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Abstract

This thesis is based on original research that was carried out in the
field of topological phases in quantum condensed matter physics. The
results have been published in five papers in Physical Review B, which
form the core of the thesis.

Three of these papers are concerned with magnetic order at the
surface of a three-dimensional topological insulator, more precisely
phenomena related to the so-called topological magnetoeletric effect
(TME). This effect causes an electric field to induce a magnetic po-
larization. The first paper explores the role of Coulomb interaction
at an interface of a ferromagnetic insulator with a topological insu-
lator. The main finding is that the long-range interaction causes a
nonlocal contribution to the TME. This is further investigated by de-
riving the Landau-Lifshitz equation describing the magnetization dy-
namics at the interface. In the second paper, the system is extended
to a multilayer heterostructure. It is shown that the effect of the
Coulomb interaction can effectively be described as a topological mag-
netic dipole-dipole interaction. Furthermore a setup is proposed where
a magnetic texture can be manipulated nonlocally by means of an elec-
tric voltage. The third paper represents a generalization of the bilayer
system to bipartite magnetic insulators. The main finding is a topolog-
ical staggered-field-electric effect in ferrimagnetic insulators. All these
three papers are based on completely analytical calculations within
effective continuum models.

The other two papers deal with topological superconducting sys-
tems. The first one is about a so-called Majorana wire, a spin-orbit
coupled semiconductor nanowire with proximity-induced superconduc-
tivity in an external magnetic field. Such a system can host localized
Majorana zero modes at the wire ends under certain conditions, when
it is in a topologically nontrivial phase. One aspect of this condition,
namely the allowed range of magnetic field orientations, is analytically
derived in the paper. This is supplemented by calculating the con-
ductance spectra of a Majorana wire-trivial conductor junction, which
show the decay of the prominent zero-bias peak at the predicted cri-
tical angle. The last paper resulted from an external collaboration,
where nodal noncentrosymmetric superconductors are studied. For
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certain crystallographic orientations, the surface of such a material
features Majorana zero modes as flat-band states that are restricted to
bounded regions in the surface Brillouin zone. By self-consistent nu-
merical computation of the superconducting gaps, it is shown that the
surface spontaneously breaks time-reversal symmetry for sufficiently
low temperatures. The surface states become weakly dispersive and
are no longer Majorana modes.

Sammendrag

Denne avhandlingen best̊ar av fem vitenskapelige artikler med arbeid
innenfor teoretisk faste stoffers fysikk, nærmere bestemt s̊akalte topo-
logiske materialer. De første tre artiklene dreier seg om magnetisme
p̊a overflaten til en topologisk isolator. Det finnes en topologisk mag-
netoelektrisk effekt (TME) i slike systemer. Det betyr at elektriske og
magnetiske felt er koplet, noe som kan være nyttig i nanoteknologi.
I to artikler beskrives det hvordan denne effekten kan f̊a en lengre
rekkevidde n̊ar Coulomb-vekselvirkninger tas i betraktning. Dette in-
nebærer en ny effekt, nemlig en topologisk vekselvirkning mellom mag-
netiske dipoler. Den tredje artikkelen utleder en variant av TME der
et elektrisk felt kan indusere mer kompliserte former av magnetiske
felt.

De to siste artiklene tar for seg topologiske superledere. I disse er
det mulig å finne Majorana fermioner, eksotiske kvante-tilstander som
kan beskrives som sine egne antipartikler. Det beregnes i den fjerde
artikkelen n̊ar Majorana fermioner er tilstede i en nano-tr̊ad, som bare
er topologisk n̊ar flere komponenter kombineres p̊a en spesiell måte.
I den siste artikkelen blir det sl̊att fast at Majorana fermionene kan
forsvinne i en viss slags topologiske superledere n̊ar temperaturen blir
veldig lav.
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Preface

This thesis presents the results of the research that I have conducted
during my PhD term at NTNU from 2013 to 2017. The scientific out-
come of my work is represented by the five papers that are included in
their final published form. They are not ordered chronologically. In-
stead, the three papers on magnetism on topological insulator surfaces
are placed first, as this subject had most weight in my PhD studies.

The research papers are preceded by five chapters that serve as an
introduction to the general field of topological condensed matter and
to the specific systems that will be encountered in the papers. This
introductory part hence does not represent original research or ideas
of my own, unless where a reference to my papers is made. Rather,
it provides background knowledge that has been collected from many
other publications. Some sources that have been particularly useful are
the review articles by Hasan and Kane [6] and Qi and Zhang [7], which
are standard references for topological insulators and supercondctors,
lecture notes by Tong [8] that I consulted concerning the quantum
Hall effect and some general aspects, and a review by Schnyder and
Brydon [9] on nodal superconductors.

Although the introduction part is meant to provide the necessary
background to understand the purpose and findings of the research
papers, it is clearly not a textbook. Thus, many important facts and
relations are simply cited from the literature. Derivations, or parts of
them, are only shown where I found them useful, which is of course a
matter of taste2. Occasionally heuristic arguments are given to convey
some intuition for the objective at hand.

Towards the end of the Chapters 4 and 5 there are sections that
summarize and briefly explain the results of the papers. As the com-
plete papers are included in the thesis, I did not intend to merely
repeat their content in these sections. Instead, I tried to highlight
aspects that are not expanded on in the papers and keep it short oth-
erwise. The results of my research projects have also been presented
and discussed at several conferences and seminars (cf. Tab. 1) after
publication, which helped me to broaden my understanding and some-

2and perhaps my individual learning process
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times to see the results from a different angle. For that reason, the
thesis also contains a few remarks that cannot be found at all in the
papers.

The five chapters are organized in the following manner. Chap-
ter 1 provides a very basic introduction. Chapter 2 reviews notions
of topology that are important in condensed matter theory, before
concrete systems are discussed in Chapter 3: the Su-Schrieffer-Heeger
model as one of the simplest topological models that can be found,
the quantum Hall effect in some detail due to its tremendous impor-
tance in the development of the field, and then topological insulators,
which are dealt with in three of the five papers. The heterostructures
that are investigated in these papers are explained more specifically in
Chapter 4. The last chapter is directed at topological superconductors
and introduces the other two papers.

All copyrighted material in the thesis is reprinted with permission.
Specifically, this applies to the five research papers and in addition
Figs. 3.3(b) and 4.2. This content was originally published by APS
in the Physical Review journals. Figure 5.6 is reprinted under the
Creative Commons Attribution 3.0 licence.
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Chapter 1

Introduction

The work presented in this thesis [1–5] is located within the broad
field of condensed matter physics, which is (mostly) the science of elec-
trons in a crystal (thus, in a solid material). A relatively young and
vivid subfield is concerned with so-called topological quantum matter,
comprising the prominent material class of topological insulators and
superconductors [6, 7]. These novel materials are fascinating states of
matter: By virtue of extraordinary – “topologically nontrival” – fea-
tures of the bulk material, exotic quantum states can emerge at the
surface. For instance, despite being insulating in the bulk, a topolog-
ical insulator (TI) becomes metallic at the surface, where it exhibits
electrons for which the term “relativistic” suits although they move at
only 0.2 % of the speed of light. Topological superconductors (TSCs)
host quantum states that act like Majorana fermions. Such fermions
are their own antiparticles, which is, at least most likely, not the case
for any known elementary particle. Furthermore, such topological sur-
face properties are robust against a variety of perturbations, as they
are protected by topology. Unsurprisingly, topological materials have
attracted much attention, both for being of fundamental interest and
for their potential technological use in nanodevices with envisioned
applications ranging from spintronics to quantum-computation. The
relevance of topological quantum matter in general was also acknowl-
edged by the Nobel Prize in Physics in 2016, which was awarded to
Thouless, Haldane, and Kosterlitz “for theoretical discoveries of topo-
logical phase transitions and topological phases of matter” [10].

The papers at the end of this thesis deal with topological surface

1



2 Chapter 1. Introduction

states: Papers [1–3] explore the interplay of TIs and magnetism, while
Papers [4] and [5] are concerned with the existence of Majorana states
in superconducting systems. Clearly, topology plays a superior role in
the entire thesis. The next section is therefore devoted to explain what
topology is about. This will be followed by some introductory remarks
on topology in condensed matter.

1.1 What is topology?

Topology [11, 12] is a subfield of mathematics that aims at classifying
objects3 (one may think of geometric shapes in two or three dimen-
sions) according to essential properties that do not depend on details.
Such essential properties are identified on the basis of continuous de-
formations4. Every property that is not affected by any continuous
deformation is topological, otherwise it is not. We illustrate the kind
of properties that topology is concerned with, also called topological
invariants, by three examples.

1. Connectedness. Consider the two areas shown in Fig. 1.1. Apart
from differences in their shapes, which are details, they are dif-
ferent on a fundamental level because the dark area is connected
whereas the light one is not. Any deformation merging the two
light “pieces” would be discontinuous. Mathematically speaking,
the light area is not connected because it can be written as the
union of two disjoint open5 sets.

2. Winding number. A closed path in two dimensions that is not
allowed to cross a given defect in the plane, can be topologically
characterized by the number of times it winds around that point.
This number must be an integer (Actually, this yields a topolog-
ical invariant of the punctured plane – its fundamental group
π1 = Z.). Three simple examples are shown in Fig. 1.2.

3In general so-called topological spaces, often equipped with an additional algebraic structure.
4in the sense of homeomorphisms
5relative to its own topology, not the R2
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Figure 1.1: The light area
is not connected, in con-
trast to the dark area,
which makes them topo-
logically distinct.

Figure 1.2: Three closed paths with dif-
ferent winding number ν with respect to
a given point (black dot). From left to
right, ν = 0, 1, and 2, respectively.

3. The genus g is a topological invariant characterizing a closed
two-dimensional surface6 S, like the surface of a finite three-
dimensional object. Pictorially, it counts the number of holes in
(or handles attached to) the object (see Fig. 1.3): if S is the sur-
face of a cube, g = 0. The same is true for the sphere, hence the
two are topologically equivalent (continuously deformable into
one another). However, if a handle is attached to the sphere
or a hole is drilled through the cube, their genus changes to
g = 1 – the topology has been altered as such operations are
not continuous. On the other hand, the latter two surfaces share
their topological features with the torus, which also has one hole
(g = 1).

In the third example, topology can be linked to geometry. The con-
nection is made by the Gauss-Bonnet theorem [11], which states that
the genus can be calculated by integrating the Gaussian curvature G
over the entire surface:

g = 1− 1

2

∫

S

G(r) d2r (1.1)

This is remarkable, because geometry accurately maintains all the de-
tails that topology discards. One can also say that geometry describes
local properties, while topology is only sensitive to global properties.

6more precisely: compact, orientable, and without a boundary
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Figure 1.3: Two closed surfaces with genus g = 0 (left) and g = 1
(right).

1.2 Topology and condensed matter

Under certain conditions, topological invariants not unlike the ones
above can be assigned to solid materials when they are described in
terms of their band structure. These bands indicate which states of
an electron in the material are allowed by quantum mechanics. As
a precondition to make use of topological concepts, it turns out that
the occupied and empty states should be disconnected, like the light
shape in Fig. 1.1. Then, the occupied states (filled bands) can in
some cases be characterized by winding numbers. In other cases, the
Gauss-Bonnet theorem can be generalized to calculate an analogue of
the genus: the Chern number. For the TIs, the relevant topological
invariant can only have two different values and is said to be in Z2.

Whenever a material exhibits a topological invariant with nonzero
value, one can expect physical features that remain completely unaf-
fected by a broad range of perturbations, as long as those do not lead
to a discontinuous alteration, because topology is by definition inde-
pendent of any local details. For instance, in the quantum Hall effect
(QHE), which was the first system that was understood to be of a
topological nature, Klitzing [13] discovered a conductance that takes
certain quantized values regardless of material parameters or geometric
characteristics of the sample. The quantization in the QHE has such
a stunning precision that the effect is nowadays used as the definition
of the unit Ohm. Klitzing also received the Nobel Prize in 1985.
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The QHE historically started the interest for topological effects
in condensed matter. Meanwhile, topology seems ubiquitous and has
become a significant guiding scheme in the search for novel phases of
matter. The questions that one can investigate when dealing with
topological quantum matter can be sorted in three categories:

1. How can topology be applied? What types of topologically non-
trivial systems (i.e. Hamiltonians) are in principle possible? How
can they be classified and which topological invariants character-
ize the different classes?

2. Which physical systems are realizations of the cases identified
in 1.? Which microscopic mechanisms are responsible for the
topological properties? Which materials are good candidates to
look for nontrivial topology?

3. By which observables can a specific topological phase be iden-
tified? What are the unique signatures and how can they be
applied in novel quantum devices?

The first question is mainly a mathematical one. The aspect of how to
apply topological concepts has lead to several different branches within
the field of topological quantum matter. The TIs and TSCs that have
already been mentioned belong to the symmetry-protected topological
(SPT) phases, which is maybe the most important branch. For the
SPT phases, a comprehensive classification of the possible topological
phases exists. In other cases, the classification can be very difficult,
for instance for strongly correlated topological systems.

The second question involves both physics and chemistry. Having
identified Hamiltonians where mathematics allows for the presence of
nontrivial topological invariants, it is in general still a difficult task to
find a material, or sometimes even a toy model, for which a certain
Hamiltonian provides the correct (effective) description. At times it
may require to scan over large families of compounds, hoping to dis-
cover one that realizes the desired topological phase. Alternatively, one
can try to engineer topological systems by combining the properties of
known materials in heterostructures or artificial meta-materials.
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The third question is linked to the second: If a material is believed
to be topological, how can this assumption be verified unambiguously
in experiments? Finally, it also adds practical relevance to the field as
applications can be proposed. Usually topologically protected bound-
ary states are the centerpiece in such considerations.

The structure of the thesis approximately follows these questions,
culminating in the research papers, which all deal mainly with ques-
tions of the third kind7. The next chapter will deal with the clas-
sification of SPT phases and demonstrate how topological invariants
can be defined. Afterwards, Chapter 3 introduces systems that realize
such phases. Chapter 4 is focused on phenomena related to TIs. The
questions 2 and 3 are then revisited in the last chapter for the case of
superconductors.

7partly also with the existence of a topological phase



Chapter 2

Topological concepts in
condensed matter

This chapter serves to clarify general notions of topology, while spe-
cific physical systems will be discussed in the next chapter. The TIs
and TSCs can be understood within the framework of SPT phases. As
there are several other kinds of topological systems, a brief overview is
given in the first section. Afterwards, the classification of SPT phases
is presented. The remaining sections define some of the relevant topo-
logical invariants (the Z invariants), whereby the formal link between
topology and physics becomes visible. The equally important Z2 in-
variants are deferred to Chapter 3. We close the chapter with some
remarks on the bulk-boundary correspondence.

2.1 Overview

As topology has become a very fashionable theme in condensed mat-
ter physics during the past decade, several different kinds of systems
are now labeled as “topological”, which can sometimes cause confu-
sion. Although the terminology is not always completely congruent
throughout the literature and the field keeps growing rapidly, there
are some main concepts and terms that can be mentioned8 to put this
thesis in a broader context:

8The list is not meant to be exhaustive, though, and the items are not completely disjoint.

7



8 Chapter 2. Topological concepts in condensed matter

� SPT phases [14, 15] with a full bulk energy gap, typically de-
scribed at zero-temperature and with (at most) short-range inter-
actions. The topological classification depends on generic sym-
metries in the system. This comprises TIs and TSCs.

� Nodal topological materials where the bulk energy gap has point
or line nodes. The concepts of SPT phases can be applied in a
weaker sense to a sub-Hamiltonian that is restricted to the co-
dimension of the nodes minus one [16]. Examples are Dirac and
Weyl semimetals [17] and nodal SCs [9].

� Topological crystalline insulators (TCIs) [18] and higher-order
TIs [19], where the SPT classification is extended by certain crys-
tallographic symmetries.

� Topological order: in contrast to the SPT (and related) phases,
topologically ordered phases are characterized by long-range en-
tanglement, strong correlations, and fractional excitations [20].
Prominent examples are the fractional quantum Hall effect (FQHE)
[21], quantum dimer models [22], and spin liquids [23]

� Topological defects: The defect itself is topological, rather than
the bulk system hosting it, e.g. skyrmions [24] in spin systems
or crystal dislocations [25].

The QHE [13,26,27] can be mentioned in its own right. It can be seen
as the parent system for all of the first four categories above.

In this thesis, Papers [1–4] are concerned with phenomena related
to “classical” SPT phases. Paper [5] deals with a nodal system that
can be seen as a generalized SPT phase. In the next section, the
general classification of the SPT phases by generic symmetries [28] is
introduced.

2.2 Periodic table of SPT phases

Let a system of noninteracting fermions be described by a Hamiltonian
H in matrix form in a suitable basis of states, taking into account
all present quantum numbers. Assume further that H is irreducible
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in the sense that there is no other (orthonormal) basis in which H
would be block-diagonal – it would then be sufficient to consider these
blocks separately. Formally speaking, there is no unitary matrix U
that commutes with H.

However, the Hamiltonian can still have anti -unitary symmetries
of the form KU , with the operator K of complex conjugation [29].
The unitary transformation of H with U then yields a relation to the
complex conjugate Hamiltonian H∗. By hermiticity of H, there are
only two possible symmetries of that kind, denoted T = KUT and
C = KUC, with

U †TH∗UT = H, (2.1)

U †CH∗UC = −H. (2.2)

The physical interpretation of Eq. (2.1) is time-reversal symmetry
(TRS), while Eq. (2.1) describes invariance under charge inversion,
or particle-hole symmetry (PHS). If TRS is present, the operator T
of time reversal (TR) squares to either 1l or −1l. The same is true
for C in the case of PHS. In addition, the joint effect of TRS and
PHS has to be considered. If both are present, there is a symmetry
S = T C = UT UC = US with

U †SHUS = U †CH∗UC = −H. (2.3)

This symmetry is called chiral symmetry. It must be absent if a Hamil-
tonian has only exactly one of the symmetries T or C, but a unitary
matrix US satisfying Eq. (2.3) can still exist if both TRS and PHS are
absent. Thus, all possible combinations of T 2 = 0,±1l, C2 = 0,±1l, and
S2 = 0,1l (where zero denotes the absence of the symmetry) yield ten
different classes of Hamiltonians as listed in the first four columns of
Tab. 2.1. This classification is known as the “tenfold way” and was in-
troduced by Altland and Zirnbauer [30] in expansion of the previously
known Wigner-Dyson classes [31,32]. It is based on mathematical work
by Cartan [33].

Remarkably, there is a close link between the tenfold way and topol-
ogy [16]. Schnyder et al. [28] and Kitaev [34] have demonstrated that
for non-interacting Hamiltonians with a gapped energy spectrum the
number of possible topologically distinct phases is determined by the
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Table 2.1: The classification of Hamiltonians according to TRS T ,
PHS C, and chiral symmetry S = T C into ten classes [30] allows to
catalogue the topological invariants [16, 28, 29, 34] that can be defined
in n (mod 8) dimensions.

Symmetry Topological invariant

Class T 2 C2 S2 1D 2D 3D 4D 5D 6D 7D 8D

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1l Z 0 Z 0 Z 0 Z 0
AI 1l 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1l 1l 1l Z 0 0 0 Z 0 Z2 Z2

D 0 1l 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1l 1l 1l Z2 Z2 Z 0 0 0 Z 0
AII -1l 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1l -1l 1l Z 0 Z2 Z2 Z 0 0 0
C 0 -1l 0 0 Z 0 Z2 Z2 Z 0 0
CI 1l -1l 1l 0 0 Z 0 Z2 Z2 Z 0

symmetry class and the dimension of the system (modulo eight), cf.
Tab. 2.1. Only two kinds of topological invariants that distinguish
the different phases are possible (if there are nontrivial phases at all),
namely either Z or Z2 invariants. When nontrivial topology is found
in such systems, it is protected by the presence (or absence) of the
symmetries in its respective class, hence the name SPT phases. Ta-
ble 2.1 is often referred to as the periodic table of SPT phases, and is
an important guide in the search for novel topological phases.

As a precursor to the following chapters, we already mention where
the systems discussed there are placed in the periodic table:

� Su-Schrieffer-Heeger model (Section 3.1): class BDI in 1D, Z
invariant protected by chiral symmetry

� QHE (Section 3.2): class A in 2D, Z invariant from TRS breaking

� TIs (Section 3.3 ff.): class AII in 2D and 3D, Z2 invariant pro-
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tected by TRS

� Majorana wires (Section 5.4): class D in 1D, Z2 invariant pro-
tected by PHS

� Nodal noncentrosymmetric superconductors (Section 5.5): gap-
less, but weak topology via class AIII in 1D, Z invariant

A further remark about the periodic table is at hand. If a nonzero
entry appears for a Hamiltonian of given class and dimension, it only
means that mathematics would allow for at least one nontrivial topo-
logical phase. However, the physical system does not have to realize
such a phase. For example, for any BDI Hamiltonian in 1D a Z-
invariant ν taking integer values can be defined. For a specific instance
of such a Hamiltonian, ν may still happen to be always zero, or assume
only 2 different values. A nonzero entry in the periodic table is thus a
necessary but not sufficient condition to find a nontrivial phase.

In cases where there is a Z invariant, it can be written in terms of
a winding number about the origin of the 2D plane (if there is chiral
symmetry) or as a Chern number (otherwise). These invariants will be
explained in Sections 2.3 to 2.5. The Z2 invariants for the topological
insulators with TRS will be discussed at the end of the next chapter.

2.3 Berry phase

The Berry phase [35] is a quantum analogue of the geometric phase that
is known from classical mechanics [36]. For instance, a Foucault pen-
dulum that is transported along a triangular path on the globe formed
by two meridians and one quarter of the equator is rotated by π

2 . In
quantum mechanics, a Hamiltonian that is adiabatically transported
along a closed path in a curved parameter space gives rise to a phase
shift of the eigenstates. Such a phase difference can have a physical
meaning, in contrast to the global phase of wavefunctions. The geo-
metric phase of the Foucault pendulum can be related to the Gaussian
curvature – the fact that the pendulum is rotated is a manifestation
of the curved surface of the globe. As mentioned in the introduction,
the Gaussian curvature can in turn be used to calculate the genus,
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which is an integer topological invariant. Similarly, the Berry phase is
related to a (generalized) curvature from which one can calculate an
integer topological invariant of the quantum-mechanical system. This
invariant is called Chern number.

Consider a HamiltonianH that depends on a set of parameters {pi},
whereby a path in parameter space can be parametrized as pi(t). The
system may be in an eigenstate |Ψ〉 at t = 0. We assume furthermore
that t can be varied in an adiabatic manner, meaning that if |Ψ〉 is the
n-th eigenstate of H(pi(t = 0)), than for any t the system will be in
the n-th eigenstate of H(t) ≡ H(pi(t)), which we call |n(t)〉. This is
only possible if for any t, the n-th eigenenergy εn(t) is non-degenerate,
i.e. no level crossings occur in the process of changing t. In that sense,
one can call H a “fully gapped” Hamiltonian with respect to the path
pi(t).

The evolution of the eigenstate is given by the Schrödinger equation
[37],

i~∂t|Ψ(t)〉 = H(t)|Ψ(t)〉. (2.4)

The solution to this equation is [11]

|Ψ(t)〉 = eiη(t)− i
~
∫ t

0
εn(t)dt|n(t)〉, (2.5)

with the phase

η(t) = i

∫ t

0

dt′〈n(t′)|∂t′n(t′)〉. (2.6)

If pi(0) = pi(T ), then η ≡ η(T ) is called the Berry phase. It is often
rewritten in the form

η = i

∫

C
dp 〈n(p)|∇p|n(p)〉, (2.7)

where C is the closed loop in parameter space, p is the vector of pa-
rameters pi, and the i-th component of ∇p is ∂pi.

This formal solution of the Schrödinger equation has a geometric
interpretation. One can directly link the Berry phase to the mathe-
matical framework of differential forms on fibre bundles [11,12], which
will not be reviewed here, by defining the Berry connection

A = −i〈n(p)|∇p|n(p)〉 (2.8)
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and the corresponding Berry curvature9

Fij =
∂Ai
∂pj
− ∂Aj

∂pi
. (2.9)

In principle, one could attach arbitrary phases to the eigenvectors at
each parameter point, |n(p)〉 7→ exp(iϕ(p))|n(p)〉. By Eq. (2.8) it is
clear that A will depend on ϕ(p). In contrast, the specific choice of
phases cancels in F , which is thus gauge-independent. The Berry phase
is evidently the negative integral of A along the loop C in parameter
space. However, as C is closed, it can be rewritten by Stokes’ theorem
as an integral of F over the area enclosed by C. Therefore, the Berry
phase is also gauge-independent and it is plausible that it can have a
physical meaning.

2.4 Chern number and Bloch sphere

Let us now consider the special case where the parameter space is a
two-dimensional closed surface S. If there is a loop C in S, then because
S is closed, it is divided in two areas A1, A2 that are both bounded
by C: traveling along the loop, it is arbitrary which side is defined as
“inside” or “outside” of C. Consequently, the Berry phase, which is
a physical quantity, must not depend on this choice up to an integer
multiple of 2π:

−η =

∫

A1

Fijdpi ∧ dpj = 2πC −
∫

A2

Fijdpi ∧ dpj (2.10)

with C ∈ Z. The sign in front of the last integral appears because
C winds in opposite direction relative to A1 and A2. The immediate
conclusion is that the integral over S = A1 ∪ A2 must be quantized:

C =
1

2π

∫

S

Fijdpi ∧ dpj. (2.11)

9In general, the relation between the curvature (a two-form) and the connection (a one-form) is
F = DA = dA+A ∧A, with the covariant derivative D, the exterior derivative d, and the wedge
product ∧ [11].
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The integer C is the Chern number. More precisely, it is the first
Chern number C(1) – one can generalize the argument above to any
even dimension [29]. This leads to the n-th Chern number C(n) in 2n
dimensions. In analogy to the genus g in the Gauss-Bonnet theorem,
C(n) is a topological invariant. This can be understood heuristically
by the fact that C cannot change its value in a continuous manner by
the restriction to integers.

Why is the case of closed parameter spaces important? In con-
densed matter physics, the wavefunctions of non-interacting electrons
in a lattice potential have the Bloch form [38] Ψk(r) = exp(ik · r)u(r),
where u is periodic with respect to the lattice vectors aiêi: u(r+aiêi) =
u(r). This allows to describe the system by its band structure in mo-
mentum space. The momentum k is only defined modulo the reciprocal
lattice vectors and can be restricted to the first Brillouin zone (BZ),
where ki and ki + 2π/ai are identified. By virtue of this periodicity,
the BZ in 1D can be mapped onto the circle S1. In n dimensions, it is
the product space of n circles, S1× . . .×S1 ≡ Tn which is the n-torus.
Hence, momentum space is always a closed manifold. If we treat k like
the parameter p above, we can assign a Chern number to a band of
the Hamiltonian if two conditions are satisfied:

1. The number of dimensions is even as required to define C(n).

2. The band structure is compatible with the assumption of adi-
abatic parameter change which underlies the derivation of the
Berry phase.

While the first condition is clear, the second one means that (i) there is
no crossing of bands and (ii) the band is completely filled. Physically,
this restricts the topological classification of bands in terms of Chern
numbers to materials where the Fermi level EF lies inside an energy
gap – in other words, band insulators.

Condition (i) can be loosened by neglecting features of the band
structure outside the gap. Technically, one can continuously transform
the original Hamiltonian to a flat-band Hamiltonian where all filled
bands have some energy E1 < EF and all empty bands E2 > EF (for
details see [28]). This reduces the Hamiltonian to the two-level form

H(k) = s(k)1l2×2 + d(k) · σ (2.12)
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with the Pauli matrices σ = (σx, σy, σz)
T, and the restrictions s(k) =

(E1 + E2)/2, |d(k)| = (E2 − E1)/2. Then the unit vector

êd(k) =
d(k)

|d(k)| (2.13)

defines a mapping from the BZ to the unit sphere (called the Bloch
sphere). The Chern number has the following visual interpretation [8]:
it counts how often the mapping k 7→ êd(k) wraps the Bloch sphere
as k runs over the entire BZ.

2.5 Winding number

The Chern number cannot be defined in odd dimensions. However,
the mapping to the Bloch sphere still exists. In a system with chiral
symmetry, d(k) is restricted to a plane [16]. This allows for the def-
inition of a winding number of d(k) around the origin, as |d(k)| = 0
is forbidden by the energy gap. The winding number was already in-
troduced pictorially in Chapter 1. Here, we just augment this with a
formal definition in the 1D case10. When k runs once over the BZ the
winding number is

ν =
1

2π

∫

BZ

dk θ(k) = θ
(π
a

)
− θ

(
−π
a

)
, (2.14)

where θ(k) is the polar angle of d(k) as a continuous function of k.
Chern and winding numbers are sufficient to describe the SPT

phases with Z invariant: every Z entry in the periodic table Tab. 2.1
occurs either in an even dimension or in a class with chiral symmetry.

2.6 Bulk-boundary correspondence

The interest in topological materials is largely owed to the existence
of the exotic quantum states at their boundaries that were mentioned

10The more complicated definition in 2n+ 1 dimensions can be found in [29], but is not relevant
for the following chapters.
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in the introduction. They are found at the ends of a 1D system, the
edges of a 2D system, or the surfaces of a 3D system. Examples for
each case will be given in the next chapter. The reason why these
states emerge can be heuristically explained in the following manner:
At the interface between two topologically distinct phases11 there is
a topological invariant ν that takes a different value on the two sides
of the interface. In consequence, the value of ν must change as one
crosses the interface. This is not possible without closing the energy
gap, though, and therefore an in-gap (zero energy) state must exist that
is localized at the interface and persists as long as the bulk topology
remains unchanged. Mathematically, this is often described using the
1D Jackiw-Rebbi (JR) model [39]. We do not review it here because
a closely related model is discussed in Section 3.1. The relation of the
bulk topology to the existence of zero-energy boundary states is called
the bulk-boundary correspondence12 [43–45].

However, the simple line of thought above does not provide a rig-
orous proof of the bulk-boundary correspondence as it makes assump-
tions that are not always justified. Specifically, if the interface is char-
acterized by different symmetries than the bulk, the topological index
as a function of the spatial coordinate may simply be ill-defined at the
interface, such that there is no reason for a gap closure13. This situa-
tion is relevant in the Papers [1–3], that deal with a TI surface where
TRS is explicitly broken, and Paper [5], which provides an example of
spontaneous symmetry breaking. Generally speaking, one has to check
the bulk-boundary correspondence for each given topological system,
e.g. by transforming it to the JR model in the direction perpendicular
to the boundary. Using more advanced field-theoretic methods, one
can show that the bulk-boundary correspondence is a generic property
of the SPT phases [43–45] as long as none of the defining symmetries
is violated.

11One of them might be trivial, e.g. the vacuum.
12Apparently the term originated from string theory [40–42] and was later adopted in condensed

matter.
13There may still be localized surface states, but not necessarily at zero energy.



Chapter 3

Topological Insulators:
From one to three
dimensions

Having reviewed the general framework of SPT phases, we will now
consider physical systems in which such topological phases material-
ize. Here, the focus is solely on bulk insulators – superconductors
are devoted their own chapter. While the research Papers [1–3] deal
with heterostructures involving 3D TIs, it is beneficial to begin with
lower-dimensional systems, and then see how the 3D TI can be ob-
tained by generalizing the simpler models. We will start in 1D with
the Su-Schrieffer-Heeger (SSH) model, followed by the QHE14 in 2D.
The quantum spin Hall effect (QSHE), a 2D TI, will only be discussed
in a brief manner. Finally, the 3D TIs are introduced, including their
Z2 invariants which had not been presented in Chapter 2.

3.1 Su-Schrieffer-Heeger model

The Su-Schrieffer-Heeger (SSH) model [46, 47] is perhaps the simplest
example of a topological condensed matter system. It provides a two-
band description of a bipartite crystal in one dimension. It exhibits
two distinct phases that can be distinguished by a topological invariant

14Always in the sense of integer QHE, unless noted otherwise.

17
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and illustrates the generic features of an SPT phase, in particular the
existence of exponentially localized zero-energy modes at the boundary.

Originally, the SSH model was proposed to describe polyacetylene,
which basically is a chain of carbon atoms. Each carbon atom has
bonds to the neighboring two carbon atoms and one bond to a hydro-
gen atom, which localizes three valence electrons. The fourth valence
electron determines the electronic transport properties of the molecule.
This is represented by a nearest-neighbor hopping term in the SSH
model. It turns out that the free energy is minimized when the car-
bon atoms are not equidistant but slightly displaced, such that each
atom has one neighbor that is a bit closer than the other. Thus, the
chain can be decomposed in two sub-chains (i = 1, 2) forming a bi-
partite lattice with a staggered hopping amplitude. We write α, β for
the hopping within and in between unit cells, respectively. With the
operator φ†i,n of electron creation, where n runs over the unit cells, it
is straight-forward to write down the lattice Hamiltonian for electron
hopping in a molecule of length N :

HSSH = α

N∑

n=1

(
φ†2,nφ1,n + h.c.

)
+ β

N−1∑

n=1

(
φ†1,n+1φ2,n + h.c.

)
(3.1)

Note that HSSH does not account for the spin degree of freedom, there-
fore two copies of the model must be employed to adequately describe
a real molecule, or the molecule must be subject to a strong mag-
netic field. However, we will not discuss polyacetylene in further detail
and instead simply consider the spinless SSH Hamiltonian as a “toy
model” to demonstrate the topological features. Although there is no
spin degree of freedom, the sublattice index takes the role of a pseudo-
spin (in analogy to graphene), and the Hamiltonian can conveniently

be expressed using spinors Φ†n = (φ†1,n, φ
†
2,n) and the Pauli matrices

σ = (σx, σy, σz). Let us first look at the bulk of a long chain, where
momentum is a good quantum number:

Hbulk = α
∑

n

Φ†nσxΦn +
β

2

∑

n

Φ†n+1(σx + iσy)Φn + Φ†n(σx − iσy)Φn+1

=
1

N

∑

k

Φ†kH(k)Φk, (3.2)
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where

Φ†n =
1

N

∑

k

einkaΦ†k, (3.3)

a is the distance between two unit cells and

H(k) =

(
0 α + βeika

α + βe−ika 0

)
(3.4)

= d(k) · σ, (3.5)

d(k) = (α + β cos ka,−β sin ka, 0) (3.6)

The dispersion relation is readily read off:

ε(k) = ±
√
α2 + β2 + 2αβ cos ka. (3.7)

As there is a gap ∆ε = 2|α−β| between the upper and the lower band,
which are at half filling empty and filled, respectively, the chain is a
band insulator whenever α 6= β. Although ε(k) is symmetric under
exchange of α, β, the two insulating phases with α > β and α < β are
not identical.

The difference between these phases is based on the topology of the
bulk. The Hamiltonian Eq. (3.6) is periodic in momentum, thus the
vector d(k) describes a closed loop as k is varied from 0 to 2π

a in an
adiabatic manner (actually a circle in the dx − dy plane around (α, 0)
with radius β). This loop cannot be contracted to a point if it encloses
the origin, as the gapped state requires α 6= β. Without the gap, k can
no longer be changed adiabatically. Hence, it is meaningful to define
the winding number ν of the loop with respect to the origin. Clearly,
ν = 1 if α < β, and ν = 0 if α > β. The existence of a winding
number perfectly fits into the periodic table, Tab. 2.1. The SSH model
has chiral symmetry with US = σz, which transforms H(k) to −H(k):

σzdxσxσz + σzdyσyσz = −idxσzσy + idyσzσx = −dxσx − dyσy (3.8)

The model has also TRS and PHS, placing it in class BDI. However,
it is the chiral symmetry that protects the winding number because
all 1D Hamiltonians with chiral symmetry have a Z invariant. Note
that although the SSH model has a Z invariant, it exhibits only two
topologically distinct phases.
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Figure 3.1: The eigenenergies of
the SSH model in units of the
intra-cell hopping α for N = 70
as the inter-cell hopping β varies
from 0 to 2α. The grey regions
are filled with bulk states. A
state close to ε = 0 appears when
β > α.

Figure 3.2: The weight of the
wavefunctions Ψ+ (green dots)
and Ψ− (blue dots) at each unit
cell for N = 70 and β = 1.15α,
upper plot: sublattice i = 1,
lower plot: sublattice i = 2.

The nontrivial phase ν = 1 is accompanied by the existence of
localized boundary states at zero energy inside the bulk band gap be-
cause of the bulk-boundary correspondence that was introduced in the
previous chapter. This can be verified by exact diagonalization of the
real-space Hamiltonian for a finite chain. There are two states with
eigenenergy ε → 0 as N → ∞ if α < β. Figure 3.1 shows how the
eigenenergies change as β varies for a SSH chain of length N = 70. As
the bulk has an energy gap, it is clear that the zero-energy eigenstates
must be located at the boundary of the system. Indeed, the two wave-
functions Ψa,b(n) of these states decay exponentially in the bulk. In
Fig. 3.2, the weight of Ψ± = Ψa±Ψb at each site is shown for the two
sublattices. One can see that Ψ+(n) and Ψ−(n) each describe a state
that is localized at one end of the wire, where sublattice 1 contributes
only to the state at the left end, while sublattice 2 contributes only at
the right end. This can be understood from the limiting case β � α.
If we set α = 0, then an electron at the outermost atom at one end
of the chain cannot hop anywhere and is thus localized. As there is
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no on-site potential in the model, the energy of this state is zero. The
same happens at the other end, where the outermost atom belongs to
the other sublattice.

3.2 The quantum Hall effect

When a current is running through a metal, the moving electrons will
be deflected if a magnetic field perpendicular to the direction of the
current is applied. Therefore one can measure a voltage UH between
the lateral edges of the sample. This is known as the Hall effect, named
after Edwin Hall [48]. In 1980, von Klitzing et al. [13] observed a sur-
prising deviation from the classical effect in a quasi-two-dimensional
electron gas (2DEG), for which he was awarded the Nobel Prize just
five years later. In a high magnetic field and at sufficiently low temper-
ature15, the Hall conductance σxy becomes quantized to integer multi-

ples of e2

h . At the same time, the longitudinal resistance drops to zero.
This is the QHE and was the first physical phenomenon in a condensed
matter system where a direct link to topology was established. It can
thus be seen as the origin of the field of topological phases of quantum
matter. We will first briefly review the classical Hall effect and then
explain its quantized version.

3.2.1 Classical Hall effect

Consider the Drude model for a 2DEG [8], which is given by the equa-
tion of motion

m∂2
t r = −e(E + ∂tr×B)− m

τ
∂tr (3.9)

for electrons with mass m and charge −e subject to the Lorentz force
and velocity-dependent friction. The scale of the latter is set by the
typical time τ between dissipative scattering events. We assume the
magnetic field is pointing out of plane, B = Bêz, while the electric

15≈ 15 T and 1.5 K in the original experiment [13], but up to room temperature in more recent
experiments [49]
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field E is in the plane. The equilibrium state of the system, where
∂2
t r = 0, is then given by Ohm’s law,

E = ρ j (3.10)

ρ =
m

ne2τ

(
1 ωcτ
−ωcτ 1

)
(3.11)

where the current density is j = −ne∂tr, n is the electron density, and
ωc = eB/m the cyclotron frequency. As (ρij)i,j=x,y is not diagonal if
B 6= 0, E will have a component orthogonal to the current. The off-
diagonal entries ρH = ρxy = −ρyx represent the Hall effect. The Hall
resistivity and thus the Hall voltage will increase linearly with B, while
the longitudinal resistivity ρxx is constant.

Remarkably, ρH = mωc/ne
2 is, in contrast to ρxx, independent of

dissipation in the system, as it does not include τ . This is a first sign
that the Hall effect is of a rather fundamental nature.

3.2.2 Landau quantization

For Hall experiments in the quantum limit, the Drude model is insuf-
ficient to describe both the Hall and the longitudinal resistivity, see
Fig. 3.3. The QHE is a consequence of the quantization of electron
states into Landau levels [37], which becomes important at high fields.

For an electron restricted to two dimensions in a perpendicular
magnetic field as above, the Hamiltonian is

H =
1

2m
[p + eA(r)]2 , (3.12)

where p is the canonical momentum. It is convenient to use Lan-
dau gauge with the vector potential is A(r) = Bxêy, such that the
Hamiltonian does not depend on the y component. Then, the momen-
tum component ky will be a good quantum number and the remaining
Hamiltonian describes a harmonic oscillator with displacement in x
direction,

H =
1

2m
p2
x +

m

2
ω2
c

(
~ky
eB

+ x

)2

, (3.13)
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(a) (b)

Figure 3.3: (a) A typical setup for a Hall effect experiment, where
the voltage is measured both parallel and orthogonal to the current
in a perpendicular magnetic field. (b) Measured data for the Hall
resistance ρxy (upper panel) and the longitudinal resistance ρxx (lower
panel) as a function of the magnetic field strength by M. A. Paalanen
et al. [50], where ρxy has plateaus at quantized values, while ρxx drops
to zero simultaneously. The original figure (in black) is adopted from
[50] (©APS, 1982). The red dashed lines are added to indicate the
behavior expected from the classical Hall effect.

with the eigenenergies given by

εi = ~ωc
(
i+

1

2

)
, i ∈ N. (3.14)

These Landau levels are degenerate, as they do not depend on ky. This
defines a very simple “band structure” with equidistant flat bands16.
The density of states depends on the magnetic flux: For a sample of
size Lx × Ly, ky will be quantized in units of ∆ky = 2π/Ly. Thus,
the displacement of the x component in Eq. (3.13) is quantized by
∆x = ~

eB∆ky. The number of states is then Lx/∆x = eLxLyB/h.
Assume that η of the Landau levels are filled at a certain Fermi

16Note that the electron spin has not been taken into account. Each of the bands will actually
be split in two by the Zeeman effect.
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energy. Then the total density of states is n = ηeB/h. If we insert
this expression into the Drude formula for the Hall resistance, we find

ρH =
h

e2

1

η
or σxy = η

e2

h
. (3.15)

These are exactly the experimentally observed quantized values. Every
filled Landau level contributes one quantum of conductivity to σxy.

This argument still has a severe drawback. Namely, the assumption
that there are only filled Landau levels is unjustified. The density n in a
given sample will be a material constant and coincide with the density
of states in the Landau levels only for some discrete field strengths
Bη = nh/ηe. In contrast, the key feature of the QHE are plateaus
where σxy takes a quantized value over a range of field strengths. In
fact, the existence of the plateaus requires the presence of localized
states in between the Landau levels, as induced by disorder in the
sample. Such states do not contribute to the conductivity, but can to
some extent compensate for the incongruous number of electrons if B
does not exactly match any Bη. Thus, the amount of disorder controls
the width of the plateaus. We will not discuss disorder in further
detail, though, as it is not necessary to understand to the topology of
the QHE, which we will focus on next.

3.2.3 Hall conductivity and topology

The quantized Hall conductivity can be identified with an abstract
mathematical topological invariant of the Hamiltonian system, mean-
ing that the system undergoes a topological transition each time a
new plateau is reached. This is a very deep inside, which has been es-
tablished in seminal works by Laughlin [26] and Thouless, Kohomoto,
Nightingale, and den Nijs (TKNN) [27]17. It means that σxy is not
just an observable that happens to be restricted to discrete values by
quantum mechanics, but rather expresses very fundamental properties
of the geometry that is underlying the mathematical description of the
Hall system.

17Laughlin’s argument is less general than the TKNN paper, as it relies on a specific real-space
geometry.
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For simplicity, consider a 2D system of electrons on a square lattice
with spacing a, where the Hamiltonian is defined in momentum space
on the BZ, which forms a 2-torus. The conductivity can be calculated
by means of the Kubo formula [51]. This leads to the correct quantum-
mechanical answer, whereas the derivation of Eq. 3.15 still involved the
Drude model. For σxy, the relevant correlation function appearing in
the Kubo formula is the one of the currents in x and y direction. At
zero temperature, and expressed in a suitable basis of eigenstates in
Bloch form, Ψn

k(r) = eik·runk(r) (band index n), it can be written as [8]

σxy = i~
∫

BZ

d2k

(2π)2

∑

m,n:

εm<EF<εn

〈umk |jy|unk〉〈unk|jx|umk 〉 − 〈umk |jx|unk〉〈unk|jy|umk 〉
(εm(k)− εn(k))2

(3.16)
Here, we have also assumed that the band structure has an energy
gap, and that EF is inside the gap. The indeces m,n run thus over the
filled and empty bands, respectively. This resembles the precondition
of the semi-classical calculation, where no partly filled Landau levels
had been allowed. To act with the current operator on the wavefunc-
tions, it is practical to replace it by the group velocity in terms of the
Hamiltonian,

j =
e

~
∇kH(k). (3.17)

Then, using H(k)|umk 〉 = εm(k)|umk 〉, Eq. (3.16) becomes

σxy =
ie2

~

∫

BZ

d2k

(2π)2

∑

m,n:

εm<EF<εn〈
∂umk
∂ky

∣∣∣∣unk
〉〈

unk

∣∣∣∣
∂umk
∂kx

〉
−
〈
∂umk
∂kx

∣∣∣∣unk
〉 〈

unk

∣∣∣∣
∂umk
∂ky

〉

(3.18)

As the eigenstates form a complete basis, the summation in the equa-
tion above can be reduced to the filled bands using

∑

n: εn>EF

|unk〉〈unk| = 1l−
∑

m: εn<EF

|umk 〉〈umk |. (3.19)
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In addition, ∂2/∂kx∂ky = ∂2/∂ky∂kx. Thus, we have the final expres-
sion [8, 27]

σxy =
ie2

~

∫

BZ

d2k

(2π)2

∑

m: εm<EF

〈
∂umk
∂ky

∣∣∣∣
∂umk
∂kx

〉
−
〈
∂umk
∂kx

∣∣∣∣
∂umk
∂ky

〉
. (3.20)

In this form, the Hall conductivity can be given a topological inter-
pretation, because the term that is summed over is identical to the
Berry field strength [compare to Eqs. (2.8) and (2.9)]. Therefore, the
integration over the BZ yields

σxy = −e
2

h

∑

m: εm<EF

Cm, (3.21)

with Cm being the first Chern number of the m-th band. This proves
the integer quantization of the Hall conductivity. The sum of the
Chern numbers in Eq. (3.21) is also referred to as the TKNN integer
[27]. If the TKNN integer vanishes, the system is in a topologically
trivial state with no Hall conductivity, otherwise the mapping of the
toroidal momentum space onto the Bloch sphere describes a nontrivial
wrapping of the sphere.

We make three remarks: First, the formula above is strikingly gen-
eral, which reflects its topological nature. The actual Hamiltonian has
not been used, the only assumption was that the bands are separated
into filled and empty bands by the Fermi level. Thus, the system must
be an insulator. Details of the Hamiltonian and, consequently, the
precise shape of the bands, are not important. The bare flat Landau
levels lead to the same result as wildly curved bands.

Second, TRS is explicitly broken by the magnetic field. In the
absence of restrictions on the Hamiltonian, it will in general also have
no other symmetries. The QHE is thus placed in class A, and the
TKNN integer is the Z invariant predicted by the periodic table. The
Z invariant remains even if PHS is included.

Third, although we have explained the quantization of σxy on topol-
ogy grounds, the actual value of the TKNN integer for a 2DEG in a
magnetic field remains to be calculated. This will not be presented
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(a) (b)

Figure 3.4: (a) Cartoon of the bouncing electron orbit along the quan-
tum Hall sample edges. (b) Qualitative band structure with a bulk
energy gap and chiral edge states.

here, but leads to a rich diagram of topological phases (i.e., param-
eter regions with different TKNN integer) known as the Hofstadter
butterfly [8, 27,52].

3.2.4 Chiral edge states

The TKNN formula Eq. (3.21) requires an insulator. In consequence, if
we set y → x in the Kubo formula, we find σxx = 0, in apparent conflict
with the observation ρxx = 0. To understand how the Hall effect works
physically, it is crucial to turn to a finite system. As in the SSH model,
the bulk-boundary correspondence gives rise to zero-energy boundary
modes. These are now one-dimensional edge states. Without rigorous
derivation, they can be understood intuitively from the classical pic-
ture. Nontrivial topology, i.e. σxy 6= 0, requires a nonzero magnetic
field which forces the states onto circular cyclotron orbits. Electrons
that are very close to the edge cannot complete their orbit, but will
bounce back when they hit the edge. This leads to a “bouncing” orbit
with a net velocity along the edge, as shown in Fig 3.4(a). The edge
state allows electrons to move in only one direction, which depends
on the orientation of the magnetic field. It is therefore called a chiral
mode. This property forbids backscattering: there are no available
reversely moving states to scatter into, except at the opposite side of
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the sample. Thus, the edge of the quantum Hall sample is a perfect
conductor, although the bulk is insulating. Figure 3.4(b) shows the
qualitative band structure where the chiral edge modes lead to lines
crossing the bulk energy gap.

3.3 Quantum spin Hall effect

The key property of the QHE is the breaking of TRS by the external
magnetic field. One may wonder whether an intrinsic analogue of this
effect exists, i.e., a quantum Hall state that does not require exter-
nal fields (first envisioned by Haldane [53]) or even remains TRS18.
Roughly speaking, one can imagine two copies of the quantum-Hall
system with reversed sign on top of each other [7]. The resulting mag-
netic field cancels, and the edge modes come in pairs with opposite
chirality. Such a scenario can be realized in the presence of spin-orbit
coupling (SOC), which preserves TRS, but makes electrons experience
an effective magnetic field which depends on their momentum. The
net charge current at the edge of this system vanishes. However, in
each pair of counter-propagating edge modes the spin polarization of
the modes will be opposite, giving rise to a helical edge mode, such
that an edge spin current occurs. This is known as the quantum spin
Hall effect (QSHE). It displays the main features of TIs: an insulat-
ing bulk respecting TRS and helical edge states with linear dispersion
(close to zero energy).

In contrast to the QHE, in the QSHE the experimental discov-
ery [54] was preceded by theoretical predictions [55–57]. Without go-
ing into the details of realizations of the QSHE, like HgTe/CdTe quan-
tum wells [54], an effective model developed by Bernevig, Hughes, and
Zhang (BHZ) [57] is presented in the following. The research Pa-
pers [1–3] in this thesis only deal with 3D TIs, such that we review the
two-dimensional case only as far as necessary to understand its general-
ization to three dimensions. The BHZ Hamiltonian HBHZ is defined on
a space of two bands (labeled 1, 2) which are each split by SOC in two
helicity branches (labeled ±). In the basis (|1+〉 , |2+〉 , |1−〉 , |2−〉),

18This shifts the system to class AII. T 2 = −1l for spin- 1
2 fermions.
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HBHZ [7, 57] is written as

HBHZ(k) =

(
h(k) 0

0 h∗(−k)

)
, (3.22)

such that TRS is explicitly taken into account, where the 2× 2 block
h is

h(k) =
(
C −Dk2

)
1l2×2 + A (kxσx − kyσy) +

(
M −Bk2

)
σz. (3.23)

A,B,C,D,M are model parameters that depend on material proper-
ties and the geometry of the sample, and k2 = k2

x + k2
y. The form of

h is obtained from basic symmetry considerations, where all allowed
terms are represented to second order in momentum19.

From the simple picture relating the QSHE to two QH systems, one
would expect a number of helical edge states equal to the corresponding
TKNN integer of the subsystems. It turns out, though, that any even
number of helical edge states is unstable, as arbitrarily weak disorder
will essentially remove a pair of helical states by backscattering [7,58].
Therefore, the QSHE has only one topological and one trivial state,
indicating a Z2 topological index20. The BHZ model has the advantage
that the edge state wavefunctions ΨBHZ

edge,± can be derived explicitly for
a semi-infinite system in the half-plane x > 0 with open boundary
conditions [7], where the term C−Dk2

x can be neglected for simplicity
[59]. It turns out that the condition to find helical edge states is
M/B > 0, where the helicity is determined by the sign of A/B and
the wavefunctions are exponentially localized at the edge [7, 59]:

ΨBHZ
edge,+(x) = (ψedge(x), 0)T ΨBHZ

edge,−(x) = (0, ψedge(x))T , (3.24)

ψedge(x) = C
(
e−sλ1x − e−sλ2x

)
vs, (3.25)

with a normalization constant C, s = ±1, the eigenvectors vs of the
Pauli matrix σy, and

λ1,2 =
A±
√
A2 − 4MB

2B
. (3.26)

19apart from an inversion-symmetry-breaking term, which is not required to obtain a topologically
nontrivial state

20The Z2 index will be explained in Sec. 3.5.
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Projecting HBHZ onto the space of edge states (ΨBHZ
edge,+,Ψ

BHZ
edge,−), the

effective low-energy Hamiltonian Hedge(ky) = Akyσz is obtained. The
two states with opposite spin are thus both linearly dispersing with
opposite velocity.

The condition M/B ≡ ζ > 0 is very insightful when the bulk
spectrum of the BHZ model [7] is considered:

ε(k) = C −Dk2 ±
√
A2k2 +B2 (ζ − k2)2 (3.27)

At k = 0, the bulk gap closes when ζ = 0. If one imagines ζ being
tuned from negative to positive values, the gap closes and opens again.
In the final state, the order of the bands is inverted at k = 0 compared
to the initial state. This twist in the band structure is the reason why
the BHZ Hamiltonian becomes topologically nontrivial. Physically, it
is the strength of the SOC that determines whether the band structure
is inverted or not. Therefore, topological materials or heterostructures
usually involve heavy elements. In the HgTe/CdTe quantum wells,
for instance, the SOC of mercury is responsible for the formation of
a topological phase [57]. However, any other mechanisms than SOC
that causes band inversion would in principle also lead to a topological
phase [60].

3.4 Three-dimensional topological insula-
tors

The SOC-induced band inversion as found in the BHZ model can be
generalized to three dimensions. The generic importance of band in-
version will become clearer in the next section. Here, we focus on an
effective model by Zhang et al. [61] which allows for a derivation of the
topological surface states. It is valid for Bi2Se3, Bi2Te3, and Sb2Te3

upon fitting of the parameters to ab initio band structure calculations.
These materials are known as second-generation 3D TIs [6]21. By the
combined effect of chemical bonding, the crystal field, and atomic SOC,
the energetically lowest states descending from the valence p orbitals

21The first TIs were Bi1−xSbx alloys for a certain range of x [62].
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of Bi or Sb are shifted below the originally lower-lying states stemming
from the p orbitals of Se or Te, causing band inversion at the Γ point
(i.e., the center of the BZ) [7]. The effective model accounts for crystal
symmetries in addition to TRS and contains only terms up to second
order in momentum. This leads to the following generic form [61] in the
basis of the four relevant low-energy bands close to the Γ point, ordered
by spin (↑, ↓) and parity (±) according to (|↑ +〉 , |↑ −〉 , |↓ +〉 , |↓ −〉):

H3DTI(k) =
(
C +D1k

2
z +D2

)
1l4×4

+




M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz
A2k+ 0 −A1kz −M(k)


 , (3.28)

where k2
⊥ = k2

x+k
2
y, k± = kx±iky, andM(k) = M−B1k

2
z−B2k

2
⊥. There

are 8 model parameters: M,C,A1, A2, B1, B2, D1, D2. The anisotropy
in z direction is present because the surface will be assumed to lie
in the xy plane. Similarly to the BHZ model, band inversion oc-
curs at k = 0 if M,B1, and B2 have the same sign. Then, expo-
nentially localized surface states can be derived in analogy to the two-
dimensional case. The projection of the Hamiltonian onto these surface
states provides an effective low-energy theory of the TI surface [6, 7],
Hsur =

∑
kq

Ψ†(kq)Hsur(kq)Ψ(kq) with

Hsur(kx, ky) = C + A2 (σxky − σykx) (3.29)

and Ψ† = (ψ↑, ψ↓). The constant C will be neglected from now on,
which practically amounts to fine-tuning of the chemical potential.
The constant A2 can be replaced by the Fermi velocity, A2 = ~vF .
For later reference, we transform the Hamiltonian into a Lagrangian
density:

Lsur(kq) = Ψ†(kq) [i~∂t − ~vF (σxky − σykx)] Ψ(kq) (3.30)

In two dimensions22, the Pauli matrices coincide with Dirac’s γ ma-
trices via the relations γ0 = σz, γ1 = −iσx, γ2 = −iσy. Therefore, it

22In the (2 + 1)-dimensional Minkowski space-time we use the metric tensor with the signature
(+,−,−).
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is convenient to use the notation of quantum electrodynamics (QED)
where Ψ = Ψ†γ0 and the Feynman-slash /Q = γµQµ. Replacing kx,y by
−i∂x,y and ∂ = (∂, vF∂x, vF∂y) then yields the Lagrangian

Lsur(r) = Ψ(r) i/∂Ψ(r), (3.31)

where we also switched to natural units (~ = 1, c = 1). This is
the well-known massless Dirac equation, whereby the Fermi velocity
has taken over the role of the speed of light. In that sense, the TI
surface states are referred to as Dirac fermions. In other words, they
imitate relativistic particles at a non-relativistic velocity range, vF ≈
5×105 m/s [61]. Given Eq. (3.31), it is natural to apply field-theoretic
methods to evaluate the low-energy properties of the TI surface, which
is utilized in the Papers [1], [2], and [3].

The low-energy spectrum is also referred to as the Dirac cone. No-
tably, the 3D TIs have only one Dirac cone per surface. The TI surface
is therefore distinct from strictly 2D Dirac materials with TRS, in par-
ticular graphene [63], where the Dirac states have to come in pairs as
dictated by the Nielson-Ninomiya theorem [64,65] of fermion doubling.
In a 3D TI, two opposite surfaces together satisfy the theorem, such
that an odd number of Dirac cones on each surface is allowed [6]. The
fact that the TI surface could not exist as an independent 2D system,
but must be attached to a topological 3D bulk, is also called the holo-
graphic principle23 [7]. The linear dispersion and helicity of the surface
states has been directly observed by angle-resolved photoemission spec-
troscopy (ARPES) in Bi1−xSbx [62], Bi2Se3 [67], Bi2Te3 [68, 69], and
Sb2Te3 [69] after they had been predicted to be TIs.

Another important property of the surface states that is readily
seen from Eq. (3.29) is the helicity. As in the QSHE, the motion of
the topological states is linked to their spin. This property is known
as spin-momentum locking and is a major reason for the technological
interest in TIs. In principle, it allows to manipulate magnetic moments
by electric currents and makes TIs interesting constituents for future
spintronics devices [70].

The equivalence of the surface theory and the Dirac equation raises
one further question: Is it possible to obtain a mass term in the TI

23Again, this term goes back to string theory [66].
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surface theory? From Eq. (3.31), it is clear that a Dirac mass term
would be of the form mσz, indicating that the mass is coupled to the
spin in z direction. Thus, an external magnetic field (alternatively:
magnetic order) orthogonal to the TI surface can open a gap in the
spectrum of the surface states. This gapped surface phase has many
interesting properties that will be elucidated in Chapter 4.

3.5 Z2 invariant of topological insulators

A relatively simple way to characterize TR-symmetric insulators by
topological invariants arises from topological band theory (TBT) [6,
71]. TRS relates the states at momenta k and −k. A special role is
played by the n points in the BZ that are mapped onto themselves
under TR, where n = 4, 8 in 2D and 3D, respectively. At these TR-
invariant momenta, all states must be Kramers-degenerate, while the
degeneracy can be lifted by SOC everywhere else in the BZ. The topo-
logical features of the band structure are then completely described
by the way in which the states at the TR-invariant momenta are con-
nected to each other. In the trivial case, the two degenerate states at
a TR-invariant momentum are also connected to degenerate states at
any other TR-invariant momentum, such that each state has a well-
defined partner across the entire BZ. However, if the splitting induced
by SOC is strong enough, two degenerate states can also be connected
to states of different energy at another TR-invariant point, leading to
a nontrivial band structure.

The idea of connecting states at the TR-invariant points is directly
related to the protection of boundary states inside the bulk energy
gap, as such states cannot be removed by any continuous deformation
if they are nontrivially connected. This is illustrated in Fig. 3.5. In
the trivial case, a pair of bands inside the gap could be pushed out
by a smooth perturbation. Thus, any state at the Fermi level is not
protected. In the nontrivial case, the in-gap states do not come in
pairs but are connected to both the valence and the conduction band.
This feature will remain under any continuous deformation, leading to
a topological protection of the Fermi level crossing. In fact, an odd
number of states (deformable to one crossing) at EF is guarantueed
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Figure 3.5: Trivially (left) and a non-trivially (right) connected states
inside the gap of an insulator with TRS along a path connecting two
TR-invariant points at the center (k = 0) and one edge (k = π/a) of
the BZ. The orange dots denote Kramers-degeneracies of states. The
yellow lines are boundary modes, while the grey areas are the bulk
bands. Only in the non-trivial case the crossing of the Fermi level is
topologically protected. The figures are inspired by Fig. 3 in [6].

by topology, while there is an even number of crossings (deformable to
none) in the trivial case. A band crossing EF can be linearized in an
effective low-energy theory, leading to the Dirac cone discussed in the
previous section.

One can construct a Z2 topological invariant ν of the band struc-
ture from the matrix representation of the TR operator T in the basis
of Bloch states with conjugated momenta [58,72–74]. The matrix ele-
ments are

Tmn(k) = 〈−k,m| T |k, n〉 (3.32)

and the properties of T dictate that T (k)T = −T (−k). Consequently,
at the TR-invariant momenta Λi (i = 1, . . . , n), T (Λi) is skew-symmetric
and its Pfaffian [75] Pf[T (Λi)] is well-defined. Because Pf[T (Λi)]

2 =
det[T (Λi)], the quantity

δi =
Pf[T (Λi)]√
det[T (Λi)]

(3.33)

can only take the values ±1. Fu and Kane [72] have shown that the
topology of the band structure is characterized by the topological index
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ν ∈ Z2 defined by

(−1)ν =
n∏

i=1

δi, (3.34)

where ν is even in the trivial and odd in the topological case. This
corresponds to the previously discussed concept of band inversion as
follows: δi = 1 describes normal band ordering (compared to atomic
orbitals) at Λi, while δi = −1 for an inverted band structure. If bands
are inverted twice (or an even number of times), such that there is an
even number of negative factors in Eq. (3.34), they can be unraveled
continuously, while they cannot if band inversion occurs an odd number
of times.

For completeness we mention that in 3D TBT, an insulator can be
weakly topological even if ν is even. In addition to Eq. (3.34), also all
products of four δi are topological invariants if the corresponding Λi

lie in a plane [6, 73, 74]. From the three independent planes in 3D one
can define three independent invariants ν1, ν2, ν3. If ν is even, but any
of ν1, ν2, ν3 is odd, the system is called a weak TI. All possible combi-
nations of even or odd ν, ν1, ν2, ν3 amount to a total of 16 topologically
distinct phases. However, weak TIs turn out to be not robust against
disorder [73]. They can be viewed as stacked QSH layers, where the
vector (ν1, ν2, ν3) can be related to the stacking direction. Only if ν is
odd (strong TI), a natively 3D topological state is found.

3.6 Chern-Simons action of topological in-
sulators

One drawback of TBT is that it is restricted to non-interacting systems.
A more general approach to the topological classification is topolog-
ical field theory (TFT) [76], which is equivalent to TBT in the non-
interacting limit. TFT formulates a generalization of the QHE to four
spatial dimensions, from which one can subsequently derive the Z2

insulators in three and finally two dimensions by a procedure called
dimensional reduction [7]. We do not review the entire TFT here, but
include some key expressions.
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Some years after the explanation of the QHE in terms of the TKNN
integer [27], it was discovered [77] that the quantum Hall state could
also be described by means of Chern-Simons (CS) field theory [11] with
the CS action24

SQHE =
C1

4π

∫
d(2+1)x εµνρAµ∂νAρ (3.35)

in (2 + 1) dimensions in covariant form with the electromagnetic po-
tential A. The coefficient C1 can in general be calculated from the
single-particle Green’s functions [7, 78], even in the presence of inter-
actions, but reduces exactly to an integral over the Berry curvature
in the absence of interactions and is thus equal to the TKNN integer.
From the transformation of A under TR, where A0 is even while the
vector potential A = (A1, A2) is odd, one finds that the action SQHE

does not have TRS.
The CS theory can be generalized to systems of arbitrary even

spatial dimension [11], which can be interpreted as higher-dimensional
descendents of the QHE [79]. In (4 + 1) dimensions, the action reads

S4D-CS =
C2

24π2

∫
d(4+1) εµνρστAµ∂νAρ∂σAτ (3.36)

and is, in contrast to SQHE, invariant under TR [7]. Again, the coeffi-
cient is an integer25, C2 ∈ Z [78]. Although this generalization seems
like a purely mathematical gimmick, it is physically meaningful be-
cause the 3D TI can be derived from S4D-CS. If one restricts the theory
to the special cases where A(3+1) = (A0, . . . , A3) depends only on the
first three out of four spatial coordinates, the last coordinate x4 can
be integrated out if the spacetime is compactified (“rolled up”) in the
respective dimension [7,76]. The surplus field A4 may cause a magnetic
flux φ through this compactified dimension, given by the integral of A4

over x4. The resulting field theory in three spatial dimensions takes
the form of a so-called theta term

Sθ =
α

32π2

∫
d(3+1)x θ(x)εµνρσFµν(x)Fρσ(x) (3.37)

24here in atomic units ~ = 1, e = 1
25C2 can be identified with the second Chern number C(2).
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with θ = C2φ, the fine structure constant α, and the electromag-
netic tensor Fµν = ∂µAν − ∂µAν. Interestingly, such field theories had
been studied before in quantum chromodynamics (QCD), where θ was
dubbed the axion field [80]. However, no elementary axionic particles
are known to date. In the context of TIs, the field θ must be further
restricted such that the symmetries of the original field theory S4D-CS

are maintained – in particular TRS. Under TR, A4 → −A4, thus φ
and θ must also be odd. In addition, a 2π shift of the flux φ must
leave the physics unaffected and hence θ and θ + 2πC2 are equivalent.
In consequence, to respect TRS, θ can take only one of the two values
0 or πC2. This implies as well that θ cannot vary smoothly and must
be a constant rather than a field. For simplicity, one can assume26

C2 = 1 [7]. The TR-invariant insulator in 3D can only be in one of two
states, reflecting the Z2 classification already found in TBT: Either
θ = 0, where the TFT vanishes and only a trivial insulator without a
CS action remains. The action is then basically given by an ordinary
Maxwell term. Or θ = π, where the effective field theory contains the
topological theta term Sθ with a quantized coefficient. This state of
matter is a 3D TI.

One can further reduce the dimensionality to obtain the QSHE,
which is again Z2 quantized. However, reducing to one spatial dimen-
sion in the same manner leads to a state that is always topologically
trivial – there is no one-dimensional TI in class AII.

26Strictly speaking, C2 ∈ Z leaves a mod 2π ambiguity in the value of θ.
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Chapter 4

Magnetic topological
insulator
heterostructures

Having introduced 3D TIs and reviewed some of their properties, we
will now consider surfaces of 3D TIs in the presence of magnetic order.
Such surfaces turn out to have several remarkable properties related
to the TME. In this chapter, we will first explain their general electro-
magnetic features. Afterwards, we turn to the results of the Papers [1]
and [2], which examine the influence of Coulomb interaction on layered
ferromagnetic insulator (FMI)-TI systems via the topological terms.
The last section summarizes the findings of Paper [3], where the inter-
face of a TI with a bipartite magnetic insulator (BMI) is investigated.

4.1 The TRS-broken surface

The electromagnetic theory of the 3D TI, Eq. (3.37), can also be writ-
ten as [76,81,82]

Sθ =
θα

4π2

∫
d(3+1)xE ·B

=
θα

8π2

∫
d(3+1)x εµνρσ∂µ(Aν∂ρAσ). (4.1)

39
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The first line reveals a coupling of the electric and magnetic field in the
TI bulk with a quantized coefficient. This is the (bulk) TME, which is
a hallmark feature of the TI state. The second line insinuates that one
can transform the equation into a surface integral by Stokes’ theorem
for a finite TI, which would give rise to a surface CS term:

Sθ =
θα

8π2

∫

surf.

d(2+1)x εµνρAµ∂νAρ. (4.2)

However, there is a subtlety that is again related to symmetry. The
surface CS term breaks TRS, which is intuitively clear from the formal
similarity of Eq. (4.2) to the QHE expressed by SQHE, Eq. (3.35).
In fact, Sθ in Eq. (4.1) is only valid for the infinitely extended TI
bulk. In the presence of a surface there are Dirac boundary modes,
as discussed in the previous chapter. The contribution from these
delocalized gapless modes is missing in the bulk electromagnetic theory.
Appropriate analysis of the entire system [82–85] shows that the surface
states exactly cancel Sθ, such that the CS term is actually absent.

Eq. (4.2) can only be restored if the surface states are gapped out.
We have seen in Section 3.4 that a mass term can be introduced in
the surface Dirac equation by a magnetic field or a magnetization mz

orthogonal to the surface. In the latter case, the Lagrangian Eq. (3.31)
becomes

L(r) = Ψ(r)
[
i/∂ + Jmz

]
Ψ(r), (4.3)

with an effective exchange coupling constant J . The Dirac cone with
and without mz is shown in Fig. 4.1. The magnetic term also breaks
TRS explicitly, in agreement with a CS term. It is therefore the TRS-
broken TI surface where the TME can be observed. We make two
further remarks on such systems:

1. It is only the out-of-plane component of the magnetic field or
magnetization that opens a gap. Any in-plane component only
shifts the position of the Dirac cone in momentum space.

2. The nontrivial bulk topology is protected by TRS, and one may
wonder if this is in conflict with having a magnetic field at the sur-
face, which will inevitably also invade the bulk. Strictly speaking,
this breaks TRS in the TI. Yet such fields are not strong enough
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Figure 4.1: The Dirac cone without (left) and with (right) mass term.
The arrows indicate the spin to visualize the spin-momentum locking.

to undo the SOC-induced band inversion up to considerable field
strengths [7, 82] and therefore the surface states will be gapped
but not completely removed. This situation is called local TRS
breaking at the surface.

Magnetic order at TI surfaces can be achieved by magnetic doping
[86, 87]. Another possibility is to induce magnetic order by proximity
at an interface with a magnetic insulator [88, 89], which is assumed
in the Papers [1–3]. The CS term at such interfaces causes several
remarkable phenomena. In the following, some important examples
are briefly presented.

4.1.1 Half-integer quantum Hall effect

As already mentioned, the surface CS term formally resembles the
QHE. Yet it is rather different: with θ = π, the coefficient corresponds
to the forbidden TKNN number of 1

2 /∈Z. One finds in that sense only
half a QHE. The half-integer QHE is a manifestation of the holographic
principle as it reflects the topology in the 3D bulk rather then a mere
2D surface. One can understand the half “Chern number” by bringing
the gapped surface Hamiltonian in two-band form H(k) = d(k) · σ
(compare Eq. (2.12)), where

d(k) = (~vFky,−~vFkx,mΨ) (4.4)

and mΨ = Jmz denotes the effective fermion mass. Then the unit
vector êd(k) is restricted to the upper half-space if mΨ > 0 and to the
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lower half-space if mΨ < 0. As the surface momentum k runs over27 R2,
one half of the Bloch sphere is covered by the mapping k 7→ êd(k) [7].
This line of thought also shows that the sign of the mass term matters
in the CS term although it does not in the energy spectrum. Indeed,
the Hall conductance of the half-integer QHE [76] is

σxy =
1

2

mΨ

|mΨ|
e2

h
, (4.5)

which implies that σxy remains at a quantized value even in the limit
of a weak mass and jumps by e2/h at mΨ = 0.

While this effect provides in principle a smoking-gun signature of
the TI state of matter, it is hardly measurable as for a real TI sample
one would have to isolate the effect of a single surface [82]. If all sur-
faces contribute, the summed conductance would again be an integer
multiple of e2/h. The effects described in the next section are more
relevant for experiments and applications.

4.1.2 Topological magnetoelectric effect

While the TI bulk is always characterized by the presence of the E ·B
term in Eq. (4.1), it can only be accessible to measurements in the
form of the surface TME. At a magnetically gapped surface, the CS
term contains a coupling of the form E‖ ·B‖, where the superscript ‖
denotes the in-plane components of the electric and the magnetic field.
When the effective magnetic field is caused by magnetic order, the
TME will be proportional to E‖ ·m‖. The explicit derivation of such
terms is the foundation of the results in the Papers [1–3]. Physically the
surface TME means that an in-plane electric field induces a magnetic
polarization that is either parallel or antiparallel. Recall that to gap
the surface states, the magnetization should point in the out-of-plane
direction28 in the first place. The TME will then lead to a tilting of m
by inducing in-plane components.

27As our surface Hamiltonian represents a continuum theory, the BZ is replaced by the entire
plane.

28At least the component mz must be sufficiently large
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Figure 4.2: Relation of the TME to the half-integer QHE in a cylin-
drical TI geometry with FMI coating. Adopted from [76] (©APS,
2011).

The TME is linked to the half-integer QHE in the following way
[76]: Imagine a TI in a cylindrical geometry, where the surface is cov-
ered by a FMI to ensure the local TRS breaking (Fig. 4.2). Applying a
field E along the axis (thus in-plane with respect to the surface) leads
to a half-quantized Hall current j, which is running around the cylin-
der. This current loop induces a magnetic field B that is again aligned
with the axis, thus B ‖ E. If B is pointing in the same or opposite
direction as E depands on the sign of j, which in turn depends on the
sign of mΨ. Therefore, the TME has the same dependence on the sign
of the mass as the half-integer QHE.

A direct consequence of the TME is a quantized Faraday rota-
tion [76, 90]. When a polarized electromagnetic wave is transmitted
through a TRS-broken TI surface, the electric component of the wave
induces an aligned magnetic field and the magnetic component induces
an aligned electric field. Summing up the fields, the plane of polariza-
tion is rotated by an angle ϑ, which has the quantized value ϑ = α/4π.
A similar effect occurs for reflected light (Kerr rotation). Both effects
have been observed experimentally [91,92]. The existence of the TME
is thereby verified. Magneto-optical effects beyond the linear response
have been derived in [93], where two impinging rays can induce an
AC polarization in the TI along the out-of-plane direction, if they are
linearly polarized with a relative angle of π/2.
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4.1.3 Magnetic monopole effect

Another consequence of the TME that is often referred to is the mag-
netic monopole effect [94]. From classical electrostatics it is known
that the field of a point charge close to a metallic surface can be de-
scribed by introducing a mirror charge [95]. A similar method can be
used for a charge placed above a TRS-broken TI surface. Through
the TME, the mirror charge translates into a magnetic charge, i.e. a
magnetic monopole. Thus, the field outside the TI looks as if there
was a monopole inside the TI. It is important to point out that this
effect does not predict the presence of a physical magnetic monopole,
but only a virtual one.

A related effect is that electric and magnetic charges (in the sense
of an in-plane divergence) at the TI surface coincide [96]. This causes
magnetic textures, for instance domain walls, to carry an electric charge.
The correspondence of electric and magnetic charge is also reproduced
in Paper [1].

4.1.4 Technological prospect in spintronics

Magnetic TI heterostructures are a promising novel platform for spin-
tronics devices. The use of magnetized materials for information pro-
cessing and storage depends on having efficient microscopic mecha-
nisms to convert electric into magnetic signals and vice versa [97].
Naturally, the TME is an interesting candidate for this task. It allows
for electric manipulation of the effective field in the magnetization dy-
namics [98, 99] or of the anisotropy field in the FMI [100]. Several
studies have suggested electric control of domain wall motion in FMI-
TI nano-devices, e.g. [96, 101–104]. The potential applications of the
TME in spintronics have been part of the motivation for the studies
presented in the Papers [1–3], besides the search for setups to directly
detect the TME response.
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4.2 Coulomb interaction at topological in-
terfaces

The TME at a FMI-TI interface is mostly thought of as a coupling
of the magnetization m to an external electric field. However, any
electric potential, including intrinsic potentials as far as present, will
enter into the CS term in the same way. Importantly, Coulomb inter-
actions between the surface Dirac electrons are inevitably present. The
interaction is mediated by a fluctuating electric potential. Therefore
one can expect new topological terms that couple the magnetization
to this Coulomb potential. Notice that the Coulomb interaction is un-
screened at the gapped surface, if the Fermi level is inside the gap.
Hence all interaction-related phenomena will be long-range. This will
clearly have an impact on the interfacial magnetization dynamics.

The idea behind Paper [1] was to derive the topological Coulomb
term that is generated via the TME and derive the modified Landau-
Lifshitz equations (LLEs) [105] in a FMI-TI bilayer system. In Pa-
per [2], this project was extended to a more complex heterostructure
where also interactions between different interfaces can be studied. Be-
low, we present the effective model on which the calculations are based
and summarize the main results. Related previous work on the bilayer
system was done by Nogueira and Eremin [106–108]. All equations in
this section are given in units of ~ = 1, c = 1.

4.2.1 Interface model

From the previous discussion of the TI surface, we have the effective
Lagrangian of the Dirac states with exchange-coupling to a magneti-
zation m,

LDirac(r) = Ψ(r)
[
i/∂ + Jm · σ

]
Ψ(r). (4.6)

In addition, the FMI layer is described by

LFMI(r) = b(r) ·∂tm(r)− κ
2

[∇m(r)]2−n
2

2
m(r)2− u

24

[
m(r)2

]2
, (4.7)

containing the following contributions:



46 Chapter 4. Magnetic TI heterostructures

1. A Berry phase term b with the property

∇m × b = −m

m2
, (4.8)

where ∇m is the vector containing the partial derivatives with
respect to the components of m. Generally, for a spin-1

2 fermion
in a magnetic field, the Berry field strength comes in the guise
of a monopole in parameter space29 [8, 11]. In the equations of
motion for m (which are the LLEs) this term leads to the typical
precession around the effective field.

2. The exchange coupling30 in the FMI of strength κ. Written out,
the short-hand notation (∇m)2 reads

∑
i,j=x,y,z(∂imj)

2.

3. The terms with the temperature-dependend coefficients n and u
complete a φ4 theory for the magnitude of m. At temperatures
below the Curie temperature, where FM order sets in, n2 < 0,
while u is always positive. Although such terms are present, they
do not play a key role in our calculations, which are restricted
to T = 0. One can then simply assume that |m| has a fixed
nonzero value and suppress the n and u terms. They are shown
in Paper [1], but not in Paper [2] for brevity.

We take it for granted that m is aligned in the out-of-plane direction
at equilibrium, so that we obtain a gapped surface. In reality, the
measurements in [109] indicate that the magnetization can also have
a tilted orientation at low temperatures. In our calculations, the in-
plane component of m is of the order of the fluctuations around the
mean-field solution.

Finally, we want to include the Coulomb interaction. Even though
the TI surface is described by a Dirac field theory, adding the Coulomb
interaction does not require the general QED Lagrangian. The reason
is that the Dirac physics happens at typical velocities of vF , which is
much smaller than the speed of light. It is therefore sufficient to treat

29where the parameter is the magnetic field
30Note that in the papers ∇ denotes the 2D differential operator, therefore the z component

appears explicitly.
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the Coulomb interaction classically. We start with the density-density
interaction

V =
1

2

∑

k

ρ(k)vC(k)ρ(−k), (4.9)

where the density operator is ρ(k) =
∑

q,s=↑,↓Ψ†q+k,sΨq,s and vC(k) is

the 1/r Coulomb potential transformed to momentum space. A subtle-
ty here is that the Fourier transformation (FT) of the 3D potential is
performed in only two dimensions parallel to the surface. For details
of the FT see Appendix A. The result is

vC(k) =
2πe2

|k| e
−|k|d, (4.10)

where d = 0 for a single interface. If the two density operators in
Eq. (4.9) describe electrons at different planes then d > 0 denotes the
distance between them. This general expression is only relevant for
Paper [2]. The interaction can be made quadratic in the fermionic
operators by means of a Hubbard-Stratonovich (HS) decoupling [110,
111], which is based on the multidimensional real Gaussian integral

∫
dNx e−

1
2x·A·x+x·v =

√
(2π)N

detA
e

1
2v·A−1·v. (4.11)

The interaction Eq. (4.9) appears in the exponent when the partition
function is written in path-integral [111] form

Z =

∫
D[Ψ†]D[Ψ] eiS. (4.12)

Then ρ plays the role of v in the right-hand side of Eq. (4.11). A term
linear in ρ as in the left-hand side of Eq. (4.11) requires to introduce
an auxiliary HS field ϕ. The decoupling leads to

V →
∑

q

ϕ(q)ρ(q)−
∑

q

1

2
ϕ(−q)

1

vC(q)
ϕ(q) (4.13)

in the Lagrangian. It is practical to absorb units of 1/e into the HS field
such that it can be interpreted as an electric potential. Transformed
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to real space, we arrive at the Coulomb Lagrangian

LC(ρ, ϕ) = −eϕ(−r)ρ(r) +
1

8π2
[∇rϕ(r)] ·

∫
d2r′
∇r′ϕ(r′)

|r− r′| . (4.14)

The long range character of the interaction is now completely stored
in the integral over the HS field. The other term, Ψ†[eϕ]Ψ, can simply
be inculded in LDirac. Finally, if an external electric field is present,
this adds a fixed potential φ to ϕ. This completes the model. The full
fermionic Lagrangian can be written in covariant form as described
previously, where the in-plane magnetization and the electric potential
can be collected in a vector a = (eϕ/J,my,−mx):

L = Ψ
[
i/∂ +mΨ + Jm̃z − J/a

]
Ψ (4.15)

The term Jm̃z describes fluctuations in the out-of-plane direction,
whereas the mean-field part mz gives rise to the mass term mΨ.

4.2.2 Nonlocal modification of the LLEs

By integrating out the fermions from the partition function [111], one
can now derive the effective theory for the electric potential and the
magnetization, as described in the papers. This calculation amounts
(to leading order) to the evaluation of 1-loop vacuum polarization di-
agrams and is shown in detail in Appendix B. From Eq. (4.15) one
obtains

δL =
εµνλa

µ∂νaλ

8π
−
(
εµνλ∂

νaλ
)2

24πmΨ
− mΨm̃

2
z

2π
+

(∂m̃z)
2

24πmΨ
. (4.16)

The first term is the CS term that arises from the nontrivial topology
in the TI. The second one is the Maxwell term. The other terms
describe fluctuation-induced anisotropy in the out-of-plane direction.
Similar expressions for the CS term had been found before in [98,106].
It contains the TME term and a Berry phase. Specifically, the TME
takes the form

LTME =
σxye

vFJ
m‖ ·∇‖ϕ, (4.17)
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where in our units σxy = J2/4π and the superscript ‖ marks the re-
striction to the in-plane components. To make the impact of Coulomb
interaction visible, one has to evaluate δL together with the integral
term in Eq. (4.14). It is then clear that LTME contains nonlocal terms.
Specifically, in Paper [1] it is shown that the magnetization at the
interface couples to the effective Coulomb field

E(r) = −
∫

d2r′ %(r′)
r− r′

|r− r′|3 (4.18)

where the charge density has the topologically protected part

%(r) =
σxye

vFJ
∇‖ ·m‖(r) (4.19)

that stems from the CS term. When the LLEs are derived from the
effective Lagrangian, this leads to the topological interaction-induced
contribution σxyeE/(2vFJ) to the effective field31. This nonlocal alter-
ation of the LLEs is the main result of Paper [1].

4.2.3 Topological dipolar interaction

In Paper [2] we investigate how the nonlocal effects apply in a hete-
rostructure with two parallel FMI-TI interfaces at a distance d, where
the Coulomb interaction acts both within and between the interfaces
(labeled with an index i = 1, 2). The interaction via topologically pro-
tected terms between otherwise (nearly) uncoupled interfaces provides
an interesting setup to detect the TME. Note that the proposed lay-
ered structure shown in Fig. 4.3(a) has two such interfaces belonging
to different TIs to avoid effects of the side surfaces.

A key insight of this paper is that the topological Coulomb-mediated
effective interaction between the magnetic moments at the interfaces

31The complete LLEs are given in the paper.
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Figure 4.3: (a) A setup with two parallel FMI-TI interfaces. NI denotes
a nonmagnetic insulator. (b) A configuration where the magnetization
at i = 2 is manipulated in a topologically protected manner by an
electric field at i = 1. From Paper [2].

can be expressed as

Ldip(r) = −
(

e

2JvF

)2 ∑

i,j=1,2

σxy,iσxy,j

∫
d2r′

[(r− r′)2 + (1− δij)d2]3/2





3
[
m
‖
i (r) · (r− r′)

][
m
‖
j(r
′) · (r− r′)

]

(r− r′)2 + (1− δij)d2
−m

‖
i (r) ·m‖j(r′)





(4.20)

This expression has the same form as the classical dipole-dipole inter-
action (CDI) [95]. We have thus found a topological magnetic dipolar
interaction (TDI). Because of the apparent similarity of the two inter-
actions, it is expedient to emphasize the differences:

1. The interaction Eq. (4.20) has been derived from the CS term
and is therefore topologically protected. The quantization of σxy
enters in the coefficient.

2. In contrast to CDI, the TDI is only concerned with the in-plane
components of the magnetization, while the component orthogo-
nal to the interface has no effect. Our calculation assumes that,
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at the mean-field level, m is orthogonal to the interface to en-
sure the mass term, thus m‖ and the TDI are of the order of the
fluctuations.

3. The sign of the TME depends on the sign of the mass term,
corresponding to the orientation of the magnetization “into” or
“out of” the TI. For the inter-plane TDI (i 6= j), σxy,i and σxy,j
can have either equal or opposite sign. The overall sign of the
TDI can therefore be changed by switching the magnetization
at one of the interfaces. The TDI can thus favor alignment or
counteralignment of mi and mj. The latter effect is opposite to
CDI.

4. The low-energy theory for the TI surface describes Dirac fermions
upon replacing the speed of light by the Fermi velocity. This
causes a dramatic rescaling of all subsequent effects as compared
to their QED analogues32. In the coefficient of the TDI versus
the CDI (in proper units), one has to compare 1/v2

F and 1/c2,
respectively. Assuming vF = 5 × 105m/s, the velocity rescaling
leads to a relative factor of 360 000 in favor of TDI.

5. Eq. (4.20) describes a purely interfacial effect, while CDI also
couples magnetic moments anywhere else. Despite the previous
point, the strength of the TDI depends on the magnetic proxim-
ity effect and might be reduced by experimental issues with the
interface quality, in contrast to CDI. Also, as soon as one fails to
gap the TI surface states, the TDI vanishes altogether.

The model of the system did not include CDI. However, it would not
change the calculation and can also be added in the end. The net
dipole-dipole interaction is then the sum of Eq. (4.20) and the clas-
sical term. In the paper it is proposed to detect the TDI by means
of polarized neutron reflectometry motivated by the recent successful
application of that technique in Bi2Se3-EuS structures [109]. Further-
more, it is suggested to apply the topological coupling of the inter-
faces in spintronics devices, where it would allow for the topologically

32Of course, CDI is obtained from QED in the classical limit.
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(a) (b)

Figure 4.4: (a) Interface of the TI with a BMI. (b) The BMI can
be tuned between AFM and FM order by a model parameter. From
Paper [3].

protected nonlocal manipulation of the magnetization in an operat-
ing layer by applying a voltage at a separated controlling layer, see
Fig. 4.3(b).

4.3 Topological staggered-field-electric ef-
fect

In Paper [3], the setting of Paper [1] is generalized in a different di-
rection. Namely, the TME is studied at the interface of a TI with a
general bipartite magnetic insulator (BMI), which can be tuned be-
tween the antiferromagnetic (AFM) and ferromagnetic configurations,
see Fig. 4.4. This includes ferrimagnetic (FiM) insulators, among them
e.g. the technologically relevant yttrium iron garnet (YIG). YIG-TI
samples have been fabricated in recent experiments [112, 113]. In ad-
dition, in this paper more attention is paid to the proximity effect. In
the beginning, the surface of the magnet and the surface of the TI are
described separately and then coupled via electron hopping. Coulomb
interaction is kept in the calculation, although it is not the main focus
of this work, and produces similar effects as in Papers [1] and [2].

For clarity, we list the constituents of the model below. The model
is again set up in the continuum limit. Nevertheless, the term sublat-
tice is used occasionally to refer to the subsystems of m1 and m2, as
a bipartite crystal is still the microscopic origin of the two magnetic
moments.

� The BMI is modeled as before by Eq. (4.7) for m1 and m2 sepa-
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rately. The two components are then coupled by L = −λm1 ·m2.
Both m1 and m2 are assumed to be orthogonal to the interface
at mean-field, mi = miêz, and we define µ = m2/m1 (without
loss of generality, |µ| ≤ 1), which describes the configuration of
the magnet as in Fig. 4.4(b).

� At the magnet’s surface, we introduce two species of localized
fermions χ1, χ2 with spins coupled to m1, m2, respectively:

Lex = J
∑

i=1,2

χ†i(mi · σ)χi (4.21)

The same coupling constant is assumed on both sublattices. How-
ever, it could easily be generalized to staggered coupling if de-
sired.

� In addition, these fermions are directly coupled with an ampli-
tude t (real for simplicity), allowing them to change “flavor”:

Lχ =

(
χ†1
χ†2

)(
i∂t t
t i∂t

)(
χ1

χ2

)
(4.22)

In a bipartite lattice model, this would correspond to a process
where electrons can hop between sublattices inside each unit cell
but not between unit cells. Thus this process is on-site, ∝ δr,r′, in
the continuum limit. It is also useful to define the dimensionless
parameter τ = (t/Jm1)

2.

� The TI surface dispersion is initially the gapless Dirac cone, but
already equipped with a coupling to the electric potential with
both Coulomb and external-field parts,

LDirac = Ψ†[i∂t − ivF (σy∂x − σx∂y) + e(ϕ+ φ)]Ψ. (4.23)

� The proximity effect is included by electron hopping as already
mentioned,

Lprox = hΨ†(χ1 + χ2) + h.c. (4.24)

� For the complete description of Coulomb interaction, the integral
expression appearing in Eq. (4.14) is taken into account as well.
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From this theory, the effective coupling of the Dirac fermions to m1 and
m2 is derived by integrating out χ1 and χ2. Here we do not go into the
details of this part of the calculation. Explicit expressions of all terms
generated by the quantum fluctuations of χ1 and χ2 can be found in
Paper [3], comprising anisotropy, Berry phases, and a renormalization
of λ at the surface. One restriction to the model must be mentioned,
though: in the way the magnet’s surface is modeled, it has degenerate
eigenstates at zero energy if τ = µ. This choice of parameters does not
describe an insulator, and integrating out χi in the low-energy theory
is forbidden. The line τ = µ in parameter space has to be excluded in
the following.

The effective theory for TI surface including the proximity effect
now reads

Leff = LDirac + γΨ†
(
t2 − J2m1 ·m2

)
Ψ +

∑

i=1,2

Ψ†Jimi · σΨ, (4.25)

where γ is a constant given by33

γ =
2th2

t4 + J2(J2m2
1m

2
2 − 2t2m1m2)

(4.26)

and the coupling constants are

Ji =
h2J

t4 + J2(J2m2
1m

2
2 − 2t2m1m2)

(
J2m2

3−i − t2
)
. (4.27)

The first new contribution to LDirac is a shift in the chemical poten-
tial. The constant part can be neglected if the chemical potential
is externally tuned such that the Fermi level is close to the Dirac
point. The fluctuating part depends on the dynamic angle between m1

and m2. The second new contribution in the Dirac Lagrangian con-
tains the exchange-coupling to the magnetization that we were looking
for. For each mi, the coupling has the same form that was assumed
in the Papers [1] and [2] without explicitly computing the proxim-
ity effect, which is reassuring. This coupling leads to a mass term
mΨ = J1m1 + J2m2 and thereby gaps the Dirac energy spectrum34.

33Slightly deviating from the notation in the paper, here γ is rescaled by 1/J2.
34The case J1m1 = −J2m2 is equivalent to τ = µ and already excluded.
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Furthermore, we have found the expression Eq. (4.27) for the con-
stants Ji. Interestingly, J1 6= J2 if |m1| 6= |m2|35, although we started
with the same J on both sublattices.

The second part of the calculation is to integrate out the Dirac
fermions Ψ as well, which is done in the same manner as for the FMI-
TI interfaces. In that way, one can again derive the CS term which
contains the TME:

LTME =
e

4πvF

(
J1m

‖
1 + J2m

‖
2

)
· E. (4.28)

In other words, the regular TME appears on both sublattices, which is
not surprising. However, a novel effect arises from the net response of
the entire system, because J1 and J2 can be different. In fact, the cou-
pling constants can even have opposite signs. In that case, an electric
field generates (mainly) a staggered field rather than a net magnetiza-
tion in the plane, as m1 and m2 are tilted in opposite directions, see
Fig. 4.5(a). This is the topological staggered-field electric effect (TSE).
From Eq. (4.27) one readily finds the parameter regions of the model
that exhibit the TME or TSE. These are shown in Fig. 4.5(b) in terms
of the dimensionless parameters µ and τ . The TSE is possible within a
certain range of t whenever |m1| 6= |m2|, in particular for FiMs. FiMs
are often treated like FMs, reducing them to the net magnetization.
The result of Paper [3] reveals a case where this simplification can
grossly fail. On the other hand, when the BMI has pure AFM order36

no TSE is found, which may seem unintuitive as the staggered field is
maximal in the AFM configuration.

For further clarification of the diagram in Fig. 4.5(b), there are no
distinct phases with a clear transition in between, but regimes where

the induced in-plane net magnetization m‖ = m
‖
1+m

‖
2 is larger (TME)

or smaller (TSE) in magnitude than the in-plane staggered field l‖ =

m
‖
1−m

‖
2. Exactly at the line τ = 1

2(µ2+1) in parameter space, m‖ = 0,
corresponding to a “pure” TSE. The TSE provides a novel possibility
to electrically manipulate a staggered field, which is an important task
in AFM spintronics [115]. A drawback is that for real materials it might

35If we take |mi| = const. one can replace m2
i by m2

i
36In that case mΨ = 0 anyway, but one can think of interfaces of magnetically doped TIs with

AFMs as in [114].
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(a) (b)

Figure 4.5: (a) Schematic depiction of the TME and TSE. (b) Param-
eter regions where the TME and the TSE are found. From Paper [3].

be hard to predict where they are located in the parameter space of
our simple model system. More advanced models would hardly allow
for explicit analytic solutions as obtained in Paper [3].

As a subordinate result, also the γ-term in Leff contributes to the
CS term after Ψ has been integrated out:

Lγ =
γJ2

4πvF

(
J1m

‖
1 + J2m

‖
2

)
·∇‖ (m1m̃2,z +m2m̃1,z) (4.29)

This term is interesting in so far as it yields a topological coupling
of the in-plane and out-of-plane fluctuations in a non-homogeneous
configuration where ∇‖m̃i,z 6= 0. Thus, it affects the dynamics of
textures and domain walls. The LLEs become rather complicated,
though, cf. Appendix C in [3].



Chapter 5

Topological
Superconductors

In the previous two chapters, we have discussed properties of TIs,
where the concepts of topology could be applied because of the en-
ergy gap in the bulk band structure. The topological classification of
gapped band structures can be straight-forwardly generalized to su-
perconductors (SCs). Like an insulator, a SC also has an energy gap,
although it has a different physical interpretation. The eigenstates are
Bogoliubov quasiparticles (BQPs) instead of electrons and holes, and
the gap corresponds to the energy required to break up Cooper pairs
rather than exciting electrons from the valence band to the conduc-
tion band. TSCs are SCs where the band structure of the BQPs has a
nontrivial topological invariant [6, 7].

We relinquish a comprehensive discussion of superconductivity, but
briefly review the formalism of Bogoliubov-de-Gennes (BdG) Hamil-
tonians in the first section. Afterwards, we explain which SCs can be
topological and what kind of boundary states they have. Finally, we
discuss the systems investigated in Papers [4] and [5], namely Majorana
nanowires and nodal noncentrosymmetric superconductors (NCSs), re-
spectively.

57
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5.1 Bogoliubov-de-Gennes Hamiltonians

In general, a superconducting phase [116] is based on the pairing of
electrons into Cooper pairs, which allows them to form a conden-
sate. The two main characteristics of SCs, perfect diamagnetism (the
Meißner effect) [117] and vanishing electric resistivity [118], are con-
sequences of the condensation. The pairing of electrons requires an
attractive interaction between them. Even an arbitrarily weak attrac-
tive interaction will lead to superconductivity below a certain criti-
cal temperature Tc. While the original theory of superconductivity
by Bardeen, Cooper, and Schrieffer (BCS) [119, 120] is based on a
phonon-mediated effective interaction, a variety of other microscopic
mechanisms are possible, too.

At equilibrium, the Cooper pairs consist of electrons with opposite
momentum. This leads to a term of the general form ∆σ,σ′(k)c†k,σc

†
−k,σ′

in the Hamiltonian at the mean-field level, with the creation operator
c†k,σ for electrons with momentum k and spin σ. The coefficient ∆
is the superconducting order parameter, whereby ∆ = 0 if T ≥ Tc.
In principle, ∆(k, σ, σ′) can be calculated if the underlying pairing
mechanism is known. For conventional BCS SCs, for instance, ∆ is
isotropic and pairs only electrons with opposite spin. Such calculations
can be difficult, though, and moreover the pairing mechanism is still
unknown or under debate in several superconducting materials.

Irrespective of the precise origin of the pairing, SCs can generically
be described by an effective Hamiltonian of the form

HSC =
1

2

∑

k

Ψ†kHBdG(k)Ψk (5.1)

with the Nambu spinor [121] Ψk = (ck↑, ck↓, c
†
−k↑, c

†
−k↓)

T and the BdG
Hamiltonian

HBdG(k) =

(
ξ(k) ∆(k)

∆†(k) −ξT(−k)

)
. (5.2)

We note that the number of states is doubled in the Nambu spinor
compared to the physical number of states. In the BdG notation, the
SC order parameter can be treated as a model parameter. In the nor-
mal state, ∆ = 0, the eigenstates of the BdG Hamiltonian are electrons
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and holes where the dispersion follows from ξ(k). In particular, at the
normal-state Fermi surface37 ξ(k)k∈FS has eigenvalues equal to zero. In
the presence of pairing, Eq. (5.2) is non-diagonal, and the eigenstates
will be mixtures of electrons and holes – the BQPs. They describe
the excitations of the condensate by pair-breaking. The eigenenergy
is minimal at the Fermi surface, where HBdG has an eigenvalue that is
purely determined by ∆(k)k∈FS and defines the gap of the excitation
spectrum. Therefore, ∆ is also referred to as the superconducting gap.

The order parameter can be characterized by its dependence on k
and its matrix structure in spin space. The momentum dependence
can be expanded into spherical harmonics so that one can distinguish
gaps with s, p, d, . . .-wave symmetry. One can also label the specific
orbitals, e.g. px or dx2−y2. In spin space, the gap can be decomposed
into the singlet and triplet-pairing part according to [122]

∆(k) = [δsinglet(k) + δtriplet(k) · σ] iσy, (5.3)

where δsinglet(k) = δsinglet(−k) and δtriplet(k) = −δtriplet(−k). Usually,
the anti-symmetry of fermionic wavefunctions dictates that the order
parameter is either even in momentum with singlet pairing, or odd in
momentum with triplet paring. A conventional BCS SC has an s-wave
singlet order parameter. However, in the presence of SOC, ∆ will in
general have both singlet and triplet pairing contributions [123]. This
becomes important in the case of noncentrosymmetric SCs, which will
be discussed further in Section 5.5.

5.2 Majorana zero modes

The BdG formalism makes it easy to translate the models of TIs to
TSCs [7,28,124]. We know already how to construct 4×4 Hamiltonians
with nontrivial band topology, namely exactly as in the BHZ model
Eq. (3.22) and its counterpart in 3D, Eq. (3.28). In the Nambu basis38,
the matrix entries have a different meaning, though39. In particular,

37There may be two spin-split Fermi surfaces, e.g. in the presence of SOC.
38A one-to-one translation of the matrices requires that the Nambu spinor is written in the order

(ck↑, c
†
−k↑, ck↓, c−k↓)

T.
39Note that the PHS-breaking terms proportional to the unit matrix must be discarded.
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A (or A1, A2 in 3D) becomes the superconducting order parameter.
The term A(kxσx− kyσy) from the BHZ model then describes triplet p
wave pairing. These superconducting Hamiltonians still lead to helical
boundary modes as in the TIs. One can also find superconducting
analogues to the QHE (the chiral px ± ipy SC in 2D [125]) and the
SSH model (see next section). They all share the essential property of
p wave pairing, which rules out all conventional SCs. A rare example
of a p wave SC is Sr2RuO4 [126,127]. A p wave gap also occurs in the
superfluid phase of 3He [128], which is conceptionally similar to a SC.
Interestingly, effective p wave pairing can also be proximity-induced,
for instance at a TI interface with an s wave SC [129] or a dxy-wave
SC [130], or in nanowires with SOC (Section 5.4).

The high interest in TSCs is owed to their exotic boundary states
[131, 132]. In a TI, a single Dirac cone is found on each surface. In a
TSC, on the other hand, the number of states is doubled by the BdG
formalism. Thus, the topologically protected surface mode corresponds
to half of an ordinary fermionic state. In fact, these zero-energy modes
are Majorana fermions [125,131]. The defining property of a Majorana
fermion is being its own antiparticle, ψ† = ψ [133]. This is possible in
TSCs because BQPs are superpositions of electrons and holes. To date
no fundamental particle with this property is known (in the absence
of indications of the neutrinoless double-β decay [134–136]). Formally,
every ordinary fermion operator can be decomposed in two Majorana
operators. The Majorana zero modes (MZMs) in TSCs are special be-
cause they are appear spatially separated as unpaired Majorana quasi-
particles on opposite boundaries. This will be made explicit in the
next section on the Kitaev model [137].

The MZMs have a second remarkable property: non-Abelian braid-
ing statistics [131, 132, 138], which was predicted in [125, 139]. While
in 3D all particles must be fermions or bosons, for which the many-
particle wavefunction gains a factor of −1 or 1 under the exchange
of two particles, respectively, in 2D particles can also be so-called
anyons. For Abelian anyons [140], the factor is a complex phase
exp(iϕ). By changing ϕ, one can interpolate between fermions and
bosons. Even more, the wavefunction can acquire factors that do not
commute with each other. In that case, the particles are called non-
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Abelian anyons [141]. The reason for the more general particle ex-
change relation is that the topology of R2 \ {0} and R3 \ {0} is very
different [12]: in 2D a nontrivial winding number around the origin is
possible, whereas it is not in 3D. Therefore, particle exchange in 2D
can in general depend on the path of one particle around the other
(which can be pinned to the origin). In 3D, all paths are homotopic.
Non-Abelian exchange has also been predicted for excitations in the
fractional QHE [125,142].

Non-Abelian braiding is attracting much attention because it could
be applied in topological quantum computation [138]. The non-commu-
ting factors acquired by braiding operations would lead to different
quantum states which could be used to encode information. The ad-
vantage compared to other quantum computation schemes, e.g. using
spin qubits, is that a topological quantum computer would be fault-
tolerant [138], because the information is stored non-locally.

5.3 The Kitaev chain

A first toy model capable of realizing MZMs was found by Kitaev [137].
He proposed a spinless p-wave SC on a 1D lattice,

HKitaev = −µ
N∑

i=1

c†ici −
1

2

N−1∑

i=1

(
tc†ici+1 + ∆cici+1 + h.c.

)
, (5.4)

with chemical potential µ, nearest-neighbor hopping t, and a super-
conducting order parameter ∆ pairing fermions on neighboring sites.
For N → ∞, the model can be transformed into a momentum-space
BdG Hamiltonian40, which in this case is only a 2 × 2 matrix as spin
is absent:

HBdG(k) =

(
ξ(k) ∆∗(k)
∆(k) −ξ(k)

)
, (5.5)

with
ξ(k) = −t cos ka− µ (5.6)

∆(k) = −i∆ sin ka (5.7)

40Constants are neglected
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and the lattice spacing a. As required for a p-wave SC, ∆(k) is an
odd function. For simplicity we assume that ∆ is real. The energy
spectrum

ε(k) = ±
√
ξ(k)2 + |∆(k)|2 (5.8)

is usually gapped at any k, unless µ = ±t or ∆ = 0 [131].
The next step is to decompose each fermion into two Majorana

operators γA and γB,

ci =
1

2
(iγA,i + γB,i). (5.9)

Inversely, γA,i = −i(ci − c†i) and γB,i = ci + c†i so that evidently γ†A,i =

γA,i and γ†B,i = γB,i. Furthermore, γ2
α,i = 1 and the anticommutator is

[γα,iγβ,j]+ = 2δαβδij. The Hamiltonian Eq. (5.4) then becomes

HKitaev =
i

2
µ

N∑

i=1

γB,iγA,i +
i

4

N−1∑

i=1

[(t+ ∆)γA,i+1γB,i + (t−∆)γA,iγB,i+1]

(5.10)
In this form, the Kitaev chain is reminiscent of the SSH model pre-
sented in Sec. 3.1. However, now we have two Majorana operators per
site instead of two electron operators. One can show that two coupled
Kitaev chains are equivalent two the SSH model [143]. Like the SSH
model, the Kitaev chain is in class BDI and has two topologically dis-
tinct gapped phases, where the nontrivial phase has zero-energy modes
that are localized at the ends of the chain. This can be seen from two
limiting cases (see also Fig. 5.1):

1. µ 6= 0, ∆ = t = 0. Only the first sum in Eq. (5.10) remains,
and the Hamiltonian can as well be expressed with the ordinary
fermion operators ci. In this limit, we simply have a row of
completely uncoupled fermions. This case is topologically trivial.

2. µ = 0, ∆ = t 6= 0. All terms except (t + ∆)γA,i+1γB,i vanish.
This can again be written as a row of uncoupled fermions, but not
with the operators ci. Instead, one has to introduce new fermions
di = (iγB,i+γA,i+1)/2 that form bound states of Majorana modes
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µ 6= 0,∆ = t = 0
(trivial)

γA,1 γB,1 γA,2 γB,2

. . .

γA,N−1γB,N−1 γA,N γB,N

c1 c2 cN−1 cN

µ = 0,∆ = t 6= 0
(topological)

f fd1 d2 dN−2 dN−1

γA,1 γB,1 γA,2 γB,2

. . .

γA,N−1γB,N−1 γA,N γB,N

Figure 5.1: Sketch of two limiting cases of the Kitaev chain Eq. (5.10).

belonging to neighboring sites, with the Hamiltonian

H = ∆
N−1∑

i=1

(
d†idi −

1

2

)
. (5.11)

At the ends of the chain, γA,1 and γB,N remain as isolated Ma-
jorana modes. They can be combined into a fermion operator
f = (γA,1 + iγB,N)/2 which describes a state at zero energy, as it
is absent in the Hamiltonian. In constrast to the di’s, f cannot
be interpreted as an actual particle, as it is highly non-local –
γA,1 and γB,N are separated by the entire chain length. This is
the non-trivial case.

All other parameter configurations (except the gapless case) can be
continuously connected to one of the two cases above [131], i.e. with-
out closing the energy gap in the bulk spectrum Eq. (5.8). Indeed, the
Kitaev chain is characterized by a Z2 topological invariant that distin-
guishes the trivial from the topological case and is determined by the
bulk bands. The BdG Hamiltonian can be written as HBdG = d(k) ·σ,
with the vector

d(k) = −∆ sin(ka)êy + ξ(k)êz. (5.12)

In analogy to the SSH model, the vector d(k) describes a circle in the
(y, z) plane if k is running once over the BZ, k → k+ 2π/a. The circle
cannot cross the origin, which would mean to close the gap, so we can
define its winding number ν around (0, 0). It is clear that either ν = 0
or ν = 1. In the two limiting cases above, case 1 has ν = 0 and case
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2 has ν = 1. Similarly to the TIs, the topological case can also be
understood as an inversion of the band structure at k = 0 as compared
to k = ±π/a.

The following section discusses the most prominent implementation
of the Kitaev chain in semiconductor nanowires [144–147]. There are
noteworthy other suggestions to construct Kitaev chains, among others
based on the edge states of the QSHE [148] or on chains of magnetic
atoms on a SC (Shiba chains) [149].

5.4 Semiconductor Majorana nanowires

Attempting to realize the Kitaev chain in a physical system, one is fac-
ing two problems: (i) there are no spinless fermions, and (ii) there are
almost no p-wave SCs. Remarkably, both obstacles can be overcome by
a cunning combination of three relatively easily accessible components,
as proposed by41 Lutchyn et al. [144] and Oreg et al. [145], namely

� strong SOC, as found e.g. in the semiconductors InAs [150] and
InSb [151]

� Zeeman splitting caused by an external magnetic field

� s-wave singlet pairing, which can be induced by proximity to a
conventional SC

Starting from a ballistic 1D system, the effect of these ingredients is
as follows (see also Fig. 5.2): by SOC the spin degeneracy is lifted.
The dispersion relation is thus split in two branches with different
helicity which intersect at k = 0. A gap between the branches is
then introduced by the Zeeman field. This allows to project out the
higher-energy branch. The remaining system is effectively spinless,
solving problem (i). Finally, the induced s-wave pairing restricted to
that spinless system is transformed into an effective gap with p-wave
symmetry by the SOC, which solves problem (ii).

41Kitaev [137] had already insinuated this option in a footnote.
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Figure 5.2: Schematic band structure of the Majorana nanowire as
the three key effects are subsequently added: (a) SOC of strength
α, (b) Zeeman splitting EZee, (c) s-wave SC gap ∆. The parameters
are unrealistic in this plot for better visibility (α = 1.2, EZee = 0.6,
∆ = 0.3 in dimensionless units where m = 1 and ~ = 1).

5.4.1 Model

To be precise, the wire, which we choose to be aligned along the x axis,
is described by the BdG Hamiltonian Eq. (5.2) with

ξ(k) =

(
~2k2

2m
− µ

)
1l2×2 + αkσz +

1

2
gµBB · σ, (5.13)

∆(k) = −i∆σy, (5.14)

where m is the effective mass, µ the chemical potential, α the SOC
strength (the SOC field is along the z axis), 1

2gµB|B| equals the Zeeman
energy EZee, with Bohr’s magneton µB and a g-factor that can be up
to ≈ 50 in the mentioned semiconductors [152,153], and the proximity-
induced s-wave gap ∆. In spherical coordinates, we write the magnetic
field as B = B(cosϕ sinϑ, sinϕ sinϑ, cosϑ)T.

If the Hamiltonian is diagonalized at ∆ = 0, the eigenenergies are

ερ,τ(k) = ρ

(
~2k2

2m
− µ

)
+ τ
√
E2

Zee + (αk)2 + 2ραkEZee cosϑ (5.15)

with ρ, τ = ±1. Superconductivity can be introduced subsequently in
the eigenbasis, where the matrix elements of the gap correspond to the
intraband pairing in both the high- and the low-energy band, and an
interband pairing [147]. When the Hamiltonian is projected onto the
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low-energy bands, only the respective intraband pairing remains. This
effective SC order parameter of the spinless model satisfies ∆eff(k) =
−∆eff(−k) and42

|∆eff(k)|2 =
∆2

2


1− E2

Zee − (αk)2

√
[E2

Zee + (αk)2]
2 − 4(αk)2E2

Zee cos2 ϑ


 . (5.16)

Thus, the system is indeed a realization of a 1D spinless p-wave SC as
described by the Kitaev chain.

Now we retrieve the topological criterion for the semiconductor
nanowire [144, 145]. As for the Kitaev chain, the transition from the
trivial to the topological phase happens when the bulk energy gap
closes at k = 0. Instead of deriving the gap closure from the projected
spinless model, which is quite cumbersome in its explicit form, one can
instead use the full model Hamiltonian given by Eqs. (5.13) and (5.14).
At k = 0, the splittings induced by ∆ and EZee compete (compare with
Fig. 5.2). Indeed, band inversion appears when the applied magnetic
field is large enough to overcome the superconducting gap. This is
already the complete answer if µ = 0, otherwise the condition for the
topological phase is [144,145]

EZee >
√
|∆|2 + µ2, (5.17)

and exponentially localized MZMs at the wire ends can be derived if
the model is restricted to a finite length [144,145].

5.4.2 Experimental signatures

Before we proceed to the results of Paper [4], we make some remarks
about the experimental signatures by which the existence of MZMs
in the topological phase can be verified. There are two main effects:
a junction of a topological wire and a normal lead will show perfect
Andreev reflection [154] at zero bias if a zero-energy mode is present
[146, 155, 156]. This leads to a zero-bias conductance peak (ZBCP) in
the differential conductance spectrum of the junction. Perfect Andreev

42The expression Eq. (5.16) reduces to the one given in [147] if θ is set to π/2.
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reflection implies that the ZBCP should have the quantized value of
2e2/h. The second effect is the 4π Josephson effect [144, 148, 157],
where the periodicity of the Josephson effect [158] is doubled by the
MZMs in a topological-normal-topological wire junction.

Here we focus on the ZBCP, which has been reported in several ex-
periments, e.g. [159–165], starting in 2012 [159]. These measurements
have confirmed that a ZBCP is only present above the predicted criti-
cal magnetic field strength in Eq. (5.17). However, the quantized value
of the peak was not reached. It has also been criticized that a ZBCP
could be caused by other effects as well, e.g. the Kondo effect [166].
After the initial experiments, an enormous amount of work has been
published in order to suggest solutions to these issues based on more
comprehensive theoretical models. Such models include, among others,
finite size and temperature effects [167, 168], effects of the finite cross
section of the wire [169–171], an explicit treatment of the supercon-
ducting proximity effect [172,173], disorder [172,174], and interactions
in the wire [175]. By now, the existence of MZM in semiconductor
Majorana nanowires has become a widely accepted fact.

On the other hand, conclusive evidence of the zero-energy modes
being non-Abelian Majorana modes is still pending. This would de-
mand braiding experiments where the MZMs can be moved in a con-
trolled manner, which is much more challenging than conductance
spectroscopy. The same technological level would be necessary for fur-
ther advances towards topological qubits and finally topological quan-
tum computation [138,176].

5.4.3 Tilting of the magnetic field

The appearance of MZMs requires not only a sufficient strength of the
magnetic field, but also a suitable direction of the field. The commonly
assumed case is that the magnetic field is applied exactly orthogonal
to the SOC field (ϑ = π/2). There will always be some uncertainty in
experiments, though. For instance, by the presence of the bulk s-wave
SC the magnetic field can be locally deflected because of the Meissner
effect. It is therefore interesting to ask how stable the topological phase
is towards changes in the field direction. In addition, the field can be
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rotated purposefully to check if signatures of the MZMs are restricted
to the topological phase, which provides a valuable sanity check for
the origin of these signatures. The ZBCP has been measured as a
function of the field direction e.g. in [159, 165, 177]. The impact of
the field direction on the emergence of MZMs and the ZBCP was the
main objective of Paper [4]. Here, we summarize the main findings.
Previously, the direction of the magnetic field had been considered
numerically in [178] and briefly in [167].

The effect of tilting the magnetic field away from ϑ = π/2 is to
skew the band structure, which is displayed in Fig. 5.3. Varying the
second angle, ϕ, has no influence on the eigenenergies, but only adds
a phase factor to the eigenstates. While the energy spectrum at k = 0
is unaffected, the energy gap at approximately the Fermi momentum43

kF closes indirectly when the tilting angle reaches a critical value ϑc.
Thus, if the field is tilted further than ϑc, there will be partially filled
bands. In terms of band theory, this case resembles a “metal” rather
than an “insulator” (in reality it is, of course, still a SC) and the system
can no longer be topological. This is different from the transition into
a trivial gapped state as when Eq. (5.17) is violated. Instead, the wire
becomes trivial in the sense that any topological invariant becomes
ill-defined as the concept of adiabatic variation of parameters breaks
down. The MZMs at the ends of the wire are absorbed into bulk bands
when those reach zero energy and the two MZMs recombine into an
ordinary fermion.

The critical angle ϑc can be calculated analytically from the model
presented in Section 5.4.1. In the paper, the condition ε(k) = 0 for the
gap closure is resolved by a graphical discussion of the characteristic
polynomial of the BdG Hamiltonian with the result that the wire is in
the topological regime if

| cosϑ| < ∆

EZee
(5.18)

in addition to Eq. (5.17). This agrees with the numerical results found
in [178] and was also confirmed in later work [179]. The critical angle
can also be calculated rigorously, which we briefly sketch here as it

43kF in the absence of superconductivity
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Figure 5.3: Low-energy band structure of the Majorana wire with tilted
magnetic field at ϑ = π/2 (black dashed line), ϑ = ϑc (green solid line),
and ϑ = π (blue dotted line).

is not further explained in the paper. The characteristic polynomial
p at zero energy is bi-quartic in momentum, meaning that p(κ) is of
order four with κ = k2. We know that exactly at ϑc the low energy
bands touch zero energy with a local extremum, which automatically
becomes a zero of p(k) with double multiplicity. As there are two such
points at (approximately) ±kF , p(κ) will also have a multiple root. A
quartic polynomial has a multiple root if and only if its discriminant is
zero [180]. It turns out that the discriminant is a quartic polynomial
of cosϑ. The general solution formula for quartic polynomials [181]
then leads to the solution. Explicit expressions for the characteristic
polynomial and the discriminant are given in Appendix C.

The result Eq. (5.18) is perhaps unintuitive. One may have ex-
pected that only the component of the magnetic field orthogonal to
the SOC field matters for the topological phase. In that case, tilting
the field would have no consequence as long as the orthogonal compo-
nent remains large enough to satisfy Eq. (5.17). Then one could reach
the topological phase for any field direction (except if B is exactly par-
allel to the SOC field) if B is just large enough. The result in Eq. (5.18)
demonstrates that this intuitive reasoning is incorrect. In contrast, the
stronger the applied field, the narrower becomes the allowed range of
angles. The condition Eq. (5.17), on the other hand, always contains
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the full field and not just a certain component, because the field direc-
tion does not matter at k = 0. For practical purposes, the condition
on the field direction implies that the magnetic field should be just as
large as required by Eq. (5.18), but not too much larger than that if
one wants the topological phase to be stable for a broad range of field
orientations.

Having derived the desired condition, one can also study the behav-
ior of the ZBCP as ϑ is varied from π/2 to π, thereby crossing ϑc. This
is done for a junction of a normal lead (x < 0) with the Majorana wire
(x > 0) with an intermediate delta-shaped tunnel barrier of strength V .
Both sides of the junction can be described by the same BdG Hamilto-
nian with the spatially dependend gap ∆(x) = ∆Θ(x). In the paper,
the differential conductance is calculated using a slightly generalized44

Blonder-Tinkham-Klapwijk (BTK) formalism [182] at T = 0.
For a certain electric bias, the available states at that energy on

both sides of the junction, including evanescent solutions with complex
k, can be obtained by diagonalizing the BdG Hamiltonian. These solu-
tions are then sorted by their group velocity ∝ ∂ε(k)/∂k into incident
and outgoing waves. Considering electrons impinging from the normal
side, the following scattering processes [182] produce outgoing waves:

1. Andreev reflection [154], where an incident electron forms a Cooper
pair with another electron upon entry into the SC. Conservation
of charge requires a hole to be reflected into the normal lead.

2. Ordinary reflection of electrons at the junction

3. Ordinary transmission of electrons across the junction

4. Extraordinary transmission, whereby the sign of k changes

The resulting wavefunction Ψ(x) is obtained by summation of the in-
cident and all outgoing wavefunctions with coefficients ai, bi, ci, di
corresponding to the processes 1–4, respectively (i = 1, 2 denotes the
spin degree of freedom). The coefficients follow from the continuity of
the wavefunction at the junction and the condition that the derivative
has a finite step proportional to the tunnel barrier. This is a linear

44to include spin and the effect of SOC
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system of 8 equations from which lengthy analytical expressions could
be derived. In the paper, this system of equations is instead solved
numerically (with exact results).

The electric current caused by the four processes above is propor-
tional to their respective probability currents. The probability current
J must satisfy the continuity equation ∇J = −∂tρ, with the probabil-
ity density ρ, where the Schrödinger equation [37] demands

∂tρ = ∂t(Ψ
†Ψ) =

(
∂tΨ

†)Ψ + Ψ† (∂tΨ)

=
1

i~

[
− (HΨ)†Ψ + Ψ† (HΨ)

]
. (5.19)

While the ballistic Hamiltonian H = −~2∇2τz/2m leads to the well
known probability current45

Jnormal =
~
m

Im
(
Ψ†∇τzΨ

)
, (5.20)

the presence of SOC, HSOC = −iα∇σz, gives rise to the extra term

JSOC =
α

~
Ψ†σzΨ. (5.21)

The magnetic field does not contribute to J as the system is one-
dimensional. Once the scattering coefficients ai, . . . , di are known, the
scattering probabilities Ai, . . . , Di are given by the incident probability
current Jin and the probability currents Jai, . . . , Jdi of the outgoing
waves as the ratio Ai = Jai/Jin, and so on. The BTK formula [182]
finally gives the differential conductance

dI

dE
=
e2

h

[
1 +

∑

i=1,2

(Ai −Bi)

]
(5.22)

The result is displayed in Fig. 5.4 for various orientations of the mag-
netic field. As the critical angle is approached, the ZBCP gets very
sharp and disappears at the transition, where it splits in two small
peaks at finite energies. As long as the wire is in the topological regime,

45Here with an additional Pauli matrix τz in particle-hole space as we work in the BdG formalism
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Figure 5.4: Differential conductance (black) and BTK amplitudes A
(blue), B (green), C (red), and D (purple) for different ϑ with dimen-
sionless parameters EZee = 1.5, ∆ = 1.25, µ = 0, α = 1/

√
2. From [4].
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the results reproduce the expected quantized peak value of 2e2/h, in-
dependent of the tunnel barrier strength. In contrast, the residual
zero-bias conductance in the trivial regime can always be surpressed
by increasing V . This is suggested in the paper as an experimental
way to test the topological phase.

5.5 Nodal noncentrosymmetric supercon-
ductors

In this section, we introduce NCSs [183–186], which are the topic of
Paper [5]. Such SCs have unusual gaps and exhibit interesting topo-
logical features, although they are not TSCs in the same sense as the
p-wave SCs in 1D and 2D. The key difference is that NCSs (and, more
generally, all nodal SCs [9,187]) are not fully gapped in the bulk, hence
the usual topological invariants of SPT phases cannot be defined. The
following two subsections provide a brief explanation of the character-
istic properties of NCSs, mainly based on [9]. Finally, the results of
Paper [5] are presented.

5.5.1 Singlet-triplet mixing

In a noncentrosymmetric SC, the crystal structure lacks inversion sym-
metry. Intrinsic electric crystal fields can occur by the displacement of
atoms compared to the inversion symmetric unit cell. As an example,
the crystal structure of CePt3Si is displayed in Fig. 5.5, which was the
first NSC to be discovered [188, 189]. As a consequence of the electric
field, noncentrosymmetric SCs generically exhibit strong SOC [9]. In
addition, without a center of inversion, parity is not a good quantum
number. Therefore, the superconducting pairing can have both singlet
(even parity) and triplet (odd parity) components without violating
the overall symmetry requirements of fermionic wavefunctions.

The normal-state dispersion block in the BdG Hamiltonian Eq. (5.2)
takes the general form

ξ(k) = ξ0(k) + αl · σ, (5.23)
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Figure 5.5: Schematic crystal structure of the centrosymmetric AuCu3

lattice (left) and the noncentrosymmetric SC CePt3Si [188] (right) in
3D (top) and front view (bottom) of a unit cell. The additional atom
with pyramidal coordination causes a displacement along one axis,
leading to an electric field E. The tetrahedral distortion in CePt3Si is
not shown for better comparability.

where ξ0(k) denotes all spin-independent terms and the second term
describes SOC with strength α and a vector l that depends on the
direction of the field E in the crystal. The gap ∆(k) keeps the form of
Eq. (5.3) with both δsinglet(k) and δtriplet(k) being nonzero to account
for the mixing of singlet and triplet pairing. A slight simplification
arises from the fact that the free energy is minimized by the alignment
of the triplet-pairing vector δtriplet with the SOC vector l if interband
pairing is absent [190], thus at equilibrium one may write

∆(k) = [δsinglet(k) + δtriplet(k)l · σ] iσy. (5.24)

For instance, CePt3Si has an s+p-wave gap [189]. The typical sce-
nario is that the coexistence of gaps with different parity leads to line
nodes of the gap on the 3D Fermi surface. This feature becomes most
pronounced when δsinglet and δtriplet are of comparable size [185]. The
BdG Hamiltonian of NCSs has all TRS, PHS, and chiral symmetry
and belongs to class DIII, but in the absence of a full gap the periodic
table does not apply.
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5.5.2 Topology with a nodal gap

Apart from engineered p-wave superconductivity in heterostructures
like the Majorana nanowires, TSCs with a full bulk energy gap are
very rare. However, far more unconventional (i.e., not s-wave) SCs are
known which have nodal gaps. Nodal SCs comprise, apart from NCSs,
the famous high-temperature cuprate dx2−y2-wave SCs [191,192], some
Uranium compounds, e.g. f -wave UPt3 [193,194], and many others [9].
In general, nodal SCs can have point or line nodes on the Fermi surface.
It turns out that nodal SCs (and other systems with nodal gaps) can
be topologically characterized despite the lack of an energy gap in the
bulk. We will only consider the case line nodes, which is relevant for
the NCSs.

The key idea is to apply the concepts known from the SPT phases to
a lower-dimensional46 Hamiltonian that is restricted to an intersection
of the 3D BZ in which no nodes appear. When the gap has line nodes,
one can fix two components (ki, kj) ≡ kq of the momentum and think of
them as parameters. The remaining dimension along k⊥ corresponds to
a line running through the 3D BZ, and the restricted BdG Hamiltonian
Hk‖(k⊥) describes this 1D system. For almost all choices of kq the line
will not intersect with the nodes of the gap, thus Hk‖(k⊥) is fully
gapped and may have a nontrivial band structure. The price of this
procedure is that the 1D Hamiltonian loses TRS and PHS, because
for a momentum k belonging to the restricted system, the symmetry-
related point −k will in general not have the same kq. Nevertheless,
chiral symmetry persists and the 1D Hamiltonian is therefore in class
AIII, where a Z winding number can be defined [9]. As kq is varied,
any topological invariant of Hk‖(k⊥) can only change when the 1D cut
through the BZ crosses a nodal line. In consequence, in the 2D BZ
of kq, regions where Hk‖(k⊥) is in a different topological phase are
separated from each other by the projections of the nodal lines onto
the 2D BZ. This is illustrated in Fig. 5.6.

Nontrivial topology within the bounded areas An formed by the
projections of the nodal lines implies the existence of MZMs at the
ends of the 1D system via the bulk-boundary correspondence, similar

46This dimension is δ = D − d − 1 in a system with D spatial dimensions and d-dimensional
nodes [16].
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Figure 5.6: Projection of the bulk FS on the surface BZ. For surface
momenta inside the projection of the line nodes (blue circles), nontriv-
ial topology is found in the corresponding 1D Hamiltonian (visualized
by the red lines). This leads to topology-protected MZMs at the surface
for these momenta. Adopted from Schnyder and Brydon [9] (published
under Creative Commons Attribution 3.0 licence).

to the previously discussed Majorana nanowires. Thus, on surfaces
of the 3D sample that are orthogonal to the direction of k⊥, MZMs
are found everywhere within An in the surface BZ. In other words,
zero-energy Majorana flat bands are formed. Evidently the projection
crucially depends on the direction in which k⊥ is chosen. By rotation
of the projection axis, one can shrink the two highlighted projection
areas in Fig. 5.6 to zero. This means that the Majorana flat bands will
only be present on surfaces with proper crystallographic orientation.

Strictly dispersionless bands are a special feature, because usually
the free energy can be reduced by adding (at least weak) dispersion
to such bands, hence lifting the high degeneracy of states. In NCSs,
the flat bands are protected by topology and cannot become dispersive
unless (i) the gap closes or (ii) symmetry breaking occurs at the surface.
For instance, if TRS is broken by proximity to a FMI, the surface states
become chirally dispersive [195].
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5.5.3 Surface instability

It turns out that, at sufficiently low temperatures, TRS can also be
broken spontaneously at the topological surfaces. This is the main
message of Paper [5]. Alterations of the bulk properties close to the
surface are not captured by the BdG Hamiltonian as introduced in
Section 5.1, where spatially uniform parameters have implicitly been
assumed. In particular, it is known that the superconducting gap
can be modified – in both amplitude and symmetry – close to sur-
faces or edges [196, 197]. The reason is, roughly speaking, that there
are less electrons that participate in the pairing interaction close to a
boundary. TRS-breaking surface phases have, for instance, been pre-
dicted [198] and observed [199] in certain cuprates. TRS breaking can
also be favored by further interactions in addition to the pairing inter-
action [200]. Such studies had not been undertaken for NCSs, which
motivated the work of Paper [5].

To be able to properly account for the surfaces, the NCS is con-
sidered on a lattice in slab geometry, where the Hamiltonian is trans-
formed to a real space in one dimension as k⊥ is no good quantum
number. Specifically, a square lattice with (101) surfaces is consid-
ered, which is a suitable choice to obtain regions with MZMs in the
surface BZ for an s + p wave NCS. Instead of introducing a uniform
mean-field superconducting gap, the singlet and triplet components
are calculated self-consistently, starting from the attractive on-site and
nearest-neighbor47 interactions

Hint = −Us
∑

j

c†j,↑c
†
j,↓cj,↓cj,↑ − Ut

∑

<i,j>

∑

s,s′=↑,↓
c†i,sc

†
j,s′cj,s′ci,s. (5.25)

This interaction gives rise to pairing with the singlet order parameter

∆s
j =

Us
2

〈
cT
j iσycj

〉
, (5.26)

where cj = (cj,↑, cj,↓)T, and the triplet order parameter

∆t
i,j = iUt

〈
cT
j iσyσci

〉
. (5.27)

47Restricted to the plane orthogonal to the SOC field, such that the triplet order parameter will
be aligned with l, cf. Eq. (5.24).
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Figure 5.7: (a) Dispersion along a line cut (labeled km) through the
(101) surface BZ and (b) density of states of the s + p wave NCS
considered in Paper [5]. At T > Tc (light blue), TRS is preserved
in the entire system and a Majorana zero-energy flat band of surface
states exists for a range of momenta. At T < Tc (black), TRS is
broken at the surface, the surface band is shifted to finite energies and
is weakly dispersive. Figure taken from [5].

Note that this calculation is done at finite temperature, in contrast to
the other Papers [1–4]. The thermal average is written as 〈. . .〉. The
values of Us and Ut are chosen such that the nodal structure of the
corresponding gaps in an infinitely extended system (where uniform
gaps can be assumed) would yield regions with Majorana flat bands of
a decent extent in the 2D BZ.

For the slab of finite thickness, the gaps as a function of the spa-
tial coordinate are then computed numerically by minimizing the free
energy with an iterative algorithm. Details are found in the Supple-
mental material of Paper [5]. The result is that both the singlet and
the triplet gap are indeed altered in proximity to the surfaces of the
slab:

1. The amplitude of the singlet gap is enhanced, while the ampli-
tude of the triplet gap is reduced compared to the bulk value.

2. In addition, all gap components develop a complex phase relative
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to each other and to the bulk values if the temperature is below
a critical value Tc.

While it is not surprising that the strength of the pairing is influenced
by a surface, the second result signals the breaking of TRS. In the TRS-
breaking phase, the flat bands are shifted from zero energy and acquire
a weak dispersion. This lifts the high degeneracy and removes the zero-
energy peak in the density of states, see Fig. 5.7. At finite energies the
surface states are no longer Majorana modes. Furthermore, the TRS-
broken phase is accompanied by emergent spin currents at the surface.

The critical temperature Tc below which the symmetry-breaking
sets in is much lower than the superconducting transition temperature
(at least for the parameters chosen in the paper). Thus, this work
suggests that Majorana flat bands are present over a broad range of
temperatures, while spontaneous breaking of TRS becomes energeti-
cally favorable at very low temperatures. A recent study [201] proposes
that TRS breaking may even occur in the bulk.
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Appendix A

2D Fourier transformation of the
1/r-potential

Here, we show how the 3D r−1 potential is transformed into momentum
space in the two in-plane dimensions. We make use of the general
relation

1

ab
=

1

Γ(b)

∫ ∞

0

dx xb−1e−ax (A.1)

which directly follows from the definition of the Γ-funtion. Applying
this relation in the Fourier transformation (FT) with a = r2 and b = 1

2 ,
we get

∫
d2r

e−ik·r

|r| =
1

Γ
(

1
2

)
∫ ∞

0

dτ√
τ

∫
d2r e−τr

2−ik·r

︸ ︷︷ ︸
=π
τ e
−k2/4τ

=
π

Γ
(

1
2

) 2

|k|

∫ ∞

0

du√
u
e−u

︸ ︷︷ ︸
=Γ(1/2)

=
2π

|k| , (A.2)

where we substituted u = k2/4τ in the second line.

In Paper [2], we also need the transformation of the Coulomb po-
tential acting between parallel planes of distance d (assuming d > 0

for simplicity). Then |r|−1 is replaced by
(
r2 + d2

)−1/2
. We use again

81
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Eq. (A.1) with a = r2 + d2 and b = 1
2 , leading to

∫
d2r

e−ik·r√
r2 + d2

=
1

Γ
(

1
2

)
∫ ∞

0

dτ√
τ

∫
d2r e−(r2+d2)τ−ik·r

=
√
π

∫ ∞

0

dτ

τ 3/2
e
−
(

k2

4τ +d2τ
)

t2=τ
= 2

√
π

∫ ∞

0

dt
e−k

2/4t2

t3
te−d

2t2

= −4
√
π

k2

∫ ∞

0

dt
(
1− 2d2t2

)
e−( |k|2t −dt)

2

e−|k|d. (A.3)

The integral becomes Gaussian with the brute-force substitution u =
|k|
2t − dt which yields

t2 =
u2

2d2
+
|k|
2d
− u

d

√
u2

4d2
+
|k|
2d

(A.4)

dt =


− 1

2d
+

u

4d2

√
u2

4d2 + |k|
2d


 du. (A.5)

Now we split the integral in two parts corresponding to the two addends
in the term (1− 2d2t2). The first part is

−4
√
πe−|k|d

k2

∫ −∞

∞
du

(
− 1

2d
+ odd in u

)
e−u

2

= − 2π

dk2
e−|k|d, (A.6)

while the second one is a little more lengthy:

−4
√
πe−|k|d

k2

∫ ∞

−∞
du 2d2

[
− 1

2d

(
u2

2d2
+
|k|
2d

)
− u2

4d3
+ odd in u

]
e−u

2

=
4
√
π

k2
e−|k|d

|k|
2

√
π +

4
√
π

dk2
e−|k|d

∫ ∞

−∞
duu2e−u

2

=
2π

|k|e
−|k|d +

4
√
π

dk2
e−|k|d

√
π

2
. (A.7)

The second term cancels Eq. (A.6). In total, the result is
∫

d2r
e−ik·r√
r2 + d2

=
2π

|k| e
−|k|d (A.8)
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and is identical to the solution Eq. (A.2) in the limit d→ 0.
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Appendix B

Integrating out the fermions

This appendix explicitly shows how the fermions are integrated out
from the Lagrangian

L = Ψ
(
i/∂ +mΨ

)
Ψ + JΨ (m̃z − /a) Ψ (B.1)

The first part contains the mean-field terms, the second part contains
the fluctuations. For further clarification of the quantities, see the
main text in Section 4.2. Some steps of the calculation are also found
in the appendix of Paper [1]. The integration methods applied here
are adopted from quantum field theory [202]. Performing the Gaussian
integral in the partition function in the standard way [111], one finds
the action

S = Tr ln
[
i/∂ +mΨ + J(m̃z − /a)

]

= SMF + Tr

[
GJ(m̃z − /a)− 1

2
GJ(m̃z − /a)GJ(m̃z − /a) + . . .

]

(B.2)

whereby the first term in the square brackets vanishes close to the
mean-field solution. The propagator is

G = (i/∂ +mΨ)−1 =
−i/∂ +mΨ

∂2 +m2
Ψ

(B.3)

and we have used the abbreviated notation

Tr(. . .) =

∫
dt

∫
d2x

∑

ν

〈ν|tr(. . .)|ν〉. (B.4)
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The small trace symbol is the ordinary matrix trace and ν runs over
all other quantum numbers. In the plane-wave basis, ν = (ω,k). In
the following, we will evaluate the fluctuations δS to leading order and
at T = 0.

Switching from Minkowski to Euclidean space by a Wick rotation
τ = it [202], we find ∂2 → −∂2 and i/∂ → −/∂. Notice that the (2+1)D
Euclidean γ-matrices are (σz, σx, σy). To leave /a invariant, we have to
transform a into the Euclidean vector (a0, ia1, ia2) ≡ α, hence /a→ /α.
Furthermore, the FT to reciprocal space is done, where we use the
notation κ = ω,k and λ = Ω,q with frequencies ω,Ω and momenta
k,q. Then

δS =

iJ2

2

∫
d3κ

(2π)3

∫
d3λ

(2π)3

1

(κ2 +m2
Ψ)((κ − λ)2 +m2

Ψ)

tr
[
(mΨ + i/κ)(−/α(λ) + m̃z(λ))(mΨ + i(/κ − /λ))(−/α(−λ) + m̃z(−λ))

]

(B.5)

The matrix structure of the terms inside the trace is completely en-
coded by the Euclidean γ-matrices, for which [202]

tr(γµγν) = 2δµν (B.6)

tr(γµγνγλ) = 2iεµνλ (B.7)

tr(γµγνγλγρ) = 2δµνδλρ − 2δµλδνρ + 2δµρδνλ (B.8)

Multiplying out Eq. (B.5), one can arrange it into four terms that con-
tain αµ(λ)αν(−λ), m̃z(λ)m̃z(−λ), m̃z(λ)αµ(−λ), and αµ(λ)m̃z(−λ),
respectively, and correspond to four Feynman diagrams. Viewing α
as a wiggly line, m̃z as a slashed line, and fermions with solid lines
as in Paper [1] and [2], we will now go through these four diagrams
separately.

=

iJ2

∫
d3κ

(2π)3
αµ(λ)αν(−λ)

[
εµρνmΨλρ

(κ2 +m2
Ψ)((κ − λ)2 +m2

Ψ)
+Mµν(λ)

]

(B.9)
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where

Mµν(λ) =
δµν(m

2
Ψ + κ · (κ − λ))− 2κµκν + κνλµ + κµλν

(κ2 +m2
Ψ)((κ − λ)2 +m2

Ψ)
(B.10)

It is useful to prove that
∫

d3κ
(2π)3Mµν(λ) is proportional to the operator of

orthogonal projection along λ, Pµν(λ), which has the defining property
λµPµν(λ) = 0:

λµ

∫
d3κ

(2π)3
Mµν(λ)

=

∫
d3κ

(2π)3

λν(m
2
Ψ + κ · (κ − λ))− 2λ · κκν + κνλ2 + λ · κλν

(κ2 +m2
Ψ)((κ − λ)2 +m2

Ψ)

=

∫
d3κ

(2π)3

λν(m
2
Ψ + κ2) + κν(−2λ · κ + λ2)

(κ2 +m2
Ψ)((κ − λ)2 +m2

Ψ)

=

∫
d3κ

(2π)3

λν
(κ − λ)2 +m2

Ψ

+

∫
d3κ

(2π)3

κν
κ2 +m2

Ψ

−
∫
d3κ

(2π)3

κν
(κ − λ)2 +m2

Ψ

= 0 (B.11)

where we used −2λ · κ + λ2 = (κ − λ)2 + m2
Ψ − (κ2 + m2

Ψ) and then
shifted the coordinate κ → κ − λ in the last integral. Consequently,

there is a scalar S(λ) such that
∫

d3κ
(2π)3Mµν(λ) = S(λ)Pµν(λ), where P

has the standard form

Pµν(λ) = δµν −
λµλν
λ2

. (B.12)

Hence

tr

∫
d3κ

(2π)3
Mµν(λ) = S(λ) tr [Pµν(λ)] = 2S(λ), (B.13)

and with Eq. (B.10) we obtain

S(λ) =
1

2

∫
d3κ

(2π)3

3m2
Ψ + κ2 − κ · λ

(κ2 +m2
Ψ)[(κ − λ)2 +m2

Ψ]
. (B.14)
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With

κ2 − κ · λ =
1

2
[(κ2 +m2

Ψ) + (κ − λ)2 +m2
Ψ]−m2

Ψ −
1

2
λ2 (B.15)

and a shift κ → κ + λ in one term we can write

S(λ) =

(
m2

Ψ −
λ2

4

)
I(λ) +

1

2

∫
d3κ

(2π)3

1

κ2 +m2
Ψ

, (B.16)

where the integral I(λ) is given by

I(λ)

=

∫
d3κ

(2π)3

1

(κ2 +m2
Ψ)((κ − λ)2 +m2

Ψ)

=

∫ ∞

0

dX1

∫ ∞

0

dX2

∫
d3κ

(2π)3
e−(κ2+m2

Ψ)X1e−((κ−λ)2+m2
Ψ)X2

=

∫ ∞

0

dX1

∫ ∞

0

dX2

(
1

X1 +X2

)3/2

e
−
[
m2

Ψ(X1+X2)+λ2 X1X2
X1+X2

]∫
d3κ̃

(2π)3
e−κ̃

2

(B.17)

with the following substitution in the last line:

κ̃2 = (X1 +X2)

(
κ − λX2

X1 +X2

)2

. (B.18)

The Gaussian integral is known. Further on, we transform the variables
(X1, X2) → (σ, τ) ∈ [0,∞) × [0, 1] with X1 = τσ and X2 = (1 − τ)σ.
The determinant of the transformation is equal to σ. The integral now
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reads

I(λ) =
1

(2
√
π)3

∫ 1

0

dτ

∫ ∞

0

dσ
e−[m2

Ψσ+λ2τ(1−τ)σ]

√
σ

=
1

(2
√
π)3

∫ 1

0

dτ

∫ ∞

0

d(
√
σ) 2e−[m2

Ψ+λ2τ(1−τ)]
√
σ

2

=
1

8π

∫ 1

0

dτ

√
1

m2
Ψ + λ2τ(1− τ)

=
1

8π|λ|

∫ 1
2

|λ|√
m2

Ψ
+λ2/4

− 1
2

|λ|√
m2

Ψ
+λ2/4

dt
1√

1− t2

=
1

4π|λ| arcsin

(
|λ|√

4m2
Ψ + λ2

)

=
1

4π|λ| arctan

( |λ|
2mΨ

)
. (B.19)

For small |λ|, the arctan can be Taylor-expanded to second order. The
integral then takes the simple form

I(λ) =
1

8πmΨ
− λ2

96πm3
Ψ

. (B.20)

The other integral in Eq. (B.16) is formally divergent. To solve it, we
apply dimensional regularization [202]. We first show an equality for
gamma functions:

Γ(x)Γ(y) =

∫ ∞

0

dt tx−1e−t
∫ ∞

0

ds sy−1e−s

=

∫ ∞

0

dρ

∫ 1

0

dτ ρ(ρτ)x−1e−ρτ [ρ(1− τ)]y−1e−ρ(1−τ)

=

∫ ∞

0

dρ ρx+y−1e−ρ
∫ 1

0

dτ τx−1(1− τ)(y − 1)

= Γ(x+ y)

∫ ∞

0

dσ σx−1(1 + σ)−(x+y). (B.21)

The coordinate transformation in the second line is t = ρτ , s = ρ(1−τ)
and in the last line σ = τ/(1− τ). With this result, a general formula
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for dimensional regularization can be obtained:

∫
dDκ

(2π)D
1

κ2 +m2
Ψ

=
2π

(2π)D

(
D−2∏

k−1

∫ π

0

sink ϑkdϑk

)∫ ∞

0

d|κ| |κ|
D−1

κ2 +m2
Ψ

=
2πD/2

Γ
(
D
2

) 1

(2π)D

∫ ∞

0

d|κ| |κ|
D−1

κ2 +m2
Ψ

=
2πD/2

Γ
(
D
2

) m
D−2
Ψ

2(2π)D

∫ ∞

0

dy y
1
2D−1(y + 1)−1

=
mD−2

Ψ

2DπD/2
Γ
(
D
2

)
Γ
(
1− D

2

)

Γ
(
D
2

)
Γ(1)

=
mD−2

Ψ

2DπD/2
Γ

(
1− D

2

)
. (B.22)

At the first equality sign, we switched to spherical coordinates. At the
third, we substituted |κ| =: ym2

Ψ. The three-dimensional integral thus
takes the value

∫
d3κ

(2π)3

1

κ2 +m2
Ψ

=
π3/2

8π3
mΨΓ

(
−1

2

)
= −mΨ

4π
. (B.23)

In total, we have

S(λ) =

(
m2

Ψ −
λ2

4

)(
1

8πmΨ
− λ2

96πm3
Ψ

)
− mΨ

8π
= − λ2

24πmΨ
(B.24)

and

= iJ2αµ(λ)αν(−λ) [εµρνmΨλρI(λ) + S(λ)Pµν(λ)]

= iJ2αµ(λ)αν(−λ)

[
εµρνλρ

8π
− λ2

24πmΨ
Pµν(λ)

]
+O

(
λ3
)
. (B.25)
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The m̃z-m̃z diagram leads to identical integrals and can now easily be
calculated:

= iJ2

∫
d3κ

(2π)3
m̃z(λ)m̃z(−λ)

m2
Ψ − κ · (κ − λ)

(κ2 +m2
Ψ)((κ − λ)2 +m2

Ψ)

= iJ2

∫
d3κ

(2π)3
m̃z(λ)m̃z(−λ)

2m2
Ψ + 1

2λ
2 − 1

2 [(κ2 +m2
Ψ) + (κ − λ)2 +m2

Ψ]

(κ2 +m2
Ψ)((κ − λ)2 +m2

Ψ)

= iJ2m̃z(λ)m̃z(−λ)

[(
2m2

Ψ +
1

2
λ2

)
I(λ)−

∫
d3κ

(2π)3

1

κ2 +m2
Ψ

]

= iJ2m̃z(λ)m̃z(−λ)

[
mΨ

4π
− λ2

48πmΨ
+

λ2

16πmΨ
+
mΨ

4π

]
+O

(
λ3
)

= iJ2m̃z(λ)m̃z(−λ)

[
mΨ

2π
+

λ2

24πmΨ

]
+O

(
λ3
)

(B.26)

The two mixed diagrams are

+ =

iJ2

∫
d3κ

(2π)3

[
m̃z(λ)αµ(−λ)

−imΨ(2κµ − λµ) + iερνµκρ(κν − λν)
(κ2 +m2

Ψ)((κ − λ)2 +m2
Ψ)

+ αµ(λ)m̃z(−λ)
−imΨ(2κµ − λµ)− iερνµκρ(κν − λν)

(κ2 +m2
Ψ)((κ − λ)2 +m2

Ψ)

]

(B.27)

which can be split in two integrals as follows:

mΨW (λ)

∫
d3κ

(2π)3

2κµ − λµ
(κ2 +m2

Ψ)((κ − λ)2 +m2
Ψ)

−W (λ)

∫
d3κ

(2π)3

(κ × λ)µ
(κ2 +m2

Ψ)((κ − λ)2 +m2
Ψ)

(B.28)
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where W (λ) = J2 [m̃z(λ)αµ(−λ) + αµ(λ)m̃z(−λ)] for brevity. The first
integral can be solved using the same steps as in Eqs. (B.17) and (B.19)
for I(λ). After the variable transformation to σ and τ one arrives at

. . . =
λµ

(2
√
π)3

∫ 1

0

dτ (1− 2τ)

∫ ∞

0

dσ
e−[m2

Ψσ+λ2τ(1−τ)σ]

√
σ

=
λµ
8π

∫ 1

0

dτ
1− 2τ√

m2
Ψ + λ2τ(1− τ)

=
λµ

4πλ2

[√
m2

Ψ + λ2τ(1− τ)

]τ=1

τ=0

= 0. (B.29)

In the second integral of Eq. (B.28), κ can be transformed to cylindrical
coordinates with respect to the direction of λ. It is then easy to check
that the angular integration cancels the components of κ orthogonal to
λ in the numerator. The remainder of κ is parallel to λ and therefore
the cross product yields zero. In total, both mixed diagrams vanish.

Collecting the results from all diagrams, we have

δS =
iJ2

8π

∫
d3λ

(2π)3

[
αµ(λ)

(
εµρνλρ −

δµνλ
2 − λµλν
3mΨ

)
αν(−λ)

+ m̃z(λ)

(
4mΨ +

λ2

3mΨ

)
m̃z(−λ) +O

(
λ3
)]

(B.30)

Upon transformation to real space and time, this yields Eq. (4.16).



Appendix C

Critical angle: explicit solution

As discussed in Sec. 5.4.3, we can write the characteristic polynomial
pk(ε) of the BdG Hamiltonian for the Majorana nanowire at zero en-
ergy, ε = 0, as a bi-quartic polynomial in momentum

p(κ) = κ4 + aκ3 + bκ2 + cκ + d, (C.1)

with κ = k2. With the auxiliary quantities

M =
2m

~2
, (C.2)

S =
~2µ

m
+ α2, (C.3)

T = µ2 + ∆2 − E2
Zee, (C.4)

the coefficients in Eq. (C.1) read

a = −2M 2S (C.5)

b = M 2(2T +M 2S2) (C.6)

c = M 4[4α2(∆2 − E2
Zee cosϑ)− 2ST ] (C.7)

d = T 2M 4 (C.8)

The critical angle ϑc can be derived from the condition that the discrim-
inant δ of p(κ) vanishes (see main text). In our case, the discriminant
as a function of c (which is linear in cosϑ) is the quartic polynomial

δ(c) = c4 + Ac3 +Bc2 + Cc+D, (C.9)
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with the coefficients

A =
2

3
a

(
2

9
a2 − b

)
(C.10)

B =
2

27
(2b3 + 27a2d− 72bd) +

1

9
a2b2 − 4

27
a2(b2 + 12d) (C.11)

C =
2

81
a
[
2(b2 + 12d)2 − b(2b3 + 27a2d− 72bd)

]
(C.12)

D =
1

36

[
(2b3 + 27a2d− 72bd)2 − 4(b2 + 12d)3

]
(C.13)

The four solutions of δ(c) = 0 can be found using the general solution
formula [181] for quartic equations. It can be written in the form

cρσ = −A
4

+ ρ
W

2
+ σ

1

2

√
A2

2
− 4B

3
− F

3L
− L

3
+ ρ
−A3 + 4AB − 8C

4W
(C.14)

with ρ, σ = ±1 and

E = 2B3 − 9ABC + 27C2 + 27A2D − 72BD (C.15)

F = B2 − 3AC + 12D (C.16)

K = E +
√
−4F 3 + E2 (C.17)

L =
3

√
K

2
(C.18)

W =

√
A2

4
− 2B

3
+
F

3L
+
L

3
(C.19)

One of the solutions cρσ is exactly equivalent to the condition cosϑc =
∆/EZee. As the explicit intermediate expressions become unreason-
ably lengthy, the equivalence has been checked to double precision by
implementing the solution formula in python.
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The interface between a topological insulator and a ferromagnetic insulator exhibits an interesting interplay of
topological Dirac electrons and magnetism. As has been shown recently, the breaking of time-reversal invariance
by magnetic order generates a Chern-Simons term in the action, that in turn leads to a Berry phase and a
magnetoelectric effect of topological origin. Here, we consider the system in the presence of a long-range
Coulomb interaction between the Dirac electrons, and find that the magnetoelectric effect of the fluctuating
electric field becomes nonlocal. We derive a Landau-Lifshitz equation for the fluctuation-induced magnetization
dynamics and the Euler-Lagrange equation of the Coulomb field by explicit one-loop calculations. Via the
Coulomb interaction, divergences in the in-plane magnetization affect the magnetization dynamics over large
distances in a topologically protected way.

DOI: 10.1103/PhysRevB.93.014404

I. INTRODUCTION

In a topological insulator (TI), the bulk band structure gives
rise to gapless surface states that are protected by symmetry
via a bulk-boundary correspondence [1,2]. These conducting
states have a linear dispersion (Dirac electrons) arising mainly
due to strong spin-orbit coupling. In addition, spin-momentum
locking makes surface currents on a TI a promising tool for
spintronics applications [3,4]. However, not all materials that
feature a Dirac dispersion and a strong spin-orbit coupling
are TIs. For instance, pure bismuth is a Dirac-like material
featuring a strong spin-orbit coupling, which is not a TI,
since its surface states are not protected by symmetry. The
protecting symmetry in most TIs is time-reversal invariance
(TRI).

In three-dimensional (3D) TIs, the electromagnetic re-
sponse is characterized by a magnetoelectric term in the
Lagrangian [5,6]. Unlike the magnetoelectric term arising in
other materials, for example, multiferroics, the magnetoelec-
tric term in TI electrodynamics is intrinsically topological,
both due to the topological properties in reciprocal lattice
space and in real space. This can be seen by applying an
external magnetic field perpendicular to the surface of a 3D TI
of thickness L. A computation of the vacuum polarization of
two-dimensional Dirac fermions in the presence of an external
field for each TI surface yields the action [7,8]

Svpol = e2

8π

∫
dt

∫
dx dy εμνλ

× (Aμ∂νAλ|z=L − Aμ∂νAλ|z=0), (1)

where Aμ is the gauge potential corresponding to the external
field and we have adopted a covariant notation. In the above
equation z = 0 and z = L correspond to the lower and upper
surfaces, respectively. We work in units where c = 1 and
� = 1. The above action yields the difference between Chern-
Simons (CS) terms generated by the vacuum polarization
on both surfaces. It can rewritten as the integral of a total

derivative,

Svpol = e2

16π

∫
dt

∫
dx dy

∫ L

0
dz ∂z(εμνλA

μFλν)

= e2

32π

∫
d4x εμνλρF

μνF λρ, (2)

where Fμν = ∂μAν − ∂νAμ, and in passing from the first
to the second line, the expression has been made fully
covariant by introducing an additional spacetime index (ρ)
to accommodate the third spatial coordinate in the covariant
notation. The above equations follow from the assumption
that the Fermi level of each surface state lies precisely at
zero, i.e., at the Dirac point of the Dirac spectrum. Moreover,
spin-momentum locking implies that the Dirac fermions at
the upper surface have a helicity opposite to the lower ones.
Thus, we have obtained a magnetoelectric term that is overall
time-reversal invariant. A more general form is given by

Svpol = e2θ

32π2

∫
d4x εμνστFμνFστ , (3)

where θ is given by [5]

θ = 1

8π

∫
d3ktr

[
a(k) ∧ f(k) − 2

3
a(k) ∧ a(k) ∧ a(k)

]
, (4)

where the 2-form f(k) yields the Berry curvature,

f(k) = da(k) + ia(k) ∧ a(k), (5)

with

aαβ(k) = −i〈α,k|∇k|β,k〉, (6)

being the non-Abelian Berry vector potential associated with
the Bloch state |α,k〉. Thus, the electromagnetic response of
3D TIs yields an interesting interplay between the differential
geometry of the Bloch states and the topology of electromag-
netic gauge fields in the form of a so-called axionic [9] term,
Eq. (3), with θ representing a uniform axion field. The axion
is periodic and we find that for θ = π TRI holds, since under
a time-reversal transformation θ → −θ [5].

2469-9950/2016/93(1)/014404(6) 014404-1 ©2016 American Physical Society
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In terms of electric and magnetic field components, the
axion term (3) becomes

Svpol = e2θ

4π2

∫
d4x E · B. (7)

This magnetoelectric contribution is a topological term in real
space, as it is more easily seen from the covariant writing,
Eq. (3), which clearly exhibits its independence of the metric.
Furthermore, in view of Eq. (4) it is also topological in Bloch
momentum space due to the induced gauge structure in the
Hilbert space of Bloch states.

If TRI at the TI surface is broken in the presence of
a magnetically ordered phase, then B = H + 4πM, and a
topological magnetoelectric effect (TME) has been predicted
[5,6]. This has inspired many proposals of magnetic TI devices
[10–17]. In the TME, an electric field causes a magnetic
polarization in the same direction as the field. The TME
is the consequence of a CS term generated via the vacuum
polarization due to proximity with a ferromagnetic insulator
(FMI). If the FMI is epitaxially grown on only one of the TI
surfaces, there is only one CS term, in contrast to Eq. (1). The
CS term yields an additional Berry phase that modifies the
dynamics of the magnetization [13,14].

While previous studies have focused on the magnetic
polarization generated by an externally applied electric field,
in this paper we address a different important consequence of
the TME, namely, its interplay with long-range Coulomb in-
teraction among the Dirac electrons. The Coulomb interaction
will generate a fluctuating electric field that interacts with the
magnetization. Consequently, a nonlocal TME emerges that
significantly impacts on the magnetization dynamics by an
effective coupling over large distances.

Taking a similar approach as in Ref. [14], we will carry out
explicit calculations of the vacuum polarization contributions
to the effective action at zero temperature to leading order
in the quantum fluctuations (one-loop diagrams) to derive the
dynamics of both the magnetization and the Coulomb electric
field at the TI/FMI interface.

II. MODEL SYSTEM

We consider the interface between a FMI layer on top of a
TI, as shown in Fig. 1, which we assume to lie in the xy plane.
As a starting point, we use on the one hand the Lagrangian
density of a bulk FMI,

LFMI = b · ∂tn − κ

2
[(∇n)2 + (∂zn)2] − m2

2
n2 − u

24
(n2)2,

(8)
where n is the magnetization, b is the Berry connection,
m2 < 0 for temperatures below the critical temperature of the

FIG. 1. Magnetization n at the interface of a TI and a FMI.

magnetically ordered phase in the bulk, and κ,u are positive
constants. Note that throughout this paper, ∇ = (∂x,∂y,0).

On the other hand, the topological Dirac electrons on the
surface of a TI are described by

LTI = �†(r)[i∂t − ivF (σy∂x − σx∂y) + Jσ · n(r)]�(r), (9)

where �†(r) creates an electron at position r in the xy plane,
vF is the Fermi velocity, σ = (σx,σy,σz) is the vector of Pauli
matrices, and J > 0 is the strength of the coupling of the
electron spin to the magnetization n at z = 0.

In addition, we account for long-range Coulomb interaction
between the Dirac electrons at the interface,

V = 1

2

∑
q

ρ(q)vCou(q)ρ(−q), (10)

where the summation is over the two-dimensional momentum
q, the density operator is ρ(q) = ∑

k,s �
†
k+q,s�k,s , with spin

denoted s, and vCou(q) is the Fourier transform of the
Coulomb potential vCou(r − r′) = e2/|r − r′| for two electrons
at positions r and r′, where e is the elementary charge and
the dielectric constant is 1/(4π ) in Gaussian units. In two
dimensions, the potential in reciprocal space takes the form

vCou(q) = 2πe2

|q| . (11)

The interaction can be made linear in electron density by a
Hubbard-Stratonovich decoupling. With an auxiliary scalar
field ϕ, that we define to have the unit of an electric potential,
one finds the decoupled Lagrangian

LCou =
∑

q

[
eϕ(q)ρ(q) − 1

4π
ϕ(−q)|q|ϕ(q)

]
, (12)

which combined with Eq. (9) gives the complete real-space
Lagrangian density of conduction electrons at the interface,

Lc = �†[i∂t + ivF êz ·(σ ×∇) + Jσ · n + eϕ]�

− 1

8π2
[∇rϕ(r)] ·

∫
d2r ′ ∇r′ϕ(r′)

|r − r′| . (13)

where vF is the Fermi velocity. In total, the bilayer system is
described by L = Lc + LFMI.

III. FLUCTUATION EFFECTS

In this section, the quantum fluctuations will be evaluated to
leading order by integrating out the electrons. First, we rewrite
the fermionic part Lf

c of Lc in a form reminiscent of quantum
electrodynamics [14]. With the definitions γ = (γ 0,γ 1,γ 2) =
(σ0, − iσx, − iσy), a = ( e

J
ϕ,ny, − nx), ∂ = (∂t ,vF ∇), and the

common notations � = �†γ 0 and /A = γ μAμ, we get

Lf
c = �[i /∂ + J (nz − /a)]�. (14)

The mean-field value nMF = σ0êz of the magnetization leads
to an effective mass m� = Jσ0 of the fermion field, while σ̃ =
nz − σ0 describes the out-of-plane fluctuations. Integrating out
the fermions in the standard way [18] then leads to the action

Sc = SMF − J 2

2
Tr[G(σ̃ − /a)]2 (15)

014404-2



NONLOCAL TOPOLOGICAL MAGNETOELECTRIC EFFECT . . . PHYSICAL REVIEW B 93, 014404 (2016)

with the propagator G = (i /∂ + m�)−1. We relinquish an anal-
ysis of the mean-field action SMF, which has been discussed in
detail in Ref. [14], and focus instead on the fluctuation effects.
These are contained in the second term δS of Eq. (15), where
we have already restricted ourselves to leading order. The
operation Tr implies integration over space-.time and tracing
out all quantum numbers. Diagrammatically, δS contains four
contributions to the vacuum polarization:

δS =

∫
d3λ

(2π)3

[
+

+ +
]
.

(16)

The fields �, a, and σ̃ are represented by solid, wiggly, and
dashed lines, respectively, and λ comprises both frequency and
momentum. Some details of the calculation of the diagrams
can be found in the Appendix. Each of the mixed diagrams in
the second line vanishes, and the remaining processes yield in
the long-wavelength limit

δS = J 2

8π

∫
dt

∫
d2r

×
[
(a× ∂) · a − (∂ × a)2

3m�

−4m�σ̃ 2+ (∂σ̃ )2

3m�

]
. (17)

Note that scalar products are to be taken in Minkowski
space, with signature (+, − ,−). As has been discussed earlier
[13,14], the term (a × ∂) · a is a fluctuation-induced CS term.
In total, we arrive at the following effective Lagrangian for the
coupled FMI-TI bilayer system:

Leff = − σxy

2v2
F

(n × ∂tn) · êz + σxye

vF J
n · ∇ϕ

− NJ 2

24πm�

[(∇ · n)2 + (∇nz)
2] + NJ 2

24πv2
F m�

(∂tn)2

+ Ne2

24πm�

(∇ϕ)2 − NJe

12πvF m�

[(∇ϕ) × (∂tn)] · êz

− NJ 2m�

2πv2
F

n2
z + NJm2

�

πv2
F

nz

+LFMI − 1

8π2
[∇rϕ(r)] ·

∫
d2r ′ ∇r′ϕ(r′)

|r − r′| , (18)

where êz is the unit vector in the z direction. Furthermore, we
assumed N orbital degrees of freedom of the Dirac electrons
and defined the Hall conductance σxy = NJ 2/(4π ) in the two
contributions from the CS term. The first one describes a Berry
phase that adds up with the FMI Berry phase, while the second
one leads to the TME. Derivatives of σ̃ have been replaced by
derivatives of nz, since σ0 is constant.

Applying the Euler-Lagrange formalism on Leff yields
the Landau-Lifshitz equation (LLE) for the magnetization at
the interface and the equation of motion for the fluctuating
Coulomb potential ϕ. We arrange the LLE such that all
first-order time derivatives of the magnetization are on the
left side, such that it takes the form A · ∂tn = d with a matrix
A and a vector d that depends on ϕ and any other instance

of n. Since A then collects precisely the Berry phase terms, it
is antisymmetric and we can rewrite A · ∂tn = v × ∂tn, where
we find

v = n
n2

+ σxy

v2
F

êz. (19)

The first term stems from the FMI Berry connection b, which
satisfies the condition ∂n × b = −n/n2. The second term
originates with the CS term and enhances the overall Berry
phase. If the magnetization is strong, the Berry phase may
even be dominated by this topologically protected term. By
taking the cross product with n in both sides of the equation
v × ∂tn = d, we obtain

v
2
∂tn2 − (n · v)∂tn = n × d. (20)

Assuming that n2 is time independent, Eq. (20) becomes

∂tn = d × n

1 + σxy

v2
F

(n · ez)
. (21)

We split d = dn + dϕ into the magnetization-dependent part

dn = ρs · ∇2n + NJ 2

12πm�

[
∂2
t n

v2
F

+ ∇(∇ · n)

]

+NJm�

πv2
F

(Jnz − m�)êz +
(
m2 + u

6
n2

)
n, (22)

where the stiffness matrix is ρs = κ1 + (NJ 2/12π

m�)diag(0,0,1), and the contribution from the Coulomb
interaction

dϕ = −σxye

vF J
∇ϕ − NJe

12πvF m�

êz × ∂t∇ϕ. (23)

In addition, we obtain the Euler-Lagrange equation for the
field ϕ. To make the physics more transparent, we write it in
terms of the fluctuating electric field E = −∇ϕ,

0 = 2πσxye

vF J
n� + Ne

6m�

(
eE − J

vF

∂tn × êz

)

− 1

4π

∫
d2r ′ E(r′)

|r − r′| , (24)

where n� denotes the in-plane part of the magnetization. This
is an explicit form of the fluctuation-induced TME, where the
electric field will be aligned with the magnetization, up to
a dynamical correction depending on ∂tn. For the net field
and magnetization this correction is irrelevant, since the time
average of ∂tn vanishes. The first terms in Eqs. (23) and
(24) stem from the contribution proportional to n · E in the
Lagrangian, Eq. (18), representing the usual TME, which
is a local effect. In contrast, the last term in Eq. (24) is a
direct consequence of the long-range Coulomb interaction,
and clearly makes the TME nonlocal by integration over the
field at each point in the plane.

The motion of the magnetization becomes more clear when
the bosonic field ϕ in Eq. (18) is integrated out as well. The
part of the Lagrangian density that depends on the Coulomb
interaction then becomes

Lϕ(r,t) = 1

2
ρn(r,t)

∫
d2r ′ ρn(r′,t)

|r − r′| , (25)
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with the induced magnetic charge density,

ρn(r,t) = σxye

vF J
∇ · n(r,t) − NJe

12πvF m�

[∇ × ∂tn(r,t)] · êz.

(26)
Note that to leading order in momentum, the term involving
(∇ϕ)2 is negligible compared to the last term in Eq. (18). We
observe that the fluctuation-induced magnetic charge contains
an additional contribution besides the usual one. Typically,
the magnetic charge density is proportional to ∇ · n and
usually arises in studies of magnetic skyrmions [19]. We also
obtain a contribution ∼(∇ × ∂tn) · êz, which does not have
a topological origin. From the continuity equation we derive
also the magnetic current density,

jn = −σxy

vF

∂tn

+ NJe

24π2vF m�

∫
d2r ′ r − r′

|r − r′|2 [∇r′ × ∂tn(r′,t)] · êz.

(27)

The magnetization dynamics is now determined by the
integro-differential equation

∂tn = Dn × n

1 + σxy

v2
F

(n · ez)
, (28)

where

Dn = dn + σxye

2vF J
E + NJe

24πvF m�

êz × ∂tE, (29)

and the electric field is now given explicitly by

E(r) = −
∫

d2r ′ ρn(r′,t)
(r − r′)
|r − r′|3 . (30)

The equation of motion can be simplified by an approximation
of ρn. Namely, in the low-frequency regime we can expect
the second term in Eq. (26) to be small compared to the
first term. Consequently, we find that the Coulomb interaction
mainly acts via the CS term. The induced electric field is then
independent of ∂tn, and the equation can be brought into an
explicit form similar to Eq. (21).

An important consequence of Eqs. (26) and (28) is
that the Coulomb interaction does not directly couple the
magnetizations at different points in the plane. Rather, it
is the divergence of the magnetization that enters into the
magnetization dynamics over long distances. This can be
understood by the duality of magnetic and electric charges
on the surface of a TI [20], where ∇ · n is equivalent to an
electric charge of the magnetic texture. This charge generates
a Coulomb field. In the case of a uniform magnetization,
where both ρn and E are absent, the Coulomb interaction will
thus not affect the magnetization dynamics. We are then left
with the LLE (21) with d = dn, where also in dn, all spatial
derivatives vanish. From the remaining terms, we simply
obtain a precession of the magnetization around the z axis
by Eq. (21).

To illustrate how the long-range Coulomb interaction
affects the dynamics, we turn to a simple example of a nonuni-
form magnetization. Assume that the system is prepared with
a magnetic texture, where the phase of the precession changes

within a narrow region about x = 0. The divergence of n will
then be nonzero within that region. The corresponding terms in
dn will locally alter the magnetization dynamics, trying to align
the magnetization at neighboring sites. This will smoothen the
transition at x = 0 and evoke spin waves spreading in both
half planes. However, via the Coulomb interaction, there is
an instantaneous impact on the magnetization even far from
the texture. For large x, we can assume ρn = ρn,0δ(x), where
ρn,0 oscillates with the precession frequency at x = 0, and one
readily verifies that E = 2êxρn,0/x. The second and third terms
in Eq. (29) lead to in-plane components of the effective field
of precession in the x and y directions, respectively, where the
latter can be neglected in the low-frequency limit. Thus, the
effective field at arbitrary x is already tilted away from the z

direction before the spin waves due to the local stiffness terms
arrive.

As a final remark, we note that only the in-plane inho-
mogeneities of the magnetization participate in the Coulomb
driven dynamics, while the out-of-plane magnetization does
not enter. Therefore, we can expect a similar nonlocal effect if
we replace the texture discussed above by a domain wall, as
long as the rotation of the magnetization within the transition
region happens in a way that involves an in-plane divergence.
Apart from evoking Coulomb terms in the magnetization
dynamics, the presence of a domain wall in a magnetic layer
on a TI also leads to other effects, e.g., chiral currents, that
we have not discussed in this paper, but have been subject to a
number of previous studies [11,16,21–23].

IV. CONCLUSION

We have analytically studied a TI-FMI interface in the
presence of long-range Coulomb interaction and derived the
fluctuation-induced dynamics of both the magnetization and
the electric field mediating Coulomb interactions, to second
order in gradients and fields. We have found that, as a result of
long-range interactions, the TME becomes nonlocal, such that
the magnetization is coupled to the electric field anywhere
in the plane. The CS term in the effective action enhances
the overall Berry phase and thus modifies the magnitude of
the effective field of the magnetization precession. Magnetic
textures involving a divergence of the in-plane magnetization
tilt the effective field of the precession in a nonlocal way.
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APPENDIX: CALCULATION OF THE DIAGRAMS

In this Appendix, we present the zero-temperature calcula-
tion that leads to Eq. (17). From Eq. (15), we have

δS = −J 2

2

∫
dt

∫
d2x

∑
�

〈�|tr[G(σ̃ − /a)]2|�〉, (A1)
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where the trace tr is taken in spin space, � denotes all other
quantum numbers, and the propagator is

G = −i /∂ + m�

∂2 + m2
�

. (A2)

We go to imaginary time by the Wick rotation, τ = it , which
makes space-time Euclidean. The Dirac γ matrices are then

identical to the Pauli matrices. We find i /∂ → −/∂ and /a →
/α, where we defined α = (a0,ia1,ia2). Furthermore, δS is
transformed to reciprocal space and the sum over electron
quantum numbers is carried out in a basis of plane-wave states,
� = (ω,k), with frequency ω and two-dimensional momentum
k. The frequency and momentum of the bosonic fields α and
σ̃ in reciprocal space are denoted as λ = (�,q). We get

δS = iJ 2

2

∫
d3λ

(2π )3

∫
d3�

(2π )3

tr[(m� + i /�)(−/α(λ) + σ̃ (λ))(m� + i(/� − /λ))(−/α(−λ) + σ̃ (−λ))](
�2 + m2

�

)(
(� − λ)2 + m2

�

) , (A3)

and the matrix structure inside the remaining trace is now
determined by products of Dirac matrices. As one can
easily verify by using the commutation and anticommutation
relations of the Euclidean Dirac matrices [24,25], tr(γμγν) =
2δμν , tr(γμγνγλ) = 2iεμνλ, and tr(γμγνγλγρ) = 2(δμνδλρ −
δμλδνρ + δμρδνλ). Inserting these formulas into the numerator
of the integrand in Eq. (A3) yields

tr[. . .] =
2αμ(λ)αν(−λ)

[
m�εμρνλρ + δμν

(
m2

� + � · (� − λ)
)

−2�μ�ν + �νλμ + �μλν

]
+ 2σ̃ (λ)σ̃ (−λ)

[
m2

� − � · (� − λ)
]

+ 2iσ̃ (λ)αμ(−λ)[−m�(�μ − λμ) − m��μ

+ερνμ�ρ(�ν − λν)]

+ 2iαμ(λ)σ̃ (−λ)[−m�(�μ − λμ) − m��μ

+ερμν�ρ(�ν − λν)], (A4)

corresponding to the four diagrams in Eq. (16). Let these
diagrams be called D1, . . . ,D4, in the same order as in Eq. (16).
Next, the integral over � will be carried out. As has been
discussed in Appendix of Ref. [25], one can rewrite the first
diagram to take the form

D1(λ) = iJ 2aμ(λ)aν(−λ)

[
εμρνm�λρI1(λ)

+Pμν(λ)

(
m�I1(λ) − λ2

4
I1(λ) + 1

2
I2

)]
, (A5)

with the projector Pμν(λ) = δμν − λμλν/λ
2 and the integrals

I1(λ) =
∫

d3�

(2π )3

1(
�2 + m2

�

)[
(� − λ)2 + m2

�

]

= 1

4π |λ| arctan

( |λ|
2m�

)
, (A6)

I2 =
∫

d3�

(2π )3

1

�2 + m2
�

= −m�

4π
, (A7)

with the result

D1(λ) = iNJ 2αμ(λ)αν(−λ)

[
εμρνλρ

8π
− λ2Pμν(λ)

24πm�

]
(A8)

to second order in λ. Note that I2 requires dimensional
regularization [24], since it is formally divergent. By simple
manipulations, one can reduce the second diagram to the same
integrals:

D2(λ) = iNJ 2σ̃ (λ)σ̃ (−λ)

[(
2m2

� + 1

2
λ2

)
I1(λ) − I2

]

= iNJ 2σ̃ (λ)σ̃ (−λ)

[
m�

2π
+ λ2

24πm�

]
+O(λ3). (A9)

In the two diagrams mixing α and σ̃ , performing the �

integration leads to D3(λ) = D4(λ) = 0. Summing up the
contributions from D1 and D2 and transforming back to real
space and real time finally yields Eq. (17).
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The magnetoelectric effect predicted in topological insulators makes heterostructures that combine magnetic
materials and such insulators promising candidates for spintronics applications. Here, we theoretically consider
a setup that exhibits two well-separated interfaces between a topological insulator and a ferromagnetic insulator.
We show that there is a topological magnetic dipole-dipole interaction stemming from long-range Coulomb
interactions. We analytically derive the magnetization dynamics at the two interfaces and discuss how the
long-range coupling can be applied to nonlocally induce the formation of a magnetic texture at one interface by
suitably gating the other interface.

DOI: 10.1103/PhysRevB.94.020404

Topological insulators (TIs) represent a fascinating and
novel state of matter, namely a combined bulk insulator
and surface metal with the additional property that the
gapless current-carrying surface states are protected from
scattering by particle number conservation and time-reversal
symmetry [1,2]. When TIs coexist with magnetic order, the
magnetization opens a gap in the surface Dirac cone on the
topological insulator. This leads to an anomalous quantum
Hall effect with a half-integer quantized conductance of
σ 0

xy = e2/(2h) [1,3] and a topological magnetoelectric effect
(TME) [4] whereby an electric field induces a magnetic
polarization in the same direction and vice versa. The latter
can be understood from a field theoretic description of the
Dirac fermions, which resembles axion electrodynamics [5].
Namely, the TME is evoked by a contribution proportional to
θ E · B in the Lagrangian, where θ is the axion field. This term
is of a topological origin and quantized, as only the two values
θ = 0,π are allowed by time-reversal symmetry (TRS) of the
TI bulk.

Even though conclusive direct evidence of the TME is
still pending, the tantalizing idea of magnetization control
by electric fields in a topologically protected way has led
to intense research. For instance, heterostructures of TIs and
ferromagnets have recently attracted much attention as a highly
promising platform for spintronics in both theory [6–15]
and experiment [16–22]. The strong spin-orbit coupling
required to invert the band structure in a TI enables strong
spin-orbit torques, and the spin-momentum locking provided
by the topological Dirac fermions offers unique possibilities
for magnetization control by electrical currents. Envisioned
devices based on the TME aim at, for instance, electrically
controlled domain wall motion [23–25] and qubits [26] and
even indicate a route to topological transistors [27].

Importantly, the TME is a generic feature involving any
electric field that is present, not only external fields. The
setup we propose in this Rapid Communication differs from
most previous suggestions in that it takes into account the
fluctuating electric field stemming from long-range Coulomb
interaction and its impact on the magnetization dynamics
in the presence of the TME [6,7]. This is crucial, as the

Coulomb interaction always will be present in a real system.
For instance, electrostatic coupling between TI surfaces has
been reported [28]. We show that Coulomb interactions lead
to a topological magnetic dipole-dipole interaction whereby it
gives rise to a magnetic anisotropy. Furthermore, we suggest a
spintronics nanodevice where this long-range interaction is
exploited to couple two otherwise completely independent
interfaces between TIs and ferromagnetic insulators (FMIs). A
magnetic texture at one interface can then be switched on and
off by applying a voltage at the other interface. Measuring this
effect would not only serve as a clear evidence of the TME,
since no other coupling mechanism exists in the system we
consider. It might also inspire device architectures for electric
magnetization control where the applied field and the desired
response are locally separated in the device.

In Fig. 1, we show a possible TI/FMI multilayer het-
erostructure for our approach featuring two parallel magne-
toelectrically active interfaces. We emphasize that these two
interfaces belong to different TI layers and that these two layers
are separated by FMI and nonmagnetic insulator layers in a
way that no electron hopping or direct magnetic coupling is
present. In the following, we will first employ the framework
of quantum field theory to obtain the effective Lagrangian of
the system in the low-frequency regime after integrating out all
quantum fluctuations and show that it contains a topologically
protected magnetic dipolar interaction. Then, we derive the
Landau-Lifshitz equation (LLE) for magnetization dynamics.
Finally, we argue how nonlocal electric magnetization control
is possible with a suitable gate placement at one of the
interfaces. We work in natural and Gaussian units and assume
that the TI and FMI layers are made of the same material,
respectively, such that any material constants are the same
at the two interfaces. We use the symbol ∇ to denote the
two-dimensional differential operator.

We begin by considering the Coulomb interaction, which
plays a key role for our results. The well-known three-
dimensional r−1 potential is acting on charge carriers that
are restricted to a plane. A two-dimensional Fourier trans-
formation yields the intraplane potential 2πe2/|q| and the
interplane potential 2πe2 exp(−d|q|)/|q|. Here, e is the

2469-9950/2016/94(2)/020404(5) 020404-1 ©2016 American Physical Society
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NI
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TI

TI

FMI

FMI

FIG. 1. The structure of the nanodevice: a top and a bottom TI
layer sandwich two FMI layers that are separated by a nonmagnetic
insulator (NI). At the two interfaces indicated by arrows, the
magnetization opens a gap in the TI surface state dispersion, leading
to the TME. The interfaces are well separated and interact only via
Coulomb interactions. The coordinate system is chosen such that the
z axis is pointing out of plane.

elementary charge, q is the momentum in two dimensions,
and d denotes the distance between the two interfaces. The
overlap integral of electron orbitals from different interfaces
will be zero, since they belong to different TI bulks and
are well separated. The only contribution from the Coulomb
interaction acting between the interfaces will thus be a density-
density interaction, while exchange interactions vanish. To
facilitate handling the two-particle interaction, we write it
as a single-particle term by introducing the scalar Hubbard-
Stratonovich fields ϕi with units of an electric potential. With
the operator ρi(q) of electron density at interface i = 1,2, the
potential then has the two contributions

∑
i,q eϕi(q)ρi(q) and

1
2

∑
i,j,q ϕi(−q)Bij (q)ϕj (q), where the matrix B now contains

the Coulomb-mediated coupling of the interfaces. The matrix
entries can be derived from the intra- and interplane potential.

In the low-energy regime, the conduction electrons at the
two interfaces can be described by a Lagrangian

Li = �
†
i [i∂t + ivF (σ × ∇) · êz + e(ϕi + φi) + Jσ · ni]�i,

(1)

with the second-quantized fermion operators �
†
i ,�i . It con-

tains the Dirac-cone dispersion proportional to the Fermi
velocity vF , which is typical for TI surface states. As explained
above, the electric potential ϕi from the Coulomb interaction
enters. In addition, we allow for an externally applied electric
field Ei = −∇φi . Proximity to an FMI layer induces a
magnetization ni at each interface that couples to the electron
spin with a coupling strength J . The three Pauli matrices
are included in the vector σ . In the anomalous quantum
Hall regime, the uniform mean-field magnetization will be
orthogonal to the plane and give rise to a mass m� = J 〈n1z〉 =
J 〈n2z〉 of the fermion field, thus opening a gap in the Dirac
cone. We assume that the Fermi level, εF , lies inside the gap,
either by doping or gating. Thus, there is no loss of generality
in considering εF = 0. Furthermore, note that since ϕi are
fluctuating fields, any nonzero εF can be absorbed into ϕi . The
situation is different in the metallic regime where the Fermi
level lies outside the gap, in which case Friedel oscillations
are expected to occur in the Coulomb interacting system [29].

To account for the ferromagnetism of the bulk FMI layers,
we add

LFMI,i = bi · ∂tni − κ

2
[(∇ni)

2 + (∂zni)
2], (2)

n�
Ψ

n� n⊥
Ψ

n⊥ ϕ
Ψ

ϕ

n�
Ψ

ϕ n�
Ψ

φ ϕ
Ψ

φ

FIG. 2. The topologically distinct one-loop diagrams of vacuum
polarization that contribute to the effective action upon integrating out
the fermions. Here, n‖ and n⊥ denote the magnetization fluctuations
in plane and out of plane, respectively, � is the fermion field, ϕ is the
fluctuating Coulomb potential, and φ is the electric potential that is
fixed by the externally applied field (indicated with a cross). Diagrams
that mix in-plane and out-of-plane fluctuations vanish, and we skipped
the φ-φ diagram, which yields a constant. Magnetoelectric effects are
due to the first two diagrams in the second line.

where (∂ni
× bi)n2

i = −ni and κ > 0 is the coefficient of
exchange energy. Recall that ∇ is two dimensional. We
assume that the magnitude of the magnetization is fixed at
constant temperature. In total, the model Lagrangian including
Coulomb interactions is

Ltot(r) =
∑
i=1,2

[Li(r) + LFMI,i(r)]

+ 1

4π

∑
i,j=1,2

∑
q

[∇ϕi(r)] ·
∫

d2r ′ ei(r−r′)·q

|q|(1 − e−2|q|d )

× [δij − (1 − δij )e−|q|d ][∇′ϕj (r′)]. (3)

Since our analysis will mainly focus the magnetoelectric
dynamics of the magnetization at the interface, the physics is
effectively two dimensional. Furthermore, we will perform the
calculations at zero temperature. However, it must be noted that
the results obtained here are of relevance for finite-temperature
analysis, provided T � m� . Due to the proximity coupling to
the Dirac fermions at the interface, the system overcomes the
Mermin-Wagner theorem so that a finite Curie temperature
exists. To see this it is enough to consider a mean-field theory
where the dynamics of the magnetization is simply given
by ∂tn = n × (Heff + J 〈�†σ�〉), where Heff = −δHFM/δn,
with HFM being the Hamiltonian of the ferromagnet. In this
case it is easy to show that the magnon spectrum is given by
ω(q) = m�[(κ/J )q2 + 1], which clearly does not have any
infrared singularity.

We now integrate out the fermions, keeping only leading-
order terms. More precisely, we consider the one-loop di-
agrams of vacuum polarization. The relevant topologically
distinct diagrams are shown in Fig. 2. The breaking of TRS
by the magnetization generates a Chern-Simons (CS) term in
the resulting action [4] that leads to the TME ∼(n × ∂tn) and
a Berry phase. Since the two interfaces so far are decoupled in
the fermion sector, to this point the calculation is identical for
i = 1 and 2. The field-theoretic treatment of a single interface
can be found in Ref. [7]. Next, we proceed to integrate out the
Hubbard-Stratonovich fields to unravel the effective magnetic
interaction. The Lagrangian for the fields ni(r) is then given
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by

L(r) =
∑
i=1,2

(
LFMI,i(r) − σxy

2v2
F

[ni(r) × ∂tni(r)] · êz

− NJ 2

24πm�

{
[∇ · ni(r)]2 + [∇ni,z(r)]2

}

−NJ 2m�

2πv2
F

n2
i,z(r) + NJm2

�

πv2
F

ni,z(r)

−σxye

JvF

ni(r) · Ei(r)

)
+

∑
i,j=1,2

σxye

2JvF

[∇ · ni(r)]

×
∫

d2r ′ρj (r′)√
(r − r′)2 + (1 − δij )d2

(4)

Here, σxy = σ 0
xyNJ 2/e2 is the induced Hall conductivity,

assuming N electron orbital degrees of freedom. We have
neglected several further terms that are constant or contain time
derivatives that are not of leading order in the low-frequency
regime. Although we have not included any intrinsic axial
anisotropy in the Lagrangian of the FMI proximate to the
TI, we note that such an anisotropy has been dynamically
generated by Dirac fermion quantum fluctuations, in the form
of a term ∼n2

iz. Thus, if an intrinsic axial anisotropy is already
present in the FMI, the TI surface states will necessarily
enhance it. In the last term, ρj denotes the effective charge
density, which appears in the presence of in-plane divergences
of the magnetization and the applied electric field. This is
because the electric charge at a TI/FMI interface coincides
with the magnetic charge [30]. The charge density is given by

ρi = σxye

2vF J
∇ · ni − Ne2

24πm�

∇ · Ei , (5)

where the first term is of topological origin. Remarkably,
the contribution from this topological term to Eq. (4) can be
rewritten by partial integrations over both r and r′ to read

Ldipolar(r) = −
(

σxye

2JvF

)2∑
i,j=1,2

∫
d2r ′

[(r − r′)2 + (1 − δij )d2]3/2

×
{

3
[n‖

i (r) · (r − r′)][n‖
j (r′) · (r − r′)]

(r − r′)2 + (1 − δij )d2

− n‖
i (r) · n‖

j (r′)
}
, (6)

where n‖
i = (nix,niy,0). Thus, we have found a magnetic

dipole-dipole interaction having an intrinsic topological origin.
We note from the effective magnetic field, H(i)

eff = −∂H/∂ni ,
that it is the dipolar interaction that connects the two interfaces
via the in-plane magnetization. Here H is the Hamiltonian
associated to the effective Lagrangian (4), i.e., by removing
the Berry phase terms.

Typically, dipolar interactions generate a magnetic
anisotropy, turning the susceptibility nondiagonal. Indeed, it
is easy to see from Eqs. (4) and (6) that the susceptibilities for
the spin-wave modes in the interfaces and across them feature
transverse and longitudinal components, and have the form
χii

αβ(ω,q) = χii
T (ω,q)(δαβ − qαqβ/q2) + χii

L (ω,q)qαqβ/q2,

χ12
αβ(ω,q) = χ21

αβ(ω,q) = χ12
T (ω,q)(δαβ − qαqβ/q2) + χ12

L

(ω,q)qαqβ/q2, where α,β = x,y and χii
zz(ω,q) describes the

gapped, longitudinal (in field space) mode. The spin-wave
mode across the interfaces decays exponentially with the
thickness in momentum space. Moreover, there is no longitu-
dinal field mode propagating between the interfaces. Dipolar
interactions are normally considerably smaller than exchange
interactions. However, they are known to be as large as ex-
change interactions in some ferromagnetic insulators, such as
europium monochalcogenides [31]. The dipolar interaction (6)
is quantized due to the TME. An estimate can be given based
on recent experiments on Bi2Se3-EuS heterostructures [16,21].
Using �vF = 2.17 eV Å and assuming that J ≈ 90 meV,
we estimate a dipolar interaction roughly having a strength
∼1 meV. Note how the prefactor in Eq. (6) is independent of
the fermionic gap m� . Thus, the topologically induced dipolar
term is expected to play a role also above the Curie temperature
of the system. In principle, the anisotropy in the susceptibility
can be probed in the static limit via polarized neutron scattering
techniques, similar to the one used in Ref. [32] to probe the
dynamics of longitudinal and transverse fluctuations in EuS.
Since Eq. (6) involves only the planar components of the
magnetization, it is particularly sensitive to polarized neutron
reflectometry (PNR) experiments, since PNR only measures
the in-plane components of the magnetization. In the context of
TI heterostructures, PNR has recently been successfully used
to probe the magnetization for a wide range of temperatures
near the interface between Bi2Se3 and EuS in a TI/FMI bilayer
structure [21]. The same method can in principle be used to
find evidence of a dipolar magnetic anisotropy arising from
TME.

From Eq. (4), we derive the LLE at interface i,(
ni

n2
i

+ σxy

v2
F

êz

)
× ∂tni = dn,i + dE,i + dCou,i , (7)

which describes precession around an effective field di . The
second term inside the parentheses stems from the additional
Berry phase generated by the CS term. The effective field
consists of three contributions: dn,i describes the local spin
dynamics and is given by

dn,i = ρs · (∇2ni) + NJ 2

12πm�

∇(∇ · ni)

+ NJm�

πv2
F

(
Jni,z − m�

)
êz, (8)

with the spin-stiffness matrix ρs =
diag[κ,κ,κ + NJ 2/(12πm�)]. The last line reflects the
dynamically generated axial anisotropy and leads to
precession around the out-of-plane axis even if the
magnetization is uniform. The vectors dE,i = σxye/(JvF )Ei

and dCou,i = σxye/(JvF )ECou,i are due to the TME involving
the external field and the Coulomb field of the charge density
Eq. (5), respectively. Thus, dCou,i is nonlocal and contains
both in-plane and interplane interactions. The Coulomb field
at interface i is given by

ECou,i(r) = −
∑
j=1,2

∫
d2r ′ (r − r′)ρj (r′)

[(r − r′)2 + (1 − δij )d2]3/2
. (9)

020404-3



RAPID COMMUNICATIONS

STEFAN REX, FLAVIO S. NOGUEIRA, AND ASLE SUDBØ PHYSICAL REVIEW B 94, 020404(R) (2016)

E1

n2

ϕ

d

i = 2

i = 1

n1

FIG. 3. Schematic depiction of the mechanism for a specific gate
placement: At interface 1, a voltage between the middle and edge
gates (bold black lines) leads to an electric field E1 (solid red arrows)
with an in-plane divergence. By the TME, the in-plane component
of the magnetization (dashed blue arrows) n1 aligns with the field,
resulting in a charged texture that gives rise to a Coulomb potential
ϕ. The Coulomb field causes the magnetization n2 at interface 2 to
develop a magnetic texture as well.

Equations (5) and (9) describe the effective nonlocal interac-
tion between magnetic moments in the system. We find that a
charge density at one interface leads to a net in-plane magnetic
texture at both interfaces.

Based on this topological coupling mechanism, we pro-
pose a spintronics device for nonlocal electric magnetization
control, where we adopt the following strategy: One of the
magnetoelectrically active interfaces is gated such that the
electric field will have an in-plane divergence. By the TME,
the magnetization at the same interface will develop a net
in-plane component that is aligned with the field. Thus, a
charge density according to Eq. (5) is induced and creates
a field, cf. Eq. (9), that finally causes a magnetic texture to
emerge at the other interface. A specific gate geometry is
shown in Fig. 3, where we consider the impact of an applied
electric field at i = 1 on the magnetic texture at i = 2. We place
three gates, where the two outer ones lie at the same potential,
and a voltage is applied between them and the middle gate
such that the electric field will have opposite orientation in
the two half-planes. Consequently, a charge density emerges
along the middle gate, where ∇ · E1 and ∇ · n1 become large.

Due to the Coulomb field, the net magnetization at interface
2 will develop an opposite in-plane component in the two
half-planes. Thus, we obtain a magnetic texture without any
local manipulations. This texture can be switched on and off by
means of the voltage applied at the first interface. We note that
in principle any setup where the applied field has a divergence
would work.

Besides applications for electric magnetization control,
measuring the magnetic texture at interface 2 would also
be an intriguing demonstration of the TME. The interplane
coupling mechanism is topologically protected. Namely, the
TME that translates the diverging field into a magnetic charge
density at interface 1, the correspondence of magnetic and
electric charge, and the TME with the Coulomb field at
interface 2 are all topologically protected. Furthermore, the
device is constructed in such a way that other long-range
interactions are excluded. One could think of a seemingly
simpler heterostructure than the one shown in Fig. 1, where
a single TI layer is coated with FMI layers on both sides,
such that the active interfaces are opposite surfaces of the
same TI bulk. In that case, however, the electric field could,
at least close to the sample edges, directly leak around
the topological side surfaces onto the other interface and
interfere with the magnetization there, circumventing the
desired long-range coupling of purely topological origin.
The nonmagnetic insulator layer in our setup also pre-
vents spin waves from traveling from one interface to the
other.

In conclusion, we have analytically derived a topological
magnetic dipole-dipole interaction that emerges from long-
range Coulomb interactions in the presence of the TME. It
generates a magnetic anisotropy that could, e.g., be probed by
PNR. We presented analytical results for the magnetization
dynamics in a heterostructure with two well-separated parallel
TI/FMI interfaces and demonstrated that the long-range
interactions enable nonlocal electric control of a magnetic
texture at one interface by applying a voltage at the other
interface. We believe that these results are experimentally
accessible with the existing technology.

S.R. and A.S. acknowledge support by the Norwegian Re-
search Council, Grants No. 205591/V20 and No. 216700/F20.
F.S.N. would like to thank the Collaborative Research Center
SFB 1143 “Correlated Magnetism: From Frustration to Topol-
ogy” for the financial support.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
[4] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,

195424 (2008).
[5] F. Wilczek, Phys. Rev. Lett. 58, 1799 (1987).
[6] F. S. Nogueira and I. Eremin, Phys. Rev. Lett. 109, 237203

(2012).
[7] S. Rex, F. S. Nogueira, and A. Sudbø, Phys. Rev. B 93, 014404

(2016).

[8] I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802 (2010).
[9] T. Yokoyama, J. Zang, and N. Nagaosa, Phys. Rev. B 81, 241410

(2010).
[10] Y. G. Semenov, X. Duan, and K. W. Kim, Phys. Rev. B 86,

161406 (2012).
[11] C. Wickles and W. Belzig, Phys. Rev. B 86, 035151 (2012).
[12] F. S. Nogueira and I. Eremin, Phys. Rev. B 88, 085126 (2013).
[13] A. G. Mal’shukov, H. Skarsvåg, and A. Brataas, Phys. Rev. B
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We study the interface physics of bipartite magnetic materials deposited on a topological insulator. Our study
comprises antiferromagnets as well as ferrimagnets and ferromagnets with multiple magnetic moments per unit
cell. If an energy gap is induced in the Dirac states on the topological surface, a topological magnetoelectric effect
has been predicted. Here, we show that this effect can act in opposite directions on the two components of the
magnet in a certain parameter region. Consequently, an electric field will mainly generate a staggered field rather
than a net magnetization in the plane. This result is relevant for current attempts to detect the magnetoelectric
effect experimentally, as well as for possible applications. We take a field-theoretic approach that includes the
quantum fluctuations of both the Dirac fermions on the topological surface and the fermions in the surface layer
of the magnet in an analytically solvable model. The effective Lagrangian and the Landau-Lifshitz equation
describing the interfacial magnetization dynamics are derived.

DOI: 10.1103/PhysRevB.95.155430

I. INTRODUCTION

Since their discovery, topological insulators (TIs) [1,2]
have attracted much attention due to their unique surface
properties. In three-dimensional TIs, every surface exhibits
linearly dispersing conducting states inside the bulk band
gap. These can be described as Dirac fermions and exhibit
spin-momentum locking. If time-reversal symmetry (TRS) at
the surface is broken by an orthogonal net magnetization, the
Dirac states become massive; that is, a gap opens in their
energy dispersion. It has been shown that this generates a
Chern-Simons (CS) term in the effective field theory which
imposes a topological magnetoelectric (TME) effect [3,4] on
the surface, where an electric field induces a net in-plane
magnetization. This distinct response to an electromagnetic
field is a hallmark of the TI phase.

Magnetic order on the TI surface can be established by
doping with 3d transition metals [5–11], proximity coupling
to a magnetic insulator in bilayer structures [12–16], or a
combination of both [17]. In [15], a magnetization orthogonal
to the surface was realized even at room temperature in EuS-
Bi2Se3 bilayers. In theoretical works, a broad range of potential
applications of such heterojunctions combining ferromagnetic
insulators (FMIs) and TIs has been suggested, e.g., related to
spintronics [18–28], and several further implications of the
TME effect have been discussed, including the formation of
magnetic monopoles [29] and the interplay with long-range
Coulomb interaction [28,30,31].

So far, not much focus has been directed at more general
classes of magnetic materials. Mostly, it is assumed that the
TME effect will occur in the same way as long as a net
magnetization is present. However, several technologically
relevant materials do not have a simple ferromagnetic (FM)
structure and are instead ferrimagnets (FiMs) or antiferro-
magnets (AFMs). For instance, one of the most prominent
materials for spintronics devices is yttrium iron garnet (YIG),
a FiM with a complicated crystal structure [32,33]. In YIG, an
enhancement of the magnetization has recently been observed
in a bilayer structure YIG-Bi2Se3, where Bi2Se3 is doped with

Cr [16]. It is thus natural to ask if and how the topological
effects will manifest in multicomponent FMIs, FiMs, or AFM
insulators. In AFMs, there is no net magnetization (except in
some cases for special surface orientations [34]). However, a
gap can still be opened at the Dirac points, as in the FM and
FiM cases, by means of magnetic doping in the TI. Such a
system has recently been realized experimentally [35].

In the present paper, we study a bilayer heterostructure
consisting of a bipartite magnetic insulator (BMI) and a TI.
We show that, depending on the microscopic parameters of
the BMI, the TME effect can take the opposite sign on the two
sublattices, turning the overall electric-field response from a
TME effect into a topological staggered-field-electric (TSE)
effect. Our calculation is to be understood as a proof of
principle, as the model we employ is simplified and may
not suffice to make quantitative predictions. On the other
hand, we are able to obtain fully analytic solutions within
a field-theoretic approach that accounts for the fermionic
quantum fluctuations on both the BMI and TI surfaces. We will
derive the effective Lagrangian, revealing the structure of the
magnetoelectric response, and the Landau-Lifshitz equation
(LLE) of the interfacial magnetization dynamics. We work in
Gaussian units and set h̄ = 1. All calculations are done at zero
temperature. This is justified as long as the Fermi level is tuned
to lie in the induced energy gap, for instance. by gating of the
interface.

The model we use is described in the following section. We
discuss the nontopological fluctuation effects originating with
the electrons on the BMI surface in Sec. III, and then we move
on to the topological effects that are revealed upon integrating
out the Dirac states in Sec. IV. We summarize our results in
Sec. V.

II. MODEL SYSTEM

Describing the heterostructure, one has to account for the
contributions from the bulk of the BMI, the surfaces of the
BMI and the TI, hopping across the interface due to proximity,
and Coulomb interactions between the Dirac electrons at the
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FIG. 1. The model system: (a) Bilayer heterostructure consisting
of a bipartite magnetic insulator (BMI) deposited on a topological
insulator (TI). (b) By means of the parameter μ = m2/m1, the magnet
can be tuned to be in an antiferromagnetic (AFM), ferrimagnetic
(FiM), or ferromagnetic (FM) configuration at mean field. (c) The
model involves fermionic fields � and χ1,2 on the surfaces of both
the TI (blue plane) and the BMI (gray plane), respectively, which
are coupled by the amplitudes h (hopping across the interface) and t

(local coupling of the two sublattices).

interface. The bulk of the TI is required to guarantee the
existence of the topological surface states but does not appear
explicitly. The model system is illustrated in Fig. 1.

We start with the surface of the TI which is chosen to be
the (x,y) plane and is described by the Dirac Lagrangian,

LD = �†[i∂t − ivF (σy∂x − σx∂y) + e(ϕ + φ)]�, (1)

where � = [ψ↑ψ↓]T are the surface Dirac fermions, vF is
the Fermi velocity, ϕ is the fluctuating potential of Coulomb
interactions among the Dirac fermions, and φ is any externally
applied electric potential. A term quadratic in ϕ describes the
Coulomb interaction in the plane [28,30,31]:

LCou(r) = − 1

8π2
[∇‖ϕ(r)] ·

∫
d2r ′ ∇′

‖ϕ(r′)

|r − r′| , (2)

where ∇‖ = (∂x,∂y) denotes the in-plane gradient operator.
We model the bulk bipartite magnetic material as two

interpenetrating FMs (denoted by indices i = 1,2) that are
coupled by an exchange interaction, Lbulk = L1 + L2 + Lex,
where

Li = −b(mi) · ∂tmi − κ

2
(∇mi)

2 (3)

and

Lex(r) = −λm1(r) · m2(r). (4)

Here, b is the Berry connection, which satisfies ∇mi
×

b(mi) = mi/m2
i , κ > 0 is the FM exchange energy, and λ > 0

(< 0) for AFM (FM) coupling of the two components. In the
bulk model, we ignore anisotropy terms. It turns out that the
system intrinsically contains anisotropy, and additional bulk
contributions would not qualitatively alter the physics.

In order to describe the surface Berry phases associated
with the two sublattices, we introduce fermionic fields χi =
[χi↑χi↓]T , i = 1,2, representing sublattice indices, which
when integrated out generate the desired surface Berry phases.
This procedure to generate Berry phases is well known in

the literature [36,37] and is very useful in our case because
it permits coupling the underlying sublattice fermions to the
Dirac surface states. The surface layer of the bipartite magnetic
insulator is thus described by the Hamiltonian,

Hsurf = −t(χ †
1χ2 + χ

†
2χ1) − J

∑
i=1,2

mi · χ
†
i σχi, (5)

where J is the strength of the exchange coupling to the
respective magnetization mi(z = 0), σ are the Pauli matrices,
and t is a parameter coupling the surface fermions of the BMI
on different sublattices. It will be crucial in obtaining a TSE
effect and also leads to mixed Berry phase terms originating
on the different sublattices. When t = 0, the surface Berry
phases decouple and just correspond to a shift of the Berry
phases already present in Eq. (3). Note that the Lagrangian
accounts only for coupling of fermions χ1 and χ2 within one
unit cell, thus being momentum independent in the continuum
limit. Further electron dynamics (gradient terms) is neglected.
This rough approximation is valid as long as the magnet is a
strong insulator and the gap is much larger than the induced
gap in the Dirac states. It does not spoil the generation of
the surface Berry phases, however. Furthermore, the lattice
model of the surface of the magnet does not explicitly include
nearest-neighbor exchange interactions, which are already
captured by the Lagrangian of the magnetic bulk. The chemical
potential is set to zero for the electrons on both surfaces
because the Fermi level is assumed to be tuned to lie in the
gap.

If the surfaces of the TI and the AFM or FiM are in
proximity to each other, there is also an amplitude h that
couples the surface fermions of the magnetic insulator to the
surface fermions of the topological insulator,

Lint = h[�†(χ1 + χ2) + (χ †
1 + χ

†
2 )�]. (6)

Our calculation amounts to integrating out all fermionic fields
in order to obtain an effective theory of the magnetization.

III. QUANTUM FLUCTUATIONS OF THE
SUBLATTICE FERMIONS

We start by integrating out the fermions χi of the BMI
surface to obtain an effective model for the Dirac fermions �.
We assume that the mean-field direction of the magnetization
is orthogonal to the interface, such that a mass in the Dirac
states can be induced. We write mmf

i = mi êz and define the
dimensionless parameter μ = m2/m1, where without loss of
generality |μ| � 1. Then, μ > 0 describes a FM, −1 < μ < 0
describes a FiM, and μ = −1 describes an AFM [Fig. 1(b)].
We also introduce τ = t2/J 2m2

1, which will be useful later.
From Eq. (5), we define a matrix

A =
(

i∂t + Jm1 · σ t

t i∂t + Jm2 · σ

)
, (7)

such that the action of the surface of the magnetic insulator is
symbolically written as Ssurf = χ †Aχ , where χ † = (χ †

1 ,χ
†
2 ).

The integral over space-time is implicit in this symbolic
representation. We use a spinor �̃† = (�†,�†) that contains
the same Dirac fermion twice to write Lint = hχ †�̃ + H.c.
We next proceed by integrating out the magnetic surface
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fermions χ ,

Z =
∫

D [χ,χ ] ei
∫

dt
∫

d2r(Lsurf+Lint)

=
∫

D [χ,χ ] ei(χ †Aχ−hχ †�̃−h�̃†χ)

= exp(iTr ln A + ih2�̃†A−1�̃). (8)

Note that the notation Tr contains the integration over the
quantum numbers in addition to the matrix trace. We will
discuss the two terms in the last line separately in the following
sections.

A. Surface corrections to the bulk terms

The term Tr ln A in Eq. (8) is independent of the topological
Dirac states. It leads to the Berry phases mentioned previously
and renormalizes the magnetic bulk terms at the surface.
Details of the calculation and complete analytical expressions
can be found in Appendix A. We finally obtain

δLmag(r,t)

= −2J 2m1 · diag(T 00 − T zz,T 00 − T zz,T 00 + T zz) · m2

+ 2J 2
∑
i=1,2

{[(
D00

i + Dzz
i

)
mi + (T 00 + T zz)m3−i

]
miz

−Dzz
i m2

iz + D0z
i êz · [mi(r,t) × ∂tmi(r,t)]

}
+ 2J 2T 0zêz · [m1(r,t) × ∂tm2(r,t)

+ m2(r,t) × ∂tm1(r,t)], (9)

where D00
i ,Dzz

i ,D0z
i ,T 00,T 0z, and T zz are functions of t,J,mi ,

and the lattice spacing a. The Berry phases are represented by
the cross-product terms. The terms proportional toD0z

i shift the
Berry phases introduced in Eq. (3), while the term proportional
to T 0z is a mixed Berry phase term. We remark that T 0z ∝ t ;
thus, no mixed Berry phase appears if t = 0.

Furthermore, the coupling of m1 and m2 given by Eq. (4)
is renormalized by the first line in Eq. (9) and becomes
anisotropic. This leads to in-plane and out-of-plane effective
exchange couplings given by

λ
‖
eff = λ + 2J 2(T 00 − T zz), (10)

λ⊥
eff = λ + 2J 2(T 00 + T zz). (11)

An evaluation of our analytic expressions (Appendix A)
reveals that the dynamically generated coupling favors AFM
alignment of the two magnetic components. Indeed, using
Eqs. (A19) and (A21) of Appendix A, we obtain

T 00 − T zz = t2
[
2|t2 − J 2m1m2| + 2t2 + J 2

(
m2

1 + m2
2

)]
2a2|t2 − J 2m1m2|(M+ + M−)3

,

(12)

T 00 + T zz = t2[1 + sgn(t2 − J 2m1m2)]

a2(M+ + M−)3
, (13)

FIG. 2. The anisotropic fluctuation-induced antiferromagnetic
exchange coupling of m1 and m2 at the surface, which renormalizes
the exchange coupling induced from the bulk. (a) In the component
along the mean-field direction, the coupling constant is given by
T 00 + T zz (see main text) and shows a finite discontinuity at μ = τ

(dashed line). (b) In the component orthogonal to the mean-field
direction, the AFM coupling T 00 − T zz diverges at the discontinuity.
The color scale is identical in both plots. (c) The quantities T 00 (thin
solid blue line), T zz (dash-dotted blue line), T 00 + T zz (bold solid
red line), and T 00 − T zz (dashed red line) as a function of μ for a
specific value of τ (τ = 0.45), which is indicated by the thin white
dotted lines in (a) and (b). (d) The anisotropy terms Dzz

1 (thin solid
blue line), Dzz

2 (dashed blue line), and D00
i + Dzz

i (bold solid red line,
identical for i = 1,2) behave similarly, showing a discontinuity at
τ = μ. The vicinity of this line is excluded from the further analysis.

where

M2
± = J 2

2

(
m2

1 + m2
2

) + t2

±J 2

2
|m1 + m2|

√
(m1 − m2)2 +

(
2t

J

)2

. (14)

The coupling constants show a discontinuity at t2 = J 2m1m2

or, equivalently, τ = μ, as shown in Fig. 2. Indeed, we see
that Eq. (12) diverges for t2 = J 2m1m2, while (13) vanishes
when t2 < J 2m1m2. This divergence obviously does not occur
when m1m2 < 0, corresponding to the AFM case, further
corroborating the favoring of the AFM alignment. Physically,
the divergence for τ = μ implies the vanishing of the in-plane
susceptibility.

The remaining terms in Eq. (9) describe a z-axis anisotropy
in both magnetizations. As we mentioned in Sec. II, our
model does not account for possible anisotropy contributions
originating with the bulk of the magnet. Such terms would
simply be renormalized by the corresponding coefficients in
Eq. (9) without changing the physical picture.

Our view of the dynamically generated surface terms as
corrections to the bulk values will hold as long as the surface
effects are not too large. As can be seen from Fig. 2, within our
model some surface terms are divergent at the discontinuity at
μ = τ . Therefore, the vicinity of this line in parameter space
will be excluded in our further analysis.

As a side remark, the fluctuation effects discussed in this
section can easily be generalized to account for magnetizations
that are, at mean field, tilted relative to the surface. We have
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checked that Eq. (9) remains valid when the z components are
replaced by mean-field components in an arbitrary direction.

B. Effective Dirac Lagrangian

The term h2�̃†A−1�̃ in Eq. (8) may now be added to Eq. (1)
to yield an effective action for the Dirac fermions,

Seff =
∫

dt

∫
d2rLeff =

∫
dt

∫
d2r

(
LD + h2�̃†A−1�̃

)
.

(15)
Multiplying out �̃†A−1�̃ into single-fermion operators again,
we find the effective Lagrangian of the Dirac electrons at the
coupled surfaces,

Leff = LD + γ�†
(

t2

J 2
− m1 · m2

)
�

+�†(J1m1 · σ + J2m2 · σ )�, (16)

where we have defined the constant

γ = 2th2J 2

det A
(17)

and the effective magnetic coupling constants for the two
sublattices

Ji = h2J

det A

(
J 2m2

3−i − t2
)
, (18)

where

det A = ( − ∂2
t − t2

)2 + J 2∂2
t

(
m2

1 + m2
2

)
+ J 2(J 2m2

1m2
2 − 2t2m1 · m2

)
. (19)

In det A, the fluctuations in m1,2 are not of leading or-
der. Therefore, we will approximate the determinant in the
Dirac Lagrangian by its mean-field value det Amf = t4 +
J 2[J 2m2

1m
2
2 − 2t2m1m2], whereby we also neglected higher-

order time derivatives in the low-frequency limit. Furthermore,
we assume that the coupling h of the surface fermions χ and �

at the interface is small compared to the internal energy scales
of the magnet, t and Jmi . Otherwise, one obtains a renormal-
ization of the time scale. It is interesting to note that the term
∝ γ in Eq. (16) contributes to the chemical potential of �.
The chemical potential may be tuned by adjusting φ appearing
in Eq. (1), and the mean-field part of the second term in Eq. (16)
may thus always be adjusted away. We will keep the remainder
only to linear order in the fluctuations.

Note that the sign of Ji in Eq. (18) depends on the parameter
t appearing in Eq. (5), as well as the magnitude of the magnetic
moments. This is a key observation that we will return to when
discussing the topological effects in the next section.

IV. TOPOLOGICAL MAGNETOELECTRIC EFFECTS

Now, we express the effective Lagrangian equation (16) as

Leff = �(i∂/ + m�)� + �(σ̃ − a/)�, (20)

where the first term is the mean-field part, with ∂ = (∂t ,vF ∇‖)
and m� = J1m1 + J2m2, whereas the second term contains

the fluctuating fields σ̃ = J1m̃1z + J2m̃2z and

a =
⎛
⎝−e(ϕ + φ) + γ (m1m̃2z + m2m̃1z)

J1m̃1y + J2m̃2y

−J1m̃1x − J2m̃2x

⎞
⎠. (21)

From this representation, one can see that the out-of-plane
fluctuations of the magnetization contribute to the effective
electric potential at the interface. This is a result of the
fluctuations in the chemical potential that we have observed
in Eq. (16). To obtain an effective field theory for the
magnetizations that contains the proximity effects induced by
the topological insulator, we also have to integrate out the re-
maining fermions � and the fluctuating Coulomb potential ϕ.
Equation (20) is formally equivalent to the field theory studied
in Refs. [30,31], given that the mass term m� is nonzero. This
is naturally the case for FMs and FiMs (except at μ = τ , which
we already excluded), while it might be enforced by doping in
the case of an AFM.

Integrating out � yields the fluctuation-induced Lagrangian
to one-loop order in the vacuum polarization diagrams [30,31],

δLeff = εμνλa
μ∂νaλ

8π
− (εμνλ∂

νaλ)2

24πm�

− m�σ̃ 2

2π
+ (∂σ̃ )2

24πm�

.

(22)

The first term is the CS term that is responsible for all
topologically protected contributions to the Lagrangian. The
other terms correspond to a Maxwell term and out-of-plane
anisotropy.

Besides these dynamical terms, a term describing the energy
at mean field is produced after all fermionic fields have been
integrated out. This term can be expanded into a Landau theory
for the mean-field magnetizations at the BMI-TI interface. The
Landau expansion can be found in Appendix B, where we find
that the quadratic term is always negative. This serves as a
check that our model, where we treated m1,2 as parameters, is
consistent with the existence of a magnetic phase.

Reinserting a, we can separate δLeff into a Coulomb-
interaction (ϕ-dependent) part Lϕ and the remaining dy-
namically generated terms Ldyn. After integrating out ϕ, the
Coulomb contributions become

Lϕ(r,t) = 2ρ(r,t)
∫

d2r ′ ρ(r′,t)
|r − r′| , (23)

with the charge density

ρ = e

8πvF

∇‖ · (J1m1 + J2m2) + e2

24πm�

∇‖Eext

− e

24πm�vF

[∇‖ × ∂t (J1m1 + J2m2)] · êz

+ γ e

24πm�

(∇‖)2(m1m2z + m2m1z), (24)

where Eext = −∇φ is the externally applied electric field. We
also define the Coulomb field induced by the charge density,

ECou(r) = −
∫

d2r ′ r − r′

|r − r′|3 ρ(r′). (25)

For low frequency and momentum, the last two terms in
Eq. (24) will be negligible compared to the first two terms.
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The part of the Lagrangian that is due to the nontrivial
topology (i.e., stemming from the CS term), where we write
M = J1m1 + J2m2 for brevity, can be expressed explicitly as

Ltopol = e

4πvF

M‖ · (Eext + ECou) − 1

8πv2
F

(M × ∂tM) · êz

+ γ

4πvF

M · ∇‖(m1m2z + m2m1z). (26)

The first term represents the magnetoelectric coupling, in-
volving both the external field and the fluctuation-induced
Coulomb field. The second term is a Berry phase. Unlike the
Berry phase generated by the fluctuations of χ , this expression
always includes mixed terms, regardless of the parameter t .
Finally, we also obtain a topological coupling of the magnetic
in-plane and out-of-plane fluctuations.

At this point, we can discuss how the system will respond to
an electric field. This is the main result of our paper. As we can
see from Eq. (26), the electric field is coupled to M in the same
way as it couples to the magnetic polarization in the usual TME
effect. Now, let us write M in terms of the net magnetization
m = m1 + m2 and the staggered field l = m1 − m2,

M = 1
2 (J1 + J2)m + 1

2 (J1 − J2)l. (27)

Obviously, if J1 and J2 have the same sign, an electric field
will mainly generate a net in-plane magnetization, while the
coupling to the staggered field is small. Overall, the system
will behave as one would expect for a simple FM. However, if
J1 and J2 have opposite signs, an electric field will mainly
induce a staggered field in the plane, while the response
in the net magnetization will be weak. This is because the
usual TME effect takes place on both sublattices, but with
opposite direction. Going back to Eq. (18), it is easy to find
the parameter region where this TSE effect can be found. In
terms of the dimensionless model parameters, the condition
for J1 and J2 having opposite signs is μ2 < τ < 1 (see Fig. 3).
A purely TSE response is expected if J1 = −J2, which is the
case if τ = 1

2 (1 + μ2). Remarkably, the predominantly TSE
response can appear even in a FM material (μ > 0) if it consists
of multiple magnetic components per unit cell with different
magnitudes and a suitable parameter t . Thus, it is possible that
experiments fail to detect the usual TME effect even when a
decent gap opening occurs. In contrast, a purely AFM material
(μ = −1) would not show any coupling to the staggered field,
even in the presence of a mass term m� by magnetic doping,
because J1 = J2 for equally strong magnetic moments on the
two sublattices. Our model of the BMI is quite simple, and for
a real material it might be much harder to find the parameter
regions that allow for the observation of the TME or TSE
effect. However, it is a remarkable finding that the overall
topological response in a BMI-TI heterostructure can depend
dramatically on microscopic details of the magnet.

A restriction on our findings is imposed by the discontinuity
discussed in the previous section. Due to divergent terms, our
results on the TSE effect will not be applicable for parameters
in the vicinity of the line μ = τ in Fig. 3.

Previous work has found a Coulomb-mediated magnetic
dipolar interaction [28]. The Coulomb interaction in the
present work will lead to the same effect within each sublattice.
Moreover, there will be a dipolar interaction between the

FIG. 3. Left: parameter regions of the bipartite magnet where the
topological response to an electric field has the same (white area) or
opposite (gray area) direction on the two sublattices, corresponding
to a predominantly magnetoelectric (TME) or staggered field electric
(TSE) effect, respectively. Here, τ is the dimensionless amplitude
of the coupling of the fermions on the two sublattices, and μ is
the ratio of the mean-field values of the magnetizations on the
sublattices. Close to the dashed line at μ = τ , our results may not
be applicable. Right: illustration of the topological effects for a FiM.
(a) Both magnetizations m1 and m2 (black) pointing in their mean-
field directions. (b) TME effect: if the topological response to the
electric field E (red) has the same sign on both sublattices, an in-plane
net magnetization m‖ (blue) is generated, while the induced in-plane
staggered field l‖ (orange) is small. (c) TSE effect: if the topological
response to e has opposite signs for m1 and m2, an in-plane staggered
field is generated, while m‖ is small. The overall sign of these effects
depends on the sign of the mass term m� .

sublattices. Again, for a system in the TSE regime, we will get
an effect in the opposite direction. Thus, the intercomponent
dipolar interaction will favor counteralignment instead of
alignment of m1,‖ and m2,‖.

Our model also reveals a topological coupling of the in-
plane components of the magnetic moments and the gradient
in the out-of-plane component as described by the last term
in Eq. (26), which can be understood as an anomalous spin-
stiffness term. This term has not been considered in previous
studies and can lead to a spin canting effect if the magnetization
is not homogeneous, as in the presence of spin waves or domain
walls. For the observation of the electromagnetic response it
will, however, not be important.

The full Lagrangian describing the magnetic moments in
the system is now given by

Ltot = Lbulk + Lϕ + Ldyn + δLmag, (28)

from which the coupled LLEs for the motion of m1 and m2 at
the interface can be derived. The LLE takes the form takes the
form

∂t

(
m1

m2

)
= �−1

(
m1 × d1

m2 × d2

)
. (29)

For details, we refer to Appendix C. The (6 × 6) matrix
� contains all Berry phase terms. In particular, there are
off-diagonal terms that stem from the fluctuation-induced
mixed Berry phases. Such terms are generated by the fermions
χi (if t �= 0) as well as the Dirac fermions �. The contribution
by the fluctuations of � is of topological origin, as it
stems from the CS term. The effective fields di contain, in
addition to spin-stiffness and anisotropy terms, a topological
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part,

di
topol = eJi

4πvF

ECou + eJi

4πvF

Eext − γm3−i

4πvF

(∇‖ · M)êz

− γ Ji

4πvF

∇‖(m1m2z + m2m1z), (30)

corresponding to Eq. (26). The first two terms show explicitly
how the external electric field and the Coulomb field affect
the magnetization dynamics as a consequence of the magne-
toelectric effects discussed above.

V. CONCLUSION

We have studied the topological effects at the interface
of a TI and a BMI within an analytically accessible model
that accounts for the fermionic quantum fluctuations at the
surfaces of both materials. We have demonstrated that the TME
effect that is known for magnetic TI surfaces can take
the opposite sign for the different magnetic components,
depending on microscopic details of the material. This leads
to an overall TSE response to an electric field, while the
induced net magnetization in the plane can be weak even in
the presence of a stable energy gap in the Dirac dispersion.
Thus, experiments that aim at detecting the TME effect might
also look for a response in the staggered field. A response in
the magnetization can be absent even when a FM insulator is
used if there are multiple magnetic components with different
magnitudes. In addition to the TSE effect, we have derived
several dynamically generated Berry phases, including terms
mixing m1 and m2. We also found a topological coupling
of in-plane and out-of-plane magnetic components which is
present for nonhomogeneous magnetization. The fluctuations
of the fermions on the magnets’ surface cause discontinuity in
our model, close to which our results are not applicable.
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APPENDIX A: DERIVATION OF THE SURFACE
CORRECTIONS

Here, we derive the magnetic surface terms discussed in
Sec. III A that are generated by Tr ln A in the Gaussian integral,
Eq. (8). Splitting A = Amf + Afl into the mean-field part and
the quantum fluctuations,

Amf =
(

i∂t + Jm1σz t

t i∂t + Jm2σz

)
, (A1)

Afl =
(

J m̃1 · σ 0
0 J m̃2 · σ

)
, (A2)

we obtain the usual expansion

Tr ln A = Tr ln Amf − 1
2 Tr(GAfl)2, (A3)

where the first term is a constant corresponding to the ground-
state energy that will be dealt with in Appendix B, while
the second term describes the dynamics close to equilibrium

to leading order. The propagator G is given by (Amf)
−1

. In
reciprocal space and imaginary time, G depends only on the
frequency ω and not on momentum because the hopping terms
in our model are momentum independent. For all momentum
integrals, we use π/a as a cutoff value, where a is the lattice
spacing. The propagator can be written in the form

G = 1

det Amf

(
D0

1 + Dz
1σz T 0 + T zσz

T 0 + T zσz D0
2 + Dz

2σz

)
, (A4)

where the components are

D0
1(ω) = iω3 + iωJ 2m2

2 + iωt2, (A5)

D0
2(ω) = iω3 + iωJ 2m2

1 + iωt2, (A6)

Dz
1(ω) = Jm1ω

2 + J 3m2
2m1 − t2Jm2, (A7)

Dz
2(ω) = Jm2ω

2 + J 3m2
1m2 − t2Jm1, (A8)

T 0(ω) = tω2 + t3 − tJ 2m1m2, (A9)

T z(ω) = −itωJ (m1 + m2), (A10)

and the determinant is

det Amf(ω) =
[
ω2 + J 2

2

(
m2

1 + m2
2

) + t2

]2

− J 4

4

(
m2

1 − m2
2

)2 − t2J 2(m1 + m2)2. (A11)

Performing the trace in Eq. (A3) at T = 0 then leads to the
Lagrangian

δLmag(�) = −J 2
∑
i=1,2

{[
D00

i (�) − Dzz
i (�)

]
m̃i(�) · m̃i(−�)

+ 2Dzz
i (�)m̃i,z(�)m̃i,z(−�)

+ i
[
Dz0

i (�) − D0z
i (�)

]
êz · [m̃i(�) × m̃i(−�)]

}
− J 2[T 00(�) − T zz(�)][m̃1(�) · m̃2(−�)

+ m̃1(−�) · m̃2(�)] − iJ 2[T z0(�) − T 0z(�)]

× êz · [m̃1(�) × m̃2(−�) + m̃2(�) × m̃1(−�)]

− 2J 2T zz(�)[m̃1z(�)m̃2z(−�)

+ m̃1z(−�)m̃2z(�)], (A12)

with frequency �, containing the integrals

D
αβ

i (�) = 1

a2

∫
dω

2π

Dα
i (ω)Dβ

i (ω − �)

[det Amf(ω)][det Amf(ω − �)]
(A13)

and

T αβ(�) = 1

a2

∫
dω

2π

T α(ω)T β(ω − �)

[det Amf(ω)][det Amf(ω − �)]
, (A14)

with α,β ∈ {0,z} and i = 1,2. These integrals can be solved
exactly by partial fraction decomposition since the zeros of the
denominator are known: det Amf(ω) = 0 if ω2 = N±, with

N± = ±J

√
J 2

4

(
m2

1 − m2
2

)2 + t2(m1 + m2)2

− 1

2
J 2

(
m2

1 + m2
2

) − t2, (A15)
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where N− < 0 and N+ � 0. Namely, N+ = 0 if t2 =
J 2m1m2, i.e., in terms of the dimensionless parameters, if
τ = μ. This is where the discontinuity which is discussed in
Sec. III A is located. In the integrals, we neglect terms of order
�2 or higher in the long-wavelength limit and obtain

D00
1 (�) = 1

4a2
√−N+(N+ − N−)3

{ − (N+)3 + 5(N+)2N−

+ 2
(
J 2m2

2 + t2)[(N+)2 + 3N+N−]

+ (
J 2m2

2 + t2
)2

(3N+ + N−)
}

+ (same with N+ ↔ N−) + O(�2), (A16)

D0z
i (�) = i�

16a2N+√−N+(N− − N+)3

× [
Jm1(N+)2

(
2N+ + 9N−)

+ Jm1
(
J 2m2

2 + t2
)
N+(N+ − 5N−)

+ Jm2
(
J 2m2

2 + t2)(J 2m1m2 − t2)

× (10N+ − 2N−)
]

+ (same with N+ ↔ N−) + O(�3), (A17)

Dzz
1 (�) = −J 2

4a2N+√−N+(N+ − N−)3

×[
m2

1(N+)2(N+ + 3N−)

+ 2m1m2(J 2m1m2 − t2)N+(3N+ + N−)

+ m2
2(J 2m1m2 − t2)2(5N+ − N−)

]
+ (same with N+ ↔ N−) + O(�2), (A18)

T 00(�) = −t2(J 2m1m2 − t2 − N+)

a2
√−N+(N+ − N−)2

×
[

1 + (5N+ − N−)(J 2m1m2 − t2 − N+)

4N+(N+ − N−)

]

+ (same with N+ ↔ N−) + O(�2), (A19)

T 0z(�) = i�t2(m1 + m2)

16a2N+√−N+(N− − N+)3

× [(t2 − J 2m1m2)(10N+ + 2N−)

− 7(N+)2 + N+N−]

+ (same with N+ ↔ N−) + O(�3), (A20)

T zz(�) = t2J 2(m1 + m2)2(3N+ + N−)

4a2
√−N+(N+ − N−)3

+ (same with N+ ↔ N−) + O(�2). (A21)

Expressions for D00
2 (�),D0z(�), and Dzz

2 (�) can be ob-
tained from Eqs. (A16), (A17), and (A18), respectively, by
exchanging m1 ↔ m2. It turns out that D00

1 + Dzz
1 = D00

2 +
Dzz

2 = −(T 00 + T zz). Furthermore, Dz0
i (�) = D0z

i (−�) =
−D0z

i (�) and T z0(�) = T 0z(−�) = −T 0z(�). These rela-
tions follow by substituting ω → (ω + �) in Eqs. (A13)
and (A14) and from the fact that only odd powers of �

appear in Eqs. (A17) and (A20). For ease of notation, we
write D0z

i (�) = i�D0z
i and T 0z(�) = i�T 0z, where D0z

i and
T 0z

i are frequency independent.
The effective magnetic surface Lagrangian that is evoked

by the fermionic fluctuations, Eq. (A12), is, in real space and
time, given by

δLmag(r,t) = −J 2
∑
i=1,2

{(
D00

i − Dzz
i

)
m̃2

i (r,t) + 2Dzz
i m̃2

i,z(r,t)

− 2D0z
i êz · [m̃i(r,t) × ∂tm̃i(r,t)]

}
− 2J 2(T 00 − T zz)m̃1(r,t) · m̃2(r,t)

+ 2J 2T 0zêz · [m̃1(r,t) × ∂tm̃2(r,t) + m̃2(r,t)

× ∂tm̃1(r,t)] − 4J 2T zzm̃1z(r,t)m̃2z(r,t).

(A22)

Equation (9) in Sec. III A follows by writing the Lagrangian
in terms of mi = mi êz + m̃i again, where constant terms
are discarded. The meaning of the different contributions is
discussed in the main text.

In the special case of a pure AFM, where m1 = −m2, a
mathematical subtlety arises. Namely, the solution of the in-
tegrals D

αβ

i (�) and T αβ(�) by partial fraction decomposition
requires a different ansatz because the zeros of the denominator
are degenerate: N+ = N− = −J 2m2

1 − t2. The integrals are
notably easier as a consequence of multiple cancellations, and
we find, again to leading order in � in the low-frequency
regime,

D00
1,AFM(�) = D00

2,AFM(�) = − 1

4a2
√

J 2m2
1 + t2

+ O(�2),

(A23)

D0z
1,AFM(�) =−D0z

2,AFM(�)= i�Jm1

8a2
(
J 2m2

1 + t2
)3/2 + O(�3),

(A24)

Dzz
1,AFM(�) = Dzz

2,AFM(�) = J 2m2
1

4a2
(
J 2m2

1 + t2
)3/2 + O(�2),

(A25)

T 00
AFM(�) = t2

4a2
(
J 2m2

1 + t2
)3/2 + O(�2), (A26)

T 0z
AFM(�) = T zz

AFM(�) = 0. (A27)

We have checked that these expressions are identical to the con-
tinuous limit m2 → −m1 of the integrals in the general case.
Notably, no mixed Berry phase term is generated for the AFM.
The fluctuation-induced Lagrangian takes the simplified form

δLAFM
mag

= J 2
[
t2m1 · m2 + 2t2m1(m1z − m2z) + J 2m2

1

(
m2

1z + m2
2z

)]
−2a2

(
J 2m2

1 + t2
)3/2

+ J 3m1

4a2
(
J 2m2

1 + t2
) êz · (m1 × ∂tm1 − m2 × ∂tm2).

(A28)
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APPENDIX B: FLUCTUATION-INDUCED
LANDAU THEORY

In this appendix, we present the Landau expansion of
the energy in terms of the mean-field magnetizations at
the interface. Here, we allow arbitrary directions of the
magnetizations. Thus, the Landau theory is still valid if m1

and m2 are not aligned with each other or the z axis at mean
field. For simplicity, we drop the overline notation indicating
mean-field values in this appendix.

The energy contains two contributions, namely, (i) one
from the term det A in Eq. (A3) originating with the quantum
fluctuations of the sublattice fermions and (ii) one from a
similar term det B generated by the quantum fluctuations of
the Dirac fermions, where B is defined such that Eq. (16) can be
written as Leff = �†B�. The energy density is then given by

E = −
∫

dω

2π

∫
d2k

2π
(ln det A + ln det B), (B1)

where we use the cutoff value π/a in divergent momentum in-
tegrals. We did not include Landau terms for the bulk in Eq. (3);
however, any bulk contributions would simply add up with the
interface terms shown here. We obtain the following expansion
to fourth order, where ⊥ indicates the component orthogonal
to the interface and ‖ indicates the in-plane component:

E = J 2

[ −1

4a2|t | (m1 − m2)2 − t2K2(m1 + m2)2
⊥

−
(

t2K2
(
1 − v2

F

) + 5h4

128πv2
F |t |3

)
(m1 + m2)2

‖

]

+ J 4
[
c1

(
m4

1 + m4
2

) + c2m
2
1m

2
2 + c3

(
m1 · m2

)2

+ c4
(
m2

1 + m2
2

)
m1 · m2 + c5

(
m2

1m
2
1‖ + m2

2m
2
2‖

)
+ c6

(
m2

1m
2
2‖ + m2

2m
2
1‖

) + c7
(
m2

1 + m2
2

)
(m1‖ · m2‖)

+ c8
(
m2

1‖ + m2
2‖

)
m1 · m2 + K1(m1‖ + m2‖)4

+ 2c8(m1‖ · m2‖)(m1 · m2)
]
. (B2)

The coefficients of the fourth-order terms are

c1 = 1

64a2|t |3 + K1 + K3 − K4, (B3)

c2 = −7

64a2|t |3 + K1 + K2 + K3 − K4, (B4)

c3 = 5

16a2|t |3 + 4K1 − 4K4, (B5)

c4 = −1

16a2|t |3 + 4K1 + K2 + 2K3 − 4K4, (B6)

c5 = 7h4

1024πv2
F |t |5 − 2K1 − v2

F (K3 − K4), (B7)

c6 = 237h4

1024πv2
F |t |5 − 2K1 − v2

F (K2 + K3 − K4), (B8)

c7 = 47h4

512πv2
F |t |5 − 4K1 − v2

F (K2 + 2K3 − 2K4), (B9)

c8 = −63h4

512πv2
F |t |5 − 4K1 + 2v2

F K4, (B10)

and we have used the constants

K1 = 6435h8

215πv2
F |t |9 , (B11)

K2 = h4 92π2v2
F + 108πvF a|t | + 33a2t2

48vF |t |5(2πvF + a|t |)3
+

5h4 ln
(
1 + 2πvF

a|t |
)

64πv2
F |t |5 , (B12)

K3 = h4 1408π3v3
F + 2396π2v2

F a|t | + 1392πvF a2t2 + 279a3|t |3
384vF |t |5(2πvF + a|t |)4

+
35h4 ln

(
1 + 2πvF

a|t |
)

512πv2
F |t |5 , (B13)

K4 = h4 9008π4v4
F + 20000π3v3

F a|t | + 16920π2v2
F a2t2 + 6500πvF a3|t |3 + 965a4t4

1280vF |t |5(2πvF + a|t |)5
+

63h4 ln
(
1 + 2πvF

a|t |
)

1024πv2
F |t |5 . (B14)

It turns out that the second-order term is always negative, indicating a stable magnetic phase at the interface.
For the special cases of a FM, with m1 = m2 = n, and an AFM, with m1 = −m2 = n, the Landau theory can be simplified:

EFM = −4J 2

[
t2K2n

2
⊥ +

(
t2K2

(
1 − v2

F

) + 5h4

128πv2
F |t |3

)
n2

‖

]
+ J 4

[
(16c1 + c2 + c3 + 2c4)n4

+ 2(c5 + c6 + c7 + 2c8)n2
‖n

2 + 16K1n
4
‖
]
, (B15)

EAFM = −J 2n2

a2|t | + J 4
[
(16c1 + c2 + c3 − 2c4)n4 + 2(c5 + c6 − c7)n2

‖n
2 + 16K1n

4
‖
]
. (B16)
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APPENDIX C: LANDAU-LIFSHITZ EQUATION

Applying the Euler-Lagrange formalism in the total Lagrangian equation (28) leads to the two equations of motion (with
i = 1,2 and j = 3 − i),

− mi

m2
i

× ∂tmi + bêz × ∂tmi + cêz × ∂tmj = di , (C1)

with the coefficients

b = 4J 2D0z
i − J 2

i

4πv2
F

, (C2)

c = 4J 2T 0z − J1J2

4πv2
F

(C3)

and the effective field di = di
topol + di

non-top, which consists of a part generated by the CS term,

di
topol = eJi

4πvF

ECou + eJi

4πvF

Eext − γmj

4πvF

(∇‖ · M)êz − γ Ji

4πvF

∇‖(m1m2z + m2m1z), (C4)

and the remainder containing various spin-stiffness and anisotropy terms in addition to the renormalized magnetic coupling of
the sublattices,

di
non-top = −κ

(∇‖
)2

mi − λmj − 4J 2Dzz
1 m1zêz − 2J 2diag(T 00 − T zz,T 00 − T zz,T 00 + T zz) · mj

+ 2J 2
[(

D00
i + Dzz

i

)
mi + (T 00 + T zz)mj

]
êz + m�Ji

πv2
F

(J1m1 + J2m2 − Mz)êz − Ji

12πm�v2
F

∂2
t M

− Ji

12πm�vF

∂t

[
γ∇‖(m1m2z + m2m1z) − eEext

] × êz − Ji

12πm�

∇‖
(∇‖ · M

) − γmj

12πm�vF

[
∂t (∇‖ × M) · êz

]
êz

+ γ 2

12πm�

(∇‖
)2(

m2
2m1z + m2

1m2z

)
êz + γ e

12πm�

(∇‖ · Eext)êz − Ji

12πm�

(∇‖
)2

Mzêz, (C5)

with the shorthand notation M = J1m1 + J2m2. The second and third terms in Eq. (C1) are due to the fluctuation-induced Berry
phases. Taking the cross product with mi in Eq. (C1), using ∂tm2

i = 0, one obtains

(1 − bmiz)∂tmi − cmiz∂tmj + c(mi · ∂tmj )êz = mi × di . (C6)

The equations of motion can now be rewritten in matrix form,

� ·
(

∂tm1

∂tm2

)
=

(
m1 × d1

m2 × d2

)
, (C7)

where the entries of the (6 × 6) matrix � follow from Eq. (C6):

� = 1(6×6) +

⎛
⎜⎜⎜⎜⎜⎝

−bm1z 0 0 −cm1z 0 0
0 −bm1z 0 0 −cm1z 0
0 0 −bm1z cm1x cm1y 0

−cm2z 0 0 −bm2z 0 0
0 −cm2z 0 0 −bm2z 0

cm1x cm2y 0 0 0 −bm2z

⎞
⎟⎟⎟⎟⎟⎠

. (C8)
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Semiconductor nanowires with strong spin-orbit coupling and proximity-induced s-wave superconductivity in
an external magnetic field have been the most promising settings for approaches towards experimental evidence
of topological Majorana zero modes. We investigate the effect of tilting the magnetic field relative to the spin-orbit
coupling direction in a simple continuum model and provide an analytical derivation of the critical angle, at which
the topological states disappear. We also obtain the differential conductance characteristic of a junction with a
normal wire for different tilting angles and propose a qualitative change of the dependence of the zero-energy
differential conductance on the tunnel barrier strength at the critical angle as a criterion for establishing the
topological nature of the observed signal.
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I. INTRODUCTION

Many decades after the prediction of Majorana
fermions [1], with no direct and unequivocal experimental
evidence for their existence, the possibility of finding emergent
Majorana modes of a topological nature in condensed matter
systems has evoked considerable interest in a number of
systems [2–13], partly because of their expected non-Abelian
braiding statistics [2,14,15]. Among the proposed systems,
semiconductor nanowires [16] with strong spin-orbit coupling
(SOC) and induced s-wave superconductivity in an external
magnetic field (Majorana nanowires) have become the most
prominent setting. Here, suspected signatures of Majorana
zero modes have already been measured [17–23]. However,
the experimental findings do not match the predictions pre-
cisely, and some predictions therefore have been made for
more realistic nanowire models [24–28]. This includes, for
instance, finite temperature, finite-size effects, and the three-
dimensional wire geometry. Still, further distinguishing crite-
ria for the existence of the topological states in experiment are
desirable.

In the present paper, we go back to a simple and analytically
accessible one-dimensional continuum model. We focus on
the possibility of driving the topological phase transition by
changing the direction of the magnetic field relative to the SOC
direction, while the standard choice is taking them orthogonal.
It is immediately clear that the Majorana zero modes cannot
exist for arbitrary field directions. Some experiments have
included a rotation of the external magnetic field, but there
has been limited quantitative analysis [24,29] of the precise
impact of the field direction on the Majorana zero modes and
the measured quantity, namely the differential conductance
in a junction of the Majorana nanowire with a normal
lead.

In this paper, we carry out a detailed analysis of the effect
of rotating the magnetic field, with particular emphasis on
identifying features of the differential conductance directly
connected to the the topological character of the zero-energy
modes. In Sec. II, we formulate the Hamiltonian of the system.
In Sec. III, we present a way to analytically derive the allowed
field directions in terms of a critical angle, for which the system
remains in the topological phase. Our analytical results confirm

the numerically inspired results of Ref. [29]. In Sec. IV,
we compute the differential conductance characteristics of
a normal-Majorana nanowire junction for various angles of
the Zeeman field relative to the spin-orbit coupling direction.
In particular, we concentrate on the zero-energy differential
conductance and propose one further criterion for testing the
topological origin of the observed peak by varying the tunnel
barrier strength while tilting the field across the critical angle.
The main result is that below some critical tilting angle away
from the direction where the Zeeman field and the SOC are
orthogonal, the value of the zero-energy peak is quantized in
units of 2 e2

h
, where e is the electron charge and h is Planck’s

constant, independent of the tunnel barrier of the junction,
the value being protected by topology. Beyond a certain
angle, this is no longer so, and the value of the zero-energy
peak depends on the barrier potential. Conclusions are given
in Sec. V.

II. MODEL HAMILTONIAN

We consider a one-dimensional semiconductor nanowire
with SOC strength α and a proximity-induced s-wave super-
conducting gap �. Thermal effects can be taken into account
in a simple way by taking into account the temperature
dependence of the gap � in the standard way, at least for
temperatures not too close to the superconducting transition
temperature. In this paper, we choose the nanowire to be
aligned with the x axis, with the SOC in the z direction. We
express the external magnetic field B in spherical coordinates,
with the polar angle ϑ measured from the z axis and the
azimuthal angle ϕ measured from the x axis, and introduce
the Zeeman energy EZee = 1

2gμBB. A sketch of the system
and the chosen coordinates can be found in Fig. 1. The
Bogoliubov-De Gennes (BdG) Hamiltonian acting on spinors
ψ = (u↑,u↓,v↑,v↓)T, where u,v refer to the electron and hole
part of a quasiparticle and ↑,↓ to the spin in the z direction,
respectively, reads [16]

H (k) =
(

hn(k) hsc(k)

h
†
sc(k) −hT

n (−k)

)
, (1a)
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FIG. 1. (Color online) Schematic view of the system: The semi-
conductor nanowire (yellow) is placed on a bulk s-wave supercon-
ductor and defines the x axis of the coordinate system. The z axis is
parallel to the SOC direction (labeled S in the figure). The direction
of the magnetic field B is represented by the two angles ϑ (tilting
relative to the SOC) and ϕ (azimuthal rotation in the xy plane).

with the normal part

hn(k) =
(

ξk + EZee cos ϑ + kα EZee sin ϑe−iϕ

EZee sin ϑeiϕ ξk − EZee cos ϑ − kα

)

(1b)

and s-wave pairing

hsc(k) = hsc =
(

0 �

−� 0

)
, (1c)

where ξk = (�k)2/2m − μ, m is the effective electron mass,
and μ the chemical potential.

III. CRITICAL ANGLE

It is well-known theoretically that the system harbors
Majorana zero modes in the topological phase, EZee >√

�2 + μ2 [3,16,30], when B is orthogonal to the SOC
direction (ϑ = π

2 ). If the field is tilted, on the other hand,
the Majorana modes disappear at a critical angle [24,29]
ϑc, where the energy gap closes. Figure 2 illustrates the
eigenenergies of the BdG Hamiltonian Eq. (1) for parallel and
orthogonal field and at ϑ = ϑc. We note that level crossings
happen only at ϑ = π , thus the gap closes only indirectly
at ϑc. The second angle ϕ only gives a phase factor in
the eigenstates and is irrelevant for the eigenenergies and
the discussion of topological states. The critical angle was
observed to follow a rule equivalent to cos ϑc = �/EZee in
numerical calculations [29,31]. In this section, we provide the
analytical derivation of this rule.

Technically, the task is to find the angle at which the
low-energy band first reaches zero energy. The calculation
of the eigenenergies is done via the characteristic polynomial,
pk(E) = det (H (k) − E), which is of order 8 in momentum.
For E = 0, all odd powers of k vanish, leaving a biquartic
equation. With the substitution 	 = k2, it reads

p(	) =
[(

�2

2m
	 − μ

)2

− α2	 + �2 − E2
Zee

]2

+ 4α2(�2 − E2
Zee cos2 ϑ

)
	. (2)

FIG. 2. (Color online) The four eigenenergies of the BdG Hamil-
tonian Eq. (1) as a function of momentum for ϑ = π

2 (black dashed
lines), at the critical angle (green solid lines), where the gap closes
(here ϑc ≈ 0.81π ), and at ϑ = π (blue dotted lines). The orange line
indicates zero energy. Parameters: m = 1,� = 1.25,EZee = 1.5,α =√

1/2,μ = 0.

As long as the band gap remains open, pk(0) will be solved only
by complex momenta, whereas real solutions appear when B
is tilted beyond the critical angle. The real solutions of pk(0)
lead to non-negative solutions of p(	). To derive the critical
angle, we will exploit the special form of Eq. (2), being the
square of a quadratic polynomial in 	, with one additional
	-linear term containing the dependence on ϑ . We analyze the
quadratic expression first, and find its zeros

	1,2 = 1

2

(
2m

�2

)2 [
�2μ

m
+ α2

±
√(

�2μ

m
+ α2

)2

−
(

�2

m

)2 (
μ2 + �2 − E2

Zee

)]
.

(3)

To allow for topological states at all, (μ2 + �2 − E2
Zee) must

necessarily be negative [3,16,30]. Thus, Eq. (3) always yields
two real solutions, where 	1 > 0 and 	2 < 0. In the absence of
the linear term, Eq. (2) is positive semidefinite and will have
precisely the same solutions, just two-fold degenerate each. If,
however, the 	-linear term is present with positive (negative)
coefficient, the point symmetry of p(	) is lost and the solutions
become nondegenerate, where the positive solution is split in
two distinct complex (real) values, cf. Fig. 3. We conclude from
Eq. (2) that the system is in the topological phase, when �2 −
E2

Zee cos2 ϑ > 0. Consequently, the critical angle satisfies

cos ϑc = ± �

EZee
. (4)

Thus, we have analytically confirmed the numerical results
obtained in Ref. [29]. As the angle ϑ is increased through
the value ϑc, topologically trivial zero-energy states will
appear with the momentum ±√

	1. An alternative, but much
more lengthy, derivation of the same result using the dis-
criminant [32] of the fourth-order polynomial p(	) is also
possible.
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FIG. 3. (Color online) The characteristic polynomial p(	) of the
Hamiltonian at zero energy as a function of 	 = k2 for the tilting
angles ϑ = 0.74π (blue dashed line), the critical angle ϑc ≈ 0.81π

(green solid line), where positive solutions for 	 appear first, and ϑ =
0.9π . Parameters: m = 1,� = 1.25,EZee = 1.5,α = √

1/2,μ = 0.

The angle-resolved topological phase diagram is shown
in Fig. 4. If the Zeeman energy is just slightly larger than
the superconducting gap, ϑ can be varied over a wide range
without destroying the Majorana zero modes, whereas for
large Zeeman energy the tilting angle is restricted to a narrow
range about π

2 . In that sense, a high field does not lead to a more

stable topological phase, although EZee >
√

�2 + μ2 is a
necessary prerequisite [3,16,30]. This is readily seen, since
this latter condition acts on the energy gap at zero momentum,
which does not depend on the direction of the field. In contrast,
if the phase transition is driven by ϑ , the gap closes near the
Fermi momentum [29] at

√
	1, cf. Fig. 2, where increasing the

field strength pushes the low-energy band closer to zero.

IV. DIFFERENTIAL CONDUCTANCE CHARACTERISTICS

In the remainder of this paper, we focus on the differential
conductance characteristics of a junction of the Majorana
nanowire with a normal lead and the impact of tilting B. The
angular dependence of the differential conductance in such
junctions was briefly discussed in Ref. [24] based on numerical
studies of a tight-binding model. In contrast, we will analyze

FIG. 4. (Color online) The angle-resolved topological phase dia-
gram of the Majorana nanowire.

the current through the system in a simple continuum model.
In the following, we will for simplicity set μ = 0.

We assume infinite wire length and a tunnel barrier of
strength V at the junction (located at x = 0). The normal
(x < 0) and superconducting (x > 0) sections of the wire
are modeled with the same Hamiltonian Eq. (1), where we
just set � = 0 in the normal state. For electrons impinging
from the normal side onto the junction we investigate the
coefficients of reflected and transmitted waves. To solve the
scattering problem, we employ a Blonder-Tinkham-Klapwijk
(BTK) formalism [33], i.e., matching of wave functions at the
junction. The original BTK scheme is extended to account for
the spin as well.

At a given energy E, we first obtain all possible momenta
by solving pk(E) = 0 for the normal and the superconducting
wire. Exact diagonalization of Eq. (1) at each k (including
complex) then yields plane-wave states 
k(x) = ψke

ikx with
four-component spinors ψk . The incident electron wave 
 in

kin

is always chosen from the normal low-energy band. All
other states that correspond to incoming waves are discarded.
The scattering process comprises ordinary and Andreev
reflection into the normal lead, and transmission without
(k > 0) and with (k < 0) branch crossing into the super-
conducting lead. The corresponding scattering coefficients
are denoted ai,bi,ci,di , respectively, where i ∈ {1,2} labels
the pseudospin. The total wave functions on the normal and
superconducting side of the junction are then


n(x < 0) = 
 in
kin

+
∑
i=1,2

ai
ka,i
+ bi
kb,i

, (5)


sc(x > 0) =
∑
i=1,2

ci
kc,i
+ di
kd,i

. (6)

At the junction, we impose the boundary conditions


n(x → 0−) − 
sc(x → 0+) = 0 (7)

∂x

n(x → 0−) − ∂x


sc(x → 0+) = 2mV

�2

(0) (8)

and solve the resulting linear system of equations to obtain all
scattering coefficients. The probability current

J = �
m

Im(
†∂xτz
) + α

�

†σz
 (9)

carried by each outgoing wave, where we have taken into
account a contribution due to the SOC [34], is proportional to
the square of the absolute value of the respective coefficient.
Here, τz and σz denote Pauli matrices acting in particle-hole
and spin space, respectively. In the subgap regime, where the
Majorana modes reside, the system is effectively spinless,
therefore we will relinquish the distinction of states with
different pseudospin for the discussion of the scattering
probabilities, denoted A,B,C, and D. Then, C, for instance,
reads

C =
∑
i=1,2

|ci |2
∣∣ψ†

kc,i

(
Re(kc,i)τz + αm

�2 σz

)
ψkc,i

∣∣∣∣kin + αm
�2 ψ

†
inσzψin

∣∣ . (10)

Note that for A and B the term ψ
†
k τzψk gives always just −1

(holes, Andreev reflection) or 1 (electrons, ordinary reflection),
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FIG. 5. (Color online) The energy-resolved scattering coeffi-
cients (left scale) and differential conductance characteristic (right
scale) of a normal-Majorana nanowire junction at different tilting
angles of the magnetic field: Andreev reflection A (blue solid line),
ordinary reflection B (green dash-dotted line), transmission without
branch crossing C (red dotted line), transmission with branch crossing
D (purple dashed line), and differential conductance (black bold solid
line). Parameters: m = 1,� = 1.25,EZee = 1.5,α = √

1/2,V = 2.0.

respectively. The differential conductance at E through the
junction at zero temperature is finally given by [28,33] dI

dE
=

1 + A − B in units of e2

h
, and inside the gap, where C = D =

0, even simpler as dI
dE

= 2A by conservation of probability
(A + B + C + D = 1).

By this scheme, we obtain the scattering probabilities and
the differential conductance profile dI

dV
(E) of the junction for

different field directions, cf. Fig. 5. The scattering probability
profiles indicate the features of the band structure at the
respective angle, e.g., the gap width. In the topological phase,
the conductance peak at zero energy that signals the existence
of Majorana zero modes is clearly seen. The peak gets narrower
as the tilting angle of the field approaches the critical angle and
disappears in the trivial phase. As expected, the peak height
exhibits the quantized value [35–38] of 2 e2

h
due to resonant

Andreev reflection.
Attempts at detecting emergent Majorana zero modes

experimentally originally focused on the quantized value of
the zero-energy differential conductance as the hallmark of
such states. Under real conditions, however, only much smaller
values are observed [17,24]. Other, more qualitative and
more robust distinguishing criteria are required. We propose
that sharp change in the zero-energy differential conductance
peak at the critical tilting angle ϑc of the field provides an
appropriate further qualitative criterion for examining the
topological nature of measured signatures. In experiments, it
may be difficult to record the full conductance profiles as in
Fig. 5 with the required precision. Therefore, we propose to
measure the zero-energy differential conductance for different
tilting angles of the field while varying the tunnel barrier
strength of the junction. The predicted behavior is shown in
Fig. 6. A qualitative change of the dependence of dI

dE
(0) on

V should be observed at the critical angle upon entering the
trivial phase, where the conductance can be suppressed by
increasing the tunnel barrier. In the topological state, the value
of the zero-bias conductance peak is impervious to the change
in barrier strength, being protected by topology.

At finite temperatures well below the superconducting
transition temperature, the impact on the results in Fig. 5
is to slightly smear the sharp cusp at ϑc. The main change
in qualitative behavior above and below ϑc is robust. The
main effect on the critical angle itself can be accounted for
by taking into account the temperature dependence of the gap
in Eq. (4). Finite-size effects are also present, in principle.
A finite length of the Majorana nanowire causes an overlap
of the exponentially localized topological states at the ends

FIG. 6. (Color online) The differential conductance at zero en-
ergy as a function of the tilting angle of the field for different tunnel
barrier strengths V . Parameters: m = 1,� = 1.25,EZee = 1.5,α =√

1/2.
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of the wire [24]. Thus, the transition happens before the
low-energy band reaches zero and the true topological regime
is expected to be slightly narrower than predicted by ϑc.
Numerical data from Ref. [29] indicate, however, that this
effect is not important.

V. CONCLUSION

In this paper, we have studied semiconductor nanowires
with SOC and s-wave superconductivity in an external
magnetic field with arbitrary direction in an analytically
accessible continuum model. We have derived the critical
tilting angle ϑc of the field relative to the SOC direction, at
which the topological (Majorana) zero modes disappear. Our
result confirms recent numerical findings [29]. Furthermore,
we have considered normal-Majorana nanowire junctions and
obtained the differential conductance characteristics at various

angles, where, as expected, a stable peak at zero energy with the
quantized value of 2 e2

h
occurs as long as the field is not tilted

beyond the critical angle ϑc. The peak disappears for fields
aligned too much in the direction of the SOC, and the value
of the zero-energy differential conductance becomes strongly
dependent on the tunnel barrier strength. We have pointed
out the qualitative change of the dependence on the barrier
strength at the critical angle and suggest it as further criterion
to test the topological nature of the experimentally observable
signals, even if the theoretical quantized peak value may not
be reached under realistic conditions.
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[35] K. Sengupta, I. Žutić, H.-J. Kwon, V. M. Yakovenko, and S. Das

Sarma, Phys. Rev. B 63, 144531 (2001).
[36] K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001

(2009).
[37] K. Flensberg, Phys. Rev. B 82, 180516(R) (2010).
[38] M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C. W. J.

Beenakker, New J. Phys. 13, 053016 (2011).

115429-5





Paper [5]

Carsten Timm, Stefan Rex, and Philip M. R. Brydon

Surface instability in nodal superconductors

Physical Review B 91, 180503(R) (2015)





RAPID COMMUNICATIONS

PHYSICAL REVIEW B 91, 180503(R) (2015)

Surface instability in nodal noncentrosymmetric superconductors

Carsten Timm,1,* Stefan Rex,2 and P. M. R. Brydon3,†
1Institute of Theoretical Physics, Technische Universität Dresden, 01062 Dresden, Germany

2Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
3Condensed Matter Theory Center and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA

(Received 8 April 2015; revised manuscript received 29 April 2015; published 13 May 2015)

We study the stability of topologically protected zero-energy flat bands at the surface of nodal noncen-
trosymmetric superconductors, accounting for the alteration of the gap near the surface. Within a self-consistent
mean-field theory, we show that the flat bands survive in a broad temperature range below the bulk transition
temperature. There is a second transition at a lower temperature, however, below which the system spontaneously
breaks time-reversal symmetry. The surface bands are shifted away from zero energy and become weakly
dispersive. Simultaneously, a spin polarization and an equilibrium charge current develop in the surface region.
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Introduction. The topological properties of gapless elec-
tronic systems have recently attracted much attention
[1–6]. Important examples are time-reversal-symmetric non-
centrosymmetric superconductors (NCSs) [1,2,7–11], which
are characterized by strong antisymmetric spin-orbit coupling
(SOC) and a parity-mixed pairing state [12]. Many NCSs
display evidence of gaps with line nodes [13–18]. This is
exciting, as the line nodes of NCSs with dominant triplet
pairing are topologically nontrivial defects in momentum
space [1–4]. Zero-energy flat bands of Majorana fermions are
predicted to appear within the projections of these nodal lines
onto the surface Brillouin zone (BZ). Such flat bands have
clear experimental signatures, such as sharp zero-bias peaks
in tunneling spectra [2,11], equilibrium currents parallel to the
interface between the NCS and a ferromagnet [19,20], and
characteristic quasiparticle interference patterns [21].

The topological properties of NCSs and consequently
the protection of the surface states are controlled by the
superconducting gaps, which arise from interactions. Properly
accounting for these interactions may qualitatively alter the
surface physics. For example, a surface tends to suppress some
gap components and enhance others [22–28]. This may change
the conclusions of the aforementioned studies [1–6,9–11],
which imposed unrealistic uniform gaps. Flat bands with their
high density of states are particularly prone to instabilities. In-
deed, the zero-energy flat bands at the (110) surface of d-wave
superconductors with time-reversal symmetry (TRS) [29] are
predicted to be unstable towards a time-reversal-symmetry-
breaking (TRSB) state [22–28,30]. This has been supported by
some tunneling and transport experiments [31–33] but was not
seen in others [34–38]. d-wave superconductors are however
qualitatively different from NCSs in that the zero-energy flat
bands are degenerate in the first case but nondegenerate in the
second.

In this Rapid Communication, we study the stability of the
surface zero-energy flat bands of nodal NCSs by performing
self-consistent mean-field (MF) calculations in real space for
a slab of finite thickness. For concreteness, we consider a
model with point group C4v , which is realized for CePt3Si [39],

*carsten.timm@tu-dresden.de
†pbrydon@umd.edu

CeRhSi3 [40], and CeIrSi3 [41]. We show that an instability to
a TRSB state can occur and study its signatures.

Model and mean-field theory. We start from a tight-binding
Hamiltonian for an NCS with C4v point group, H = H0 + Hint.
The noninteracting part is

H0 = −μ
∑

j

c
†
j cj − t

∑
〈ij〉

(c†i cj + c
†
j ci)

+ iλ
∑
〈ij〉

(ẑ × êij ) ·
(

c
†
i

σ

2
cj − c

†
j

σ

2
ci

)
, (1)

with the chemical potential μ, the nearest-neighbor hopping
amplitude t , and the Rashba SOC strength λ. The SOC term
breaks inversion symmetry. The annihilation operator cj =
(cj,↑,cj,↓)T is a two-component spinor, σ is the vector of Pauli
matrices, and êij is the unit vector pointing from site j to
site i of a simple cubic lattice. Attractive interactions at the
same site and between nearest neighbors in the xy plane are
described by

Hint = −Us

∑
j

c
†
j↑c

†
j↓cj↓cj↑ − Ut

∑
〈ij〉⊥ẑ

∑
σσ ′

c
†
iσ c

†
jσ ′cjσ ′ciσ .

(2)
The interaction is decoupled in the pairing channel. We define
the singlet and triplet order parameters �s

j ≡ (Us/2)〈cT
j iσ ycj 〉

and �t
ij ≡ iUt 〈cT

j iσ yσci〉, respectively, where the site indices
i,j in �t

ij are restricted to nearest-neighbor sites in the xy

plane. The triplet vector order parameter is taken to be parallel
to the effective SOC field, �t

ij = �t
ij ẑ × êij . This choice

avoids the triplet-pair-breaking effect of the SOC, and is
therefore energetically favorable in the bulk [42].

We first consider the MF solution for an extended system,
assuming spatially uniform gaps �s

j = �s and �t
ij = �t . De-

tails of the calculation are given in Sec. I of the Supplemental
Material [43]. We find that the singlet and triplet gaps have the
same phase, which can be set to zero, so that TRS is preserved.
SOC splits the bands and thus also the Fermi surface according
to the helicity of states [2]. Since the triplet order parameter is
parallel to the SOC, pairing only occurs between states with the
same helicity. We determine interaction strengths Us,Ut that
lead to flat zero-energy surface bands under the assumption of
uniform gaps. The resulting surface states have been studied

1098-0121/2015/91(18)/180503(5) 180503-1 ©2015 American Physical Society
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FIG. 1. (Color online) (a) Projection onto the (101) plane of the
positive-helicity Fermi surface (thin solid line), the negative-helicity
Fermi surface (dashed line), and the superconducting gap nodes on
the former (heavy solid lines), for the bulk NCS. The gray areas
denote the zero-energy flat bands predicted to exist at (101) surfaces
under the assumption of uniform gaps [1,2]. The plot is restricted
to momenta in the (101) surface BZ, where km = (kx − kz)/

√
2. The

parameters are t = 1, λ = 1.5, μ = −3, Us = 5.0, Ut = 5.4, and
T = 0.0025. (b) Mean-field gaps �s (solid black) and �t (dashed
red) as functions of temperature T .

in detail in Refs. [2,11,44]. This is realized for the parameters
t = 1 (hence, t is our unit of energy), λ = 1.5, μ = −3,
Us = 5.0, Ut = 5.4 at the temperature T = 0.0025 (setting
kB = 1), giving bulk MF gaps �s = 0.704 and �t = 1.006.
We consequently find a gap with line nodes on the (smaller)
positive-helicity Fermi surface, but a full gap on the (larger)
negative-helicity Fermi surface [45]. Figure 1(a) shows the
projection of the two Fermi surfaces and the nodal lines onto
the (101) plane. The topological argument from Refs. [1,2]
predicts that a (101) surface hosts flat zero-energy bands within
the region bounded by the projected nodal lines. In addition,
there is an arc of zero-energy states connecting the two regions
with flat bands [2,5,11]. Figure 1(b) shows the bulk gaps �s

and �t as functions of temperature.
We next turn to the MF solution for a slab of thickness

W with (101) surfaces. We introduce new coordinates x =
m + (l + l mod 2)/2 and z = −m + (l − l mod 2)/2, where m

is parallel to the surfaces and l = 0, . . . ,W − 1 is orthogonal to
them. The geometry of one surface and our coordinate system
are depicted in the inset of Fig. 2. Since translational symmetry
in the normal direction is broken, the gaps depend on l. We
define

Us

2

〈
cT
j iσ ycj

〉 ≡ �s
l , (3)

iUt

〈
cT
j iσ yσci

〉 ≡
{
�x

l+1/2 ẑ × êij for x bonds,
�

y

l ẑ × êij for y bonds,
(4)

where the subscript l denotes the (identical) l coordinate of
sites i and j , while l + 1/2 in �x

l+1/2 is the mean of the
l coordinates of sites i and j . We Fourier transform in the
directions parallel to the slab, introducing the two-dimensional
momentum vector k = (km,ky) in the surface BZ, defined by
−π < ky � π and −π/

√
2 < km ≡ (kx − kz)/

√
2 � π/

√
2.

The MF calculations are performed for a slab of thickness W =
300, using the same parameters as for the bulk calculation.

0 20 40 60 80
l

0

0.1

0.2

0.3

Im
 Δ

lν

0.6

0.8

1

R
e 

Δ lν

Δ
l

s

Δ
l+1/2

x

Δ
l

y

(a)

(b)

T = 0.0025

l

0

1

2

3

4

= 0m

xz

−2 −1 1

FIG. 2. (Color online) Self-consistent gaps �s
l , �x

l+1/2, �
y

l for a
slab of thickness W = 300 and parameters as in Fig. 1. (a) and (b)
show the real and imaginary parts, respectively. The lines denote the
bulk gaps �s (solid black) and �t (dashed red). Inset: Sketch of the
bottom (l = 0) surface of a (101) slab, showing the coordinates l and
m. The y axis points into the plane of the drawing.

Further details are presented in Sec. II of the Supplemental
Material [43].

Spontaneous breaking of TRS. Our central results are
summarized in Figs. 2 and 3: At sufficiently low temperatures,
the singlet and triplet gaps develop imaginary components
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FIG. 3. (Color online) Self-consistent gaps �s
l , �x

l+1/2, �
y

l for
the surface layer (l = 0, solid symbols) and at the slab center (l =
W/2 − 1, open symbols) as functions of temperature. The thickness
is W = 300, and the parameters are as in Fig. 1. (a) and (b) show
the real and imaginary parts, respectively. The imaginary parts for
l = W/2 − 1 would be indistinguishable from zero and are omitted.
The lines in (a) denote the bulk gaps �s (solid black) and �t (dashed
red) from Fig. 1(b).
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close to the surface, spontaneously breaking TRS. This
solution is degenerate with a state with complex-conjugated
gaps. In the limit W → ∞, the two surfaces are decoupled
and there are hence four degenerate TRSB solutions, differing
in the signs of the imaginary parts of the gaps close to the
surfaces.

The spatial variation of the gaps near the surface in the
TRSB phase is shown in Fig. 2. While both the singlet and
triplet gaps develop imaginary components near the surface,
the real parts of the singlet and triplet gaps are enhanced
above and suppressed below their bulk values, respectively.
The suppression of the triplet gaps originates from the pair-
breaking effect of the surface, which in turn enhances the
singlet gap to compensate for the lost condensation energy. The
reversal of the suppression of the triplet gaps in the outermost
layer can be understood similarly: Since one of the triplet
amplitudes is missing at the surface, the others are enhanced.

The gaps converge to their bulk values as we move away
from the surface; the gaps at the center of the slab are within
0.01% of their bulk values. Note that the deviation of the
imaginary parts from their bulk value (of zero) has a much
longer range than that of the real parts. Indeed, close to
the center of the slab, we find that Im �ν

l ∝ (l − W/2) [see
Fig. 2(b)]. We have checked that the proportionality constant
decreases more rapidly than W−1/2 with W so that the gradient
energy vanishes for W → ∞. We attribute the slow spatial
decay to the enhancement of length scales close to the bulk
quantum phase transition to a nodeless singlet-dominated state.
This transition can be reached by increasing Us and decreasing
Ut by only 0.067 (not shown).

The evolution of the TRSB state with temperature is shown
in Fig. 3, where we plot the gaps �s

l , �x
l+1/2, and �

y

l in
the surface layer and at the slab center. Upon increasing the
temperature, the gaps in the surface layer show a second-order
transition at which the imaginary parts vanish and TRS is
restored. This occurs at a temperature of Ts ≈ 0.083, well
below the bulk superconducting transition temperature Tc ≈
0.942.

Dispersion and density of states. In Fig. 4(a) we plot
the dispersion for a cut through the surface BZ at ky = 0
at temperatures below and above Ts . For T > Ts , the zero-
energy flat band predicted in Refs. [2,11] is clearly visible
for 0.5 � km � 1.5; the zero-energy states at km � 0.5 form
an arc connecting the projections of the nodal rings [2,11].
The TRSB for T < Ts removes the topological protection
of the zero-energy flat bands of the TRS state, which are
consequently pushed away from zero energy, with a low-
temperature energy shift on the order of Ts . Since the shift
is weakly momentum dependent, the band obtains a nonzero
velocity. Due to particle-hole symmetry, the dispersion is odd
in k. The zero-energy flat bands give a singular contribution
to the surface density of states, which can be detected as
a sharp zero-bias peak in the tunneling spectrum of an
NCS–normal-metal junction [1,10,11]. The shift of the surface
bands in the TRSB state causes a splitting of this peak,
as shown in Fig. 4(b). This splitting is a key experimental
signature of TRSB. Indeed, the observed splitting of the
zero-bias peak for tunneling into the (110) surface of the
cuprates is important evidence for TRSB in this system
[31,32].

FIG. 4. (Color online) (a) Dispersion for a cut through the surface
BZ at ky = 0, for W = 300 and the same parameters as in Fig. 1. The
black points refer to T = 0.0025 � Ts in the TRSB state, whereas
the cyan (light gray) points in the background refer to T = 0.1 > Ts

with restored TRS. The dispersion is odd in km, and only points for
km � 0 are shown. (b) Surface DOS in the l = 0 layer at the same
temperatures. An artificial broadening of η = 0.01 was used.

Spin polarization. Broken TRS is also manifested by a
nonzero spin polarization near the surface, which is directed
along the y axis. A polarization in other directions is forbidden
by mirror symmetry in the xz plane. Figure 5(a) shows the
spatial variation of the layer-resolved spin contributions 〈sy

l 〉;
explicit expressions for the spin operator sl in layer l and
its thermal average are given in Sec. III of the Supplemental
Material [43]. It is interesting to examine how states at different
k contribute to the spin polarization: Due to the strong polar-
ization of the flat-band surface states in the TRS state [44,46],
one might expect that the spin polarization largely originates
from the shifted flat bands. To check this, we plot in Fig. 5(b)
the momentum-resolved contribution to the spin polarization
of the half slab defined by 0 � l < W/2 [43]. Surprisingly,
the spin polarization is not primarily carried by the shifted
flat bands but rather by bulk and perhaps dispersing surface
states [2,11] from the region between the projected nodal rings.

Equilibrium currents. Furthermore, the absence of TRS
permits a nonzero equilibrium surface current [22,24,26].
Indeed, we expect such a current since the surface bands
become dispersive and the dispersion is odd in km; a similar
modification of the electronic structure at an interface with a
ferromagnet does result in a surface current [19,20]. Explicit
expressions for the current operator jl in layer l and its thermal
average are given in Sec. IV of the Supplemental Material [43].
Although charge is not conserved in the superconducting MF
state, one can account for the pairing potentials by adding
so-called source terms to the continuity equation [47]. For
self-consistently calculated gaps, however, the thermal average
of the source terms vanishes, and charge conservation is
retained [47]. This implies that the current perpendicular
to the slab’s surface, i.e., in the l direction, must vanish.
Mirror symmetry in the xz plane forbids a current along the
y axis [43], leaving only the current along the m direction, de-
fined as 〈jm

l+1/2〉 = (〈jx
l+1/2〉 − 〈jz

l+1/2〉)
/√

2. 〈jm
l+1/2〉 is indeed

nonzero in the TRSB state: In Fig. 5(a) we plot the current as a
function of the layer index l, which shows that it is bound to the
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FIG. 5. (Color online) (a) Spin polarization 〈sy

l 〉 (solid circles) and current 〈jm
l 〉 (open squares) as functions of l, for W = 300 and the

same parameters as in Fig. 1. Both quantities are given in units of their value at the surface. The layer indices of 〈jm
l 〉 are given as half integers

to indicate that the current flows between two layers (see the inset of Fig. 2). (b) Momentum-resolved contributions to the y component of
the total spin polarization of half the slab (0 � l < W/2) in the surface BZ. (c) Momentum-resolved contributions to the m component of the
current in half the slab (0 � l < W/2). The momentum-space plots in (b) and (c) are restricted to a region just enclosing the projection of the
positive-helicity Fermi surface.

surface with a spatial profile similar to the spin polarization. In
contrast to the spin polarization, the main contribution to the
current stems from surface states within the projected nodal
rings, as shown by the momentum-resolved current in a half
slab plotted in Fig. 5(c). We have also studied the contributions
to the vanishing components 〈j l

l 〉 and 〈jy

l 〉, shown in the
Supplemental Material [43]. Interestingly, 〈j l

l 〉 cancels only
in the sum over the full surface BZ, showing that bulk states
must be included to satisfy charge conservation. Note that the
sign of both the spin polarization and the current is reversed
for the degenerate solution with complex-conjugated gaps.

The coupling to the electromagnetic field, which is not
included here, leads to additional screening currents that
exactly balance the spontaneous surface current in the limit
W → ∞. However, these currents build up on the length scale
of the magnetic penetration depth λ, which in typical NCSs
is much larger than the decay length of the surface current,
on the order of the coherence length ξ [12]. In samples with
thickness smaller than the penetration depth but larger than
the coherence length, it should thus be possible to detect the
surface current.

Summary and conclusions. We have studied the stability
of zero-energy flat bands at the surface of an NCS within
self-consistent MF theory. We find that the flat bands are indeed
recovered by the self-consistent calculation within a broad
temperature range below the bulk transition temperature Tc.

TRS is spontaneously broken at a much lower temperature Ts ,
which is signaled by a nonuniform phase of the gaps. This
destroys the topological protection for the flat bands, shifting
them away from zero energy and giving them finite velocity.
Figure 4 shows that at low temperatures the flat bands are
displaced by an energy on the order of Ts , which is significantly
smaller than the bulk gaps of order Tc. The free-energy gain due
to the shift of the flat bands is likely a major driver of the TRSB
state, and ultimately limits Ts as the free-energy gain from the
shift is reduced by the broadening of the Fermi function.

The TRSB state leads to clear experimental signatures: a
splitting of the zero-bias peak in the tunneling spectrum, a non-
vanishing spin polarization at the surface, and a nonvanishing
equilibrium charge current parallel to the surface. The latter
two effects show that the TRSB state found here is qualitatively
different from that predicted for the (110) surface of cuprate
superconductors [22–26,30].
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Supplemental Material for
Surface instability in nodal noncentrosymmetric superconductors

Carsten Timm, Stefan Rex, and P. M. R. Brydon

I. MEAN-FIELD THEORY FOR THE BULK

In this section we sketch the MF theory for the bulk NCS. We assume spatially uniform pairing potentials ∆s
j = ∆s

and ∆t
ij = ∆t. Using this ansatz to decouple the interaction Hamiltonian Hint, we obtain the Bogoliubov-de Gennes

(BdG) Hamiltonian [S1]

HMF =
1

2

∑

k

Φ†kH(k)Φk +N
∆2
s

Us
+N

∆2
t

Ut
, (S1)

with the number of sites, N , and the block matrix

H(k) =

(
h(k) ∆(k)

∆†(k) −hT (−k)

)
(S2)

written in terms of h(k) = ξkσ
0 − λ lk · σ, ∆(k) = (∆sσ

0 + ∆t lk · σ) iσy, ξk = −2t (cos kx + cos ky + cos kz) − µ,

lk = x̂ sin ky − ŷ sin kx, and the Nambu spinor Φk = (ck↑, ck↓, c
†
−k,↑, c

†
−k,↓)

T . Here, σ0 is the 2 × 2 identity matrix.

The dispersion Ekν , ν = 1, . . . , 4 is obtained by diagonalizing H(k). ∆s and ∆t are then obtained by minimizing the
free energy

FMF = −kBT
∑

kν

′
ln

(
2 cosh

βEkν

2

)
+N

∆2
s

Us
+N

∆2
t

Ut
, (S3)

where the momentum sum is over half the BZ, km > 0. This restriction of the sum makes use of particle-hole

symmetry, which relates the Hamiltonian in Eq. (S2) at k and −k by [S1] UC HT (−k)U†C = −H(k) with the unitary
matrix UC = σx ⊗ σ0.

II. MEAN-FIELD THEORY FOR THE SLAB

We now set up the MF Hamiltonian for the (101) slab and describe the determination of the gap parameters ∆s
l ,

∆x
l+1/2, and ∆y

l in the MF approximation. After Fourier transformation in the directions parallel to the surfaces, the

MF Hamiltonian reads

HMF =
1

2

∑

k

W−1∑

l=0

Φ†klHll(k)Φkl +
1

2

∑

k

W−2∑

l=0

Φ†k,l+1Hl+1,l(k)Φkl +
1

2

∑

k

W−1∑

l=1

Φ†k,l−1Hl−1,l(k)Φkl

+
N‖
Us

W−1∑

l=0

|∆s
l |2 +

N‖
2Ut

W−2∑

l=0

|∆x
l+1/2|2 +

N‖
2Ut

W−1∑

l=0

|∆y
l |2, (S4)

where N‖ is the number of unit cells of the slab and Φkl = (ckl↑, ckl↓, c
†
−k,l,↑, c

†
−k,l,↓)

T is the partially Fourier-

transformed Nambu spinor. The sums over l containing Φ†k,l±1 are restricted in such a way that l±1 ∈ {0, . . . ,W −1}.
The coefficient matrices appearing in HMF are

Hll(k) =



−2t cos ky − µ −λ sin ky −∆y

l sin ky ∆s
l

−λ sin ky −2t cos ky − µ −∆s
l ∆y

l sin ky
−∆y∗

l sin ky −∆s∗
l 2t cos ky + µ −λ sin ky

∆s∗
l ∆y∗

l sin ky −λ sin ky 2t cos ky + µ


 , (S5)

Hl±1,l(k) =




−2t cos(km/
√

2) ±(λ/2) e∓ikm/
√
2 ±(∆x

l±1/2/2) e∓ikm/
√
2 0

∓(λ/2) e∓ikm/
√
2 −2t cos(km/

√
2) 0 ±(∆x

l±1/2/2) e∓ikm/
√
2

∓(∆x∗
l±1/2/2) e∓ikm/

√
2 0 2t cos(km/

√
2) ∓(λ/2) e∓ikm/

√
2

0 ∓(∆x∗
l±1/2/2) e∓ikm/

√
2 ±(λ/2) e∓ikm/

√
2 2t cos(km/

√
2)



. (S6)
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We next construct the 4W × 4W block matrix

H(k) ≡




H00(k) H01(k) 0 · · ·
H10(k) H11(k) H12(k) · · ·

0 H21(k) H22(k) · · ·
...

...
...

. . .


 (S7)

and denote its eigenvalues by Ekν , ν = 1, . . . , 4W and the corresponding eigenvectors by |kν〉. The MF Hamiltonian

satisfies particle-hole symmetry [S1], UC HT (−k)U†C = −H(k) with the unitary matrix UC = 1W ⊗ σx ⊗ σ0, where
1W is the W ×W identity matrix. This symmetry again allows to restrict the momentum sums to half the BZ. The
free energy can then be written as

FMF = −kBT
∑

kν

′
ln

(
2 cosh

βEkν

2

)
+
N‖
Us

W−1∑

l=0

|∆s
l |2 +

N‖
2Ut

W−2∑

l=0

|∆x
l+1/2|2 +

N‖
2Ut

W−1∑

l=0

|∆y
l |2, (S8)

where the momentum sum is restricted to half the BZ, km > 0. Minimization of FMF gives the gaps ∆s
l , ∆x

l+1/2,

and ∆y
l . The derivatives of FMF with respect to the complex conjugate gaps can be calculated with the help of the

Hellmann-Feynman theorem, for example

∂FMF

∂∆s∗
l

= −1

2

∑

kν

′
tanh

βEkν

2
〈kν| ∂H(k)

∂∆s∗
l

|kν〉+
N‖
Us

∆s
l . (S9)

The momentum sums are performed on a 50× 50 mesh, referring to the full surface BZ. Quadrupling the number of
points in the mesh to 100× 100 leads to changes in the MF gaps on the order of only 0.1%.

Solving the resulting MF equations by iteration turns out to be prohibitively slow for the required W , essentially
because the minimum of FMF is very shallow in some directions in the high-dimensional space of gap parameters. On
the other hand, numerical minimization making use of the explicitly known gradient is reasonably efficient. We use
the Broyden-Fletcher-Goldfarb-Shanno method implemented in Numerical Recipes [S2]. It requires an initial guess
for the inverse Hessian. When we scan over ranges of temperatures, we use not only the converged values of the gaps
but also the best approximate inverse Hessian from one step as starting values for the next, which significantly speeds
up the convergence. We assume that the method has converged when no real or imaginary part of any gap parameter
changes by more than (double) machine precision in the last step.

For certain parameter values, we find nonvanishing gradients of the phases of the order parameters in the l direction,
normal to the surfaces. Specifically, we find four metastable solutions, which are mapped onto each other by inverting
the phase gradients at one or both surfaces. In the limit W → ∞, the four solutions are degenerate. For finite W ,
they split into two degenerate pairs with phase gradients that are even and odd, respectively, under reflection at the
center of the slab. We here choose a solution with even phase gradients since then the selfconsistent solution ensures
that the phases of ∆s

l , ∆x
l+1/2, and ∆y

l become equal at the center of the slab; equal phases of all gaps at the center

are expected since the bulk MF solution has equal phases. By a global phase change we can then make the phase of
all gaps zero at the center. The phases and imaginary parts of the gaps are then odd under reflection at the center.
Finally, of the two remaining solutions differing in the sign of the imaginary parts of the gaps, we select the solution
with Im ∆s

0 ≥ 0 for definiteness. The other solution leads to inverted spin polarizations and currents.

III. SPIN POLARIZATION

Here, we present expressions for the spin polarization. The operator of the spin per site, averaged over the directions
parallel to the surfaces, is

sl =
1

N‖

∑

k

c†kl
σ

2
ckl. (S10)

Using particle-hole symmetry, the thermal spin average can be written as

〈sl〉 = − 1

4N‖

∑

kν

′
tanh

βEkν

2
〈kν|Pll ⊗

(
σ 0
0 −σT

)
|kν〉, (S11)

where Pll′ is a W ×W matrix with the components (Pll′)nn′ = δlnδl′n′ . We also consider the momentum-dependent
contributions to the spin polarization of the half slab defined by 0 ≤ l < W/2. These contributions are obtained by
summing 〈sl〉 over l = 0, . . . ,W/2− 1 and removing the factor 1/N‖ and the momentum sum.
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IV. EQUILIBRIUM CURRENT

The second observable of interest is the current. The operators jαij denote the electron-number current from site j
to its nearest neighbor i in the α = x, y, z direction. They can be read off from H0 in Eq. (1) in the main text,

jxij = −i c†i
(
−t λ/2
−λ/2 −t

)
cj + i c†j

(
−t −λ/2
λ/2 −t

)
ci, (S12)

jyij = −i c†i
(
−t −iλ/2
−iλ/2 −t

)
cj + i c†j

(
−t iλ/2
iλ/2 −t

)
ci, (S13)

jzij = −i c†i
(
−t 0
0 −t

)
cj + i c†j

(
−t 0
0 −t

)
ci. (S14)

The interaction term Hint conserves charge locally and therefore does not contribute to the current operator. After the
MF decoupling, the anomalous terms do not conserve charge—they describe creation or annihilation of two electrons
either at the same site or at neighboring sites. Such processes do not lead to currents but do introduce a source term,
which is discussed in the main text. We average the current over layers parallel to the surface, taking into account
that jxij and jzij connect adjacent layers, whereas jyij describes a current within a single layer. We then obtain the
thermal averages, again using particle-hole symmetry,

〈jxl+1/2〉 = − 1

2N‖

∑

kν

′
tanh

βEkν

2
〈kν|




i e−ikm/

√
2 Pl+1,l ⊗




t −λ/2 0 0
λ/2 t 0 0
0 0 t −λ/2
0 0 λ/2 t


+ H.c.




|kν〉, (S15)

〈jyl 〉 = − 1

N‖

∑

kν

′
tanh

βEkν

2
〈kν|Pll ⊗




t sin ky −(λ/2) cos ky 0 0
−(λ/2) cos ky t sin ky 0 0

0 0 t sin ky (λ/2) cos ky
0 0 (λ/2) cos ky t sin ky


 |kν〉, (S16)

〈jzl+1/2〉 = − 1

2N‖

∑

kν

′
tanh

βEkν

2
〈kν|




i eikm/

√
2 Pl+1,l ⊗



t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t


+ H.c.




|kν〉, (S17)

where 〈jx,zl+1/2〉 denotes currents connecting layers l and l + 1. The components with respect to the slab coordinates
are

〈jll+1/2〉 =
〈jxl+1/2〉+ 〈jzl+1/2〉√

2
, 〈jml+1/2〉 =

〈jxl+1/2〉 − 〈jzl+1/2〉√
2

. (S18)

We note that 〈jyl 〉 vanishes for any choice of gap parameters for our model, even non-selfconsistent ones. This is based
on mirror symmetry in the xz plane. The current in the y direction changes sign under this symmetry operation and
thus vanishes.

The momentum-dependent contributions to the current in the half slab 0 ≤ l < W/2 are obtained by summing
〈jl〉 over l = 0, . . . ,W/2 − 1 and removing the factor 1/N‖ and the momentum sum. The momentum-resolved m
component, which sums to a nonzero current, is shown in Fig. 5(c) in the main text. We present the momentum-
resolved y and l components in Fig. S1. The y components chancel by symmetry, as noted above. The cancelation
of the l components, which is required by charge conservation, is only ensured for selfconsistent gaps [S3]. Large
positive contributions from bulk states within the projected (small) positive-helicity Fermi surface are canceled by
small negative contributions from the flat bands and from bulk states within the projected (large) negative-helicity
Fermi surface. This shows that the bulk states must be included to satisfy charge conservation.
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(a) (b)

FIG. S1. Momentum-resolved contributions to (a) the y component and (b) the l component of the current in half the slab
(0 ≤ l < W/2).


