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Summary
The performance of high-energy circular hadron colliders, as the Large Hadron Collider, is limited
by beam-beam interactions. The strength of the beam-beam interactions will be higher after the
upgrade to the High-Luminosity Large Hadron Collider, and also in the next generation of machines,
as the Future Circular Hadron Collider. The strongly nonlinear force between the two opposing
beams causes diverging Hamiltonians and drives resonances, which can lead to a reduction of the
lifetime of the beams. The nonlinearity makes the effect of the force difficult to study analytically,
even at first order. Numerical models are therefore needed to evaluate the overall effect of different
configurations of the machines.

For this thesis, a new code named CABIN (Cuda-Accelerated Beam-beam INteraction) has been
developed to study the limitations caused by the impact of strong beam-beam interactions. In par-
ticular, the evolution of the beam emittance and beam intensity has been monitored to study the
impact quantitatively, while frequency map analysis has been performed to understand the impact
qualitatively. The bunches in the beams have been modelled based on a three-dimensional Gaus-
sian distribution. The bunches in the Large Hadron Collider are well approximated by cylindrically
symmetric Gaussian bunches, which allows for certain consequences to be derived analytically. The
mapping of both round and flat beams have been implemented with the weak-strong model, con-
sidering one beam to stay fixed throughout the simulation, while the other beam is changing. The
simulations have been run on graphic cards, well adapted for studying this highly parallelisable
problem, to reduce the computation time.

The beam-beam driven resonances have been shown both analytically and numerically to be
stronger at lower order and further from the design orbit of the beam. Stronger beam-beam in-
teractions cause a wider spread of the betatron frequencies/tunes within a single bunch, making it
increasingly difficult to avoid resonances that cause detrimental effects on the beam quality. This
has been seen in both simulations and experiments. In such scenarios, the common working point
in the Large Hadron Collider, (Qx, Qy) = (0.31, 0.32), is found to be suboptimal. Two alterna-
tive working points, (0.315, 0.325) and (0.475, 0.485), have been found to give better performance.
Without long-range interactions, the beam quality is best preserved for zero crossing angle. Increas-
ing the crossing angle activates odd resonances that can reduce the performance further, but it also
reduces the tune spread within the bunch, making the bunch exposed to fewer strong resonances.
Mixing between the longitudinal and transverse planes, caused by either a crossing angle, the hour-
glass effect or chromaticity, drives synchro-betatron resonances that also reduce the performance.
However, a nonzero chromaticity is usually necessary to avoid coherent instabilities. A significant
hourglass effect, σs/β∗q = 2/3, has been found to reduce the detrimental effects caused by the chro-
maticity, and vice versa. A scheme designed to cancel beam-beam driven resonances, by applying
a specific intermediate phase advance, has been found to have an extremely positive impact on the
beam quality for zero crossing angle, but only a marginal impact for a nonzero crossing angle.

A dedicated experiment with strong head-on beam-beam interactions has been performed in
the Large Hadron Collider. Simulations run in CABIN for the same configurations show good
quantitative agreement. A realistic maximum beam-beam tune shift from the LHC working point
has been found to be ∆QTot = 0.043 with zero crossing angle. With a Piwinski angle of φPIW = 1,
this limit is reduced to ∆QTot = 0.028, smaller than the largest beam-beam tune shift expected
in the Future Circular Hadron Collider. These limits are slightly larger for the alternative working
point, (0.315, 0.325), raised to ∆QTot = 0.067 and 0.036 for zero and nonzero crossing angle
respectively.
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Sammendrag
Ytelsesevnen til en høy-energisk sirkulær akselerator, som Large Hadron Collider (LHC), er be-
grenset av de to strålenes påvirkning på hverandre. Styrken til påvirkningen kommer trolig til å øke
ved oppgraderingen til høy-luminositets versjonen av LHC, og også i neste generasjon av maskiner,
som Future Circular Hadron Collider. Den særdeles ikkelineære kraften mellom de to motgående
strålene forårsaker divergerende Hamilton-funksjoner og driver resonanser, som kan lede til en re-
duksjon av levetiden til strålene.

I forbindelse med denne masteroppgaven har en ny kode blitt utviklet for å studere begren-
sningene forårsaket av strålenes påvirkning på hverandre. Strålens emittans og intensitet har blitt
overvåket for å studere effekten kvantitativt, mens frekvensanalyse har blitt utført for å forstå effek-
ten kvalitativt. Partiklene i strålen har blitt modellert til å være samlet i tredimensjonale Gaussiske
bunter. Buntene i LHC er godt tilnærmet av sylindersymmetriske Gaussiske bunter, noe som gjør
det mulig å utlede visse konsekvenser analytisk. Påvirkningen fra både sylindersymmetriske og
elliptiske bunter har blitt implementert med svak-sterk modellen, som antar at den ene strålen ikke
endrer seg mens den påvirker den andre strålen. Simuleringene kjører på grafikkort for å redusere
simuleringstiden, fordi dette er et svært paralleliserbart problem.

Resonanser kan være skadelige for strålens kvalitet. Det har blitt vist både analytisk og nu-
merisk at betatronresonanser drevet av strålenes påvirkning på hverandre, har større negativ effekt
hvis resonansene er av lavere orden, og påvirker partikler lenger fra sentrum av strålen. Sterkere
påvirkning forårsaker en større spredning av betatronfrekvensene innad i bunten, som igjen gjør
det vanskeligere å unngå resonansfrekvenser forårsaket av påvirkningen. Dette har blitt sett både
i simuleringer og i dedikerte eksperimenter. I scenarier med sterkere påvirkning mellom strålene,
er dagens arbeidspunkt i LHC, (Qx, Qy) = (0.31, 0.32), suboptimalt. I stedet har det blitt op-
pdaget bedre ytelsesevne ved to alternative arbeidspunkt, (0.315, 0.325) og (0.475, 0.485). Uten
påvirkning av nabobunter i strålen, er strålen best bevart med null krysningsvinkel. Ved å øke krys-
ningsvinkelen aktiveres odde resonansfrekvenser som kan redusere ytelsesevnen ytterligere, men
den økte vinkelen reduserer også spredningen av betatronfrekvensene innad i bunten, noe som kan
ha en positiv effekt. Sammensatte bevegelser i de longitudinale og transversale planene, enten
grunnet en krysningsvinkel, timeglasseffekt eller kromatisitet, aktiverer synkro-betatronresonanser
som kan forverre strålekvaliteten ytterligere. Samtidig er det viktig å ha en viss kromatisitet for
å unngå koherente ustabiliteter. Det har blitt vist at en betydelig timeglasseffekt, σs/β∗q = 2/3,
kan redusere skadelige effekter forårsaket av sterk kromatisitet, og at en betydelig kromatisitet kan
redusere skadelige effekter forårsaket av en sterk timeglasseffekt. En konfigurasjon tiltenkt å un-
dertrykke resonanser drevet av strålenes påvirkning på hverandre, har blitt vist at har en ekstremt
positiv effekt på strålekvaliteten når krysningsvinkelen er null. Effekten er eksisterende men lite
betydelig dersom krysningsvinkelen ikke er null.

Et dedikert eksperiment med sterke påvirkninger mellom strålene har blitt utført i LHC. Simu-
leringer gjort med den nye koden for de samme konfigurasjonene har vist god kvantitativ ov-
erensstemmelse. En realistisk øvre grense på frekvensspredningen forårsaket av strålenes påvirkning
på hverandre, fra det arbeidspunktet som benyttes i LHC, har blitt funnet å være ∆QTot = 0.043
med null krysningsvinkel. Med en krysningsvinkel tilsvarende en Piwinski-vinkel på φPIW = 1,
har denne grensen blitt redusert til ∆QTot = 0.028. Denne grensen er mindre enn den største
frekvensspredningen forventet i framtidige akseleratorer. Disse grensene er litt større ved det alter-
native arbeidspunktet (0.315, 0.325), hevet til ∆QTot = 0.067 og 0.036 respektivt.
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Abbreviations

CERN = The European Organization for Nuclear Research
LHC = Large Hadron Collider
HL-LHC = High-Luminosity Large Hadron Collider
FCC = Future Circular Collider
CABIN = Cuda Accelerated Beam-Beam Interaction
hh = hadron-hadron
pp = proton-proton
e+e− = positron-electron
rms = root mean square
dof = Degrees of freedom
RF = Radio frequency
HO = Head-on
LR = Long-range
IP = Interaction point
IR = Interaction region
SBM = Synchro-beam mapping
CP = Collision point
2D = Two dimensional
3D = Three dimensional
ND = N dimensional
IC = Initial conditions
CPU = Central processing unit
GPU = Graphical processing unit
DA = Dynamic aperture
NADA = Noise affected dynamic aperture
HV = Horizontal crossing in one IP, vertical crossing in the other
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Notation
The notation as it is applied in this thesis is presented here. Note especially the ambiguity of
parentheses and the subscripts q and i.

{a, b} The set of the listed values. In example: a and b.
[a, b] Closed interval from a to b, i.e. including the endpoints.
(a, b) Open interval from a to b, i.e. excluding the endpoints.
(a, b) = (1, 2) Ordered pair or vector. In example: a = 1 and b = 2.
f(a, b) Function of a and b.
〈a〉x Average of a with respect to x.
exp[a] Exponential function. Square brackets used for specific functions.
[x] Unit of enclosed value. In example: [x] = m.
ẋ Derivative of dotted value with respect to time or turn number.
aq Value of a in direction q, q = {x, y}.
ai Value of a in direction i, i = {x, y, s}.
x̂i Unit vector in direction i, i = {x, y, s}.
x̂i Normalised value of xi with respect to the root mean square (rms) spread.
N All natural numbers. 1, 2, 3, 4, ...
Z All integers. ...,−2,−1, 0, 1, 2, ...

Coordinates as they are used in this thesis:
xq Transverse position.
p̄q Transverse physical momentum.
x′q Transverse canonical momentum, angle of motion with the design orbit.
pq Normalised transverse canonical momentum.
Jq Transverse action.
φq Angle in transverse phase space.
Aq Amplitude in transverse phase space.
z Longitudinal position along the circular collider.
s Longitudinal position relative to design orbit.
δ Energy deviation relative to design energy.
σΣ Transverse beam size of the strong beam in the simulations.
σε Transverse beam size corresponding to the operational beam emittance.
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Chapter 1
INTRODUCTION

The European Organization for Nuclear Research (CERN) has built a large accelerator complex [2],
designed to accelerate massive particles towards the speed of light. The goal is to make the parti-
cles collide within specialised particle detectors to study high-energy physics. The most powerful
accelerator as of today is the Large Hadron Collider (LHC), which currently collides protons at a
centre-of-mass energy of 13 TeV. The LHC consists of two synchrotrons, containing and accelerat-
ing particles in opposite directions, schematically displayed in Fig. 1.1. It is designed with 8 straight
sections. In 4 of these sections, the beam is accelerated, diagnosed, cleaned and extracted. The other
4 host experiments that analyse hard collisions between the particles in the opposing beams. The
beams are more tightly focused at the experiments in interaction point (IP) 1 and IP5 than in IP2
and IP8, in order to maximise the rate of collisions between the particles in the two beams. More
information can be found in the LHC design report [3].

Figure 1.1: Schematic layout of the LHC interaction points and beams. Courtesy of [4].

Concurrently with the hard collisions at the IP, multiple small angle deflections occur. This
phenomenon, known as the beam-beam interaction, is caused by the electromagnetic fields from
the opposing hadron beam. The interaction force is strongly nonlinear, resulting in a number of
consequences for the beam dynamics. The beam-beam interactions have been one of the most
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important limits on the performance of circular colliders, and it will possibly become even more
important with the envisaged upgrades in the future, including the high-luminosity upgrade of the
LHC (HL-LHC) and the larger Future Circular Hadron Collider (FCC-hh) [5]. More densely packed
beams are needed to produce the high luminosity required to study rare particle physics processes,
resulting in stronger beam-beam forces.

The incoherent particles in the beams perform betatron oscillations as they circulate in the col-
lider. Forces like the beam-beam interaction in the IPs, deflect the particles when they are at specific
locations. The deflections are small, but can be accumulated over multiple turns for particles with
betatron frequency equal to certain resonance frequencies. These betatron resonances can cause a
strong diffusion of the particles, or even make the beam unstable and lost within a short amount
of time. The beam-beam interaction drives resonances of multiple frequencies. It also widens the
frequency spectrum of the particles in the bunch, making them vulnerable to more resonance fre-
quencies. An earlier study found that destructive resonances driven by the beam-beam interaction,
could be suppressed by making the particles perform a certain number of betatron oscillations be-
tween the IPs [6]. This method will be revisited in this thesis, testing the required accuracy to
achieve the improved performance.

Although some effects of the beam-beam interaction can be derived analytically, numerical tools
are necessary to assess the complete impact of the beam-beam interaction on the motion of incoher-
ent particles, in particular their long-term behaviour. The use of simulations has been an important
tool in the understanding of the effects that cause instabilities. The strong-strong approach calcu-
lates the beam-beam forces self-consistently, and is the most realistic representation of beam-beam
interactions [7, 8]. However, the method does require a large amount of computational resources,
limiting its practical applicability. There are several implementations of the method, that use differ-
ent assumptions to make it more efficient. Despite the efforts, the self-consistent approach remains
challenging for large scale studies with today’s computing resources.

The weak-strong approach assumes that the bunch generating the electromagnetic fields stays
rigid [9, 10]. This approach allows to study the nonlinear effects of the beam-beam interaction
more efficiently, under the assumption that the charge distribution does not vary significantly when
perturbed by the beam-beam interactions. In previous studies, the weak-strong approach has been
applied to study single-particle stability, and the impact of the strength of the beam-beam inter-
action. While already advanced, these studies have not been able to present the full picture. The
design of new machines and optimisation of existing ones, requires a detailed knowledge of all
mechanisms involved in the deterioration of the beam quality in the presence of strong beam-beam
interactions.

This master project will study the beam-beam interaction, based on the weak-strong approach.
The goal has been to develop numerical tools that will help us understand the limitations that the
head-on beam-beam interaction puts on the design of the next generation of high-energy circular
hadron colliders. To achieve this, a main objective has been to quantitatively monitor the long-
term evolution of the beam size and beam intensity. These are values of great importance to the
performance, and they can be measured in running colliders. A code named CABIN has been
developed for this purpose. This thesis will describe the parametric dependence of detrimental
mechanisms on several relevant machine and beam parameters. In particular, it will be attempted
to set a realistic criterion on the maximum spread of frequencies due to the beam-beam interaction.
Using advanced diagnostic tools, also the underlying mechanisms will be explained. The results
obtained can be used to provide specifications for an optimal performance of the collider.

Theoretical aspects of circular colliders are detailed in Ch. 2, including a derivation of the beam-
beam interaction. How the physics is implemented and analysed is explained in Ch. 3. The results
are presented in Ch. 4, along with a discussion of said results. The results will be compared to
previous studies and to data from the LHC. The thesis is concluded in Ch. 5.
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Chapter 2
THEORY

2.1 Introduction to Circular Particle Colliders
In this section a few important concepts of beam dynamics in circular particle colliders will be
explained. Further details and derivations may be found in a text book on beam dynamics [11].

2.1.1 Geometry of a synchrotron
Synchrotrons are modern circular accelerators, appropriate for containing charged particles at high
energies. In synchrotrons, particle beams travel in vacuum chambers of varying radius in a loop
consisting of alternating straight and curved sections. In the limit of zero length straight sections,
it takes the shape of the torus in Fig. 2.1. The average loop radius can be in the order of km,
while the minimum radius of the beam can be in the order of µm. The machines are designed so
that a particle can follow a design orbit approximately in the centre of the vacuum chamber. The
longitudinal position along the accelerator ring is z. The transverse plane can either be given as a
2D Cartesian or polar coordinate system, both are relevant in this thesis. The centre of the transverse
plane is the design orbit. The x and y directions are also called horizontal and vertical respectively.

Figure 2.1: Geometry of a large circular collider, in the limit of zero length straight sections and
constant beam pipe radius. The transverse plane has its origo in the design orbit, at a radius R from
the centre of the collider. Not to scale.

The beta function, βq(z), is an optical function and may differ between the two transverse
directions [11]. It characterises the magnetic lattice, not the dynamics of a specific particle. The
lattice is the set of magnets and other elements that guide and focus the beam of particles. The rms
size of the beam is proportional to the square root of the beta function, σq(z) ∝

√
βq(z). The beam

size is smallest at the IPs, to increase the possibility of particle collisions (events). To achieve this,

3



the beta function has a local minimum at the IPs. It is usually signified by an asterisk as β∗q . Close
to any IP, located at zIP, the beta function is approximately a parabola

βq(z − zIP) = β∗q ·

(
1 +

(
z − zIP

β∗q

)2
)

, z − zIP ≈ 0 . (2.1)

Because of the parabolic dependence, this is referred to as the hourglass effect. There are two more
optical functions related to the beta function; the alpha and gamma functions. They are given by

αq = −1
2

dβq
dz and γq =

1 + α2
q

βq
. (2.2)

These three optical functions are together called the Twiss parameters, with units [β]=m, [α]=rad
and [γ] = m−1.

A particle in the beam has 6 dynamical degrees of freedom (dof), 3 positional and 3 translational.
The position of a particle can be described by (x, y, s), where s = z − z0 and z0 is the design po-
sition of the particle, increasing linearly with time. This set of positional coordinates is a Cartesian
coordinate system oriented around the design particle, with the s-axis parallel to the direction of
the design particle. The translational dof are described by the momenta. Since both transverse mo-
menta are small compared to the longitudinal momentum, it is convenient and conventional to use
the paraxial approximation. The canonical momenta are

x′ = p̄x
p̄0

, y′ = p̄y
p̄0

, δ = p̄z − p̄0

p̄0
, (2.3)

where the bar signifies mechanical momenta and p̄0 is the absolute value of the momentum of the
design particle. x′ is in the paraxial approximation the angle that a particle’s horizontal motion
makes with the s-axis. These coordinates are referred to as the accelerator coordinates. This thesis
will focus on all 6 dynamical dof.

Each transverse phase space plane (xq, x′q) can also be described in canonical action-angle
coordinates (φq, Jq) [11]. There is one action and one angle per plane per particle, with equivalent
definitions. The generating function for either transverse plane is

F1(q, φq) = −
x2
q

2βq
(tan(φq) + αq) . (2.4)

The action and angle are then given by the Twiss parameters and the accelerator coordinates

Jq = 1
2
(
γqx

2
q + 2αqxqx′q + βqx

′2
q

)
, (2.5)

tan(φq) = −αq − βq
x′q
xq

. (2.6)

Likewise, the accelerator coordinates can be expressed as functions of the action-angle coordinates

xq =
√

2βqJq cos(φq) , (2.7)

x′q = −

√
2Jq
βq

(sin(φq) + αq cos(φq)) . (2.8)

A quantity called the beam emittance, εq , is related to the action of single particles through the
relation

εq = 2 · 〈Jq〉 , (2.9)
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where the angle brackets signify the average over all particles. A quantity that is more commonly
referred to is the normalised emittance

εn,q = γ
v

c
εq , (2.10)

where γ is the relativistic Lorentz factor. The normalised emittance is independent of the energy
[12]. The size of the beam is proportional to the square root of the beam emittance, giving the
complete relation

σq =
√
βqεq . (2.11)

The beam can vary in size along the accelerator as β changes. However, if the beam emittance stays
constant, the beam size at a given z will also be constant. The spread in transverse momentum,
called the beam divergence, is defined similarly as

σq′ =
√
εq
βq

. (2.12)

From these two expressions, it is clearly visible that as the beam is focused by reducing βq at the
IPs, the beam divergence increases, keeping the product of the two as constant as the emittance.

2.1.2 Lattice
The lattice that confines the particles inside the accelerator, usually consists of at least dipole and
quadrupole magnets. Dipole magnets are needed to turn the beam around in a closed orbit, and
quadrupole magnets are needed to focus the beam. Ideally, these are both linear elements, the
magnetic fields are at most linear in the transverse coordinates (x, y), as will be demonstrated
shortly. There is for stability reasons also need for higher order magnets in practice, but that is
beyond the scope of this thesis. The field of an ideal dipole magnet is given by

BDipole = BDŷ , (2.13)

whereBD is positive for particles that are going clockwise and negative for particles going counter-
clockwise, seen from above. The field of an ideal normal quadrupole magnet is given by

BQuadrupole = B0
y

r0
x̂ +B0

x

r0
ŷ , (2.14)

where B0 is a reference magnetic field strength at the reference radius r0 [11]. This is visualised in
Fig. 2.2. There is also need for a quadrupole with fields rotated π/2 radians. One quadrupole can
only focus the beam in either the x- or the y-direction, not both. Quadrupole magnets are therefore
grouped together in groups of three, which enables focusing in both transverse directions.

The effects of dipole and quadrupole magnets can be written on matrix form. All elements that
particles pass as they traverse the ring once, can be concatenated to produce a linear transfer map,
referred to as the one-turn-map. There is ideally no mixing between the horizontal, vertical and
longitudinal planes. The one-turn-map describing the evolution in either transverse plane can thus
be given as Rq in (

xq
x′q

)
T+1

= Rq(µq)
(
xq
x′q

)
T

, (2.15)

where T is the turn number and

Rq(µq) =
(

cos(µq) + αq sin(µq) βq sin(µq)
−γq sin(µq) cos(µq)− αq sin(µq)

)
, (2.16)
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Figure 2.2: Magnetic field in normal quadrupole, as given by Eq. (2.14). The field lines are black.
The red arrows point in the direction of the force on a particle of positive charge coming out of the
paper. The length of the force arrows is not related to the magnitude of the force. Courtesy of [13].

where µq is the phase advance in the transverse plane caused by the lattice. In action-angle coordi-
nates, this corresponds to an addition of µq to the angle φq . These oscillations in phase space are
called betatron oscillations.

The particles perform betatron oscillations around the design orbit with separate oscillation
frequencies in the two transverse phase space planes. With no other effect included, the number of
oscillations per turn around the collider are the machine tunes, Qq , defined as the fractional tunes
in this thesis

Qq = µq
2π ∈ [0, 1) . (2.17)

The integer part of the tune does not impact the dynamic at a given z, as it appears only in trigono-
metric functions in the one-turn-map. Therefore, it does not play a role in the dynamic when
considering localised effects, such as those of beam-beam interactions. The combined choice of
horizontal and vertical tune in a collider, (Qx, Qy), is called the working point.

Assume for now that a particle is only affected by the linear transfer map in Eq. (2.15). If
this particle was measured at the same spot in the lattice over multiple turns, it would trace out
an ellipse in horizontal phase space as shown in Fig. 2.3. This is called a Poincaré section [14].
The shape of the ellipse depends on the Twiss parameters and the action. The area of the ellipse is
A = 2πJx. Liouville’s theorem states that the area of phase space is conserved if external forces are
conservative and differentiable [15]. It follows that Jx and therefore also the beam emittance, εx,
and the beam size, σx(z), are constants of this motion, for a given z. This is in agreement with the
results cited above, as there is no change of energy during this simplified motion. The presence of
emittance growth at a fixed energy is therefore an indication that other nonlinear effects are acting
on the beam.

The particles are accelerated to higher energies in radio frequency (RF) cavities [16]. Beyond
an energy threshold, the particles traverse longer paths per loop if they have higher energy, as they
bend less in the fixed dipole fields. The particles will therefore gradually move backwards in the
bunch, i.e. ∆s < 0, if δ > 0. Due to the sinusoidal RF voltage, each particle is given an energy kick
∆δ based on its position. Particles in the front, s > 0, gain more energy than the particles in the
back, s < 0. The two effects combined are able to confine the particles longitudinally in the bunch.
If these changes are small per turn, they can be approximated by a continuous oscillating motion.
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Figure 2.3: Ellipse traced out in horizontal phase space by a particle only affected by a linear lattice.
The maximum x and x′ depend on the Twiss parameters and the action of the particle.

These oscillations are called synchrotron oscillations. The one-turn-map for the longitudinal phase
space plane, (s, δ), can for small longitudinal phase advances µs be given as(

s

δ

)
T+1

= Rs

(
s

δ

)
T

, Rs =
(

cos(µs) −βs sin(µs)
1
βs

sin(µs) cos(µs)

)
, (2.18)

where µs is the longitudinal phase advance, and βs is a convergence factor between the longitudinal
displacement and energy deviation, βs = σs/σδ . The synchrotron tune can be defined similarly to
the machine tunes as

Qs = µs
2π ∈ [0, 1) . (2.19)

The synchrotron tune depends on the RF voltage, energy of the beam and radius of the accelerator.
It is commonly quite small compared to the betatron tunes, Qs ≈ 0.002 in the LHC.

The focusing strength of the quadrupole magnets depends on the individual energy deviation of
the particles. This effect is called chromaticity [17], as in regular light optics. The tunes, Qq , are
not constant but depend on δ as [18]

Qq = Qq,0 +Q′qδ +Q′′q
δ2

2 , (2.20)

where Q′q and Q′′q are the chromaticity factors to first and second order. This thesis will only fo-
cus on chromaticity to first order. The presence of large chromaticity generates a large spread in
betatron frequencies, potentially leading to beam losses. Coherent instabilities driven by electro-
magnetic wakefields can also deteriorate the beam quality for small chromaticities [19]. The opti-
mal chromaticity for operation of a collider is the result of a good balance between these different
effects. It is usually controlled with sextupole magnets.

The effect of chromaticity on the position of particles results in a periodic modulation of the
betatron frequency. Consider only the effect of the betatron and synchrotron rotations

xq(T ) = Aq · cos(2πQqT + φq,0) , (2.21)
δ(T ) = Aδ · sin(2πQsT + φs,0) , (2.22)
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where Ai are the position amplitudes, φi,0 are the phase constants, which for simplicity are set to
0 in the following, and T is the turn number. Including the effect of chromaticity, the evolution
becomes

xq(T ) = Aq · cos
(

2π
(
Qq,0T +Q′

T−0.5∑
T ′=0.5

δ(T ′)
))

, (2.23)

where δ(T ) is given in Eq. (2.22), and is evaluated in the middle of each turn. Due to the slow
variation, the summation may be exchanged for an integration over the interval T ′ ∈ [0, T ], giving
an analytical expression for the position. The new turn dependent tune can then be calculated as the
turn derivative of the phase to be

Qq(T ) ≈ Qq,0 +Q′ ·Aδ · sin(2πQs(T )) , (2.24)

which was already known to first order from Eq. (2.20). The new analytical term for the position
can be used to study the frequency components of the motion of xq(T,Qq(T )). Expanding it to
second order in Γ = Q′δ/Qs, gives the expression

xq(T ) ≈ cos(2πQq,0T ) ·
(
1− 0.75 · Γ2)− Γ · sin(2πQq,0T )

+ Γ
2 · (sin(2π(Qq,0 +Qs)T ) + sin(2π(Qq,0 −Qs)T ))

+ Γ2

2 · (cos(2π(Qq,0 +Qs)T ) + cos(2π(Qq,0 −Qs)T ))

− Γ2

8 · (cos(2π(Qq,0 + 2Qs)T ) + cos(2π(Qq,0 − 2Qs)T )) ,

(2.25)

which corresponds well to the actual expression for Γ� 1. This second order expression gives
already reasonable agreement for Γ = 0.5. The knowledge to take from Eq. (2.25) is that in addition
to the known betatron frequency, Qq,0, the coupled motion with the longitudinal plane due to the
chromaticity, produces synchro-betatron side-bands. The side-bands have frequencies Qq ± n ·Qs
where n is an integer. To leading order, the coefficient of the n-th side-band is proportional to Γn,
assuming Γ� 1. In the LHC, σδ ≈ 1× 10−4 and Q′ ∈ [0, 15], making Γ ∈ [0, 0.75]. For particles
with large energy deviations in a machine with large chromaticity, many side-band frequencies are
important to describe the motion.

2.1.3 Interaction points
The beam in colliders as the Large Hadron Collider (LHC) and the Future Circular Hadron-Hadron
Collider (FCC-hh) is not a constant stream of particles. During operation, the particles are grouped
longitudinally in bunches, which again are grouped in trains of varying length. The beams are
crossing at multiple interaction points (IP) as illustrated in Fig. 2.4, with a nonzero full crossing
angle θxing. Head on (HO) electromagnetic interactions occur between the two beams at the IPs.
In an interaction region (IR) around each IP, each bunch experiences multiple additional parasitic
long range (LR) interactions with bunches from the opposing beam. The LR interactions are called
parasitic because they only cause deterioration of the beam, without producing particle collision
events to be studied by the detectors. The crossing angle is nonzero partly to reduce the effect of
these LR-interactions on the beam quality.

There are a few possible modifications that significantly alter the interactions in the IR. One
can produce a nonzero displacement between the two beams in the direction perpendicular to the
crossing plane. When this is done, it is to reduce the frequency of events at that given IP. It also
reduces the effect of the beam-beam interactions. Another modification is the use of crab cavities
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Figure 2.4: Illustration of the crossing of beam 1 and beam 2 at the IPs in circular colliders. Not to
scale.

[20], proposed as a method to increase the event frequency without increasing the strongly distorting
effects of the LR interactions. They work by tilting each bunch so that the two HO bunches in
Fig. 2.4 overlap better, without reducing the crossing angle, ensuring that the LR interactions occur
between well separated bunches.

As mentioned multiple times, the goal of a collider is to produce as many events as the physicists
can analyse. The luminosity, L, is defined as the ratio of number of events detected per time per
cross section, and is therefore an important performance measure of a collider. The frequency of
events is

fevent = L · σevent , (2.26)

where the cross section of the event, σevent, is a measure for the probability of it happening. For two
beams of equal size, σi,1 = σi,2, the luminosity is [11]

L = N1N2frevnb

4πσxσy
· S ·H , (2.27)

where
S = 1√

1 +
(
σs

σx
tan
(
θxing,x

2

))2
, (2.28)

for a crossing in the horizontal plane, and

H =
√
π · β

∗

σs
· exp

[(
β∗

σs

)2
]
· erfc

(
β∗

σs

)
. (2.29)

S is a correction factor for the crossing angle, being 1 for zero crossing angle, and decreasing
towards zero for increasing angles. H is a correction factor for the hourglass effect [21], being 1 for
small σs/β∗q , and decreasing towards zero as this ratio increases. Ni is the number of particles per
bunch in beam i. frev is the revolution frequency. nb is the number of bunches in each beam. σx is
the rms horizontal beam size, and equivalently σy is the rms vertical beam size. Both an increase of
beam emittance and a loss of particles will reduce the event frequency, assuming that the crossing
angle remains fixed.

The dependence of luminosity on the crossing angle is given by Eq. (2.28). From this equation,
a more relevant value is the Piwinski angle φPIW,q which is defined as

φPIW,q = σs
σq
·
θxing,q

2 , (2.30)

which is equal to the second term in the denominator in Eq. (2.28) for small angles. The crossing
angle is typically small, θxing ∼ 300 µrad in the LHC.
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2.2 Beam-Beam Interaction in 4D
The focus of this thesis is the effect of the HO beam-beam interaction. This interaction can be stud-
ied by considering only one bunch per beam, and will be derived in the weak-strong regime. Beam
1 is taken to be weak and beam 2 is strong, where strong means that it can affect the distribution of
the other beam, while the weak cannot. The strong bunch in beam 2 can have various distributions,
leading to different electromagnetic forces, and it will remain fixed. It will, in good agreement with
real bunches, be taken to be a 3D Gaussian charge distribution

ρ(x, y, s) = NZe(√
2π
)3
σxσyσs

exp
[
− x2

2σ2
x

− y2

2σ2
y

− s2

2σ2
s

]
, (2.31)

where σi is the standard deviation of the Gaussian distribution in each spatial dimension sepa-
rately, N is the number of particles in the strong bunch, and Z is the number of elementary charges
per particle, Z = 1 for protons. The distribution of the weak beam is not considered at the mo-
ment, because the interaction modelled in the weak-strong model is independent of it. Effects like
synchrotron radiation and damping can make the beam smaller in the vertical plane than in the hor-
izontal plane, σy < σx [22]. This effect is more prominent in high energy e+e− colliders than in pp
colliders, related to the mass ratio between electrons and protons. The bunches are approximately
round in the LHC, σx = σy = σr. Because the synchrotron radiation is also increasing with energy,
the bunches may not be round in the FCC-hh. For nonzero crossing angle, θxing, the bunches travel
on different closed orbits around the IP. Furthermore, the transverse beam sizes σq are dependent
on z − zIP due to the hourglass effect discussed in Sec. 2.1.2. These effects change the beam-beam
interaction as the bunches pass each other. In such a scenario, a full 6D treatment of the interaction
is necessary. For θxing = 0 and σs/β∗q � 1, the relation between the opposing bunches changes
negligibly close to the IP, and the beam-beam interaction can be derived only dependent on the
transverse dimensions, as will be done in this section.

2.2.1 Round beams
For round beams, σx = σy = σr, the distribution in Eq. (2.31) in the rest frame of beam 2 is cylin-
drically symmetric as

ρ(rB , θB , sB) = NZe(√
2π
)3
σ2
rBσsB

exp
[
− r2

B

2σ2
rB

− s2
B

2σ2
sB

]
, (2.32)

where B reflects that the coordinates are in the reference frame of beam 2, rB =
√
x2
B + y2

B is the
transverse radius, and θB is the transverse polar angle, which is unimportant due to the cylindrical
symmetry. Assume that the non-negligible motion of the particles in the weak beam is parallel to
the s-axis, making all perpendicular lengths equal in the rest frame of beam 2 and in the lab frame,
rB = r. Assume that both beams cross s = 0 at t = 0. The case at hand is displayed in Fig. 2.5.

In the lab frame of IP1 and IP5 in the LHC (design), σs = 7.55 cm and σr ≈ 10 µm. In the rest
frame of beam 2, σsB = 563 m, more than 7 orders of magnitude greater than σr. The bunch is
approximated by an infinite cylinder, and the electrical field is calculated using Gauss’ law. Then
the sB-dependence is reintroduced to give

EB(r, θ, sB) = Ne

ε0
(√

2π
)3
σsB

(
1− exp

[
− r2

2σ2
r

])
exp

[
− s2

B

2σ2
sB

]
r
r2 , (2.33)

where r = (x, y) is the transverse position and ε0 is the vacuum permittivity.
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Figure 2.5: Illustration of the HO interaction of a single particle in the weak beam 1 and the
Gaussian distribution of the strong beam 2. Not to scale.

The fields in the lab frame can be calculated from Eq. (2.33) using Lorentz transformations [23]

E‖ = E‖B , E⊥ = γE⊥B and Bθ = γ
v2 ×E⊥B

c2
. (2.34)

The electric field parallel to the motion, E‖B , that was neglected by considering the distribution as
an infinite cylinder, is relatively even weaker in the lab frame due to the Lorentz transformation.
The Lorentz force on particle 1 of velocity v1 = −v2 in the lab frame is

F = γ
(

1 + v1v2

c2

)
eE⊥B , (2.35)

where the second term is due to the magnetic field induced by the current of beam 2.
The force described by Eq. (2.35) acts on particle 1 only while the beams pass each other. As-

sume for now that the momentum changes during the interaction, but the position does not. Particle
1 is at s1 = v1t in the lab frame. Transforming this to the frame of beam 2, gives s1B= γ(v1 + v2)t.
The bunch length is transformed to σsB = γσs. Exploiting that the force is the time derivative of
the momentum, an integral expression for the change of mechanical momentum is

∆p̄mech =
(
1 + v1v2

c2

)
Ne2

ε0
(√

2π
)3
σs

(
1− exp

[
− r2

2σ2
r

])
r
r2

∫ ∞
−∞

dt exp
[
− (v1 + v2)2t2

2σ2
s

]
. (2.36)

In the regime at hand, both velocities approach the speed of light v1 = v2 u c. Carrying out the inte-
gral and normalising with the relativistic mechanical momentum of the design particle, p̄0 = γmpc,
one reaches the incoherent beam-beam kick for round beams

∆r′ = ∆p̄mech

p̄0
= 2Nr0

γ

(
1− exp

[
− r2

2σ2
r

])
r
r2 , (2.37)

where the classical proton radius has been introduced as

r0 = e2

4πε0mpc2
. (2.38)

This result can also be reached through a different approach [4], by first finding the potential of the
strong bunch. The radius dependence of the beam-beam kick in Eq. (2.37) is visualised in Fig. 2.6.
For small radii, the kick is approximately linear. For higher radii, the force is strongly nonlinear.

These results are obtained using the assumption of zero transverse translation during the beam-
beam interaction. The assumption is valid if the transverse translation ∆xq ∼ σq′ · σs = σq · σs/β∗q
is negligible compared to the transverse beam size, σq . That the ratio σs/β∗q is approximately zero,
was one of the requirements for the 4D approximation to be valid. Thus, if it is valid to calculate
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Figure 2.6: Transverse momentum kick on a charged particle from passing a round Gaussian bunch
of charged particles of the same charge. Note that the horizontal axis is given in units of transverse
beam size of the strong beam, most particles experience the approximately linear kick in the centre.

the kick from only the transverse coordinates, it is valid to assume that the change of the transverse
position of particle 1 during the interaction is negligible. It should also be checked similarly that
the beam-beam kick does not change the position of the particles. To test this, consider a worst-case
scenario, that the entire kick is done at the beginning of the interaction. Using values from the LHC
design report [3], the transverse translation is of order σq × 10−7. The assumptions are valid, in the
context of 4D interactions.

2.2.2 Flat beams

If the bunches are flat, σx 6= σy , one has to derive the force from the more general distribution in
Eq. (2.31). The electric field in the lab frame has been derived assuming that the distribution only
varies negligibly in the longitudinal direction [24]. For σx > σy the electric fields are

Ey+iEx= Ne

2ε0
√
σ2
x − σ2

y

w

 x+ iy√
2(σ2

x − σ2
y)

−exp
[
− x2

2σ2
x

− y2

2σ2
y

]
·w

 x
σy

σx
+ iy σx

σy√
2(σ2

x − σ2
y)

 ,

(2.39)
where w[a+ ib] is the Faddeeva function, sometimes referred to as the complex error function

w[t] = exp
[
−t2

](
1 + 2i√

π

∫ t

0
exp
[
u2] du

)
. (2.40)

The magnetic fields can be calculated using the Lorentz transformations in Eq. (2.34). The
forces can be found by entering the fields into the expression for the Lorentz force. This gives the
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following expression for the beam-beam kick from flat beams

∆y′+i∆x′= Nr0
√

2π

γ
√
σ2
x − σ2

y

w

 x+ iy√
2(σ2

x − σ2
y)

−exp
[
− x2

2σ2
x

− y2

2σ2
y

]
·w

 x
σy

σx
+ iy σx

σy√
2(σ2

x − σ2
y)

 ,

(2.41)
which converges to the expression in Eq. (2.37) when σx → σy .

The horizontal and vertical momentum kicks have been plotted in Fig. 2.7 for the flatness ratios
σx/σy ∈ {1.01, 100}. When the beam is almost round, the kicks are approximately equal in the
two transverse planes and equal to the kick for round beams displayed in Fig. 2.6, as they should
be. For a strongly flattened beam in the horizontal direction, the kick is very different in the two
planes. In the vertical plane, the charge appears confined at origo, giving an almost immediate local
maximum before the kick strength falls off. The opposite happens in the horizontal plane, where the
linear regime is now stretched out further than in the round bunch regime. This picture is dependent
on the normalisation of the axes. If two equally flat bunches interact, the particles of low vertical
amplitude, Ay < σy , are in the approximately linear region.

Figure 2.7: Transverse momentum kick on a particle from passing a flat Gaussian beam, consisting
of particles of the same charge. The horizontal axis is given in units of average transverse beam
size of the strong beam, 〈σq〉 = (σx + σy)/2. The kick is different in the horizontal and vertical
directions.

2.2.3 Beam-beam tune shift

The beam-beam interaction causes a tune shift from the machine tunes Qq . To find this shift,
consider first the interaction in the linear region in the centre, xq ≈ 0. For round beams, the kick
can in this region be given as a transfer matrix(

xq
x′q

)
T+BB

= KBB,q(2κ)
(
xq
x′q

)
T

, KBB,q(κ) =
(

1 0
κ 1

)
, (2.42)
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where κ = Nr0/2γσ2
q , and BB is a subscript to tell it is the beam-beam transfer matrix. The one-

turn-map starting at the centre of one IP, assuming only one IP, can be expressed through matrix
concatenation as

TOTM = KBB,q (κ) Rq (µq) KBB,q (κ) . (2.43)

Remembering that αq = 0 at the IPs, and assuming that the beam-beam kick expressed through κ
is weak, the one-turn map is

TOTM =
(

cos
(
µq − κβ∗q

)
β∗q sin

(
µq − κβ∗q

)
+O(κ)

−γ∗q sin
(
µq − κβ∗q

)
+O(κ) cos

(
µq − κβ∗q

) )
. (2.44)

By insertion of the expression for κ, one finds that the beam-beam interaction has reduced the
rotation in phase space. The amount is commonly given as the beam-beam tune shift ∆Qq,BB ,
which for particles of zero transverse amplitude is

∆Qq,BB = − Nr0

4πγεq
. (2.45)

The beam-beam parameter ξq is a measure on the strength of the beam-beam interaction [11].
For round beams, the parameter can be calculated by using the expression in Eq. (2.37) to get for
both transverse planes

ξq = − β∗

4π
d∆x′q
dxq

∣∣∣∣
r=0

= − Nr0

4πγεq
. (2.46)

That is, the beam-beam parameter is equal to the beam-beam tune shift for particles of zero trans-
verse amplitude, |r| = 0. For flat beams, the beam-beam parameter is different for the two trans-
verse planes

ξq = −
Nr0β

∗
q

2πγσq(σx + σy) , (2.47)

which reduces to the expression in Eq. (2.46) in the limit of round beams. If σx > σy , the maximum
beam-beam tune shift is largest in the vertical plane if εx > εy and β∗x = β∗y , and largest in the
horizontal plane if εx = εy and β∗x > β∗y . The beam-beam parameter and the beam-beam tune shift
are negative for beams of the same charge. This thesis refers to the negative of both values after this
chapter.

The dependence of the tune shift for round beams on the amplitude Aq , can be calculated in
many ways. A comprehensible classical 2D approach can be found in App. B of [4], which rewritten
in the notation of this thesis is

∆Qq(aq) = − Nr0

4πγεq
· 4
a2
q

(
1− exp

[
−
a2
q

4

]
· I0

(
a2
q

4

))
, aq =

√
2Jqβ∗q
σq

, (2.48)

where aq = Aq/σq is the normalised amplitude in the given plane. This expression is assuming
zero amplitude in the other transverse plane. The dependence of the beam-beam tune shift on the
amplitude in position space is plotted in Fig. 2.8. The tune shift is largest for particles of zero
transverse amplitude, equal to the beam-beam parameter.

The tune shift may cause problems in the presence of resonances, which will be considered in
Sec. 2.3. The bunches may be separated at the IP to reduce the tune shift and problematic effects
that come with it. The effect of separation at the IP can also be used to understand the effects of
LR interactions. One can apply the same method, used to get the horizontal beam-beam tune shift
as in Eq. (2.48), to get the tune shift for particles in a weak bunch that is separated from the strong
bunch either in the horizontal or the vertical plane. The dependence of the horizontal beam-beam
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Figure 2.8: Dependence of the beam-beam tune shift, ∆Qq , on the amplitude of the particle in
position space, in units of the transverse beam size of the strong beam, σq .

tune shift on the amplitude in horizontal phase space and separation in either transverse plane, is
presented in Fig. 2.9. Zero separation produces the tune shift already found above. Separation in
the horizontal plane causes a horizontal tune shift of opposite sign of the beam-beam parameter.
Separation in the vertical plane reduces the value of the horizontal tune shift, but does not change
the sign. The tune shift reduces for increasing separation in both planes. For ∆xq = 10σq , the tune
shift for particles in the core of the bunch has been reduced to |∆Qx(0)| = 0.02 · ξx.

(a) (b)

Figure 2.9: Dependence of horizontal beam-beam tune shift, ∆Qx, for round beams, on the sepa-
ration in the transverse planes in units of the transverse beam size of the strong beam. The tested
particles only distributed in horizontal phase space. (a) displays the tune shift for a horizontal
separation. (b) displays the tune shift for a vertical separation.
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It is more difficult to get an analytical expression for the tune shift in two dimensions simulta-
neously. Nevertheless, it can be estimated numerically. The combined tune shift from the machine
tunes (Qx0, Qy0) for particles oscillating with different amplitudes, called the tune footprint, is
displayed in Fig. 2.10. The maximum tune shift in either plane is equivalent to ξq,Tot, and oc-
curs for particles of zero transverse amplitude. The horizontal tune shift decreases for x = 0 when
y increases, but slower than when y = 0 and x increases, similar to what was found for vertical
separation in Fig. 2.9b. This behaviour causes the width of the footprint to be nonzero.

Figure 2.10: Tune footprint caused by the beam-beam tune shift in both transverse planes simul-
taneously. The lines correspond to x/σx = {0, 1, 2, 3, 4, 5, 6} and y ∈ [0, 6], or vice versa. The
markers on the corners of the footprint correspond to the normalised amplitude in horizontal and
vertical phase space, i.e. (0, 6) means Ax = 0 · σx and Ay = 6 · σy .

What has been presented in this section has assumed a small beam-beam parameter, ξTot, and
that resonances do not affect the motion of the particles. For larger beam-beam parameters, as will
be studied in Ch. 4, the particles will be affected by resonances. The tune shift is for large beam-
beam parameters also dependent on the machine tune caused by the lattice. The maximal tune shift
varies the most for tunes close to integers and half integers [25].

2.3 Resonances and Resonance Cancelling
2.3.1 Resonances
The particles oscillate in phase space, in a way similar to free oscillations of a harmonic oscillator.
However, a circular beam lattice is not ideal, due to nonlinear field imperfections of the magnets,
misalignments between elements, and vibrations [26]. In addition, the nonlinear beam-beam inter-
action affects the motion of the particles. Because the beam passes the same part of the collider
multiple times per second, these forces act on the particles periodically, causing forced oscillations
[15]. If the forces accumulate effect over multiple turns, strong resonances may cause emittance
growth and beam losses. The resonances are introduced conceptually at first, for a more mathemat-
ical approach, go directly to Sec. 2.3.2.

Consider first the possibility of a dipole error, for instance in the form of one dipole producing
a stronger magnetic field than designed, or a dipole component in some other lattice element. The
magnetic field of a dipole was presented in Eq. (2.13). It is ideally equal at every point in the
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transverse aperture of the beam. If the tunes were integers,

Qq = p , p ∈ Z , (2.49)

the particles would return to the same position in the Poincaré section every turn, and be kicked in
the same direction at the location of the error. Unless corrected for, this would lead to increasingly
large transverse amplitudes until the particles were lost from the machine.

Consider next a quadrupole error. The magnetic field of a quadrupole magnet was presented in
Eq. (2.14). The horizontal force created by this magnet will be proportional to x. Therefore, the
kicks will add up if the tunes are either integers or half integers,

2 ·Qq = p , p ∈ Z , (2.50)

and the particles will again be lost. These resonances are second order. This process can be con-
tinued to magnetic fields of higher orders. In general, one finds that localised kicks proportional to
the transverse coordinates to power (n − 1), can cause resonances of n-th order. Combinations of
multiple higher-order kicks can cause resonances of even higher order.

Due to mixing between the two planes, resonances may not only depend on the individual
tunes Qx and Qy , but on the combination of them. A general expression for transverse betatron
resonances can be written as

k ·Qx + l ·Qy = p , k, l, p ∈ Z , (2.51)

where k, l and p are integers. The tunes that fulfill this relation make up lines in tune space of
resonance order

n = |k|+ |l| . (2.52)

All resonances up to order 5 are shown in tune space, (Qx, Qy), in Fig. 2.11a. The magnetic
errors do cause problems, requiring the usage of high field quality magnets. Yet, the working point
must be chosen to avoid the resonance lines for realistic magnetic imperfections. Commonly, the
machine tunes chosen in actual colliders are close to the coupling resonance, Qx = Qy , highlighted
red in the graph.

The beam-beam interaction is possibly more problematic than lattice errors. First of all, this
is because the strength of the beam-beam interaction is closely bound to the luminosity, seen by
comparison of the beam-beam parameter in Eq. (2.47) and the luminosity in Eq. (2.27). One cannot
achieve the high luminosity required without having strong beam-beam interactions. Another prob-
lem is that the interaction is strongly nonlinear, caused by the exponential term in the beam-beam
kick for round beams in Eq. (2.37). The exponential function can be expanded as

exp[x] =
∞∑
i=0

xi

i! , (2.53)

depending gradually less on larger i due to the factorial in the denominator. All resonance lines up
to order 20 are plotted in Fig. 2.11b. This emphasises the problem of choosing machine tunes that
do not overlap with any beam-beam driven resonance, especially considering that the beam-beam
interaction also causes a spread of the tunes for particles at different amplitudes in the beam. The
kick is however gradually weaker for larger order and, as will be shown later, the resonances of
higher order n are usually weaker and consequently less problematic.

What has been presented above is the situation caused by the transverse motion alone. If the
motion is also coupled between the longitudinal and transverse planes, synchro-betatron resonances
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(a) (b)

Figure 2.11: Resonance lines in tune space (Qx, Qy). (a) displays all resonance lines up to order 5.
The red line corresponds to the coupling resonance. (b) displays all resonance lines up to order 20,
relevant due to the beam-beam interaction.

are relevant. As was derived for the regular motion due to chromaticity in Eq. (2.25), these reso-
nances come as side-bands to the betatron resonances. The general expression for resonances in 6D
is therefore

k ·Qx + l ·Qy +m ·Qs = p , k, l,m, p ∈ Z . (2.54)

This makes it increasingly difficult to avoid all resonances in tune space. As it is impossible in
theory to avoid all of them, it is of interest to understand which of the resonances are the most
problematic.

2.3.2 Resonances through Lie theory

There are multiple approaches to study the nonlinearity of the beam-beam interaction quantitatively.
The method presented here is based on Lie transfer maps. Formulation of the technique and appli-
cation to a single IP for one transverse direction can be found in [27]. Further scaling to two IPs is
done in [4, 6]. This section studies a 2D transverse phase space. The results are valid for both the
horizontal and vertical directions separately.

A particle in a lattice is subject to the one-turn-map given in Eq. (2.15). The rotation can be
considered from the IP, where β is at a local minimum, α = 0 and γ = 1/β. The linear lattice can
be written in Lie maps as

e:f : , f = −µ2

(
x2

β
+ βx′2

)
= −µJ , (2.55)

where f is the effective Hamiltonian, which is conserved by definition. It is linear in the action J ,
which has already been shown to be a constant for this motion.
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Particles that move through an IP experience the nonlinear beam-beam kick given in Eq. (2.37),
assuming round bunches. The kick can be expressed by the Lie map

e:F : , F (x) =
∫ x

0
dχ∆x′(χ) , (2.56)

where −F is the potential due to the beam-beam force. F can be expanded in a Fourier series

F (x) =
∞∑
−∞

cn(J)einφ , cn(J) = 1
2π

∫ 2π

0
dφ e−inφF (x) . (2.57)

The Fourier coefficients cn(J) in the beam-beam Lie map can be expressed as

cn(J) = Nr0

γ

∫ Jβ/2σ

0

dα
α


(1− e−αI0(α)) , if n = 0
0 , if n = odd
−e−αIn/2(α) , otherwise

, (2.58)

where I are the modified Bessel functions of the first kind [27]. Because the beam-beam force is
an odd function, only the even coefficients of its potential are nonzero. This is not true if there is a
transverse separation or a nonzero crossing angle between the beams. The first four nonzero coeffi-
cients are plotted in Fig 2.12. The horizontal axis in the plot is the amplitude in position space as in
Eq. (2.7), normalised by the standard deviation. Two things to note are that the coefficient strength
increases with the action J , and that it decreases with increasing n. That is, beam-beam resonances
of higher order n have smaller resonance coefficients, and all nonzero resonance coefficients are
larger at larger transverse amplitudes.

Figure 2.12: Fourier coefficients for the beam-beam potential. The horizontal axis is amplitude in
position space in units of the transverse beamsize σ of the strong beam.

The two Lie maps for the lattice and the beam-beam kick can be concatenated together using
the BCH formula, which reads

e:h: = e:f :e:F : ≈ exp
[
: f + : f :

1− e−:f :F +O
(
F 2) :

]
. (2.59)

Given that the beam-beam interaction, represented by F, is weak and only needs to be included to
the first order, this gives after some arithmetic an expression for the effective Hamiltonian

h = −µJ +
∞∑
n=0

cn(J) nµ

2 sin
(
nµ
2
) exp

[
inφ+ inµ

2

]
. (2.60)
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The constant of motion, h, now depends on the angle φ in phase space. The action J is thus no
longer independent of the angle φ.

The effective Hamiltonian gives rise to a resonance condition when the sine in the denominator
is zero

Q = µ

2π = m

n
, m ∈ Z, n ∈ N . (2.61)

This can easily be generalised to a 2D transverse resonance condition

k ·Qx + l ·Qy = p , k, l, p ∈ Z , (2.62)

equal to Eq. (2.51). Resonance lines up to order 20 are plotted in Fig. 2.13, with the requirement
that k and l are even. The strength of the resonances is linked to the Fourier coefficients cn(J),
which can be calculated in 1D using Eq. (2.25). This can be extended to 2D using numerical
solutions to calculate the coefficients, which has been done by a code developed at CERN [28].
These coefficients have been used to weight the resonance lines. The cancellation of odd resonances
has reduced the density of resonance lines in comparison to Fig. 2.11, where all resonance lines
were displayed. The area between the strong 4th order and 6th order resonance lines is displayed in
Fig. 2.13b, including the LHC working point, (Qx, Qy) = (0.31, 0.32), marked by a red cross.

(a) (b)

Figure 2.13: All resonance lines up to order 20 with nonzero Fourier coefficients. The tune space
comparable to Fig. 2.11 is shown in (a), while the square between the strong 4th order and 6th order
resonances is shown in (b). The red cross in (b) is the machine tune used in the LHC.

As the Hamiltonian diverges, there is no longer a strict relationship between the action J and the
phase angle φ. The dynamics of Hamiltonian systems close to resonances are complex. Multiple
mechanisms can lead to diffusion [14]. Numerical simulations are needed to evaluate the effect of
the resonances on the single particle diffusion.

The resonance condition has strong implications for which tunes it is safe to operate at, because
the effect of the resonance may lead to diffusion of the particles towards higher actions. If the tune
of a particle is far from strong resonances, then the efficient Hamiltonian can be averaged over the
angle to give

〈h〉 = −µJ + c0(J) . (2.63)
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The constant tune Q = µ/2π has apparently been shifted by the action dependent beam-beam in-
teraction

∆Q = − 1
2π

dc0(J)
dJ . (2.64)

Applying the fundamental theorem of calculus gives

∆Q = − Nr0

4πγεx
· 1
x

(
1− e−xI0(x)

)
, x = Jβ∗

2σ2 . (2.65)

The beam-beam tune shift in Eq. (2.48) is thus recovered. Deriving the beam-beam tune shift in
this manner makes it obvious that the expression is only valid when resonances do not affect the
Hamiltonian.

2.3.3 Resonance cancelling
Consider next a similar setting where the change is that there are now two IPs instead of one,
splitting the lattice in two separate parts. In the LHC, IP1 and IP5 are diametrically positioned. The
beam performs betatron rotations, with phase advances µ1 and µ2 in the two parts of the lattice. In
total µ1 + µ2 = µ as in the entire lattice in the previous case. The four separate Lie maps can be
concatenated

e:h2: = e:f(µ1):e:F :e:f(µ2):e:F : , (2.66)

which gives an expression for the effective Hamiltonian to first order in the beam-beam interaction
using the BCH-formula [6]

h2 = −µJ + 2c0(J) +
∞∑
n=2

2nµcn(J)
sin
(
nµ
2
) cos

[
n
(
φ+ µ

2 + µ1

2

)]
cos
(nµ1

2

)
. (2.67)

In comparison to Eq. (2.63), the beam-beam tune shift has doubled as the number of IPs has doubled.
The effective Hamiltonian, h2, gives rise to the same resonance condition as before, when the

sine in the denominator is zero. However, with carefully adjusting the intermediate phase advance
between the two IPs, µ1, it is possible to cancel these resonances. This can be achieved when the
cosine in the nominator is zero as well, leading to the following resonance-cancelling condition on
the intermediate phase advance

µ1 = 2m+ 1
n

· π , m ∈ Z, n ∈ N , (2.68)

for cancelling resonances of order n. cn(J) is still zero for odd n, and larger for smaller n. Two
strong resonances close to the LHC operation point are the 4th order at Q = 1/4 and the 6th order
at Q = 1/3. The 4th order resonance can according to this be cancelled if µ1 = {π/4, 3π/4, ...}.
The 6th order can likewise be cancelled if µ1 = {π/6, 3π/6, ...}. This effect was studied and found
effective for individual resonances in part one of this project [1]. There is no common initial phase
advance that can cancel resonances of order n = 4 ·m, where m is an integer. The resonances of
order n = 2 · (2m+ 1) may however be cancelled if µ1 = {π/2, 3π/2, ...}. That is, resonances of
order n = {2, 6, 10, ...} can be cancelled simultaneously according to this theory.

Another suggestion for a phase advance that improves the beam quality is

µ1 = µ

2 , (2.69)

i.e. splitting the phase advance equally between the two separate parts of the lattice. This phase ad-
vance was found from a symmetry perspective [6], and confirmed numerically through trial to give
the best performance [10]. The suggested intermediate phase advances in Eq. (2.68) and Eq. (2.69)
will be tested in this thesis.
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2.4 Beam-Beam Interaction in 6D
The beam-beam interaction was derived with a 4D treatment in Sec. 2.2. That method was justified
in the limit of zero crossing angle, θxing = 0, and negligible hourglass effect, σs/β∗q � 1. In real
accelerators, the crossing angle is in general nonzero and the hourglass effect is non-negligible.
Currently σs/β∗q = 0.19 in the LHC during normal physics fills [29], and it is expected to increase
with the future improvements to HL-LHC and FCC-hh. The nonzero crossing angle has the effect
that the transverse distance between the bunch centres is not constant throughout each bunch, as
was visualised in Fig. 2.4. The hourglass effect causes the transverse beam size, σq , of the bunches
charge distribution in Eq. (2.31), to be dependent on the longitudinal distance from the IP, z − zIP.
If either of these effects are present, the longitudinal dependence of the beam-beam kick is no longer
negligible and a 6D kick is needed.

It is possible to directly calculate the kick of one bunch on another, as they pass with a nonzero
crossing angle. The problem can also be separated into

1. Lorentz transformation (L) to boosted frame where two tilted bunches collide head-on [30].
2. Perform a symplectic 6D synchro-beam mapping (SBM) [31].
3. Inverse Lorentz transformation (L−1) back to the accelerator coordinates.

This method was introduced in [30], and it is how the beam-beam interaction is calculated in track-
ing codes such as SixTrack [32], and also in CABIN.

2.4.1 Transformation to head-on frame

The transformation from accelerator coordinates to a head-on frame is straightforward [30]. Here
I derive it and its inverse in more detail. Consider an IP in a circular collider, located at zIP = 0
for ease of notation. The steps depicted in the list above produce new combinations of the same
variables. The Lorentz transformation L consists of a transformation from accelerator coordinates
to lab frame coordinates by matrices A and B, followed by a Lorentz rotation and boost to the
head-on frame by a matrix L, before the lab frame coordinates are transformed back to accelerator
coordinates and shifted to z∗ = 0. The coordinates after each step are distinguished by different
notation as

x(0) A,B−−−→ X(0) L−→ X∗(z∗) A−1,B−1

−−−−−−→ x∗(z∗)→ x∗(0∗) , (2.70)

where the argument (0) signifies that the values are taken at the IP, z = 0. The goal of this transfor-
mation is to go from the problem expressed in accelerator coordinates in Fig. 2.14a to the problem
of head-on collisions between tilted bunches in Fig. 2.14b. We will consider the problem of a
horizontal crossing angle, but the results are directly transferable to a vertical crossing angle.

The accelerator coordinate system has already been defined as x = (x, x′, y, y′, s, δ;h, z). For
readability, the canonical momenta x′q will be written as pq in this section, making x equal to
(x, px, y, py, s, δ;h, z). If the reader is used to Hirata’s notation, note the exchange of s and z. The
h is the effective Hamiltonian, defined as

h(px, py, δ) = 1 + δ −
√

(1 + δ)2 − p2
x − p2

y , (2.71)

which is the momentum along the reference trajectory. Instead of the full crossing angle θxing, the
half crossing angle appears many times in this derivation, and for ease of notation it is defined as

θh =
θxing

2 . (2.72)
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(a)

(b)

Figure 2.14: Beam-beam interaction at the IP with nonzero crossing angle. The strong bunch is
blue, and its coordinates have a subscript Σ, while the weak bunch is represented by incoherent
red particles. (a) displays the situation in accelerator coordinates. (b) displays the situation in the
head-on frame after the full Lorentz transformation L.

The Lorentz boost, L, transforms particles that are expressed in the laboratory coordinates,
X = (X,PX , Y, PY , S, PS ;H,T ). H is the real Hamiltonian, i.e. the energy, T is the actual time,
S is the distance from the IP in the lab frame, and Pi are the mechanical momenta in the three
directions. These are related to the accelerator coordinates through

cT

X

S

Y

 = A


s(z)
x(z)
z

y(z)

 , where A = A−1 =


−1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (2.73)

and 
H
c − p̄0
PX

PS − p̄0
PY

 = p̄0B


δ

px
h

py

 , where B = B−1 =


1 0 0 0
0 1 0 0
1 0 −1 0
0 0 0 1

 , (2.74)

where p̄0 is the absolute value of the momentum of the design particle. The matrices A and B are
their own inverses separately.

The Lorentz transformation that will make the collision head-on, consists of first a rotation
counter clockwise by an angle θh, Lrot, followed by a boost in the direction of the rotated x coordi-
nate, Lboost. These operations are well known to be given by

Lrot =


1 0 0 0
0 cos(θh) sin(θh) 0
0 − sin(θh) cos(θh) 0
0 0 0 1

 , LBoost


sec(θh) − tan(θh) 0 0
− tan(θh) sec(θh) 0 0

0 0 1 0
0 0 0 1

 , (2.75)
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and concatenated as L = LBoostLrot. The Lorentz transformation is thus applied as


cT ∗

X∗

S∗

Y ∗

 = L


cT

X

S

Y

 and


H∗

c

P ∗X
P ∗S
P ∗Y

 = L


H
c

PX
PS
PY

 , (2.76)

where the ∗ signifies that the coordinates are in the boosted frame, as in Eq. (2.70), and

L =


sec(θh) − sin(θh) − tan(θh) sin(θh) 0
− tan(θh) 1 tan(θh) 0

0 − sin(θh) cos(θh) 0
0 0 0 1

 . (2.77)

For a reference particle, PX = 0 = PY and H/c = p̄0 = PS , which in the boosted frame become
transformed into P ∗X = 0 = P ∗Y and H∗/c = p̄∗0 = p̄0 cos(θh).

The entire transformation from x(0) to x∗(z∗) can thus be written as


s∗(z∗)
x∗(z∗)
z∗

y∗(z∗)

 = A−1LA


s(0)
x(0)

0
y(0)

 =


sec(θh) 0 0 0
tan(θh) 1 0 0

0 − sin(θh) cos(θh) 0
0 0 0 1



s(0)
x(0)

0
y(0)

 , (2.78)

and


δ∗

p∗x
h∗

p∗y

 = p̄0

p̄∗0
B−1LB


δ

px
h

py

 =


1 − tan(θh) tan2(θh) 0
0 sec(θh) −tan(θh)sec(θh) 0
0 0 sec2(θh) 0
0 0 0 sec(θh)



δ

px
h

py

 , (2.79)

where the ratio p̄0/p̄
∗
0 introduces an additional factor sec(θh). The transformation L acts on the array

(H/c, PX , PS , PY ) and not the array (H/c − p̄0, PX , PS − p̄0, PY ) in Eq. (2.74) that is produced
by the B transformation. The additional terms do however cancel, and the matrices displayed here
are valid to perform the required transformation to a boosted head-on frame at z∗ = − sin(θh)x(0).

The desired coordinates are x∗(0∗), not x∗(z∗). An additional transformation is thus needed,
taken as the Taylor expansion to first order [30]

x∗i (0∗) = x∗i (z∗)−
dx∗i (0∗)

dz∗ z∗ = x∗i (z∗) + ∂h∗

∂p∗i
sin(θh)x(0) , (2.80)

where the Hamiltonian equation has been used, considering z∗ to be equivalent to time scaled by
the speed of light [15]. It can also be shown that

h∗(p∗x, p∗y, δ∗; p̄∗0) = h(p∗x, p∗y, δ∗; p̄∗0) . (2.81)
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The complete mapping L from x(0) to x∗(0∗) is thus

x∗ = x ·
(

1 + ∂h∗

∂p∗x
sin(θh)

)
+ s tan(θh) ,

y∗ = y + x sin(θh)∂h
∗

∂p∗y
,

s∗ = s

cos(θh) + x sin(θh)∂h
∗

∂δ∗
,

p∗x = px − tan(θh)h
cos(θh) ,

p∗y = py
cos(θh) ,

δ∗ = δ − px tan(θh) + h tan2(θh) .

(2.82)

Pay attention to the combination of terms from both the boosted and the original frame on the right
side of these equations. In the ultra-relativistic limit, this mapping is exact.

Based on the mappingL in Eq. (2.82), one can already predict a few effects of the crossing angle.
The beam size can be found from the expression for the variation of independently distributed parti-
cles, σ2

x = 〈x2〉 − 〈x〉2. All coordinates are independently distributed, meaning that 〈xs〉 = 〈x〉〈s〉.
Furthermore, all coordinates are distributed with zero mean, 〈xi〉 = 0 = 〈pi〉. Therefore, σ2

x = 〈x2〉
and only terms proportional to squared values will be nonzero. The derivatives of h∗ with respect to
p∗q are proportional to p∗q . The terms containing squares of the derivatives of h∗ are proportional to
sin2(θh) ≈ 0 and are negligible for the relevant angles. This gives the expressions for the effective
transverse beam sizes in the boosted frame for a horizontal crossing

σ∗x = σx ·

√
1 +

(
σs
σx

tan(θh)
)
,

σ∗y = σy ,

(2.83)

where the effective boosted horizontal beam size is divided by the factor S in Eq. (2.28), which
explains the luminosity reduction for nonzero crossing angle.

The maximum beam-beam tune shift for head-on collisions was found to be equal to the beam-
beam parameter ξq in Eq. (2.47). By insertion of the effective head-on beam sizes in Eq. (2.83) into
that expression, one gets for a horizontal crossing

ηx,h =
∣∣ξ∗x,h∣∣ = Nr0β

∗
xS

2

2πγσx(σx + Sσy) ,

ηy,h =
∣∣ξ∗y,h∣∣ =

Nr0β
∗
yS

2πγσy(σx + Sσy) ,
(2.84)

where the subscript h signifies the horizontal crossing angle. Here ηq,h/v is introduced as the
effective beam-beam parameter, compared to the nominal |ξq|. For a Piwinski angle φPIW,x = 1,
S = 1/

√
2. For round beams, this corresponds to a reduction of the maximum beam-beam tune shift

in the horizontal plane as ηx,h = 0.59|ξx|, and in the vertical plane as ηy,h = 0.83|ξx|. A common
crossing scheme in an accelerator is to have two IPs of equal strength |ξq|, with one horizontal and
one vertical crossing. For round beams, this leads to a total tune shift

∆Qq,Tot =
∣∣ξ∗q,h + ξ∗q,v

∣∣ = |ξTot| · S , (2.85)

where ξTot = 2ξ is the sum of the nominal beam-beam parameters in the two independent IPs.
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2.4.2 Transformation back to accelerator coordinates

To find the inverse mapping from the head-on frame to the original frame, one can begin by cal-
culating the inverses of Eq. (2.78) and Eq. (2.79). Physically, the inverse Lorentz transformation,
L−1, consists of first boosting in the opposite direction followed by rotating clockwise by an angle
θh, thus

L−1 =


sec(θh) tan(θh) 0 0
sin(θh) 1 − sin(θh) 0

sin(θh) tan(θh) tan(θh) cos(θh) 0
0 0 0 1

 , (2.86)

which can be checked by insertion in L−1L = I4, where I4 is the 4D unity matrix. Applying the
known concepts for matrices C and D that

(CD)−1 = D−1C−1 , (2.87)

(C−1)−1 = C , (2.88)

one finds the inverse of the transformation in Eq. (2.78) to be
s(0)
x(0)

0
y(0)

 = A−1L−1A


s∗(z∗)
x∗(z∗)
z∗

y∗(z∗)

 =


cos(θh) 0 0 0
− sin(θh) 1 0 0

− sin(θh) tan(θh) tan(θh) sec(θh) 0
0 0 0 1



s∗(z∗)
x∗(z∗)
z∗

y∗(z∗)

 ,

(2.89)
and the inverse of the transformation in Eq. (2.79) to be

δ

px
h

py

 = p̄∗0
p̄0

B−1L−1B


δ∗

p∗x
h∗

p∗y

 =


1 sin(θh) 0 0
0 cos(θh) sin(θh) cos(θh) 0
0 0 cos2(θh) 0
0 0 0 cos(θh)



δ∗

p∗x
h∗

p∗y

 . (2.90)

The entire transformation is multiplied by a factor p̄∗0/p̄0 = cos(θh). Reapplying Eq. (2.80) on the
array elements, one gets the complete mapping L−1 back from x∗(0∗) to x(0)

x = x∗ − s∗ sin(θh)
1 + sin(θh)∂h∗∂δ∗ + sin2(θh)∂h∗∂p∗x

,

y = y − x sin(θh)∂h
∗

∂p∗y
,

s =
(
s∗ − x sin(θh)∂h

∗

∂δ∗

)
cos(θh) ,

px = (p∗x + sin(θh)h∗) cos(θh) ,
py = p∗y cos(θh) ,
δ = δ∗ + p∗x sin(θh) .

(2.91)

Pay attention to the fact that x has been defined from x∗, while y and s has been defined using the
more compact form x.
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2.4.3 Synchro-beam mapping
By applying the transformation L in Sec. 2.4.1, the opposing beams may be described in boosted
coordinate systems with parallel longitudinal axes. It is however obvious from Fig 2.14 that the
interaction does change as a function of s∗. Therefore, the motion through the IP must be integrated.
The method that will be presented in this section performs this integration by calculating the kick
from a finite number of slices, NS, separated by empty drift spaces [31]. Each slice is made to
consist of equally many particles N/NS, located at its centre of mass sΣ,j , where j = {1, ..., NS}
is the slice number. The subscript Σ denotes that this is for the strong beam. For a Gaussian
distribution, the centres of mass are

sΣ,j = NS√
2π

(
exp
[
−1

2

(
pp
[
j

NS

])2
]
− exp

[
−1

2

(
pp
[
j − 1
NS

])2
])

, (2.92)

where pp is the percentile point function, otherwise known as the inverse cumulative density func-
tion for a Gaussian distribution. pp[x] gives the border for when the cumulative density below the
border is equal to x, i.e.

x = 1√
2πσu

∫ pp[x]

−∞
exp
[
− u2

2σ2
u

]
du . (2.93)

The longitudinal position of the slices, sΣ,j , are calculated such that the particles in the weak beam
first interact with slice j = 1.

The coordinates for the strong beam centred at z∗ = 0 are denoted by a † as x∗Σ(z∗ = 0) = x†.
Due to the assumed Gaussian shape, the necessary values are the average positions 〈x†〉, denoted
as x†i in the following, and the variations of each coordinate, denoted as (σ†)2 = Σ†. The position
of the particles in the strong beam in its boosted frame can also be found by Eq. (2.82), because
its coordinate system is left-handed due to the flipping of s∗Σ = −s∗. The effective position of the
particles in the slice located at sΣ,j is for a horizontal crossing

x† = sΣ,j tan(θh) ,
y† = 0 ,

s† = sΣ,j

cos(θh) ,
(2.94)

and all the momentums average to zero. The variations of the coordinates are to first order in the
dynamical variables at z∗ = 0

Σ†x = Σx ,
Σ†y = Σy ,

Σ†s = Σs
cos2(θh) ,

Σ†px
= Σpx

cos2(θh) ,

Σ†py
=

Σpy

cos2(θh) ,

Σ†δ = Σδ .

(2.95)

The interaction between the slice at s† and the particle at s∗, occurs at the collision point (CP)
at position

Z = s∗ − s†

2 , (2.96)
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along the z∗-axis. The coordinates of the particles in the weak beam and the slices in the strong
beam must be transported to the CP. To achieve this, assume a drift space from z∗ = 0 to z∗ = Z,
giving

x∗q(Z) = x∗q(0) + p∗q(0) · Z ,

p∗q(Z) = p∗q(0) ,
(2.97)

shifting the position, while leaving the momentum unchanged. The transverse distance between the
centre of the slice, x†q , and the particle at x∗q(Z) is therefore

X(Z) = x∗(0) + p∗x(0) · Z − x† ,
Y (Z) = y∗(0) + p∗y(0) · Z − y† ,

(2.98)

where y† = 0 for horizontal crossings. Using again the fact that 〈xs〉 = 0 for independently dis-
tributed particles around a zero mean, gives the change of the transverse slice sizes of the strong
beam to be

Σ†q(Z) = Σ†q(0) + Σ†pq
(0) · Z2 ,

Σ†pq
(Z) = Σ†pq

(0) ,
(2.99)

which is similar to the dependence expected from the hourglass effect in Eq. (2.1).
The interaction between a particle of charge q and a slice containing N/NS particles, can be

calculated from the Hamiltonian [31]

HBB = qU(X,Y,Σ†x,Σ†y;Z)∂(Z), (2.100)

where the potential felt by the particle, U , is defined per particle in the slice as

U(X,Y,Σ†x,Σ†y;Z) = Nr0

qNSγ

∫ ∞
0

exp
[
− X(Z)2

2Σ†x(Z)+u
− Y (Z)2

2Σ†y(Z)+u

]
√

2Σ†x(Z) + u

√
2Σ†y(Z) + u

du . (2.101)

The transverse electric field from this potential can be calculated as

E = −∇U , (2.102)

whereupon the kick on the momentum can be calculated.
The explicit form of the transfer map from a single slice can, through another shift of canonical

variables [30], be found to be

∆x∗ = −Z · fx(X,Y ;Z) ,
∆p∗x = fx(X,Y ;Z) ,
∆y∗ = −Z · fy(X,Y ;Z) ,
∆p∗y = fy(X,Y ;Z) ,
∆s∗ = 0 ,

∆δ∗ = 1
2fx(X,Y ;Z)

(
p∗x + 1

2fx(X,Y ;Z)
)

+ 1
2fy(X,Y ;Z)

(
p∗y + 1

2fy(X,Y ;Z)
)

+ g(X,Y ;Z) ,

(2.103)
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where fx, fy and g depend on the distribution. The change in x∗ and y∗ can, when Z < 0, be
understood to be the shift that ∆p∗q would have caused before the particle reaches z∗ = 0. This
expression is aimed at pp-colliders and not e+e−-colliders, making it different from the original
expression [31].

For round beams, fx(X,Y;Z) and fy(X,Y;Z) are calculated by inserting (X,Y, σ†x, σ†y, N/NS)
for (x, y, σx, σy, N) in Eq. (2.37), where ∆x′q is equivalent to ∆pq in this section. g can, using that
Σ†x = Σ†y = Σ†r and Σ†px

= Σ†py
= Σ†pr

, be calculated to be

g =
ZΣ†pr

Σr
· Nr0

NSγ
exp
[
−X(Z)2 + Y (Z)2

2Σr(Z)

]
. (2.104)

For flat beams, fx(X,Y ;Z) and fy(X,Y ;Z) are calculated by inserting (X,Y, σ†x, σ†y, N/NS)
for (x, y, σx, σy, N) in Eq. (2.41), assuming that σ†x > σ†y . g can for this situation be calculated to
be

g = ZΣpx

2(Σ†x − Σ†y)

(
Xfx + Y fy + 2Nr0

NSγ

(
σ†y

σ†x
exp
[
− X

2Σx
− Y

2Σy

]
− 1
))∣∣∣∣∣

Z

−
ZΣpy

2(Σ†x − Σ†y)

(
Xfx + Y fy + 2Nr0

NSγ

(
σ†x

σ†y
exp
[
− X

2Σx
− Y

2Σy

]
− 1
))∣∣∣∣∣

Z

,

(2.105)

where the subscript Z at the far right denotes that all values are to be evaluated at Z.
From what has been presented so far, it is obvious that the 6D beam-beam interaction causes

mixing between the longitudinal and transverse planes. The hourglass effect makes the interac-
tion dependent on where the particles are located longitudinally, s. The interaction is however still
symmetric with respect to x and y for zero crossing angle. Therefore, one can expect that the hour-
glass effect causes synchro-betatron resonances of nonzero m in Eq. (2.54), but the odd resonances
should still remain zero, as found in Eq. (2.58). A nonzero crossing angle will however make the
interaction asymmetrical with respect to x and y, and odd resonances induced by the crossing angle
may become important to understand the dynamics of the beam.

2.5 Beam Evolution
The goal of a collider is to maximise the integrated luminosity over time. The luminosity at a
certain time is given by Eq. (2.27), and it will decrease if either the bunches lose particles or the
bunch emittances grow. If there would be only conservative and differentiable forces acting on the
bunches, the beam could in principle remain unaltered forever. In real colliders, this is not the case.
The strongly nonlinear and resonance driving beam-beam interactions have already been presented
in detail. Some additional concepts related to the evolution of the beam quality will be presented in
this section.

There are multiple sources of particle losses from the bunches. One unavoidable source of
particle losses is the luminosity burn-off. These particles are lost because they collide at the IPs, i.e.
what the collider was built for. The other main source of beam losses is particles that drift to large
transverse amplitudes, whereupon they collide with the collimation system of the accelerator. The
collimators are put in the machine to shield the magnets and the rest of the machine from the large
quantity of energy that is stored in the beam [33]. There are multiple causes for particles to drift to
such large amplitudes, including the beam-beam interaction and nonlinearities of the lattice.

Intra-beam scattering (IBS) is small angle Coulomb scattering between particles in the same
bunch. This effect is therefore stronger for denser beams. Coulomb collisions can be considered
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approximately instantaneous. Therefore, it is valid to assume that only the momentum is directly
affected by the IBS, while the position is kept unchanged, as for the beam-beam interaction. There
is much theory on the subject, see for instance [34]. The effect of the IBS is in many cases well
approximated by a linear increase of the beam emittance with time. It is thus quite similar to regular
diffusion, which is discussed in App. A.

A charged particle moving through a magnetic field emits radiation due to the acceleration trans-
verse to the direction of travel. In a circular accelerator, this emission is continuously depriving the
beam of energy due to the bending in the arcs. This synchrotron radiation leads to an exponential
damping of the emittances. The radiation is however not smooth. On the quantum level, this radia-
tion is emitted as discrete photons, leading to so-called quantum excitations [35]. The synchrotron
radiation of energy causes damping of the emittances, while the quantum excitation causes growth.
These opposing effects cause the emittance to evolve to an equilibrium emittance. The energy loss
scales like P ∝ (E/m)4. For e+e−-colliders, the damping is strong, and the emittance damping
time is in the order of ms. A pp-collider can maintain collisions at the same energy E with energy
losses reduced by a factor (me/mp)4. That is why pp-colliders as the LHC and the FCC-hh are
preferred to reach higher energies. The emittance damping is negligible in the LHC, with a damp-
ing time in the order of 24 h, whereas the damping time in the FCC-hh will be in the order of 1 h
due to the higher energy. In both cases the effect of the quantum excitation is small compared to
the IBS. In the FCC-hh, the reduction of the emittance can lead to configurations where the effect
of quantum excitation is no longer negligible [36]. Since the number of photons emitted per turn is
high, the integrated effect in one turn can also be modelled as a regular diffusion mechanism driven
by a Gaussian white noise.

Nonlinear diffusion mechanisms and stability of generic Hamiltonian systems is a wide field
of theory. The KAM theorem states that for systems perturbed away from integrable ones, there
remain invariant surfaces for most initial conditions [14]. Thus, although a motion is stochastic due
to resonances as described in Sec. 2.3, it remains constrained by KAM curves. Motion in a 2D
phase space can thus be found to be confined, and a resonance in either the horizontal or vertical
plane is not sufficient to produce diffusion. For systems with three or more dof, the KAM curves
can however not stop the particles and there is a motion along stochastic layers. Thus, there can be
a lack of conservation of action for slightly perturbed systems of more than 2 dof. This is referred
to as Arnold diffusion. The diffusion is larger when multiple dof are mixed. In particular, it will be
found that even though a single resonance may not affect the beam quality significantly, overlapping
of resonances can cause great diffusion and losses.
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Chapter 3
NUMERICAL MODEL

CABIN (Cuda-Accelerated Beam-beam INteraction) is a code developed to track incoherent parti-
cles of a single bunch through two interaction points, separated by two individual stretches of the
magnetic lattice, as visualised in Fig. 3.1. In an ideal setting, a simulation would be an exact replica-
tion of the physics. That includes the true fields of all magnets around the lattice, noise from many
different sources, Coulomb scattering from every particle in the opposing beam, etc. This is not
within reach numerically. Assumptions have to be made, and validity of these have to be checked.
In CABIN, the beam-beam interaction can be set to be either 4D or 6D, and to be caused by either a
round or a flat, fixed opposing bunch in the weak-strong model. Instead of modelling how the IBS
and the quantum excitation works exactly, their effect is modelled as a Gaussian white noise, af-
fecting each particle independently. The motion through all the magnets around the lattice has been
modelled as a linear transfer matrix, which is correct to first order. The phase advances vary due to
a linear chromaticity. The collimation is done only once per turn around the ring, and counts every
particle beyond an elliptical limit in (x, y) as lost. This chapter explains how the physics, which
have been explained in Ch. 2, is implemented in CABIN. The code is available online through
Gitlab [37].

Figure 3.1: Visualisation of what can be modelled by CABIN. Two interaction points where the
weak and strong beams interact. Two stretches of beam pipe with independent phase advances
affected by chromaticity.

The goal of CABIN is to study the effect of strong beam-beam interactions on the quality of
the beam in circular hadron colliders. The structure is written in Python. The computation heavy
tracking is performed using PyCUDA, putting the parallel infrastructure of graphic cards to good
use. This makes it possible to track sufficiently many particles to represent the distribution of the
beam, and thereby study the evolution of bunch emittance and intensity over many turns. A timing
study on the improvement by using PyCUDA is presented in App. C.1. Important parameters at the
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high-luminosity IPs in the model are given in Table 3.1, alongside the equivalent parameters in the
LHC (design) [3], LHC (2017) [29], HL-LHC [38] and FCC-hh for bunches at 25 ns spacing [5].
The max beam-beam tune shift for FCC-hh is achieved after the emittance has decreased due to
synchrotron radiation. The values can be set for each simulation separately in CABIN. The default
values are given in the table, and will be used unless stated otherwise. The intensity of the strong
bunch is not set directly, but depends on the beam-beam parameter and normalised emittance as
given in Eq. (2.46). The max tune shift depends on the beam-beam parameter and the configuration.
The influence of the relativistic γ is solely as a ratio between the emittance and the normalised
emittance, in agreement with Eq. (2.10).

Table 3.1: Values for parameters in present and future circular colliders, in addition to CABIN.

Parameter Symbol LHC (design) LHC (2017) HL-LHC FCC-hh CABIN 4

Particles per bunch N [1011] 1.15 1.2 2.2 1 N(ξ)
Number of bunches nb [1] 2808 2556 2738 10600 1
rms bunch length σs [cm] 7.55 8.2 7.55 8 8
rms energy spread σδ [10−4] 1.1 1.2 1.1 ∼ 1 1
Normalised emittance εn [µm] 3.75 2.5 2.5 2.2 3
IP beta function 1 β∗q [m] 0.55 0.4 0.15 0.3 0.4
Crossing angle θxing [µrad] 285 300 590 2 175 2 0
Piwinski angle φPIW [1] 0.65 1.02 3.14 2 1.99 2 0
Proton energy Ep [TeV] 7 6.5 7 50 6.5
Gamma factor γ [1] 7460.5 6927.6 7460.5 53289 6927.6
Max tune shift 3 ∆QTot [1] 0.0063 0.0082 0.021 0.03 f(ξ)
Horizontal tune Qx [1] 0.31 0.31 0.31 0.31 0.31
Vertical tune Qy [1] 0.32 0.32 0.32 0.32 0.324
Revolution frequency frev [kHz] 11.245 11.245 11.245 3.067 11.245

1 At the IPs of minimum beta function.
2 May be countered by use of crab cavities.
3 Assumed collisions in two IPs, zero Piwinski angle in HL-LHC and FCC-hh.
4 Set for each simulation separately. These are the default values.

3.1 Normalised Coordinates
Calculations can be done using physical quantities as the position and momentum of particles in
the beam. However, doing calculations on positions in the range of µm, while energies are given
in TeV, has certain disadvantages. First of all, calculations on values of different orders increase
numerical noise. Second of all, it is difficult to discuss and compare values acquired in different
settings. A set of normalised coordinates with reduced units has been applied in CABIN. In this
section a hat refers to normalised values, as x̂ in comparison to x.

A normalisation has already been done by dividing the mechanical momentum of the particles
by the reference momentum, p̄0. For reasons that will soon be clear, the transverse phase space
coordinates have been transformed further into

x̂q = xq
σq

, p̂q = 1
σq

(
αqxq + βqx

′
q

)
, (3.1)
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where σq is the initial beam size in either transverse plane of the weak beam. The transverse actions
change accordingly to

Ĵq = 1
2
(
x̂2
q + p̂2

q

)
= Jq
εq,0

, (3.2)

where εq,0 is the initial transverse beam emittance as defined in Eq. (2.9). For Gaussian beams, this
leads to ε̂q,0 = 2. In the longitudinal plane,

ŝ = s

σs
, δ̂ = δ

σδ
. (3.3)

In the old phase space coordinates, (xi, x′i), the transfer due to the lattice was given by Eq. (2.15)
and Eq. (2.18). In the new coordinates, (x̂i, p̂i), the transfer due to the lattice from IP1 to IP5 is
only a rotation [

x̂i
p̂i

]
IP5

= R̂i
[
x̂i
p̂i

]
IP1

, R̂i =
[

cos(µ1,i) sin(µ1,i)
− sin(µ1,i) cos(µ1,i)

]
, (3.4)

where µ1,i is the intermediate phase advance in the three phase space planes through that part of
the lattice, and µq is dependent on δ due to Q′, as given by Eq. (2.20). Going from IP5 to IP1 is
done equivalently using µ2,i to complete the turn. The zero chromaticity phase advance is divided
in any way desirable with the restraint µ1,q + µ2,q = µq = 2πQq , where Qq is the transverse tune
in that plane. Due to the separation of the lattice in these two intermediate sections, the chromaticity
is divided evenly over the two sections as Q′1 = Q′2 = Q′/2, and so is the synchrotron tune, Qs.
The chromaticity is kept equal in the two transverse planes, Q′x = Q′y . The figure traced out in
(x̂, p̂x)-space due to this rotation is in the normalised coordinates a circle of radius or amplitude

Âx =
√
x̂2 + p̂2

x , (3.5)

in contrast to the ellipse in Fig. 2.3. Deviations from these circles in the Poincaré sections are easier
to detect visually.

The IBS is a complex interaction between charged particles, which has an effect similar to a
diffusion of the particle momentum with constant diffusivity. The quantum excitations can happen
at any time, inducing a random deflection of a single particle’s momentum. Both effects have
the same result in many cases, an approximately linear growth of beam emittance. This can be
approximated by a random walk of the momentum. The synchrotron damping has so far not been
taken into account in CABIN.

Consider one normally distributed kick per turn, κq , with rms amplitude ∆̂ = 1× 10−4, on the
normalised momentum p̂q

p̂q = p̂q + κq , (3.6)

as discussed in App. A. Applying Eq. (A.4), the diffusivity per turn is D̂ = 5× 10−9. In result, the
normalised beam emittance, ε̂q , increases with 1× 10−8 /turn . The LHC has a rotation frequency
of about 11 kHz, giving a doubling time with this noise of τLHC = 5 h. For the FCC, the frequency
will be about 3 kHz, giving a doubling time with this noise of τFCC = 19 h. These doubling times
can easily be changed by changing the kicks’ rms amplitude. The noise will for most presented
results either be kept at this value or set to zero. This improves the comparability of the effect of
the beam-beam interaction in different situations. However, it creates the issue that the growth in
the non-normalised coordinates is smaller for a denser beam, opposite to the increased effect of
IBS on denser bunches. As most simulations are done with the same emittance, this modelling has
been found sufficiently accurate for the purpose of CABIN, which is to understand the effect of the
head-on beam-beam interaction.
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3.2 Beam-Beam Interaction
In the original phase space coordinates, the kick due to the beam-beam interaction between round
beams of equal size was given by Eq. (2.37). In normalised coordinates this is

∆p̂ =
β∗q
σq

∆r′ = −8πξ
(

1− exp
[
− r̂

2

2

])
r̂
r̂2 . (3.7)

The kick is only dependent on the beam-beam parameter ξ and the position of the particle. The
maximum design beam-beam tune shift of the FCC-hh is 0.03 for zero crossing angle [5]. When
divided over 2 IPs, this gives per IP, ξFCC = 0.015.

The kicks from flat beams in Eq. (2.41) and the transformation to and from the boosted frame in
Eq. (2.82) and Eq. (2.91), are strongly dependent on the non-normalised coordinates. Therefore, the
beam-beam interactions for these scenarios are performed on the original coordinates x, not x̂. To
achieve this, all coordinates x̂ are scaled by their standard deviations σ before the beam-beam inter-
actions, and divided by them afterwards. The Faddeeva functions in the flat beam-beam interaction
is calculated using an existing CUDA-implementation [39]. Benchmarking of the implementation
of the 6D beam-beam effect in CABIN is presented in App. B.1.

The beam-beam interaction is the most time-consuming effect modelled in CABIN. A profiling
study on the beam-beam implementation is presented in App. C.2. To summarise the findings, the
4D round beam-beam implementation is comparable in time spending to the lattice and the noise.
The other implementations of the beam-beam interaction consumes in general more than 95% of the
computation time of the simulations. The flat beam kick is ∼ 35 times slower than the round beam
kick per slice. This is because the Faddeeva function, w[x+ iy], is much slower than the exponential
function, exp[x]. The overhead, due to the boost L in Eq. (2.82) among other calculations, takes
approximately as much time as the kick from NS = 6 slices for round beams, while the overhead
is much faster than a single slice for flat beams. The time per slice for either round or flat beams is
naturally similar to the equivalent 4D implementations.

As the beam-beam interaction is the most time-consuming effect implemented, there is effec-
tively a constraint on how many slices, NS, that can be used in the 6D simulations. Therefore, it
was important to find out how fast the implementation converges. How this was done is presented
in App. B.2. There it was found that the number of slices, NS, required to achieve a certain toler-
ance on the kicks, depends on the configuration that is being simulated. For a small crossing angle,
θxing, and a negligible hourglass effect, σs/β∗q � 1, the convergence is fast and a single slice may
be sufficient. The 4D model may then be applied to achieve the correct behaviour. The required
number of slices grows without bound as θxing and σs/β∗q increase. Therefore, the code finds for
each simulation the required number of slices to achieve a certain tolerance.

3.3 Macroparticle Distributions
The number of particles per bunch, N , in circular colliders like the LHC, is in the order of 1011.
In CABIN, each particle is tracked in 6 dimensions, at double precision. A single state of a single
bunch of this magnitude would require 4.8 TB of memory. Furthermore, computation time increases
in general linearly with N for incoherent particle simulations, ignoring overhead of initialising the
simulations. Such a simulation would not be feasible. Instead one models a smaller number of
macroparticles, Nmp, and attempts extrapolating to the behaviour of the entire bunch. As the goal
of this project has been to track the evolution of the beam quality, it is quite important that the
smaller number of macroparticles still manage to represent well a Gaussian distribution, both at low
transverse amplitudes in the core, and at high transverse amplitudes in the tail. It has been required
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that the bunch can represent the distribution up to 6σ. The σ’s in this section refer to the weak beam.
Different macroparticle distributions are studied in this section.

Multiple initial conditions (IC) for distributing the macroparticles have been attempted. These
include a Gaussian distribution, a combined hollow and limited Gaussian distribution, a 6D grid,
a uniform distribution and a regionally uniform distribution. Depending on the distribution type,
the Nmp macroparticles have either been assigned the same weight, N/Nmp, or a special weighting
based on its position, to represent the N actual particles. The distributions have been compared on
how well they fill 6D phase space evenly through histograms of each coordinate separately, of which
only the x coordinate will be presented here, and how well the sum of the square of the coordinates
fits to the χ2

6 distribution. The chi-squared distribution is defined as

χ2
k =

k∑
j=1

N2
j , (3.8)

whereNj are independently normally distributed variables, as the components of (x̂, p̂x, ŷ, p̂y, ŝ, δ̂).
The normalised 6D radius of a particle will be referred to as

χ6 =
√
χ2

6 =
√
x̂2 + p̂2

x + ŷ2 + p̂2
y + ŝ2 + δ̂2 . (3.9)

The convergence of the emittance growth rate and the beam loss rate calculations with Nmp will
be tested for the Gaussian and the regionally uniform distributions, when these measurements are
introduced in Sec. 3.4.

The test of a Gaussian distribution of Nmp = 1× 105 macroparticles is visualised in Fig. 3.2.
This distribution is most equal to how the particles are distributed in a true bunch, although each
macroparticle is weighted equally to represent N/Nmp real particles. It is however difficult to rep-
resent 1011 particles by 105 macroparticles. The core is modelled well, as seen from the leftmost
subplot, and this distribution would be well apt to measure emittance growth. It is however not able
to represent the tail accurately, as detailed in the log-scaled plots, and it does not model the losses
of the bunch accurately.

Figure 3.2: Comparison of the Gaussian initial distribution ofNmp = 1× 105 macroparticles, with
actual Gaussian and χ2

6 distributions. The sum of the weight of all particles is N = 1× 1011. The
first plot from the left displays a histogram of x. The second plot displays the same histogram of x,
but with a log-scaled y-axis. The last plot displays a histogram of χ2

6.

In the hollow Gaussian distribution, one half of the particles have been distributed normally
below 4σ in the 4D transverse phase space, and the second half have been distributed normally, re-
quiring that they are above 4σ in the 4D transverse phase space [40]. The longitudinal coordinates
have been distributed as in the regular Gaussian distribution. This has been done to achieve a better
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representation of the tail. The Nreg macroparticles in each region separately are weighted equally,
but the weighting is different between the different regions. Denoting the cumulative density func-
tion for the χ2

4 distribution as cdf, the weight of all particles in a given region is

Wreg =
(
cdf[χ2

4,max]− cdf[χ2
4,min]

)
· N
Nreg

, (3.10)

where the limits on the 4D normalised radius are as mentioned above, {0, 4,∞}. The test of this
hollow Gaussian distribution of Nmp = 1× 105 macroparticles is visualised in Fig. 3.3. The core is
still modelled well, as seen from the leftmost subplot, and this distribution would also be well apt to
measure emittance growth. The tail is better represented than by the regular Gaussian distribution,
as seen by the χ2

6 plot, but it is still less accurate than required for correct modelling of the beam
losses.

Figure 3.3: Comparison of the hollow Gaussian initial distribution of Nmp = 1× 105 macropar-
ticles, with actual Gaussian and χ2

6 distributions. The sum of the weight of all particles is
N = 1× 1011. The first plot from the left displays a histogram of x. The second plot displays
the same histogram of x, but with a log-scaled y-axis. The last plot displays a histogram of χ2

6.

In the 6D grid, the particles are distributed equally every time, not dependent on random dis-
tributions. The particles are distributed linearly in each coordinate, whereupon these are meshed
together in a grid. If the 6th root of Nmp is not an integer, this value is rounded up to the closest
integer, whereupon the particles of largest normalised 6D amplitude in the grid will be removed.
Macroparticle j is weighted individually based on its coordinates as

Wj ∝ exp
[
−χ

2
6

2

]
, (3.11)

whereupon the weights are normalised to give a total weight of N . The test of this 6D grid con-
sisting of Nmp = 1× 105 macroparticles is visualised in Fig. 3.4. As visible from all subplots,
this distribution does manage to represent particles in the tail, and a loss rate may be found. The
distribution is however far from smooth, causing multiple problems. First of all, this distribution
will not correctly measure the effect of the highly amplitude dependent resonances. Some will be
weighted too strongly, while others will not be taken into account. Second of all, the change of
this distribution with time will misrepresent the actual behaviour as the initial peaks will diffuse to
neighbouring areas. The grid works well for lower dimensions, and a 2D grid in (x, y) space is
commonly used to perform frequency analysis, as will be explained in Sec. 3.5.

The uniform distribution is made by uniformly distributing each coordinate separately to a max-
imum amplitude of 6σ, followed by demanding that χ6 ≤ 6. The individual particles are then
weighted by Eq. (3.11), making each macroparticle in the core represent more real particles than
the macroparticles in the tail. The test of this 6D grid of Nmp = 1× 105 macroparticles is visu-
alised in Fig. 3.5. The tail is much better modelled than with the previous distributions, as seen
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Figure 3.4: Comparison of the 6D grid initial distribution of Nmp = 1× 105 macroparticles, with
actual Gaussian and χ2

6 distributions. The sum of the weight of all particles is N = 1× 1011. The
first plot from the left displays a histogram of x. The second plot displays the same histogram of x,
but with a log-scaled y-axis. The last plot displays a histogram of χ2

6.

by the log-scaled plots. This distribution will do well in modelling the beam losses. The core is
however not modelled accurately by this distribution, as seen by the first plot. That is not surprising,
as the particles are distributed uniformly in a 6D volume. The modelled volume beyond χ6 = 2 is
therefore 728 times larger than the volume below this 6D radius, meaning that only 0.137% of the
macroparticles will on average be distributed in this region. This is too few compared to the 8% of
real particles that are supposed to be represented, and are modelled in the Gaussian distribution.

Figure 3.5: Comparison of the uniform initial distribution of Nmp = 1× 105 macroparticles, with
actual Gaussian and χ2

6 distributions. The sum of the weight of all particles is N = 1× 1011. The
first plot from the left displays a histogram of x. The second plot displays the same histogram of x,
but with a log-scaled y-axis. The last plot displays a histogram of χ2

6.

The regionally uniform distribution is a modification of the uniform distribution, attempting
to improve the modelling of the core of the bunch. The number of macroparticles are divided
into three approximately equally large groups. The particles in each group are distributed uni-
formly, requiring that they have a 6D radius within a given interval. The intervals are limited by the
radii χ6 ∈ {0, 2, 4, 6}. Each particle within a group is weighted as in Eq. (3.11). In addition, the
macroparticles in each group are weighted proportional to the volume of the region, Vreg, and to the
inverse of the number of macroparticles in the region, Nreg, making the weight of macroparticle j
proportional to

Wj ∝
Vreg

Nreg
· exp

[
−χ

2
6

2

]
, (3.12)

whereupon the weights are normalised to give a total weight of N . The test of this regionally uni-
form distribution of Nmp = 1× 105 macroparticles is visualised in Fig. 3.6. Due to the higher den-
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sity of particles at lower amplitudes, the core is much better modelled by this distribution. It seems
that the good representation of the tail at high amplitudes is preserved from the uniform distribution,
based on the log-scaled plots. The amplitude limits and number of particles of each region can be
shifted, in addition to the number of regions. However, there was no significant reduction of the rel-
ative errors for other combinations. The regionally uniform IC with Nmp = 1× 105 macroparticles
will be applied to study the evolution of the beam distribution, unless stated otherwise.

Figure 3.6: Comparison of the regionally uniform initial distribution of Nmp = 1× 105 macropar-
ticles, with actual Gaussian and χ2

6 distributions. The sum of the weight of all particles is
N = 1× 1011. The first plot from the left displays a histogram of x. The second plot displays
the same histogram of x, but with a log-scaled y-axis. The last plot displays a histogram of χ2

6.

3.4 Beam Quality Simulations
The method of this master project has been to study the evolution of measurable quantities in a real
machine, such as growth of the beam emittance and loss rate of the beam intensity. This section
provides information on how that is accomplished, based on the modelled physics and initial condi-
tions presented earlier. Extending the memory argument from Sec. 3.3, the 6 dynamical dof cannot
be saved for every particle after each turn. All values necessary to describe the individual particles
are therefore stored in snapshots every Tmid = 2× 104 turns. This interval can be changed. The
stored values are the 6 dynamical dof, whether a particle is lost or not, and the horizontal, vertical
and longitudinal actions. Due to the modelled nonlinearities, the perturbed action of each particle
is no longer independent of the unperturbed phase φ. Therefore, an average is taken of the action of
each particle over the subsequent Tε = 2048 turns, to avoid the angle dependent fluctuations. Then
the beam emittance is calculated for each snapshot as the average of these averaged actions.

During a normal physics fill in a high-energy circular hadron collider, the beam can circulate
for hours. In the LHC, a fill time of 20 h equals TTot = 8× 108 turns. In the FCC-hh, an estimated
3 h of runtime would equal TTot = 3× 107 turns. Multiple reasons make tracking for that long
using the weak-strong model inappropriate. First of all, in some settings the bunches will change
size and charge non-negligibly from the initial distribution. In that case, the beam-beam interaction
would not be modelled well by the weak-strong model. Another point is that numerical error builds
up over time. Finally, more turns require more computer operations and the simulations will take
more time. Simultaneously, one has to track for sufficiently many turns to represent accurately the
long-term evolution of the beam quality in a given configuration. The results presented in this thesis
have been acquired from tracking particles in the weak beam through usually TTot = 2× 106 turns,
equivalent to 3 min in the LHC.

How the emittance growth and beam losses are calculated, will be presented in the follow-
ing. Then another parameter will be introduced, referred to as the noise affected dynamic aperture

38



(NADA). For ease of notation, the hats (ˆ) will no longer be included. All three of these outputs
will be represented by an example situation at the LHC working point, (Qx, Qy) = (0.31, 0.32),
with large beam-beam parameter ξTot = 0.03, large chromaticityQ′ = 15, regular normalised noise
∆ = 1× 10−4, and zero crossing angle θxing = 0.

3.4.1 Emittance growth
One of the effects the code investigates closely is the increase of emittance in both transverse planes
separately. An increase in emittance leads to a decrease in luminosity. There are two different types
of emittance growth. Close to resonances, the effective Hamiltonian diverges, and subsequently
the actions are strongly perturbed. This leads to an almost immediate and possibly large emittance
growth. A different important measure is the long-term emittance growth rate, ε̇, after the initial
readjustment. To monitor the long-term growth rate, a linear regression curve of the beam emit-
tance is computed, starting at turn Tsim = 5× 105. The evolution of the emittance for the example
configuration is displayed in Fig. 3.7. The initial emittance growth of a few percent is visible, and
the regression curve for each transverse emittance growth rate is plotted on top of the evolution. The
emittance growth rates in both planes are larger than ε̇0 = 1× 10−8 /turn, as was expected from
the noise alone. For simplicity, the average transverse emittance growth rate will be referred to as

ε̇⊥ = ε̇x + ε̇y
2 , (3.13)

which would be ε̇⊥ = 3.23× 10−8 /turn in the example.

Figure 3.7: Example of evolution of beam emittance in both transverse planes, εx and εy . The beam
emittance has been calculated for multiple snapshots every Tmid = 2× 104 turns. The growth rate
has been calculated as described in Sec. 3.4.1. The beam emittances are given based on normalised
coordinates as in Eq. (3.2), being ε = 2 for a perfect Gaussian distribution. The straight lines in
the lighter shade of blue and green correspond to the linear regressions performed to calculate the
emittance growth rates.

The emittance growth rate is mostly dependent on the diffusion of the particles at low am-
plitudes in the core of the bunch. The convergence of the emittance growth rate with Nmp have
been calculated for the Gaussian IC and the regionally uniform IC, which were both presented in
Sec. 3.3. The average and the standard deviation from ε̇0 has been calculated based on 40 indepen-
dent growth rates for each Nmp. The relative errors from the expected growth rate are displayed in
Fig. 3.8. The deviation between the calculated and expected emittance growth rate is, according to
the central limit theorem, normally distributed with a standard deviation depending on the number
of macroparticles as σ = C/

√
Nmp. A 1σ trend line has been plotted alongside the relative errors.
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For Nmp = 1× 105 macroparticles, the Gaussian distribution has a 1σ relative error of 5%, while
the regionally uniform distribution has a 1σ relative error of 15%.

(a) Gaussian IC. (b) Regionally uniform IC.

Figure 3.8: Convergence of relative error in measurements of the emittance growth rate, ε̇, for a
configuration with only the noise of ∆ = 1× 10−4. The relative error has been calculated sepa-
rately for the Gaussian IC in (a) and the regionally uniform IC in (b).

The calculation of convergence of the emittance growth rate was repeated for a configuration
at the LHC working point (Qx, Qy) = (0.31, 0.32), also including a large beam-beam parameter
ξTot = 0.03 divided over two IPs, and a large chromaticity, Q′ = 15, in addition to the noise. The
emittance growth rate is larger in this configuration than when only the noise is included. The
relative errors of the emittance growth rates are for this configuration calculated relative to the
average emittance growth rate calculated with Nmp = 1× 106 macroparticles. The relative errors
are plotted in Fig. 3.9. For Nmp = 1× 105 macroparticles, the Gaussian distribution has a 1σ
relative error of approximately 16%, while the regionally uniform distribution has a 1σ relative
error of 5%. It seems that the emittance growth rate is better modelled by the regionally uniform
distribution for this configuration. Both ICs are reasonably accurate in calculating the emittance
growth rate for both considered configurations.

(a) Gaussian IC. (b) Regionally uniform IC.

Figure 3.9: Convergence of relative error in measurements of the emittance growth rate, ε̇, for
a configuration with (Qx, Qy) = (0.31, 0.32), ∆ = 1× 10−4, ξTot = 0.03 and Q′ = 15. The
relative error has been calculated separately for the Gaussian IC in (a) and the regionally uniform
IC in (b).
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3.4.2 Beam loss

Loss of particles from the beam is another effect that reduces luminosity. CABIN does not take into
account luminosity burn-off, only losses from particles going to too high amplitudes, reaching the
collimation system. There are two separate types of beam losses to large amplitudes. The instan-
taneous beam loss transports particles beyond the limit within a few couple of turns. One cause of
this is that particles can be initialised beyond the limit. These losses can in operation be greatly
limited by matching the beam correctly to the machine, but there are almost inevitably some losses
in transitions. Particles that are strongly perturbed by resonances can also be lost instantaneously.
These losses may be reduced by choosing suitable machine tunes that will put the beam far from
strong resonances. Nevertheless, for large beam-beam parameters, some instantaneous losses when
the beams are brought into collision may be unavoidable. After the initial losses, the long-term dif-
fusion can also make particles drift out. These losses are partly unavoidable without any damping
mechanisms, and keeping them low is a main objective in the design and operation of a collider.
The long-term loss rate of particles is calculated based on the conserved intensity for each snapshot.
The loss rates are calculated as the relative decrease from the initial intensity, by a linear regression
starting at turn T = 5× 105. This gives a better estimate for how long the beam will stay in the
machine, than if the instantaneous losses were included.

A particle in a real machine is lost at large amplitudes because it hits the collimation system. In
the LHC this is typically at a transverse radius of RM = 6σε, where σε is the transverse sigma cor-
responding to the operational emittance of the beams. In CABIN, the transverse radius is checked
once per turn, and if it is ever beyond a given limit R, it is considered lost forever. The particle is
still tracked to study the emittance growth to larger amplitudes. The intensity below the machine
limit, RM , and a beam limit, RB = 5σΣ, are displayed in Fig. 3.10. Here σΣ is the beam size of
the strong beam in the simulation. Many particles are lost beyond RB that appear to stop between
the two limits. This is probably because the strength of the beam-beam interaction decreases fast
for larger amplitudes, as was detailed in Fig. 2.6. Nonlinearities due to the magnets in a real lat-
tice cause stronger deflections at larger amplitudes. Thus, it has been assumed that particles being
transported to RB , are likely to be lost within a small number of turns. Hence, the results presented
later refer to the loss rate from the beam (LRBeam) beyondRB , and not the unsuitable loss rate from
the machine (LRLHC) beyond RM . The values are scaled to represent loss rates per hour in a ring
with revolution frequency frev = 11.245 kHz, such as the LHC. If the beams are flat, the limits are

Figure 3.10: Example of evolution of bunch intensity, relative to the initial intensity, N0. The in-
tensity has been stored every Tmid = 2× 104 turns. The loss rates have been calculated as described
in Sec. 3.4.2. The orange and dark blue straight lines represent the linear regression from which the
loss rate is found.
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taken proportional to the relevant σ, giving an elliptical collimation. In order to fully describe the
diffusion of the particles from RB to the actual collimator position, a complete nonlinear model of
the magnetic lattice should be implemented, but this is beyond the scope of this study.

The beam loss rate is mostly dependent on the particles in the tail of the bunch. The conver-
gence of the beam loss rate with Nmp has been calculated for the Gaussian IC and the regionally
uniform IC, which were both presented in Sec. 3.3. For a configuration only including a noise of
rms amplitude ∆ = 1× 10−4, there is no analytical loss rate. The average loss rates have been cal-
culated based on 20 independent values for eachNmp. The standard deviations have been calculated
relative to the average loss rate calculated for Nmp = 1× 106 macroparticles, which was approxi-
mately 0.04%/h for both ICs. The relative errors from this loss rate are plotted in Fig. 3.11. For
Nmp = 1× 105 macroparticles, the Gaussian distribution has a 1σ relative error of approximately
86%, while the regionally uniform distribution has a 1σ relative error of 8%. The large error for the
Gaussian IC is caused by the lack of particles initialised at large amplitudes.

(a) Gaussian IC. (b) Regionally uniform IC.

Figure 3.11: Convergence of relative error in measurements of the beam loss rate, LRBeam, for a
configuration with a noise of ∆ = 1× 10−4 only. The relative error has been calculated separately
for the Gaussian IC in (a) and the regionally uniform IC in (b).

(a) Gaussian IC. (b) Regionally uniform IC.

Figure 3.12: Convergence of relative error in measurements of the beam loss rate, LRBeam, for
a configuration with (Qx, Qy) = (0.31, 0.32), ∆ = 1× 10−4, ξTot = 0.03 and Q′ = 15. The
relative error has been calculated separately for the Gaussian IC in (a) and the regionally uniform
IC in (b).
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The convergence of the beam loss rate can be repeated for a configuration at the LHC working
point (Qx, Qy) = (0.31, 0.32), also including a large beam-beam parameter, ξTot = 0.03, divided
over two IPs, and a large chromaticity,Q′ = 15, in addition to the noise. The beam loss rate is larger
in this configuration than when only the noise is included. The error was also for this configuration
calculated relative to the average loss rate for Nmp = 1× 106 macroparticles, which was 4%/h for
both ICs. The relative errors from this growth rate are plotted in Fig. 3.12. For Nmp = 1× 105

macroparticles, the Gaussian distribution has a 1σ relative error of approximately 8%, while the
regionally uniform distribution has a 1σ relative error of 5%. Both ICs are reasonably accurate for
this configuration with a relatively large loss rate. However, the Gaussian IC is strongly inaccurate
for configurations that would give small loss rates. That is the main reason why the regionally
uniform distribution will be applied for the beam quality simulations in Ch. 4.

3.4.3 Noise affected dynamic aperture

All the particles in the example configuration that are lost from the machine beyond RM , and
from the beam beyond RB , are marked by a red cross in Fig. 3.13. This includes particles of all
longitudinal amplitudes. It is, as from the intensity evolution, clearly visible that many particles lost
beyond RB never make it beyond RM . In this example, the first lost particle beyond both limits
is at a transverse amplitude of r = 2.35σΣ. This number cannot be linked directly to the loss rate.
Furthermore, it does not value the seemingly good stability at large vertical amplitudes and small
horizontal amplitudes for this configuration. It only gives a measure on how deep into the bunch
the resonances are strongly affecting the motion of particles.

Figure 3.13: Example of which particles are lost from the bunch during a simulation. The initial
positions in (Ax, Ay) space are displayed as blue points. All particles lost beyond a limit are marked
by a red cross. The left plot displays the particles lost beyond RB = 5σΣ. The right plot displays
the particles lost beyond RM = 6σε. The limits were defined in Sec. 3.4.2.

The dynamic aperture (DA) is the largest radius of the innermost region in (x, y) space where
the motion in an accelerator is stable [41]. Particles initialised in this region will remain stable for
ever.

r(0) < DA ⇒ r(T →∞) < α <∞ , (3.14)

where r =
√
A2
x +A2

y and α is any positive, finite length. In practice, one cannot study stability
as the particle amplitude remaining finite until infinity. One can discuss short-term DA, for which
the particles remain stable for 103 to 104 turns, and long-term DA, for which the particles remain
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stable for 107 to 109 turns. The motion is less stable for larger longitudinal amplitude. Therefore,
one should only consider particles with longitudinal amplitude below a certain limit.

CABIN studies the effect of the beam-beam interaction, coupled with a Gaussian noise, making
the calculation somewhat different from other studies. Therefore, the dynamic aperture equivalent
in CABIN is called the noise affected dynamic aperture (NADA). First of all, the noise will make
all particles drift to infinity given enough turns. To be able to study the NADA simultaneously with
the emittance growth and beam losses, the code considers a particle as stable if it is not lost within
TTot, being 2× 106 turns for the results presented later. Second of all, the beam-beam interaction
is weaker at larger amplitudes, making particles stay between RB and RM . This stability region is
likely to be altered by other mechanisms, in particular the interaction with nonlinear errors of the
magnetic lattice. NADA is in this thesis defined as the smallest radius of the particles initialised
below As = 2.5σs that are lost beyond RB . These values are intended as a diagnostic tool to
compare different configurations studied with CABIN, but are not directly comparable to DA in
other studies.

How fast the NADA converges with respect to Nmp could be tested similarly to the convergence
for the emittance growth rate and the loss rate. The NADA is however not dependent on the IC as
a whole, but rather on where the individual macroparticles are initialised. Thus, the average NADA
has been found to decrease as Nmp increases, unlike the emittance growth rate and the beam loss
rate. For Nmp = 1× 105 macroparticles in the regionally uniform IC, the standard deviation is less
than 6% for the configurations used in the previous convergence studies.

3.5 Frequency Map Analysis
The beam quality simulations introduced in Sec. 3.4 enables CABIN to quantitatively study the evo-
lution of measurable quantities. The underlying mechanisms driving the beam quality degradation
are not always clear from these outputs alone. Analytical considerations, as introduced in Ch. 2, are
often limited in complexity and to leading order. Due to nonlinearities, numerical diagnostic tools
are needed as well. One such tool that has been implemented in CABIN is frequency map analy-
sis (FMA). FMA is a method that can qualitatively visualise the detrimental effects of beam-beam
interactions, based on the evolution of the tunes of individual particles [42].

For a configuration only including the linear lattice for zero chromaticity, all particles have tunes
(Qx, Qy). Due to the nonlinear beam-beam interaction, the tunes of each particle j are shifted to
(Qxj , Qyj) separately, as was detailed in Fig. 2.10. The action of a particle may increase close to a
resonance, leading to a change of the tune. Hence, it is of interest to monitor the tunes of individual
particles closely, both to know which resonances may be excited, and because the change in tune can
indicate the severity of the diffusion close to a given resonance. One can calculate a tune diffusivity,
Dj , for each particle, based on how much the tunes change per turn

Dj = log10

√
dQxj
dT

2
+ dQyj

dT

2
(3.15)

where T is the turn number. The change per turn can be calculated as a linear regression based
on the different tune measurements. The tune diffusivity is then used as a colour scale for each
particle individually, presented as a footprint in tune space, (Qx, Qy), or in initial amplitude space,
(Ax, Ay). In the results that will be presented later, the diffusivity constant, Dj in Eq. (3.15), is
calculated forNmp = 4× 104 macroparticles. These are initially distributed in a quadratic, uniform
IC in the first quadrant of the (x, y) plane, with s(T = 0) = 1, unless stated otherwise. To focus on
the effect of the beam-beam interactions, these simulations will be run with zero noise.
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The tunes may be drifting, or they may oscillate around a mean, as would be expected for
a nonzero chromaticity. The tune oscillation with chromaticity has a period of 1/Qs turns. By
measuring each tune based on data from more than 1/Qs turns, the periodic tune variations due
to the chromaticity will be reduced. By calculating the diffusivity based on multiple tunes, the
calculation is less sensitive to periodic variations caused by either chromaticity or other sources.
On the other hand, the tune calculations are slow, favouring less points. As a compromise, the
tune diffusivity will be calculated as the slope of a linear regression of nQ = 10 tunes spaced by
Tmid = 1× 104 turns. This combination has been found through a convergence study.

3.5.1 Tune calculations

The tunes can be calculated using a FFT. However, the FFT can only calculate tunes of resolution
1/TQ where TQ is the number of turns used for the calculation. It has been required that the tune
is calculated with high precision, based on a low number of turns. This is necessary to reduce
storage requirements and to locate the post-processed value at a single turn instead of spread over
a series of turns. To achieve higher precision in the tune measurements, an envelope of the FFT
can be applied to find an intermediate frequency. There are codes developed at CERN that do this.
PySussix is a python wrapper for a multi-purpose code written in Fortran [43, 44]. PySussix can find
the tune, but multiple unrelated operations are performed simultaneously, which greatly reduces the
performance. Another code, named HARPY, contains functions that only aim at finding the correct
tune [45]. A comparison of the speed and accuracy of these three methods has been done, and the
results are presented in Fig. 3.14. The codes have attempted to find the tune of the sine function
sin(2πQT ), where T are integers incrementing with 1, representing the turns. Each code tried
calculating 150 different tunes Q, which were randomly distributed on the interval (0, 0.5). In
summary, the FFT performs as expected with an error decreasing as 1/TQ. Both PySussix and
HARPY are more precise, the errors for both decrease faster than 1/T 2

Q. HARPY is about a factor
100 times faster than PySussix, and is the chosen code for calculating the tunes, using TQ = 2n,
where n ≥ 10. For most results presented later, n = 12 (TQ = 4096), unless stated otherwise.

(a) (b)

Figure 3.14: Plot comparing the ability of FFT, PySussix [43] and HARPY [45] to calculate tunes.
(a) displays the absolute error of the tune calculations. (b) displays the required time to calculate a
single tune. TQ are the number of points used to calculate the tunes, all are powers of 2. 150 tunes
have been calculated for each TQ for each method.
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The detuning with amplitude due to the beam-beam interaction from a round, strong beam has
been addressed analytically in 1D to the first order. Requiring that Ay = 0, the beam-beam tune
shift ∆Qx is given by Eq. (2.65). This was extended to include horizontal and vertical separation
between the beams. Comparison to tunes calculated from tracking data by use of HARPY is done in
Fig. 3.15. The simulations have been done with a small beam-beam parameter, ξ = 0.001, to reduce
the effect of possible resonances, and to make the first order assumption valid. The tunes have been
calculated based on TQ = 4096 turns. There is a good agreement between the analytically predicted
tune shifts and the tune shifts calculated using HARPY on tracked data.

(a) (b)

Figure 3.15: Horizontal tune shift, ∆Qx, induced by the HO beam-beam interaction on a 1D beam
distributed along the x axis. (a) displays the tune shift for separation between the beams in the
horizontal direction. (b) displays the tune shift for separation between the beams in the vertical
direction. The red curves labelled “Analytical”, have been calculated for each separation separately.
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Chapter 4
RESULTS AND DISCUSSION

Results acquired from application of CABIN will be presented and discussed in this chapter. Dif-
ferent parameters are varied in the following sections, to see the impact on the dynamics of the
particles in the weak beam. Beam quality simulations will be run for each configuration as ex-
plained in Sec. 3.4. To explain the behaviour expressed by these simulations, a subset of interesting
configurations will be simulated without noise to produce FMAs, as explained in Sec. 3.5. Unless
otherwise specified, the parameters are given by Tab. 3.1.

Many configurations will be tested in this chapter. The different configurations will be compared
based on certain outputs from CABIN, which will be explained shortly here. A more thorough
explanation was given in Sec. 3.4. LRBeam is the loss rate of particles per hour, calculated for
the LHC revolution frequency, 11.245 kHz. The particles are counted as lost if they go to higher
transverse amplitudes than RB = 5σΣ, where σΣ is the transverse beam size of the strong beam.
NADA is the smallest transverse radius among the particles that are lost in the simulation, which
where initialised with a limited longitudinal amplitude, As ≤ 2.5σs. The maximum value is 5σΣ,
and larger is better. This value is partially correlated to the loss rate. ε̇⊥ is the average transverse
long-term emittance growth rate. For the beam quality simulations, the noise alone will cause a
normalised emittance growth rate of ε̇0 = 1× 10−8 /turn. If the measured emittance growth rate
for a certain configuration is within 10% of ε̇0, the beam-beam interaction is considered not to have
had additional detrimental effects.

4.1 Search for Working Point
The tunes caused by the linear lattice alone, (Qx, Qy), often referred to as the working point, have
large implications on the beam quality. Due to the nonlinear beam-beam interaction, many reso-
nances may affect the beam, visualised by the resonance lines in Fig. 2.13. In addition, the beam-
beam interaction causes a tune-spread among the particles in the bunch, of horizontal and vertical
width, given by Eq. (2.85). The total beam-beam tune shift is relatively small in the LHC today,
and the working point of (Qx, Qy) = (0.31, 0.32) has proven itself over many years to preserve the
beam quality sufficiently well. Future upgrades will however bring with them a larger beam-beam
tune shift, as this is necessary to achieve a higher luminosity.

In this section is a working point scan performed in (Qx, Qy) space, to look for other, possibly
more suitable, working points for larger beam-beam tune shifts. The tested working points are
between the 4th order and 6th order resonances, including the LHC working point, and in the tune
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area below the half integer resonance. The latter was tested due to the lack of low order lines in
Fig. 2.13. The scans are performed with a tune resolution of 0.0025. Because there is complete
symmetry between the tracking of horizontal and vertical phase space in CABIN, only the upper
half of the diagonal has been calculated. For the opposite combination of Qx and Qy , the loss rate
has been copied, while the horizontal and vertical emittance growth rates have been exchanged.
All simulations are run for a total beam-beam tune shift of ∆QTot(φPIW) = 0.03, combined with
a large chromaticity, Q′ = 15, and a considerable Piwinski angle, φPIW = 0.9, corresponding to a
full crossing angle of θxing = 300 µrad. This is considered similar to the worst-case scenario for the
FCC-hh, based on the values presented in Tab. 3.1. The crossing angle is chosen nonzero to also
include odd resonances in order to remain in a pessimistic scenario.

The tune scan on the interval Qq ∈ [0.255, 0.345], in both transverse tunes, is presented in
Fig. 4.1. The working point dependence is similar for the loss rate and the emittance growth rate.
There is generally better preservation of the beam quality with a working point on or close to the
coupling resonance, Qx = Qy . This dependence is also found in the LHC, as will be covered in
Sec. 4.7. However, instabilities can develop for working points too close to the diagonal. CABIN
does not properly model the effect of the coupling resonance as it does not include coherent insta-
bilities or magnetic errors from the lattice. While it is not excluded that such working points can be
used, a proper demonstration is required. To be conservative, it is assumed in the following that a
finite tune separation of |Qx −Qy| ≥ 0.01 is needed, as for the LHC. The working point with the
lowest beam loss rate and emittance growth rate in this tune area, at least this far from the diagonal
in tune space, is (Qx, Qy) = (0.315, 0.325).

(a) (b)

Figure 4.1: Scan in (Qx, Qy) space, for ∆QTot(φPIW ) = 0.03, β∗q = 40 cm, φPIW = 0.9 and
Q′ = 15. (a) displays the loss rate per hour and (b) displays the emittance growth rate per
turn, calculated as explained in Sec. 3.4. The black cross (×) marks the LHC working point,
(Qx, Qy) = (0.31, 0.32). The green diamond (�) marks the suggested working point for this con-
figuration, (Qx, Qy) = (0.315, 0.325).

The tune scan on the interval Qq ∈ [0.45, 0.505], in both transverse tunes, is presented in
Fig. 4.2. The working point dependence is similar for both the loss rate and the emittance growth
rate. There is, also according to this tune scan, generally better preservation of the beam qual-
ity with a working point on or close to the coupling resonance, Qx = Qy . The working point
with best preservation of beam quality in this tune area, requiring again that |Qx −Qy| ≥ 0.01, is
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(Qx, Qy) = (0.475, 0.485). Close to the half-integer resonance, dipole errors and non-ideal optics
can be difficult to correct for and control. However, modern correction techniques suggest that such
working points may be attainable [46]. The dipolar component of the beam-beam interaction can
cause the entire bunch to be lost immediately, if either the horizontal or vertical tune is larger than,
yet close to, 0.5. This is marked by the white crosses on blue background in Fig. 4.2a. There are
two working points far from the diagonal where the average emittance growth rates are approxi-
mately equal to ε̇0 = 1× 10−8 /turn in this tune scan. The loss rates are too large for these working
points to be considered for a collider. Further inspection shows that there is a large initial emittance
growth in one plane followed by a strong mixing of the horizontal and vertical emittance, even if
the average long-term growth rate is limited. The initial emittance growth corresponds to a consid-
erable change in the beam size, making the beam significantly different from the initial Gaussian
distribution, and making the assumption of a fixed distribution for the strong bunch invalid.

(a) (b)

Figure 4.2: Scan in (Qx, Qy) space, for ∆QTot(φPIW ) = 0.03, β∗q = 40 cm, φPIW = 0.9 and
Q′ = 15. (a) displays the loss rate per hour and (b) displays the emittance growth rate per turn,
calculated as explained in Sec. 3.4. At the working points marked by blue squares with white
crosses in (a), the entire beam was lost before the long-term loss rate could be calculated. The
green diamond (�) marks a suggested working point in this tune area, (Qx, Qy) = (0.475, 0.485).

The footprint of the bunch in (Qx, Qy) space is wider, in addition to longer, with a larger beam-
beam parameter. It could therefore be argued that the difference between the tunes in the alternative
working points should be larger than |Qx −Qy| = 0.01. This has not been done in the following
sections for multiple reasons. As discussed above, CABIN does not model the effect of the coupling
resonance properly. To compare to the LHC working point, it is better to keep the tune separation
equal. Another big cause of the footprint width in circular colliders, are the parasitic long-range
interactions that CABIN does not model yet. The LR effects are expected to become weaker in the
FCC-hh due to the reduction of the transverse emittance, and thus the relative tune width will be
smaller. The small tune separation remains a possible good choice also for scenarios with larger
beam-beam parameters [36].

Two working points have been found above to give better preservation of beam quality than the
LHC working point. That is because the simulations are run for a configuration with stronger beam-
beam interactions than what is common in the LHC. To emphasise this point, a tune scan is done for
different configurations along the diagonal from (Qx, Qy) = (0.305, 0.315) to (0.32, 0.33). The
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results are given in Fig. 4.3, where the vertical tune, Qy , is 0.01 larger than Qx, which is given
by the x axis. The red curve corresponds to the tune scans discussed above, for which the best
working point again is found close to Qx = 0.315. A horizontal tune Qx ≥ 0.315 seems to be
optimal also without the crossing angle. For a smaller beam-beam tune shift, ∆QTot(φPIW) = 0.01,
it is however calculated a smaller loss rate and a larger NADA for the LHC working point, with a
nonzero crossing angle. The causes of the difference in beam quality preservation between large
and small tune shift, and between zero and nonzero crossing angle, will be discussed in more detail
later. The importance of this remark is that the optimum working point is highly dependent on the
configuration.

Figure 4.3: Beam quality reduction for different configurations given by the legend, varying φPIW

and ∆QTot(φPIW ). All configurations include a large chromaticity, Q′ = 15. The outputs NADA,
LRBeam and ε̇⊥ have been calculated as expressed in Sec. 3.4. The results are presented as func-
tions of the working point, and the vertical tune, Qy , is for each horizontal tune equal toQx+0.01.

4.2 Crossing Angle
In circular colliders with several bunches, the beams generally collide with a nonzero crossing
angle, so that parasitic collisions with the opposing beam are long-range and therefore less detri-
mental to the beam quality. A nonzero crossing angle introduces mixing between the longitudinal
and transverse planes, leading to additional resonances. In addition, a nonzero crossing angle re-
duces the luminosity at the IP. This section studies the effect of varying the crossing angle for the
main head-on interaction only, the effect of the parasitic interactions is not included. Beam quality
simulations for round beams have been run for each of the following studies, with Piwinski angles
φPIW ∈ {0, 0.1, 0.3, 0.6, 1, 1.5, 2}, and beam-beam parameters ξTot ∈ {0.01, 0.02, 0.03, 0.04, 0.05},
from which the effective maximum beam-beam tune shifts can be calculated by Eq. (2.84).

The results from a crossing angle scan for the machine tunes of (Qx, Qy) = (0.31, 0.32), and
zero chromaticity, are presented as functions of φPIW in Fig. 4.4a. The beam quality remains fairly
good in the core for ξTot ≤ 0.03 and zero crossing angle, as seen by the emittance growth rate, and
in the tail for ξTot ≤ 0.04, as seen by the loss rate. The large NADA also signifies that the particles
are not transported from deep within the bunch to be lost. As the angle increases from φPIW = 0 to
0.6, the general behaviour based on all three outputs is that the detrimental effects gradually become
stronger, strongly dependent on ξTot. The preservation of the beam quality reaches a minimum
within the interval φPIW ∈ [0.6, 1]. For larger angles, the beam quality preservation begins to improve
as the crossing angle increases further from φPIW = 1 to 2. The same results are plotted as functions
of ∆QTot(φPIW) in Fig. 4.4b. From this plot, it seems that the additional detrimental effects caused
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by the crossing angle saturates around φPIW ≈ 1, and the apparent improvement when the crossing
angle increases further is due to the reduction of the effective beam-beam tune shift.

(a) Q′ = 0.

(b) Q′ = 0.

Figure 4.4: Beam quality reduction for different combinations of φPIW and ξTot, when Qx = 0.31,
Qy = 0.32, Q′ = 0 and β∗q = 0.4 m. The outputs NADA, LRBeam and ε̇⊥ have been calculated
as expressed in Sec. 3.4. (a) presents the outputs as functions of φPIW . (b) presents the outputs as
functions of ∆QTot(φPIW ).

The behaviour for φPIW = 0 can in part be understood based on the first three FMAs in Fig. 4.5.
For ξTot = 0.03, the particle trajectories are affected by the 10th order resonances and weakly by the
16th order, but there is only weak overlap between different resonances. For ξTot = 0.04, the 10th
order resonances cause higher diffusion coefficients, and they overlap with the coupling resonance
at low particle amplitudes. This may explain the slightly larger emittance growth rate without the
high loss rates. For ξTot = 0.05, the 10th order resonances affect the entire width of the footprint,
and they overlap now strongly with both the 16th order resonances and the coupling resonance.
There is a strong overlap also for particles of larger transverse amplitudes, which might explain the
substantial increase in the loss rate for this configuration.

The additional problems with an increasing angle, when φPIW < 1, is qualitatively predictable,
because with the crossing angle, the beam-beam interaction drives odd resonances as well. The 13th
order resonance is active in this configuration, as displayed in the FMA in Fig. 4.5d, and it affects
predominantly particles at large transverse amplitudes. This resonance may contribute to the large
loss rates of particles from the tail compared to the moderate emittance growth rates of the particles
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in the core for a nonzero crossing angle. The synchro-betatron resonances parallel to the coupling
resonance, i.e. for nonzero m in Qx −Qy +m ·Qs = 0, also have a higher diffusion coefficient
than for zero crossing angle. This FMA was produced for a small angle of φPIW = 0.1, because
the picture became distorted beyond clear understanding for larger angles. The improvement of
the beam quality preservation, when increasing the Piwinski angle further beyond 1, was justified
earlier as an effect of the reduction of the beam-beam tune shift. This effect is detailed in the FMA
in Fig.4.5e, for φPIW = 2. The footprint fits between the dominant resonance lines of lowest order.
Even though the footprint crosses the 10th order resonance lines at Qx = 0.3, this resonance is not
significant, as it is only affecting the particles of lowest transverse amplitude. Because the effects of
larger crossing angle seem to be strongly connected to the reduced tune shift, the following results
in this section are only given as functions of ∆QTot(φPIW).

(a) ξTot = 0.03. (b) ξTot = 0.04. (c) ξTot = 0.05.

(d) ξTot = 0.03, φPIW = 0.1. (e) ξTot = 0.03, φPIW = 2. (f) ξTot = 0.03, Q′ = 15.

Figure 4.5: FMAs illustrating effects of increased beam-beam parameter, Piwinski angle and chro-
maticity for a working point of (Qx, Qy) = (0.31, 0.32), related to the beam quality study in
Fig. 4.4 and Fig. 4.6. φPIW = 0 and Q′ = 0, unless otherwise specified in the subfigures captions.
The red cross in each subfigure is the working point in the simulations. Possible resonance lines up
to the 16th order have been plotted on top of the tune footprint in each figure. A few labels were
added to guide the reader. (a), (b), (c) displays the effect on the FMA for increasing beam-beam
parameter. (d) displays a FMA when the crossing angle is weakly nonzero. (e) displays a FMA for
a large crossing angle. (f) displays a FMA when the chromaticity is nonzero.

Chromaticity is often needed in modern colliders to mitigate collective instabilities. The cross-
ing angle scan for the machine tunes of (Qx, Qy) = (0.31, 0.32) was therefore repeated with a large
chromaticity, Q′ = 15, as is currently needed in the LHC, and the results are presented as functions
of ∆QTot(φPIW) in Fig. 4.6. This is thus directly comparable to Fig. 4.4b, from which the only
difference is the nonzero chromaticity. The most evident effect is that the beam quality is worse
preserved for small angles, φPIW ≤ 0.1, and large beam-beam tune shifts, ξTot ≥ 0.02. In fact, the
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detrimental effects are worse with a nonzero chromaticity for all tested configurations. The peak
LRBeam has increased from LRBeam(Q′ = 0) ≤ 10%/h to 100%/h, the peak emittance growth
rate has increased from ε̇⊥(Q′ = 0) ≤ 1× 10−7 /turn to 5× 10−6 /turn, and the minimal NADA
had decreased from NADA(Q′ = 0) ≥ 2.4σΣ to 1.3σΣ. The beam quality preservation is still de-
pendent on the angle, and the impact of the additional detrimental effects saturates around φPIW ≈ 1.

Figure 4.6: Beam quality reduction for different combinations of φPIW and ξTot, when Qx = 0.31,
Qy = 0.32, Q′ = 15 and β∗q = 0.4 m. The outputs NADA, LRBeam and ε̇⊥ have been calculated
as expressed in Sec. 3.4. The outputs are presented as functions of ∆QTot(φPIW ).

The chromaticity has the effect that the tune of a particle oscillates in tune space, parallel to
the diagonal, Qx = Qy , if Q′ is equal in both planes. Effectively, particles far from resonance
lines become affected by resonances, which is visible in the FMA in Fig. 4.5f, where the diffusion
coefficient is large for a wider area around each plotted resonance line, than it was in the FMA
in Fig. 4.5a. This oscillation is dependent on the energy variation, causing a mixing between the
longitudinal and transverse planes, activating synchro-betatron resonances. The introduction of the
longitudinal dof is able to increase the diffusion rate through Arnold diffusion. That is why the beam
quality is so much less preserved for small Piwinski angles, φPIW ≤ 0.1, compared to the case of zero
chromaticity. The chromaticity does however not activate the odd resonances, as the crossing angle
did, since it does not introduce a transverse asymmetry to the interaction. Furthermore, the effect
of the chromaticity is caused by the lattice and not by the beam-beam interaction. These points
may explain why there still is an increase in detrimental effects towards a saturation as the angle
increases towards φPIW ≈ 1.

The LHC is currently operating at the working point of (Qx, Qy) = (0.31, 0.32), which pre-
serves the beam quality well for small ξTot. For larger ξTot it was found in Sec. 4.1 that two alter-
native working points, (0.315, 0.325) and (0.475, 0.485), may give better preservation of the beam
quality. The results from a crossing angle scan at the shifted working point, (0.315, 0.325), are pre-
sented as functions of ∆QTot(φPIW) in Fig. 4.7. The chromaticity is nonzero in these simulations,
Q′ = 15. There are multiple notable trends compared to the corresponding scan at the LHC work-
ing point. The beam quality is much better preserved for small angles, φPIW ≤ 0.1, even for large
beam-beam tune shifts, ∆QTot(φPIW) ≤ 0.04. For φPIW ≥ 0.3 there is a sharp increase in LRBeam
and decrease in NADA. All three outputs support that this working point might be better than the
LHC working point, except for the configurations with ∆QTot(φPIW) ≤ 0.02 and φPIW ≥ 0.3, which
indeed are the most relevant to describe the configurations in the LHC today.

With the shift of working point, other resonances may be important to understand the dynamics.
The FMA for ξTot = 0.04,Q′ = 15 and φPIW = 0 is presented in Fig. 4.8a. The 10th order resonance
now affects particles at lower amplitude than at the LHC working point, and affects these less. The
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Figure 4.7: Beam quality reduction for different combinations of φPIW and ξTot, whenQx = 0.315,
Qy = 0.325,Q′ = 15 and β∗q = 0.4 m. The outputsNADA, LRBeam and ε̇⊥ have been calculated
as expressed in Sec. 3.4. The outputs are presented as functions of ∆QTot(φPIW ).

16th order resonance is also active, but it affects mostly particles of low vertical amplitude that
are not affected by the 10th order resonances simultaneously. This may explain why the beam
quality is much better for this configuration at this working point. Note that the beam-beam tune
shift is not equal to ξTot for zero crossing angle. The nonzero longitudinal amplitude affects the
maximum beam-beam tune shift. For a nonzero angle of φPIW = 0.3, the FMA changes significantly,
as displayed in Fig. 4.8b. In addition to the 10th and 16th order resonances, also the 9th and
13th order resonances are active, and they overlap with the 16th order resonances for particles at
large transverse amplitude. This is why there is a clear distinction between the cases of zero and
nonzero crossing angle, based on the values for LRBeam and NADA. The 9th, 13th and 16th order
resonances are overlapping close to the working point, and will affect the footprint also for smaller
∆QTot(φPIW). This is probably why this working point appears slightly worse for smaller ξTot and
large φPIW , than the LHC working point does.

(a) ξTot = 0.04, φPIW = 0. (b) ξTot = 0.04, φPIW = 0.3.

Figure 4.8: FMAs illustrating activation of synchro-betatron resonances due to large chro-
maticity, Q′ = 15, and odd resonances due to the crossing angle, for a working point of
(Qx, Qy) = (0.315, 0.325), related to the beam quality study in Fig. 4.7. The red cross in each
subfigure is the working point in the simulations. Possible resonance lines up to the 18th order in
(a) and 16th order in (b) have been plotted on top of the tune footprint in each figure. A few labels
were added to guide the reader.
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The results from a crossing angle scan for the machine tunes of (Qx, Qy) = (0.475, 0.485),
close to the half-integer resonance, for nonzero chromaticity, Q′ = 15, are presented in Fig. 4.9 as
functions of ∆QTot(φPIW). A strange effect is that, for φPIW = 0, the beam quality seems better pre-
served for a stronger beam-beam interaction. The emittance growth rate is larger than expected from
noise alone in 4 out of these 35 simulations, i.e. the presence of the beam-beam interaction appears
to improve the situation in the core. This has been found to be an effect of the approximations in the
model and is further discussed below. For tune shifts ∆QTot(φPIW) ≤ 0.02, the loss rate is larger for
smaller crossing angles, which has not been observed at the two other working points. For larger
tune shifts, the beam quality is again better preserved for a smaller crossing angle. Detrimental
effects begin to reduce the beam quality for ∆QTot(φPIW) > 0.03 and φPIW ≥ 0.6. Nevertheless, this
working point gives by far the best preservation of beam quality for the considered configurations.

Figure 4.9: Beam quality reduction for different combinations of φPIW and ξTot, whenQx = 0.475,
Qy = 0.485,Q′ = 15 and β∗q = 0.4 m. The outputsNADA, LRBeam and ε̇⊥ have been calculated
as expressed in Sec. 3.4. The outputs are presented as functions of ∆QTot(φPIW ).

The dependence on ξTot and φPIW at a working point close to the half-integer resonance, is more
challenging to understand than at the previous two working points. This is due to the vicinity of
the half-integer resonance. The effect of reduced emittance growth rate for increasing ξTot is par-
ticularly peculiar. The Poincaré section at the location where the noise is applied and collimation is
performed, is slightly elongated along the px axis in the presence of strong beam-beam interaction,
as displayed in Fig. 4.10. This distortion of phase space makes the effective diffusion weaker than
if the distribution would be circular. Because the noise is meant to represent effects occurring at all
places around the lattice, the reduced ε̇⊥ is thus an artefact of the method. Indeed, the amplitude
of the noise is generated relative to the initial beam divergence, and should be adjusted in configu-
rations where the beam divergence is strongly affected by the nonlinearity. However, this effect is
small, and the fact that the beam-beam interaction does not worsen the situation more than it does,
demonstrates the good preservation of beam quality for this working point.

The results for machine tunes of (Qx, Qy) = (0.475, 0.485) are affected by being so close
to the half-integer resonance. The effect that a larger φPIW preserves better the beam quality for
∆QTot(φPIW) ≤ 0.02, remains to be understood. The extraordinary good behaviour for ξTot = 0.05
and zero crossing angle can be understood by the FMA of this configuration, displayed in Fig. 4.11a.
There are only a few resonance lines that affect the footprint, whereof the 10th order resonance and
the coupling resonance are measured to be the strongest, but there is no overlap between resonances.
From the set of resonance lines up to order 17, that have been plotted on top of the footprint, there is
in fact no possible overlap of low order resonances. The physics change for a nonzero crossing angle
of φPIW = 0.3, as seen in the FMA in Fig. 4.11b. The odd resonances may affect this configuration,
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(a) ξTot = 0.01. (b) ξTot = 0.05.

Figure 4.10: Poincaré sections for Qx = 0.475, for particles initially distributed along the x axis.
Axes given in units of standard deviation.

which indeed they do. The 13th, 15th and 17th resonances all overlap with the resonances already
present without the crossing angle. This causes the reduced preservation of beam quality that was
measured for this configuration with a nonzero crossing angle. The beam quality was also found
to remain good up to ξTot = 0.03 for φPIW = 0.3. The FMA of this configuration is displayed in
Fig. 4.11c. As with the larger tune shift, the 15th and 17th order resonances are still active, but
they cause much smaller diffusion coefficients for this combination, and it is again mainly the 10th
order resonance that affects this footprint. The FMAs discussed here have all been made with zero
chromaticity, Q′ = 0, because the important effects were hidden behind a blur of large diffusion
coefficients when the chromaticity was included. The beam-beam tune shift is smaller than ξTot
because of the half integer resonance.

(a) ξTot = 0.05, φPIW = 0. (b) ξTot = 0.05, φPIW = 0.3. (c) ξTot = 0.03, φPIW = 0.3.

Figure 4.11: FMAs illustrating the activated resonances with and without a crossing angle for
a working point of (Qx, Qy) = (0.475, 0.485), without chromaticity, related to the beam quality
study in Fig. 4.9. The red cross in each subfigure is the working point in the simulations. Possible
resonance lines up to the 17th order have been plotted on top of the tune footprint in each figure. A
few labels were added to guide the reader.

The results for the additional working points have only been presented with a strong chromatic-
ity,Q′ = 15, as this is both more realistic and pessimistic. It is a more relevant scenario to test, if one
wants to find if either of these working points might be better suited than the current LHC working
point, for a larger beam-beam parameter. The simulations have also been run with zero chromatic-
ity. For (Qx, Qy) = (0.315, 0.325) and Q′ = 0, the worst values were found to be NADA ≥ 3.2,
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LRBeam ≤ 2× 10−2 h−1, ε̇⊥ ≤ 2× 10−8 /turn, and in general better or similar to the correspond-
ing simulations at the LHC working point. For (Qx, Qy) = (0.475, 0.485) and Q′ = 0, the worst
values were found to be NADA ≥ 4.2, LRBeam ≤ 5× 10−3 h−1, ε̇⊥ ≤ 1× 10−8 /turn, and in
general always better than for the corresponding simulations at the LHC working point.

The effect of a nonzero crossing angle has been studied in this section. The crossing angle
activates odd betatron resonances, and causes a greater mixing between the longitudinal and trans-
verse dof, leading to a worse preservation of the beam quality. The crossing angle also reduces the
total beam-beam tune shift, which improves the preservation of beam quality. The second alterna-
tive working point, (0.475, 0.485), is affected by few resonances for zero crossing angle, but odd
resonances activated by a nonzero crossing angle affect the beam for large beam-beam tune shifts.

4.3 Hourglass Effect
The β function varies as a parabola close to the IPs, as given by Eq. (2.1). The transverse beam size
therefore also varies over the beam-beam interaction, a variation called the hourglass effect. This
variation is weak for configurations where σs/β∗q � 1. For round beams, the total beam-beam tune
shift is to first order independent of the value of β∗q . The luminosity is however directly dependent
on the transverse beam size, as given by Eq. (2.27), and a smaller β∗q is preferred to achieve a higher
luminosity. Squeezing β∗q to small values is therefore done in all modern colliders, making the
hourglass effect important as a side effect. Beam quality simulations for round beams have been
run for the following studies with β∗q ∈ {2.5, 4, 8, 10, 12, 14, 20, 30, 40, 60, 80, 160, 400} cm, and
nominal beam-beam parameters ξTot ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. The simulations are run with
σs = 8 cm and zero crossing angle, making the total beam-beam tune shift approximately equal to
ξTot. The outputs from CABIN will be given as functions of σs/β∗q , being smallest for the largest
β∗q and vice versa.

The results from a β∗q scan at the LHC working point, (Qx, Qy) = (0.31, 0.32), with zero chro-
maticity, are presented as functions of σs/β∗q in Fig. 4.12a. The beam quality preservation is gener-
ally good, except for at large beam-beam parameters, ξTot ≥ 0.04. A change occurs for σs/β∗q ≥ 1,
for which the loss rates and emittance growth rates are increasing, and theNADA is decreasing. For
ξTot = 0.05, there is a local optimum in all three outputs for σs/β∗q = 2/3.

For small values of σs/β∗q and zero crossing angle, the beam-beam interaction is the same
for particles in the front and in the back of a bunch, i.e. the beam-beam interaction is therefore
independent of the longitudinal dof. For large values of σs/β∗q , the interaction depends strongly
on the longitudinal position of the particle in the bunch. With more dof, the diffusion is in general
larger, in agreement with the trend for large σs/β∗q in Fig. 4.12a. This is further supported by the
FMAs in Fig. 4.13. For β∗q = 4 m, the 10th order resonance affects the motion of the particles
strongly. The 14th and 16th order resonances are also noticeable. The FMA for β∗q = 2.5 cm
displays that more particles are affected close to each resonance line in tune space. This is because
the strong hourglass effect has caused significant mixing with the longitudinal dof, activating and
driving the synchro-betatron resonances. Especially important for this working point are perhaps
the resonance lines parallel to the coupling resonance, Qx = Qy . In addition, the particles far from
any resonance line have a higher diffusion coefficient for the smallest β∗q . That is why a stronger
hourglass effect causes larger diffusion, both for particles at large and small transverse amplitudes.
As a side note, the large σs/β∗q has slightly increased the maximum tune shift. This behaviour is
not within the scope of this thesis.

As discussed in Sec. 4.2, chromaticity is often needed in modern colliders to mitigate collec-
tive instabilities. The β∗q scan for the LHC working point, (Qx, Qy) = (0.31, 0.32), has been re-
done with a large chromaticity, Q′ = 15, and the results are presented in Fig. 4.12b. With the
nonzero chromaticity, the beam quality is significantly worse preserved for all configurations with

57



(a) Q′ = 0.

(b) Q′ = 15.

Figure 4.12: Beam quality reduction for different combinations of β∗q and ξTot, when Qx = 0.31,
Qy = 0.32, and φPIW = 0. The outputs NADA, LRBeam and ε̇⊥ have been calculated as expressed
in Sec. 3.4 and presented as functions of σs/β∗q . The chromaticity isQ′ = 0 for the scan in (a), and
15 for the scan in (b).

ξTot ≥ 0.03. The NADA has decreased and the emittance growth rate and beam loss rate have in-
creased substantially by many orders of magnitude for large β∗q , corresponding to a small σs/β∗q .
Also for large σs/β∗q , the beam quality is worse preserved, but to a much weaker extent. This
results in an optimum σs/β

∗
q of approximately 2/3, limited by the chromaticity from below and

the hourglass effect from above. Configurations with smaller beam-beam parameters, ξTot ≤ 0.02,
do not have a strong dependence on σs/β∗q . All these simulations seem negligibly affected by the
beam-beam interaction.

The chromaticity causes a strong dependence of the tune on the longitudinal phase space. This
activates the synchro-betatron resonances, driven by the beam-beam interaction, making the parti-
cles in tune space close to resonance lines affected. This is visualised by the FMA for β∗q = 4 m
in Fig. 4.14a. The 10th and 16th order resonances have a strong impact, and the 14th order res-
onance is noticeable. That is why the beam quality is worse preserved for nonzero chromaticity
and σs/β∗q � 1. This behaviour was also expected for more significant hourglass effect. Instead,
it seems that when the hourglass effect becomes significant, it reduces the strength of some reso-
nances that strongly affect the dynamics in the presence of chromaticity, visualised by the FMA
for β∗q = 12 cm in Fig. 4.14b. In comparison to the FMA for negligible hourglass effect, the dif-
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(a) β∗q = 4 m. (b) β∗q = 2.5 cm.

Figure 4.13: FMAs illustrating the effect of synchro-betatron resonances due to the hourglass effect
and chromaticity, for a working point of (Qx, Qy) = (0.31, 0.32), related to the beam quality study
in Fig. 4.12a. Both simulations are run with zero chromaticity and a large beam-beam parameter,
ξTot = 0.05. The red cross in each subfigure is the working point in the simulations. Possible
resonance lines up to the 16th order have been added, in addition to a few labels meant to guide the
reader.

fusion coefficients close to the resonance lines have for a significant hourglass effect been reduced
substantially and the effect of the 14th order resonance is barely visible. The dynamical process
causing this behaviour remains to be fully understood. Yet the hypothesis is supported by both the
beam quality simulations and FMAs. The particles far from any resonance line have however a
larger diffusion coefficient for significant hourglass effect. For even larger σs/β∗q , the resonances
driven by the hourglass effect will cause detrimental behaviour of the beam quality on its own. As
noted above, this ability of the hourglass effect to battle the deterioration caused by the chromatic-
ity, while also causing deterioration on its own, causes an optimum σs/β

∗
q . These FMAs have been

calculated with a smaller chromaticity, Q′ = 5, because the chromaticity used in the beam quality
simulations distorted the FMAs beyond the clear understanding needed for this discussion.

(a) β∗q = 4 m. (b) β∗q = 12 cm.

Figure 4.14: FMAs illustrating the effect of synchro-betatron resonances due to the hourglass
effect, for a working point of (Qx, Qy) = (0.31, 0.32), related to the beam quality study in
Fig. 4.12b. Both simulations are run with a nonzero chromaticity, Q′ = 5, and large beam-beam
parameter, ξTot = 0.05. The red cross in each subfigure is the working point in the simulations.
Possible resonance lines up to the 16th order have been added, including a few labels meant to
guide the reader.
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The results from a β∗q scan with large chromaticity, Q′ = 15, for the first alternative working
point, (Qx, Qy) = (0.315, 0.325), are presented as functions of σs/β∗q in Fig. 4.15. The preser-
vation of beam quality seems better for every presented configuration for this working point then
at the LHC working point. The same results were also found for zero crossing angle in Sec. 4.2,
because the odd resonances are not activated. The beam quality is worst preserved for the smallest
value of σs/β∗q , due to the chromaticity, as it was at the LHC working point. There is a weak trend
that the NADA decreases and the growth and loss rates increase for σs/β∗q larger than 1, caused by
the hourglass effect. The combination of these to trends introduces an optimum σs/β

∗
q , for β∗q in

the interval [10, 30] cm. The interval for this optimum β∗q is wider for this alternative working point
than it was for the LHC working point.

Figure 4.15: Beam quality reduction for different combinations of β∗q and ξTot, whenQx = 0.315,
Qy = 0.325, Q′ = 15 and φPIW = 0. The outputs NADA, LRBeam and ε̇⊥ have been calculated as
expressed in Sec. 3.4. The outputs are presented as functions of σs/β∗q .

The results from a β∗q scan with large chromaticity, Q′ = 15, for the second alternative working
point, (Qx, Qy) = (0.475, 0.485), are presented as functions of σs/β∗q in Fig. 4.16. The preserva-
tion of beam quality is better for every presented configuration for this working point than at the
LHC working point, except for when the beam-beam parameter is small, ξTot ≤ 0.02, and σs/β∗q
is large. For σs/β∗q ≥ 0.4, the loss rate increases and the NADA decreases significantly, more than
the corresponding values for (Qx, Qy) = (0.315, 0.325), but the emittance growth rate remains
close to the value expected from noise alone, ε̇0 = 1× 10−8 /turn. The low emittance growth rate,
ε̇⊥ < ε̇0, was partially explained in Sec. 4.2. The preservation of beam quality is close to optimal for
σs/β

∗
q < 0.4. The good preservation for negligible hourglass effect reduces the visibility of a pos-

sible local optimum in the interval β∗q ∈ [20, 30] cm for small beam-beam parameters, ξTot ≤ 0.02.
The general good behaviour at the alternative working point (Qx, Qy) = (0.475, 0.485) for zero

crossing angle, was already found in Sec. 4.2. FMAs for ξTot = 0.03 and zero chromaticity are
given in Fig. 4.17. For negligible hourglass effect, β∗q = 4 m, there are no resonance lines crossing
in the relevant tune area, the 10th order resonance is the strongest. The total beam-beam tune shift
is smaller than ξTot. The resonances are affecting the footprint. For a strong hourglass effect,
β∗q = 2.5 cm, the beam-beam tune shift is closer to ξTot. The 10th order resonance is strong, but
so are the synchro-betatron resonances parallel to the coupling resonance. These are crossing for
particles at large amplitude, possibly causing the large loss rate and small NADA, combined with
a small emittance growth rate. In addition, the strong hourglass effect causes slightly increased
diffusion coefficients for particles far from any of the considered resonance lines.

The hourglass effect does become noticeable both in FMAs and in beam quality simulations as
σs/β

∗
q ≥ 1. It drives synchro-betatron resonances, and generally reduces the beam quality. In this
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Figure 4.16: Beam quality reduction for different combinations of β∗q and ξTot, whenQx = 0.475,
Qy = 0.485, Q′ = 15 and φPIW = 0. The outputs NADA, LRBeam and ε̇⊥ have been calculated as
expressed in Sec. 3.4. The outputs are presented as functions of σs/β∗q .

(a) β∗q = 4 m. (b) β∗q = 2.5 cm.

Figure 4.17: FMAs illustrating the effect of synchro-betatron resonances due to the hourglass
effect, for a working point of (Qx, Qy) = (0.475, 0.485), related to the beam quality study in
Fig. 4.16. Both simulations are run with zero chromaticity and large beam-beam parameter,
ξTot = 0.03. The red cross in each subfigure is the working point in the simulations. Possible
resonance lines up to the 16th order have been added, including a few labels meant to guide the
reader.

section, it has on the other hand been found that the dependence on s of the beam-beam interaction,
i.e the hourglass effect, manages to limit the detrimental effects caused by the chromaticity. This
creates an optimal intermediate value for σs/β∗q , dependent on the working point and beam-beam
parameter. The study in this section has not taken into account the combined effect of including a
crossing angle. That is done in Sec. 4.6, studying the dependence on chromaticity.

4.4 Separation
There are 4 IPs where the beams can collide in the LHC, hosting experiments with different lumi-
nosity requirements (ATLAS, LHCb, CMS, ALICE). It is convenient to control the luminosity at
the different IPs, so that the experiments can share the same beam. Such convenience will likely
be needed also in future projects. This can be achieved by separating the beams at the IP in the
plane transverse to the crossing angle, i.e. if the beams are crossing horizontally, they are separated
vertically. The crossing scheme in these simulations is both with and without crossing angle HV
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(horizontal in the first IP, vertical in the other), and the separation scheme is thus VH. Improving
the beam quality preservation by separating the beams transversally works in principle because the
beam-beam interaction is weaker at larger amplitudes. That is why the collimation in CABIN is
done at 5σΣ, where σΣ is the transverse beam size of the strong beam in the relevant direction. It
was displayed in Fig. 2.9 that a separation of 10σΣ reduces the beam-beam tune shift for particles
of zero transverse amplitude by a factor 50.

To not reduce the luminosity to zero, the relevant separations are of only a few σΣ. Such sep-
arations change the nonlinear force completely, and it is therefore necessary to do numerical sim-
ulations to find out if the separation has a beneficial impact on the beam quality preservation. At
larger separations, it is assumed that the impact of the beam-beam interaction will decrease. Beam
quality simulations for round beams have been run for each of the following studies, with separa-
tions ∆x⊥ ∈ {0, 0.25, ..., 2, 3, ..., 10} · σΣ, large chromaticity, Q′ = 15, and nominal beam-beam
parameters ξTot ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. The goal of this study is both to see the impact of
a small separation, and to see how large separation is needed to make the impact of the beam-beam
interaction negligible.

The results for a separation scan with zero crossing angle, are presented as functions of the
separation ∆x⊥ in Fig. 4.18a. For a separation of 4σΣ, the emittance growth rate for all beam-
beam parameters has converged to the value expected from noise alone, ε̇0 = 1× 10−8 /turn. For
a separation of 6σΣ, the beam loss rate and the NADA have converged to good values. At lower
amplitudes, the loss rate and emittance growth rate both oscillate with local peaks at separations
of approximately 0.5σΣ and 1.5σΣ. This is in agreement with an earlier study [47]. The emittance
growth rate does not increase for a small offset for small beam-beam parameters, ξTot < 0.03. The
loss rate increases by approximately a factor 7 for ξTot = 0.02 as the separation increases from 0 to
0.75σΣ.

The same scan was repeated with a nonzero Piwinski angle, φPIW = 1, and the results are pre-
sented as functions of the separation in Fig. 4.18b. The emittance growth rate converges at approxi-
mately ∆x⊥ = 4σΣ, and the loss rate andNADA converges at 6σΣ. For small separations, the worst
beam quality preservation occurs on the interval ∆x⊥ ∈ [0.25, 1.5] · σΣ. The behaviour in this in-
terval is smoother with a nonzero crossing angle, and the increased deterioration is small compared
to zero separation.

The worse preservation of beam quality at low, nonzero separation, is due to the activation of
odd resonances, as visualised by the FMA in Fig. 4.19a. Both the 7th and the 13th order reso-
nances affect the motion of the particles. The 7th order resonance does not affect the particles for
ξTot = 0.03, because the tune shift from the working point is not large enough, which is why the
emittance growth rate is not larger for a small separation for this beam-beam parameter. Because
the resonances are partially activated by the nonzero Piwinski angle as well, as was visualised by
the FMAs (b) and (d) in Fig. 4.5, a small separation is less detrimental if the bunches are already
colliding with a crossing angle. The oscillating behaviour for a small separation with zero crossing
angle may be interpreted as the effect of specific resonances acting on different parts of the beam
distribution due to the strongly varying shape of the tune footprint, exemplified in Fig. 4.19. The
details of this behaviour are outside the scope of this thesis.

The emittance growth rate is largely caused by the diffusion of particles in the core, while the
loss rate and NADA reflects what happens at large amplitudes. Consider again the shape of the
force from a round beam of transverse beam size σr in Fig. 2.6. For a transverse separation of
5σr, the particles of approximately zero transverse amplitude always experience the weak force
at 5σr, independent of the betatron phase. The particles at large transverse amplitudes up to 5σr
will oscillate between 0 and 10σr, experiencing at times the strongly nonlinear force in the core
of the strong beam. This explains the convergence of emittance growth rate at a lower transverse
separation than the convergence of the loss rate and theNADA. The beam-beam tune shift is greatly
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(a) φPIW = 0.

(b) φPIW = 1.

Figure 4.18: Beam quality reduction for multiple combinations of a transverse separation at the
IPs, ∆x⊥, and ξTot, whenQx = 0.31,Qy = 0.32, β∗q = 40 cm andQ′ = 15. The outputsNADA,
LRBeam and ε̇⊥ have been calculated as expressed in Sec. 3.4. The outputs are presented as func-
tions of ∆x⊥.

reduced for a separation of 4σΣ, as visualised in the FMA in Fig. 4.19b, and is of opposite sign of
the beam-beam parameter for the particles of lowest amplitude, in agreement with Fig. 2.9. To
see what amplitudes are affected by resonances, the diffusion coefficients have also been given as
functions of the initial transverse amplitude in Fig. 4.19c. The resonances affect only particles at
large transverse amplitudes, in agreement with the negligible effect on the emittance growth rate.
For larger separation, the beam-beam tune shift decreases further, and the resonances affect only
particles at even larger amplitudes, causing the NADA and the loss rate to converge.

It has been found that a separation of 4σΣ almost cancels the impact of the beam-beam inter-
action on particles of zero transverse amplitude in the core of the bunch. Similarly, a separation of
6σΣ almost cancels the impact of the beam-beam interaction on particles in the tail of the bunch.
Separations are used to reduce the luminosity in an experiment. A separation of less than 2σ, does
not necessarily improve the beam quality. If a small separation is needed to achieve the required
reduction of luminosity, one could suggest achieving this reduction by increasing the crossing angle
instead. Increasing the crossing angle would improve the beam quality, given that it increases from
an already significant value, as detailed in Sec. 4.2.
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(a) ∆x⊥ = 0.25σΣ. (b) ∆x⊥ = 4σΣ. (c) ∆x⊥ = 4σΣ.

Figure 4.19: FMAs illustrating the activated resonances and size of tune footprint with small and
large transverse separation, ∆x⊥, for a working point of (Qx, Qy) = (0.31, 0.32). Both simula-
tions are run with zero chromaticity and large beam-beam parameter, ξTot = 0.04. (a) displays the
FMA for a small separation. (b) displays the FMA for a large separation, and the same values are
plotted in initial amplitude space, (Ax, Ay), in (c). The red cross in the tune plots is the working
point in the simulations. Possible resonance lines up to the 16th order have been plotted on top of
the tune footprints. A few resonance labels were added in (a) to guide the reader.

4.5 Intermediate Phase Advance
The working point has a strong impact on the preservation of beam quality, as studied extensively
in Sec. 4.1. The tune in either transverse plane is the average phase advance per turn. The focus in
this section is the impact of the intermediate phase advance between the two IPs in the model. A
study found analytically for 2D phase space that certain resonances could be cancelled by setting
µ1 = π/2 [6]. However, a phase error of more than 0.001 could be sufficient to lose the cancella-
tion effect. From a symmetry perspective, it was also suggested that the intermediate phase advance
µ1 = µ/2 could cancel resonances. A phase difference, |µ1 − µ2| = 0.0002, was found to com-
pletely destroy the cancellation. Another study claimed that the best beam quality preservation was
experienced with the symmetric phase advance, without commenting on the required accuracy [10].

Beam quality simulations have been run for configurations with different intermediate phase
advances, ∆µ1 ∈ {−0.03,−0.025,−0.02,−0.018, ..., 0.02, 0.025, 0.03} · 2π, close to the phase
advances introduced above, nominal beam-beam parameters ξTot ∈ {0.03, 0.04, 0.05}, and large
chromaticity, Q′ = 15. The difference, ∆µ1, from the design phase advance, π/2 or µ/2, is kept
equal in the horizontal and vertical plane. Because the goal is to study how much the beam quality
preservation improves, and how accurately the intermediate phase advance must be set, only the
largest beam-beam parameters have been simulated. Only the results at the LHC working point,
(0.31, 0.32), will be presented. FMAs for zero intermediate phase advance for this configuration
with ξTot = 0.03, and both zero and nonzero crossing angle, are repeated in Fig. 4.20. The 10th and
16th order resonances are disturbing the particle motion for zero crossing angle, while for nonzero
crossing angle, the odd 7th and 13th order resonances are also activated. These are the resonances
one wants to suppress for the LHC working point.

The results from a scan in intermediate phase advance close to µ/2 for zero crossing angle, are
presented as functions of µ1 − µ/2 in Fig. 4.21. The best preservation of beam quality is achieved
when µ1 = µ2. The emittance growth rate decreases to ε̇0 = 1× 10−8 /turn, expected from noise
alone, and similarly the loss rate and NADA reach excellent values. The accuracy in µ1 needed
to achieve this improvement seems dependent on the beam-beam parameter, larger ξTot requires a
more accurate intermediate phase advance to achieve the full improvement.
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(a) φPIW = 0. (b) φPIW = 0.1.

Figure 4.20: FMAs illustrating resonances for zero intermediate phase advance, µ1 = 0, for a
working point of (Qx, Qy) = (0.31, 0.32), Q′ = 0 and ξTot = 0.03. The red cross in each subfig-
ure is the working point in the simulations. Possible resonance lines up to the 16th order have been
added. A few labels were added to guide the reader.

Figure 4.21: Beam quality improvement for intermediate phase advance close to µ/2, for different
values of ξTot, whenQx = 0.31,Qy = 0.32, φPIW = 0 andQ′ = 15. The outputsNADA, LRBeam
and ε̇⊥ have been calculated as expressed in Sec. 3.4. The outputs are presented as functions of the
intermediate phase advance.

The beam quality was preserved very well for µ1 = µ2, which is supported by the FMA in
Fig. 4.22a. There are few resonances affecting the particles. This improvement can be understood
from a symmetry argument. With equal phase advances, and equal modelling of the beam-beam
interaction in the two IPs, the model represents effectively a collider with a single IP at a working
point at (Qx, Qy) = (0.155, 0.16). The total beam-beam tune shift would then be half of what it
is in the original configuration. This configuration has been simulated, and the FMA is presented
in Fig. 4.22b, supporting the argument. Both simulations have been run with the same synchrotron
tune, Qs = 0.002, explaining the discrepancy close to the coupling resonance. For a nonzero chro-
maticity, the FMAs are effectively unchanged. The 10th and 16th order resonances affect the motion
of the particles for |µ1 − µ2| = 0.0002, as visible in the FMA in Fig. 4.22c. The beam quality sim-
ulations are less sensitive to the phase error than what the resonance coefficients are.

The scan in intermediate phase advance close to µ/2 has been repeated with a nonzero crossing
angle, φPIW = 1. The results are presented as functions of µ1 − µ/2 in Fig. 4.23. The best preserva-
tion of beam quality is again achieved when µ1 = µ2. The improvement on the emittance growth
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(a) µ1 = µ/2. (b) 1 IP. (c) |µ1 − µ2| = 0.0002.

Figure 4.22: FMAs illustrating cancelling of resonances using an intermediate phase advance close
to µ1 = µ/2, for a working point of (Qx, Qy) = (0.31, 0.32), φPIW = 0, Q′ = 0 and ξTot = 0.03.
The red cross in each subfigure is the working point in the simulations. Possible resonance lines up
to the 16th order have been added, in addition to a few labels meant to guide the reader. µ1 = µ/2
in (a). (b) is run with a single IP at half the machine tunes, (0.155, 0.16). A small phase error is
introduced in (c).

rate and loss rate is approximately a factor 4, but only for ξTot ≥ 0.04. Compared to the scan with
zero crossing angle, the improvement by using the intermediate phase advance µ/2 is significantly
reduced for this crossing angle.

Figure 4.23: Beam quality improvement for intermediate phase advance close to µ/2, for different
values of ξTot, whenQx = 0.31,Qy = 0.32, φPIW = 1 andQ′ = 15. The outputsNADA, LRBeam
and ε̇⊥ have been calculated as expressed in Sec. 3.4. The outputs are presented as functions of the
intermediate phase advance.

The improvement from using the intermediate phase advance µ/2 was significantly reduced
when a nonzero crossing angle was included. It was found in Sec. 4.2 that a nonzero crossing angle
activates odd resonances. Furthermore, with one horizontal and one vertical crossing, the symmetry
is broken and therefore the lattice is no longer equivalent to a shorter lattice with a single IP. This
argumentation is supported by the FMA in Fig. 4.24. The effect of the 10th order resonance is still
strongly reduced, and the 16th order is invisible. The 7th and 13th order resonances do not seem
affected by the symmetric intermediate phase advance. Hence, the improvement from use of this
intermediate phase advance is limited.
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Figure 4.24: FMA illustrating cancelling of resonances using the intermediate phase advance
µ1 = µ/2, for a working point of (Qx, Qy) = (0.31, 0.32), φPIW = 0.1, Q′ = 0 and ξTot = 0.03.
The red cross marks the working point in the simulation. Possible resonance lines up to the 15th
order have been added, in addition to a few labels meant to guide the reader.

The results from a scan in intermediate phase advance close to π/2, for zero crossing angle, are
presented as functions of µ1 − π/2 in Fig. 4.25. The best preservation of beam quality is achieved
when µ1 = 0.512 · π, not at µ1 = π/2. The optimum phase advance has been found to be dependent
on the working point. The emittance growth rate decreases to ε̇0 = 1× 10−8 /turn, expected from
noise alone, and similarly the loss rate and NADA also reach excellent values. The accuracy needed
to achieve this improvement seems dependent on the beam-beam parameter, larger ξTot requires a
more accurate µ1 to achieve the full improvement.

Figure 4.25: Beam quality improvement for intermediate phase advance close to π/2, for different
values of ξTot, whenQx = 0.31,Qy = 0.32, φPIW = 0 andQ′ = 15. The outputsNADA, LRBeam
and ε̇⊥ have been calculated as expressed in Sec. 3.4. The outputs are presented as functions of the
intermediate phase advance.

The theory applied to achieve the resonance cancelling condition, µ1 = π/2, was for a 2D trans-
verse phase space only. That is, either horizontal or vertical, not both. The derivation was also to
first order only, assuming that the beam-beam interaction was weak. This assumption has possibly
been broken by the beam-beam parameters considered in this section. The choice µ1 = π/2 was
supposed to cancel resonances of order {2, 6, 10, 14, 18, ...}. It was found in part 1 of this project
that individual resonances were cancelled effectively by intermediate phase advances chosen in this
manner [1]. For resonances dependent on both transverse phase space planes, it seems that π/2 is
not the optimal choice. This is supported by the FMAs in Fig. 4.26. The 10th order resonance has
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less impact on the motion of the particles for µ1 = π/2 than for zero intermediate phase advance,
but the impact is even weaker for µ1 = 0.512 · π. There are still moderate diffusion coefficients
close to the 10th order resonance lines, partly because the 20th order resonance cannot be cancelled
by this method. The cancellation of the resonances is not as good as with the symmetric phase
advance. However, it is important to keep in mind that the FMA can only give a qualitative under-
standing of the beam dynamics, and in particular the impact of the resonances on the beam quality.
Compared to the symmetric phase advance, the beam quality simulations did show an equally good
improvement in preservation of beam quality, and similar required accuracy in maintaining µ1.

(a) µ1 = π/2. (b) µ1 = 0.512 · π.

Figure 4.26: FMAs illustrating cancelling of resonances using an intermediate phase advance close
to µ1 = π/2, for a working point of (Qx, Qy) = (0.31, 0.32), φPIW = 0, Q′ = 0 and ξTot = 0.03.
The red cross in each subfigure is the working point in the simulations. Possible resonance lines up
to the 16th order have been added, in addition to a few labels meant to guide the reader.

The scan in intermediate phase advance close to π/2 has been repeated with a nonzero crossing
angle, φPIW = 1. The results are presented as functions of µ1−π/2 in Fig. 4.27. There is an optimum
intermediate phase advance, but it is slightly larger than π/2, as it was for zero crossing angle. The
improvement due to the phase advance is only detectable for ξTot ≥ 0.04. For these beam-beam
parameters the emittance growth rate and loss rate is approximately a factor 2 smaller, while the
NADA remains unchanged. Compared to the scan with zero crossing angle, the improvement by
using the optimum intermediate phase advance 0.512 · π is insignificant for this crossing angle.
The improvement was better for nonzero crossing angle with the symmetric intermediate phase
advance, µ/2.

The modest improvement from using µ1 ≈ π/2 can be understood based on similar arguments
as discussed above. The choice of intermediate phase advance does not affect the odd resonances.
The tunes close to π/2 only reduce the effect of the 10th order resonance, not the 7th, 13th or
16th. This is supported by the FMAs for a small crossing angle in Fig. 4.28. The impact of the
10th order resonance is reduced modestly by an intermediate phase advance π/2, but it is reduced
better by 0.512 · π. The 13th and 16th order resonances are still overlapping for particles at large
amplitudes. However, even if there is an improvement visible in these FMAs for ξTot = 0.03, there
is no improvement for these intermediate phase advances according to the beam quality simulations.

In this section, it has been shown that a smart choice of intermediate phase advance can reduce
the effect of certain resonances from the LHC working point, (Qx, Qy) = (0.31, 0.32). Similar
behaviours have been found for the alternative working points (0.315, 0.325) and (0.475, 0.485).
The postulated intermediate phase advance µ/2 was an optimum, while π/2 is slightly inaccurate
according to the simulations. The strict requirement on the accuracy in setting µ1 = µ2 based
on resonance coefficients [6], has been reproduced with FMAs. It has however been found that
even though the resonances are activated, they may not affect the beam quality substantially. The
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Figure 4.27: Beam quality improvement for intermediate phase advance close to π/2, for different
values of ξTot, whenQx = 0.31,Qy = 0.32, φPIW = 1 andQ′ = 15. The outputsNADA, LRBeam
and ε̇⊥ have been calculated as expressed in Sec. 3.4. The outputs are presented as functions of the
intermediate phase advance.

(a) µ1 = π/2. (b) µ1 = 0.512 · π

Figure 4.28: FMAs illustrating cancelling of resonances using an intermediate phase advance
close to µ1 = π/2, for a working point of (Qx, Qy) = (0.31, 0.32), φPIW = 0.1 Q′ = 0 and
ξTot = 0.03. The red cross in each subfigure is the working point in the simulations. Possible
resonance lines up to the 16th order have been added, in addition to a few labels meant to guide the
reader.

required precision is several orders of magnitude less strict, ∆µ1 ∼ 0.01, based on beam quality
simulations, although it is strongly dependent on the beam-beam parameter. If one were to use
this method in a collider, one would likely require continuous monitoring of the intermediate phase
advance while the machine is running. The introduction of odd resonances from crossing angles,
and most likely also from a small separation or long-range interactions, cannot be overcome by
setting the intermediate phase advance. Hence the preservation of beam quality is improved only
marginally for realistic configurations in current circular hadron colliders.

4.6 Chromaticity
Chromaticity is often needed in modern colliders to mitigate collective instabilities. It has been
found in previous sections that the chromaticity causes a strong mixing between the longitudinal
and transverse coordinates, activating synchro-betatron resonances parallel to the betatron reso-
nance lines in tune space. This increases the number of particles affected by each resonance. It
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has also been found that a moderate hourglass effect seems to reduce the detrimental effects caused
by the chromaticity. In this section, the quantitative dependence on chromaticity will be tested
for negligible and moderate hourglass effect with zero and nonzero crossing angle. Beam quality
simulations for round beams have been run for each of the following studies at the LHC work-
ing point, (Qx, Qy) = (0.31, 0.32), with Q′ ∈ {0, 1.25, ..., 5, 7.5, ..., 20}, and nominal beam-beam
parameters ξTot ∈ {0.01, 0.02, 0.03, 0.04, 0.05}.

The results from a chromaticity scan with negligible hourglass effect, σs/β∗q = 0.02, and zero
crossing angle, φPIW = 0, are presented as functions of Q′ in Fig. 4.29. It seems that the emittance
growth rate increases approximately exponentially with the chromaticity. The loss rate also in-
creases fast from a threshold chromaticity, dependent on the beam-beam parameter, to an apparent
maximum value of approximately 70% h−1. Similarly, the NADA decreases fast from a threshold
chromaticity. In the simulations with largest loss rate, approximately 7% of the weak beam is lost.
The weak-strong model is approaching its limit of validity.

Figure 4.29: Beam quality reduction for multiple combinations of the chromaticity, Q′, and the
beam-beam parameter, ξTot, when Qx = 0.31, Qy = 0.32, β∗q = 4 m and φPIW = 0. The outputs
NADA, LRBeam and ε̇⊥ have been calculated as expressed in Sec. 3.4. The outputs are presented
as functions of Q′.

The chromaticity scan with zero crossing angle, φPIW = 0, was repeated with a significant hour-
glass effect, σs/β∗q = 2/3, and the results are presented as functions of Q′ in Fig. 4.30. The emit-
tance growth rate seems again approximately exponential, but growing much slower with Q′ than
for a negligible hourglass effect. The NADA and loss rate also behave similarly for large chro-
maticities as with negligible hourglass effect, with a fast decrease and increase respectively towards
a limit after a threshold chromaticity, dependent on the beam-beam parameter. The difference is
that the onset of detrimental effects begins at larger chromaticity for a certain beam-beam param-
eter. For moderate beam-beam parameters, ξTot ≤ 0.03, and as large chromaticity as is usual in
the LHC, Q′ = 15, there seems to be no increase in detrimental effects beyond what is caused by
the noise alone. For the largest beam-beam parameter, ξTot = 0.05, there also seems to be a can-
cellation of the detrimental effects caused by the hourglass effect at Q′ = 0, for a small nonzero
chromaticity. This behaviour produces an optimum chromaticity, being approximately Q′ = 3.75
for this configuration.

The crossing angle and the odd resonances that it activates has been found to reduce the preser-
vation of beam quality. Especially the resonance cancellation by smart choice of intermediate phase
advance was rendered practically worthless when the crossing angle was included in Sec. 4.5. The
scans of chromaticity have thus been repeated with a significant crossing angle, φPIW = 1. The scan
with negligible hourglass effect, σs/β∗q = 0.02, is presented in Fig.4.31. Compared to the scan with
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Figure 4.30: Beam quality reduction for multiple combinations of the chromaticity, Q′, and the
beam-beam parameter, ξTot, whenQx = 0.31,Qy = 0.32, β∗q = 12 cm and φPIW = 0. The outputs
NADA, LRBeam and ε̇⊥ have been calculated as expressed in Sec. 3.4. The outputs are presented
as functions of Q′.

zero crossing angle and negligible hourglass effect, it seems that for small chromaticities, the beam
quality is preserved worse with the crossing angle, while for large chromaticities, it is preserved bet-
ter. One clear difference is that for ξTot = 0.03, there is no significant emittance growth rate even
for the largest chromaticity. That the preservation is worse for small chromaticities can be under-
stood from knowing that the crossing angle activates the odd resonances and the synchro-betatron
resonances. The improvement for large chromaticities can be understood from knowing that the
crossing angle also reduces the total beam-beam tune shift.

Figure 4.31: Beam quality reduction for multiple combinations of the chromaticity, Q′, and the
beam-beam parameter, ξTot, when Qx = 0.31, Qy = 0.32, β∗q = 4 m and φPIW = 1. The outputs
NADA, LRBeam and ε̇⊥ have been calculated as expressed in Sec. 3.4. The outputs are presented
as functions of Q′.

The chromaticity scan with large crossing angle, φPIW = 1, was repeated with a significant hour-
glass effect, σs/β∗q = 2/3, and the results are presented as functions of Q′ in Fig. 4.32. Note that
this Piwinski angle for a smaller value of β∗q corresponds to a smaller actual crossing angle. The
emittance growth rate seems again approximately exponential, but growing much more slowly with
Q′ than for a negligible hourglass effect. The emittance growth rate for zero chromaticity is largest
for this configuration with both the moderate hourglass effect and the crossing angle. The NADA
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and loss rate behave similarly as without the crossing angle. Both begin to reach worse values after
a threshold chromaticity, which depends on the beam-beam parameter. The NADA and the loss rate
also become worse more slowly than for the negligible hourglass effect. For moderate beam-beam
parameters, ξTot ≤ 0.03, and as large chromaticity as is usual in the LHC, Q′ = 15, there seems to
be only a small increase in detrimental effects beyond what is caused by the noise alone. For the
largest beam-beam parameters, ξTot ≥ 0.04, there also seems like the detrimental effects caused by
the hourglass effect and crossing angle when Q′ = 0, is somewhat reduced when a small nonzero
chromaticity is included. This behaviour produces an optimum chromaticity, being approximately
Q′ = 2.5 for this configuration.

Figure 4.32: Beam quality reduction for multiple combinations of the chromaticity, Q′, and the
beam-beam parameter, ξTot, whenQx = 0.31,Qy = 0.32, β∗q = 12 cm and φPIW = 1. The outputs
NADA, LRBeam and ε̇⊥ have been calculated as expressed in Sec. 3.4. The outputs are presented
as functions of Q′.

The detrimental effect of chromaticity, and the reduction thereof by a moderate hourglass effect,
has been studied in this section. The behaviour is assumed to be linked to how the two effects alter-
nate in affecting the incoherent particles as the latter perform synchrotron rotations. The hourglass
effect is felt more strongly for large longitudinal displacement, s, while the chromaticity affects the
particles more strongly for large energy deviation, δ. This alternation with the synchrotron motion is
assumed to disturb the resonances from building up periodically over time. Exactly how this mech-
anism works remains to be understood. Unlike the smart choice of phase advance, the improvement
from this effect seems to remain after activation of odd resonances with a crossing angle.

4.7 Comparison to LHC
A dedicated experiment was performed in the LHC to study the limitations due to strong head-on
beam-beam interactions, and no long-range interactions [48, 49]. The experiment tested collisions
at different working points between individual bunches of higher intensity and smaller normalised
emittance than the ones produced for regular operation with bunch trains. This resulted in a large
total beam-beam tune shift just below 0.02. The experiment found that the loss rate depended
strongly on the working point, which was moved along the diagonal close to the LHC working
point. The parameters of the LHC were fixed with the standard setup of the 2017 run, except for
the different working points. The particles were colliding in IP1 and IP5 only, with alternating
full crossing angle of θxing = 280 µrad with β∗q = 0.4 m. The chromaticity was moderate, Q′ = 7.
Different sensors were able to measure the horizontal and vertical normalised emittance, and the
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intensity of the bunches, as they evolved during the experiment. Based on these values, the beam-
beam parameter can be calculated by Eq. (2.47). The necessary values are given in App. E.

The configurations of the bunches that were acted upon by the strongest beam-beam interaction
have been simulated by CABIN, and the results will be presented in this section. Each working point
was tested in a limited window, making the emittance measurements erroneous. Therefore, only the
loss rates will be compared. This experiment was run over two fills in the LHC. The first fill began
at (0.311, 0.318), whereupon the tunes were decreased simultaneously parallel to the diagonal, for
both the weak and the strong beam. The second fill began at (0.311, 0.319), whereupon the tunes
where increased one at a time, only for the weak beam. To use the implementations for the round
beam-beam interaction, the average of the horizontal and vertical emittances has been used. To use
the 4D implementation, the beam-beam parameter has been reduced by a factor S as in Eq. (2.85).

The loss rates that were measured in the LHC, and are presented in Tab. E.1, are visualised in
Fig. 4.33a. The luminosity burn-off has been calculated to be approximately 5%, which has been
set as the lower limit of the colour scale. The circles and stars correspond to the first and second
fill respectively. Even resonance lines up to 14th order are plotted on top of this tune space, with
width proportional to the strength of the resonance coefficient cn in Eq. (2.58). The loss rate is
large for working points close to the 10th order resonance, Qx ≤ 0.302. The loss rate is also large
in the opposite end, for the working point (0.317, 0.328). This appears to possibly be caused by the
14th order resonance, 4Qx + 10Qy = 2. Because there is a nonzero crossing angle, it could also
be caused by the 7th order resonance 2Qx + 5Qy = 1. There are also quite large loss rates close
to (0.309, 0.316). This might be caused by a combination of the 13th and 16th order resonances.
The smallest loss rate was measured at a working point of (0.315, 0.324). This optimal working
point is further up the diagonal than the LHC working point, in agreement with the discussion on
optimal working points for larger beam-beam tune shifts in Sec. 4.1. Details of the execution of the
experiment can be found in the sources [48, 49].

The configurations were simulated with the round 4D beam-beam implementation in CABIN,
using the average emittance of the strong beam and the reduced beam-beam parameter due to the
crossing angle. The calculated loss rates are presented in Fig. 4.33b. For the working points close to
the 10th order resonance, Qx ≤ 0.305, the calculated loss rates are high, comparable to the exper-
imental values. The code calculates high loss rates for working points further from the 10th order
resonance than what was measured in the experiment. For larger horizontal tunes, Qx > 0.305, the
round 4D beam-beam implementation does not calculate high loss rates for any configuration. Note
that the maximum loss rate distinguishable by colour among the simulated values is 8%, which is
larger than for the experimental values, after subtraction of the luminosity burn-off.

The configurations were also simulated with the round 6D beam-beam implementation, using
the average emittance of the strong beam. The calculated loss rates are presented in Fig. 4.33c. For
the working points close to the 10th order resonance at Qx ≤ 0.305, the calculated loss rates are
high, as they were for the 4D implementation. For larger horizontal tunes, Qx > 0.305, the round
6D beam-beam implementation calculates loss rates similar to the experimental values. The loss
rate of 0.05 h−1, in addition to the luminosity burn-off, has been reproduced for the working point
(0.317, 0.328). Furthermore, the minimal loss rate has been reproduced at the working point close
to (0.315, 0.323). Also, the larger loss rate at (0.311, 0.319), compared to (0.311, 0.322), has been
reproduced.

The configuration was also simulated using the not averaged, measured emittances for the strong
beam, with the flat 6D beam-beam implementation. The calculated loss rates are presented in
Fig. 4.33c. With this implementation, the large loss rates close to the 10th order resonance are
measured for even larger horizontal tunes, Qx ≤ 0.306. For larger horizontal tunes, Qx > 0.306,
the dependence on the working point is similar to the values calculated by the round 6D imple-
mentation, and thus also similar to the experimental values. The loss rates for large vertical tunes,
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(a) LHC. (b) 4D Round.

(c) 6D Round. (d) 6D Flat.

Figure 4.33: Loss rates measured in the LHC in (a), and loss rates calculated by CABIN for
the same configurations using the different implementations of the beam-beam interaction. The
luminosity burn-off has been estimated to 5% h−1 for these configurations, used as the minimum
value of the colour scale of the values measured in the LHC.

Qy ≥ 0.327, are larger for the flat implementation than for the round 6D implementation and the
experimental values.

Before discussing the results in detail, the main differences between the LHC and the model
in CABIN will be repeated. The luminosity burn-off is not included in the code, but it has been
taken into account with a shift of the colour scale for the experimental values. The lattice has in the
code been reduced to a rotation in phase space, and errors of different sources in the lattice have
not been modelled. The normalised noise level in the simulations have been set to ∆q = 10−4, in
units of the beam divergence. This noise level corresponds to a larger emittance growth rate than
is common in the LHC. Due to irregularities with the stability feedback system, this noise level is
possibly reasonable. With a smaller normalised rms noise level of 10−4.5, the loss rates are reduced
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by a few %, but the general dependence on the working point is kept. Finally, the collimation is
done differently in the LHC and in CABIN. The particles are considered lost at a lower transverse
amplitude in the code than in the machine, because the effect of the beam-beam interaction falls off
quickly for large amplitudes, and because higher order lattice errors have not been implemented.

One clear discrepancy is the high loss rates from the simulations for Qx ∈ [0.303, 0.305]. It
seems like the simulations are affected by the detrimental effects from the 10th order resonances
close to Qx = 0.3 at larger horizontal tunes than are measured in the LHC. One cause of this dis-
crepancy could be the difference in collimation, the code counts particles as lost at lower amplitudes
than where they actually are lost. Particles at 5σΣ have tunes further from the working point than
particles at 6σΣ, as was detailed in Fig. 2.10. Collimating at the larger amplitude has been found
to push the limit for large loss rates down to Qx = 0.303, but this also reduces the loss rates in
the configurations far from the 10th order resonance to practically zero. Close to the 10th order
resonance, it seems that the beam-beam interaction is the limiting factor also at larger amplitudes,
but elsewhere the limit of 5σΣ is needed. Another possible cause is that the measured emittances in
the machine during the experiment were erroneous. The beam-beam tune shift was also measured,
and this measurement suggested that the emittances of the strong beam were underestimated by
20% to 30%, which leads to an overestimation of the beam beam-beam tune shifts of beam 1 [48].
The difference between the values calculated with the round and flat beam implementations will be
discussed below.

There is a large difference between the loss rates calculated with the 4D implementation and the
6D implementations, for working points with Qx > 0.306. The difference comes from the inability
of the 4D implementation to model the effect of the crossing angle and the mixing with the longi-
tudinal dof. This is most clear for the loss rates calculated at the working point (0.318, 0.323), for
which the FMAs with the round 4D and 6D implementations are displayed in Fig. 4.34. The FMA
simulations were run for the same configurations as the beam quality simulations, but with zero
noise and zero chromaticity. Simulations were run for the round 6D implementation with both zero
initial longitudinal amplitude, As = 0, and a significant initial longitudinal amplitude, As = 1σs.
First of all, the reduction of the beam-beam parameter for the 4D model does reduce the length of
the tune footprint, but it also reduces the width of the footprint, as the crossing angle does not do
to the same extent. More importantly, in the FMA for the 4D implementation in Fig. 4.34a, the
most visible resonances are the 14th, 16th and 18th order resonances, but not one of these produces
large diffusion coefficients. The FMA for the 6D implementation with zero longitudinal amplitude
in Fig. 4.34b, shows that many odd ordered resonances have been activated by the crossing angle.
The 14th and 18th order resonance lines with zero crossing angle are replaced by the 7th and 9th
order resonance lines. The 16th order resonance lines are not replaced by 8th order resonance lines,
and do not produce larger diffusion coefficients. When the particles have a longitudinal amplitude,
the FMA for the 6D implementation in Fig. 4.34c is completely different, due to a stronger mixing
with the longitudinal dof. The synchro-betatron resonances parallel to the diagonal cut through the
footprint. The low order resonances produce larger diffusion coefficients for particles at large ampli-
tudes, giving large loss rates. Without the crossing angle, there are only even order resonances and
no synchro-betatron resonances visible without mixing with the longitudinal plane. The 4D model
is thus not able to correctly model the behaviour at these working points, for which the beams can
be affected strongly by odd resonances.

There is a small difference between the round and the flat 6D implementations as well. Some of
these differences are within the ∼10% deviation in the simulation results itself, due tot the limited
number of macroparticles. The possibly most crucial difference is in the limit on Qx for large loss
rates close to the 10th order resonance. The difference is in part understandable from the FMAs
for the configuration at the working point (0.306, 0.313) with zero chromaticity in Fig. 4.35. The
strong beam has a smaller vertical than horizontal normalised emittance, εn,x2 > εn,y2, making the
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(a) 4D Round, As = 1σs. (b) 6D Round, As = 0. (c) 6D Round, As = 1σs.

Figure 4.34: FMAs illustrating the difference between the effect of the 4D and the 6D implementa-
tion of round beam-beam interaction, for a working point of (Qx, Qy) = (0.317, 0.328). The red
cross in each subfigure is the working point in the simulations. Possible resonance lines up to the
18th order in (a) and 16th order in (b) and (c) have been plotted on top of the tune footprint in each
subfigure. A few labels were added in (a) to guide the reader.

beam squeezed in the vertical direction and the beam-beam tune shift longer in the vertical tune
than in the horizontal tune, in agreement with Eq. (2.47). In effect, the tune footprint with the flat
implementation is shifted towards the coupling resonance. The impact on the FMA is limited, but
it seems that the 10th order resonance is able to affect more particles for the flat implementation.
The total tune shift is also slightly larger for the flat implementation than the round implementation.
This is caused by taking an average of the emittances when modifying the values of the strong
bunch to be able to use a round beam-beam implementation. The stronger beam-beam interaction
with a tune footprint shifted towards the diagonal may explain the difference between the results
acquired with the flat and round implementations. If the measured emittances were correct, the flat
beam implementation would model the physics most accurately. Due to the large inaccuracy of the
measured emittances, it is possible that the values used for the round 6D implementation are closer
to the real values during the experiment.

(a) 6D Round. (b) 6D Flat.

Figure 4.35: FMAs illustrating the difference between the effect of the round and the flat beam-
beam interaction, for a working point of (Qx, Qy) = (0.306, 0.313). The red cross in each subfig-
ure is the working point in the simulations. Possible resonance lines up to the 16th order have been
plotted on top of the tune footprint in each figure. A few labels were added to guide the reader.
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4.8 Maximum Beam-Beam Tune Shift
To achieve higher luminosity, one also has to increase the strength of the beam-beam interaction.
The stronger the beam-beam interaction is, the larger the beam-beam tune shift is. One recent
paper stated that there is no fundamental limit until ∆QTot(φPIW) = 0.2 for perfect beam-beam
interactions between round beams [10]. This is not a realistic limit. Beam quality simulations have
been run for different configurations at the LHC working point, (0.31, 0.32), and the alternative
working points, (0.315, 0.325) and (0.475, 0.485), in search of a maximum acceptable beam-beam
tune shift. The limit will be taken where there appears to be a distinct threshold on the preservation
of beam quality, and not linked to a hard limit on either output. Pessimistically, the chromaticity
will be set toQ′ = 15 in these simulations, assumed necessary to prevent coherent instabilities. The
beta function will be set to β∗q = 12 cm, as have been found optimal to reduce the problems caused
by this level of chromaticity at the LHC working point. This β∗q is similar to the design value for
the HL-LHC.

The first configuration that will be considered has round beams colliding head-on with zero
crossing angle. The intermediate phase advance is set to µ1 = µ/2, as was found optimal in Sec. 4.5.
This is similar to the configuration considered in [10]. The results are presented as functions of
∆QTot(φPIW) in Fig. 4.36. In this configuration, the maximum acceptable beam-beam tune shift
from the LHC working point is approximately ∆QTot = 0.26. Above this limit the NADA de-
creases and the LRBeam increases fast. The preservation of beam quality is not unaltered with this
beam-beam tune shift, but it is tolerable. The limit is slightly larger for the first alternative working
point (0.315, 0.325) and even larger for the third alternative working point. This configuration is
however quite unrealistic. First of all, it is not possible to keep exactly the smart intermediate phase
advance µ1 = µ/2. The acceptable phase error has been found to decrease for increasing ξTot, and
was approaching zero for a beam-beam parameter of ξTot = 0.05, much smaller than the limits
found for this configuration. Second of all, with as large tune shifts as considered as limits here, the
tune footprint is approximately cut down the middle by the coupling resonance. It has been stated
that the effects modelled in CABIN generally cause less beam deterioration for working points close
to the diagonal. However, other instabilities are assumed to cause more problems when incoherent
particles have equal horizontal and vertical tunes. Finally, this configuration is not affected by odd
resonances. It is unlikely, although not impossible, that this will be achievable in circular colliders.

Figure 4.36: Beam quality reduction for increasing beam-beam parameter, ξTot, until a threshold
is found. Simulations are run for zero crossing angle, large chromaticity, Q′ = 15, significant hour-
glass effect, β∗q = 12 cm, and smart intermediate phase advance, µ1 = µ/2, at the three working
points given by the legend. The outputs NADA, LRBeam and ε̇⊥ have been calculated as expressed
in Sec. 3.4. The outputs are presented as functions of the total beam-beam tune shift, ∆QTot(φPIW ).
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The idea of using specific intermediate phase advances has been found interesting, but not neces-
sarily realistic. The required accuracy is perhaps impossible to achieve for large beam-beam param-
eters, ξTot > 0.05. The scan for zero crossing angle has thus been repeated with zero intermediate
phase advance, and the results are presented as functions of ∆QTot(φPIW) in Fig. 4.37. Without the
improvement from the intermediate phase advance, the maximum acceptable beam-beam tune shift
from the LHC working point is reduced significantly to approximately ∆QTot = 0.043. Above this
limit the loss rate increases rapidly. The limit for the first alternative working point, (0.315, 0.325),
is approximately 0.067. The limit is similar for the second alternative working point, (0.475, 0.485),
although the limit for this working point is less abrupt. The loss rate increases, but the emittance
growth rate is small until ∆QTot = 0.25. This suggests that the particles in the core may be kept
even if the tails are lost, for large beam-beam parameters, when operating at (0.475, 0.485).

Figure 4.37: Beam quality reduction for increasing beam-beam parameter, ξTot, until a threshold
is found. Simulations are run for zero crossing angle, large chromaticity, Q′ = 15, significant
hourglass effect, β∗q = 12 cm, and zero intermediate phase advance, µ1 = 0, at the three working
points given by the legend. The outputs NADA, LRBeam and ε̇⊥ have been calculated as expressed
in Sec. 3.4. The outputs are presented as functions of the total beam-beam tune shift, ∆QTot(φPIW ).

In future colliders, the strength of LR interactions might be weaker and the Piwinski angle might
be cancelled by use of crab cavities. Nevertheless, it is unrealistic to assume that odd resonances
will be completely suppressed. Therefore, the beam-beam parameter scan has been repeated for a
configuration with a significant Piwinski angle, φPIW = 1, and zero intermediate phase advance. The
results of this scan are presented in Fig. 4.38. The limit at the LHC working point is approximately
∆QTot = 0.028. For the first alternative working point, (0.315, 0.325), there is a slightly decrease
in preservation of beam quality for small beam-beam tune shifts, as discussed in Sec. 4.2. The
general behaviour is acceptable until ∆QTot = 0.036. For the second alternative working point, the
limit is approximately ∆QTot = 0.06.

In this section, we have tried to establish a fundamental limit for the beam-beam tune shift,
for realistic scenarios. With use of the clever phase advance µ/2 and no effects driving the odd
resonances, there is no fundamental limit on the beam-beam tune shift before ∆QTot = 0.26. This
limit is reduced significantly at the LHC working point for zero intermediate phase advance, down
to ∆QTot = 0.043, and even further for a nonzero crossing angle, down to ∆QTot = 0.028. The
alternative working point, (0.315, 0.325), has been found in Sec. 4.7 to be associated with small
loss rates for large beam-beam tune shifts in the LHC. The maximum acceptable beam-beam tune
shift from this working point is ∆QTot = 0.067 with zero crossing angle, and ∆QTot = 0.036 with
nonzero crossing angle. The last two studies were rerun with β∗q = 30 cm, the design value for the
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Figure 4.38: Beam quality reduction for increasing beam-beam parameter, ξTot, until a threshold is
found. Simulations are run with a significant crossing angle, φPIW = 1, large chromaticity,Q′ = 15,
significant hourglass effect, β∗q = 12 cm, and zero intermediate phase advance, µ1 = 0, at the three
working points given by the legend. The outputs NADA, LRBeam and ε̇⊥ have been calculated as
expressed in Sec. 3.4. The outputs are presented as functions of the total beam-beam tune shift,
∆QTot(φPIW ).

FCC-hh. This choice reduced the limit on the tune shift further. All realistic limits for the LHC
working point, (0.31, 0.32), and the first alternative working point, (0.315, 0.325), are presented in
Tab. 4.1.

Table 4.1: Maximum acceptable beam-beam tune shift, for pessimistic, realistic configurations.

(Qx, Qy) β∗q [cm] ∆QTot(φPIW = 0) ∆QTot(φPIW = 1)
(0.31, 0.32) 12 0.043 0.028
(0.31, 0.32) 30 0.035 0.018

(0.315, 0.325) 12 0.067 0.036
(0.315, 0.325) 30 0.060 0.026

The beam-beam tune shift limit at the alternative working point close to the half-integer reso-
nance, (0.475, 0.485), has not been considered realistic in this study. More studies are needed to
quantify whether effects not considered in this thesis cause instabilities, optics correction issues or
strong diffusivity for this working point, rendering this working point impractical for colliders. The
tune shifts in this section have been calculated using Eq. (2.85), which assumes that resonances do
not affect the particles. This assumption is not valid for the tune shifts considered here. However,
the estimates are approximately correct, especially for smaller beam-beam tune shifts.
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Chapter 5
CONCLUSION

The beam-beam interaction widens the tune spectrum of the beam, and drives detrimental reso-
nances. The width of the tune spectrum is proportional to the strength of the beam-beam interaction.
In result, strong beam-beam interactions limit the performance of a collider. The object of this the-
sis has been to study the parametric dependence of detrimental mechanisms related to beam-beam
interactions. This has been done extensively by use of new beam quality simulations and FMAs.

In order to accurately quantify the impact on the beam quality, a high-performance tracking
code named CABIN has been developed. It is designed to study the beam-beam interaction, which
has been implemented by the weak-strong approach for both round and flat beams in both 4D
and 6D. The modelling of the beam-beam interaction consumes in general more than 95% of the
computation time of the simulations. The implementation using a GPU has reduced the tracking
time by approximately 3 orders of magnitude, compared to a single CPU. A new regionally uniform
initial distribution has been designed to model the evolution of both the core and the tail of the
bunch accurately, while maintaining realistic computing requirements. It represents a 6D Gaussian
bunch up to 6σ with the required accuracy, using only Nmp = 1× 105 macroparticles. Especially
the relative error of the loss rate measurement has been reduced from 86% to 8%, compared to
a Gaussian distribution of the same number of macroparticles. Simulation results produced with
this code showed good quantitative agreement with a dedicated experiment done at the LHC, and
allowed to identify the role of the crossing angle in the observed loss mechanism.

The impact of the resonances is found to be more severe for particles at larger transverse am-
plitudes, affected by resonances of lower order, and driven by stronger beam-beam interactions.
While perfect head-on interactions only drive betatron resonances of even order, effects that make
the beam-beam interaction asymmetric, as a transverse separation or a nonzero crossing angle, drive
odd resonances as well. Mixing between the transverse and the longitudinal dimensions, caused by
either chromaticity, a nonzero crossing angle or the hourglass effect, activates and drives additional
synchro-betatron resonances. More resonances and more degrees of freedom of the motion, have
been found to generally cause stronger deterioration of the beam, as expected for a nonlinear dy-
namical system.

Some effects have been shown to improve the beam quality for a given total beam-beam pa-
rameter. The best beam performance has been found for zero crossing angle, as the odd resonances
are not activated. The crossing angle is generally nonzero in modern circular colliders, but may be
forced zero for the head-on interactions by crab cavities in the HL-LHC and FCC-hh. Thus, the
odd synchro-betatron resonances due to the head-on interactions could be suppressed. Increasing
the crossing angle further past φPIW = 1 also reduces the detrimental effects. This improvement
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has been found to be caused by the decrease of the beam-beam tune shift and spread. As a result,
the particles in the beam are affected by fewer strong resonances. Nevertheless, this regime is not
preferable for operation, since the luminosity is also decreasing for larger crossing angles.

A transverse separation of more than 2σ also improves the beam quality by reducing the beam-
beam tune shift. This is done to intentionally reduce the luminosity in a single experiment. However,
for a nonzero separation of less than 2σ, the altered nonlinearities can deteriorate the beam quality
faster than with zero separation. Using such separations to reduce the luminosity is therefore not an
optimal strategy to minimise the impact of the beam-beam interaction on the beam quality.

A few specific configurations were also found to improve the beam quality without reducing
the luminosity. A nonzero chromaticity is necessary to avoid coherent instabilities, even if it causes
worse long-term beam quality. It has been found that a significant hourglass effect reduces the
detrimental effects caused by chromaticity, and vice versa. With a large chromaticity,Q′ = 15 at the
LHC working point, (0.31, 0.32), the optimal strength of the hourglass effect is when σs/β∗q ≈ 2/3,
corresponding to β∗q = 12 cm in the FCC-hh, which is smaller than the current design value.

Enforcing intermediate phase advances of µ1 = µ/2 or π/2, were expected from first order
theory to reduce the effect of resonances. The symmetric phase advance, µ/2, improved the perfor-
mance for all working points. An optimal intermediate phase advance was also found close to π/2,
but it was different from the expected value and found to depend on the working point. Both phase
advances improved the beam quality best for zero crossing angle. The effect was marginal for a
significant crossing angle, φPIW = 1. It was found that the accuracy required to keep the resonance
coefficients suppressed was high. However, the effect on the beam quality remained under control
with a reduced accuracy that is within reach using modern optics correction methods.

The LHC working point, (0.31, 0.32), has been found to work well for small beam-beam param-
eters. With a Piwinski angle of φPIW = 1, a significant chromaticity,Q′ = 15, and a beam-beam tune
shift equal to the maximum tune shift in the FCC-hh, ∆QTot = 0.03, two alternative working points
were found to better preserve the beam quality, (0.315, 0.325) and (0.475, 0.485). The beam quality
was generally also found to be better closer to the coupling resonance. A realistic, pessimistic max-
imum beam-beam tune shift from the LHC working point, is found to be ∆QTot = 0.043 with zero
crossing angle. With a Piwinski angle of φPIW = 1, this limit is reduced to ∆QTot = 0.028. The
limits are larger for the alternative working point, (0.315, 0.325), being ∆QTot = 0.067 and 0.036
respectively. These values correspond to the optimum hourglass effect with β∗q = 12 cm. For the
FCC-hh design parameters, β∗q = 30 cm at the LHC working point, the limits for zero and nonzero
crossing angle are reduced to ∆QTot = 0.035 and 0.018 respectively. The limit for nonzero cross-
ing angle is significantly smaller than the largest beam-beam tune shift expected in the FCC-hh,
which should be taken into consideration in the further development of the collider. In particular,
other sources of odd resonances, such as the imperfections of the magnetic lattice or long-range
beam-beam interactions, should be further investigated to see if they also reduce the maximum
acceptable beam-beam tune shift.

There are several possible extensions of the study presented in this thesis. First of all, the
unavoidable long-range interactions should be included. These are expected to drive odd resonances
in a similar manner to a separation of the head-on interaction, even if the Piwinski angle of the
head-on interactions is reduced to zero by crab-cavities. Second of all, a simplified model of the
lattice nonlinearities could be included. These have been expected to continue the diffusion from
5σΣ, but this has not been checked. Finally, the alternative working points close to the half-integer
resonances, represented by (0.475, 0.485), are found to be optimal based on the effects modelled in
CABIN. Effects that are not discussed here are known to cause issues for working points in this area
of tune space, in particular coherent effects and the correction of the optics. This study supports
further investigations of these effects, in order to assess the possibility of using this working point
for operation of a circular hadron collider.
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Appendix A
DIFFUSION

Consider a 1D diffusion of the normalised momentum density n(px, t) with constant diffusivity D.
Fick’s law reads in this case

dn
dt = D

d2n

dp2
x

. (A.1)

Through insertion one can see that this is solved for a Gaussian initial condition (IC) by

n(px, t) = N√
4πD(k + t)

exp
[
− p2

x

4D(k + t)

]
, (A.2)

where k is a constant defined by the IC. Integrating this distribution over all momentum gives the
total number of particles N . Through comparison with a 1D Gaussian, or from performing the
calculation, one get that the second moment 〈p2

x〉 increases linearly with time

〈p2
x〉 = 2D(k + t) = σ2

px
, (A.3)

where 2Dk = σ2
px,0 is the variation at time t = 0.

Diffusion can be achieved with a normally distributed kick κ with rms amplitude ∆, on the
momentum px of each particle in n(px, t). The relation between ∆ and the diffusivity, D in (A.1),
can be expressed as [50]

D =
∫ ∞
−∞

dκ κ2

2δt
1√

2π∆
exp
[
− κ2

2∆2

]
= ∆2

2δt , (A.4)

where δt is the time interval between each kick. The amplitude of noise ∆ can thus be set to produce
a given expected growth rate caused by noise alone.

Consider an example relevant for simulations done in CABIN [37]. Set the rms amplitude of
the kick to be ∆ = σpx,0 × 10−4, and assume that the momentum of each particle is kicked once
per turn, δt = 1/frev, where frev is the revolution frequency. The evolution of the second moment
of px is then

σ2
px

= σ2
px,0 · (1 + T × 10−8) , (A.5)

where T is the turn number, equal to t · frev. For the normalised Gaussian distribution considered
in this thesis, σpx,0 = 1. The growth rate of the second moment of px is equivalent to the emit-
tance growth rate expected from noise alone, ε̇0 = 1× 10−8 /turn. ε0 is the emittance based on
normalised coordinates, equal to 2 for a perfect Gaussian distribution.
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Appendix B
TESTING CABIN

B.1 Benchmarking

The 6D beam-beam map in CABIN [37] is based on the work done and code written by K. Hirata
[30, 31]. Hence the two codes should give the same results. Two major difference is in the calcula-
tion of the inverse cumulative Gaussian distribution, necessary for the barycentres of the individual
slices, and in the calculation of the complex Faddeeva function, necessary for the kick of each slice.
Hirata’s code applies a lookup table for the inverse cumulative Gaussian while CABIN applies a
built-in function of SciPy (norm.ppf). The difference between the two implementations for values
on the interval [0.005, 0.995] oscillates around zero with a rms-error of errgauinv = 4.2× 10−5. Out-
side of this interval the error increases to lim

x→{0,1} errgauinv = 0.001. Hirata’s code applies a lookup
table also for the complex Faddeeva function, while CABIN applies a GPU-implementation [39].
The error of this CUDA-implementation is for most inputs less than errerf,C . 1× 10−9. The rela-
tive error of the lookup-table version of the complex Faddeeva function is shown in Fig. B.1, where
the error refers to the discrepancy between the two implementations. The error is for both the real
and imaginary outputs in the order of errerf,H . 1× 10−7 when either input is above ∼2. The er-
rors are in general a few orders of magnitude greater when both inputs are below ∼2, especially for
the imaginary output. The lookup-function produces for such inputs incorrectly negative imaginary
values. The inputs depend on the ratio between the transverse position and the difference between
the horizontal and vertical beam sizes, and will thus only be small for particles deep in the core
for flat beams where the kick is approximately zero. The following tests will not be affected by
this error in the lookup function. Since both of these functions give different results, the difference
between the two implementations cannot be expected to be smaller than approximately 10−5.

Hirata’s code was initially designed for lepton machines, and contains only the map for flat
beams. CABIN is designed for hadron colliders and has thus both an implementation for round
beams and for flat beams, the round being faster and thus preferred when valid. The beam-beam
map is calculated for 203 particles distributed in a 3D grid in (x̂, ŷ, ŝ), where each coordinate is
uniformly distributed as x̂i = {0.1, 0.6, ..., 9.6} in normalised coordinates. The error between the
two codes is calculated as the rms difference, relative to the maximum kick of Hirata’s code, for each
of the coordinates separately, not including the longitudinal coordinate s since this is not changed
by the beam-beam interaction. The 6D nature of the interaction is most prominent in cases where
either σs/β∗q or φPIW or both are significantly nonzero, hence such configurations will be used to
benchmark CABIN versus Hirata’s code. The tests that follow share the same normalised emittance
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(a) (b)

Figure B.1: Relative error between the implementation of the complex Faddeeva function in Hi-
rata’s code and CABIN. (a) shows the error in the real output. (b) shows the error in the imaginary
output.

in both planes and both beams, εn,x1 = εn,y1 = εn,x2 = εn,y2 = 3 µm, and the same longitudinal
beam size, σs = 8 cm.

The errors for the different coordinates between the round beam implementation in CABIN and
Hirata’s code is visualised in Fig. B.2a for β∗q = 1 cm and horizontal Piwinski angle φPIW,x = 2.
A less extreme configuration is presented in Fig. B.2b, with β∗q = 40 cm and horizontal φPIW,x = 1.
The flat beam implementation does not work when considering round beams, and the beam-beam
map from Hirata’s code has been calculated after slightly increasing β∗y . All errors presented has
been calculated with a moderate number of slices, NS = 31. The errors do not decrease if more
slices are used. The errors in these configurations converge for all coordinates as β∗y → β∗x. The
most erroneous coordinate is δ. That might be because this is the coordinate that changes the least,
and thus is most vulnerable to numerical error. From comparison also with additional configura-
tions, the errors slightly increase in general as β∗q decreases or φPIW increases. The errors presented
converge to values that all are below or of the same order as the errors in the two lookup-table
functions applied in Hirata’s code. Hence the round beam implementation in CABIN is in good
agreement with the limiting case of Hirata’s code. For configurations with even smaller β∗q the error
would continue to increase, but such configurations will require a very high number of slices two
be calculated physically accurate and are not feasible for accelerators today as the LHC.

The results for the flat beam implementation are presented in Fig. B.3, where the ratio between
the two transverse axes has been controlled by setting β∗x 6= β∗y while keeping the emittances equal.
There is no longer need to look for the convergence as β∗y → β∗x as they are supposed to be different.
These calculations have been done with NS = 61. The dependence of the error as the beams
become flatter is shown in Fig. B.3a, for β∗y = 1 cm and φPIW,x = 0. The error increases in these
configurations as the beams become rounder. This might be linked to problems with such small
values for β∗q , as discussed above. The dependence of the error is equivalently shown in Fig. B.3b,
for β∗y = 10 cm and φPIW,x = 2. With a large crossing angle and a slightly bigger β∗y , the error now
increases as the beams become flatter, possibly linked to the increased error for smaller inputs in
the complex Faddeeva function. As for the implementation of the round beam-beam interaction, the
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(a) (b)

Figure B.2: Relative error between the flat beam-beam map in Hirata’s code, as β∗y → β∗x, and
the round beam-beam map in CABIN, for each coordinate separately. (a) is for β∗q = 1 cm and
φPIW,x = 2. (b) is for β∗q = 40 cm and φPIW,x = 1.

errors seems to be below or of the same order as the errors in the two lookup-table functions applied
in Hirata’s code. Therefore, the flat beam implementation is in good agreement with Hirata’s code,
at least for the configurations of interest.

(a) (b)

Figure B.3: Relative error between the flat beam-beam map in Hirata’s code and CABIN, for
different ratios between the two transverse sizes. (a) is for β∗y = 1 cm and φPIW,x = 0. (b) is for
β∗y = 10 cm and and φPIW,x = 2.

91



B.2 Slice Convergence
The reduction of the continuous 6D beam-beam kick into a series of discrete interactions with lon-
gitudinal slices of the other beam, is a generalisation from the 4D model. The 4D model is in
comparison the kick of a single slice on only the transverse coordinates, independent of the longi-
tudinal distribution. As the number of slices tends to infinity, NS → ∞, this method is equivalent
to integration. Due to the smoothness of the Gaussian distribution, a relatively low number of slices
is necessary to represent the 6D nature of the beam-beam interaction accurately. Hirata concluded
that, for his work, as few as NS = 5 was sufficient, which he based on the convergence of the
transverse beam size [31]. The number of slices necessary should however depend on the crossing
angle, φPIW , and the hourglass effect, expressed by the ratio σs/β∗q . In the limit of zero crossing
angle and no hourglass effect the 4D model, or NS = 1, is sufficient, but as these constraints are
gradually lifted, the required number of slices should increase. This section studies the convergence
with NS for different configurations, based directly on the beam-beam map.

For each value of NS, the beam-beam map has been calculated for Nmp = 3000 particles dis-
tributed in 3 groups of equal size. Group 1 is a 3D grid in (x̂, ŷ, ŝ), where each coordinate is
uniformly distributed as x̂i = {0.1, 1.1, ..., 9.1}, group 2 is distributed uniformly only along the
x̂ axis on the interval x̂ ∈ (0, 10], and group 3 is distributed equivalently along the ŝ axis. If there
is a nonzero crossing angle, the crossing is in the horizontal plane. The error has been calculated
for each coordinate separately, as the rms error relative to the beam-beam map acquired with a
large number of slices, NS = 200. The change is negligible if the assumed correct value is calcu-
lated with a larger number of slices as NS = 1000. Because there is mixing between the positional
and translational coordinate in each plane, and also mixing between the planes, the error in one
coordinate is not confined, but can transfer to other coordinates as well. The error presented for
a certain NS, errNS , is therefore the largest of these errors. The average error is in many cases
much smaller than what is presented. The tests that follows share the same normalised emittance
in both planes and both beams, εn,x1 = εn,y1 = εn,x2 = εn,y2 = 3 µm, and the same longitudinal
beam size, σs = 8 cm.

The dependence of error on NS has been investigated for different values of β∗q in the round
beam scheme with zero crossing angle, and the results are presented in Fig. B.4a. For the largest
value of β∗q , σs/β∗q = 0.1, the error is errNS = 0.002 for NS = 1, implying that the hourglass
effect may be considered negligible, depending on the chosen tolerance. As β∗q is reduced further,
the hourglass effect is more important, and the error is larger for the same NS. For β∗q = 1 cm
the error is approximately 1% for NS = 50, and the reduction rate is slow. That is, more slices
are needed as expected when σs/β∗q increases. The largest error measured for these configurations
is in the change of the energy, ∆δ, approximately an order of magnitude larger than the second
largest error. Fig. B.4b shows how ∆δ depends on NS for particles distributed along the s axis for
β∗q = 2.5 cm, between the limiting cases of NS = 1 and NS = 200. The additional values of NS
has been chosen so that errNS ≤ tolj for different tolerances, tolj . Remember thatNS = 1 does not
correspond directly to the 4D model, unless the requirements for the 4D model to be valid are met.
This plot illustrates that already for a tolerance of tol = 1%, the general behaviour of the function is
much better described than with a single slice, and can be considered valid to represent the physics
as σs/β∗q reaches correspondingly large values.

The dependence of error on NS has been investigated for different values of φPIW,x in the round
beam scheme, and the results are presented in Fig. B.5a. All these calculations have been done with
β∗q = 40 cm, and the values for φPIW,x = 0 are thus the same as in Fig. B.4a for this β∗q . For nonzero
crossing angles, errNS is several % when only a single slice is applied, which is understandable
since NS = 1 cannot capture the fact that the strong beam is tilted. Therefore, the effective crossing
angle is half of what it is supposed to be. The error reduces quicker for larger NS for nonzero φPIW,x
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(a) (b)

Figure B.4: Dependence on NS of error in representation of the round beam-beam map. (a) dis-
plays the dependence of errNS on different values of β∗q . (b) displays the actual change of δ for
different values ofNS, for particles distributed along the s axis, when β∗q = 2.5 cm and φPIW,x = 0.
The labelled tolerances (in descending order) correspond to NS = {2, 3, 10, 17, 37}.

than for nonzero hourglass effect. Except for at quite large crossing angles and large NS, the largest
error is also for these configurations in the change of δ. However, for nonzero φPIW,x, this error is of
approximately the same order of magnitude as the second largest error. Fig. B.5b shows how ∆px
depends on NS for particles distributed along the x axis for φPIW,x = 2, between the limiting cases
of NS = 1 and NS = 200. NS = 1 gives transverse kicks for this distribution equivalent to the 4D
model. The additional values of NS has been chosen so that errNS ≤ tolj , for different tolerances,
tolj . This plot indicates that already for tolerances of 1%, the effect of the crossing angle is well
described, especially compared to when only a single slice is used.

The results presented in this section have shown that the number of slices necessary to achieve
a certain tolerance depends strongly on the configuration. For the cases of (β∗q , φPIW,x) = (1 cm, 0)
and (β∗q , φPIW,x) = (40 cm, 2), applying NS = 5 corresponds to an relative error of 8% and 3%
respectively. The error falls of quickly as NS is increased from 1 to 10, but for larger NS, the im-
provement per added slice decreases. Simultaneously, it has been shown that the method describes
well the 6D nature of the beam-beam interaction, already for a tolerance of 1%. Finally, I would like
to point out that what tolerance to put also depends on what computing resources are available. In
CABIN, the tolerance is set to tol = 0.2 % for the simulations presented in this thesis. Calculating
what value of NS is necessary to achieve this tolerance is fast compared to the actual simulation.
Thus, CABIN checks this convergence before every simulation, requiring for the round implementa-
tion that errNS < 0.2 % and thatNS ≥ 15 slices. The configuration with β∗q = 2.5 cm will therefore
be calculated with NS = 48 slices, while configurations with negligible 6D nature will still be cal-
culated with NS = 15 slices, and hence be modelled more accurately. The flat implementation is
slower than the round implementation, as discussed in App. C. The minimum number of slices has
thus been reduced to NS = 7 for the flat implementation, still requiring the same tolerance on the
error.
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(a) (b)

Figure B.5: Dependence on NS of error in representation of the round beam-beam map. (a) dis-
plays the dependence of errNS on different values of φPIW,x. (b) displays the actual change of px for
different values of NS, for particles distributed along the x axis, when β∗q = 40 cm and φPIW,x = 2.
The labelled tolerances (in descending order) correspond to NS = {3, 4, 13, 22, 48}.
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Appendix C
SIMULATION TIMINGS

How long time a simulation takes, depends on the ratio between how many calculations have to
be made and how many can be made per unit of time. It is not feasible to make a model an exact
replication of the physics in synchrotrons. Approximations have to be done, and their validity
must be understood. Such approximations reduce the required memory and number of computer
operations necessary to complete the simulation. For the timing of a given simulation, the limiting
factor is then how many operations that can be performed per second. In this appendix, different
options are considered to maximise the efficiency of the implementation of the numerical model.

C.1 From CPU to GPU
The speed of processors increase over time, making it possible today to do what was unthinkable
10 years ago. Given a computer at one point in time, one also has to be able to exploit its abilities
to the fullest. While developing CABIN it became clear that a single processor running Python was
insufficient. Therefore, a study was initiated to test the speed of different alternatives. The initial
alternative was to compare Python and Fortran95. Most of the possible speedup from switching
programming language was already achieved using numpy arrays in Python. The second alternative
was to implement multiprocessing, using multiple central processing units (CPU) for different parts
of the same job. Using M CPUs in parallel gives a theoretical maximum speedup of M on the
parallelisable parts of the code, as known from Amdahl’s law [51]. The actual speedup is less than
M due to additional operations necessary to administer the multiple processes and tasks that cannot
be parallelised, which are referred to as overhead in the following. More CPUs still led to a smaller
speedup than required.

There is a line of high performance parallel computing that uses graphical processing units
(GPU) instead of CPUs. A GPU can perform the same process on multiple threads at the same
time. NVIDIA has focused on applying GPUs in scientific programming, using double precision.
They have also made a software that can be applied in Python using a wrapper called PyCUDA. The
GPU that has been used in this test can run a large number of processes simultaneously, performing
calculations on 448 of these processes at a time, at a clock speed which is half of that of the CPUs
that have been used. The overhead is however substantial and the speedup of 224 is not achievable.
One time-consuming aspect of using a GPU is transfer of memory to and from the GPU. Hence
two tests of the GPU were performed. The first test was transferring only a single state of multiple
particles onto the GPU, doing tracking on the GPU, and transferring the new state back. This time
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is referred to as GPUS , where S stands for small. The second test included the transfer of a memory
slot that could contain 2048 values per particle per dimension, necessary for post-processing. This
time is referred to as GPUL, where L stands for large. This test has been run on the liupsgpu
machine at CERN. More hardware information is available in App. D.

(a) (b)

(c)

Figure C.1: Results from a computation time study between Fortran95 (f95), Python on 1 CPU
(CPU), Python on 10 CPUs (MCPU) and PyCUDA on a GPU with a small (GPUS) and a large
(GPUL) memory transfer. (a) shows computation time dependence on the total number of turns
in the simulation, TTot, for a given number of macroparticles, Nmp = 1× 105. (b) shows com-
putation time dependence on the number of macroparticles, Nmp, for a given number of turns,
TTot = 1× 105. In (c) the speedup achieved by the GPU relative to a single CPU is shown for
multiple combinations of macroparticles and turns.

All methods were tested on how fast they could track a given number of macroparticles Nmp,
over a given number of turns TTot. Each turn the particles were transferred through a linear lat-
tice and affected by two 4D HO beam-beam interactions between round beams in the weak-strong

96



model. The results from the computation time study are presented in Fig. C.1. Summarised, the
GPU used from Python was faster than using M = 10 CPUs running Python, which was faster than
a single CPU running Fortran95 (f95), which was faster than a single CPU running Python. With
the optimal conditions of a large Nmp and a large TTot, the tested GPU gave a speedup of approxi-
mately 137 compared to a single CPU, not too far from the theoretical speedup of 224. The speedup
of using either a GPU or M CPUs was eradicated for a smaller number of macroparticles, when
the speedup of multiprocessing was less than the additional time spent on overhead. Also, the large
transfer to and from the GPU dominated the computation time for a lower number of turns.

C.2 Profiling of Beam-Beam Implementations
Both round and flat beams in 4D and 6D has been implemented in CABIN. Therefore, it is of interest
to compare the speed of simulations using the different beam-beam implementations. The round
beam implementations are readily compared, as they mostly depend on the exponential function
whose timing is rather input independent. The main difference between the round and the flat beam
implementations is that the flat beam kick is calculated by use of both the exponential and the
Faddeeva function. The Faddeeva function is much slower. The flat beam implementations depend
strongly on the configuration and the distribution of the particles. When the normalised transverse
displacement from the centre of the slice is larger than 10,

√
x̂2 + ŷ2 ≥ 10, the Faddeeva function

is only calculated once and not twice per particle per interaction. Further time savings occurs in
the calculation of the Faddeeva function itself when the absolute value of either the real or the
imaginary input to the Faddeeva function is larger than 5.33 or 4.29 respectively. This happens
more often when the denominator

√
σ2
x − σ2

y is small, i.e. when the flat beam is almost round. The

GPU that has been used for the following tests is Nvidia R© TeslaTM C2075.
A comparison between computation time of only the beam-beam interaction per particle per

interaction, tpppi, is presented in Tab. C.1. The values presented are averages of three iterations of
tracking a total ofNmp = 65536 particles for TTot = 2× 104 turns. The particles have been initially
distributed in a 2D-grid in (x̂, ŷ) space, where each coordinate is distributed uniformly on the inter-
val x̂ ∈ (10−8, 10]. In these simulations β∗y = 0.4 m and φPIW,x = 0.01. The time spending for the
6D model has been separated in the time spent per slice, and the 6D overhead, which includes the
transformation from normalised to non-normalised coordinates and the required Lorentz boost due
to the crossing angle. The separation has been done by measuring the timing for different numbers
of slices, NS ∈ {3, 5, 11, 21}, and performing a linear regression. In general, the calculation time
for the 4D model is similar but smaller than the time spent on each slice in the 6D model. This is
expected as a few more operations are done per slice in the 6D model than in the 4D model, but in
general these are not the most time consuming calculations. The 6D overhead calculations are the
same for the round and the flat implementation, and these have been found to be similar in the two
different configurations. The difference should largely be caused by deviation in the time measure-
ments. The calculation time for flat beams does not change much for a larger β∗x/β

∗
y , but it does

begin to reduce as this ratio becomes smaller. For round bunches, the 6D overhead takes as much
time as 6 slices, i.e. using 18 slices is only twice as slow as using 6 slices, although the accuracy is
much greater. The same is not true for flat bunches, for which the overhead timing is shorter than
the timing of a single slice.

A comparison between timings of complete beam quality simulations, tsim, is presented in
Tab. C.2. In these simulations, Nmp = 1× 105 macroparticles are distributed uniformly below a
6D radius of 6σ, and tracked for TTot = 2× 106 turns. The simulations include all relevant effects
implemented in CABIN; 2 IPs per turn of alternate crossings with φPIW = 0.01, separated by 2 in-
dependent linear phase advances affected by chromaticity making up the entire lattice, a source of
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Table C.1: Computation time per particle per beam-beam interaction, tpppi. Comparison between
4D and 6D model, and between the transfer map from a round and a flat beam. The timing for the
6D model has been separated in time per slice and the additional 6D overhead.

tpppi Round Flat
β∗x = 1.01 · β∗y

4D 0.70 ns 28.8 ns
6D overhead 5.45 ns 5.7 ns
6D per slice 0.88 ns 29.1 ns

Gaussian white noise, and collimation of particles at large amplitudes. These timings express well
the necessity of knowing when what approximation is valid. Using the 4D model instead of the 6D
saves approximately a factor 10 for NS = 15, while being able to use round beams instead of flat
beams saves approximately a factor 70 in time, for this particular distribution and configuration.
The beam quality simulations runs approximately a factor 8 times faster on the Tesla P100 GPU,
which is presented in App. D.

Table C.2: Runtime of complete beam quality simulation with 2 IPs per turn of alternate crossings,
2 independent contributions of phase advance from the lattice including a nonzero chromaticity, and
noise. Nmp = 1× 105, TTot = 2× 106, φPIW = 0.01, Q′ = 2, noise of ∆ = 1× 10−4.

tsim Round Flat
β∗x = 1.01 · β∗y

4D 9.8 min 10.8 h
6D (NS = 15) 118 min 94 h

The simulation timings, tsim, should be comparable to the timing expected from the beam-beam
interaction alone, tbb = 2 ·Nmp · TTot · tpppi. The values for tbb are presented in Tab. C.3. For
round 4D beams, tbb = 4.7 min, approximately 5 min less than the timing of the full simulation.
This is largely because more effects are included in these simulations than the beam-beam interac-
tion alone, and there is a substantial overhead necessary for organising the simulations, including
the memory transfers to and from the GPU. However, both these explanations should be similar
for all simulations. The time spending from other sources than the beam-beam interaction is only
substantial for the simplest implementation, the round 4D beam-beam interaction. For round 6D
beams, tbb is 6% larger than tsim. The discrepancy is likely caused by inaccuracies in the measure-
ments of tpppi, in addition to the small overhead of simulations of approximately 5 min. For flat
4D beams, tbb = 3.4 · tsim, and for flat 6D beams, tbb = 1.9 · tsim. These discrepancies are much
larger than for round beams. Parts of this discrepancy may be explained by the different simplifica-
tions that can be done for the flat beam implementation while simulating. In fact, when the particles
are initially distributed in a 2D grid in (x̂, ŷ) up to a maximum normalised value of 10, the actual
simulation time for flat 4D beams is substantially reduced to tsim = 2.2 h < tbb.

In this section, it has been shown that the 6D implementation is more time consuming than
the 4D implementation, and that the flat beam implementation is more time consuming than the
round beam implementation. It has also been shown that the timing of the flat beam model depends
strongly on the distribution, being much slower for particles in the core than for particles in the
tails. The previous section compared simulation times when the beam-beam interaction was ap-
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Table C.3: Expected timing from beam-beam interaction only, based on tpppi in Tab. C.1,
tbb = 2 ·Nmp · TTot · tpppi. 2 IPs per turn, Nmp = 1× 105, TTot = 2× 106, φPIW = 0.01.

tbb Round Flat
β∗x = 1.01 · β∗y

4D 4.7 min 3.2 h
6D (NS = 15) 125 min 49 h

proximated by the round 4D weak-strong model. Hence, the limits on TTot and Nmp for when the
speedup of multiprocessing is positive, either by M CPUs or by a GPU, would be lower for the
slower configurations including either the 6D map or the flat beam model or both.
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Appendix D
COMPUTING RESOURCES

The various computing resources that has been used during the work on this thesis are listed in
Tab. D.1. All 4 computers are running some form of Linux. Computer 1 is a standard office
desktop from which all work has been done. It does not have a GPU, but has been applied to
analyse data and connect to the GPU resources. Computer 2 is a machine that was built for the
LHC injectors upgrade project for the Proton Synchrotron (liups). It contains more CPU cores than
computer 1, and 4 GPUs from 2011. This has been used for all the testing of the GPU-codes, and
also quite substantial simulations during the entire project. It is shared by multiple users in the
CERN-community, and the availability has been unpredictable.

Towards the end of this project it became clear that the GPU hardware available in computer 2
was insufficient. NTNU provided access to computer 3, the Idun-cluster, serviced by their high-
performance computing group. Computer 4 is one of the queues on this cluster, containing 9 nodes
that each carry 2 Tesla P100 for PCIe-based servers. Getting access to these resources was an
upgrade for the master’s project, gaining approximately 42 times higher total double precision per-
formance.
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Appendix E
BEAM PARAMETERS IN LHC
EXPERIMENT

A dedicated experiment was performed in the LHC to study the limitations due to strong head-on
beam-beam interactions, with no impact of long-range interactions [48, 49]. The working point was
shifted around in tune space, (Qx, Qy), during the experiment. The necessary values to reproduce
the behaviour for each working point are given in Tab. E.1, including the emittance in both planes
for both bunches, the intensity of the strong bunch and the measured loss rate per hour of the weak
bunch. The intensity and emittances given are the averages over the length of the interaction at that
working point. The weak bunch is equivalent to bunch 2100 in beam 1, while the strong bunch is
equivalent to bunch 2100 in beam 2.
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Table E.1: Emittance and intensity measured in the LHC for two bunches colliding with strong
beam-beam interactions. The subscripts 1 and 2 correspond to the weak and strong bunch respec-
tively.

(Qx1, Qy1) εn,x1 εn,y1 εn,x2 εn,y2 N2 LRLHC,1
[µm] [µm] [µm] [µm] [1011] [h−1]

(0.311, 0.318) 1.875 2.533 1.884 1.395 1.724 0.064
(0.310, 0.317) 1.921 2.574 1.864 1.378 1.720 0.075
(0.309, 0.316) 1.873 2.597 1.856 1.377 1.714 0.089
(0.308, 0.315) 1.887 2.574 1.843 1.384 1.708 0.087
(0.307, 0.314) 1.908 2.528 1.867 1.384 1.693 0.062
(0.306, 0.313) 1.922 2.461 1.892 1.369 1.692 0.075
(0.305, 0.312) 1.924 2.491 1.870 1.375 1.690 0.066
(0.304, 0.311) 1.926 2.498 1.878 1.389 1.688 0.074
(0.303, 0.310) 2.029 2.525 1.889 1.378 1.654 0.073
(0.302, 0.309) 1.970 2.501 1.859 1.364 1.612 0.151
(0.301, 0.308) 1.850 2.437 1.875 1.368 1.606 0.387
(0.301, 0.308) 1.833 2.440 1.844 1.360 1.582 0.128
(0.300, 0.307) 1.795 2.410 1.765 1.337 1.562 0.101
(0.299, 0.306) 1.794 2.416 1.810 1.340 1.557 0.124
(0.298, 0.305) 1.775 2.392 1.784 1.326 1.552 0.156
(0.311, 0.319) 1.628 2.156 1.650 1.224 1.917 0.079
(0.311, 0.320) 1.672 2.129 1.622 1.214 1.915 0.061
(0.311, 0.321) 1.702 2.199 1.612 1.245 1.914 0.079
(0.311, 0.322) 1.662 2.159 1.646 1.234 1.913 0.066
(0.311, 0.323) 1.686 2.172 1.632 1.230 1.909 0.066
(0.312, 0.323) 1.669 2.182 1.644 1.236 1.905 0.067
(0.313, 0.323) 1.713 2.177 1.662 1.240 1.897 0.050
(0.314, 0.323) 1.754 2.296 1.661 1.242 1.896 0.058
(0.315, 0.323) 1.706 2.211 1.680 1.244 1.894 0.054
(0.315, 0.324) 1.687 2.101 1.679 1.243 1.892 0.050
(0.315, 0.325) 1.707 2.162 1.684 1.245 1.889 0.071
(0.315, 0.326) 1.661 2.175 1.688 1.236 1.886 0.062
(0.315, 0.327) 1.669 2.266 1.709 1.242 1.885 0.080
(0.316, 0.327) 1.660 2.274 1.724 1.237 1.882 0.063
(0.317, 0.327) 1.700 2.288 1.730 1.240 1.880 0.066
(0.317, 0.328) 1.726 2.180 1.734 1.237 1.878 0.108
(0.318, 0.328) 1.671 2.125 1.739 1.237 1.877 0.081
(0.319, 0.328) 1.682 2.198 1.726 1.234 1.876 0.065
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