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Abstract 
 

 Genetically engineered bacteria, especially Escherichia coli, find applications in both 

university and industry-based research; one important purpose being heterologous 

production of proteins. Experiences from empiric genetic engineering strategies in pursuit of 

maximizing or, generally speaking, modulating protein production levels have demonstrated 

that results are often unpredictable. Even after several decades of research in this field, the 

complex interplay of the many different genetic and physiological parameters that affect 

protein production levels are still not fully understood. Among the various expression 

vectors, mini-RK2 replicons containing the positively regulated xylS/Pm system can be 

used in E. coli and other Gram-negative bacteria. Using recombinant E. coli strains 

harboring these vectors as a basis, the influence of different genetic and physiological 

parameters on recombinant gene expression was systematically compared during this PhD 

project.  

 The first parameter studied was how different regulated promoter systems influence 

expression. Interestingly, a survey of the scientific literature indicated that the performance 

of commonly used expression systems such as LacI/PT7lac, LacI/Ptrc, and AraC/PBAD, (and 

also XylS/Pm) had to a very limited extent been properly and systematically compared to 

each other. Such a comparison was selected as one objective of this PhD project. Given a 

common vector backbone and expression system insertion points, this comparison made it 

possible to understand the influence of the systems on production of different selected 

proteins. This study confirmed that no system was superior to meet all requirements an 

ideal system should have. However, it was possible to recommend certain systems for 

different expression purposes. The LacI/PT7lac system, for example, was still best suited for 

achieving most total production judged by the vast amount of accumulated transcript and 

total recombinant protein. As for production of soluble (and active) protein, however, use of 

a variant of XylS/Pm (XylS/Pm ML1-17) or AraC/PBAD were more beneficial for some 

proteins. The plasmid vector tools developed for this study may be used in future studies to 

analyze limiting factors for production of in principle any specific protein, including 

production in an active form. 

 The second genetic parameter included in the systematic studies was the DNA 

region corresponding to the 5 -UTR of mRNA. My findings demonstrate that 5 -UTR DNA 

sequences with strong RBS (like the PT7lac UTR), could enhance protein (here: -lactamase) 

production from XylS/Pm (7-fold) compared to the Pm 5 -UTR. Still, Pm 5 -UTR DNA 
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sequences that were obtained by combinatorial mutagenesis and screening approaches 

gave rise to even higher protein amounts (up to 20-fold). Also, the relative changes could 

not be predicted using current sequence analysis tools. Prior to this study, it was already 

shown that a 5 -UTR DNA region plays a key role in expression due to its involvement in 

transcription, translation and transcript stability. Therefore, it was hypothesized that one 

cannot study the effect of 5 -UTR DNA regions on protein production based on parameters 

influencing translation only (e.g. length of a Shine-Dalgarno sequence). To determine 

sequence features that influence transcription and to distinguish them from features 

influencing translation, combinatorial mutagenesis and screening using two efficient vector 

tools was applied. The new 5 -UTR DNA regions identified with these tools led to primarily 

stimulated transcript accumulation or protein production indeed, but it was not possible to 

identify positional hot-spots for mutations that specifically influenced either process. It was 

however possible to combine a 5 -UTR DNA region carrying mutations that primarily 

stimulated transcript accumulation with a 5 -UTR DNA region whose mutations primarily 

stimulated translation The total improvement achieved by this strategy was an impressive 

170- fold compared to the native 5 -UTR. It can also be possible to adjust this 5 -UTR DNA 

region to other promoters and to other coding regions in the future. Hopefully, this strategy 

will enable more rational design in recombinant protein expression.   

 Among the remaining parameters that were varied, it was not surprisingly growth 

temperature, inducer concentration and plasmid (and indirectly gene) copy number that 

influenced recombinant protein production. This latter parameter also influenced culture 

heterogeneity at the single-cell level. 

 The last parameter that this work focused on was the qualitative influence of the 

expression host on the final product. Certain proteins are prone to be problematic for 

functional expression in E. coli even independent of the expression levels, the growth 

conditions or the protein engineering strategies. This was demonstrated by the example of 

the two difficult-to-express Norwegian Salmonid alphavirus E1 and E2 capsid proteins. 

Therefore, exploring the use of alternative bacterial hosts was considered; Pseudomonas 

putida, the organism XylS/Pm originates from, as well as cold-adapted members of the 

genus Pseudomonas. Vectors developed in this project were suitable to be directly 

transferred to these hosts; and at least for one protein (mCherry), even higher protein 

production levels could be achieved in P. putida compared to E. coli. The cold-adapted 

Pseudomonas strains also showed potential to be used as expression hosts for certain 
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proteins, however, slow growth and low expression levels demonstrated the need to 

engineer these novel hosts further in the future. 

 The findings presented in this work not only expand our current understanding of 

gene expression in general, but also help to approach the goal to optimize bacterial 

recombinant protein production in a more rational manner than is currently possible.  
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1 Introduction  
 

 Bacterial recombinant gene expression is a very general term and implies the use 

cloning and transformation techniques to insert foreign DNA into a heterologous bacterial 

host which is thereby enabled to produce the corresponding recombinant product (mostly 

protein). Since the birth of recombinant DNA technology in the 1970th [1] this field has 

spread into many different research areas studying gene expression in species across the 

whole kingdom. Genetic engineering with the aim to modify a cell's biosynthetic machinery 

is a well-established practice. Motivating factors for further improvements of existing and 

development of novel expression platforms come from both academic research and 

different industries covering the biopharmaceutical, industrial biotechnology, agricultural, 

environmental, chemical and bioenergy sectors, with typical products ranging from 

monoclonal antibodies [2], laundry detergents [3], improved cellulose-degrading 

microorganisms [4] and biosensors [5] to antioxidant pigments [6] and food supplements 

such as amino acids [7]. In the following chapter, some of the most important applications 

of recombinant gene expression will be presented and special attention will be paid to 

classic use in overexpression of single genes as well as applications in other modern 

research disciplines. Afterwards, an overview over the current biological and 

computational tools used to engineer bacterial host strains will be given. In the second 

chapter, the focus lies on regulation of gene expression and how different genetic parts 

are combined to achieve certain expression outputs highlighting the role of the 5 -

untranslated region (5'-UTR) due to its multiple functions in control of gene expression. 

This chapter will also explain some of the challenges associated with design and 

predictability of novel gene expression tools.  

 

1.1 Applications of bacterial recombinant gene expression  
 
1.1.1 Recombinant protein production 
 

 Many biomolecules that are of interest to the industry or academic research like 

active pharmaceutical ingredients (APIs) in pharmaceutical drugs or restriction enzymes 

for cloning are only available in insufficient quantities in nature and they needed to be 

extracted and purified from large amounts of starting material in the past. The 

development of recombinant DNA technology, however, enabled researchers to turn 
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bacteria [8] (and over time also species from all kingdoms [9,10]) into production factories 

for heterologous proteins and other biomolecules instead. As an example taken from 

academic research, structural biologists require up to several milligrams of pure proteins 

to resolve their three-dimensional structure by X-ray crystallography or NMR spectroscopy 

[11]. Independent of the final use, the basis is a suitable production host that is usually 

developed using genetic engineering strategies. The five most common expression hosts 

(based on number of registered publications) are the bacterium Escherichia coli, insect-

cell lines derived from Spodoptera frugiperda, the yeast Pichia pastoris, Chinese hamster 

ovary (CHO) cell lines and the yeast Saccharomyces cerevisiae [12]. Looking at the 

pharmaceutical market in the year 2009, when this thesis was initiated, ~39% of the 

protein-based recombinant pharmaceuticals licensed up by the Food and Drug 

administration (FDA) and European Medicines Agency (EMEA) were produced by 

mammalian cells, ~30% by E. coli, ~19% by S. cerevisiae, ~11% by hybridoma cells 

leaving ~1% to transgenic goat milk and insect cells [13]. Over half of the industrial 

enzymes were made by yeasts and molds (e.g. Kluyveromyces lactis, Saccharomyces 

cerevisiae, Aspergillus niger and Trichoderma reesei), with bacteria (e.g. E. coli and 

different Bacillus systems) producing about 30%. Animals provided 8% and plants 4% 

[14]. Finding an appropriate host for a protein production process is a multi-factorial 

challenge and the choice can be based on the requirement of the final product for 

example. The requirements can include protein yield, ability to secrete proteins, ability to 

correctly process the protein as well as time and effort required in the upstream and 

downstream processes [14]. For this work, the use of expression tools restricted itself to 

the important production host E. coli, and, as alternative hosts, both mesophilic and cold-

adapted members of the genus Pseudomonas. Therefore important applications using 

mainly E. coli and other Gram-negative bacteria will be addressed.  

 What makes E. coli and other bacteria the preferred hosts are their rapid growth 

rates, their potential to be easily modified by well-characterized genetic tools, low media 

costs and potentials to achieve high protein production levels [10]. There are examples 

described where the accumulated heterologous protein accounted for a high fraction (up 

to 50%) of the total cellular protein [15,16]. These advantages are also reflected by the 

high fraction of publications and pharmaceutical proteins produced using this host. 

Maximization strategies for recombinant protein production at the DNA level typically 

involve gene design [17], choice of a regulated promoter [18], a suitable ribosome binding 

site (RBS) [19], a fusion partner (FP) for translocation [20,21], solubility enhancement [22], 
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specific detection or affinity purification [23] and adjustment of the gene dosage [24] 

amongst others [21]. Even though there are many tools available, advanced efforts can go 

into the direction of further improvements of these parameters like optimizing an RBS 

[25,26], improving the promoter [27,28], generating more efficient transcriptional 

regulators [29,30] and stabilizing the transcript [31]. With all these potential strategies in 

mind, one can envision the complexity behind the task to maximize production of 

recombinant proteins. And these efforts do not even include protein engineering, host 

strain engineering, optimization of the fermentation conditions and downstream 

processing efforts. Process developments often start broad from the parameter 

perspective and might even involve screening of mutant libraries. Current efforts for 

overproduction of proteins either thrive to make early efforts in process development 

amenable to high throughput screening (HTS) efforts and/or to make the early stages less 

complex by narrowing down the number of variants to test in an expression cassette. 

 

1.1.2 Metabolic engineering 
  
 In metabolic engineering single enzymes, partial or even complete metabolic 

pathways are modified in an organism or even transferred from one organism to another 

to metabolize a novel compound, to create a novel product or to change the metabolic 

flow within a cell through modification of existing pathways [32]. The engineering part of 

this field is to predict which modifications to perform and to suggest a strategy to control 

the desired output. One important goal for example is to achieve a certain ratio between 

the numbers of enzymes present in a cell. This is desired in order to facilitate a balanced 

flow of metabolites through a metabolic pathway. As opposed to protein overproduction, 

metabolic engineering depends on production of adequate, not maximal, amounts of 

proteins. An important reason for this is that overexpression of certain genes within a 

pathway can cause metabolite drainage. In addition, bottlenecks can be caused for 

example when an enzyme is present in low abundance causing an intermediate product to 

accumulate (for a review see [33]). This might lead to a feedback response within the 

metabolic pathway, toxicity caused by an intermediate product or other undesired effects 

that can influence growth or the yield of the final product. To avoid imbalances, one of the 

most common strategies is to adjust the protein production levels by changing the 

regulatory elements of the expression cassette. As an example, genes coding for 

enzymes that act consecutively in a metabolic pathway can be arranged in synthetic 

operons and their expression levels can be controlled by adjusting the RBS, RNase sites 
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and the mRNA secondary structures within the intergenic regions [34,35]. Another 

successful strategy that has been applied was the coupling of different enzymes in 

appropriate ratios to a protein scaffold [36]. Whichever strategy might be chosen, this area 

of research will also benefit from advances in genetic engineering to make pathway 

engineering more rapid, less costly and more predictable in the future [37].  

 

1.1.3 Synthetic biology 
  
 Current synthetic biology applications focus on the adaptation of engineering 

principles to biological systems to understand them better, to improve cellular functions or 

to create functions that are new to nature. One approach to understand biological systems 

is to develop genetic circuits that resemble electronic networks. In these circuits, signals 

might come from the extracellular environment or even from the cell’s own metabolism in 

which case circuits were designed to form oscillators [38]. A good example for implying a 

circuit in a simple manner is one with a sensor function in which a cell is enabled to detect 

a signal from the environment and converts this event into a cellular response like 

expression of a fluorescent reporter gene. One more complex example that has caught 

attention in the scientific community is the recombinase example by Siuti et al. [39] in 

which logic and biologic memory were combined. In this case, two different input signals 

in form of two different molecules activate expression of two different recombinases. The 

respective recombinase recognition sites were placed around the genetic elements of an 

expression cassette consisting of a promoter, a terminator and a gfp reporter gene. In 

presence of the signaling molecules, the recombinases either excised or switched 

orientation of the genetic elements and thereby created a lasting effect at the DNA level. 

By arranging these elements in certain orders, different GFP readings could be observed 

depending on the logic functions implied in this gate. Despite the use of engineering 

terms, the basis is still recombinant gene expression where promoters, transcriptional 

regulators and reporter genes are connected to fulfill a logic function. Genetic engineering 

for synthetic biology application can aid in generation of more precise and reliable circuits 

by designing effector- and DNA-binding specificities of transcription factors, by modifying 

protein-protein interactions or by creating novel transcription factors with multiple 

functions. 
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1.2 The modern genetic engineering tool box with special 
emphasis on the particular tools used in this thesis 

 

 Over the past decades molecular biologists have developed a range of tools that 

represent the basis for modern genetic engineering purposes. Generally, bacteria 

harboring plasmids that contain an expression cassette (Figure 1.1) are used as 

platforms to express heterologous genes although integration of the expression cassette 

into the chromosome or cell-free expression systems without the cellular environment are 

possible alternatives [40,41].  

 

    
Figure 1.1: Overview of the arrangements of the most relevant genetic elements on 
a plasmid that can be modified to change expression of a gene of interest. 
Commonly the use of a regulated promoter is preferred. The product of the regulator gene 
(with its own promoter, 5 -UTR, 3 -UTR and terminator) might act positively (transcriptional 
activator) or negatively (transcriptional repressor) on transcription from the promoter. It 
binds to its own recognition sites within the promoter, upstream of the promoter or within 
the 5 -UTR. A transcript is formed which consists of the 5 - UTR - including the initial 
transcribed sequence (ITS) and typically a Shine-Dalgarno (SD) sequence - , the coding 
region of a gene of interest and the 3 -UTR. The translated target protein might have an N-
terminal and/or C-terminal fusion partner (FP). The origin of replication determines the 
plasmid copy number and thereby the number of copies of the gene of interest. In 
bacteria, selection of the plasmid is usually accomplished by antibiotic resistance markers.  
 

I would like to stress at this point that during this thesis the term ‘ribosome binding site’ 

(RBS) will be distinguished from the term ‘Shine-Dalgarno’ (SD) sequence. RBS will be 

used to describe a region at the mRNA level which is covered by the ribosome during 

translation initiation including the SD sequence and the start codon as well as nts within 

the 5 -UTR and the 5  proximal end of the coding region.  

 The common arrangement of a regulated promoter, a 5 -UTR, a coding region and 

a terminator can be expanded by inserting multiple coding regions under control of the 

promoter. These so-called synthetic operons are beneficial in co-expressing several 

genes in accordance with naturally occurring bacterial operons. Another extension could 
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be to subject the promoter or regulator to a more complex control mechanism like the 

combination of the T7 promoter with the lac operator in pET vectors. Further options are 

to include a second origin of replication for plasmid maintenance in other hosts (in shuttle 

vectors) or to insert elements that facilitate transfer of an expression cassette to the 

chromosome. In order to understand the function of the different genetic elements, an 

overview over the most relevant replicon types, regulated promoters and modifications of 

coding regions of a gene of interest for this thesis will be presented. 

 

1.2.1 Replicon types 
 
 Propagation of plasmids within a bacterial cell is facilitated by an origin of 

replication found on the plasmid, a replication initiation (Rep) protein which is mostly 

encoded by the plasmid as well as additional factors supplied by the plasmid and the host 

[42]. Which type of plasmid replication system is used determines the host range [43], the 

gene dosage [44], the compatibility with other plasmids [45], the stability within a bacterial 

population [46] and the heterogeneity by which the plasmid molecules are distributed 

amongst the daughter cells [47]. Concerning the host-range, there are replicon types that 

greatly rely on host enzymes during initiation and thereby often replicate in only a few 

hosts. Plasmids whose replication is initiated by host independent initiation factors on the 

other hand have a rather broad host range [42,48].  

 The mechanism by which the number of plasmids per cell is maintained directly 

determines the number of DNA copies of the gene of interest per cell which in turn affects 

the protein production level. This number depends both on the type of replicon and the 

host [49]. Interesting approaches to control the copy-number are not to use plasmids with 

a fixed range of copies per cell, but rather maintaining the plasmid at a single copy per cell 

until protein production is initiated and the copy-number is elevated [50]. 

 Maintenance of two or more types of plasmid is not uncommon in recombinant 

gene expression. Coresidence of several plasmids is desired for example for 

coexpression of chaperones [51], rare tRNAs [52] or even other genes of interest [53]. 

Essential for co-existence of several types of replicons in one cell is that these belong to 

different incompatibility (Inc) groups [54].  

 Plasmid loss is a phenomenon associated with overproduction of recombinant 

proteins from plasmids with high copy-numbers [46]. Simultaneous maintenance of a 

plasmid and overexpression of the antibiotic resistance gene and the gene of interest 
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(GOI) impose a metabolic burden on the cell redirecting cellular resources towards the 

maintenance and processing of foreign DNA [55]. A consequence of this might be 

segregational instability leading to accumulation of plasmid-free cells in a bacterial 

community that often gain a growth advantage over plasmid-containing cells. In addition to 

selection markers, plasmid stabilization elements such as the cer locus or post-

segregational killing systems like hok/sok can be inserted to ensure successful plasmid 

propagation to all daughter cells or killing of plasmid-free cells [56,57]. 

   

RK2 
 RK2 [58] and its derivatives belong to the IncP  group of plasmids which are 

known to replicate in a broad range of bacteria [59]. In order to make the replicon 

applicable for recombinant gene expression, the original RK2 plasmid was dramatically 

reduced in size. Derivatives of RK2, the so-called RK2-mini replicons [60], contain the 

essential elements for replication. These elements comprise the trans-acting replication 

function trfA gene encoding the replication initiation protein TrfA and oriV, the cis-acting 

origin of vegetative replication [61]. In addition these plasmids harbor the origin of transfer 

oriT which allows for the conjugative transfer of the plasmid to other microorganisms [62]. 

Host factors required for RK2 plasmid propagation in E. coli are the host initiation factor 

DnaA, the accessory HU protein, the helicase DnaB, the helicase accessory protein 

DnaC, the single stranded DNA-binding protein SSB, the primase DnaG, the DNA 

polymerase III and DNA gyrase [63,64]. The minimal replication origin oriV comprises a 

DNA region consisting of four DnaA binding boxes followed by five TrfA binding iterons, 

an AT-rich region and a GC-rich region. In order for replication to take place, TrfA and 

DnaA must bind to their respective binding sites for strand-opening at the AT-rich site to 

happen. A DnaB-DnaC complex is recruited to oriV leading to template unwinding (for 

more information, see [65]). Further details on formation of the replication complex and 

DNA synthesis are not known. TrfA has got a second important role besides replication 

initiation in which its ability to form dimers plays an important role. The handcuffing 

mechanism serves as a model to explain plasmid copy-number control. According to this 

model two RK2-based plasmids are coupled by direct interaction of iteron-bound TrfA 

molecules [61]. Thereby, further replication is inhibited through steric hindrance [65]. The 

copy-number of the original mini-RK2 plasmids is four - seven in E. coli and two - three in 

P. putida [66]. However, copy-up variants of trfA that are less sensitive to intermolecular 

coupling were identified [67] among which trfA cop271C (17-19 copies per cell [40,68]), 
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cop251M (31-33 copies per cell [68]) and cop254C (77-89 copies per cell [69]) were 

tested in our laboratories.   

 Besides the essential regions for replication, RK2 contains further control regions. 

These elements enable the plasmids to co-localize in specific subcellular positions, 

resolve multimers that are formed during replication and ensure that each daughter cell 

receives at least one plasmid copy [70,71]. Active partitioning systems encoded by E. coli 

plasmids make plasmids localize in characteristic mid- and quarter-cell positions of the 

bacterial cell while deletion of the corresponding DNA region results in random clustering 

of plasmids at the cell poles or the mid-cell position outside of the nucleoid [72,73]. The 

corresponding locus in RK2 comprises the OB1incC korB region of RK2 [70]. This region is 

able to re-establish the quarter- and mid-cell positions when inserted into mini-RK2 

replicons whereas only a marginal effect on plasmid stability can be observed. In contrast 

to RK2 namely, its minimal replicon derivatives are not stable. Stabilizing elements of RK2 

are located in the par locus consisting of two operons [71]. The parCBA operon codes for 

a plasmid multimer resolution system while a post-segregational killing system is encoded 

by parDE. Many currently used mini-RK2 plasmids [27,29,40,74] neither contain an active 

partitioning system nor the original multimer resolution system known to affect plasmid 

stabilization [75]. Under normal laboratory conditions (shake-flask cultivation, small 

inserts) in presence of antibiotic selection markers, plasmid loss has not been a problem. 

However, when cells were cultivated under high-cell density conditions in absence of 

antibiotic selection or when large DNA fragments where inserted, plasmid instability was 

observed. Therefore, insertion of the hok/sok or parDE post-segregational killing systems 

in some our mini-RK2 plasmids was performed [68,76] and plasmid stability was regained. 

It has even been hypothesized that plasmid localization might affect protein expression 

[69]. 

 

ColE1-like replicons  
 The origin of replication found in plasmid pMB1 is closely related to the ColE1 

replicon. It is also found in the well-known pBR322 plasmid [77] and commercially 

available plasmids from the pET (Novagen) and pBAD [78] series and is maintained at a 

copy-number of 15-20 per cell. Plasmids with a pMB1-based replicon can only be 

propagated in E. coli and other closely related Enterobacteriaceae. The only plasmid-

encoded factors for replication of these plasmids are the primer RNA molecule RNAII, the 

incompatibility-mediating small RNA molecule RNAI and the small repressor of primer 
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(Rop) protein with additional inhibitory functions [79]. This means that plasmid replication 

purely depends on proteins supplied by the host cell. The plasmid-encoded RNAII is the 

only one of the three factors that plays a direct role in replication. It binds to a DNA region 

close to the origin of replication and this DNA-RNA hybrid serves as a substrate for 

RNaseH. RNaseH in turn cleaves RNAII and thereby forms a mature primer molecule for 

DNA polymerase I action. The remaining steps of initiation, melting and unwinding of the 

dsDNA, protection of single stranded DNA, elongation from the RNAII-based primer and 

termination are carried out by the host replication machinery. RNAI has a role in regulating 

the frequency of plasmid replication by hybridizing with the RNAII primer precursor and 

thereby blocking the RNAII-DNA binding. Rop influences the formation of RNAI-RNAII 

hybrids and thereby also functions as a copy-number control factor. Plasmids with a 

pBR322-derived replicon are believed to be distributed by random partitioning and were 

lost to a great extent under non-selective conditions [80,81].  

 
 
1.2.2 Regulated expression systems 
 
 To be able to influence the timing and amount of expression, a heterologous gene 

is often placed under control of a regulated promoter. There are many different systems 

available in order to express genes in bacteria. Due to the many different expression 

purposes (section 1.1), there is no ideal expression system on the market that has got all 

the desired qualities. Among the number of available systems, however, there are a few 

that were of particular interest for this work and these will be described in the following 

sections. The focus here is on the promoter and how expression from the promoter is 

controlled. Characteristics of the 5 -UTR and typical ribosome binding sites will be 

addressed later. 

 

XylS/Pm 

 Pm is a positively regulated promoter that originates from the P. putida pWWO 

plasmid. This plasmid encodes proteins involved in the catabolism of aromatic 

hydrocarbons [82] and Pm controls transcription of one of two operons found on this 

plasmid. Inducibility of transcription from Pm is mediated by the transcription factor (TF) 

XylS. In nature, expression of xylS is controlled at two levels; constitutive low-level 

expression from the weak Ps2 promoter and hyperexpression from the strong and 

regulated Ps1. The Ps1 promoter is activated by aromatic hydrocarbons which bind to the 

TF XylR, the second regulator of the benzoate degradation pathway. This protein 
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dimerizes in presence of inducer leading to activation of transcription from Ps2 [82]. In 

most of our in-house vectors, however, regulation of xylS expression was simplified by 

deleting the Ps1 promoter meaning that xylS expression is not further regulated [60] 

(Figure 1.2). 

 
 

 
 

Figure 1.2: Schematic representation of the key DNA elements of the XylS/Pm 
expression system as found in the in-house set of vectors. The gene coding for the 
positive regulator XylS is constitutively expressed from the weak Ps2 promoter. XylS can 
dimerize upon inducer binding and is thereby enabled to bind to two adjacent XylS-binding 
sites (XBS). The -10 and -35 Pm core promoter elements are recognized by 32 and 38 

factors. The Pm 5 -UTR region includes a SD sequence involved in translation initiation. 
The bidirectional transcription terminator rrnBT1T2 prevents any influence on transcription 
from Pm caused by transcription from other upstream promoters.  
 

 The XylS N-terminal domain (NTD) is responsible for inducer binding, establishing 

physical contact with the RNA polymerase -subunit and facilitating dimerization 

[83,84,85,86] while the XylS C-terminal domain (CTD) makes contact with the DNA 

binding sites one of which overlaps with the -35 element of Pm [87]. The second layer of 

regulation of gene expression from Pm is accomplished by the involvement of different 

sigma factors depending on the growth phase. 32 ( H) binds to Pm in the early 

exponential phase and 38 ( S) in the late exponential or stationary phase [88].  The 

XylS/Pm system has been used successfully for different expression purposes ranging 

from overproduction of medically relevant proteins [20,68] and metabolic pathway 

engineering [89] to identification of novel FPs for the target protein [90,91]. Parts of this 

system have also been subjected to random mutagenesis and these comprise the 

regulator gene xylS [29], the Pm promoter core region [27] and the DNA region 

corresponding to the 5 -UTR [25,74,89] (Figure 1.3). The underlying screening procedure 

to identify the xylS, Pm and Pm 5 -UTR variants was based on expression of the bla gene 

(coding for -lactamase) [92]. Varying expression of this gene leads to different amounts 

of the -lactamase product and thereby causes the host cell to tolerate different amounts 

of the antibiotic ampicillin. It could be demonstrated that bla expression levels correlate 

quite well with the ampicillin concentration the cells tolerate [25,90]. E. coli strains 

harboring the xylS, Pm and Pm 5 -UTR mutant libraries were grown on agar plates with 
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increasing ampicillin concentrations and clones with for example the highest tolerance 

were picked and subjected to further analysis.  

 

 
Figure 1.3: Sequence of the DNA region covering the Pm core promoter with its -10 
and -35 elements, the distal and proximal XylS binding sites and the DNA region 
corresponding to the 5 -UTR. In the in-house vectors, a unique restriction site (PciI) was 
introduced at the 5 -end of the UTR DNA region to facilitate exchange of the Pm- and Pm 
5 -UTR DNA fragments that were randomly mutagenized. Pm and Pm 5 -UTR variant 
elements can be conveniently combined using XbaI plus PciI and PciI plus NdeI, 
respectively. The transcriptional start site is marked with +1, the SD sequence is 
highlighted with a box and the nts making up the start codon at the mRNA level are typed 
in bold (derived from [25,27,87]).  
 
 
 In case of xylS, the gene was mutagenized using an error-prone PCR strategy 

followed by random shuffling of selected mutations. Target mutants stimulated 

transcription from Pm and thereby increased expression of the downstream gene bla. The 

novel XylS variants all contained substitutions in the NTD of the protein and two of them 

(XylS-StEP11 and –StEP13) could stimulate ampicillin tolerance 9.5 times compared to 

the wild-type in presence of inducer accompanied with a 4-times increase of the 

uninduced tolerance level. Pm promoter variants were identified using a different 

mutagenization strategy. A 24-bp region around the -10 element was replaced with an 

oligonucleotide mixture with a high doping frequency of the wild-type nt and low 

frequencies for the other three nts [25,74,93]. Screening for high ampicillin tolerance led to 

the identification of Pm variants that could enhance -lactamase production by a factor of 

14 [27]. A corresponding method was applied to randomly mutagenize the original Pm 5 -

UTR. Expression of bla could be increased up to 7-fold at the transcript level and up to 20-

fold at the functional protein product level [25]. At the other end of the scale, Pm 5 -UTR 

variants leading to reduced (down to 1.5% of the wild-type) -lactamase production were 

identified [89]. A further way to increase expression from XylS/Pm is to place xylS under 

control of a different, stronger promoter and to supply the xylS gene in trans on a separate 

plasmid [94].  
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 Advantages of this system are that the inducer is cheap, that inducer uptake is 

passive, that expression from XylS/Pm is activated in an inducer dose-dependent manner 

that this system can function in several bacterial species and that background expression 

is low when wild-type elements are used [95]. However, substantial leakiness can be 

observed when variant elements of Pm, the Pm 5 -UTR, xylS or combinations of these are 

used [40].  

 

AraC/PBAD 

 The AraC/PBAD system is one of the most commonly used systems in recombinant 

gene expression and the pBAD series of vectors is commercially available (Invitrogen; 

[78]). The AraC protein acts both as an activator and repressor. Just like XylS, AraC 

consists of two domains, one responsible for DNA binding and one for effector binding 

and dimerization [96,97]. In absence of inducer, an AraC dimer is formed which connects 

the O2 binding site found within the araC gene and the I1 site found in the PBAD promoter 

region (Figure 1.4) thereby forming a DNA loop [98,99]. AraC also regulates its own 

expression [100] at two levels; one comprises AraC binding to two O1 half-sites within PC 

which prevents transcription from this promoter and the other the above mentioned DNA 

looping process. AraC works as an activator protein in presence of L-arabinose, the signal 

which leads to rearrangement of the AraC dimer towards I1 and I2 binding and subsequent 

transcription from PBAD.  

 

 
Figure 1.4: Overview over the DNA regions that make up the AraC/PBAD system for L-
arabinose- induced expression of a gene of interest. Transcription of the araC gene is 
controlled by the PC promoter (derived from [97,101], Invitrogen). Genes under control of 
AraC/PBAD are transcribed by the host-cell RNAP. Control of the system is achieved by 
AraC binding to different recognition sites; I1 and I2 in close proximity to the PBAD core 
promoter -35 element, two O1 half-sites in PC and one O2 half site located within the araC 
gene.  
 

 The third role of AraC is the regulation of expression of L-arabinose uptake 

systems [97] which makes regulation of AraC/PBAD even more complex compared to 

XylS/Pm. L-arabinose enters the cell by active transport catalyzed by two transporters, 

one high-capacity, low-affinity L-arabinose transporter [102] and one high-affinity 
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transporter [103]. The glucose concentration in the growth medium adds a second level of 

control [104] which is mediated by cAMP and its receptor protein CRP. The CRP 

recognition site overlaps with the I1 half-site. Low glucose levels coincide with high cAMP-

CRP levels the complex of which can interact with the CRP DNA binding site to help 

rearrange AraC-binding to promote expression from PBAD. Moreover, CRP positively 

stimulates PC.  

 Consequences of the complex regulation of AraC/PBAD reveal themselves at 

different levels. On the one hand tightness of the system is ensured which makes this 

system popular for expression experiments especially when leakage and subsequent 

toxicity would impair high production levels. At the same time, the promoter is strong 

enough to be used in protein overproduction and is even precisely adjustable when 

controlled expression for improved soluble expression is desired [78]. Disadvantages of 

the system are connected to catabolite repression and inducer uptake. In the former case, 

the important carbon source glucose, commonly used in growth media affects expression 

from AraC/PBAD. In the latter case, the necessity for active inducer uptake leads to the all-

or-nothing induction phenomenon which causes extensive heterogeneity of expression in 

cell populations. Adjustments of the expression system to render it more homogenous 

included L-arabinose transporter engineering [102,105]. Other modifications of the system 

were performed [106,107], but not as systematic as for XylS/Pm with exception of a more 

recent pursued strategy applied by a Danish iGEM team in 2011 [108]. 

 

LacI/PT7lac 

 Even more heavily used among the expression systems is LacI/PT7lac found for 

example in pET vectors (Novagen) [21]. It contains elements from the T7 system (T7 

polymerase and its promoter) and elements from the lac promoter system (lacI repressor 

gene and its promoter, lac operator sequence). Supplying the T7 polymerase gene is 

usually accomplished by using an E. coli host strain with a chromosomally integrated T7 

gene 1 (encoding the polymerase) for example under control of the L8-UV5 lac promoter 

(E. coli BL21(DE3) cells, Invitrogen) or the PBAD promoter (E. coli BL21-AI™ cells, 

Invitrogen). LacI serves as a repressor by forming homotetramers that make contact with 

the operator sequence lacO 1 in the 5 -UTR DNA region preventing T7 polymerase from 

binding to its promoter (Figure 1.5). In presence of an inducer like IPTG however, LacI 

dissociates from the lac operator making room for T7 RNAP. The mechanism of T7 RNAP 

binding to its promoter differs from the way E. coli RNAP established contact with a 
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promoter. In contrast to E. coli RNAP which consists of six subunits the T7 enzyme 

consists of only a single unit that recognizes a stretch of 17 bps without the requirement of 

host  factors [109]. 
 

 
Figure 1.5: Depiction of the plasmid-borne genetic elements of the LacI/PT7lac 
system. To make the system complete, a T7 polymerase gene needs to be supplied in 
trans from a further plasmid, a phage or the bacterial chromosome. Note the absence of 
typical E. coli -10 and -35 core promoter elements. The T7 RNAP recognizes a promoter 
sequence that is rather distinct from the E. coli consensus promoter making transcription 
from PT7lac very selective.  
  

 This system is probably the one which underwent most development due to the 

many known problems associated with protein overproduction using it. A major drawback 

is the high leakiness which can be attributed to the removal of regulatory elements found 

in the natural lac system like the CRP binding site in direct proximity to the promoter 

controlling expression of the target genes or further lacO sites [110]. Reduction of 

leakiness was addressed by introducing T7-lysozyme-encoding plasmids to the cells, the 

inhibitor of T7 RNAP [111]. Slight reduction of basal expression can also be achieved 

when using E. coli strains with DE3 lysogens due to the remaining responsiveness to 

catabolite repression despite the introduction of mutations within the L8-UV5 lac promoter 

that led to decreased sensitivity to glucose [112]. Another disadvantage is the high cost of 

the inducer IPTG. Costs can be reduced by using auto-induction media [113]. In spite of 

the efforts, some problems remain, namely the decoupling of transcription and translation 

[114], mutation of the T7 RNAP gene in the host strain [115] or limitation in cell growth 

associated with the high productivity of this system.  

 
LacI/Ptrc 
 LacI/Ptrc is a second example for an expression system containing a lac promoter 

derivative (Figure 1.6). For once, both lac core promoter elements have been modified. 

The -10 regions in the  Ptrc promoter stems from the lac UV5 promoter which distinguishes 

itself from the natural lac promoter -10 region by two nts [110] making it a strong TATAAT 

site. The -35 region was taken from the trp promoter [116]. One further modification was 
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included in pTrc vectors, namely a mutation within the lacI promoter (lacIQ) leading to 

increased lacI transcripts and thereby stronger production from Ptrc. 

 

 

 
Figure 1.6: Schematic representation of the DNA regions forming the LacI/Ptrc 

expression system. Most control elements from the natural lac promoter (CRP binding 

site, two additional lacO sites) have been removed. 

 

 Using this system, E. coli cells could accumulate up to 30% of the total cellular 

protein and it is generally regarded as a strong system [117]. However, leakiness is a 

drawback of this system which again can be attributed to lack of control mechanisms on 

top of repression via LacI4-lacO. It is therefore not recommended to use LacI/Ptrc for 

expression of toxic genes. The second disadvantage, namely the high costs of the IPTG 

inducer, can be circumvented by using temperature-sensitive mutants of LacI. Effects of 

the heat-shock response on the bacterial cell caused by elevated temperatures though 

needs to be kept in mind.   

 

 

1.2.3 Genes of interest and their encoded protein products 
 
 Proteins represent the most important products of recombinant expression projects 

[12]. On top of regulation of gene expression by using certain promoter systems, the 

coding region, the amino acid sequence and the encoded function need to be considered 

to find a good production strategy. An often employed means is gene design which has 

become widely applicable today due to reduced costs and which serves different 

purposes [118]. Gene design is a term used to describe the modification of the coding 

region of a protein using synonymous mutations in favor of better expression output. 

Factors that are considered in gene design make use of the degeneracy of the genetic 

code and change the nt sequence in favor of the host’s codon preference or GC content, 

for removal of unwanted sequences like restriction sites, repeats or promoter-resembling 

sequences and for reducing mRNA secondary structures [17]. More details on control of 

translation initiation and elongation will follow in section 1.3.2. A strategy that involves 
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modification of the final amino acid sequence is the use of FPs at the target protein’s N- or 

C-terminus. FPs can lead to solubility enhancement and/or tagging for simplified detection 

and affinity purification and typical examples are small ubiquitin-like modifier (SUMO), 

maltose-binding protein (MBP), glutathione-S-transferase (GST), thioredoxin, N-utilizing 

substance A (NusA), histidine tags of different lengths and the c-myc epitope tag. A 

further use of an N-terminal tag is general expression enhancement for example by 

displacing unfavorable secondary structure elements in the ribosome binding site 

[91,119]. Third, FPs for secretion of recombinant proteins to the periplasm are commonly 

used for minimization of inclusion body (IB) formation, reducing chances for protease 

degradation or improved disulfide bond formation. Yet another advantage of using a FP is 

the correct processing of the N-terminus by either automatic removal of the partner via the 

translocation machinery or use of specific protease recognition sites [120]. More drastic 

approaches are the redesign of the protein like deletion of complete domains [121].  

 

1.2.4 Genetic tools for DNA modification 
 
 Current advances in cloning technologies speed-up the upstream stage of a 

recombinant protein production process by saving hands-on work, by enabling 

simultaneous connection of several DNA elements, by avoiding dependence on restriction 

enzyme recognition sites and expensive enzymes or combinations of these. Although 

traditional restriction cloning using type II restriction enzymes is still common (e.g. 

BioBricks [122], BglBricks [123] and Standard European Vector Architecture (SEVA; 

[124])) other methods have gained interest to standardize, parallelize and simplify 

connection of several different DNA fragments. Examples for a current cloning method 

includes use of type IIs restriction enzymes as in Golden Gate cloning [125]. This 

technique relies on single-cutters that cut outside the recognition sequence. Techniques 

that do not require restriction enzymes were also refined within the past years and include 

Gateway cloning using  recombination [126] or the ligation-independent cloning (LIC) 

techniques Circular Polymerase Extension cloning (CPEC; [127]) and Isothermal 

Assembly (Gibson method; [128]) amongst others. Another very versatile, quick and easy 

LIC method is one-step sequence- and ligase- independent cloning (SLIC) [129] (Figure 
1.7) which was also relevant for this thesis. 
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Figure 1.7: Schematic representation of the one-step sequence- and ligase- 
independent cloning (SLIC) method to connect several DNA fragments. Derived from 

Jeong et al [129]. 

 

 

1.2.5 Bacterial hosts 
 
 The bacterial cell creates the environment for the process of recombinant gene 

expression and it thereby influences the yield and quality of the protein product. E. coli is 

still one of the dominant production platforms [130]. E. coli strains have been engineered 

to meet certain requirements for recombinant protein (over)production. These cover 

combinations of characteristics for plasmids maintenance, expression and protein product 

quality where changes have been made either via chromosomal modifications or the 

addition of plasmids. Strains for modified expression in general include those that are 

deficient in Lon and OmpT proteases, those that co-express chaperones like DnaK, DnaJ, 

GroES, GroEL, Skp or ClpB which aid in folding of the target proteins and prevention of 

aggregation, those that create a reducing cytoplasmic environment for disulfide bond 

formation using glutathione reductase- (gor), glutathione synthetase- (gshA) and 

thioredoxin reductase- (trxB)  deficiency and those that co-express tRNAs for rare codons 
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for improved translation efficiency (reviewed by Makino et al. [131]). Particular efforts on 

strain development have been performed for use of pET expression vectors and include 

integration of the T7 RNAP gene into the chromosome under control of different 

promoters (section 1.2.2), addition of a gene encoding for T7 lysozyme or mutant variants 

of the LacY transporter for improved dose-response to IPTG [21]. Besides these classic 

strains, more modern approaches have been pursued for E. coli. Some highlights were 

the integration of post-translational modification machineries via insertion of pathways for 

N-glycosylation of eukaryotic proteins [132] or an enzyme responsible for acetylation [133] 

and the insertion of non-natural amino acids into proteins for expansion of the genetic 

code [134]. Other interesting engineering strategies were the generation of RNAseE-

mutant strains for increased mRNA longevity (Invitrogen) or global strains engineering 

approaches [135]. 

 A second bacterial host that was used in this thesis to study expression from 

XylS/Pm was P. putida KT2440, a strain cured for the TOL plasmid. Besides 

overproduction of proteins [136], this strain is utilized for bioremediation, production of 

fine-chemicals, bioplastics [137] and is currently studied to further exploit its metabolic and 

biotechnological capacities (Victor de Lorenzo’s lab at CNB, Madrid, Spain [138]). A great 

advantage of this host is the compatibility with our in-house vectors (expression system 

and replicon-type), ease of genetic manipulation and biosafety. 

 

1.3 Regulation of gene expression 
 

 Once a genetic construct is made and transferred to the host strain more complex 

regulatory mechanisms than encoded by the expression system itself act on expression of 

the gene of interest. To put it simple, the flow of genetic information during gene 

expression starts with transcription of the DNA region between the promoter and the 

transcriptional terminator into mRNA. The flow continues with translation of information 

encoded by the coding region into a protein which then maturates into its active state to 

fulfill its function. The process ceases with degradation of both transcript and protein. 

However, it is important to remember that for prokaryotic organisms such as E. coli the 

translation process is initiated as soon as the newly formed transcript 5 -end protrudes 

from the RNA polymerase. Also there is direct physical contact between the elements of 

transcription and translation involved. Furthermore, several RNAP complexes can 

transcribe one coding region and a multitude of ribosomes translate the information from 
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one transcript into several proteins simultaneously. At the same time, mRNA degradation 

might occur while translation takes place. All of these steps are highly regulated and there 

is no linear relationship between the number of genes of interest, mRNA and protein in the 

cell at a given time point due to complex regulatory mechanisms [139]. However, there is 

no doubt that changing one of the processes also has an impact on the following 

processes. In the following sections, the fundamental processes of transcription, 

translation and mRNA degradation are explained. These give a foundation for discussing 

challenges and pitfalls in genetic engineering approaches.  

 

1.3.1 The process of transcription and its regulation 
 
 The transcription process can be divided into three major steps. During the first 

step, RNA polymerase binds to the promoter and initiates transcript formation. The 

second step involves processive elongation of the newly formed mRNA while termination 

is the third and last step. Among these, initiation of transcription is regarded as the key 

step in regulation of gene expression due to the possibility to prevent excessive transcript 

formation at an early stage and thereby limiting the use of cellular resources at 

subsequent stages [140]. The first prerequisite for transcription initiation to occur is the 

correct positioning of the core RNA polymerase at the core promoter -10 and -35 

elements (and occasionally an extended -10 or an upstream promoter (UP) element) 

facilitated by -factors [141]. Depending on the promoter, different -factors ( 70, 38, 32, 
28, 24, 19 ( 70 family) and 54 ( 54 family)) are involved in promoter recognition [142] 

among which 70 is the one responsible for transcription of house-keeping genes and 38 

and 32 for stress-induced genes such as genes under control of Pm (see section 1.2.2). 

In this context, cellular stress can refer to entering the stationary growth phase ( 38), heat-

shock and subsequent accumulation of unfolded proteins ( 32) or presence of certain 

chemicals like benzoic acid derivatives. As far as Pm is concerned the -factor recognition 

sites are not specific for 38 or 32and transcription can take place in several growth 

phases [88]. In addition to the essential -factors, transcription factors belonging to the 

two general classes of activators or repressors determine whether transcription takes 

place or not. Action of these classes of DNA binding proteins is facilitated by small ligands 

which might be referred to as environmental stimuli in general or inducers in recombinant 

gene expression [143,144]. Another level of complexity is added when TFs possess dual 

functions which can occur naturally such as in AraC (section 1.2.2) or artificially such as in 
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engineered LacI variants [145]. One further way of RNAP action modulation occurs via 

proteins that establish direct contact with RNAP, but lack DNA binding domains [146]. 

Following the first contact of the RNAP holoenzyme with a specific promoter sequence, an 

open complex is formed [147]. This happens spontaneously at 70–dependent promoters, 

while the action of enhancer-binding proteins is required for 54–dependent promoters 

[143]. The process of open complex formation is characterized by opening and unwinding 

of the double-stranded DNA around the promoter and up to +2 relative to the 

transcriptional start site followed by repetitive synthesis and release of abortive transcripts 

with a length of up to 15 nts [148,149]. The part of the DNA region corresponding to the 5 -

UTR that matches the length of the abortive transcripts is called initially transcribed 

sequence (ITS). During the initiation phase, RNAP unwinds the DNA template while still 

being attached to the promoter which requires a pulling action, a phenomenon known 

under the term of DNA scrunching [150]. However, at some point, RNAP escapes the 

promoter and transcription enters the elongation phase. It is believed that -factors (at 

least 70) remain attached to the transcription machinery. How many full-length transcripts 

are formed relative to the amount of abortive transcripts is termed promoter escape 

efficiency. Termination of transcription is mediated in one of two ways. One way is protein-

factor independent and involves intrinsic terminators which are hairpin structures that form 

in GC-rich DNA stretches which are followed by a stretch of U residues [151]. The other 

way is factor-dependent and requires a protein like the major termination factor Rho and 

its recognition sites (see [152] for more information). 

 

Points of transcriptional control  
 Sequence-specific determinants for transcription initiation efficiency are not only 

found in the promoter region itself, but also reach further downstream. Naturally, promoter 

core elements, extended promoter recognition regions (extended -10 and UP elements) 

and other transcription factor binding sites themselves play a role in transcription initiation 

because their nt composition determines the affinity by which DNA binding domains of the 

TFs make contact with their specific recognition sites [153,154,155]. This is often referred 

to as basal promoter strength [143]. On top of that the distance between these sites is of 

importance as well as the composition of nts surrounding them. During transcription 

initiation, DNA bending takes place which is part of the correct positioning of the elements 

of the transcription initiation complex with respect to each other [121,156]. Changing the 

nt composition affects the flexibility of the DNA region and thereby affects the 

arrangement of the protein factors. Second, transcription involves unwinding and melting 
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of the double-stranded DNA which affords different amounts of energy depending on the 

nt composition [157,158]. Upon release of the initially formed transcript from its template, 

binding energies between the DNA:RNA hybrid might play a role (Jørgen Skancke, 

personal communication) just like in the elongation phase [140]. Not only is the DNA 

region in direct proximity to the promoter important for transcription initiation, but also the 

part of the DNA region corresponding to the 5 -UTR which lies beyond the initially 

transcribed sequence. The mechanism for this is unkown [25].    

 Other control mechanisms influence the elongation stage. For once the 

composition of nts in the DNA region corresponding to the mRNA determines the 

evenness of the polymerization speed [159]. The course of elongation is namely prone to 

compete with alternative pathways [140]. One alternative to elongation is pausing caused 

by transcriptional arrest signals encoded in the DNA sequence [160,161]. Biological 

functions for transcriptional pausing include the control of the overall rate of mRNA 

formation, the interaction with external factors and coordination of transcription and 

translation (more details follow in section 1.3.4) [161,162,163]. Sequence elements that 

are involved in pausing include promoter-like regions that are recognized by 70 

[164,165,166]. A second and third alternative is editing and pyrophosphorolysis, 

processes which allow for correction of mis-incorporated nts through removal of a short 

oligonucleotide stretch or a single nt, respectively [140]. However, the rate of transcription 

elongation as a whole is believed to depend on the initiation efficiency [167,168]. Several 

RNAP complexes can transcribe from the same promoter and act positively on one 

another by pushing backtracked RNAPs forward given that transcription initiation is 

efficient enough.  

 Besides the DNA sequence, the polymerase itself determines the rate of 

transcription. Elongation happens at a speed ranging from 20-200 nts/s. More efficient 

transcription can be achieved by using a foreign RNAP. A prominent example is the T7 

RNAP which catalyzes the coupling of ribonucleotides at a rate five- eight times faster 

than the E. coli host cell RNAP [21,114]. 

 

1.3.2 The translation process and its regulation 
 
 Translation of the information encoded within an mRNA occurs in the four steps of 

initiation, elongation, termination and ribosome recycling all of which are well-understood 

in bacteria thanks to decades of genetic and biochemical studies, including 
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crystallographic studies [18,169,170,171]. Initiation involves the assembly of the 

preinitiation complex (PIC) consisting of the mRNA, the 30S ribosomal subunit, initiation 

factors (IF1, IF2 and IF3) and the initiator tRNA fMet-tRNAfMet. The first codon-anticodon 

interaction between the start codon (e.g. ATG) and the fMet-tRNAfMet takes place. The 

50S ribosomal subunit then loosely connects with the PIC, but GTP hydrolysis mediated 

by IF2 establishes a more stable 70S initiation complex (IC). One by one IF dissociates 

from the 70S IC and the elongation phases commences (summary derived from [170]) 

involving the two elongation factors (EF-G and EF-Tu) and the non-canonical factor EF4 

(LepA) [172]. During elongation a constant of exchange of tRNAs within the ribosome 

takes place. Each tRNA is transferred from the acceptor A site in the ribosome to the 

peptidyl P site and the exit E site while new peptide bonds are formed. In this way, the 

transcript slides through the ribosome until the stop codon is reached. Translation 

termination is mediated by three release factors (RF1, RF2 and RF3) and dissociation of 

the ribosome requires additional proteins (ribosome release factor and IF3) [173]. The 

factors involved in translation are recycled at this stage and used in subsequent 

translation events. 

 

Regulation of translation 
 Gene expression is highly regulated at the post-transcriptional level [174]. As for 

transcription, the initiation stage of translation is also regarded as the rate-limiting step. By 

changing translation initiation for example, protein production levels could be varied over 

two orders of magnitude [175]. The mRNA features that influence translation initiation 

have been summarized in an experimental review [176]. Obvious sequence features that 

affect translation are the kind of start codon, the length of the SD sequence, the distance 

between the SD sequence and the start codon, the position and strength of secondary 

structure elements in form of hairpins and the presence of an A/U-rich enhancer 

sequence. Sequence features that result in high expression levels are the use of an ‘AUG’ 

or ‘GUG’ start codon and stem-loop structures upstream of the SD-sequence or 

downstream of the start codon. Concerning length of the SD sequence and position 

relative to the start codon (measured as the distance between the center of the SD 

sequence and the first nt of the start codon), choice of a 8/7 or 6/10 SD sequence (length 

SD/distance to start codon) is of benefit for an efficient translation initiation.  

 Another perspective to our current understanding of transcription initiation involves 

initiation of translation in absence of the SD sequence. Only 57.1% of the E. coli genes 
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possess an SD sequence [177]. One way to explain why translation initiation in absence 

of SD sequences is possible is that absence of secondary structures around the start 

codon is sufficient to support ribosome binding. Initiation sites that promote translation in 

absence of an SD sequence contain an A/U-rich stretch devoid of stable secondary 

structures [169]. Moreover, presence of upstream-hairpins can have a positive effect by 

redirecting base-pairing motifs away from the initiation site. However, a conflicting theory 

exists which suggests that this unstructured region close to the start codon alone is not 

sufficient for translation initiation. Instead, it is believed that an SD sequence further 

upstream is required which is brought in proximity to the start codon via folding of the 5 -

UTR [178]. Additional factors that regulate translation at the initiation stage are small 

RNAs like in the hok/sok post-segregational killing systems, metabolites found in 

riboswitches and temperature. Riboswitches are defined as elements within a 5 -UTR that 

are able to bind diverse metabolites and thereby repress or activate gene expression at 

the transcriptional and translational level [179].  

 In the elongation phase, pausing can be observed which is either attributed to 

pairing of internal SD sequences with the anti-SD sequence [180] or simply reduction of 

the translocation rates due to presence of rare codons [181]. By making use of the 

degeneracy of the genetic code, the nts in the coding sequence can be changed in favor 

of high translational efficiencies. SD-like sequences can be removed by using 

synonymous codons that interrupt this region. Mostly, a coding sequence is changed by 

introducing more frequently used codons, but it has been shown that introduction of rare 

codons at the 5 -end of the coding region (ramp theory) might lead to a more even 

distribution of ribosomes across the transcript by prevention of jamming [182]. 

 

1.3.3 Mechanisms of mRNA degradation and its regulation 
 
 At the same time as information encoded by an mRNA is translated into protein, 

mRNA degradation takes place. RNA degradation involves the action of ribonucleases 

(RNases) which can either cut internally (endonucleases) or attack the RNA from the 

termini (5 - or 3 - exonucleases) as well as accessory proteins performing 5 - and 3 -end 

modifications. The enzymes involved in mRNA degradation are often organized in a 

multiprotein complex called degradosome. Important enzymes found in E. coli that act 

mainly from the 3 -end are RNaseE, an endonuclease that targets A/U rich single stranded 

regions and commonly initiates mRNA decay, polynucleotide phosphorylase (PNPase), 
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RNase R and RNase II, three different 3 -exonucleases that require single stranded RNA 

and work in response to RNaseE action as well as poly(A) polymerase which couples 

adenines to the 3 -end of a stem-loop and thereby promotes its resolution and subsequent 

degradation [183,184,185]. The enzyme complex acting from the 5 -terminus contains 

RNA pyrophosphohydrolase which cleaves off pyrophosphate and which physically 

interacts with RNaseE and thereby enhances this enzyme's catalytic activity to cut the 

mRNA further downstream [186].  

 Generally speaking, the number of transcripts per cell affects the number of 

encoded proteins. Therefore, regulation of mRNA degradation is crucial for the fate of a 

transcript. Half-lives of bacterial mRNAs range from s to several min [187,188] making it a 

labile molecule. However, the turnover can be modulated in favor of a higher stability. 

Bacterial mRNAs have some intrinsic properties that ensure certain stability. For once, the 

triphosphate at the 5 -end stabilizes a transcript. Furthermore, translating ribosomes 

simply act by sterically hindering RNases from binding to their target. In addition, self-

interaction of mRNA plays a vital role in particular at the 5 -end of the transcript and both 

existing as well as willingly introduced stable stem- loop structures can protect the mRNA 

from being degraded to a certain degree. Another major stem-loop structure can often be 

found at the 3 -end. Further control points involve the interplay between translation and 

transcription which will be explained below.  

 

1.3.4 Transcription:translation coupling and its impact on transcript turnover 
 
 Several translation events can occur on one transcript, as has already been 

visualized by Miller et al. in 1970 [189] and translation is initiated co-transcriptionally. This 

means that changes affecting transcription also affect translation, especially in the rate-

determining initiation step. Besides their connection to mRNA, direct physical contact 

between the transcription and translation machinery is established through protein 

interactions. The NusG TF is considered to be the central coupling factor between 

transcription and translation [190,191]. This protein is able to interact both with the RNA 

polymerase via its amino-terminus and the TF NusE via its carboxy-terminus (identical to 

the ribosomal S10 protein found in the 30S subunit). NusG has an important role in 

transcription elongation where it suppresses transcriptional pausing, involves in 

transcription antitermination, prevents backtracking of RNAP and consequently increases 

the elongation rate [161,192,193]. These functions are observed in translated transcripts. 
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In absence of translating ribosomes, however, NusG is able to bind to the Rho protein by 

which it exerts its role in transcription termination [194]. Another Nus factor with a dual 

function is NusA. Together with other Nus-factors this protein is involved in formation of 

stable ECs. Its second and major involvement, however, is in intrinsic termination due to 

the ability to recognize pausing and termination signals. 

 Understanding the structural basis for transcription:translation coupling gave rise to 

an updated version of the traditional schematic illustration of the translation process. The 

traditional view was that the transcription rate determines the speed by which ribosomes 

travel across the transcript. According to an updated model the speed of the ribosomes 

determines the processivity of transcription elongation not vice versa [195,196]. Moving 

ribosomes can accelerate RNAP. Absence of translating ribosomes on the other hand e.g. 

caused by rare codons stalls the TEC waiting for the ribosomes to connect with the RNAP 

again [197]. Alternatively, premature termination is induced in case translation is 

abolished e.g. by amino acid starvation. Considerations to why the two processes are 

coupled in bacteria are for once that the coupling prevents that non-functional transcripts 

accumulate in the cytoplasm [198]. Secondly, it is hypothesized that tightly coupled 

transcription and translation minimizes the chances for de novo DNA:RNA hybrid 

formation, so called R-loops, during transcription. However, uncoupling of the two 

processes can be observed [114].  

 A second important relation is the impact of translation on transcript stability. Iost 

and Dreyfus could demonstrate experimentally that efficient translation stabilizes a 

transcript [199]. This study supports earlier studies in which antibiotics targeting 

translation were utilized to study how translation inhibition affects mRNA stability 

[200,201]. In general, reducing translation initiation efficiency by introducing mutations 

around or within the SD site and thereby reducing the affinity of a ribosome to the 

translation initiation site destabilizes a transcript [202] and vice versa [203,204]. One 

accepted explanation is that translating ribosomes mask RNase sites, in particular within 

the 5 -UTR [205]. Interestingly, factors involved in translation and mRNA degradation 

share similar recognition sites. An A/U rich stretch around the SD sequence both leads to 

an unstructured region that promotes ribosome binding [206,207] and is associated with 

RNase E binding [208] implying that the binding affinity of the two factors has an impact 

on the fate of an mRNA [209]. Not only is ribosome binding around the SD sequence 

important for mRNA stability, but also the general distribution of translating ribosomes 

across the coding region [210]. 
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 How efficiently a protein is produced also depends on the amounts of  factors, 

RNAP, nts, ribosomes, tRNAs, amino acids, energy equivalents amongst others available 

at the location of gene expression within the bacterium. Due to limited availability of the 

mentioned resources and high packing density of the molecules in the bacterial 

cytoplasm, excessive expression of a gene can lead to local depletion of resources 

[211,212] restricting total protein production. It has been hypothesized that better 

distribution of gene copies in a cell e.g. accomplished by high copy number plasmids that 

are randomly spread in the cytoplasm makes use of cellular resources more efficient 

which in turn leads to better protein production per gene copy [69].  

 

 

1.4 Challenges during combination of genetic elements with    
focus on the central role of the 5 -UTR 

 

 A central goal of genetic engineering is to influence expression of a gene and 

thereby change production of the encoded protein product. Although engineering of the 

host-cell RNAP and other global changes of the transcription machinery to generate 

different cellular phenotypes are possible [213,214], more specific approaches to focus on 

a gene or a set of genes are desired. Over the past decades, it has become clear that 

gene expression involves a sequence of complex and highly regulated steps and that in 

order to gain control over the outcome of gene expression more than simply combining a 

promoter, a regulator, a 5 -UTR, a coding region and a terminator is necessary. This is of 

particular importance when even more complex tasks than expression of a single gene 

are pursued such as engineering of whole metabolic pathways (section 1.1.2) or 

generation of regulatory circuits (section 1.1.3). The DNA region corresponding to the 5 -

UTR is of special importance due to its involvement in transcript formation, transcript 

degradation and translation. Currently, single genetic parts for design or redesign of 

systems are available which are often combined in a ‘plug-and-play’ manner to study gene 

expression [215]. Owing to complex regulatory mechanisms, however, these single parts 

can not be treated as context-free meaning that the function of the connected parts can 

not be purely derived from the sequence of the single parts alone. This leads to 

unpredictable effects on expression.  
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Table 1.1: The complex role of the 5 -UTR in gene expression. Positions of the nts are 
given relative to transcriptional start site (+) or to the translation start codon (-).  
 

Process Part of 5 -UTR Involvement Source 

Transcription nt +1 and +2 
 
nt +1 to +15 
 
nt +10 to +24 
 
variable 
 
 
nt -20 to -1  
 
 
whole sequence 

Initial melting during initiation 
 
Promoter escape 
 
Unknown 
 
Repression of transcription (e.g.  
lacO/ LacI interaction) 
 
Backwards effect from translation  
to transcription 
 
5 -UTR secondary structure formation: 
- Premature termination mediated  
by metabolite binding  

[141] 
 

[148,149]
 

[74] 
 
 
 
 

[196] 
 
 

[216] 

Translation nt -20 to -1 incl.:  
 
- SD sequence 
 
- Spacing SD-start 
codon  
 
- secondary structure 
elements 
 
whole sequence 
 

Translation initiation: 
 
- Pairing with 16S rRNA 
 
- Positioning of 30S complex 
 
 
- Availability of RBS (SD, start  
codon) 
 
5 -UTR secondary structure 
formation in riboswitches: 
- translation inhibition by metabolite 
binding (RNA, small molecules)a 

[217] 
 
 
 
 
 
 

[218] 
 
 

[216] 

Transcript 
degradation 

RBS 
 
 
A/U-rich regions 
 
5 -PPP 
 
 
secondary structure 
elements 

Indirect effect on transcript stability 
through variable translation efficiency 
 
Degradation mediated by RNase E  
 
Protection from direct 5 -> 3  
degradation 
 
Stem loops at 5 -end protect from 
degradation 

[206] 
 
 
 

[208] 
 
 

[219] 
 

[203,220]
 

a A special role of the 5 -UTR is found in riboswitches and aptamer technology where 
external signals such as temperature, metabolites or proteins apart from the general 
expression machinery act on expression of a gene by influencing transcription or 
translation [216].  
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 The influence that the parts have on each other has earlier been defined as 

‘context dependency’ [221] and ‘part-junction-interference’ [222]. In case of the 5 -UTR, its 

influence can be seen from the perspective of its position within a stretch of DNA. To be 

more specific it forms the direct linear link between a promoter and a coding region 

(compositional context). But it is also subjected to the cellular environment with in trans- 

influence from external factors (host context; e.g. growth phase, strain) whose metabolism 

is influenced by the environmental context (e.g. temperature, pH, [221]). Some of the most 

relevant roles of the 5 -UTR in regulation of expression were already mentioned in the 

previous paragraphs. However, since this region was a topic of particular interest in this 

study, the key roles are summarized here (Table 1.1). Because of this complex role, 

choosing one particular 5 -UTR for expression of one gene probably does not have the 

same effect on expression of another gene due to the interference with the 5 -proximal 

coding region [218,223]. It has been proposed to physically separate the RBS from the 

remaining part of the 5 -UTR by insulators [222,224] that contain elements that mediate 

cleavage of the 5 -UTR to get a better control on the expression output. And indeed, these 

RNA-processing strategies led to the design of more predictable systems since relative 

strengths of promoters could be maintained for different genes by adjusting the RBS. To 

make this adjustment, both computational methods and experimental strategies are 

available. 

 Computational tools for prediction of expression levels and design of novel 5 -UTR 

elements are the RBS calculator [225], the RBS designer [226] and the UTR designer 

[227]. On the other hand, screening of mutant libraries is still a common approach 

[74,175]. Generally, strategies to improve expression by focusing on translation initiation 

are successful and their usefulness can be backed-up by the latest findings on 

transcription:translation coupling (section 1.3.4). However, they neither cover the 

complete regulatory space nor lead to complete reliability of expression output. That is 

why more complex set-ups to address control of transcription and translation were 

generated in form of combining regulatory element libraries including different promoters 

and RBS [228]. These examples show that there still is groundwork to be done by 

molecular biologists to get a deeper understanding of gene expression that can be used in 

more targeted rational design of biological systems.    
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2 Aims of the study 
 

The XylS/Pm system has been studied extensively over a long period of time in our 

research group. At the onset of this PhD work we knew that at least some proteins could 

be expressed at very high (industrial) levels with this system and that it in addition had 

certain unusual attractive properties such as broad host range and fine-tuning capacity. 

The group has tried to exploit this potential both for maximization of recombinant protein 

production and for metabolic engineering purposes, however, just like with other 

expression systems, results were often unexpected. In this PhD work the focus was to 

study the influence of different genetic and physiological parameters on recombinant 

protein production and to contribute knowledge on how to achieve a more controlled 

expression output. The specific goals were as follows:  

 Many different bacterial expression cassettes are used in parallel in academia and 

industry, but we felt that there was no way of objectively comparing the 

performances of these systems based on the available scientific literature. It was 

therefore decided to set up a study which would allow a comparison of the core 

elements of commonly used expression cassettes, namely their regulated 

promoters, and systematically comparing their features directly in the same 

genetic background (replicon and host). 

 The DNA regions corresponding to the 5 -UTR downstream of the various 

promoters are very different, but they can in principle be substituted in any 

promoter system. Since it is well established that 5 -UTR DNA sequences can 

have a profound effect on the total expression outcome we wanted to exploit the 

potential of designing 5 -UTR sequences that would work efficiently in the XylS/Pm 

system. The 5 -UTR design would be based on the idea that these sequences are 

important both for transcription and translation, and that these sequence features 

could be separated and optimized individually. 

 A further genetic parameter that is known to affect recombinant protein production 

is the plasmid backbone. Characteristics of XylS/Pm would be determined by 

variation of the replicon type, plasmid copy-number and presence of plasmid 

stabilization elements.  

 The XylS/Pm system would be utilized to control production of toxic proteins to 

analyze the effects of different host growth conditions (physiological parameters) 

on recombinant protein production.  
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 The last influence studied during this project would be the choice of bacterial host 

strain and the nature of the chosen mini-RK2 plasmid backbone containing the 

xylS/Pm system allows for the direct transfer of the vectors to different hosts like 

Pseudomonas in cases where E. coli might not be the suitable expression host.  

This in-depth analysis of the promoter systems would hopefully lead to more general 

findings that could be applied for future recombinant expression strategies both to 

maximize protein production and to control expression at any desired level.  
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3 Summary of results and discussion 
 

 The core of this thesis is represented by the work on the positively regulated Pm 

promoter and its associated 5 -UTR region (Figure 3.1). Many findings are published in 

Papers I-III, but this section also supplies further (unpublished) data and discusses them 

with respect to recent developments published in scientific journals. 

 

 
Figure 3.1: Visual representation of the topics covered by this thesis. The work in 
this thesis focused on recombinant gene expression in Gram-negative bacteria mainly 
using XylS/Pm, but also alternative regulated promoter systems with the goal to minimize 
trial-and-error attempts in the development of a protein production process. The 
abbreviations stand for: ITS - initially transcribed sequence, SD - Shine-Dalgarno 
sequence, RBS - ribosome binding site, R - regulator gene, P - promoter, U - 5 -UTR, GOI 
-gene of interest, T - terminator, ori - origin of replication, Abr - antibiotic resistance 
marker. Notice that for this thesis, RBS is defined as a stretch of ribonucleotides which is 
covered by the ribosome during translation initiation meaning that it includes the SD 
sequence, the start codon and also nts around these regions both within the 5 -UTR and 
the 5  proximal end of the gene.  
 

Within the following chapters, the most relevant results covering different approaches 

will be described and discussed. The first subchapter focuses on the results from a 

systematic comparison of features of commonly used regulated promoter systems at the 

transcript and protein level performed in E. coli. In the following chapter, work on the DNA 
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region corresponding to the 5 -UTR is summarized. This work involved random 

mutagenesis, rational and generic design approaches to study the complex role of this 

region at the transcriptional and translational level. Next, the work in this thesis also 

included studies on the influence of the plasmid backbone and the growth conditions 

(physiological parameters) on recombinant gene expression in E. coli (third and fourth 

subchapter). At last, the use of alternative bacterial hosts for recombinant expression 

under control of XylS/Pm was evaluated, namely P. putida and cold-adapted 

Pseudomonas strains (fifth subchapter).  

 

3.1 A systematic study on the influence of different regulated 
promoter systems on recombinant protein production 

 

 Regulated promoters represent one important genetic key element to control gene 

expression. Despite the large number of such promoters available on the market, there 

are a few that are heavily used in heterologous expression in Gram-negative bacteria. 

These all have certain advantages and disadvantages making it impossible to name a 

system that is best for any purpose. Each of these promoter systems is often part of a 

certain expression vector like LacI/PT7lac in pET vectors, XylS/Pm in pJB vectors, 

AraC/PBAD in pBAD vectors or LacI/Ptrc in pTrc vectors. Certain promoters even require a 

specific bacterial host like LacI/PT7lac which requires an E. coli strain supplying a T7 

polymerase gene. It is known that the genetic context (like the plasmid copy-number), the 

bacterial host or transcriptional terminators influence expression which means that a 

comparison of the features of regulated promoters from different vector backbones and 

hosts is not suitable to truly evaluate the characteristics of one promoter with respect to 

another. Surprisingly, comparisons among different promoter systems had only been 

performed using different vector backbones or describing features at a theoretical level 

when this work was initiated. And during the course of this work, only one systematic 

study had been published using LacI-regulated systems [229]. In this study the 

performances of different regulated promoters were compared by using carefully designed 

vectors that functioned as test systems for early stages of protein production (Paper I).  
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3.1.1 Design of a set of expression vectors enabling comparison of bacterial 
promoter systems 
 
The first step of the vector development was to define the 'regulated promoter' 

DNA region and it was decided to extract the regions corresponding to the promoter, the 

5 -UTR, the regulator gene and its promoter as well as the region between the regulator 

and the promoter including additional control elements (like CRP in pBAD) from 

commercial vectors and transfer this device to a common vector backbone. It would have 

been possible to also pick a common 5 -UTR region or at least a common RBS within the 

5 -UTR for all promoters. However, it is known that there is a context dependency 

between the promoter and the 5 -UTR DNA region meaning that variations within the DNA 

regions corresponding to the ITS of the 5 -UTR DNA region can affect transcriptional start 

site selection and level of active target protein [25,230]. To ensure that the correct 

transcriptional start site was maintained and that the lacO region in two of the promoter 

systems (lacI/PT7lac and lacIQ/Ptrc) was unchanged with respect to the promoter and the 

remaining downstream 5 -UTR DNA region, it was decided to keep the 5 -UTR DNA 

regions that were found in the original vectors. I also made sure that all coding regions 

started with 'ATG' and that gene sequences optimized for E. coli were used ensuring that 

expression was not limited by an unfavorable coding region (e.g. presence of rare codons, 

transcriptional pausing signals, strong mRNA secondary structures). For some 

commercial vectors like pET or pBAD, it is possible to insert genes of interest via a 

multiple cloning site (MCS). By using alternative restriction sites within an MCS different 

RBS are created changing the spacing and sequence composition between a SD 

sequence and a start codon. However, these sequence modifications can affect 

translation initiation and indirectly affect protein production [170,218]. Due to this, the 

default RBS present in pET16b, pBAD/gIII_calmodulin, pTrc99A and pTA16, respectively, 

was picked (see Paper I; Methods or 3.2.1 below). Common for all four 5 -UTR DNA 

regions was a slight modification just upstream of the start codon where the ‘CATATG’ 

site (for NdeI) was introduced. The well-known context dependency between a 5 -UTR 

and the 5 end of a coding region was not part of this comparison and was analyzed in 

separate studies (Paper II and unpublished data).  

Another important consideration was with respect to which variant of the XylS/Pm 

system to choose. In our group, mutant variants of the regulator XylS [29], the Pm 

promoter core region [27] and its cognate 5 -UTR region [25] had been identified earlier 

leading to improved gene expression. One important reason why a promoter variant of 
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Pm, not a XylS or a Pm 5 -UTR variant, was chosen in this comparative expression study 

of regulated promoter systems was that uninduced expression levels were only increased 

by a factor of ~2 (vs. ~4.3 (XylS) or ~7.5 (5 -UTR)). Another reason was that enhancement 

achieved by Pm promoter variants was less gene-dependent than achieved by a 5 -UTR 

variant. In total, the DNA regions from the regulated promoters of lacI/PT7lac, lacIQ/Ptrc, 

xylS/Pm and araC/PBAD as well as a high level expression variant of Pm, Pm ML-1-17, 

were utilized and a set of 60 vectors was constructed (five promoter systems, two 

replicons, six GOI). Comparative expression studies using vectors containing the 

lacI/PT7lac, lacIQ/Ptrc, xylS/Pm and xylS/Pm ML-1-17 regions were performed in E. coli 

ER2566 (T7 polymerase 1 gene positive) and studies using vectors with the araC/PBAD, 
xylS/Pm and xylS/Pm ML-1-17 systems in E. coli DH10B (ara negative). For more details 

see Paper I.  
 

3.1.2 Systematic study on the influence of the chosen regulated promoter 
systems on accumulated transcript and protein levels 

 
Part of a systematic comparison was to find a good basis for evaluating the 

characteristics of the regulated promoters with respect to each other. Within recombinant 

expression, several steps during biosynthesis of proteins are important and these cover 

transcript accumulation, translation into recombinant protein in total as well as the fraction 

of soluble and active protein produced. These aspects differ from one another such that 

not all transcripts might be translated into protein [231] and that different forms of the 

protein might be present in the cell (folded vs. unfolded, processed vs. unprocessed, 

active vs. inactive protein). In recombinant protein production, it is generally desired to 

maximize the amount of folded, soluble, processed and active target protein which could 

be measured directly in case of reporter proteins or purified and used for more complex 

functional studies. Achieving this goal does not necessarily mean that expression should 

be pushed to the possible maximum, but requires a certain balance between efficiency of 

expression and ability of the protein to achieve its folded and active state instead [232]. 

One way to influence expression levels is to use different regulated promoter systems and 

the systematic comparison of some selected ones led to the following findings. 

First, LacI/PT7lac led to accumulation of the highest amount of transcript among the 

systems which was rather expected due to the very efficient T7 RNA polymerase [233]. 

However, the apparent advantage of this promoter system was not reflected at the protein 

activity level. When relative protein activity was compared among the different promoter 
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systems namely, it became evident that the XylS/Pm ML1-17 system was nearly as strong 

as or even slightly stronger than LacI/PT7lac.  

A second important observation was made when transcript data were correlated to 

the total amount of recombinant protein produced (soluble and insoluble protein fractions 

from protein gels together). According to the data, the excess of transcript produced by 

LacI/PT7lac was in fact translated, but a distinct or even major fraction was accumulated as 

insoluble protein. This was especially evident for luciferase. For all the proteins studied, 

LacI/PT7lac led to the highest accumulation of insoluble protein, but was also the system 

which was most likely to produce most total recombinant protein (Paper I, Figure 3). In 

some occasions, it might even be preferred to continue to work with the insoluble fraction 

in the downstream process, especially when this fraction makes up the major part of 

recombinant protein for example or when a protein is prone to aggregate and it is possible 

to refold the protein (Paper III). XylS/Pm and LacI/Ptrc generally led to the least amount of 

total protein. However, the ratio between soluble and insoluble protein was higher 

compared to the two stronger promoters XylS/Pm ML1-17 and LacI/PT7lac.   

 The interesting finding that luciferase tended to form insoluble aggregates when 

overexpressed led to the question whether the PBAD promoter would have a similar effect 

as LacI/PT7lac. Characteristics of the AraC/PBAD system in relation to XylS/Pm and XylS/Pm 

ML1-17 at the transcriptional and translational level were performed in a different E. coli 

strain, DH10B, which is unable to catabolize L-arabinose (Figure 3.2).  

 

 
Figure 3.2: Luciferase production analysis in E. coli DH10B (unpublished data). Cell 
lysates from recombinant strains were subjected to qPCR (A), protein activity 
measurements (bar diagrams in B) and protein gel analysis (gel pictures of soluble and 
insoluble fractions in B). All data were related to the XylS/Pm system (values arbitrarily set 
to 1).  
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 Data collected in this E. coli strain generally confirmed that it is more beneficial to 

use XylS/Pm ML1-17 compared to XylS/Pm which became evident from accumulated 

transcript data, activity data and the protein gel analysis. Although AraC/PBAD led to a 

slightly higher amount of accumulated transcript compared to XylS/Pm ML1-17, similar 

amounts of active and soluble luciferase were detected. Virtually all recombinant 

luciferase was present in the soluble protein fraction. 

  

3.1.3 Recommended applications of the regulated promoter systems in 
heterologous gene expression 

 
 To evaluate which of the promoter systems was the most suitable for expressing 

heterologous genes depends on the scope. If the goal is to produce as much protein in 

general, LacI/PT7lac would be the system of choice. In this case, the efficient transcription 

is of advantage. In some cases, like shown for scFv173-2-5-AP, expression might be 

limited at the transcription stage and an efficient T7 polymerase was able to compensate 

for this limitation. For this protein efficient transcription was also beneficial for the soluble 

fraction of recombinant protein. Not coincidental, the LacI/PT7lac system is the dominant 

promoter system used for recombinant protein production e.g. based on the total number 

of publications in the worldwide Protein Data Bank (wwPBD) data set, in which use of pET 

vectors is described [12]. On the other hand, if the amount of active protein is of higher 

importance, XylS/Pm ML-1-17 or AraC/PBAD might as well be used. It is known that 

transcription and translation are coupled in bacteria [198] and my results indicate that 

these two systems maintain a better balance between transcript accumulation and 

translation indicating a better use of cellular resources. In contrast, the excess of 

transcript produced by LacI/PT7lac can be interpreted by an uncoupling of the two 

processes. A third criterion would be the ratio between soluble and insoluble protein. 

Judged from the protein gels, a ratio in favor of soluble protein was achieved using 

XylS/Pm, AraC/PBAD and LacI/Ptrc, in some occasions also XylS/Pm ML1-17. In a previous 

study, expression from different negatively regulated promoters was compared in a direct 

manner, similar to this study [229]. Data collected by this group suggested that the 

weakest promoter tested (the lacUV promoter) produced the highest fraction of soluble 

protein, but that LacI/PT7lac sill produced the highest amount of soluble protein in total 

followed by LacI/Ptrc. This finding could be confirmed. At the same time more data were 

contributed which indicate that the use of the Pm promoter variant Pm ML1-17 or 
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AraC/PBAD would yield similar amounts without producing excessive amounts of transcript. 

An alternative to a regulated promoter system that can be used to fine-tune expression 

levels is the rhamnose-inducible RhaR-RhaS/rhaBAD system [95]. RhaR-RhaS/rhaBAD is 

either utilized to control expression of T7 lysozyme to serve as additional control element 

for the LacI/PT7lac system (Lemo system; Xbrane Bioscience AB), but also for recombinant 

protein production directly ([234,235]; Lucigen). This trend supports the idea of 

incorporating several regulated promoters in a portfolio of bacterial expression systems in 

order to maximize chances to achieve high expression levels; at least one system like 

XylS/Pm for proteins that require careful adjustment of expression levels (see Paper III) 
and one system like LacI/PT7lac for easy to express proteins which can comprise a high 

fraction of the total cellular protein without forming insoluble aggregates or affecting cell 

physiology noticeably. Further findings and recommendations for expression purposes 

beyond maximization of recombinant protein production are summarized in Paper I, Table 

3. 

 

3.2 Demonstration of the complex role of the 5 -UTR DNA region in bacterial 
recombinant expression  

 
 Several genetic parts of the expression systems influence efficiency of 

transcription and translation and thereby the amount of target protein. Besides promoter 

strength and RNA polymerase efficiency, the nt composition of the 5 -UTR DNA region 

influences the processes of transcription and translation. A tool to evaluate the sequence 

of a 5 -UTR DNA region with respect to translation initiation efficiency is the RBS 

calculator [218]. This tool is based on a biophysical thermodynamic model for translation 

initiation. It takes into account the region around the SD sequence and the 5  proximal 

coding region and calculates translation initiation rates (TIRs). TIRs were calculated for 

the regions around the 5 -UTRs of the different promoter systems and the 5  proximal 

coding region transitions of the five different genes used in order to compare strengths of 

the RBS (Paper I, Figure 5). Due to the complexity of the regulation of the steps involved 

in protein biosynthesis, it was challenging to evaluate the actual effects of the calculated 

TIRs on expression of the different genes in most cases. That is why it was decided to 

extract the 5 -UTR DNA region as a part and to study effects of the region alone on gene 

expression to get a deeper understanding of its multiple roles and to open up new 

possibilities for rational design. 
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 A body of scientific evidence has been collected in the past decades 

demonstrating the versatile and complex role the 5 -UTR in recombinant gene expression 

(section 1.4). Previous findings in our group showed that creation of mutant libraries 

covering the 5 -UTR and screening made it possible to identify Pm 5 -UTR expression 

variants which either led to decreased or increased final protein product levels compared 

to the wild-type 5 -UTR sequence. In other words, mutagenization and screening could be 

applied to cover a big expression window simply by mutating this DNA region. This was 

possible because the mutations that were inserted into the Pm 5 -UTR DNA region 

affected both transcription and translation [25,74,89]. However, screening combinatorial 

libraries had certain disadvantages. For once, the effects the mutations had on gene 

expression were quite gene-dependent. As an example, the LII-10 Pm 5 -UTR variant led 

to ~20-fold increased -lactamase production, but only ~1.5-fold increased 

phosphoglucomutase and luciferase production. Also, mutations were spread over the 

entire 5 -UTR DNA region which made it impossible to identify specific mutations that 

either led to increased transcript accumulation or translation efficiency. For future genetic 

engineering approaches, however, a more reliable, less gene-dependent and less time-

consuming method to adjust a 5 -UTR DNA region to improve expression levels would be 

desired. Using the Pm promoter and its cognate 5 -UTR DNA region as a model system, 

the goal of designing a sophisticated 5 -UTR region was approached in three steps during 

the PhD project. The first was to verify the actual need to design better 5 -UTRs for 

expression by comparing different strategies to improve a 5 -UTR DNA region (3.2.1). 

Second, a successful attempt was made in identifying Pm 5 -UTR DNA sequences that 

either affected transcription or translation (3.2.2). Third, a novel 5 -UTR region was 

designed in which the knowledge from previous 5 -UTR modification attempts was applied 

(3.2.3). 

 

3.2.1 Evaluation of different strategies to increase gene expression by 
changing the 5 -UTR DNA region  

 
 Despite the knowledge about the role of the 5 -UTR region in gene expression, it is 

still common practice to clone a gene behind a promoter and its associated 5 -UTR or a 5 -

UTR with generally good features with respect to translation initiation without making 

adjustments in favor of a good 5 -UTR - 5 -coding region context. In order to demonstrate 

the need to make more rational choices when it comes to connecting 5 -UTRs and coding 

regions, it was decided to compare different strategies to improve a 5 -UTR with respect to 
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expression levels. We hypothesized that 5 -UTR DNA sequences identified by screening 

would lead to higher expression levels than simply using 5 -UTRs with strong RBS. To test 

this hypothesis the 5 -UTR regions from the regulated promoter systems studied in the 

previous section (Table 3.1B) were extracted and transferred to mini-RK2 plasmids 

containing xylS/Pm replacing the original Pm 5 -UTR DNA region.  

 
Table 3.1: Sequences of the 5 -UTR variants that were used to compare their effects 
on bla expression. The SD sequences are written in bold face, the PciI (= BspLU11I) site 
at the 5 -end (not present in B) and the NdeI site at the 3 -end at underlined. The nts 
corresponding to the start codon are double underlined and the nts deviating from the Pm 
wt 5 -UTR DNA sequence are highlighted in grey, except for the sequences depicted in B 
which differ both in length and sequence composition.  
 
  A Pm wt 5 -UTR DNA sequence 
 
           Pm wt          AACATGTACAATAATAATGGAGTCATGAACATATG 
 
  B 5 -UTR DNA sequences present in commercially available promoter systems (Paper I) 
 
           PT7lac           GGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 
          TGTTTAACTTTAAGAAGGAGATATCATATG 
           Ptrc          AATTGTGAGCGGATAACAATTTCACACAGGAAACAGACCATATG 
           PBAD          ATACCCGTTTTTTGGGCTAACAGGAGGAATTACATATG 
  
  C Pm 5 -UTR up variants that mainly act on transcription (and translation to a lesser   
      extent) [25] 
 
  Pm LV-1       AACATGTACCATTATAACGGAGTAATGAACATATG 
  Pm LV-2       AACATGTACCATAATACAGGAGTTATGAACATATG 
 
  D Pm 5 -UTR up variants that on transcription and translation [25,40] 
 
   Pm LII-10      AACATGTACCACAATAATGGAGTTTTGAACATATG 
   Pm LII-11      AACATGTTACACAATAATGGAGTAATGAACATATG 
   Pm H39         AACATGTACCATAATAATGGAGTCTTGAACATATG 
 
  E Pm 5 -UTR down variants that on translation causing decreased expression [89] 
 
  Pm DI-3        AACATGTGGCATAATAATGGAGTTATGCACATATG 
  Pm DI-7        AACATGTACAATGATTATGGAGTCATGTACATATG 
   Pm DI-8        AACATGTCCCATAATAATGGAGTCATGAACATATG 
 
  F In silico-designed 5 -UTR DNA sequences with maximal TIR (same length as Pm 5 - 
     UTR) (Paper II) 
 
   dIB1           AACATGTTCGTCTTCACGCTAAGGAGGTACATATG 
  dIB2           AACATGTTACTTATACGAGGAGGTTACAGCATATG 
   dIB3           AACATGTACCGTTCTTTCTAAGCGAGGTTCATATG 
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 Two of the three regulated promoter systems (LacI/PT7lac and AraC/PBAD) contained 

stronger RBS than the XylS/Pm system independent of the coding sequence while the 

one present in the LacI/Ptrc 5 -UTR was either only slightly stronger or even weaker than 

the RBS present in the Pm 5 -UTR dependent on the 5 -proximal end of the coding region 

(Paper I, Figure 5). Another way to improve translation initiation is to apply rational design 

tools to find the 5 -UTR DNA sequence that allows for the most efficient translation 

initiation given a certain coding region. The different strategies to improve a 5 -UTR were 

tested using bla as reporter gene due to the ability to use ampicillin tolerance of a cell as 

direct output for bla expression (section 1.2.2). Using this gene also has the advantage 

that expression levels can be varied over two orders of magnitude [25,89]. Previously, it 

could be shown that some combinations of Pm promoter and Pm 5 -UTR variants could 

have an additive effect on each other [40]. This time, the Pm 5 -UTR in plasmids with the 

Pm wild-type or Pm ML1-17 promoter was replaced with PT7lac, Ptrc and PBAD 5 -UTRs and 

resulting ampicillin tolerance levels were determined. Data analysis revealed that for the 

Pm wild-type, 5 -UTRs from the three alternative regulated promoter systems caused 

higher ampicillin tolerance than the Pm 5 -UTR (Figure 3.3A). However, for the Pm ML1-

17 promoter, it was different. The Pm promoter variant enhanced ampicillin tolerance five 

times. This increase was only exceeded by the effect of the PT7lac UTR (7-fold), not the Ptrc 

and PBAD 5 -UTRs (four- and two- fold, respectively). Replacement of the Pm 5 -UTR with 

so-called UTR up-variants (Table 3.1C and D) led to even further increase of bla 

expression which exceeded 13-times improvement compared to the wt Pm 5 -UTR 

(Figure 3.3B). The DI UTR variants (Table 3.1E) on the other hand lowered ampicillin 

tolerance by a factor of 10 to 33. As could be assumed, the designed UTR variants with 

optimal features with respect to translation initiation (Table 3.1F) did improve bla 

expression. However, with only four- to eight- fold improvement of ampicillin tolerance 

compared to the Pm 5 -UTR, it was concluded that the screened up variants of the Pm 5 -

UTR still were the best choice to achieve the highest bla expression improvement based 

on changing the 5 -UTR.  

 A different way of interpreting the data was to look at whether expression levels 

could have been predicted based on sequence analysis (Figure 3.3C). For the Pm 5 -UTR 

DI variants, lowered TIR values compared to the wild-type sequence coincided with 

lowered tolerated ampicillin concentrations. This supported previous experimental data 

which revealed that these UTR variants down-regulate translation [89]. Despite this it 
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would not have been possible to predict expression levels based on sequence analysis. 

This is especially evident for LV-1 and LII-11, two Pm 5 -UTR variants that only had a 

slightly increased TIR value compared to the wild-type (1.3- and 1.5- fold higher), but 

which could increase ampicillin tolerance by a factor of ~12. The mutations within these 

Pm 5 -UTR variants are known to affect transcript accumulation in addition to translation.  

 

 
Figure 3.3: Analysis of the effects of different 5 -UTR DNA sequences on bla 
expression based on ampicillin tolerance testing and theoretical analysis of the 
RBS. A and B Results from ampicillin tolerance testing of strains expressing bla from Pm 
(or Pm ML1-17) in dependence of different 5 -UTR DNA sequences. Expression was 
induced with 2 mM m-toluate. Values represent the highest ampicillin concentration at 
which growth was observed. Error bars point to the next highest ampicillin concentration 
that inhibited growth. 13 g L-1 was the highest concentration used. The different Pm 5 -
UTR variants were published before: LV-1, LV-2, LII-10 and LII-11 [25]; H39 [40]; DI-3, -7, 
-8 [89]. The three latter sequences led to tolerance of 0.03, 0.06 and 0.10 g L-1 ampicillin, 
respectively, under the given conditions. dIB1-3 were designed by the RBS calculator 
[218]. Ampicillin tolerance levels of LII-10 vary because two slightly different plasmid 
backbones were used: pTA16=pSB-M1b (A) and pIB11 (B) (difference in two restriction 
sites around the xylS gene; otherwise same sequence around Pm, Pm 5 -UTR DNA 
sequences and GOI. C Calculated TIRs obtained by analyzing UTR-bla DNA regions with 
the reverse engineering function of the RBS calculator. (Paper II and unpublished data) 
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 Another example is designed 5 -UTR dIB1 which has a 207-fold higher TIR value 

than the Pm 5 -UTR, but which led to only 3.8-fold improvement of ampicillin tolerance. 

This analysis demonstrated the need to understand the sequence-determinants that affect 

transcription and translation better in order to be able to choose or re-design a 5 -UTR in a 

more predictable manner for example by utilizing RBS design tools.  

 
  

3.2.2 Attempts to identify specific mutations within Pm 5 -UTR DNA 
sequences that influence transcription or translation  

 
 The comparison between the different 5 -UTR DNA sequences described above 

highlighted that screening was the preferred method to identify such sequences with 

respect to high expression. The analysis also revealed that the high expression levels 

achieved by the Pm 5 -UTR variants could not have been predicted based on sequence 

analysis. This could be attributed to the fact that mutations within these variants lead to 

increased transcript production and translation efficiency at the same time. This means 

that a prediction method purely based on translation-influence was not sufficient to 

evaluate the potential of 5 -UTR DNA sequences to enhance protein production levels. 

The extent to which the mutations found in the 5 -UTR variants stimulate one or the other 

process differs. Mutations in LII Pm 5 -UTR variants for example are believed to mainly act 

on translation while mutations in LV Pm 5 -UTR variants probably confer mainly increased 

transcript production [25]. Earlier, two artificial operon constructs had been created, pAO-

Tn and pAO-Tr [236]. These were applied to generate mutant libraries to get a better 

insight into which mutations lead to stimulation of either of the processes, not a mixture 

(Paper II).  
 

Novel artificial operon constructs to identify Pm 5 -UTR DNA sequences that either 
lead to increased transcript accumulation or protein production 
 
 The short description of how the artificial operon libraries were made and screened 

in order to identify novel Pm 5 -UTR variants is the following. First, a doped synthetic 

oligonucleotide mixture covering the central Pm 5 -UTR region (see Table 3.1A) was 

inserted into pAO-Tr and pAO-Tn using the PciI and NdeI sites. By not randomizing the 5 -

UTR DNA core region completely, but by using a low substitution frequency for each 

position instead (14.4% substitution by a different nt versus 85.6% wild-type nt) a certain 



 43

resemblance to the original Pm 5 -UTR was assured. This rendered the mutated 5 -UTR 

DNA sequences variants of the Pm 5 -UTR instead of completely new 5 -UTRs. In 

previous 5 -UTR random mutagenesis studies, the SD was also included in the 

randomized region. However, the mutations causing high expression did not affect the 

original four nt long SD sequence [25] which is why the SD sequence was kept intact in 

the mutant library. The resulting Tr- and Tn-UTR libraries (UTR libraries derived from 

pAO-Tr and pAO-Tn, respectively) where then transferred to E. coli and transformants 

were selected on agar plates supplemented with kanamycin. Several 100,000 clones were 

pooled and subjected to agar plates containing m-toluate and different ampicillin 

concentrations (for details, see Paper II). Strains growing on high ampicillin 

concentrations were picked and tested phenotypically again (ampicillin tolerance). 

Plasmids were isolated from strains tolerating high concentrations and transformed back 

into E. coli. 5 -UTR DNA regions found in strains whose phenotype could be confirmed 

were then sequenced. The 5 -UTR DNA regions were re-synthesized as pairs of 

complementary oligonucleotides and cloned back into pAO-Tr or pAO-Tn. Finally, the 

constructs were transferred to E. coli one last time for ampicillin tolerance testing.   

 Among the five novel UTR variants identified from the Tr-UTR library, there were 

three (r31, r36 and r50) which could lead to the same level of ampicillin tolerance as 

caused by mutations contained in LV-1 and LV-2. Mutations in the previously identified 

LV-1 and LV-2 Pm 5 -UTR variants could lead to increased tolerance to ampicillin (about 

4-fold) when inserted upstream of celB. This could be attributed to increased transcription 

of the operon because increased translation of celB would not influence translation of bla 

in a direct manner. This effect was expected because these two Pm 5 -UTR variants were 

proven to mainly cause transcript accumulation of a target gene [25].  The 5 -UTR variants 

all differed in their sequence. Three variants had a different total length (r28, r31 and r50). 

However, the number of novel Tr-UTR candidates was generally low and three rounds of 

screening needed to be performed. None of the Tr-UTR variants led to higher ampicillin 

tolerance than the previously identified variants. Although more clones with mutations in 

the Tr-UTR variant were identified in the initial screen, they could not be confirmed in later 

stages suggesting that mutations in other places than the Pm 5 -UTR DNA region led to 

increased ampicillin tolerance. Indeed, during the second screening round mutations 

within the second codon of celB (CCC-> T/UCC) were detected in more than half of the 

sequenced constructs and additional mutations were detected within the PciI and NdeI 

restriction sites. And these were only the mutations that could easily be identified. Similar 
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to the novel Pm 5 -UTR variants that could finally be confirmed, LV-1 and LV-2 were also 

identified in the same genetic context meaning that the Pm 5 -UTR library was placed 

directly preceding the celB gene. The only difference was that celB and bla were 

translationally fused by an overlapping start and stop codon. The celB gene was 

previously shown to be well-expressed in presence of the wild-type Pm 5 -UTR already. 

This means that both screening tools (the one described here and the one developed by 

Berg et al. [74] potentially led to identification of the mutations within the Pm 5 -UTR with 

the strongest effect on celB expression. No clear positional hot-spot was observed and 

there was not any mathematical tool available to analyze the sequence composition of a 

5 -UTR DNA region with respect to transcription initiation available. That is why analysis of 

the 5 -UTR variants was performed at the transcript and protein level (see below).  

 Compared to the Tr-UTR library, screening of the Tn-UTR library led to the 

identification of more Pm 5 -UTR variants and in two screening rounds 22 variants were 

confirmed in the end. These caused up to 25 times increased ampicillin tolerance 

compared to the wild-type. During screening of the Tn-UTR library, some strains with even 

higher ampicillin tolerance were found. But when the DNA region between the Pm 

promoter and the celB was sequenced, it turned out that three Pm 5 -UTR DNA fragments 

had been inserted; two fragments in regular orientations interspersed with a third in the 

inversed orientation. Due to the presence of triple insertions of Pm 5 -UTR DNA fragments 

in strains tolerating high ampicillin concentrations, a colony PCR was performed prior to 

sequencing reactions to eliminate those constructs which contained more than a single 

Pm 5 -UTR DNA region. My work benefitted from this observation at a later stage (see 

3.2.3). Looking at the sequence composition, 19 out of 22 carried a mutation that 

interrupted the extra ATG sequence found between the SD sequence and the actual start 

codon DNA sequence (Table 3.1A). Three out of 22 (n24, n35 and n59) increased the 

length of the SD by one nt and three by two nts (n44, n47 and n58). These are good 

indicators for improvement of translation because the SD-antiSD interaction is important 

during translation initiation. In the Pm 5 -UTR sequence, the distance between the SD 

region and the ATG is relatively long (12 nts from the center of the SD sequence gGag to 

the ATG start codon) and with four nts in length the SD is relatively short. Osterman et al. 

[176] could show that for such big distances, a longer SD sequence is beneficial for 

efficient translation. 
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Characterization of Tr- and Tn-UTR DNA sequences at the accumulated transcript 
and protein level 
  

 After having identified the Tr- and Tn-UTR variants, different analyses were 

performed using the three strongest Tr-UTR variants together with the LV-2 control Pm 5 -

UTR as well as four Tn-UTRs. The latter were chosen based on sequence composition 

(elongation of the SD region by one or two nts, change of the internal ATG or not, total 

number of mutations) to give a variation of sequence features. Effects of general 

sequence features within the 5 -UTR affecting translation have been systematically 

investigated before [176]. To evaluate many criteria for good translation efficiency at the 

same time, computational tools such as the UTR designer [227] or the RBS calculator 

[218] can be applied. Data obtained from analyses with the RBS calculator are found in 

Paper II while data from the most important UTR variants studied in this thesis are shown 

below (Figure 3.4). Another way to study effects of 5 -UTR variants on gene expression is 

to look at accumulated transcript and protein levels. For this purpose, the Tr- and Tn-UTR 

variants were transferred to pIB11, a monocistronic construct in which Pm  and its cognate 

5 -UTR control expression of the bla gene alone. Strains harboring pIB11 constructs with 

Tr- and Tn-UTR variants were subjected to qPCR and protein analyses using an 

enzymatic assay.  

 

 
Figure 3.4: Analysis of the effect of selected 5 -UTR variants on accumulated 
transcript levels and enzymatic activity as well as a theoretical analysis of the 
translation efficiency. Recombinant E. coli strains harboring pIB11 constructs with 
different UTR variants were induced with 0.5 mM m-toluate. Expression of bla was 
analyzed from samples taken 5 hours post induction using qPCR and a -lactamase 
assay. Results from one representative experiment are shown. The data were later 
confirmed by master student Jon A. Lorentzen. Below the bar diagram, the calculated 
translation efficiencies from two different softwares are shown. (unpublished data) 
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 Protein-to-transcript ratios of the Tr- and Tn-UTRs were in the range of 1.1-1.4 and 

1.2-2.6, respectively, under full induction (2 mM m-toluate) and slightly higher under 

partial induction (0.5 mM m-toluate). Data for some selected UTR DNA sequences are 

shown in Figure 3.4.  Interestingly, it could be demonstrated that mutations within the LV-

2 variant led to a significant improvement of protein production levels on top of increased 

accumulated transcript levels which was supported by the computational analysis. In 

contrast, the two important UTR variants identified in the study described in Paper II (SIII-

r31 and SII-n47) displayed more distinct characteristics with respect to transcription and 

translation stimulation. Overall, TIR values (RBS calculator) of the three Tr-UTRs were 

slightly (1.2-2.7 times) higher than for the wild-type Pm 5 -UTR while the TIR values for 

the four Tn-UTRs were increased by a factor of 9.3-14.0. Based on these two criteria and 

a third analysis (change of position of the Tr- and Tn-UTRs in the artificial operon 

constructs (Paper II, Figure 2)), it was concluded that, most likely, Tn-UTRs mainly act on 

translation efficiency while Tr-UTR mainly, but not purely act on transcript accumulation.  

 

3.2.3 Development of a novel 5 -UTR DNA sequence design to increase protein 
production levels 

 
 The 5 -UTR variants that were identified using the two artificial operons were 

shown to display distinct characteristics with respect to influencing relative accumulated 

transcript amounts and enzyme activity. However, generally the overall improvement of -

lactamase production was lower than achieved by previously identified Pm 5 -UTR 

variants (maximum 11-fold increase (n47; data not shown) vs. 20-fold increase at 

induction with 2 mM m-toluate; [25]). This could be explained by the fact that the 

mutations found in Tr- and Tn-UTRs mainly stimulate one of the processes instead of both 

at the same time. As a consequence, it was of great interest to combine mutations of 

different Tr-and Tn-UTRs to form a superior Pm 5 -UTR variant in which both transcript 

accumulation and protein product formation were enhanced. Different potential design 

strategies were evaluated on how mutations that influence transcription or translation 

could be combined in a single 5 -UTR DNA sequence.  

 The first idea was to merge mutations of a Tr-UTR variant with mutations from a 

Tn-UTR variant and generate a new 5 -UTR with the same length as the original Pm 5 -

UTR. But the UTR variants all differed in sequence composition. As an example, the 

mutations in the r31 Tr-UTR were only located in the stretch of DNA located upstream of 
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the SD sequence. However, the six mutations within the n47 Tn-UTR were spread across 

the entire mutated region and thereby overlapped with the mutated region of the r31 Tr-

UTR and the other Tr-UTRs. Therefore, it was not possible to merge the sequences or to 

piece together a Pm 5 -UTR out of two segments, one from the Tr-UTR and another from 

the Tn-UTR.  

 The second idea was to combine the entire Tr-UTR with an entire Tn-UTR and 

separate the units with a spacer sequence. This second option had the advantage that 

effects caused by the mutations within a Tr-UTR variant would probably not interfere with 

ribosome binding and translation initiation due to the physical distance generated by the 

spacer sequence. At the same time, mutations around the ribosome binding site 

(contained within the Tn-UTR) would not affect transcription. The spacer design was 

based on the above described screening artifact where three Pm 5 -UTR DNA sequences 

had been inserted simultaneously leading to high expression levels. At first, several 

parallel designs were tested; each of which contained three wild-type 5 -UTR DNA 

sequences; one in the regular orientation, one in the inversed orientation and one 

additional in the regular orientation. However, the sequence of the inversed 5 -UTR DNA 

sequence was modified in a way that the additional PciI and NdeI sites connecting the 

three sequences were removed and that one of several unique restriction sites was 

introduced in the center of this 5 -UTR DNA sequence. This would ensure that the 5 -DNA 

region and the 3 -DNA region of the novel 5 -UTR DNA region could be replaced using 

annealed oligonucleotides flanked by PciI plus enzyme X and enzyme X plus NdeI sites. 

Finally, one design was chosen with a SacI site in the center which gave rise to an 

ampicillin resistance level of 0.25 g L-1 at full induction (2 mM m-toluate). This pIB11-

derived construct was called pDUTR and the particular 5 -UTR DNA region between the 

Pm promoter and the bla gene was termed dualUTR (Paper II).  

 

3.2.4 Generation of dualUTR DNA sequences that primarily enhance 
transcription, translation or a mixture of both 

 
 Based on the above described 5 -UTR design, several mutations derived from Tr- 

and Tn-UTR DNA sequences were introduced in the 5 -UTR DNA region and variants of 

this region were denoted as pairs of Tr- and Tn-UTR variants; e.g. wtwt for a dualUTR 

composed of two wild-type units. First, several Tr- and Tn-UTR DNA sequences were 

combined and the effect of the mutations was tested based on resulting ampicillin 

tolerance of the respective recombinant E. coli strains. Among the different combinations 
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tested, it was the mutations contained in Tr-UTR r31 which were able to exert the 

strongest increase in bla expression on top of the effect caused by mutations contained in 

the different Tn-UTR variants. Among the Tn-UTR variants, it was n47 which displayed 

the strongest stimulating ability on bla expression. In order to analyze the contributions of 

the different dualUTR sequences on bla expression more precisely, recombinant E. coli 

strains harboring wtwt, r31wt, wtn47 and r31n47 dualUTR variants were subjected to 

qPCR analysis and an enzymatic assay. One important observation was that the 

mutations in the three different dualUTR variants did lead to higher accumulated transcript 

levels compared to the wtwt combination. However, the protein product levels did not 

increase proportionally. Calculated ratios between relative protein and transcript amounts 

were 0.6 for r31wt, 4.1 for wtn47 and 3.6 for r31n47 (based on Paper II, Figure 4A).  

 These data support two hypotheses derived by Laila Berg ([237]; Figure 14). The 

first stated that, theoretically, there exist 5 -UTR variants with maximized transcriptional 

stimulation ability but which are not optimal for translation. These 5 -UTR variants would 

lead to stronger relative transcript accumulation than protein production with a protein-to-

transcript ratio below one. The r31wt dualUTR is an actual, practical example to support 

hypothesis 1 because it displays a protein-to-transcript ratio of ~0.6. This means that 

transcriptional features exerted by the Pm promoter region in combination with the 

mutations in the r31 Tr-region of the dualUTR are more dominant than translational 

features of the wt Tn-part which in turn could be interpreted by an uncoupling of the two 

processes. The second hypothesis states that there exist 5 -UTR variants with maximized 

translation efficiency, but reduced transcript production rate. This would cause a protein-

to-transcript ratio well above one. Again, a 5 -UTR variant, wtn47, could be generated 

which fulfils the criteria to prove hypothesis 2. Combining the r31 and n47 DNA regions 

into one 5 -UTR causes a protein-to-transcript ratio of 3.6 which is just below the ratio 

caused by wtn47 (4.1). This indicates that transcriptional stimulation and translation 

efficiency are stimulated to a similar extent. However, an even lower ratio could be 

envisioned. This could be further exploited in the future by adjusting the Tr-DNA unit of the 

dualUTR to balance transcript accumulation even better with translation stimulation. 

According to the current understanding of the coupling of the transcription and translation 

machineries (section 1.3.4), the optimal ratio would be around one. This is why I hereby 

suggest a revised interpretation of the effects of the LV-2, namely that the mutations 

within this Pm 5 -UTR variant lead to equally increased accumulated transcript and protein 

product levels. This can be supported by the theoretical findings (extended SD sequence 
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and higher TIR values which indicate a positive effect on translation initiation) as well as 

experimental data (protein-to-transcript ratio just above 1).  

 A parallel combinatorial engineering approach was performed in our research 

group [40]. In this study, it was not 5 -UTR DNA sequences that act on transcription or 

translation, but variant elements of the XylS/Pm system acting on the two processes that 

were combined. In brief, the major finding of this story was that combination of variant 

elements that act on different steps of expression act in a stimulating manner. As an 

example, a xylS variant or a Pm variant which both stimulate transcription enhanced the 

positive effect of a 5 -UTR variant which in turn mainly acts at the translational level. The 

total increase achieved by a combination of a xylS and a 5 -UTR variant was around 50-

fold and the increase from a Pm and 5 -UTR variant combined 25-fold (vs. 15 times 

increase compared to the wt by a 5 -UTR variant alone). All three variant elements 

combined increased expression by a factor of 75.  

 

3.2.5 Application of a rational RBS design tool to change the Tn-UTR part of 
the dualUTR  

 
 Previous mutagenesis studies on the Pm 5 -UTR demonstrated that there is a 

context dependency between the 5 -UTR and the 5 -proximal coding region. This means 

that 5 -UTR variants identified in proximity to a certain gene would not exert the same 

effect on a second gene. The Tn-UTR variants tested in the dualUTR design (identified in 

proximity to the bla gene could enhance mCherry production by an impressive factor of 67 

(Paper II). This effect could have been predicted since the n47 variant and the 5 -end of 

the mCherry gene form an RBS with a high TIR value compared to the wild-type (2,309 

vs. 12,766). Still, it is questionable whether the 5 -UTR sequences in this study that were 

identified to give rise to high protein production levels of -lactamase (and mCherry) 

would work equally well for different genes. In order to avoid a new mutant library 

approach for every gene in order to find a suitable 5 -UTR DNA sequence that would 

increase translation initiation in a predictive manner, an attempt was made to apply the 

RBS calculator again. The reason to apply this tool for the dualUTR constructs (now in the 

forward engineering mode) under the assumption that more reliable protein product levels 

could be achieved is based on the physical separation of the Tr- and Tn-UTR DNA 

elements. Since mutations in the Tn-part of the dualUTR are most likely too far away from 

the transcriptional start site to affect transcript accumulation, it was reasonable to assume 

that the Tn-part of the dualUTR could be optimized based on translation-enhancing 
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properties only without affecting transcript accumulation at the DNA level. As exemplified 

for -lactamase the use of three different designed Tn-UTR sequences (called dTn1-3 for 

designed Tn-dualUTR) resulted in the identification of at least one sequence which 

displayed increased protein production abilities equally well or better than the screened 

n47 Tn-UTR variant (Figure 3.5). This finding supports the hypothesis that a 5 -UTR DNA 

sequence cannot be optimized based on translation-affecting properties only. Separation 

of the region of a 5 -UTR DNA sequence which is part of the RBS from the ITS region, 

instead, opens up for the possibility to apply rational design tool to improve translation 

initiation.  

 

 
Figure 3.5: Comparative analysis of the effect of different 5 -UTR DNA sequences on 
bla expression measured as ampicillin tolerance. Strains harboring pDUTR- or pIB11-
based plasmids with different dualUTR or Pm 5 -UTR DNA sequences, respectively, were 
transferred to agar plates containing 0.1 mM m-toluate and increasing amounts of 
ampicillin. The highest concentration tolerated is plotted and error bars point to the next 
highest concentration that restricted growth. (derived from Paper II, Figure 6A).  
 

 In general, the data obtained in this study agree well with the current literature in 

the field of synthetic biology. For example, the issue of context dependency or junction 

interference is currently taken up. Different solutions to prevent unforeseen effects of 

combining promoter, RBS and genes are presented. Two additional articles describe the 

use of an endoRNase site [224] and a ribozyme encoding region [222] within the 5 -UTR 

DNA region to cleave off the 5 -part of the UTR in order to achieve a more predictable 

effect on translation initiation caused by a rationally designed RBS. Another study on the 
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other hand describes the benefits of applying a synthetic library approach to combine 

promoters and 5 -UTR DNA sequences to achieve an optimal context between the 

promoter, the RBS and the gene and to be independent of predictions [228]. In general, 

the novel dualUTR described here could be applied for both strategies and it remains to 

be shown in the future which strategy gains more acceptance.  

 

 

3.3  Analysis of the effects of different plasmid backbones on 
gene expression  

  
 Heterologous gene expression can be directly affected by the choice of the 

promoter system (Paper I) and the 5 -UTR (Paper II). In a broader perspective, e.g. at the 

systems level (expression vector); more parameters come into play which are able to 

exert an effect on protein production levels. These include the plasmid copy-number 

regulated by the origin of replication and associated plasmid control elements. In contrast 

to the first parameters, these would likely affect gene expression in a general, not gene-

dependent manner. 

 

3.3.1 Influence of plasmid stabilization elements on protein production  
 
 In previous studies the hok/sok system was used in pJB vectors to prevent plasmid 

loss under HCDC [20,68]. Another control region was used on mini-RK2 vectors, namely 

the par locus (Par) [76]. This locus is involved in postsegregational killing and plasmid 

multimer resolution. Both systems were able to stably maintain plasmids in cell 

populations in absence of selection. Besides the par locus, RK2 contains the OB1incC 

korB partitioning (Inc) region which is involved in spatial organization of the plasmid within 

a bacterial cell (see 1.2.1). However, it has not been shown before whether the use of 

such control regions would have a direct effect on heterologous protein production. 

Expression could be studied at the population level or at the level of individual cells using 

methods like flow cytometry. The outcome at the population level would then be the 

average sum of the production in each individual cell. Here, GFP expression was used to 

exemplify the influence of different elements contained in the plasmid backbone on protein 

production. Mini-RK2 plasmids were constructed based on pSB-M1g (Paper I) in which 

the Inc and Par loci (Figure 3.6A and B) were inserted downstream of the xylS gene. 
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GFP production was studied in E. coli MG16551 (Figure 3.6C-E). At the population level, 

both regions had a significant impact on GFP production increasing product levels by 

around 80% and 60% compared to when plasmids without control regions were used 

(Figure 3.6C).  

 

 
Figure 3.6: Influence of plasmid control regions on GFP expression profiles of 
recombinant E. coli cells harboring pSB-M1g. A Genetic organization of the OB1incC 
korB partitioning region of RK2 that is known to shift the location of mini-RK2 replicons 
towards the quarter- and mid-cell positions (derived from Verheust and Helinski [70]). B 
Organization of the par locus of RK2 containing the postsegregational killing system 
encoded by the parDE operon and the multimer resolution system encoded by parCBA. 
MRS multimer resolution site (derived from Sobecky et al. [75]) Both the OB1incC korB and 
the par locus were inserted into pSB-M1g (Paper I) downstream of the xylS gene and the 
resulting plasmids were called pSB-M1g Inc and pSB-M1g Par, respectively. C 
Recombinant E. coli MG1655 cells harboring pSB-M1g (Ø), pSB-M1g Inc (Inc) or pSB-
M1g Par (Par) were grown in LB medium according to the protocol described in Paper I 
and fluorescence values were determined 300 min post induction. After normalization, 
data were related to pSB-M1g. D During growth of E. coli MG1655 (pSB-M1g), samples 
were collected at different time points after induction and analyzed by flow cytometry. This 
time, a Becton Dickinson LSR flow cytometer and the Kaluza 1.1 software (courtesy of 
Physics Department, NTNU) were used. E In parallel, samples from E. coli MG1655 (pSB-
M1g Inc) and E. coli MG1655 (pSB-M1g Par) cultures were collected and distribution of 
cells collected 300 min after induction are presented.  

                                                 
1 This strain was used by our collaboration partner Judith Megerle at LMU Munich to study 
culture heterogeneity.  
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 Flow cytometry data were collected as well, following GFP production in individual 

cells over a period of five hours. This analysis revealed that onset of GFP production from 

mini-RK2 plasmids was generally slow. A significant population of cells that produced 

more GFP than the background level only formed one hour after induction (Figure 3.6D). 

Still, many cells remained uninduced as derived from the peak at low fluorescence values. 

Five hours post induction, most cells were induced. Distributions of cells harboring 

plasmids with the Inc and Par regions were strikingly similar to the distributions of cells 

harboring plasmids devoid any control region (Figure 3.6E). The only difference was that 

the major peak derived from induced cells was shifted towards higher fluorescence 

values. This is consistent with the data collected at the population level. 

 These results were somewhat surprising. It would have been possible that the 

presence of a multimer resolution system and a partitioning region would lead to a more 

homogenous distribution of plasmid between the cells in a population leading to a more 

homogenous expression. The data disprove this hypothesis. However, the presence of 

the Inc and Par regions was beneficial for the overall production level of GFP. This finding 

may be interpreted by assuming that a better distribution of plasmids within cells leads to 

a more favorable use of cellular resources (nts, amino acids, etc.). It is known that mRNA 

does not freely diffuse in a cell [238] due to a crowded cytoplasmic environment. 

Assumingly, transcripts stay in proximity to the plasmids. If plasmids are distributed at 

more locations within a cell, nutrients used for transcription and translation of 

heterologous genes can be used more efficiently [69]. This in turn might explain why more 

GFP can be produced from plasmid containing elements that lead to a more favorable 

positioning inside the cell.  

 

3.3.2 Influence of different origins of replication on protein production  
 
 A different way to change the distribution of plasmids within the cell is the use of 

different origins of replication leading to elevated plasmid copy-numbers. Therefore the 

effect of a pMB1-based plasmid backbone on GFP production was studied (Paper I and 

unpublished data). Overall, GFP production levels were increased, not only for plasmids 

containing the XylS/Pm system, but also XylS/Pm ML1-17, the LacI/PT7lac system, the 

LacI/Ptrc system and the AraC/PBAD system (Paper I, Figure 2). Increasing the copy-

number from four- seven (mini-RK2) to 15-20 (pMB1) led to 1.6- to 6.2-fold higher GFP 

levels depending on the promoter system. The relatively low increase for the LacI/PT7lac 
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system could be attributed to the accumulation of insoluble protein (Paper I, Figure 3) 

which was not detected by fluorescence measurements.  

 In a second analysis, populations of GFP producing cells were subjected to flow 

cytometry analysis. Surprisingly, the use of a pMB1-based backbone led to more 

homogenous populations compared to the use of RK2-based backbones as exemplified 

by GFP expression profiles of strains harboring the XylS/Pm system (Figure 3.7A). 

Already 20 min after induction, a single peak distinct from the uninduced peak was 

observed suggesting that all cells were induced and that these produced GFP. The peak 

migrated towards higher fluorescence values in agreement with fluorescence values at the 

population level (data not shown). Equally homogenous distributions were observed for 

the system with the Pm promoter variant Pm ML1-17 (Figure 3.7B). These data confirm 

that the use of a different plasmid backbone not only influences heterologous protein 

production in general, but also the homogeneity of a cell population. It can be assumed 

that this finding is based on how plasmids are distributed in a cell. However, a study 

visualizing plasmid distributions would be needed to confirm this hypothesis.  

 

3.3.3 Influence of different regulated promoter systems on protein 
production studied at the single-cell level 

 
 Another parameter influencing homogeneity of expression is the promoter type. 

The comparative analysis of different regulated promoter systems revealed that 

distributions of fluorescing cells differed quite significanty from one another. Populations of 

cells harboring plasmids with LacI/PT7lac were heterogeneous prior to induction and at later 

stages during expression (e.g. 5 hours post induction) (Figure 3.7C). The LacI/Ptrc system 

caused homogenous distributions throughout the time course (Figure 3.7D). However, 

production of GFP did not increase further from one hour post induction on. Finally, the 

AraC/PBAD system was characterized by a slower onset of GFP production, but 

distributions remained homogenous from one hour post induction on (Figure 3.7E). 

 A known issue associated with AraC/PBAD is the so-called all-or-nothing 

phenomenon. This is based on the finding that two populations of cells are observed in 

flow cytometry studies after induction with sub-saturating inducer concentrations [105]. In 

order to demonstrate this phenomenon also in the novel vector context and to compare 

the behavior of XylS/Pm ML1-17 to AraC/PBAD at lower inducer concentrations, a second 

experiment was conducted using 10-fold less inducer than in the full induction experiment 

(Figure 3.7F and G). The analysis revealed that GFP expression driven from the Pm 
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ML1-17 promoter variant led to formation of homogenous cell populations. Meanwhile, a 

significant portion of cells harboring constructs in which GFP production was regulated by 

the PBAD promoter displayed a behavior similar to uninduced cells. 

 

 
 
Figure 3.7: Distribution of cells producing GFPmut3. Recombinant cells were grown 
and expression was analyzed according to the protocol described in Paper I. A  E. 
coli ER2566 pSB-M2g B E. coli ER2566 pSB-M2g-1-17 C E. coli ER2566 pSB-E2g D E. 
coli ER2566 pSB-T2g E E. coli DH10B pSB-B2g. In addition to studies at full induction, 
gfpmut3 expression was also induced with a 10-fold lower inducer concentration for some 
selected strains: F E. coli DH10B pSB-M2g-1-17 induced with  0.2 mM m-toluate G E. coli 
DH10B pSB-B2g induced with 0.0015 % L-arabinose (derived from Paper I and 
unpublished data).  
 

These findings can be related to inducer uptake. L-arabinose, the inducer of the AraC/PBAD 

system, namely, undergoes active transport by one high-capacity, low-affinity L-arabinose 

transporter and one high-affinity transporter (see 1.2.2). By making regulation of the 

production of the L-arabinose transporters independent of the inducer, homogenous cell 

populations could be achieved [102]. The XylS/Pm system whose inducer molecules enter 
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the cell by passive diffusion did not need to be modified (other than the replicon on the 

plasmid backbone) in order to achieve homogenous populations. This represents a great 

advantage of XylS/Pm over regulated promoter systems that are induced by molecules 

requiring an uptake system (e.g. AraC/PBAD).   

 

3.4  Analysis of the effects of different growth conditions on 
protein production 

  

 The focus of this PhD project as described up to this point has been on the genetic 

elements of expression cassettes only. However, it is well known that the surrounding 

environment of an expression vector (e.g. cell cytoplasm and culture medium) affects 

recombinant gene expression. Under laboratory scale experiments, a range of parameters 

can be tested with respect to the yield of a heterologous protein product. A selection was 

tested during this PhD project using XylS/Pm to express genes coding for two capsid 

proteins of the Norwegian Salmonid Alphavirus (NSAV) called E1 and E2. The results are 

presented in the following two subchapters. 

   

3.4.1 Production of Norwegian Salmonid alphavirus E1 and E2 capsid 
proteins in E. coli 

 
 Analyses so far in addition to several previous studies revealed that the XylS/Pm 

system possesses beneficial traits for various recombinant expression purposes, amongst 

them the ability to produce industrial levels of heterologous proteins in a fermentor [20,68]. 

These traits were again put to the test by trying to produce medically relevant proteins. In 

a KMB2 project (which this PhD project was indirectly associated with), Pharmaq, one of 

the four industry partners, supplied genes encoding NSAV E1 and E2 to be expressed 

within the project (Paper III). The goal was to produce the target proteins as antigens to 

make it possible to derive antibodies against them for use as vaccines later on. In order to 

produce antigens, a simple bacterial host such as E. coli can be used. A literature study 

and bioinformatics analysis suggested that these proteins were likely to be difficult to 

produce due to their origin (fish virus), the predicted presence of transmembrane helices 

and disulfide bonds. This led to a rational choice of an expression system. In Paper I it 

                                                 
2 A Combinatorial Mutagenesis Approach to Improve Microbial Expression Systems (Norwegian 
Research Council project; Project nr: 182672/I40) 
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could be shown that the XylS/Pm system in combination with a replicon leading to an 

intermediate plasmid number could yield intermediate, yet detectable protein production 

levels, a good ratio between soluble and insoluble protein on top of the ability to fine-tune 

expression levels without the need of making new genetic constructs, for example by 

varying the inducer concentration. It was decided to use the system in its wild-type form 

as a basis to have an intermediate starting point with respect to production capacity. 

Using a too strong promoter for toxic proteins as an example could stress the cells which 

increases the probability to accumulate IBs. As a plasmid backbone, mini-RK2 replicons 

containing trfA variant cop271C and the hok/sok suicide system were chosen based on 

the pJB series of plasmids. Starting broad, full-length genes encoding E1 and E2 as well 

as truncated versions devoid of the transmembrane and hydrophobic interaction domains 

were cloned into the pJB vectors. This protein engineering strategy was pursued to 

increase chances to achieve production of soluble target proteins. It could be justified with 

the fact that potential epitopes would not be located in the parts of the proteins that are 

buried inside the membrane or inside regions that form interaction surfaces with 

associated proteins. Another choice that was made early on was the use FPs. N-terminal 

FPs comprised CSP and OmpA, two signal peptides which accomplish translocation of 

the target proteins to the periplasm. Both were previously shown to facilitate dramatic 

improvement of protein production besides being properly cleaved off [20,68]. Also, 

combinations of the Pm 5 -UTR DNA region and the coding regions for the CSP and 

OmpA signal peptides formed RBS with TIRs of 3,621 and 5,190, respectively, which are 

well in the range of TIRs described earlier. Therefore, no particular 5 -UTR modification 

strategy was applied. C-terminal FPs included the c-myc and His6 tags for detection and 

affinity purification. A schematic representation of the arrangements of the genetic 

elements that were coupled together during this study can be found here: Paper III, Figure 

1. Further decisions regarding the choice of E. coli strains (RV308 and BL21-

CodonPlus(DE3)-RIPL) and growth medium (Hi+YE) can also be found in this article.  

 

3.4.2 Recombinant production of the NSAV E1 and E2 capsid proteins in 
small-scale under influence of different growth conditions 

 
 A common understanding among researchers working in the field of recombinant 

expression is that it is useful to approach laboratory-scale experiments from a broad 

parameter perspective due to many unforeseen effects in the upstream process. This is 

the reason why the influence of different parameters on production of the NSAV E1 and 
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E2 proteins was tested. These included protein engineering, choice of genetic context 

(see 3.4.1) and physiological conditions. The primary focus was to produce as much 

soluble virus protein as possible. Recombinant E. coli strains producing different variants 

of the E1 and E2 proteins with or without N-terminally fused signal peptides were grown at 

30 °C and expression was induced with 0.5 mM m-toluate. After the first round of 

experiments, it could be concluded that presence of the additional tRNAs produced by the 

E. coli BL21-CodonPlus(DE3)-RIPL strain did not improve soluble E1 and E2 production. 

Due to better growth characteristics E. coli RV308 was selected for use in these 

experiments (data not shown).  

 Furthermore, it could be shown that production of the virus proteins affected 

bacterial growth which is why it was decided to induce expression from XylS/Pm in the 

middle of the logarithmic growth phase (corresponding to OD600 = 8-10 in Hi+YE 

medium) (Figure 3.8A-D). Especially the use of a signal sequence led to reduction of 

growth after induction an effect which became most evident for the E2 protein in its full-

length form (Figure 3.8B). 

 Growth of strains producing the truncated form of E1 (E1 IDTM) was only slightly 

impaired in the first 2 hours after induction. However, production of these proteins 

appeared to be host-toxic from then on, a conclusion drawn from the significant reduction 

of OD600 from ~20 down to ~15 (Figure 3.8C). Growth of recombinant E. coli RV308 

strains producing E2 IDTM was only marginally impaired for the ones in which the protein 

was fused to CSP (Figure 3.8D). In the next step, periplasmic extracts were prepared and 

a Western blot analysis was performed to study the fraction of soluble and insoluble 

recombinant protein (Figure 3.8E and F). Comparison of the different strategies 

performed revealed that truncation had the most predominant effect on increasing both 

the soluble and insoluble fraction while fusion to signal sequences had a minor 

contribution. Truncation also rendered production of the viral proteins less toxic to the 

cells which could be shown for E1 to a certain extent and to a greater extent for E2.  

 From this point on, strategies to improve the soluble fraction were pursued. The 

first was temperature reduction to 16 °C after induction, the next decrease of the inducer 

concentration and the third, use of the Chaperone Plasmid Set from the TaKaRa. Western 

blot analysis revealed that the functionality of XylS/Pm was maintained at low 

temperatures such that fine-tuning of the inducer concentration (here use of 0.1 mM) 

increased the soluble fraction compared to when 0.5 mM was used. The use of 
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chaperones, however, was not suitable to significantly increase the soluble protein fraction 

(data not shown).  

 

 
Figure 3.8: Study of Norwegian Salmonid Alphavirus E1 and E2 protein production 
regulated by the XylS/Pm system. Growth curves of recombinant E. coli RV308 strains 
producing different variants of E1 (A: full-length proteins and B: truncated proteins) and 
E2 (C: full-length proteins and D: truncated proteins). pJB658 is a mini-RK2-based 
plasmid without a gene of interest and confers AmpR. For details see Paper III. Cell 
lysates were subjected to Western blot analysis. E Lysates obtained from E1-producing 
strains grown at 30 °C (0.5 mM induction) F Lysates obtained from strains grown at 16 °C; 
induction of OmpA-E1 IDTM production with decreasing m-toluate concentrations. G 
Same as E, but with E2-producing strains. H Same as F, but with E2-producing strains. 
(Paper III and unpublished data).  
 
 In this study, several classic approaches to address solubility were assessed like 

reduction of growth temperature and inducer concentration as well as use of chaperons to 

aid the folding process. Further strategies could have been applied like the use of 
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solubility-enhancing FPs (e.g. NusA or MBP) [239] or the addition of additives like L-

arginine, glycine betaine or mannitol) [240]. However, since early refolding attempts of the 

insoluble aggregates followed by Ni-NTA affinity chromatography were successful (Paper 
III, Figure 3), alternative strategies for increasing the soluble protein fraction were not 

pursued.  

 

3.5   Investigations on how the bacterial host affects expression 
of heterologous genes that are under control of XylS/Pm 

 
 E. coli is the predominant bacterium used in recombinant expression [18]. 

However, limitations of using this host can be seen compared to other bacteria with 

respect to safety (production of endotoxin) and production of insoluble aggregates (see 

Paper I and Paper III). Therefore, the use of alternative bacteria was considered. In the 

following two subchapters, some unpublished findings will be described involving the use 

of P. putida and cold-adapted members of the genus Pseudomonas. These strains were 

used in very preliminary experiments to test their potential to be used as alternative 

expression hosts and the the majority of the results have not been published, yet.  

 

3.5.1 Exploring P. putida as a host to produce recombinant proteins from 
XylS/Pm 

 
 P. putida is the bacterium from which the pWWO plasmid was isolated. This 

plasmid is the source of the xylS gene and the Pm promoter meaning that the XylS/Pm 

promoter system is able to function for recombinant gene expression purposes in this 

bacterium. Moreover, mini-RK2 plasmids are known to be maintained in this organism 

[65]. Due to these two prerequisites, it was decided to directly transfer some of the newly 

constructed vectors into P. putida KT2440, a strain cured for the pWWO plasmid. In the 

line of systematic studies performed during this PhD project, production of a target protein 

was directly compared between E. coli and P. putida using the exact same plasmids, 

growth media, growth temperatures and inducer concentrations. The constructs that were 

chosen contained the gene coding for the red-fluorescent mCherry protein [241] (gene 

coding region optimized for expression in E. coli) under control of XylS/Pm connected to 

different Pm 5 -UTR DNA variants (Figure 3.9). The first important observation was that in 

E. coli the relative improvement of mCherry production achieved by (dual)UTR variants 
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compared to the wtwt dualUTR was lower than the relative improvement of -lactamase 

production achieved by different (dual)UTR variants (Figure 3.9A).   

  

 
Figure 3.9: Comparative analysis of mCherry production in E. coli and P. putida 
under influence of different 5 -UTR DNA sequences. Recombinant E. coli DH5  (A) 
and P. putida KT2440 (B) strains producing mCherry from XylS/Pm were grown in 96-well 
plates at 30 °C and induction was accomplished by addition of 1 mM m-toluate after which 
growth was continued (5 h). Fluorescence values (in arbitrary units) were determined, 
normalized against OD600 and related to data obtained for strains harboring plasmids with 
the wtwt dualUTR (arbitrarily set to 1.0). Data represent averages and standard deviations 
from three biological replicas. U11 and U38 are the best 5 -UTR variants that have been 
identified by Rahmi Lale and Friederike Zwick when screening the same 5 -UTR library for 
high mCherry expression in E. coli or P. putida, respectively.3 'dTn' variants (length of the 
Tn-UTR part of the dualUTR) and 'dIB' variants (Pm 5 -UTR length) represent 5 -UTR DNA 
regions that were specifically designed by the RBS calculator to give maximal TIRs for 
mCherry. The sequences are the same for E. coli and P. putida due to the shared anti-SD 
sequence found in the 16S rRNA of these two bacteria. Production of mCherry under 
influence of different dualUTR variants was also compared between the two bacteria 
grown in shake flasks. C Relative normalized fluorescence values obtained from E. coli 
cultures. D SDS-PAGE analysis of the soluble fraction of the total protein obtained from E. 
coli. E Relative normalized fluorescence values obtained from P. putida cultures. F SDS-
PAGE analysis of the soluble fraction of the total protein obtained from P. putida. 
Molecular weight of mCherry: 28.8 kDa; St: Precision Plus DualColor (BioRad). (Paper II 
and unpublished data) 
                                                 
3 Part of the project: ‘Development of versatile bacterial expression systems for use in recombinant protein    
  production, metabolic engineering, and systems biology’ 



 62

 
 The relative improvement was even less in P. putida (Figure 3.9B). As an 

example, the best UTR DNA sequence (dualUTR r31n47) stimulated mCherry production 

about 45 times in E. coli and only about 8 times in P. putida.  

 The next important finding was that the synergistic effect of combining an improved 

Tr-UTR DNA sequence with an improved Tn-UTR DNA sequence in the dualUTR context 

was also true for mCherry in both bacteria (Figure 3.9A-C and E).  

 Third, the use of a dualUTR variant gave rise to higher relative mCherry 

fluorescence compared to a Pm 5 -UTR DNA variant. This effect was more evident for E. 

coli than for P. putida. 

 The fourth finding was that application of the RBS calculator to design novel Tn-

UTR or Pm 5 -UTR DNA sequences generally led to similar fluorescence values than 

caused by Tn-UTR or Pm 5 -UTR DNA sequences identified by screening. An exception 

was that the dIB4-6 UTR variants tested in E. coli led to less improvement of mCherry 

production than caused by UTR variant U11. This supports the hypothesis from above 

(3.2.1) that a short UTR DNA sequence such as the Pm 5 -UTR cannot be optimized for 

high expression based on improving translation initiation only. When comparing total 

soluble production of mCherry between the two bacteria (Figure 3.9D and F), it became 

evident that production in P. putida was clearly higher than in E. coli. This observation can 

be interpreted with a generally higher efficiency of the XylS/Pm system in this host. Since 

this system originates from P. putida, one can assume that the action of the host factors 

(e.g. -factors, RNA polymerase etc.) leads to a more efficient transcription from Pm. This 

could explain the finding that the r31wt dualUTR DNA sequence does not increase 

mCherry production compared to the wtwt sequence. Just like in Zwick's study [40], there 

is a limit in how far protein production can be stimulated by just enhancing transcription. In 

her study, a XylS variant in combination with a Pm promoter variant (both acting on 

transcription) could not improve bla expression further than achieved by the variants 

alone. In this case, when we assume that the Pm promoter is stronger in P. putida than in 

E. coli, an additional effect on transcription exerted by the r31 UTR variant would not be 

evident on the protein product level. In fact, r31 even decreased mCherry production 

compared to the wt Tr-UTR.   

 To summarize this analysis it can be concluded that P. putida KT2440 is a well-

suited host for expression of mCherry. The mini-RK2 plasmids containing XylS/Pm can be 

used as expression system in this host making it possible to explore the influence of 

different genetic elements even further. Also, the XylS/Pm system appears to be stronger 
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in this host compared to E. coli. The use of constructs with artificial dualUTR variants was 

proven to be useful for this host as well. For example, it could be demonstrated that it is 

possible to adjust the Tn-UTR part of the dualUTR to a certain coding region. Generally, 

genetic manipulation is simple and standard media such us LB are proven to be suitable. 

Based on this and the findings described above it can be recommended to test expression 

of other genes in this host as well.  

 

3.5.2  Use of cold-adapted Pseudomonas hosts for recombinant protein 
production  

 
 Besides relying on existing expression platforms, efforts are made on finding novel 

hosts for recombinant protein production. Sources for novel hosts can be environments 

with extreme temperatures for example. Especially organisms adapted to cold 

environments are often explored for their potential to be used as expression hosts. These 

might circumvent common problems associated with mesophilic hosts like E. coli and P. 

putida such that growth of the cold-adapted bacteria would actually be promoted at low 

temperatures and that thermally labile proteins or proteins prone to aggregation and 

protease degradation might be functionally expressed [242]. In the MARZymes project4 

which was ongoing during the period of this PhD project, marine arctic microorganisms 

isolated from environmental samples and proteins selected based on data mining of 

metagenomic libraries were sent to NTNU for expression analyses. After careful selection, 

four strains that were shown to be cold-adapted members of the genus Pseudomonas 

(based on 16S rRNA analysis) and 11 genes encoding enzymes with putative functions as 

proteases, carbohydrases and nucleases were handed over to me. These proteins were 

mainly produced as insoluble aggregates in E. coli (Rahmi Lale/ UiT, personal 

communication). The rationale was to construct vectors for expression of these 11 genes 

based on XylS/Pm and the mini-RK2 replicon and to explore whether the target proteins 

could be produced in their soluble form using the four cold-adapted Pseudomonas hosts.  

 To achieve this goal two methods were used:  

 (1) One-step SLIC (1.2.4) to fuse the open reading frame to His6 tag coding 

regions to the 5 - or the 3 - end of the gene and transfer of these gene fusions to the 

plasmid backbone in one step.  

                                                 
4 Molecules for the future - Novel enzyme activities from environmental libraries, UiT, NTNU, Umeå 
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 (2) Colony filtration (CoFi) blot, a medium-scale method to evaluate production of 

the soluble fraction of the different fusion proteins in different host strains under different 

growth conditions simultaneously (Figure 3.10A).  

 

Application of sequence- and ligase- independent cloning (SLIC) 
 One-step SLIC was carried out using three DNA fragments. The first fragment 

comprised the vector backbone. Basically, the backbone covered the region between the 

NdeI and BamHI sites of pSB-M1x (Paper I) where the trfA gene was replaced with the 

trfA cop271C variant (made by Hanne Jørgensen). The His6 coding region was generated 

by annealing two overlapping oligonucleotides which also contained complementary 

regions towards the vector backbone. The third fragment consisted of a PCR product 

covering the coding region of the target protein, a complementary region towards the 

backbone at one end and a complementary region to the His6 coding region at the other 

end. The SLIC reaction was performed according to the protocol described by Jeong et al. 

[129] and the plasmids were transferred to E. coli. After confirming the correct insertion of 

the coding region by sequencing, the correct constructs were transferred to P. putida 

KT2440 (control strain) by electroporation and to the four cold-adapted Pseudomonas 

strains L11, H12, H26 and H32 by conjugation (the latter step performed by Rahmi Lale). 

Out of 22 possible variants (11 target genes, two positions of His6 coding regions), 13 

were successfully transferred to P. putida KT2440, 13 to L11, 10 to H12, 11 to H26 and 11 

to H32.  
 
Establishment and application of the Colony filtration blot method 
 In parallel to making the genetic constructs, the CoFi method [243,244] was tested. 

CoFi works as follows: Recombinant strains producing certain proteins which can be 

detected using specific antibodies are grown on agar plates. When colonies have formed, 

they are lifted up from the agar plate using a Durapore® membrane (Millipore) which is in 

turn placed on top of a new agar plate containing an appropriate inducer, colony side 

facing up. This new plate is then incubated at the desired induction temperature for a 

certain time (e.g. 30 °C, 5 hours for E. coli). Next, a filter sandwich is assembled 

according to Figure 3.10A and covered in lysis buffer. Upon cell lysis, the soluble proteins 

diffuse through the Durapore® membrane onto the nitrocellulose membrane. This 

nitrocellulose membrane is then subjected to immunoblotting to visualize the proteins. 

With this method, one can screen libraries of small and intermediate size (several 



 65

thousand clones) for soluble protein expression. The great advantages are that this 

method is independent of reporter protein FPs which might interfere with the structure of 

the target protein and that the throughput is higher compared to approaches in 96-well 

format using filtration or centrifugation to separate the soluble and insoluble protein 

fractions [245].  

 This method was first tested using two E. coli RV308 strains; one expressing hGH 

(Paper I) which was predominantly expressed in its soluble form and PelB-IFN- 2B [74] 

which was only detectable in the insoluble protein fraction (Figure 3.10B). CoFi results 

were consistent with previous findings judged from the strong signal for hGH and the 

weak signal for PelB-IFN- 2B.  

 Next, the CoFi method was applied to evaluate the cold-adapted Pseudomonas 

strains as novel expression hosts based on their ability to express soluble target proteins 

(Figure 3.10C-F). P. putida KT2440, Pseudomonas L11, H12, H26 and H32 were grown 

at 5 °C, 10 °C and 20 °C during the induction period to compare different temperatures. 

This comparative analysis revealed that signals derived from strains subjected to 10 °C 

were generally stronger than signals obtained from strains subjected to 5 °C or 20 °C. 

Moreover, signal intensity was higher for the cold-adapted strains than for P. putida. 

Among the cold-adapted strains, it was H32 and H26 that gave rise to the most intense 

signals. These results looked very promising because they indicated that the cold-adapted 

Pseudomonas strains were able to produce the target proteins in their soluble form. 
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Figure 3.10: Application of the Colony filtration blot (CoFi) method to evaluate cold-
adapted Pseudomonas strains expressing genes originating from a metagenomic 
library under different growth conditions. A Schematic representation of the CoFi filter 
sandwich. First, a Whatman filter is placed into a petri dish followed by a nitrocellulose 
membrane. These two layers are soaked in lysis buffer containing lysozyme amongst 
others. A Durapore® membrane with bacterial colonies attached is then placed on top of 
the nitrocellulose membrane. Cells are lyzed enzymatically and by repeated freeze-and-
thaw cycles. The soluble protein fraction diffuses through the Durapore® membrane and 
is blotted onto the nitrocellulose membrane. After disassembling the filter sandwich, 
proteins can be detected via specific antibodies [244]. B Results from a CoFi trial 
experiment. E. coli RV308 cells were transformed with pSB-M2h harboring the gene 
encoding human growth hormone which was mainly expressed in its soluble form (Paper 
I) or pVK1 harboring the gene coding for IFN- 2b with an N-terminal PelB FP and C-
terminal c-myc and His6 tags [74]. The latter was mainly expressed in its insoluble form. 
Cell suspensions were spread on agar plates, colonies were lifted up with a Durapore® 
membrane which was transferred to new agar plates containing 1 mM m-toluate and 
grown for 5h at 30 °C. C-E Four different cold-adapted Pseudomonas strains (L11, H12, 
H26 and H32) in addition to P. putida KT2440 were transformed with plasmids containing 
XylS/Pm to control expression of interesting genes from a metagenomic library encoding 
different proteins (No 1,3,4,7,8 (version 1 and 2), 9,12,13 (version 1 and 2) and 32) with 
N-terminal (N) or C-terminal (C) His6 tags. x denotes an empty position. Strains were 
generally grown at 20 °C, but growth was continued at different temperatures after 
induction (1 mM m-toluate). Proteins were detected using the HisProbeTM-HRP 
(ThermoScientific) and the Pierce ECL Western blot substrate. F Arrangement of the 
recombinant strains on agar plates used in C-E. G Western blot results of recombinant 
H32 strains expressing different proteins from the metagenomic library. Strains were 
grown in LB medium at 20 °C until OD600 = 0.4-0.5. Then 1 mM m-toluate was added and 
growth was continued at 10 °C over night. A Western blot was performed and the His-
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tagged proteins were detected using HisProbe TM-HRP (1:2,000) The order is: L (Precision 
Plus Dual Color, BioRad);1 - negative control (H32 without any plasmid); 2 - N12; 3 - C7; 
4 - C8; 5 - C9; 6 - C12; 7 - C13.1; 8 - C13.2; 9 - C32 Arrows point to 43 and 36 kDa, the 
expected molecular weights of proteins C13.1 plus C32 and C13.2, respectively.  
  

   

 To confirm the CoFi results, some strains were selected for experiments in shake-

flasks (Figure 3.10G). Western blot analysis revealed that expression of the target 

proteins was generally close to the detection limit. Especially when analyzing the soluble 

protein fraction, it became evident that the CoFi results and the Western blot result did not 

match well. The protein no 7 with a C-terminal His-tag for example gave rise to the 

strongest signal using the CoFi procedure (Figure 3.10D). In contrast, no signal was 

detected using Western blot analysis from samples taken after growth in shake flasks 

(Lane 3 in Figure 3.10G). Only the two variants of protein No 13 gave rise to a weak 

signal (Lanes 7 and 8 in Figure 3.10G). Inspection of the Western blot membrane derived 

from samples taken from the insoluble protein fraction revealed that several more proteins 

could be detected. However, others were not detected at all (data not shown). These data 

led to the conclusion that the cold-adapted Pseudomonas strains have a certain potential 

to be used as expression hosts for heterologous proteins. However, more work would be 

needed to find more suitable growth conditions (media, shaking, etc.) to be able to 

transfer results obtained from agar plates to liquid cultures. And although the CoFi method 

is not 100% reliable [243], it still represents a simple, easy-to-adopt and relatively fast 

method to select among several conditions and strains simultaneously. The more detailed 

characterization of the strains of course is left to experiments in liquid cultures.  
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4 Concluding remarks  
 
 The work presented in this thesis addressed different issues related to bacterial 

recombinant expression with special focus on increasing recombinant protein production. 

The work mainly dealt with genetic and physiological parameters like regulated promoters 

(such as XylS/Pm), variants of the Pm 5 -untranslated region and bacterial host strains (E. 

coli and others) and did not focus on the coding region of the target protein.  

 One important conclusion is that the systematic comparison of the performance of 

different regulated promoters in recombinant protein production was necessary to unravel 

direct effects of these on different steps involved in gene expression. Despite theoretical 

knowledge about the features of certain regulated promoters, it would not have been 

possible before to truly evaluate the use of the chosen promoter systems for certain 

expression purposes, especially XylS/Pm and AraC/PBAD which had not been included in 

systematic comparisons before. This work also confirms the advantage of starting with a 

small portfolio of bacterial expression platforms including different promoters to identify 

bottlenecks in expression.  

 In addition, several strategies are presented how to deal with certain bottlenecks. 

For once, it could be demonstrated that adjustment of the Pm 5 -UTR DNA region might 

help to prevent that limitations associated with the initiation phase of transcription and 

translation occur. An especially important contribution was the development of the 

versatile artificial dualUTR tool which makes it possible to increase protein production in a 

less gene-dependent, less laborious and more rational manner compared to previous 

tools. For the future, it would be of great interest to adjust the artificial dualUTR tool to 

other regulated promoter systems to design an even more flexible set of vectors for early 

stages in a protein production process. 

 On top of that, more general strategies to improve protein production are 

presented which include the incorporation of plasmid stabilization elements in the 

expression vectors and the use of several bacterial hosts. Further adjustments regarding 

the Pm promoter core region, the regulator protein XylS or the 5 -end of the coding region 

were already performed by my former colleagues and it would be of great value to 

combine the genetic engineering strategies of XylS/Pm presented here with strategies 

presented in related work in the future. 

 Although incorporation of the different presented parameters would mean that a 

range of strains needs to be constructed and tested, use of modern cloning and screening 
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technologies can facilitate higher throughput than achieved by constructing and testing 

strains one by one.  
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Abstract

Background: Production of recombinant proteins in bacteria for academic and commercial purposes is a well
established field; however the outcomes of process developments for specific proteins are still often unpredictable.
One reason is the limited understanding of the performance of expression cassettes relative to each other due to
different genetic contexts. Here we report the results of a systematic study aiming at exclusively comparing
commonly used regulator/promoter systems by standardizing the designs of the replicon backbones.

Results: The vectors used in this study are based on either the RK2- or the pMB1- origin of replication and contain
the regulator/promoter regions of XylS/Pm (wild-type), XylS/Pm ML1-17 (a Pm variant), LacI/PT7lac, LacI/Ptrc and AraC/
PBAD to control expression of different proteins with various origins. Generally and not unexpected high expression
levels correlate with high replicon copy number and the LacI/PT7lac system generates more transcript than all the
four other cassettes. However, this transcriptional feature does not always lead to a correspondingly more efficient
protein production, particularly if protein functionality is considered. In most cases the XylS/Pm ML1-17 and LacI/
PT7lac systems gave rise to the highest amounts of functional protein production, and the XylS/Pm ML1-17 is the
most flexible in the sense that it does not require any specific features of the host. The AraC/PBAD system is very
good with respect to tightness, and a commonly used bioinformatics prediction tool (RBS calculator) suggested
that it has the most translation-efficient UTR. Expression was also studied by flow cytometry in individual cells, and
the results indicate that cell to cell heterogeneity is very relevant for understanding protein production at the
population level.

Conclusions: The choice of expression system needs to be evaluated for each specific case, but we believe that
the standardized vectors developed for this study can be used to more easily identify the nature of case-specific
bottlenecks. By then taking into account the relevant characteristics of each expression cassette it will be easier to
make the best choice with respect to the goal of achieving high levels of protein expression in functional or non-
functional form.
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Background
Parameters affecting recombinant protein expression in
Escherichia coli have been studied extensively and nu-
merous methods aiming at improving protein yields have
been reported, usually involving genetic manipulations
and/or production process optimization [1-4]. However,
in spite of the large number of potentially useful ap-
proaches available there is still no guarantee that a satis-
factory result will be obtained in each specific case, and
trial and error is therefore currently an integrated part
of development of new protein production processes.
The work involved in this can become very laborious
since many parameters such as choice of strains, vector
construct designs, growth media and cultivation condi-
tions can potentially have a big and unpredictable effect
on the process. Steadily more promoter systems for reg-
ulated protein expression in E. coli ([1] and references
therein, [2-6]) are being developed, increasing the com-
plexity. The studies of those novel expression systems were
commonly based on experiments involving vectors with
different backbones [2,4,7,8]; typically commercially avail-
able and commonly used vectors from the pET [9], pTrc
[10] or pBAD [11] series. More theoretical approaches have
also been used [6,12]. However, expression is influenced by
many parameters even within vectors, like the presence or
absence of sequences of the 50 coding region encoding N-
terminal fusion partners (His6 tag [13], N-terminal signal
peptides [14], and others), different origins of replication
[15-17], different terminators [18] or selection markers.
Penicillins for example are very frequently used for se-
lection in spite of their known rapid degradation due to se-
creted β-lactamase [19]. A first step towards a more
systematic, backbone-independent approach is described
in a study performed by Tegel et al. [20] in which ex-
pression from three different IPTG-inducible promoters
(PT7lac, Ptrc, Plac) is compared. These are all based on the
negative regulator LacI, while positively regulated pro-
moters such as PBAD and Pm have not been used in such
comparative studies. The regulators of these two pro-
moters (AraC and XylS, respectively) are both members of
the same family of transcriptional activators [21]. The
AraC/PBAD system is quite extensively used and its charac-
teristics have been reviewed [1]. The XylS/Pm system was
included because it has several beneficial traits for protein
expression in general (reviewed by Brautaset et al. [21]),
and in combination with RK2 minimal replicons it has
been demonstrated to be capable of expressing proteins at
industrial levels in high cell density cultivations [14,22],
We have used this system extensively in our laboratory as
a model for studies of recombinant gene expression. Par-
ticular advantages of this system are that the levels of ex-
pression can be fine-tuned by various means [23-25], that
it is not host-dependent in contrast to most other systems
and that the inducer is cheap. Furthermore, expression

from the native system could be greatly improved by gen-
erating variants of the regulator protein XylS [26], the
DNA region corresponding to the Pm promoter region
[27] as well as the region corresponding to the Pm 50-
untranslated region (50-UTR) [28].
In this report we describe a systematic comparison of

both positively and negatively regulated expression sys-
tems. Being aware of the influence of the 50 end of the
coding region on expression [29,30], we intentionally
chose to use model genes with native 50 ends as opposed
to commonly used regions encoding N-terminal detec-
tion tags or solubility-enhancing fusion partners. The ex-
pression analyses were carried out at both the transcript
and the protein level (activity assays and total protein), and
we also included a flow cytometry based analysis of expres-
sion in individual cells. All comparisons were performed
using identical vector backbones, a procedure we believe
can be used generally as a diagnostic tool to identify bottle-
necks in recombinant protein production processes.

Results and discussion
Construction of a set of plasmids specifically designed for
comparative studies of commonly used expression
systems in E. coli
To reduce potential effects on expression unrelated to
the features of the regulator/promoter systems them-
selves all replicons used for comparisons were designed
in such a way that the backbones were identical and the
expression cassettes were in all cases integrated at the
same location (Figure 1 and Table 1). The selected sys-
tems include XylS/Pm (the native system; denoted in the
figures as M); the high level expression variant Pm ML1-
17 (abbreviated by M-1-17) [27]; LacI/PT7lac originating
from the pET vector series (Novagen; denoted as E);
the LacI/Ptrc system from the pTRC series of vectors
(Pharmacia; denoted as T); and finally the AraC/PBAD
system from the pBAD series of vectors (Invitrogen,
abbreviated by B). Further details related to transcrip-
tional start sites and 50-UTR regions are described in the
Methods section.
It is well known that gene dosage and expression levels

often correlate, at least to some extent. In order to in-
vestigate any potential gene-specific effects related to
this the cassettes were integrated into a mini-RK2 based
replicon (pSB-M1b, 5–7 copies per cell [33]), and the
pMB1 replicon (15–20 copies per cell [19], Novagen,
Invitrogen) used in commercially available vectors such
as pET and pBAD. In these two plasmid sets, genes cod-
ing for five different model proteins of varying biological
origins were placed under control of the five promoters
to cover a broad range of problems that may occur dur-
ing recombinant protein production (Table 2). Note also
that the use of one common N-terminal fusion tag for
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all proteins was avoided to study the effect of the re-
spective promoter-50-UTR regions on different 50 coding
sequences, as opposed to the study of Tegel et al. [20].
Specific gene sequence dependent parameters such as
mRNA secondary structures and the presence of rare
codons were taken into account by using optimized (for
E. coli) synthetic genes. The corresponding genes were
inserted into the two replicon types carrying the differ-
ent expression cassettes, (Table 1). Not only can expres-
sion be directly compared from different regulator/
promoter systems using these standardized vectors, but
they can also be used more generally as tools to identify
an appropriate expression system for the production of
any selected target protein.
Due to the nature of the expression systems it was ne-

cessary to use two different E. coli strains as hosts. Strain
ER2566 was chosen to compare expression from LacI/
PT7lac with XylS/Pm because it carries a chromosomal
copy of the T7 polymerase integrated into the lac op-
eron (NEB). Since the LacI/Ptrc system is also induced
by IPTG, it was decided to study expression in the same
host under the assumption that the expression of T7
polymerase does not affect expression from LacI/Ptrc
due to the specificity of this polymerase for its cognate
promoter [40]. Expression from XylS/Pm compared to
AraC/PBAD was performed in E. coli DH10B which is
unable to catabolize L-arabinose, the inducer of the
AraC/PBAD system.

Protein production levels are generally stimulated by
increased gene dosage, but none of the tested cassettes
are superior for all genes
Three different genes, encoding luciferase, an antibody
fragment fused in frame to alkaline phosphatase (scFv173-
2-5-AP) and green fluorescent protein (GFP), respectively,
were selected as models in the initial study of the perfor-
mances of the various expression cassettes (Figure 2). The
alkaline phosphatase fusion protein is translocated to the
periplasm, while luciferase and GFP are cytoplasmic. The
results were monitored as activities, meaning that only
functional proteins were measured. The only parameter
that gave a consistent response for all systems was not sur-
prisingly gene dosage, as all cassettes gave rise to more ac-
tivity when they were utilized in a high plasmid copy
number context. However, the fold increase was heavily
protein and expression cassette dependent, ranging from
1.6 for GFP (Figure 2, Panel C) to 10.4 for the alkaline
phosphatase fusion in the LacI/PT7lac system (Figure 2,
Panel B). We also observed that cell growth was strongly
affected in several of the alkaline phosphatase fusion pro-
tein producing strains, and it was generally much more dif-
ficult to obtain reproducible data for this particular
protein. We believe the reason for this is that the export of
large amounts of protein is toxic to cell growth [41], in
some cases also in the uninduced state. This potential toxic
effect may even have resulted in accumulation of mutants
that grow faster than the originally inoculated strain due to
reduced scFv173-2-5-AP production. The maximal expres-
sion level is obviously very important in the context of re-
combinant protein production, and Figure 2 shows that in
this respect none of the systems is superior for all proteins.
Generally XylS/Pm ML1-17 and LacI/PT7lac tended to pro-
duce most recombinant protein in the studies in strain
ER2566 (Figure 2, Panels A-C). The mutations in the Pm
core region were of vital importance, as XylS/Pm ML1-17
produced between 1.2- and 4.0- fold more active protein
than the corresponding wild-type system. Note also that
AraC/PBAD generated similar amounts of active protein
compared to XylS/PmML1-17 when the studies were done
in an ara negative strain (DH10B; Figure 2, Panels D-F).
LacI/PT7lac is generally known to be a very strong system
because of the efficient transcription exerted by the T7
RNA polymerase [9,40], but the comparative analysis dem-
onstrated that this system was not superior to XylS/Pm
ML1-17 for the genes studied here. Especially in the higher
copy-number plasmids, up to four times more activity was
detected in strains harboring XylS/Pm ML1-17. We also
noted in this and other related ongoing studies in our la-
boratory that to get stable expression from the LacI/PT7lac
system, ER2566 cells needed to be freshly transformed
prior to expression studies, as also recommended by
Vethanayagam and Flower [42]. Similar observations were
not made for any of the other three systems.
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Figure 1 Illustration showing how the different constructs in
the study were generated based on pSB-M1b. The upper part
shows how the alternative regulator/promoter systems were
incorporated. pSB-M1b-1-17 contains a variant of the Pm core
promoter termed ML1-17 (see text). The lower part shows the oriV/
trfA region in pSB-M1b that was replaced with the pMB1 ori
described in Table 1.
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The LacI/PT7lac system is unique by its generation of large
amounts of transcript and insoluble protein
In the analyses described above only active protein was
monitored, but potential big differences in target gene
transcript accumulation or inactive (insoluble) protein
production would not be discovered by such an analysis.

We therefore investigated to what extent total protein
production is proportional to the amounts of transcript
produced, which is not necessarily the case [43-45]. For
this purpose, we included two additional proteins, the
medically relevant human growth hormone (HGH) and
interleukin-1RA (IL-1RA), see also (Table 2). The

Table 1 Plasmids used in this studya

Name Key features Source

pTA16/pSB-M1bb m-toluate- inducible Pm, xylS activator gene, RK2 replicon, bla reporter, Kanr [31]

pET16b IPTG-inducible PT7lac, lacI repressor gene, Amp
r Novagen

pBAD/gIII_calmodulin L-arabinose- inducible PBAD, araC activator gene, Amp
r Invitrogen

pTrc99A IPTG- inducible Ptrc promoter, lacI repressor gene, Amp
r Pharmacia

pIB11-lucS pIB11 [25] with lucS under control of xylS/Pm, Kan
r unpublished

pBAD24-GFP pBAD24 with gfpmut3 insert, Ampr [32]

pHOG-173-2-5-AP pHOG plasmid with scFv173-2-5-phoA fusion gene insert, provided by Affitech AS, Oslo, Ampr unpublished

pMA-GH pMA vector (GeneArtW, Invitrogen) with GH1S insert, provided by Vectron Biosolutions AS,
Trondheim, Ampr

unpublished

pMA-T-IL-1RA pMA vector (GeneArtW, Invitrogen) with IL1RNS insert, provided by Vectron Biosolutions AS,
Trondheim, Ampr

unpublished

pSB-P0x pSB-M1b variants with combinations of different features:

P. . . regulator/promoter system M. . . xylS/Pm

M-1-17. . . xylS/Pm variant ML1-17

E. . . lacI/PT7lac (from pET)

T. . . lacIq/Ptrc (from pTrc)

B. . . araC/PBAD (pBAD)

0. . . origin of replication 1. . . RK2 replicon

2. . . pMB1 replicon

x. . . reporter gene b. . . bla

l. . . lucS

s. . . scFv173-2-5-phoA

g. . . gfpmut3

h. . . GH1S

r. . . IL1RNS This study

e.g. pSB-M2l m-toluate- inducible Pm, xylS activator gene, pMB1 ori, lucS reporter, Kan
r This study

a bla: β- lactamase gene; lucS: synthetic luciferase gene; scFv173-2-5-phoA: single-chain antibody fragment 173-2-5 alkaline phosphatase fusion gene; gfpmut3:
gene for the optimized green fluorescent protein mutant 3; GH1S: synthetic gene for human growth hormone, IL1RNS: synthetic gene for human interleukin 1
receptor antagonist.
b pTA16 was named pSB-M1g in this study for consistency purposes.

Table 2 Properties of the proteins selected as expression reporters

Protein Properties

Luciferase reporter protein, ~ 60.8 kDa, cytoplasmic localization, generally low expression, rather easy to detect, very sensitive
detection via bioluminescence assay

scFv173-2-5-AP industrially relevant protein, ~77.2 kDa, fusion protein, disulfide bonds, translocated to the periplasm, detectable
through APa fusion, AP needs to be translocated to be active [34]

GFP reporter protein, ~ 26.9 kDa, cytoplasmic localization, stable, known to be produced virtually only in its soluble form
[35], very easy to detect by direct fluorometry

HGH industrially relevant protein, ~25.1 kDa, cytoplasmic localization, usually expressed in E. coli as soluble protein [36,37]

IL-1RA industrially relevant protein, ~20.1 kDa, cytoplasmic localization, usually expressed in E. coli as soluble protein [38,39]
aAlkaline phosphatase.
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comparison was carried out in strains harbouring
plasmids with the pMB1 replicon, which as described
above generally led to a higher level of protein production
(measured as activity). One general conclusion following
from these experiments was that the LacI/PT7lac system
generated much more transcript than XylS/Pm (between
6.2 and 20 times more) and LacI/Ptrc (between 3.9 and
206 times more) for all the five tested genes. XylS/Pm
ML1-17 generated more transcript than LacI/Ptrc as well
(Figure 3), ranging from 3.3 times for lucS mRNA and 88
times for GH1S mRNA, except for the special case with
scFv173-2-5-phoA. Studies of AraC/PBAD was not included
here since it required another host (DH10B) and since
initial experiments indicated that this system (in contrast
to T7) behaved very similar to XylS/Pm in the sense that
transcript and protein amounts correlated well. At the
total protein production level the analysis revealed more
protein-specific effects compared to in the functional
studies (Figure 2). In case of luciferase the amount of
active protein was highest for XylS/Pm ML1-17 both
according to activity measurements (see above) and
deduced as soluble protein (Figure 3, Panel A). However,
the very high level of transcription in the LacI/PT7lac
system resulted in a correspondingly big production of

insoluble and inactive luciferase protein, not seen to a
comparable extent for any of the other systems.
For GFP and HGH (Panels C and D) production of sol-

uble protein was very effective in both XylS/Pm ML1-17
and LacI/PT7lac, and the final outcome at the protein level
was more similar for these proteins than for luciferase.
Generally, LacI/PT7lac had an apparent advantage by its
performance at the transcriptional level, but this potential
was often not reflected at the translational level, such that
the system often produced a vast amount of transcripts
that were either translated into inactive protein or were
not translated at all. Note also that the amounts of protein
and transcript correlated well for XylS/Pm and XylS/Pm
ML1-17 (except for scFv173-2-5-AP, Panel B), probably
mainly because the amounts of transcript were generally
much lower than for LacI/PT7lac and therefore did not
overload the translational machinery. It is also interesting
to note that, in terms of both active and total protein
produced, XylS/Pm ML1-17 and LacI/PT7lac generally
performed best. For scFv173-2-5-AP (Figure 3, Panel B) a
more complex picture was observed, but this could be
mainly related to the effects of toxic protein production
on host growth or variability among the systems in the
kinetics of induction [46].
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Figure 2 Maximum expression of three different genes placed under control of different regulator/promoter systems. Data represent
relative expression levels under induced conditions where the activity of M1x (gene x under conrol of the Pm wildtype promoter, RK2 replicon)
was set to 1.0. Expression was induced in a way that activity levels were maximized: 2 mM m-toluate for strains harboring XylS/Pm- based
constructs, 1 mM IPTG for those with LacI/PT7lac, 0.2 mM IPTG for LacI/Ptrc and 0.015% L-arabinose for AraC/PBAD. The following E. coli strains
were used as expression hosts. Panels A-C: ER2566. Panels D-F: DH10B. The naming code is the following: The capital letter represents the
regulator/promoter system and the digit represents the origin of replication; for details see Table 1. The data presented are from independent
biological replica.
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Uninduced expression levels are highest for LacI/Ptrc and
lowest for AraC/PBAD
The tightness of the different regulator/promoter sys-
tems is another important feature, particularly for pro-
duction of host-toxic proteins [47]. We studied this with
the same set-up as for induced conditions, using lucifer-
ase, scFv173-2-5-AP and GFP, and as expected the back-
ground increased for all systems when the higher copy
number vectors were used. The increase was in most
cases approximately proportional to that of the plasmid
copy number. Therefore, only findings collected from
strains harboring pMB1-based plasmids are presented
(Figure 4).
Generally, LacI/Ptrc tended to be the leakiest system

producing 3.8 to 8.2 times more active protein than XylS/
Pm under uninduced conditions. Similarly, XylS/Pm
ML1-17 displayed 2.8- to 5.8-fold higher background ex-
pression than the wild-type system. AraC/PBAD appeared
to be, as expected, the tightest system giving rise to 0.1
and 0.4 times the background level for luciferase and
scFv173-2-5-AP, respectively. LacI/PT7lac was also quite

tightly regulated although it generated the highest back-
ground expression for GFP (Figure 4, Panel C).
The ratio between the induced and the uninduced ex-

pression levels was protein dependent with relatively small
induction windows for svFv173-2-5-AP (1.2-25) and large
for luciferase (60–3,000). In strain ER2566, XylS/Pm and
LacI/PT7lac displayed the highest induction windows, while
LacI/Ptrc was by far the least inducible system (0.1-0.2
times compared to XylS/Pm). In DH10B, induction ratios
for AraC/PBAD were 1.3-27 times higher than the ratios of
XylS/Pm and XylS/Pm ML1-17. These results are consist-
ent with a previous report documenting that the induction
ratio in the AraC/PBAD system can reach up to 1,200-fold
when functionally compared for the phoA reporter gene
[11]. As for XylS/Pm [24,25], the induction level can also
be modulated over a wide concentration range by varying
the inducer concentration. In addition, uninduced levels
can be even further reduced by the presence of glucose,
which represses the expression in this system [47]. The
main disadvantage of the AraC/PBAD system is that the
inducer can be metabolized in most strains of E. coli.
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The predicted translational efficiencies of the ribosomal
binding sites vary over a wide range
The DNA region corresponding to the 50-UTR plays a
central role in regulation of gene expression [48-50]. It
covers the untranslated nucleotides at the 50 end of the
mRNA [51,52], including the ribosome binding site
(RBS) that together with the translational start site influ-
ence expression [28,49,53]. One program frequently used
to analyse the expected efficiency of these nucleotide se-
quences is the RBS calculator [54]. We applied its re-
verse engineering function on the various 50-UTR-gene
combinations used in the study and determined the
translation initiation rate (TIR) values of the respective
expression systems. The most striking finding was that
the relative differences between the calculated TIRs of
the four cognate RBSs were rather similar for all the five
genes studied (Figure 5), although there were exceptions
(see LacI/PT7lac for HGH and AraC/PBAD for IL-1RA).
Generally, the calculator predicted that the TIR values of
the LacI/PT7lac and the AraC/PBAD RBSs were higher
than those of XylS/Pm and LacI/Ptrc RBSs, suggesting a
more efficient translation. The relative differences be-
tween the TIRs of the LacI/Ptrc and XylS/Pm RBSs
depended on the coding sequence.
To correlate the calculated TIR values with our experi-

mental data is not straight forward because the total

protein levels are obviously also dependent on the effi-
ciencies of the promoter sequences, which are not a part
of the calculation of the TIR values. However, by com-
paring both transcript and protein amounts available
from the data presented in Figure 3 such effects can at
least partly be taken into account. The amounts of accu-
mulated transcripts derived from LacI/PT7lac were gener-
ally highest and combined with a predicted more
efficient TIR one might expect that this system would
come out best at the protein level in all cases. However,
this prediction was only in agreement with the luciferase
data, and with the ScFv-173-2-5-AP and IL-1RA data to
a more limited extent. In contrast, for GFP and HGH
the experimental data did not support the prediction. It
should also be remembered that efficient translation in
itself may contribute to more accumulated transcript
due to translation-mediated transcript stabilization
[55,56]. For XylS/Pm ML1-17 there appeared to be more
protein per transcript compared to LacI/PT7lac and the
total amounts of protein were at least equally good for
this system, presumably indicating a better balance be-
tween the capacities of the transcriptional and transla-
tional systems. For LacI/Ptrc the calculator correctly
predicted a very poor expression of HGH.
In general, it is possible to some extent to use the RBS

calculator to predict which regulator/promoter system
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would produce most protein. However, RBS function is
just one among several parameters that affect the final
protein production level. We have analyzed the previ-
ously reported very efficient UTR variants obtained by
screening [28]. Despite the great stimulatory effect of
these screened UTRs on protein expression (up to 20-
fold), the calculator only predicted minor improvements
relative to the wild-type sequence (between 1.5 and 3.6
times for the best variants).

Flow cytometry analysis of GFP expression in individual
cells revealed significant differences among the various
regulator/promoter systems
Analyses of recombinant protein expression are mostly
carried out at the level of cell populations, potentially
masking significant differences in the level of expressed
proteins between individual cells, which are known to
occur [57,58]. If such heterogeneity exists it may repre-
sent another possibility for system improvement, e.g. by
finding ways to reduce the fraction of cells with low ex-
pression level. This is also relevant in metabolic engin-
eering projects involving metabolite flux control in
biochemical pathways [59].
To analyze the level of homogeneity we used flow cy-

tometry to quantitate GFP as it can be easily detected
and because it was shown to be produced at high levels
from the regulator/promoter systems used in this work,
thus representing a relevant example in recombinant
protein production. The fluorescence level, which re-
flects the number of GFP molecules, among the majority
of cells harvested at a given time point typically varied

in a 5–10 fold range (Figure 6). In most cases, the fluor-
escence values fell within a signal peak, which moved to
higher intensities with extended time after induction, as
expected. The highest production levels were found in
cells expressing GFP from XylS/Pm ML1-17, LacI/PT7lac
and AraC/PBAD (where a different host strain was used),
also consistent with what was observed at the population
level. However, the analysis also revealed several new ob-
servations. For the two XylS/Pm-based systems the dis-
tributions were broader for the wild-type system
(Figure 6, Panel A) than for XylS/Pm ML1-17 (Figure 6,
Panel B), meaning that the promoter mutations im-
proved culture homogeneity. The reasons for this are
not clear but they might be related to differences in the
efficiency of transcription initiation. Fluorescence distri-
butions of cells expressing GFP from LacI/PT7lac
(Figure 6, Panel C) were quite unique compared to those
from the other systems. The expression profile at the
time of induction is surprisingly broad in this system
compared to the profiles of the remaining systems, pos-
sibly indicating low and varying (between individual
cells) levels of T7 RNA polymerase production. Sec-
ondly, from two hours post induction onwards, two
peaks became visible, one at rather low and one at rather
high fluorescence values. The peak heights were also
strongly reduced at the end. Most probably, the peak
around lower fluorescence values late after induction re-
flects the formation of two subpopulations of cells as de-
scribed by Zhao et al. [60], one being soluble GFP
bearing and the other being dominated by inclusion
bodies. Our findings also support those of a previous
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report where GFP expression was studied from a pET
vector context [4].
The LacI/Ptrc system (Figure 6, Panel D) is character-

ized by a very even signal distribution throughout the
entire induction period. Interestingly, the mean fluores-
cence remained constant already two hours after induc-
tion, possibly a consequence of a very fast activation of
transcription after inducer addition in this system.
The AraC/PBAD system, displayed a similar behaviour

as XylS/Pm meaning that it takes an extended time until
all cells are induced as reflected by a tail of the distribu-
tion towards low fluorescence values (Figure 6, Panel E).
One hour after induction, the distribution fell into a sin-
gle, rather narrow peak that was shifted towards higher
fluorescence values over time.
The outcomes of the flow cytometry experiments

showed that there is a quite big variation in GFP expres-
sion level among individual cells. By better understanding
the factors controlling this variability it may become pos-
sible to improve expression at the population level. This
conclusion is supported by the observation mutations in
the Pm promoter region lead to more homogeneity.

Conclusions
Development of efficient recombinant gene expression pro-
tocols is often based a lot on case-specific trial and error
approaches, and the results reported here contribute to the

understanding of why. We have summarized the various
observations (Table 3), and the LacI/PT7lac system can be
distinguished from all the other systems by its general tends
to give rise to more transcript than all the other systems.
The difference relative to the XylS/Pm system may be
reduced or eliminated by incorporating more mutated
control elements, but at the moment this would lead to
very high levels of protein synthesis also in the absence of
inducer [31]. Since we have shown before that even the
wild-type XylS/Pm system can in some cases generate pro-
tein production at industrial levels it is clear that LacI/PT7lac
will only have an important advantage in those cases where
the amount of transcript is the bottleneck. The experiments
with GFP, HGH and IL-1RA illustrate cases where this has
limited or no relevance (compared to XylS/Pm ML1-17). In
contrast, for luciferase the amounts of transcript appears to
be very important, but the potential in the LacI/PT7lac
system is in this case lost by the excessive production of
inactive protein. LacI/Ptrc generally has the advantage (for
applications where this might be relevant) of a fast onset of
protein production and a homogenous expression profile.
However, both high levels of expression in the absence of
inducer and comparatively low total production make it the
least desirable if one is aiming at highest possible level of
expression. AraC/PBAD seems to be best with respect to
tight regulation of the uninduced state coupled with high
expression when induced. The XylS/Pm system has a big
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advantage of not being strain dependent in E. coli, and it is
probably easiest to adapt to new bacterial hosts for cases
where E. coli cannot be developed to perform in a satisfac-
tory way. In summary we believe that the vectors developed
for this study can be used as an efficient early test system
for new proteins, perhaps by using XylS/Pm ML1-17, LacI/
PT7lac and AraC/PBAD. The outcome of such a simple first
experiment will probably often lead to an identification of
the nature of the main bottleneck for this particular case,
shortening the time from testing to development of a good
production process. The further studies would involve a
detailed analysis of parameters such as growth media
composition, culture incubation temperature and host
strain, which are known to affect recombinant protein
expression at various levels.

Methods
Strains, standard DNA manipulations and growth
conditions
E. coli DH5α (Bethesda Research Laboratories) was used
for plasmid propagation during cloning steps. Recom-
binant DH5α strains were grown at 37°C in liquid Luria
Bertani (LB) broth or on solid LB plates with appropriate

antibiotics (kanamycin 50 μg/mL; ampicillin 200 μg/
mL). E. coli ER2566 (New England Biolabs, NEB) and E.
coli DH10B (Invitrogen) served as expression hosts dur-
ing the comparative studies. In comparison to the com-
monly used strain E. coli BL21(DE3), the former strain
offers higher transformation efficiency for toxic clones
and less background expression (NEB). All DNA manip-
ulations were carried out according to standard proce-
dures [61] or according to manufacturers’ instructions.
PCR was performed using the Expand High Fidelity PCR
systems kit (Roche), and essential regions in PCR prod-
ucts were verified by sequencing. Functionality of the
regulator/promoter systems was confirmed using bla as
reporter gene determining the levels of resistance to
ampicillin as described previously [62].

Vector constructions
PCR primers used during various cloning steps are listed
in Table 4. Plasmids used as templates or constructs that
were generated in this study are listed in Table 1.
Construction of pSB-M2b: The region of pBAD_gIII_

calmodulin containing the origin of replication from
pMB1 was PCR amplified using primer pair Pwitw6_badF

Table 3 Summary of the findings derived from the comparative expression study

Category Regulator/promoter system References

XylS/Pm and Pm ML1-17 LacI/PT7lac LacI/Ptrc AraC/PBAD

Components XylS regulator LacI regulator LacI regulator AraC regulator

Pm promoter (native or
variant)

T7lac promoter trp/lac hybrid promoter PBAD promoter

CAP binding site CAP binding site

Strain requirements none strain supplying T7
polymerase

none araBADC-/ araEFGH+
strain

(and lysozyme)a

Medium requirements none (glucose)b none (glucose)b [3,10,11,42]

Range of inducer 0.001 - 2.0 mM 0.05 - 2.0 mM 0.05 - 2.0 mM 0.001% - 1% [1,25]

Expression level low - high intermediate - high low - intermediate intermediate - high This study

Basal expression low - high low - high High low This study

Induction ratio intermediate intermediate-high Low high This study

Accumulated transcript low - intermediate high below detection -
intermediate

intermediate This study

RBS strength weak - intermediate intermediate - strong weak - intermediate strong This study

Homogeneity homogeneous
populations

mixed populations homogeneous
populations

mixed populations This study

Recommended
applications

high level expression high level expression (high level expression)c high level expression

expression of toxic
proteins

(expression of toxic
proteins)c

(metabolic engineering)c expression of toxic
proteins

metabolic engineering (metabolic
engineering)c

This study

a Expression of lysozyme, the natural inhibitor of T7 RNA polymerase, reduces the basal transcription from PT7lac.
b Supplementing glucose leads to catabolite repression which reduces basal transcription levels.
c Limited suitability. See ‘Results and discussion’ section for detailed information.
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and Pwitw6_badR. In parallel, pair Pwitw4_AscI and
Pwitw5_SpeI was used to amplify pSB-M1b [31] excluding
the RK2 ori (trfA coding region and the oriV origin of
replication). After digestion with AscI and SpeI of both
the amplified pMB1 ori and the pSB-M1b -resulting PCR
product, the two fragments were ligated to each other
resulting in plasmid pSB-M2b. The difference between
copy-numbers of RK2- and pMB1-based plasmids was
confirmed by agarose gel electrophoresis. Construction of
pSB-P0b introducing different regulator/promoter sys-
tems: Three different regulator/promoter systems were
chosen to substitute the region spanning xylS/Pm in pSB-
M1b and pSB-M2b. The lacI/PT7lac region was amplified
from pET16b using ET_AgeI_fwd and ET_NdeI_rev and
inserted into the two depicted backbones using NdeI and
AgeI, generating pSB-E1b and pSB-E2b. The lacIq/Ptrc
region was amplified from pTrc99A using TRC_AgeI_
fwd1and TRC_NdeI_rev1 prior to insertion into pSB-M1b

and pSB-M2b using AgeI and NdeI, generating pSB-T1b
and pSB-T2b. Finally, the PCR product covering the
araC/PBAD region from pBAD/gIII_calmodulin generated
with the primers BAD_BbsI_fwd and BAD_NdeI_rev was
inserted into the above mentioned backbones using BbsI
and NdeI, creating pSB-B1b and pSB-B2b. In order to in-
sert the Pm variant ML1-17 [27], pSB-M1b and pSB-M2b
were digested with XbaI and PciI removing the Pm core
promoter region which was replaced by two annealed
oligonucleotides that constitute the double-stranded Pm
ML1-17 fragment with XbaI and PciI compatible ends,
creating pSB-M1b-1-17 and pSB-M2b-1-17. Introduction
of other genes of interest: All pSB-P0b variants, except for
pSB-B2b, were digested with NdeI and BamHI to excise
the bla gene and to insert the lucS gene from pIB11-lucS
instead, generating pSB-P0l variants. pSB-B2b and pSB-
M1l were digested with NdeI and KpnI. The resulting
DNA fragment corresponding to the pSB-B2 backbone
and the lucS gene were ligated to each other to generate
pSB-B2l. The scFv173-2-5-phoA gene was PCR cloned
from pHOG-173-2-5-AP with primer pair pelB_fwd and
APhis_rev2. The enzyme combination NdeI and BamHI
was used to replace the bla gene from pSB-M1b with
the digested scFv173-2-5-phoA PCR product resulting in
pSB-M1s. From there on NdeI and BamHI were used to
generate all pSB-P0s variants, except for pSB-B2s. This
construct was generated by digesting pSB-B2b and pSB-
B1s with BamHI and ligating the pSB-B2 backbone with
the scFv173-2-5-phoA BamHI digested insert from pSB-
B1s. gfpmut3 originating from pBAD24-GFP was inserted
into the pSB-P0b variants using NdeI and BamHI with the
exception of pSB-B2b. Instead, BamHI was used to excise
the gene from pSB-B1g and to place it into pSB-B2 back-
bone (originating from pSB-B2l) to generate pSB-B2g.
Genes GH1S and IL1RNS were excised from pMA-GH
and pMA-T-IL-1RA with NdeI and BamHI and trans-
ferred to the pSB-P0b variants with the Pm, Pm ML1-17,
PT7lac and Ptrc promoter using the same enzymes,
resulting in pSB-P0h and pSB-P0r variants.

Growth conditions for comparative expression studies
The general cultivation protocol was based on recom-
mendations published by the European Molecular Biol-
ogy Laboratory (EMBL) [63]. For E. coli cultivations LB
medium was chosen because it is widely used among
molecular biologists and at the same time it was avoided
to use media with glucose as a carbon source due to the
influence of glucose on background expression from PT7lac
and PBAD through catabolite repression [64]. A growth
temperature of 30°C was applied for slowing down the
growth rate of E. coli, as this generally leads to more sol-
uble protein [65]. Initially the kinetics of protein accumu-
lation was studied for all expression cassettes, using GFP
(fluorescence) and luciferase (activity) as the main models.

Table 4 Oligonucleotides used in this study

Name Sequence (50→ 30)

a) PCR primers

Pwitw4_AscI AAAGTGAGGGCGCGCCGGTTGATGAGAG

Pwitw5_SpeI ATCCACCGGAACTAGTCCCCTGCTC

Pwitw6_badF AGACTAGTAAGCCCTCCCGTATCGTAGTTA

Pwitw6_badR TGGCGCGCCAGATGCGTAAGGAGAAAA
TACCG

ET_AgeI_fwd GATGGCCCATATGATATCTCCTTCT

ET_NdeI_rev GATCACCGGTCCAGTGATCGAA

BAD_BbsI_fwd GGCCTTTCGTCTTCCCGGCATCCGCTTA
CAGACA

BAD_NdeI_rev GACGCCCATATGTAATTCCTCCTGTT
AGCCCAAAAAACG

TRC_AgeI_fwd1 TGCATGTGTCACCGGTTTTCACCGTC

TRC_NdeI_rev1 GAGCTCGAATCATATGGTCTGTTTCCTG

pelB_fwd AGCTACATATGAAATACCTATTGCCTACG

APhis_rev2 AGGATCCGAGCCTTTCGTTTTATTGATGC

b) qRT-PCR primers

RT-synluc_fwd2 CCATGGCTTCGGCATGTT

RT-synluc_rev2 ACACGAAAGCCGCAAATCA

gfpmut3_fwd1 CATGGCCAACACTTGTCACT

gfpmut3_rev1 CTGCTTCATGTGATCTGGGTATCT

RT-hGH.fwd1 GCCTGTGTTTTAGCGAAAGCAT

RT-hGH.rev1 AGATTGCTTTTCTGCTGGGTTT

RT-IL-1-RA.fwd1 ATTGATGTGGTGCCGATTGA

RT-IL-1-RA.rev1 TCAGACACATTTTACCACCATGAA

scFv198.fwd GAAGGGCCGGTTCACCAT

scFv255.rev CATTTGCAGATACAGCGTGTTCT

RT-16S-Fwd ATTGACGTTACCCGCAGAAGAA

RT-16S-Rev GCTTGCACCCTCCGTATTACC
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The inducer concentrations and culture harvesting times
post induction were varied and we found that five hours
induction was sufficient to reach a plateau of accumulated
protein per OD unit of cells. For GFP the accumulation
rate was nearly constant (slightly lower from 3–5 hours)
over this time-period. For most of the proteins it was
complicated to follow the kinetics accurately since there
was no quantitative method for measurement available,
and in case of luciferase activity measurements may not
necessarily correlate exactly with the accumulation kinet-
ics of the insoluble fraction.
Recombinant E. coli ER2566 and DH10B strains were

grown in 2 ml LB supplemented with 50 μg/ml kanamycin
at 30°C over-night. Then 15 ml of LB with kanamycin in
shake flasks were inoculated with the overnight culture to
an initial OD600 of 0.05. Following incubation at 200 rpm
and 30°C expression was induced at OD600= 0.5-0.6 as fol-
lows: 2 mM m-toluate for strains harboring Pm- based
constructs, 1 mM IPTG for those with PT7lac, 0.2 mM
IPTG for Ptrc and 0.015% L-arabinose for PBAD. Growth
was continued for 5 more hours at 30°C.

Transcript analysis by qRT-PCR
At harvest, 0.5 ml of culture was stabilized with RNA pro-
tect (Qiagen) prior to freezing. The subsequent total RNA
isolation, cDNA synthesis and relative transcript quantifi-
cation by qRT-PCR was performed as described previously
[28]. Primer pairs used during amplification are listed in
Table 4. Transcript generated from the 16S rRNA gene
was used for normalization.

Activity measurements of the different reporters
The luciferase assay was performed using the Luciferase
assay System (Promega). At harvest, the cell culture was
normalized to an OD600 of 0.5. 90 μL of this mixture was
supplemented with 10 μL of K2HPO4, pH 7.8, 20 mM
EDTA prior to lysis with the Luciferase Cell Culture Lysis
Reagent (CCLR, Promega). The remaining steps of the
protocol were carried out according to the manufac-
turer’s instructions except that the luciferase activities
were determined from 10 μL lysed culture mixed with
50 μL of substrate. The alkaline phosphatase assay
was performed as described previously [66]. Fluore-
scence measurements of strains expressing GFP were
performed with the FLUOstar Omega instrument
(BMG Labtech) together with the corresponding
Omega Software. Fluorescence intensity was deter-
mined directly from the cultures using an appropriate
filter set (excitation: 485 nm; emission: 520 nm).
Values were normalized against the optical density.
Data were acquired from three biological and thereof
three technical replica.

Protein analysis by SDS-PAGE
For SDS-PAGE analysis 50 ml culture volume was used.
Because of impaired growth of recombinant strains ex-
pressing scFv173-2-5-AP, 3xLB was used to get sufficient
cell mass for analysis. The general growth conditions
were as described above for the comparative expression
studies. At harvest, bacterial pellets were washed with
0.9% NaCl and 100 mg pellet (wet weight) was frozen
until further processing. Pellets were resuspended in
lysis buffer (50 mM Tris–HCl, pH 8.0, 1 mM EDTA,
100 mM NaCl, 8 mM MgCl2). The solution was soni-
cated using a Branson Sonifier DSM tip (sonication for
3.5 minutes on ice, duty cycle 35% and output control
3.0). Soluble and insoluble fractions were separated by
centrifugation and treated with 62.5 U/ml Benzonase nu-
clease (Merck). Protein gels were run under denaturing
conditions using ClearPAGE 10% gels and ClearPAGE
SDS-R Run buffer (C.B.S. Scientific) followed by staining
with Coomassie Brilliant blue R-250 (Merck).

Flow-cytometry
Cultures were grown essentially as decribed for SDS-
PAGE analysis. At various time points after induction, 1
ml of culture was collected, supplemented with glycerol to
10% and snap-frozen in liquid nitrogen until further ana-
lysis. For single-cell fluorescence measurements, samples
were thawed on ice and diluted in PBS. Flow cytometry
was performed using the CyFlowW Space flow cytometer
(Partec) equipped with a 488 nm blue solid state laser
(200 mW) and a 536/ 40 nm band pass filter. For each
sample, 150,000 events were collected at a rate between
800 and 2,000 events per second. Data were analysed
with the Windows™ XP FloMax(R) software (Quantum
Analysis). The mean and spread (coefficient of variation
(CV)) of the distributions were calculated over all collected
values after gating.
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