Reduction

Caffeic acid, 100 ppm, Frozen
PV Yes, 0.61 weeks Yes, 34% reduction Yes, 20% reduction 43% Reduction
Carbonyls No No No
Solubility No No No
Redness Yes, not measured Yes, 23% reduction Yes, 51% reduction
a-Tocopherol No No Yes, 77% reduction 3% Reduction
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namically feasible considering the low reduction potential of AscH�
(E = 0.28 V), which enables to repair oxidising free radicals with
greater reduction potential, including CaA (E = 0.54 V). Electron
spin resonance (ESR) spectroscopy experiments have confirmed a
higher capacity of CaA to regenerate a-TOH via reduction of the
a-tocopheroxyl radical compared to other cinnamic acid deriva-
tives (o-coumaric, ferulic and chlorogenic acids (Iglesias et al.,
2009).

Redox cycles can be limited by an effective contact between
oxidants and reductants in order to establish redox interactions.
CaA is localised at the phospholipid-water interface of biological
membranes, a-TOH is mostly located in the outer monolayer with
the chromanol ring oriented to the aqueous phase, and the hydro-
philic AscH�is localised in the water phase. Therefore, this localisa-
tion of CaA facilitates both interactions with a-TOH and AscH� in

muscle tissues. The entire process results in a stronger antioxidant
protection against lipid oxidation by favouring, as a final point, the
protection of a-TOH, which is suggested as the last defence of fish
muscle against lipid oxidation.

In the washed cod mince system, aqueous components such as
ascorbic acid were lost during the washing steps. Therefore, the re-
dox cycle is denied and this could explain the minor CaA effective-
ness found in this system at frozen temperatures compared with
minced unwashed fish muscle.

The antioxidant ability of CaA in horse mackerel mince was
highly dependent on the antioxidant/lipid substrate ratio in horse
mackerel mince. CaA-concentrations below 100 ppm seemed to be
sufficient to significantly inhibit the progress of lipid oxidation
when the lipid content was 6 2%. When the lipid concentration
wasP2%, the antioxidant effectiveness of CaA showed a significant

Table 4
Effect of CaA or coumaric acid on lipid oxidation in minced horse mackerel muscle (100 uM) during storage at 4 �C for up to 10 days and during frozen storage at �10 �C and
�18 �C. The data are related to controls with no addition of phenolic acids. Adapted from Medina et al. (2007) and Medina et al. (2009).

Measure of lipid oxidation Prolongs lag phase Effect on max level Effect on rate Average inhibition during the propagation phase

Caffeic acid, 10 ppm, chilled
PV No Yes, 75% reduction Yes, 70% reduction 75% Reduction
TBARS Yes, from 2 to 4 days Yes, 66% reduction Yes, 88% reduction 63% Reduction
a-Tocopherol Yes Yes, 17% maintained Yes, 15% reduction 100% Reduction
Ascorbic acid Yes Yes, 27% maintained No No

Caffeic acid, 25 ppm, chilled
PV Yes, from 0 to 4 days Yes, 72% reduction Yes, 70% reduction 77% Reduction
TBARS Yes, from 0 to 4 days Yes, 66% reduction Yes, 90% reduction 59% Reduction
a-Tocopherol Yes Yes, 41% maintained Yes, 47% reduction 100% Reduction
Ascorbic acid Yes Yes, 41% maintained No No

Caffeic acid, 50 ppm, chilled
PV Yes, from 0 to 4 days Yes, 80% reduction Yes, 72% reduction 80% Reduction
TBARS Yes, from 0 to 4 days Yes, 66% reduction Yes, 91% reduction 54% Reduction
a-Tocopherol Yes Yes, 65% maintained Yes, 53% reduction 100% Reduction
Ascorbic acid Yes Yes, 20% maintained Yes, �52% No

Caffeic acid, 100 ppm, chilled
PV Yes, from 0 to the end of the experiment Yes, no oxidation Yes, no oxidation 99% Reduction
TBARS Yes, from 0 to the end of the experiment Yes, no oxidation Yes, no oxidation 98% Reduction
a-Tocopherol Yes Yes, 100% maintained Yes, no oxidation 100% Reduction
Ascorbic acid Yes Yes, 1% maintained Yes, �93% No

Caffeic acid, 200 ppm, chilled
PV Yes, from 0 to the end of the experiment Yes, no oxidation Yes, no oxidation 100% Reduction
TBARS Yes, from 0 to the end of the experiment Yes, no oxidation Yes, no oxidation 100% Reduction

Coumaric acid, 100 ppm, chilled
PV Yes, from 0 to 2 days Yes, 67% reduction Yes, 40% reduction 70% Reduction
TBARS Yes, from 0 to 2 days Yes, 66% reduction Yes, 68% reduction 55% Reduction

Caffeic acid, 100 ppm, �10 �C
PV No Yes, 30% reduction Yes, 48% reduction 52% Reduction
TBARS No Yes, 27% reduction Yes, 50% reduction 43% Reduction
Protein solubility No No No No
Protein aggregation No No No No
Water Distribution No No No No

Coumaric acid, 100 ppm, �10 �C
PV No No No 17% Reduction
TBARS No No No 1.5% Reduction
Protein solubility No No No No
Protein aggregation No No No No
Water Distribution No No No No

Caffeic acid, 100 ppm, �18 �C
PV No Yes, 37% reduction Yes, 34% reduction 36% Reduction
TBARS No Yes, 18% reduction Yes, 25% reduction 22% Reduction
Protein solubility No No No No
Protein aggregation No No No No
Water distribution No No No No

Coumaric acid, 100 ppm, �18 �C
PV No No No �8%
TBARS No No No �2%
Protein solubility No No No No
Protein aggregation No No No No
Water distribution No No No No
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reduction which confirms that a phenolic compound to lipid ratio
of 1:200 is needed for optimal antioxidant effect (Medina et al.,
2009).

Antioxidant effectiveness of CaA was also dependent on the
physical state of the horse mackerel mince, chilled or frozen (Med-
ina et al., 2009). In general, the effectiveness of CaA was lower in
frozen than chilled fish. There were no large differences in the rel-
ative inhibition provided by CaA between �10 �C and �18 �C sto-
rages. Freezing temperatures can reduce the diffusion of the
compounds to oxidation sensitive sites such as membranes (Fran-
kel, 1998). At low temperatures, diffusion is lower, and may be slo-
wed further due to a higher resistance of the tissues to mass
transfer (Ramesh & Duda, 2001). In frozen systems the non-frozen
fraction may be highly viscous, and diffusion may become a limit-
ing factor in some reactions. In addition, protein aggregation and
denaturation occurring during frozen storage could modify the sur-
face of membranes and then reduce the interaction of CaA with
membranes. The capacity of antioxidants to induce changes in
membranes and provoke dehydration effects has been related to
decrease of the accessibility of prooxidant molecules into the
hydrocarbon chain of PUFAs, hindering lipid radical propagation
inside the chains (Maestre, Micol, Funes, & Medina, 2010).

Results obtained by Larsson and Undeland (2010) showed that
CaA was an excellent inhibitor of Hb-mediated oxidation in
washed cod mince, however, it did not prevent Fe-mediated oxida-
tion in this system (Jacobsen et al., 2008). These results were in
agreement with the above mentioned studies on liposomes (Kristi-
nová et al., 2009) in which a CaA mediated-reduction of Fe3+ to the
more active Fe2+ has been cited.

CaA has been demonstrated to inhibit protein carbonyl forma-
tion and loss of salt solubility in chilled washed cod mince (Larsson
& Undeland, 2010). However, during frozen storage, salt solubility
losses were not prevented in this system. In frozen minced horse
mackerel, no support was found suggesting that CaA provoked a
reduction on loss of salt solubility, protein aggregation or water
holding capacity (Medina et al., 2009). Protein aggregation was
not accompanied by gross protein denaturation. These data
showed no evidence of a direct relationship between prevention

of lipid oxidation in frozen fatty fish due to the addition of a highly
polar antioxidant as CaA and reduced texture deterioration.

4.2.5. Activity of caffeic acid in a fish oil fortified fitness bar
Table 5 shows the results obtained from the application of CaA

to fish oil fortified fitness bar (Horn, Nielsen, & Jacobsen, 2009).
CaA showed a high prooxidant activity demonstrated by the pro-
motion of peroxides, volatiles, as well as rancid odour and taste.
It also increased the consumption of tocopherol. The prooxidative
effect of CaA was suggested to be due to its ability to reduce Fe3+

to Fe2+, but the hydrophilic nature of CaA and its possible location
outside the oil droplet may also have affected its activity. Thus, it is
expected that after emulsification of the oil–water emulsion deliv-
ery system, CaA was mainly partitioning into the water phase,
although it to some extent may have adsorbed to the oil–water
interface. When the emulsion is poured into the energy bar dough,
CaA is expected to be located outside the oil droplets, and thus be
in close proximity to the transition metal ions present in the other
ingredients. These metal ions will subsequently catalyse oxidation.
The content of iron was found to be relatively high in the energy
bars, and this could also support the hypothesis, that a prooxida-
tive effect of CaA is related to the reduction of transition metal
ions. Moreover, if CaA becomes oxidised itself, other phenolic com-
pounds present in ingredients like rolled oats and raisins may use
their antioxidative capacity to regenerate CaA instead of lipid rad-
icals. This will reduce the antioxidative effect of these other pheno-
lic acids. However, the actual availability of iron in the energy bars
as well as the actual location of iron and CaA in the energy bars de-
serve further investigation.

5. Conclusions

CaA has been demonstrated to act as an effective antioxidant in
fish minces stored at cold temperatures. In the fish muscle based
studies reviewed, the antioxidant effectiveness of CaA was higher
than that showed by other hydroxycinnamic acids such as
o-coumaric acid, ferulic acid and chlorogenic acid. Interestingly,

Table 5
Effect of CaA (75, 150 or 300 mg/kg) on lipid oxidation on fitness bars enriched with 5% fish oil stored up to 10 weeks. The data are related to controls with no addition of phenolic
acids. Adapted from Horn et al. (2009).

Measure of lipid oxidation Prolongs lag
phase

Effect on max level Effect on rate % Inhibition after 10 weeks of storage

PV No Yes, increase max
level

Yes, increase rate from start of
experiment

75 ppm: �21%
150 ppm: �33%
300 ppm: �13%

Volatiles exemplified by 1-
penten-3-ol

No Yes increase max
level

Yes, rate increased from day 0 75 ppm: �190%
150 ppm: �640%
300 ppm: �380%
All after 10 weeks of storage

Rancid odour and taste No Yes, increase max
level

Yes, rate increase from day 0 75 ppm:
Rancid odour: �56%
Rancid taste: �37%
300 ppm:
Rancid odour: �29%
Rancid taste: �23%
150 ppm not evaluated
All after 10 weeks of storage

a-Tocopherol Yes, alpha and gamma (slightly) tocopherol
consumption increased
The consumptions from week 0 to week 10 were (lg/
g):
Control: 56 (a), 0 (c)
75 ppm: 59 (a), 11 (c)
150 ppm: 72 (a), 5 (c)
300 ppm: 75 (a), 7 (c)
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the antioxidant activity of CaA was very different in bulk fish oil,
fish oil-in-water emulsions and cod roe phospholipid liposomes
in which the CaA was scarcely active against lipid oxidation. Thus,
the studies reviewed here show that the capacity of CaA to protect
marine lipids against oxidation is highly dependent on the physical
state of the marine lipids, and also the intrinsic medium in which
they are found. CaA can significantly prevent oxidation fish muscle
foods and is clearly a strong inhibitor against Hb-mediated oxida-
tion. However, its activity in food emulsions and liposomes is highly
dependent on the pH, the emulsifier used and the prooxidants pres-
ent; together with low molecular weight Fe, CaA is rather a pro-
than antioxidant and thus should be used with caution.
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